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Abstract We prove that the Cauchy problem for parallel null vector fields on smooth
Lorentzian manifolds is well-posed. The proof is based on the derivation and analysis
of suitable hyperbolic evolution equations given in terms of the Ricci tensor and
other geometric objects. Moreover, we classify Riemannian manifolds satisfying the
constraint conditions for this Cauchy problem. It is then possible to characterise certain
holonomy reductions of globally hyperbolic manifolds with parallel null vector in
terms of flow equations for Riemannian special holonomy metrics. For exceptional
holonomy groups these flow equations have been investigated in the literature before
in other contexts. As an application, the results provide a classification of Riemannian
manifolds admitting imaginary generalised Killing spinors. We will also give new
local normal forms for Lorentzian metrics with parallel null spinor in any dimension.
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1 Background and Main Results

Lorentzian manifolds with parallel null vector fields or parallel null spinor fields arise
naturally in geometric as well as physical contexts. In general relativity they occur
as wave-like solutions to the Einstein equations and in string theory they constitute
supergravity backgrounds with a high degree of supersymmetry. In geometry they
form a class of Lorentzian manifolds with special holonomy, i.e. whose holonomy
group is reduced but the manifold is not locally a product. The holonomy algebras
associated to Lorentzian manifolds with special holonomy were classified in [12,30]
and local metrics realising the given holonomy algebras are constructed in [24]. More
recently, the interplay between special Lorentzian holonomy, or more specifically, the
existence of parallel null vector fields, and global geometric properties has become the
focus of research [9,11,15,19,31,35]. In the present paper, we address the problem of
constructing globally hyperbolic Lorentzian manifolds by solving a Cauchy problem
that arises from the existence of a parallel null vector field. Another motivation arises
from spin geometry: the existence of a parallel null spinor implies the existence of a
parallel null vector field and it turns out that the associated Cauchy problem provides
some interesting relations to Riemannian spin geometry. In fact, it naturally leads to
a classification result for (complete) Riemannian manifolds admitting the so-called
imaginary generalised Killing spinors.

As in a preceding paper [10], we have shown that the Cauchy problem for parallel
null vector fields is well-posed for real analytic data and that it always has a globally
hyperbolic solution. The proof rested on the derivation of suitable evolution equations
which can be analysed using the Cauchy–Kowalevski Theorem. More precisely, let
(M, g) be a Lorentzian manifold admitting a nontrivial vector field V ∈ X(M)which
is parallel with respect to the Levi-Civita connection∇ of g and satisfies g(V, V ) = 0.
Suppose further that (M, g) is a spacelike hypersurface of (M, g)which embeds into
M with Weingarten tensor W. As seen in [10], requiring the vector field V to be
parallel, imposes on (M, g) the constraint

∇U + uW = 0, (1.1)

whereU ∈ X(M) is the vector field given by the negative of the projection of V onto
TM and u = √

g(U,U ). Then, using the Cauchy–Kowalevski Theorem, in [10] it
was shown that real analytic initial data (M, g,U,W) satisfying the constraint (1.1)
can be extended to a Lorentzian manifold (M, g) with parallel null vector field V .

This result immediately suggests the question whether the Cauchy problem for a
parallel null vector field is also well-posed for smooth data. For a parallel null spinor,
this was verified in [33] using techniques surrounding the Cauchy problem for the
vacuum Einstein equations. It turns out that these techniques can also be applied
here—after overcoming some difficulties explained below—allowing us to prove our
main theorem that the Cauchy problem for parallel null vector fields is also well-posed
for smooth data:

Theorem 1 Let (M, g) be a smooth Riemannian manifold admitting a nontrivial
vector field U solving (1.1) for some symmetric endomorphism W on M. Moreover,
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let λ ∈ C∞(M, R
∗) be a given function. Then there exists an open neighbourhood

M of {0} ×M in R×M and a Lorentzian metric of the form

g = −˜λ2dt2 + gt ,

where gt is a family of Riemannian metrics on M and˜λ is a positive function on M
with

g0 = g, ˜λ|M = λ,

such that U extends to a parallel null vector field on (M, g). Moreover, (M, g) can
be chosen to be globally hyperbolic with spacelike Cauchy hypersurface M, i.e. M
is met by every inextendible timelike curve in (M, g) exactly once.

The proof of Theorem 1 in Sect. 3 is based on the theory of quasilinear symmetric
hyperbolic PDEs as known from general relativity. Let us point out, however, one
fundamental difference to similar Cauchy problems in general relativity or in [33]:

Considering the Cauchy problem for the Einstein equations in general relativity, it
follows by definition of the problem that evolution equations for themetric are given in
terms of the Ricci (or Einstein) tensor. Similarly, there are integrability conditions for
parallel null spinors on Lorentzian manifolds formulated in terms of the Ricci tensor
(the Ricci tensor is nilpotent [5]) and they lead to obvious evolution equations for the
metric in the Cauchy problem for parallel null spinor fields [33]. It is important for
a smooth solution theory to have evolution equations in terms of the Ricci tensor in
these cases because in Lorentzian signature, the resulting PDEs can be reformulated as
hyperbolic systems, see [22] for instance. In contrast to that, the existence of a parallel
null vector field on a Lorentzian manifold yields hardly any nontrivial information
about the Ricci tensor. Thus, it is not obvious at all that the methods that work for the
Cauchy problem for the Einstein equations or a parallel null spinor field also work for
a parallel null vector field and that Theorem 1 can be proved by deriving an evolution
equation for the metric g in terms of the Ricci tensor. The key idea here is to simply
introduce the Ricci tensor as new unknown Z = Ric(g), consider this as an evolution
equation for the metric g, and then close the system by further differentiation that
results in a first-order equation for Z. The resulting PDE turns out to be hyperbolic
and is a key ingredient for the proof of Theorem 1. We believe that this approach can
be used in other settings, for example, for the Einstein equations with complicated
energy momentum tensor.

With the result of Theorem 1 at hand, it is natural to search for Riemannian man-
ifolds solving the constraint equations (1.1), in particular for geodesically complete
solutions. As a first step, we exhibit the local structure of solutions to (1.1). Using the
flow of the vector field U in (1.1), which defines a closed one-form, it easily follows
that the metric g can be brought into an adapted normal form:

Theorem 2 Any solution (M, g) to (1.1) with nowhere vanishing U is locally iso-
metric to
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(

I × F , g = u−2ds2 + hs
)

, (1.2)

where I ⊂ R is an interval, hs is a family of Riemannian metrics on some manifold
F parametrised by s ∈ I, and u2 = g(U,U ). Under this isometry, U = u2∂s and in
the decomposition TM = R∂s ⊕ TF and with us = u(s, ·) we have

W = − 1

us
g(∇U, ·) =

(

∂s(
1
us

) gradhs ( 1
us

)

d( 1
us

) − us
2 L∂shs

)

, (1.3)

where L∂s denotes the Lie derivative in s-direction. Moreover, if the vector field 1
u2
U

is complete, then the universal cover of M is globally isometric to a manifold of the
form (1.2) with I = R and F simply connected.

Conversely, given (M, g) as in (1.2)with I = R or I = S1 a circle, the vector field
U = u2∂s solves (1.1) for W as in (1.3). If in addition F is compact and u bounded,
then (M, g) is complete.

This theorem gives a (local) classification of Riemannian manifolds satisfying the
constraint. It also gives a method to construct solutions to the constraint equation, in
particular complete solutions: for compact F , if I = S1, the Riemannian manifold
(M, g) is complete by compactness, but in Sect. 6.2, we show that this also holds
when I = R and u is bounded.

To any manifold (M, g) as in (1.2), we can apply Theorem 1. Let us from now
on assume that M is oriented. It follows that there is a naturally induced orientation
on the manifold M arising via Theorem 1. As there is also a parallel null vector on
(M, g), it follows that the holonomy group Hol(M, g) of (M, g), i.e. the group of
parallel transports along closed loops, satisfies

Hol(M, g) ⊂ SO(n) � R
n ⊂ SO(1, n + 1),

where SO(n) � R
n is the stabiliser in SO(1, n + 1) of a null vector. In this case, the

main ingredient of Hol(M, g) then is the screen holonomy

G := prSO(n)Hol(M, g) ⊂ SO(n).

In [30], it was shown that (the connected component of) the screen holonomy G is
always a Riemannian holonomy group, and hence a product of the groups on Berger’s
lists [13,14]. It is now natural to ask whether one can prescribe G by imposing addi-
tional conditions on the initial data, i.e. on the family of metrics hs on F ⊂ M. We
show that this is indeed the case when G arises as stabiliser of some tensor:

Theorem 3 Let (M, g,W,U ) be given as in (1.2) and (1.3) and let (M, g) be the
Lorentzian manifold arising from this choice of initial data via Theorem 1 (for arbi-
trary choice for λ). Then G = prSO(n)Hol(M, g) ⊂ SO(n) lies in the stabiliser of
some tensor in T k,l

R
n if and only if there is an s-dependent and ∇hs -parallel family

of tensor fields ηs on F , of the same type and subject to the flow equation

123



Evolution Equations, Lorentzian Holonomy and Killing Spinors 37

η̇s = −1

2
ḣ�
s • ηs . (1.4)

Here, the dot denotes the Lie derivative of a tensor with respect to ∂s , e.g., η̇s := L∂sηs ,
ḣ�• denotes the natural action of the endomorphism ḣ� ∈ End(TF) on tensors in
T k,lF , and � indicates the dualisation with respect to hs . Moreover:

(1) There are proper subgroups H1 and H2 of SO(n) such that G ⊂ H1 × H2 if and
only if there is a local metric splitting

(F ,hs) ∼= (F1 × F2,h1s + h2s ) (1.5)

with Hol(Fi ,his) ⊂ Hi .
(2) If G is contained in one of SU(m), Sp(k), G2, Spin(7) or trivial, this translates

into the conditions for Riemannian special holonomy metrics from Table 1.

In Table 1, we write hs = hs(φs) and hs = hs(ψs) to indicate that for families of
G2 and Spin(7) structures, the metric hs is defined algebraically in terms of a distin-
guished stable 3-form φs or a generic 4-form ψs , respectively. The explicit formulas
can be found for example in [16,26,27]. In particular, Theorems 1 and 3 provide a
construction principle for Lorentzian manifolds with reduced screen holonomy. Obvi-
ously, warped products (I × F , g = ds2 + f (s)h0) with (F ,h0) being a Ricci-flat
special holonomymanifold, i.e.Hol(F , h0) ∈ {SU(m),Sp(k),G2,Spin(7)} or trivial,
are obvious examples for the construction in Theorem 3.

In the final part of this article, we turn to applications of these results and construc-
tions. As a first application of Theorems 1 and 3, we address a classification problem in
Riemannian spin geometry. In doing so, we have to change our point of view slightly:
so far, the object of interest was the Lorentzian manifold (M, g) constructed from
initial data (M, g,W) via Theorem 1 or 3. In Sect. 8, however, (M, g) is regarded
as an auxiliary object and we show how the detailed study of Hol(M, g) from the
previous statements can in turn be used to prove a partial classification of Riemannian

Table 1 Equivalent characterisation of special screen holonomy for (M, g) in terms of flow equations for
tensors on F

dim(F) Condition on F Hol(M, g) ⊂

2m
(F , ωs , Js ,hs = ωs (Js ·, ·)) Ricci-flat Kaehler,

J̇s = − 1
2 ḣ

�
s • Js , δhs (ḣs ) = 0

SU(m) � R
2m

4k
(F , ωi

s , J
i
s ,hs = ωi

s (J
i
s ·, ·))i=1,2,3 hyper-Kaehler,

J̇ is = − 1
2 ḣ

�
s • J is

Sp(k) � R
4k

7
(F , φs ∈ 
3(F)), hs = hs (φs ) G2 metrics,

φ̇s = − 1
2 ḣ

�
s • φs

G2 � R
7

8
(F , ψs ∈ 
4(F),hs = hs (ψs )) Spin(7) metrics,

ψ̇s = − 1
2 ḣ

�
s • ψs

Spin(7) � R
8

n hs flat R
n
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manifolds (M, g) admitting imaginary W-Killing spinors. By definition, these are
sections ϕ of the complex spinor bundle S

g →M of (M, g) satisfying

∇S
g

X ϕ = i

2
W(X) · ϕ, (1.6)

for some g-symmetric endomorphism W. Here, · denotes Clifford multiplication.
Clearly, condition (1.6) arises as a generalisation of the equation for imaginary Killing
spinors, for whichW = i

2 Id, see [8]. Moreover, solutions to Eq. (1.6) are the counter-
part to real generalised Killing spinors which have been in the focus of recent research,
for example in [1,2]. Given a solution to (1.6), we denote by Uϕ ∈ X(M) the Dirac
current of ϕ, given by

g(Uϕ, X) = −i (X · ϕ, ϕ), for all X ∈ TM, (1.7)

and assume that ϕ solves the algebraic constraint

Uϕ · ϕ = i uϕ ϕ, (1.8)

where uϕ =
√

g(Uϕ,Uϕ) = ‖ϕ‖2. This constraint is known to hold for imaginary
Killing spinors, i.e. W = λ Id, and it can also be motivated from the perspective
of Lorentzian manifolds with parallel null spinors, cf. [10]. We obtain the following
classification result which generalises results from [6,7], see also [8], where it is
shown that in the complete case and for W = f Id, (M, g) is necessarily isometric
to a warped product.

Theorem 4 Let (M, g) be a Riemannian spin manifold admitting an imaginary W-
Killing spinor ϕ satisfying the algebraic equation (1.8). Then:

(1) (M, g) is locally isometric to

(M, g) =
(

I × F1 × · · · × Fk, g = 1

u2
ds2 + h1s + · · · + hks

)

(1.9)

for Riemannian manifolds (Fi ,his) of dimension ni , u = ||ϕ||2, I an interval,
and under this isometry W is given by (1.3). Moreover, for each i = 1, . . . , k,
each his is a family of special holonomy metrics to which exactly one of the cases
of Table 1 applies.

(2) If (M, g) is simply connected and the vector field 1
u2ϕ
Uϕ is complete, the isometry

(1.9) is global with I = R.
(3) Conversely, every Riemannian manifold (M, g) of the form (1.9) with I ∈

{S1, R}, where u is any positive function and (Fi ,his) are families of special
holonomy metrics subject to the flow equations in Table 1 is spin and admits an
imaginary W-Killing spinor ϕ for W given by (1.3) with u = ||ϕ||2. ϕ solves
Eq. (1.8).
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As a second application, we give a local normal form for Lorentzian metrics admit-
ting a parallel null spinor fields. To this end, one uses a relation between spinor fields
and vector fields onLorentzianmanifolds provided by theDirac current: for any spinor
field φ on a Lorentzian manifold (M, g), its Dirac current Vφ is given by

g(X, Vφ) = −〈X · φ, φ〉. (1.10)

The zeroes of Vφ and φ coincide and if φ is parallel then so is Vφ . We say that ϕ is
null if Vϕ is a null vector. We show:

Theorem 5 Let (M, g) be a Lorentzian manifold admitting a parallel null spinor
field. Then (M, g) is locally isometric to

(M, g) ∼= (R× R× F1 × · · · × Fm, 2dvdw + h1w + · · · + hmw), (1.11)

for some integer m, manifolds Fi for i = 1, . . . ,m, where each hiw is a w-dependent
family of Riemannianmetrics onFi to which exactly one of the cases in Table 1 applies.
Conversely, every manifold as in (1.11) satisfying these conditions admits a parallel
null spinor.

Note that the normal forms in Theorem 5 need not be the most general ones. For
example, in signature (10, 1), in [17] it is shown that a term Hwdw2, where H is an
arbitrary function not depending on v can be added to (1.11). However, the analysis of
normal forms for metrics with parallel spinor in [17] rests on the known orbit structure
of the action of Spin(1, n) in for small n, whereas Theorem 5 covers all dimensions.

This paper is organised as follows. In Sect. 2, we recall and collect basic formu-
las and invariants related to the geometry of spacelike hypersurfaces in Lorentzian
manifolds. Together with the local existence and uniqueness theorem for solutions to
quasilinear first-order symmetric hyperbolic systems they are the key ingredients for
the proof of Theorem 1, which occupies a large part of the paper and consists of three
main steps:

(1) In Sect. 3, we derive a first-order quasilinear symmetric hyperbolic system with
solutions (g, α, Z), where α ∈ 
∗(M) is a differential form, g is a Lorentzian
metric and Z a symmetric bilinear form on M.

(2) As a result, we will obtain a vector field V and a 1-form E onM such that Ric =
Z − Sym(∇E), where Ric is the Ricci tensor and ∇ the Levi-Civita connection
of g. In Sect. 4, we will then derive a wave equation for E and∇V and determine
suitable initial conditions for all data along M. Using the constraint equations
(1.1) this will imply that that E and ∇V vanish on M with the conclusion that
V is parallel.

(3) Since the solutions obtained in Steps (1) and (2) are only local, in Sect. 5 we
will show how to obtain a globally hyperbolic Lorentzian manifold (M, g) from
these local solutions.

Then in Sect. 6, we study Riemannian manifolds satisfying the constraint (1.1) and
prove Theorem 2. The proof of Theorem 3 is given in Sect. 7 where we also study the
relation to Lorentzian holonomy. Using this, the two applications in Theorems 4 and
5 are obtained in Sect. 8.

123
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2 Preliminaries

Let (M, g) be a time-oriented Lorentzian manifold of dimension (n + 1) with global
unit timelike vector field T ∈ X(M). Let us now additionally assume that M ⊂M
is a spacelike hypersurface with induced Riemannian metric g and that T restricts to
the future-directed unit normal vector field alongM. We will use the following index
conventions:

• Latin indices i, j, k, . . . run from 1 to n.
• Greek indices μ, ν, ρ, . . . run from 0 to n. We will use Greek indices whenever
we restrict ourselves to local considerations onM, which is topologically an open
neighbourhood ofM in R×M. In this situation, we may fix adapted coordinates
(x0 = t, x1, . . . , xn), where the t-coordinate refers to the R-factor, the Greek
indicesμ, ν, . . . then refer to the coordinates (x0, . . . , xn) onM, and Latin indices
i, j, k, . . . to the spatial coordinates (x1, . . . , xn) on M. We may also use this
index convention when fixing a local orthonormal frame (T = s0, s1, . . . , sn)
with g(sμ, sν) = εμδμν and si ∈ TM. It will be clear from the context whether
the indices refer to coordinates or an orthonormal frame.

• We will use indices a, b, c, . . . as abstract indices, i.e. only indicating the valence
of a tensor. For example, a vector field B is denoted by Ba and a 1-form by Ba .
We will however abuse this abstract index notation slightly when writing 0 for a
contraction B(T, . . .) of a tensor B with the timelike unit vector field T ,

B0b... := T a Bab...,

but also when using indices i, j, k, . . . = 1, . . . , n for referring to directions in
TM.

• We raise and lower indices with respect to a metric. Sometimes, we also use the
musical notation � and � for dualising a tensor with a metric. It will be clear from
the context with which metric we are working. Throughout the paper, we will also
use Einstein summation convention, i.e. summing over the same upper and lower
index.

By ∇ we denote the Levi-Civita connection of g. Moreover, δ = δg denotes the
divergence operator, i.e. given a (p, 0) tensor field B on (M, g), the divergence is the
(p − 1, 0)-tensor

δB = −
n

∑

μ=0
εμ

(∇sμ B
)

(sμ, . . .),

with an orthonormal basis sμ, or with abstract index notation

(δB)b...c = −∇a B
a
b...c.
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For a vector field V , we have divgV = −δV �, or in indices divg(V ) = ∇aV a . For
X,Y ∈ TM we denote by

W(X,Y ) := −g(∇XT,Y )

the second fundamental form of (M, g) ⊂ (M, g), i.e. we have

∇XY = ∇XY −W(X,Y )T, (2.1)

where barred objects refer to data onM and unbarred objects to data onM. The dual of
the second fundamental form is the (symmetric)Weingarten operator, also denoted by
W, i.e. W(X,Y ) = g(W(X),Y ). It holds that W = −∇T |TM. The curvature tensors
of (M, g) and (M, g) are related via the Gauß, Codazzi and Mainardi equation. Here
we need the following contracted version: let

G = Ric− 1

2
scal · g

denote the divergence-free Einstein tensor of (M, g), where Ric is the Ricci tensor
and scal the scalar curvature of g. Then we have onM:

G(T, T ) = 1

2

(

scalg − trg(W
2)+ (trgW)2

)

,

G(T, X) = (δgW)(X)+ d(trgW)(X), for all X ∈ TM. (2.2)

Now we specialise the discussion to the case that M is topologically an open subset
of R ×M for some manifold M. We assume that ∂t is timelike everywhere on M
and set

T = 1
−√g(∂t ,∂t )

∂t

and g restricted to TM is then positive definite. Note that writing TM in this context
refers more precisely to the pullback bundle π∗TM→M, where π :M→M ∼=
{0} ×M denotes the projection.

Next, suppose that V ∈ X(M) is a null vector field on M, i.e. a nonvanishing
smooth vector field V such that g(V, V ) = 0. We decompose V with respect to the
splitting TM = R∂t ⊕ TM, which need not be g-orthogonal, into

V = vT −U = v (T − N ), (2.3)

with v ∈ C∞(M) a smooth function,U ∈ �(π∗TM) and N = 1
v
U . It is g(N , N ) =

u2

v2
, where u2 = g(U,U ). We also write Ut and Nt in order to emphasise the t-

dependence. Note that V �= 0 and g(V, V ) = 0 requires that v, u andU do not vanish
at any point. We emphasise that g(T,U ) is not necessarily zero on M. However, we
have that g(T,U )|{0}×M = 0 as T was assumed to be the unit normal vector field

123



42 T. Leistner, A. Lischewski

along M. We identify M within M as {0} ×M. It follows that v|M = u|M, i.e.
along M, N is a unit vector field.

Finally, we assume that the null vector field V is parallel, i.e. that ∇V ≡ 0. As a
consequence of (2.1), we obtain for every X ∈ TM

0 = prTM(∇XV )|M = −v|MW(X)− ∇XU = −u|MW(X)−∇XU, (2.4)

which is precisely the constraint equation (1.1).
For the proof of Theorem 1, we will have to analyse various PDEs. As it turns

out, they can all be locally reduced to a first-order quasilinear symmetric hyperbolic
system. We collect some standard facts on that:

Consider an equation of the form

A0(t, x, w)∂tw = Ai (t, x, w)∂iw + b(t, x, w), (2.5)

for k real functions onR×R
n which are collected in a vector valued functionw(t, x) ∈

R
k . The solution will be defined on an appropriate subset of R×R

n and (t, x) denotes
a point in R × R

n . Equation (2.5) is called quasilinear symmetric hyperbolic if the
matrices A0 and Ai , which may depend on the point (t, x) as well as on the unknown
w itself, are symmetric and A0 is positive definite. For the given smooth initial data
and smooth coefficients, there is a well-established local existence and uniqueness
result for smooth solutions w to (2.5) which we shall use repeatedly. For details, we
refer to [37, Sect. 16] or [23] and references therein.

3 Proof of Theorem 1: The Quasilinear Symmetric Hyperbolic System

As indicated in the introduction, for clarity the proof is subdivided into various steps:
first, we find evolution equations whose solutions define the metric g and the vector
field V locally; then we show that the constructed vector field V is indeed parallel
and patch the locally defined solutions together and discuss global properties. In this
section, we deal with the evolution equations.

3.1 Finding the Evolution Equations

In order to get an idea of how to obtain the desired metric g and the vector field V
from the data (M, g,U ), suppose for a moment that we already have a Lorentzian
manifold (M, g) such that

• M is an open subset of M ∼= {0} ×M in R×M,
• ˜λ2 := −g(∂t , ∂t ) > 0, where ∂t = ∂0 refers to the vector field corresponding to
the t-coordinate. This defines a timelike unit vector field T =˜λ−1∂t .

• There exists a parallel null vector field V ∈ X(M). This defines a spacelike vector
field N by relation (2.3), i.e. by V = v(T −N ). AlongM, N is a unit vector field.

We derive some evolution equations as consequences:

123
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Let α = V � denote the g-dual 1-form to V and consider α as a section in the exterior
algebra, i.e. α ∈ 
∗(M). Since V is parallel, α is parallel and we have

(d + δg)α = 0, (3.1)

where d + δg : 
∗(M) → 
∗(M) is the de Rham operator. It is given by

d + δ = c ◦ ∇,

where c : TM⊗�∗M→ �∗M denotes Clifford multiplication by forms, i.e.

c(X)ω = X � ∧ ω − ιXω, for all X ∈ TM,

where ιXω = ω(X, . . .) denotes the interior product. Symbolically, this can be written
as

c(X) = (X �∧)− ιX , for all X ∈ TM.

The de Rham operator in (3.1) is of Dirac type, which suggests that it is hyperbolic.
We will explicitly verify this later.

Next, as V is parallel, it annihilates the curvature tensor R of∇, i.e. R(V, ., ., .) = 0.
In particular,

Ric(V, ·) = 0. (3.2)

To evaluate this further, we denote by prTM the standard and g-independent projection

prTM : TM = R∂t ⊕ TM→ TM

onto the second factor. Moreover, the metric g defines a (nonorthogonal) splitting

TM = TM⊕ RV (3.3)

of bundles over M. We introduce the g- and V -dependent projection

prg,VTM : TM→ TM

onto the first factor in the splitting (3.3). That this projection is dependent on g and V
becomes evident when it is written as

prg,VTM = IdTM + 1
v

(

g(T, .)− g(T, prTM(.))
)

V .

or, written in local coordinates (x0 = t, x1, . . . , xn) with (x1, . . . , xn) coordinates on
M,

(

prg,VTM
) ν

μ
= δ ν

μ + (˜λv)−1
(

g0μ − g0iδ
i
μ

)

V ν .
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Then Eq. (3.2) is equivalent to

Ric = Z ◦ prg,VTM, (3.4)

where Z is a symmetric bilinear form on TM, i.e. Z ∈ �(π∗(T ∗M⊗T ∗M)), which
is trivially extended to a symmetric bilinear form on TM = TM ⊕ RV . Finally, a
first-order equation for Z is then derived as follows. As every expression of the form
R(V, ·, ·, ·, ·) vanishes identically on M, it follows from the second Bianchi identity
that ∇VRic = 0, which in particular implies that

∇VZ = 0. (3.5)

Seeking for a different formulation of this condition, we use the splitting (2.3) of V
into T and N , both depending also on t , to see that (3.5) becomes

0 = (∇∂tZ)−˜λ ∇NZ. (3.6)

Now, for brevity we rewrite this condition in local coordinates (x0 = t, x1, . . . , xn)
with (x1, . . . , xn) coordinates on M. We obtain that Eq. (3.5) is equivalent to

∂tZkl =˜λNi∂iZkl + 2�
i
0(kZl)i − 2˜λNi�

j
i(kZl) j , (3.7)

in which ˜λ = √−g(∂t , ∂t ) > 0, the unit vector field N depends on V via relation
(2.3), and the round brackets denote the symmetrisation of indices.

The advantage of this formulation is that (3.7) is manifestly a g- and ∂g-dependent
t-evolution equation for a t-dependent family of symmetric endomorphisms Zt ∈
�(M, T ∗M⊗ T ∗M) on M.

3.2 Hyperbolic Reduction

Let (M, g) be a Riemannian manifold and let (U,W) be a nontrivial solution to (1.1).
The idea is to impose Eqs. (3.1), (3.4) and (3.7) locally as a coupled PDE system
of first-order evolution equations for the unknowns w = (α, g, ∂g,Z) defined on a
neighbourhood of M in R×M with initial data to be specified.

More precisely, we would like to rewrite (3.1), (3.4) and (3.7) locally as a first-order
quasilinear symmetric hyperbolic PDE of the form (2.5). A well-studied technical
problem is that Ric is not hyperbolic when being considered as differential operator
acting on the metric. There is a standard tool used for the Cauchy problem for the
Einstein equations in general relativity how to overcome this, which is referred to as
hyperbolic reduction and explained in detail in [34]. To this end, we bring into play a
fixed background metric

h := −λ2dt2 + g. (3.8)
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onR×M, where λ is the prescribed function fromTheorem1.Given local coordinates
(x0, . . . , xn), we denote by ˜�

μ
αβ the Christoffel symbols of h. For any metric g on

R×M with Christoffel symbols �
μ
αβ we then introduce the difference tensor Aμ

αβ =
�

μ
αβ −˜�

μ
αβ and let

Fν = gμνg
αβ

˜�
μ
αβ,

Eν = −gμνg
αβ Aμ

αβ.
(3.9)

We denote by Sym(∇E)[g] the symmetrisation of the (2, 0)-tensor g(∇E, ·) for any
given Lorentzian metric g, i.e. Sym(∇E)(X,Y ) = 1

2

(

(∇X E)(Y )+ (∇Y E)(X)
)

.
Then the operator

̂Ric[g] := Ric[g] + Sym(∇E)[g]

is in coordinates given by

̂Ricμν = −1

2
gαβ∂α∂βgμν +∇(μFν) + gαβgγ δ[�αγμ�βδν + �αγμ�βνδ + �αγν�βμδ]

︸ ︷︷ ︸

=:Hμν [g,∂g]
,

(3.10)

where we use the standard notation for symmetrisation∇(μFν) = 1
2

(∇μFν + ∇νFμ

)

.
The crucial point is that second-order derivatives of g appear only in the first term of
̂Ric[g] (assured by addition of E , F depends only on g and not on its derivatives).
Hence, in the following, we will replace Eq. (3.4) by the equation

Ric = Z ◦ prg,VTM − Sym(∇E), (3.11)

where we abbreviate the Ricci tensor of g as Ric = Ric[g]. Of course, eventually we
will construct a solution and then show that E = 0.

3.3 Local Evolution Equations as First-Order Symmetric Hyperbolic System

After these preparations, we are now able to show:

Theorem 3.1 Under the assumptions of Theorem 1 with given data (M, g), λ and U,
every point p ∈M admits an open neighbourhood Vp in R×M on which the Eqs.
(3.1), (3.7) and (3.11), considered as coupled PDE for the unknowns (g, α, Z), are
locally equivalent to a first-order quasilinear symmetric hyperbolic PDE of the form
(2.5) provided that

g|M = h and α|M = (h( u
λ
∂t −U, ·))|M,

where h is the background metric defined from λ and g in Eq. (3.8).
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Proof Note first that for each choice of the unknowns α = (α0, . . . , αn) ∈ 
∗(M),
where αi ∈ 
i (M) and g we can form vector fields V ∈ X(M), U ∈ X(M)

algebraically by V = V [α, g] = α
�
1 and U = U [α, g] = −prTMV . Moreover, we

set u2 = u2[α, g] = g(U,U ). Now fix p ∈ M and choose Vp to be a coordinate
neighbourhood of p ∈ R×M with coordinates (x0 = t, x1, . . . , xn). We define the
following open subset in the space of Lorentzian metrics on Vp:

Gp := {g | g(∂0, ∂0) < 0, dt (gradgt) < 0, g|TM⊗TM > 0} (3.12)

Note that h ∈ Gp. Given any metric g ∈ Gp, we fix a g-dependent pseudo-orthonormal
basis (s0, . . . , sn) for g, i.e. g(sa, sb) = εaδab, by applying the Gram–Schmidt proce-
dure to (∂t , ∂1, . . . , ∂n). That is, s0 = 1√

(−g(∂t ,∂t )) ∂t = T and for i > 0

si = si [g] =
n

∑

μ=0
ζ

μ
i [g]∂μ (3.13)

on Vp for certain coefficients ζ
μ
i [g] which depend smoothly and only algebraically

on g. Note that choosing g from Gp ensures that the Gram–Schmidt algorithm is
well defined for (∂t , ∂1, . . . , ∂n). By the special form of the fixed background metric
h = −λ2dt2+g we have that ζ 0

i>0[h] = 0. For any g ∈ Gp we then rewrite Eqs. (3.1),
(3.7) and (3.11) on Vp as follows:

Local Reformulation of Equation (3.11)

In analogy to [22], for any Lorentzian metric g ∈ Gp and quantities kμν and gμν,i we
consider the system

∂tgμν = kμν, (3.14)

gi j∂tgμν,i = gi j∂i kμν, (3.15)

−g00∂t kμν = 2g0 j∂ j kμν + gi j∂ jgμν,i − 2Hμν[g, k] − 2∇(μFν)[g, k]
+ 2 (Z ◦ prg,VTM)μν, (3.16)

with initial conditions g|M = h|M and

gμν,i |t=0 = ∂igμν |t=0 = ∂i hμν |(t)=0 (3.17)

This system with the given initial condition is equivalent to Eq. (3.11).1 Indeed, let a
triple (gμν, kμν, gμν,i ) solve system (3.14)–(3.17).As gi j is invertible for g sufficiently
close to h, Eq. (3.15) is the same as ∂tgμν,i = ∂i kμν , and Eq. (3.14) then gives

∂t (gμν,i − ∂igμν) = 0.

1 This has been shown in [22] for the vacuum Einstein equations Ric = 0 and remains valid in our setting,
as here the Z-term in (3.11) enters only algebraically in the b1-term.
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Initial condition (3.17) ensures gμν,i − ∂igμν = 0 at t = 0 and thus everywhere. Then
Eq. (3.16) is nothing but Eq. (3.11). Hence, for any fixed Z, the system (3.14)–(3.16)
can be rewritten as

A0
1(t, x, w

1)∂0w
1 = Ai

1(t, x, w
1)∂iw

1 + b1(t, x, w
1,Z, α), (3.18)

where w1 = (gμν, (gμν,i )i=1,...,n, kμν)μ,ν=0,...,n . Moreover, the matrices A0
1 and Ai

1
are symmetric and A0

1(t, x, w1) is positive definite for g = h, and hence in a neigh-
bourhood of h. In fact, they can be written as

A0
1 =

⎛

⎝

1 0 0
0 g00 0
0 0 −g j

i

⎞

⎠ , Ai
1 =

⎛

⎝

0 0 0
0 2g0i gi j

0 gi j 0

⎞

⎠ .

Local Reformulation of Equation (3.1)

Using the orthonormal basis sμ, we can identify ∇α ∈ T ∗M ⊗
∗(M) with

−s0 ⊗∇s0α +
n

∑

k=1
sk ⊗∇skα ∈ T M ⊗
∗(M).

With this identification, Eq. (3.1) writes as

0 = −c(s0)∇s0α +
n

∑

k=1
c(sk)∇skα.

Using the fundamental Clifford identity

c(X) ◦ c(Y )+ c(Y ) ◦ c(X) = −2g(X,Y ) · 1

for the g-dependent operator c, Eq. (3.1) for g ∈ Gp is equivalent to

1
˜λ
∇∂tα =

n
∑

k=1
c(s0) ◦ c(sk)∇skα

=
n

∑

k=1
ζ 0
k [g] c(s0) ◦ c(sk)∇∂tα +

n
∑

i,k=1
ζ ik [g] c(s0) ◦ c(sk)∇∂i α,

which can be re arranged to

(

1
λ̃
−

n
∑

k=1
ζ 0
k [g] c(s0) ◦ c(sk)

)

∇∂tα =
n

∑

i,k=1
ζ ik [g] c(s0) ◦ c(sk)∇∂i α. (3.19)
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By means of the fixed coordinates, we identify α with a smooth map α : Vp →
�∗Rn+1 ∼= R

2n+1 . In this identification, ∇∂μ = ∂μ + �, for an endomorphism �

which depends on the Christoffel symbols of g. Then Eq. (3.19) becomes equivalent
to a system

A0
2(t, x, g, α)∂tα =

n
∑

i=1
Ai
2(t, x, g, α)∂iα + b2(t, x, α, g, ∂g). (3.20)

We claim that the matrices A0
2 and Ai

2 are symmetric. To see this, let (e0, . . . , en)

denote the standard basis of R
n+1, and consider the operator c(eμ) = (e�

μ∧) − ιeμ ,
where the dual is formed using the standardMinkowski inner product onR

n+1. Now let
σμ be the (algebraically) dual basis to eμ, i.e. with σμ(eν) = δ

μ
ν and with e

�
μ = εμσμ,

where ε0 = −1, εi>0 = 1. Furthermore, let 〈·, ·〉 be the standard positive definite inner
product on �∗R

n+1, i.e. with σμ, σμ ∧ σν, . . . , σ 0 ∧ . . .∧ σ n as orthonormal basis.
Then elementary linear algebra shows that

〈

c(eμ)γ, δ
〉 = −εμ

〈

γ, c(eμ)δ
〉

, for all γ, δ ∈ �∗Rn+1.

It follows from the Clifford identity for c that for i > 0

〈(c(e0) ◦ c(ei ))γ, δ〉 = 〈γ, (c(e0) ◦ c(ei ))δ〉 ,

which proves symmetry of the linear map c(e0) ◦ c(eμ) and hence of the matrices Aμ
2 .

Moreover, for g = h, A0
2(t, x, h) reduces to a positive multiple of the identity matrix.

Thus, A0
2 is positive definite in a neighbourhood Vp of the initial data if these initial

data are chosen as required in the theorem.

Local Reformulation of (3.7)

Locally, the t-dependent symmetric bilinear form Z on TM can be rewritten as Z =
Zkldxkdxl for t- and x dependent coefficients Zkl . One verifies immediately that (3.7)
is of the form

A0
3(t, x)∂t (Zkl)k,l>0 =

n
∑

i=1
Ai
3(t, x, g, α)∂i (Zkl)k,l>0+b3(t, x,Z, g, ∂g, α), (3.21)

where A0
3(t, x) = Id is simply the identity matrix and Ai

3(t, x, u) are multiples of the
identity matrix.

Combining (3.18), (3.20) and (3.21) gives a coupled PDE of the form (2.5) with
matrices A0 and Ai being block diagonal with blocks A0

1, A
0
2 and A0

3, and blocks
Ai
1, Ai

2 and Ai
3, respectively. The unknowns are w = (w1, w2, w3), with w1 =

(gμν, (gμν,i ), kμν), w2 = α, w3 = Zkl , and the inhomogeneity is b = (b1, b2, b3),
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which is defined in a neighbourhood of the initial data. Moreover, the previous dis-
cussion regarding the blocks of A0 and the Ai ’s shows that A0 and Ai are symmetric
and A0 is positive definite at least in a local neighbourhood of the initial data. ��

3.4 Initial Data

Here we specify a full set of initial data for the first-order PDE for the quanti-
ties (gμν, gμν,i , ki j , α, Zkl) on Vp derived in Theorem 3.1. Initial data for g and α

were already given in Theorem 3.1 and are needed to ensure that the PDE is indeed
hyperbolic. Moreover, as seen in the proof of Theorem 3.1, to ensure that the system
(3.14)-(3.16) is equivalent to (3.11), we were forced to set

gμν,i |t=0 = ∂igμν |t=0

as initial condition gμν,i .
Regarding kμν , we observe that 1

λ
∂t is the unit normal vector field with respect to

h along M and set

ki j |t=0 = −2λ|MW(∂i , ∂ j ). (3.22)

This is required, of course, by the fact that (M, g) should eventually embed into the
solution (M, g) with Weingarten tensor being the given W. The initial data for ki0
and k00 are uniquely determined by the natural requirement

(Eμ)|t=0=0

for any solution g. It is by definition of E straightforward to compute, see [34], that
this is the case if and only if

k00|t=0 = −2λ|2M F0|t=0 + 2λ|3M trgW,

k0i |t=0 = λ|2M
[

−Fi + 1

2
g jk(2∂ jgki − ∂ig jk)+ ∂i (logλ|M)

]

|t=0
.

(3.23)

Note that it makes sense here to write F|t=0, as by Eq. (3.9) the F-dependence on g
is only algebraic and g|t=0 has already been specified. Moreover, for the background
metric h as in (3.8) and initial conditions for g as in Theorem 3.1, the initial condi-
tions (3.23), simplify to

k00|t=0 = −2λ|2M λ̇|M + 2λ|3M trgW,

k0i |t=0 = 0.
(3.24)

This makes evident that the initial conditions (3.23) are independent of the chosen
coordinates.
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Next, we give initial data for the symmetric bilinear form Z|M onM. Their origin
is not very transparent at this point, but we shall see in a later step of the proof that
the following initial data for Z are demanded by requiring that ∇V = 0. We set

Z|M(U, ·) = u(d(trgW)+ δgW),

Z|M(X,Y ) = Ric(X,Y )− R(X, N , N ,Y )−W2(X,Y )+W(X,Y )trgW
+W(X, N )W(Y, N )−W(X,Y )W(N , N ),

(3.25)

for all X,Y ∈ U⊥ and where as usual N = 1
uU .

3.5 Solving the Evolution Equation

Combining the choice of initial data with Theorem 3.1 we find, using the existence
and uniqueness result for symmetric hyperbolic systems as discussed earlier, a neigh-
bourhood Up ⊂ Vp of p in R×M such that the system (3.1), (3.7) and (3.11) has a
unique smooth solution on Up which coincides on M ∩ Up with the initial data.

Given this solution
(

gμν, gμν,i , kμν, α, Zkl
)

, we define with the coordinates xμ

on Vp specified earlier the bilinear form g = gUp = gμνdx
μdxν on Up. Furthermore,

after restricting Up if necessary we may assume that g is of Lorentzian signature
on Up and an element of Gp as this holds for the initial datum h. Moreover Z =
ZUp = Zkldxkdxl defines a symmetric bilinear form on Up and the solution gives
α = αUp ∈ 
∗(Up).

For reasons related to global hyperbolicity, which become clear in the last step of
the proof, we restrict the solution domain Up further as follows. Let

FUp := 1

dt (gradg(t))
gradg(t) ∈ X(Up),

where t denotes the function (t, x) �→ t , and denote by φUp the flow of F . We restrict
Up to an open neighbourhood of p in R ×M, denoted with the same symbol, such
that

∀q ∈ Up : ∃τ = τ(q) ∈ R : φ
Up
−τ (q) ∈ ({0} ×M) ∩ Up. (3.26)

It is possible to restrict Up further (denoted by the same symbol) such that the
spacelike hypersurfaceMp :=M∩Up is aCauchyhypersurface in (Up, g), for details
see [3, Chapter A.5]. By construction of the initial data (3.22) and as kμν = ∂tgμν ,
(Mp, g) embeds into Up with Weingarten tensor (the restriction of) W.

4 Proof of Theorem 1: The Wave Equation

In this section, we continue the proof of Theorem 1 by deriving a linear wave equation
on E and ∇V , the solutions obtained in the previous section, as well as appropriate
initial conditions that will ensure that E = 0 and ∇V = 0.
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4.1 Fundamental Properties of the Solution

Let (g, α,Z) denote the local solution to the system (3.1), (3.7) and (3.11). A priori, it
is not clear that α is a 1-form and defines via g a vector field. However, if we consider
the Hodge-Laplacian �HL = (d + δ)2 on forms and decompose the solution α as
α = α0 + · · · + αn+1 ∈ 
0(Up)⊕ · · · ⊕ 
n+1(Up), we get as a trivial consequence
of (d + δ)α = 0 that

�HLαi = 0, for all i = 0, . . . , n + 1. (4.1)

Moreover, our choice of initial data and (d + δ)α = 0 guarantees that for i �= 1

(αi )|Mp = 0,

(∇∂tαi )|Mp = 0,
(4.2)

where Mp = Up ∩M as before. By the main result of [3], the Cauchy problem for
the normally hyperbolic operator �HL is well-posed and as Mp ⊂ Up is a Cauchy
hypersurface,we conclude thatαi = 0 for all i �= 1. Thus, the solutionα is equivalently
encoded in the vector field V such that

V � = α1 = α ∈ X(Up). (4.3)

We decompose V = v(T − N ) as in the splitting (2.3) and may assume, after further
restricting Up if necessary, that the projections of V onto both summands of TM =
R∂t ⊕M are nontrivial as this holds for the initial data.

Next we extend the symmetric bilinear formZ ∈ �(Up, T ∗Mp⊗T ∗Mp) uniquely
to a section Z ∈ �(Up, T ∗Up ⊗ T ∗Up), by demanding that V inserts trivially into
Z. For this extended Z, the evolution equation (3.7) which was used to define Z then
becomes equivalent to (3.5) as follows from combining (3.6) and (3.7). In summary,
we have constructed (g, V,Z) on Up which satisfy the equations

Ric = Z − Sym(∇E), (4.4)

(d + δg)V � = 0, (4.5)

(∇V Z)(A, B) = 0 for all A, B ∈ TM, , (4.6)

Z(V, ·) = 0. (4.7)

On Up we fix from now on a local g-pseudo-ONB s = (s0, . . . , sn) as constructed
in (3.13). That means, T = s0 = 1√−g(∂t ,∂t ) ∂t is a unit timelike vector field on Up

which restricts on Mp to 1
λ|M ∂t , the unit normal vector field to Mp with respect to

g. Moreover, as h(∂t , X) = 0 for X ∈ TM, it follows that the (s1, . . . , sn) restricted
toM are tangent toM and form a pointwise ONB for (TMp, g).

In the subsequent calculations, we simplify and abbreviate our notation for some—
otherwise very lengthy—formulas as follows: writing

A ≡ B mod (. . .),

123



52 T. Leistner, A. Lischewski

where A, B are tensor fields of the same type over M indicates that A = B up
to the addition of terms which are linear in the quantities specified in the bracket
(or contractions of these quantities). The explicit formulas for these linear terms are
straightforward to compute in each case but turn out to be irrelevant for our purposes.
By∇ wealso denote the covariant derivative on tensor fields induced by theLevi-Civita
connection of g. It follows from linearity and the product rule for ∇ that

A ≡ 0 mod (C) implies ∇A = 0 mod (C,∇C).

As an example, Eqs. (4.6) and (4.7) imply that

∇VZ ≡ 0 mod (∇V ). (4.8)

Indeed, the nonvanishing terms of (∇VZ) are (∇VZ)(T, X) for X a vector field on
Up which is tangent to M and (∇VZ)(T, T ). Both can be expressed in terms of ∇V
using V = 1

u (T − N ) and Eqs. (4.6) and (4.7):

(∇VZ)(T, X) = (∇VZ)(N , X)− 1
uZ(∇V V, X) = − 1

uZ(∇V V, X),

(∇VZ)(T, T ) = (∇VZ)(N , N )− 2
u Z(∇V V, N ) = − 2

u Z(∇V V, N ).

4.2 PDEs for ∇V and E

In the terminology of the previous subsection, we next show that the data ∇V and E
vanish on U = Up by showing that they solve a linear PDE for which uniqueness of
solutions is guaranteed. All calculations and operators are with respect to the metric
g = gUp on Up as just specified.

We denote with � = ∇2
the Bochner Laplacian (or connection Laplacian) for g

acting on tensors, as �Bb...c = ∇a∇a Bb...c, in particular on 1-forms or vector fields.
When acting on 1-forms, it is related to the Hodge Laplacian �HL on 1-forms via the
Weitzenböck formula

�HL = �∇ + Ric, (4.9)

where depending on the situation we consider Ric as (2, 0) or (1, 1) tensor.
Now we aim for a second-order equation for ∇V . For this we will prove a series

of Lemmas. The general assumption in these lemmas is that the system of equations
(4.4)-(4.7) is satisfied. For brevity in the proofs, we will now use indices a, b, c, . . . as
abstract indices, i.e. only indicating the valence of a tensor. The Bochner Laplacian

applied to a vector field X is denoted by �Xa = ∇b∇bXa , where we use Einstein’s
summation convention. The identity (4.9), for example, reads as

�HL Xa = ∇b∇bXa + Ric
b
a Xb.
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We will also use expressions such as ∇E(V ) or ∇∇V E . These are meant to be as V
inserted into the tensor∇E ∈ ⊗2T ∗U and into∇ ∇E ∈ ⊗3T ∗U in the respective slot,
e.g., ∇E(V ) ∈ ⊗T ∗U and ∇ ∇V E ∈ ⊗2T ∗U . Expressed with indices, this would be
V a∇bEa and V a∇c∇bEa , respectively. We also use � as acting on arbitrary tensors.

Lemma 4.1 The tensor ∇V ∈ T ∗U ⊗ TU satisfies

�∇V ≡ 0 mod (∇V, (∇∇E)(V ),∇ ∇V E,∇V∇E). (4.10)

Proof Using abstract index notation and successively interchanging covariant deriva-
tives using the curvature tensor we obtain

�∇aV
b = ∇c∇a∇cV

b + V d∇c
R

b
ca d + R

b
ca d∇c

V d

= ∇a�V b − Ric
c
a ∇cV

b + R
d b
a c∇dV

c + V c∇d
R

b
da c + R

b
ca d∇c

V d

≡ ∇a�V b + V c∇d
R

b
da c mod ∇cV

d .

To deal with the first remaining term we use Eqs. (4.4), (4.7) and (4.5) and its conse-

quence 0 = �HLV b = �V b + Ric
b
cV

c:

∇a�V b = −∇aRic
b
cV

c

= −∇aZ
b
cV

c + 1
2V

c(∇a∇b
Ec +∇a∇cE

b)

≡ 0 mod (∇cV
d , V e∇c∇d

Ee, V
e∇c∇eE

d).

Finally, we use the symmetries of Rabcd to deal with the term ∇d
R

b
da cV

c:

V c∇d
R

b
da c = V c∇d

R
b
cda

= −V c
(

∇b
R

d
c da +∇cR

db
da

)

= +V c
(

∇b
Ricca − ∇cRic

b
a

)

= V c
(

∇b
Zca −∇cZ

b
a

)

+ 1

2
V c

(

∇b∇cEa +∇b∇a Ec −∇c∇a E
b −∇c∇b

Ea

)

≡ 0 mod (∇cV
d , V e∇c∇d

Ee, V
e∇c∇eE

d , V e∇e∇cE
d),

because of Eqs. (4.4), (4.6), (4.7), and (4.8). This verifies the lemma. ��
The idea is now toprolongEq. (4.10), i.e. to derive linear equations for the E-dependent
quantities in the brackets, which should all vanish, until we obtain a closed linear PDE
system.We start with deriving a second-order equation for E . To this end, we introduce
the “Einstein tensor” of Z, i.e.

L := Z − 1

2
trg(Z) g.
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Let G = Ric − scal
2 g denote the Einstein tensor of (Up, g). By Eq. (4.4) we get for

X,Y ∈ TUp

G = −Sym(∇E)+ Z + 1
2 (trg(∇E)− trgZ) · g (4.11)

This equation implies

Lemma 4.2 The 1-form E satisfies

0 = �E − Ric(E�, .)− 2δgL . (4.12)

Proof Taking the divergence δg on both sides of (4.11) yields

0 = δLb − 1
2∇

a∇a Eb − 1
2∇

a∇bEa + 1
2∇b∇a

Ea

= δLb − 1
2�Eb + 1

2 R
a c
b a Ec

= δLb − 1
2�Eb + 1

2 Ric
c
b Ec,

which proves the statement. ��
Next, we investigate the quantity ∇V E and prove

Lemma 4.3 The 1-form ∇V E satisfies

�(∇V E) = ∇V (δgL) mod (E,∇E,∇V ). (4.13)

Proof Again we commute covariant derivatives using abstract indices

∇c∇c(V
d∇d E

a) ≡ V d∇c∇c∇d E
a mod (∇cV

d ,∇cE
d)

≡ V d∇d�Ea mod (∇cV
d , Ed ,∇cE

d)

≡ V d∇d(δL)a mod (∇cV
d , Ed ,∇cE

d)

by Eq. (4.12). ��
Next, we find a second-order equation for g(∇E, V ), i.e. for V b∇a Eb.

Lemma 4.4 The 1-form (∇E)(V ) satisfies

�(∇E(V )) = 0 mod (∇V, E,∇E). (4.14)

Proof Similarly as before, we have

�(V b∇a Eb) ≡ V b∇c∇c∇a Eb mod (∇cV
d ,∇cE

d)

≡ V b∇a�Eb mod (∇cV
d ,∇cE

d)

≡ V b∇a(δL)b mod (∇cV
d , Ed ,∇cE

d).

Calculating mod (∇V ) we get

V b(δL)b = V b∇c
Zcb − 1

2V
b∇b(tr(Z)) ≡ 0 mod (∇V ),
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using the definition of L and V bZba = 0. ��
Finally, we derive an equation for the 1-form δgL .

Lemma 4.5 The 1-form ∇V δL satisfies

∇V (δL) ≡ 0 mod (∇V,∇ ∇V,∇E). (4.15)

Proof Using the definition of L and of δg we compute

V b∇b(δL)a = V b
(

∇b∇c
Zca − 1

2∇b∇a(Z
c
c )

)

≡ V b∇b∇c
Zca mod (∇V )

≡ V b∇c∇bZca + V bR
c d
b c Zda + V bR

c d
b a Zcd mod (∇V )

≡ V bRic
d
b Zda + V bR

c d
b a Zcd mod (∇V )

≡ V b R
d c
a b Zcd mod (∇V,∇E),

because of Eq. (4.4). The term V b R
d c
a b , however, is a linear expression in the second

and first covariant derivatives of V , and hence the claim follows. ��

4.3 Reformulation of the PDEs in Terms of Differential Operators

Now we want to use the PDEs derived in the previous section as a “wave equation”,
i.e. in terms of a differential operator involving �. We introduce the following vector
bundle over Up:

E := (T ∗M⊗ TM)⊕ T ∗M⊕ T ∗M⊕ T ∗M.

The vector bundle E carries a covariant derivative naturally induced by∇ and denoted
by the same symbol. Moreover, there is an operator � of Laplace type on E which is
given by taking the Bochner-Laplacian � in each summand and letting this operator
act diagonally on sections, i.e.

� =
⎛

⎜

⎝

�

.. .

�

⎞

⎟

⎠
.

Using the solutions of the previous section, we define the sections η ∈ �(E |U ) and
ξ ∈ �(T ∗U) by

η := (∇V, E,∇V E, (∇E)(V )
)

, ξ := δgL . (4.16)

Combining the equations in Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5 we obtain
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Proposition 4.1 The sections η and ξ as defined in (4.16) solve the coupled linear
PDE

�η = F(η,∇η, ξ), (4.17)

∇V ξ = H(η,∇η), (4.18)

where F and H are certain sections of E |U and T ∗U which depend linearly on the
indicated quantities.

Now suppose that η and ξ are arbitrary sections of E |U and T ∗U and interpret the
left-hand side of (4.17) as a linear differential operator acting on these sections. More-
over, we trivialise the bundles E |U and T ∗U with respect to the fixed coordinates
(x0, . . . , xn) on U and view in terms of this identification η ∈ C∞(U , R

N ), where
N = n2 + 3n, and ξ ∈ C∞(U , R

n+1).

Proposition 4.2 In the fixed local trivialisation, Eqs. (4.17) and (4.18) imply a linear
symmetric hyperbolic first-order PDE

A0(t, x, η, ∂η, ξ)∂0

⎛

⎝

η

∂η

ξ

⎞

⎠ = Ai (t, x, η, ∂η, ξ)∂i

⎛

⎝

η

∂η

ξ

⎞

⎠+ b(t, x, η, ∂η, ξ) (4.19)

for η and ξ , i.e. b depends linearly on (η, ∂η, ξ).

Proof The proof uses only that the linear second-order operator

P := �− F(·, ·, ξ) (4.20)

acting on E |U is normally hyperbolic for each ξ . In general, given any tensor bundle
E → U trivialised by the coordinates xi , i.e. E ∼= Up × R

N , and any linear second-
order differential operator P : �(E) → �(E), we say that P is normally hyperbolic if
its principal symbol is given by the metric, i.e. in the local trivialisation

P = −gμν(p)
∂2

∂μ∂ν

+ Mμ(p)
∂

∂xμ
+ K (p)

for matrix-valued coefficients Mμ and K depending smoothly on p. Note that in our
case the term F in (4.20) only affects the matrices M and K but not the symbol. If
η = (η1, . . . , ηN ) ∈ C∞(Up, R

N ) is arbitrary, the equation Pη = 0 can be rewritten
as linear first-order equation by applying formally the same steps as beforewhen (3.11)
was rewritten as first-order equation: For A = 0, . . . , N , we introduce the quantities
kA := ∂tηA and ηA,i := ∂iηA. In terms of these quantities, Pη = 0 implies that

∂tηA = kA, (4.21)

gi j∂tηA,i = gi j∂i kA, (4.22)
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−g00∂t kA = 2g0 j∂ j kA + gi j∂ jηA,i + H AB
0 kB +

n
∑

i=1
H AB
i ηB,i + K ABηB, (4.23)

holds.2 Equations (4.21)–(4.23) applied to our operator (4.20) and sections ζi yield

A0
1(t, x)∂0

(

η

∂η

)

= Ai
1(t, x)∂i

(

η

∂η

)

+ b1(t, x, η, ∂η, ξ). (4.24)

It is easy to read off an explicit form of the matrices Aμ
1 and to see that they are

symmetric and that A0
1 is positive definite as g ∈ Gp.

We turn to Eq. (4.18).Wewrite ξ = ξμ∂μ and V = ut (T−Nt ) = ut (
1√−g(∂t ,∂t ) ∂t−

Ni
t ∂i ). In terms of these quantities, Eq. (4.18) is equivalent to

∂t (ξ
μ)μ=0,...,n =

√−g(∂t , ∂t )Ni
t ∂i (ξ

μ)μ=0,...,n + b2(t, x, η, ∂η, ξ), (4.25)

where b2 depends linearly on (η, ∂η) via H and linearly on ξ via contractions of ξ

with Christoffel symbols for g which results from writing ∇ = ∂ + �. Combining
(4.24) and (4.25) gives (4.19). ��

4.4 Initial Data and the Vanishing of ∇V and E

In this section, we will show that E and ∇V vanish everywhere on U and that V is a
null vector field.Wewill achieve this by showing that the data η, ξ and∇η as defined in
(4.16), and containing the tensors ∇V and E , vanish on U . The data η, ξ and ∇η were
solutions of the linear system (4.17) and (4.18). Hence, using the uniqueness result
for solutions to (4.19), it suffices to show that η, ξ and ∇η vanish on Mp (which for
simplicity we will denote byM in the following) in order to obtain that ∇V and that
E = 0. Moreover, we show that V is null onMwhich will imply, by V being parallel,
that V is null everywhere.

Proposition 4.3 The vector field V defined in Eq. (4.3) and the sections defined in
Eq. (4.16) of Sect. 4.3 satisfy equations along the initial hypersurface M,

g(V, V )|M = 0, η|M = 0, ∇T η|M = 0, ξ |M = 0. (4.26)

In particular, ∇V and E vanish on M.

Proof In this proof, all equations are understood as being evaluated on M, more
precisely onMp =M∩Up only, i.e. we do not always write the restriction |M after

2 This system is even equivalent to Pη = 0. Indeed, let a triple (ηA, kA, ηA,i ) solve (4.21)–(4.23). As
gi j is invertible for g sufficiently close to h, (4.22) is the same as ∂tηA,i = ∂i kA , and (4.21) then gives
∂t (ηA,i − ∂iηA) = 0. Appropriate choice of initial data ensures ηA,i = ∂iηA at t = 0 and thus equality
everywhere. Then (4.23) is nothing but Pη = 0.
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each expression here. Recall that η and ξ were defined as

η = (∇V, E,∇V E, (∇E)(V )
)

, ξ = δgL , with L = Z − 1

2
trg(Z) g.

In the following, the order inwhich the initial conditions are verified turns out to be very
important. First note that along M we have that g = h, where h is the background
metric, and hence that TM is orthogonal to T . Moreover, we will not distinguish
between E and E�. It follows from the identity (2.4) and initial data for V , i.e. from

V |M = uT −U, (4.27)

that the imposed constraint equation (1.1) is equivalent to prTM(∇XV )|M = 0, i.e.
to

g(∇XV,Y )|M = 0, for X,Y ∈ TM.

Moreover, Eq. (4.27) implies that

g(V, V )|M = 0. (4.28)

Differentiating this in the direction of X ∈ TM yields

0 = g(∇XV, V ) = ug(∇XV, T ),

from which follows that ∇XV = 0 on M for X ∈ TM. The evolution equation
(d + δ)V � = 0 reduces then on M to

c(T ) ◦ ∇T V
� = 0.

Multiplying this from the left with c(T ) yields that ∇T V = 0 on M and hence that

∇V |M = 0. (4.29)

Moreover, the initial data for g were chosen in Sect. 3.4 precisely in such a way that

E |M = 0. (4.30)

This also implies that
∇X E |M = 0, for X ∈ TM. (4.31)

Showing that the remaining quantities in η, ∇η and ξ vanish along M is rather
involved. Again for brevity, wewill use abstract index notation with indices a, b, c, . . .
ranking from 0 to n. We will however abuse this abstract index notation as indicated
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before, when writing a 0 for a contraction B(T, . . .) of a tensor B with the vector field
T ,

T a Bab... = B0b...,

but also when using indices i, j, k, . . . ranging from 1 to n and referring to directions
in TM. Since along M the vector field T is orthogonal to TM we have that g0i =
h0i = 0, as well as g00 = −1 and gi j = gi j .

Wewill start by showing that the initial data specified for Z imply that∇T E vanishes
on M, i.e. that ∇0Ea = 0 along M. Starting point is Eq. (4.11), which in indices
reads as

Gab = −∇(a Eb) + Zab + 1
2 (∇cE

c − Z c
c )gab. (4.32)

Evaluation on M using the hypersurface formula (2.2),

G0i = ∇kW
k
i +∇ iW

k
k ,

implies that

1
2∇0Ei − 1

2∇ i E0 = −∇kW
k
i +∇ iW

k
k − Z0i = −∇kW

k
i +∇ iW

k
k − 1

uU
kZki = 0,

(4.33)
because of 0 = Z(V, ·) = uZ(T, X)−Z(U, X) and the first initial condition in (3.25)
for Z. But now Ea is zero along M and hence is ∇ i E0, and so we obtain that

∇0Ei = 0. (4.34)

Hence, it remains to prove that also ∇0E0=0.
To this end, recall the hypersurface formula (2.2) contracted with T twice,

G00 = 1
2 (scal

g −Wi jW
i j + (W i

i )2),

and the above formula (4.32) to obtain

1
2 (scal

g −Wi jWi j + (W i
i )2) = −∇0E0 + Z00 − 1

2∇cEc + 1
2Z

c
c

= − 1
2∇0E0 + 1

2Z00 − 1
2∇k Ek + 1

2Z
k
k .

Hence, using again Z(V, .) = 0 and ∇ i E j = 0 along M, we get

1
2∇0E0 = 1

2N
i N jZi j + 1

2Z
k
k − 1

2 (scal
g −Wi jW

i j + (W i
i )2). (4.35)

The next lemma shows that this term vanishes:

Lemma 4.6 On M satisfying the constraint (1.1) it holds that

scalg −Wi jW
i j + (W k

k )2 = Ni N jZi j + Z k
k . (4.36)
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Proof OnMwe have N = 1
uU with u2 = g(U,U ). An easy consequence of this and

of the constraint (1.1), i.e. of ∇iU j + uWi j = 0, is the formula

∇i u = −uNkWik, (4.37)

and the resulting
∇i N j = NkWki N j −Wi j . (4.38)

Now we use both the initial conditions (3.25) for Z to first determine

Z k
k = scalg −Wi jW

i j + (W k
k )2 + Ni N j

(

2WkiW
k
j − 2Rici j − 2W k

k Wi j + Zi j

)

,

and then compute, using the constraint (1.1) and Eqs. (4.37) and (4.38), that

Ni N jZi j = Ni∇iW
j
j − Ni∇ jWi j +

= 1
u2
Ni∇i u∇ jU

j − 1
u N

i∇i∇ jU
j − 1

u2
Ni∇ j u∇iU

j + 1
u N

i∇ j∇iU
j

= Ni NkWikW
j
j − NkWk jW

j
i N i + Ni NkR j

j ik

= −Ni N j
(

Wk jW
k
j −Wi jW

k
k − Ricik

)

.

Putting these two equations together gives the desired Eq. (4.36). ��
Hence we have established that ∇0E0 = 0. Combined with (4.34) this yields

∇0E |M = 0. It then follows automatically that V a∇bEa = V a∇a Eb = 0 on M.
Altogether we have now that

∇a E |M = 0.

Then Eq. (4.4) yields as immediate consequence that

V aRicab|M = 0. (4.39)

We turn to ∇0∇ i V a-terms for X ∈ TM and want to show that such expressions
vanish on M. As ∇V = 0 onM we have that

∇0∇ i V
b = R

b
0ia V

a (4.40)

on M, and we have to show that this expression vanishes. Note that as a further
consequence of ∇aV = 0 on M we have

R
a

i jb V
b = 0 (4.41)

onM. We will now prove that VaR0abc = 0 on M for all b, c = 0, . . . , n:
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First we note that

V aR0ai j = −V aRi ja0 = 0,

because of (4.41). Next we use V aRicab = 0 to get

V aR
0

0ai = −V aRicab + V aR
j

jai = 0,

again because of (4.41). This implies VaR0abc = 0 onM.
Hence, the vanishing of the term (4.40) is equivalent to

0 = V aRia0 j (4.42)

for all i, j = 1, . . . , n. In fact, because of V = u(T − N ), it suffices to prove
(4.42) for Xi ,Y j ∈ N⊥ ⊂ TM, i.e. with Xi Ni = Y i Ni = 0. We use now indices
r, s, t = 1, . . . , n − 1 for tensors from N⊥. Using this convention, we rewrite

V aRra0s = −uNiRri0s + Rr00s = −uNi N jRri js − uRicrs + uR
i

r i s .

Because of∇E = 0 and the resulting Z = Ric onM, this means that (4.42) is verified
if and only if

Zrs = −Ni N jRri js + R
i

r i s . (4.43)

Now we use the Gauß equation

Ri jkl = Ri jkl −Wi[kWl] j

in order to rewrite the curvature terms in (4.43) in terms of data onM. The rewritten
Eq. (4.43) is precisely the defining initial condition for Zrs , i.e. Eq. (3.25). This proves
(4.42) and thus ∇0∇ i V b = 0. As V aRicab = 0 onM, we have that

0 = �HLV b = �V b = ∇a∇a
V b = −∇0∇0V

b = 0,

because of ∇ i∇ j V a = 0 on M.
The last and most complicated part of the proof now consists of showing that δgLa

and V a∇0∇a Eb vanish on M. As a starting point, we take Eq. (4.4),

Ricab = Zab −∇(a Eb).

Differentiating both sides covariantly in direction of V , using that∇aV aZbc = 0 along
M due to (4.8), yields

Va∇aRicbc = V a∇a∇(bEc) = V aR
d

a(b c)Ed + Va∇(b∇a
Ec). (4.44)
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Setting b = 0 and c = j this and Ed |M = 0 and ∇a Eb|M = 0 gives

V a∇aRic0 j = 1
2V

a∇0∇a E j = u
2∇0∇0E j − Ni∇ i∇0E j = u

2∇0∇0E j . (4.45)

We now show that Va∇aRic0 j vanishes onM:
Using the second Bianchi identity, we find

V a∇aRic0 j = V a∇aR
b

b0 j = −V a∇aR
i

j i0 = −V a∇ jR
i

ia0 − V a∇ iR
i

a j0 = 0,
(4.46)

because of Eq. (4.42) along M and differentiation is along M. Thus, (4.45) gives

∇0∇0E j = 0. (4.47)

This, as well as Ea = 0 and ∇a Eb = 0 onM, imply that also

�Ei = −∇a∇a
Ei = 0

onM. But then, Eq. (4.12) immediately yields

(δgL)i = 0

for all j = 1, . . . , n. Moreover, Lemma 4.5 says that V a(δgL)a is a linear expression
in ∇bV d and ∇b∇cV d terms, which vanish onM. It follows that on M

(δgL)0 = 1

u
V a(δgL)a + Ni (δgL)i = 0,

and as a consequence,

δgL = 0 on M.

Again using formula (4.12) shows now that ∇0∇0Eb = 0 on M. Inserting this into
(4.46) shows that

V a∇0∇a Eb = 0.

Hence, all covariant derivatives∇a∇bEc vanish, proving Eq. (4.26) in the proposition.
��

5 Proof of Theorem 1: Global Aspects

5.1 From Local to Global

We next globalise the local development of the initial data. So far we have constructed
for every p ∈ M the data (gUp , VUp ,ZUp ) defined on some open Up ⊂ R ×M
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sufficiently small. Let p, q ∈M and assume that Up ∩ Uq �= ∅. Choose coordinates
(x0, . . . , xn) and (y0, . . . , yn) on Up and Uq , respectively, as before. On Up ∩ Uq ,
we consider the coordinates given by restriction of the xi . Then, with respect to these
coordinates, the data

wp =
(

g
Up
μν , V

Up
μ , Z

Up
i j

)

, wq =
(

g
Uq
μν, V

Uq
μ , Z

Uq
i j

)

,

solve by construction the system (4.4)–(4.6) formulated locally in the x-coordinates.
This follows as these equations are manifestly coordinate invariant. Moreover, the
initial data (wp)|Mp = (wq)|Mq coincide since they arise as restrictions of glob-
ally defined data on M. It then follows from the uniqueness result for solutions of
symmetric quasilinear hyperbolic systems that

wp = wq in Up ∩ Uq . (5.1)

We now set

M := ∪p∈MUp ⊂ R×M.

As each gUp lies in Gp, the gUp defines a global Lorentzian metric on M on which
∂t is a timelike vector field. We equipM with the time orientation induced by ∂t . By
the previous local constructions, (M, g) embeds into (M, g) with Weingarten tensor
W. Moreover, by (5.1) the locally defined vector fields VUp give rise to a vector field
V ∈ X(M) which is parallel and of length zero as this holds locally.

5.2 M ⊂ M is a Spacelike Cauchy Hypersurface

To this end, let γ : I → M = ∪p∈MUp be an inextendible timelike curve and let
t∗ ∈ I be any fixed parameter. Let p ∈ M such that γ (t∗) ∈ Up. For such fixed p,
we consider the restricted curve

γ|γ−1(Up)
: γ−1(Up) → Up,

which is an inextendible timelike curve in the globally hyperbolic manifold (Up, gUp ).
Thus, the spacelike Cauchy hypersurface Mp ⊂ M in Up is met by γ|γ−1(Up)

. It
remains to show that γ meets M at most once. With respect to the splitting R ×M
we decompose

γ = (γt , γM)

and compute

0 > g(γ̇t∂t , γ̇t∂t )+ 2 · g(γ̇t∂t , γ̇M)+ g(γ̇M, γ̇M).
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Let us assume that there is τ ∈ I with γ̇t (τ ) = 0. Let q := γ (τ). Then
0 > gUq (γ̇M(τ ), γ̇M(τ )). This, however, contradicts the condition g ∈ Gq imposed
on Uq and gUq in the second step of the proof. Consequently, γt : I → R is strictly
monotone, and thus γt = 0 has at most one solution. In total, γ intersects M exactly
once. It follows that (M, g) is globally hyperbolic with Cauchy hypersurfaceM and
parallel null vector V .

5.3 The Metric is of the Form −˜λ2dt2 + gt

Here we will prove the last aspect of Theorem 1, namely that the metric g obtain in
this way is of the form

g = −˜λ2dt2 + gt .

Let t denote the functionM � (t, x) �→ t . By construction, the vector field gradg(t)
is a global timelike vector field on M and the leaves of the integrable distribution
(gradg(t))⊥ are the t-levels {t} ×M =:Mt . Let F ∈ X(M) denote the vector field
that is proportional to gradg(t) and such that dt (F) ≡ 1, i.e.

F = 1

dt (gradg(t))
gradg(t),

and denote byφ its flow.Note thatφ sends level sets to level sets, i.e.φs(p) ∈Mt (p)+s .
Indeed, for each p ∈M, the function f (s) := t (φs(p)) ∈ R satisfies

f ′(s) = dt |φs (p)(F) ≡ 1,

and hence f (s) = t (φs(p)) = s + t (p). We further define two open neighbourhoods

M1,2
of M inM ⊂ R×M,

M1 := {(t, x) ∈M | φt (x) exists},
M2 := {p ∈M | ∃τ such that φ−τ (p) ∈M0},

where we identify x ∈ M with (0, x) ∈ M0. Note that for each p = (t, x) ∈ M2

the number τ = τ(p) is uniquely determined. Namely if φ−τ1(p), φ−τ2(p) ∈ M0 it
follows from applying the function t that

0 = t (φ−τ1(p))− t (φ−τ2(p)) = t (p)− τ1 − (t (p)− τ2).

Moreover, as M = ∪x∈MUx and each Ux satisfies by construction (3.26), it simply

follows that M2 =M. Then we have a well-defined diffeomorphism

� :M1 � (t, x) �→ φt (x) ∈M,
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with �((t, x)) ∈Mt . Its inverse is given by

�−1(p) = (

τ(p), φ−τ (p)
)

.

It also satisfies

d�(˜t,x)(∂t ) = F |φ̃t (x).

Therefore, for the pulled backmetric we have at each (˜t, x) ∈M1
and for every vector

field X on M1
with values in TMτ for some fixed τ

(�∗g)(˜t,x)(∂t , ∂t ) = gφ̃t (x)(F, F) = 1

g(gradgt, gradgt)
, (5.2)

(�∗g)(˜t,x)(∂t , X) = gφ̃t (x)(F, dψ(˜t,x)(X)) = 0, (5.3)

since dψ(˜t,x)(X) is tangential toM
˜t+τ and F is a multiple of the gradient of t . Hence,

∂t is orthogonal to TM with respect to �∗g, showing that

�∗g = −˜λ2dt2 + gt (5.4)

for some t-dependent family of metrics onM. As � restricts to the identity onM ⊂
M1,2

it follows that g0 = g. Moreover, by Eq. (5.2),

˜λ= 1
√

g(gradgt, gradgt)
.

OnM =M0 we have˜λ|M = 1√
h(gradh t,gradh t)|M

= λ|M. In summary, passing from

(M, g) to (M1
, ψ∗g) via ψ yields an open neighbourhood of M in R ×M with

parallel null vector field, metric of the form (5.4), and as ψ restricts to the identity on

M, we deduce that M is also a spacelike Cauchy hypersurface for (M1
, ψ∗g). This

finishes the proof of Theorem 1. ��

Remark 5.1 The proof of Theorem 1 shows that g depends on the backgroundmetric h
whichwas introduced in the proof in terms of the followingPDE system: the contracted
difference tensor E of the Levi-Civita connections of g and h vanishes, i.e.

E(X) = −trg (g(A(·, ·), X)) = 0 for all X ∈ T M, (5.5)

where A(Y, Z) := ∇Y Z − ∇h
Y Z for Y, Z ∈ T M . Imposing this extra condition in

Theorem 1 for the solution g for a fixed background metric h determines g uniquely
for each choice of h.
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6 Riemannian Manifolds Satisfying the Constraint

In this section, we study Riemannian manifolds (M, g) satisfying the constraint con-
dition (1.1), which in fact means that there is a nonzero vector field U such that ∇U
is a symmetric endomorphism of (TM, g).

6.1 The Local Structure and the Proof of Theorem 2

The condition (1.1) is equivalent to ∇U � = g(∇U, ·) being symmetric, which in turn
is equivalent to dU � = 0. Now we can argue analogously as in [31, Proposition 8]:

Locally near some fixed x0 ∈M we have that U = gradg(z) for some function z
on V ⊂M with z(x0) = 0. The leafs of the integrable distributionU⊥ = ker(dz) are
given by the level sets

Uc = {x ∈ V | z(x) = c}.

Let Z ∈ �(V) denote the vector field that is proportional toU and such that g(U, Z) =
dz(Z) ≡ 1, i.e.

Z = 1

dz(gradgz)
gradgz = 1

g(U,U )
U,

and denote by φ its flow. Choose ε > 0 and an open subsetW ⊂M centered around
x0 such that φ is defined on (−ε, ε) × W . We now restrict the levels Uc to their
intersections with W , denoted with the same symbol. Since

LZU
� = dU �(Z , .) = 0,

the flow sends level sets to level sets, i.e. φs(x) ∈ Uz(x)+s . Indeed, for each x ∈ Uz(x),
the function f (s) := z(φs(x)) ∈ R satisfies

f ′(s) = d fs(∂s) = dz|φs (x)(Z) ≡ 1,

and hence f (s) = z(φs(x)) = s + z(x). Then we have a diffeomorphism

� : (−ε, ε)× U′ −→ {y ∈W | |z(y)| < ε} ⊂W,

(s, x) �−→ φs(x),

with �(s, x) ∈ Us . Its inverse is given by

�−1(x) = (

z(x), φ−z(x)(x)
) ∈ I × U0.

It also satisfies

d�(s,x)(∂s) = Z |φs (x).
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Therefore, for the pulled back metric we have

�∗g(∂s, ∂s) = gφs (x)(Z , Z) = 1

g(gradgz, gradgz)
= 1

g(U,U )
,

�∗g(∂s, X) = gφs (x)(Z , d�(s,x)(X)) = 0,

since d�(t,x)(X) is tangential to a level set whenever X is, and Z is a multiple of the
gradient of z. Finally, hs is given by

hs(X,Y )|x := �∗g(X,Y ) = g�s (x)(dφs |x (X), dφs |x (Y )),

for X,Y ∈ U0. Hence, �∗g = μ2ds2 + hs with

μ = 1
√

g(gradgz, gradgz)
= 1

u
, ∂s = 1

dz(gradgz)
gradgz = 1

u2
U.

Setting F := U0 = z−1(0), this gives the local form of the metric (1.2).
Moreover, if Z = 1

u2
U is complete, [31, Proposition 8] shows that the flow of the

lift of Z to the universal cover ˜M of M defines a global diffeomorphism � between
˜M and R× ˜F , where ˜F is the universal cover of a leaf F of U⊥.
Finally, we compute for (M, g) as in formula (1.2) and X,Y ∈ TF the symmetric

bilinear form W = − 1
u∇U as follows:

W(∂s, ∂s) = ∂s
( 1
u

)

,

W(∂s, X) = −u · g(∇∂s∂s, X) = X
( 1
u

)

,

W(X,Y ) = −u · g(∇X∂s,Y ) = − u
2 ḣs(X,Y ).

Clearly, this is equivalent to Eq. (1.3). This finishes the proof of Theorem 2. ��

6.2 Complete Riemannian Manifolds Satisfying the Constraint

In order to obtain complete Riemannian manifolds satisfying the constraint, we will
use the following lemma, which is a weaker version of forthcoming results in [32],
see also [20, Lemma 2].

Lemma 6.1 Let F be a compact manifold with a s-dependent family of Riemannian
metrics hs and let u be a bounded, positive smooth function on M = R × F . Then
the metric

g = 1

u2
ds2 + hs

onM is complete.
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Proof According to the decomposition M = R × F we can write every curve γ :
[a, b) →M as γ (t) = (s(t), x(t)) with s : [a, b) → R. Hence,

gγ (t)(γ̇ (t), γ̇ (t)) =
(

ṡ(t)

u(γ (t))

)2

+ hs(t)(ẋ(t), ẋ(t)).

For a curve with g(γ̇ , γ̇ ) ≡ c ∈ R constant, e.g. a geodesic, hs being positive definite
shows that 0 ≤ hs(ẋ, ẋ) ≤ c is bounded, and u bounded implies

(ṡ)2 = (u ◦ γ )2(c − hu(ẋ, ẋ)) ≤ c(u ◦ γ )2 ≤ c sup u,

showing that also ṡ : [a, b) → R is bounded. Hence, if b ∈ R, the function s :
[a, b) → R is bounded and its image lies in a compact set in R. Hence s(b) =
limt→b s(t) ∈ R is well defined.

Nowassume that (M, g) is incomplete. Let γ : [a, b) →M be amaximal geodesic
with b ∈ R. Then γ leaves every compact set in M. Indeed, if γ (t) remained in a
compact set, then {γ (tn)}n∈N with tn → b− would have a convergent subsequence.
However, {γ (tn)} is a Cauchy sequence for the metric dg induced by the Riemannian
metric g. Hence {γ (tn)} converges, and thus γ could be extended beyond b. On the
other hand, we have seen that the image of s lies in a compact set in R. Hence, that γ
leaves every compact set inM = R× F is a contradiction to F compact. ��

7 Special Lorentzian Holonomy and Families of Riemannian Metrics

Based on the classification of indecomposable holonomy groups of Lorentzian mani-
foldswith parallel null vector field [12,30],wewill now showhowwe can useTheorem
1 to construct Lorentzian manifolds with prescribed holonomy from families of Rie-
mannian metrics. Our aim in this section is to prove Theorem 3.

7.1 The Screen Bundle of (M, g)

To every Lorentzian manifold with parallel null vector field, in particular to the data
(M, g, V ) constructed via Theorem 1, we can associate the screen bundle

S := V⊥/ V →M

equipped with covariant derivative ∇S
X [Y ] :=

[∇XY
]

. In contrast to the general case,
however, our setting always yields a canonical realisation of S as a subbundle S of
TM by means of the natural vector bundle isomorphism

TM ⊃ S := T⊥ ∩ V⊥ � Y �−→ [Y ] ∈ S.

↘ ↙
M
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This isomorphism pulls back ∇S to the covariant derivative

∇S := prS ◦ ∇|S,

which in turn is metric with respect to the positive definite screen metric gS :=
gS×S . Having these identifications in mind, we also refer to S as the screen. The
screen construction is a useful tool when analysing the holonomy of (M, g), which
by construction is contained in the stabiliser of a null vector, i.e. (up to conjugation),
we have

Hol(M, g) ⊂ SO(n) � R
n ⊂ SO(1, n + 1).

(Note that the Lorentzian manifolds arising via Theorem 1 are time-orientable.) For
any subgroupG ⊂ SO(n)�R

n , let prSO(n)G denote its projection onto theSO(n)-part.
Then we have by construction

Hol(S,∇S) ∼= prSO(n)Hol(M, g). (7.1)

Recall that on M the parallel null vector field V decomposes into V = uT − N .
We next list useful formulas for the screen covariant derivative ∇S and the screen
curvatureRS . By trivial extension,wewill often viewa section of S →M equivalently
as element of X(M) = �(TM) which is everywhere orthogonal to T and V and
denote it with the same symbol.

Lemma 7.1 Let σ ∈ �(S) and let X,Y, Z ∈ �(TM). The following hold:

∇S
Yσ = ∇Yσ − 1

u
g(σ,∇Y T ) V,

RS(X,Y )σ = prS(R(X,Y )σ ),

0 = (∇S
ZR

S)(X,Y )+ (∇S
XR

S)(Y, Z)+ (∇S
YR

S)(Z , X).

Proof These are straightforward calculations following directly from the various def-
initions, parallelity of V as well as the symmetries and second Bianchi identity for
R. ��
For the data (M, g, V ) constructed via Theorem 1, let

Sr,s = ⊗r,s S := S∗ ⊗ · · · ⊗ S∗
︸ ︷︷ ︸

r×
⊗ S ⊗ · · · ⊗ S

︸ ︷︷ ︸

s×
→M

denote the (r, s)-screen tensor bundle with covariant derivative induced by ∇S and
denoted with the same symbol. RS also denotes the curvature operator of (T r,s,∇S).

Finally, we need to understand the pullback S|M → M of the screen bundle
S →M by means of the inclusionM = {0}×M ↪→M. By construction, it follows
that S|M = U⊥ →M, whence the restriction σ |M ∈ �(S|M) of any σ ∈ �(S) to
M can be regarded as vector field onMwhich is orthogonal toU . On the vector bundle
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U⊥ → M we have the connection that is induced by the Levi-Civita connection of
g, ∇⊥ = prU⊥ ◦ ∇g. Then

Lemma 7.2 For each X ∈ X(M) and σ ∈ �(S), we have

(

∇S
Xσ

)

|M = ∇⊥X σ |M. (7.2)

Proof It follows from formula (2.1) that

∇S
Xσ |M = prS(∇Xσ |M) = prS(∇Xσ |M) = prU⊥(∇Xσ |M).

��
Nowwedescribe the parallelity of a section of Sr,s →M in terms of the corresponding
section of the pulled back bundle S|M.

Proposition 7.1 Let (M, g,U ) be a Riemannian manifold satisfying the constraint
(1.1) and (M, g) the Lorentzianmanifold arising via Theorem 1. Then the∇S-parallel
sections of the bundle Sr,s →M are in one-to-one correspondence with ∇⊥-parallel
sections ζ of the pulled back bundle Sr,s |M →M, i.e. with

∇⊥X ζ = 0, for all X ∈ TM. (7.3)

Proof By the previous lemma, it is clear that a parallel section of T r,s S →M satisfies
(7.3).

On the other hand, let us assume condition (7.3). We extend ζ to a section of
T r,s S → M by parallel transport in V -direction, i.e. such that ∇S

V ζ = 0. It then
suffices to show that ∇S

Xζ = 0 for X ∈ T⊥. To this end, we introduce the bundle

H := (T⊥)∗ ⊗ T r,s S →M

as well as the section A ∈ �(H), given by

A(X) := ∇S
Xζ.

Clearly, there are naturally induced covariant derivatives on H . For X ∈ T⊥ we
compute, using the identities from Lemma 7.1 as well as ∇V = 0, that

(∇S
V A)(X) = ∇S

V (A(X))− A(∇V X)

= RS(V, X)ζ +∇S
X∇S

V ζ +∇S
[V,X ]ζ − ∇S

∇V X
ζ

= RS(V, X)ζ

= 0.

Thus, ∇S
V A = 0 which is a linear symmetric hyperbolic first-order PDE for A. As

A|M = 0 by assumption, we conclude A ≡ 0. ��
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Now we specify Proposition 7.1 for the situation when (M, g) is globally given as in
Theorem 2, i.e. when M = I × F , where s ∈ I with I and interval, R or the circle,
F is a smooth manifold, and g = u−2ds2 + hs with a smooth nonvanishing function
u on M. Then, U = u2∂s and we can express a section Z of the bundle U⊥ → M
by an s-dependent family of sections Zs of TF → F . Differentiating such a section
Zs in direction X ∈ TF , we get the identity

∇⊥X Z = ∇hs
X Z ,

where∇hs is the Levi-Civita connection of themetrichs . Differentiating in s-direction,
by the Koszul formula, we get for each X ∈ TF that

2g(∇⊥∂s Zs, X) = ∂s(g(Zs, X))+ g([∂s, Zs], X) = (L∂sg)(Zs, X)+ 2g([∂s, Zs], X),

(7.4)
where L∂s denotes the Lie derivative with respect to ∂s and where we assume that
[∂s, X ] = 0. However, we have that (L∂sg)(X,Y ) = (L∂shs)(X,Y ), whenever X and
Y are tangential to F . Hence, when dualising Eq. (7.4) with the metric hs we get that

∇⊥∂s Zs = 1
2 (L∂shs)

�(Zs)+ [∂s, Zs],

where � denotes the (s-dependent) dualisation with respect to hs . Introducing the
notation ḣs for L∂shs we can write this concisely as

∇⊥∂s Zs = [∂s, Zs] + 1
2 ḣ

�
s(Zs).

Using this, for a family of 1-forms σs ∈ �(T ∗F) we get

(∇⊥∂sσs)(X) = ∂s(σs(X))− σs(∇⊥∂s X) = (L∂sσs)(X)− 1
2σs

(

(ḣs)�(X)
)

,

for all X ∈ TF , i.e. that

∇⊥∂sσs = σ̇s + 1
2 ḣ

�
s • σs,

where • denotes the natural action of endomorphisms on 1-forms and ṡs := L∂sσs is
the Lie derivative.

This relation generalises to families of tensor fields σs of higher rank and we obtain:

Corollary 7.1 LetF be a smooth manifold and hs be a family of Riemannian metrics
onF , where s ∈ I withI being an interval,Ror the circle, u a nonzero smooth function
on M = I × F and g = u−2ds2 + hs be the Riemannian manifold defined in (1.2).
Moreover, let (M, g) the Lorentzian manifold arising from (M, g) via Theorem 1.
Then there is a one-to-one correspondence between

(1) sections σ of the bundle Sk,l →M such that ∇S
Xσ = 0 for all X ∈ TM;

(2) sections σ of of the bundle ⊗k,lU⊥ →M such that ∇⊥Y σ = 0 for all Y ∈ TM;
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(3) s-dependent families of sections σs of ⊗k,l TF → F with

∇hs
Z σs = 0, for all Z ∈ TF , (7.5)

σ̇s = − 1
2 ḣ

�
s • σs, (7.6)

where ∇hs is the Levi-Civita connection of the metric hs , the dot denotes the Lie
derivative in s-direction, � the dualisation with respect to hs , and • is the natural
action of an endomorphism field on ⊗k,l TF ., i.e.

(ḣ�
s • σs)(X1, . . . , Xk) = ḣ�

s (σs(X1, . . . , Xk))

−σs(ḣ�
s(X1), X2, . . . , Xk)− . . .− σs(X1, . . . , Xk−1, ḣ�

s(Xk)),

for X1, . . . , Xk ∈ TF .

This corollary will now provide us with a proof of Theorem 3.

7.2 Lorentzian Special Holonomy and the Proof of Theorem 3

Here we use the result of Sect. 7.1 to obtain a proof of Theorem 3. In the setting of
Theorem 3 start with data (M, g,W,U ) satisfying the initial condition (1.1) and then
first apply Theorem 2 to conclude that these data are given as

(M = L × F , g = 1

u2
ds2 + hs,U = u2∂s)

solving (1.1) for W as in (1.3). Thus the existence of (M, g) with parallel null vector
and initial data for gt and ġt as desired follows from Theorem 1. Next, it follows from
Sect. 7.1, in particular from Proposition 7.1, that prSO(n)Hol(M, g) = Hol(S,∇S)

fixes an element in T k,l
R
n if and only if there isσ ∈ �(M, T k,lU⊥) solving∇⊥σ = 0.

Using the explicit form of (M, g) and U from Theorem 2, σ can be equivalently
viewed as s-dependent family of tensor fields σs ∈ �(F , T k,lF). By Corollary 7.1,
equation ∇⊥σ = 0 is then equivalent to Eqs. (7.5) and (7.6). This proves the first
statement in Theorem 3 and it remains to verify the statements in Table 1. For this, we
first consider the situation that the screen holonomy is in U( n2 ), i.e. that

Hol(S,∇S) = prSO(n)Hol(M, g) ⊂ U( n2 ).

By Eq. (7.5), this case requires Hol(F ,hs) ⊂ U( n2 ). In other words, there are families
of complex structures Js , Kaehler forms ωs on F which are parallel with respect to

hs = ωs(Js ·, ·) (7.7)
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and satisfy the flow equations (1.4). Hence, Hol(S,∇S) ⊂ U( n2 ) is equivalent to
Hol(F ,hs) ⊂ U( n2 ) and equations

J̇s + 1
2 ḣ

�
s • Js = 0, ω̇s + 1

2 ḣ
�
s • ωs = 0 (7.8)

for all s and where the dot again denotes the Lie derivative with respect to the
parameter s.

Now we turn to those holonomy groups in Table 1 that are defined as the stabiliser
of one or more tensors, i.e. to Sp( n4 ), G2 and Spin(7):

The case n = 4k and constraints for Hol(S,∇S) ⊂ Sp(k) is in complete analogy
to the U( n2 )-case, characterised by families of hyper-Kähler metrics hs on F with
corresponding compatible parallel almost complex structures (J 1s ), i = 1, 2, 3, i.e.
J 1s J

2
s = J 3s and Kaehler forms ωi

s such that hs = ωs(Js ·, ·) satisfying the correspond-
ing flow equations (7.8).

For the case n = 7 and constraints for Hol(S,∇S) ⊂ G2 recall that the exceptional
group G2 ⊂ SO(7) can be realised as the stabiliser subgroup of a stable 3-form in
R
7, see for example [16,21,25,26] more details. Hence, by Corollary 7.1 the case

Hol(S,∇S) ⊂ G2 is characterised by a family of associated stable 3-forms φs ∈

3(F) on F evolving according to Eq. (7.6) with associated family hs of G2. This
implies the corresponding entry in Table 1.

For the case n = 8 and constraints for Hol(S,∇S) ⊂ Spin(7) recall the algebraic
properties of the group Spin(7) ⊂ SO(8) and its realisation in terms of the stabiliser
of a generic 4-form, again see [16,26] for details but also [28]. The discussion then
is completely analogous to the G2 case and the constraint equations are equivalent to
the existence of a family of parallel Spin(7)-structures ψs on F evolving under the
flow equation (7.6).

Now we turn to the case that is n even and the screen holonomy is special unitary,
i.e. Hol(S,∇S) ⊂ SU( n2 ). This is the most difficult case because this reduction is not
simply given as the stabiliser of a tensor, but rather by a trace condition in addition to
the reduction to U(n).

The parallel almost complex structures Js coming from the reductionHol(S,∇S) ⊂
SU( n2 ) give a ∇⊥ parallel almost complex structure J ∈ �(M,End(U⊥)). By Propo-
sition 7.1, J gives via ∇S-parallel translation a ∇S-parallel almost complex structure
J S on the screen S →M. From now on, we will work on the Lie algebra level. The
holonomy algebra hol(S,∇S) is contained in su( n2 ) if and only if hol(S,∇S)u( n2 ) and
each of its elements A satisfies

tr(J S ◦ A) = 0,

where we identify elements in the holonomy algebra with endomorphism of a fibre
of the screen bundle S. Now we apply the Ambrose–Singer holonomy theorem to the
holonomy algebra hol(S,∇S) at p ∈M, which states that

hol(S,∇S) = span{(PS
γ )−1 ◦ RS(X, Y ) ◦ PS

γ | γ : [0, 1] → M, γ (0) = p, X, Y ∈ Tγ (1)M},
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where RS is the curvature of the screen bundle S and PS
γ is the parallel transport along

a curve γ . Since J S is parallel, it commutes with all parallel transports PS
γ and we

obtain

tr(J S ◦ (PS
γ )−1 ◦ RS(X,Y ) ◦ PS

γ ) = tr((PS
γ )−1 ◦ J S ◦ RS(X,Y ) ◦ PS

γ )

= tr(J S ◦ RS(X,Y )).

Using this, the Ambrose–Singer theorem and the fact that RS(V, ·) = 0 we obtain that
hol(S,∇S) ⊂ su( n2 ) if and only if J S additionally satisfies

tr
(

J S ◦ RS(X,Y )
)

= 0, for all X,Y ∈ T⊥ →M. (7.9)

Let us now consider the left side of condition (7.9) as sectionC in the bundle�2T⊥ →
M, which in turn carries a covariant derivative induced by ∇. We have by parallelity
of J S and V and Lemma 7.1 that

(∇VC)(X,Y ) = tr
(

J S ◦ (∇S
V R

S)(X,Y )
)

= tr
(

J S ◦ (∇S
X R

S)(V,Y )
)

+ tr
(

J S ◦ (∇S
Y R

S)(X, V )
)

= 0.

Hence, C ≡ 0 if and only if

C |M = 0, (7.10)

which in turn is evaluated by using the Gauß equation

R(X,Y, Z , L) = R(X,Y, Z , L)−W(X, Z)W(Y, L)+W(X, L)W(Y, Z),

(7.11)

for all X,Y, Z , L ∈ TM. Let si be a local orthonormal basis of S|M = U⊥ → M
and X,Y ∈ TM. Then we have

− tr
(

J ◦ RS(X,Y )
)

|M =
∑

i

g(RS(X,Y )si , J
S(si ))

=
∑

i

R(X,Y, si , J
S(si ))

=
∑

i

R(X,Y, si , J (si ))−W(X, ai )W(Y, J (si ))+W(X, J (si ))W(Y, si )

= −tr (J ◦ R(X,Y ))−W(Y, J (W(X)))+W(X, J (W(Y ))).
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Therefore, the additional condition on (M, g,W,U, J ) ensuring special unitary
screen holonomy is

tr (J ◦ R(X,Y )) = −W(Y, J (W(X)))+W(X, J (W(Y ))). (7.12)

For Theorem 3, one has to evaluate Eq. (7.12) in terms of data on (F ,hs) as in
Theorem2. LetWs =W|Fs×Fs . Then onefinds for the embedding (F ,hs) ↪→ (M, g)
with unit normal u ∂s along F that

∇XY = ∇hs
X Y +Ws(X,Y )u · ∂s, ∀X,Y ∈ TF .

That is Ws is actually the Weingarten tensor of this embedding. Thus, using a Rie-
mannian version of the Gauß equation, the curvature Rs of hs is for X,Y, Z , L ∈ TF
related to that of (M, g) via

R(X,Y, Z , L) = Rs(X,Y, Z , L)+Ws(X, Z)Ws(Y, L)−Ws(X, L)Ws(Y, Z)

(7.13)

and the Codazzi equation

R(X, u∂s,Y, Z) =
(

d∇hs
Ws

)

(Y, Z , X) :=
(

∇hs
Y Ws

)

(Z , X)−
(

∇hs
Z Ws

)

(Y, X).

(7.14)

Inserting Eq. (7.13) into (7.12), we obtain for X,Y ∈ TF after a straightforward
calculation

0 = tr(Js ◦ Rs(X,Y ))
∇hs Js=0= −2Rics(X, Js(Y )).

On the other hand, we also need to evaluate

tr (J ◦ R(X, ∂s)) = −W(∂s, J (W(X)))+W(X, J (W(∂s))). (7.15)

The right side of (7.15) is calculated using (1.3) and is equal to −2g(gradg( 1u ),

J (W(X))). For the left side, (7.12) and (7.14) yieldwith a straightforward computation

−(δhs ḣs)(Js(X))+−2g(gradg
(

1

u

)

, J (W(X)))

Thus, (7.15) is equivalent to

(δhs ḣs) = 0 (7.16)

Hence, the constraints for special unitary screen holonomy are equivalent to the exis-
tence of Ricci-flat Kähler metrics (Js, ωs,hs = ωs(Js ·, ·)) on F satisfying the flow
equation (7.6) and additionally solve (7.16).
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Finally we consider to the case when the screen holonomy splits or is trivial:
Suppose that there are proper subgroups H1 and H2 of SO(n) such that

Hol(S,∇S) ⊂ H1 × H2 ⊂ SO(n) (7.17)

Equivalently, there is a nontrivial, decomposable and ∇S-parallel form in the screen
bundle. Thus, by Theorem 1.4 and the holonomy principle, (7.17) is equivalent to a
local metric splitting

(F ,hs) ∼= (F1 × F2,h1s + h2s ) (7.18)

with Hol(Fi ,his) ⊂ Hi and additionally the volume forms volh
i
s of the metrics his ,

i = 1, 2 evolve according to

L∂svol
his = − 1

2 ḣ
i,�
s • volhis . (7.19)

However, it is well known and straightforward to compute that (7.19) holds for any
time-evolving metric with associated family of volume forms.

Finally, let us now consider the special case that the screen is flat, i.e. the standard
representation of Hol(S,∇S) decomposes into n trivial subrepresentations. It follows
immediately from an iterated version of the statement in the case where the screen
holonomy splits hat this is equivalent to (F ,hs) being a family of flat metrics. This
proves Theorem 3. ��

7.3 One-Parameter Families of Special Riemannian Structures

Here, we reformulate the evolutions equations (7.6) in the case of Kähler and G2-
structures further and formulate a question. We focus on one-parameter families of
Kähler structures.

Lemma 7.3 Let (F , hs, Js, ωs)bean s-dependent family ofRiemannianKähler struc-
tures on F , i.e. with parallel complex structures Js and ωs = hs(Js ., .) and set

�1,1(F , Js) := {φ ∈ �2(F) | φ(Js X, JsY ) = φ(X,Y )}.

Then ω and J satisfy the flow equations

J̇s + 1
2 ḣ

�
s • Js = 0, ω̇s + 1

2 ḣ
�
s • ωs = 0 (7.20)

if and only if
ω̇s ∈ �1,1(F , Js). (7.21)

Proof For brevity, we write drop the index s indicating the s-dependence and write a
dot for the Lie derivative with respect to ∂s , i.e. ω̇ = L∂sω, etc.
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First compute

(ḣ� • ω)(X,Y ) = −ω(ḣ�X,Y )− ω(X, ḣ�Y ) = ḣ(X, JY )− ḣ(J X,Y ), (7.22)

which implies that (ḣ� •ω) ∈ �1,1(F , Js). This shows that Eq. (7.20) implies relation
(7.21).

Secondly, Lie-differentiating and skew-symmetrising the relation 0 = ω− h(J., .)
yields

ω̇(X,Y ) = 1
2

(

ḣ(J X,Y )− ḣ(X, JY )+ h( J̇ X,Y )− h(X, J̇ Y )
)

= − 1
2 (ḣ

� • ω)+ 1
2

(

h( J̇ X,Y )− h(X, J̇ Y )
)

.

by (7.22). We have seen that (ḣ� • ω) ∈ �1,1(F , Js) and we claim that

h( J̇ X,Y )− h(X, J̇ Y ) ∈ �2−(F , Js) := {φ ∈ �2(F) | φ(Js X, JsY ) = −φ(X,Y )},
(7.23)

which shows that relation (7.21) implies Eq. (7.20). To prove claim (7.23), we dif-
ferentiate 0 = ω(X,Y ) − ω(J X, JY ) as in [36, Lemma 4.3] and use h(X,Y ) =
−ω(J X,Y ) = ω(X, JY ) to obtain that

0 = ω̇(X,Y )− ω̇(J X, JY )− ω( J̇ X, JY )− ω(J X, J̇ Y )

= ω̇(X,Y )− ω̇(J X, JY )− h( J̇ X,Y )+ h(X, J̇ Y ).

This proves claim (7.23) and because of �2(F) = �1,1(F , Js) ⊕ �2−(F , Js) estab-
lishes the desired equivalence. ��
Note that not every family of Kähler structures (hs, Js) satisfies Eq. (7.20): for exam-
ple, for the constant family of flat metrics h ≡ hs in even dimension the compatible
complex structures are parametrised by the homogeneous spaceGLnC/U(n). Taking
a nonconstant curve of h-parallel, i.e. constant, complex structures Js gives a Kähler
structure (h, Js) with ḣ = 0 but J̇s �= 0, which contradicts (7.20).3 Of course, a con-
stant family of constant complex structures Js ≡ J always satisfies Eq. (7.20) for the
flat metric h. Clearly this suggests the following question: given a family of Kähler
metrics, is there a family of complex structures Js , or of Kähler forms ωs , such that
condition (7.21), and hence flow equation (7.20) is satisfied?

A difficulty when analysing Eq. (7.21) arises from the fact that for an s-dependent
family of complex structures Js , the algebraic splitting of the two forms into �1,1 and
�2− depends on the parameter s.

ForG2-structures the situation is similar. Letφt be a family ofG2-structures defining
the family of Riemannian holonomyG2 metrics hs . Since the tangent space at a stable
three-form φ splits under G2 into three irreducible components

R⊕ Sym2
0(R

7)⊕ R
7 $ �3

R
7

(r, S, X) �→ rφ + S� • φ + X (∗φ)
(7.24)

3 We would like to thank Vincente Cortés for alerting us to this example.
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it follows that

φ̇ = S� • φ + X (∗φ),

for a family of symmetric bilinear forms, whereas the associated metric satisfies

ḣ = 2S,

see [18,27,29]. Hence, similarly to the Kähler case, for the curve φt the equation that
results from Corollary 7.1,

φ̇ + 1
2 ḣ

� • φ = 0 (7.25)

is equivalent to the condition

φ̇ ∈ R⊕ Sym0(R
7),

i.e. that φ̇ has no R
7-component in the decomposition. Again, it remains the ques-

tion whether for a given family of parallel G2-structures hs we can always find a
corresponding family of stable 3-forms φt satisfying this condition. This suggest to
formulate the following

Open Questions Let (M, g) be a Lorentzian manifold obtained from a Riemannian
manifold (M, g) satisfying the constraints via Theorem 1 and with screen holonomy
G = prSO(n)Hol(M, g).

(1) If G ⊂ U( n2 ), does there always exists a ∇S-parallel complex structure J on S
such that the associated family of hs -parallel and compatible complex structures
Js satisfies the flow equation J̇s + 1

2 ḣ
� • Js = 0?

(2) If G ⊂ G2 does there always exists a ∇S-parallel stable 3-form φ on S such that
the associated family of hs -parallel stable 3-forms φs satisfies the flow equation
φ̇s + 1

2 ḣ
� • φs = 0?

Remark 7.1 Interestingly, the flow equation (7.25) for the G2-case appears in [29]
in a completely unrelated context as G2-flow equation for not necessarily parallel 1-
parameter families of G2-structures αs ∈ 
3(F) on F . In fact, let Ai j = Ai j (s) be
any s-dependent family of symmetric (2, 0) tensors on F and consider the equation

∂sαi jk = Al
iαl jk + Al

iαilk + Al
kαi jl (7.26)

for some given initial generic 3-form αs=0. As G2 ⊂ SO(7), every generic 3-form in
dimension 7 yields a metrics hs = hs(αs) in a natural way and [29] then shows the
relation

∂shi j = 2Ai j ,

which provides the link to our situation. However, it remains unclear under which
conditions a parallel G2-structure α0 on F evolves under the flow equations (7.26) to
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a parallel family ofG2-structures as required here. In general, we have that (see [29])

∂s(∇s
l αi jk) = Am

i (∇s
l αmjk)+ Am

j (∇s
l αimk)+ Am

k (∇s
l αi jm)+ (∇s A)-terms.

To assure that a parallel G2-structure remains parallel under the flow, one would thus
have to control the ∇s A-terms. This lies beyond the scope of this paper. The same
discussion is possible on the level of Spin(7) structures and their flow equations which
appeared in an unrelated context in [28].

8 Applications to Riemannian and Lorentzian Spinor Field Equations

Here,wewill use the previous results in order to obtain the two classification statements
from Theorems 4 and 5 in the introduction.

8.1 Generalised Imaginary Killing Spinors on Riemannian Manifolds and the
Proof of Theorem 4

Let us first suppose that (M, g) admits an imaginaryW-Killing spinor. Differentiating
(1.8), it is easy to calculate that its Dirac current U = Uϕ defined by relation (1.7)
satisfies Eq. (1.6). Thus, Theorem 1 applies and there is a Lorentzian manifold (M, g)
in which (M, g) embeds with second fundamental form W and u∂t − U extends to
a parallel null vector field V on M. We extend the spinor ϕ to a spinor φ on M by
parallel translation in direction of V , i.e. with ∇Vφ = 0. Setting

A(X) := ∇Xφ

for X ∈ ∂⊥t , we find using parallelity of V as well as the relations between spinorial
and Riemannian curvature (for details see [4]) that

(∇V A)(X) = ∇V∇Xφ −∇∇V Xφ = R
Sg

(V, X)φ = 1
2R(V, X) · φ = 0.

The well-known hypersurface formulas for the spinor covariant derivative [2] imply
that the generalised Killing spinor equation for ϕ is equivalent to A|M = 0 and as
A solves a linear first-order symmetric hyperbolic PDE we conclude that A ≡ 0, and
hence ∇φ = 0. In particular, Hol(M, g) ⊂ SO(n) � R

n fixes not only a parallel
vector but also a nontrivial spinor. However, results in [9,30] show that this can only
happen if the screen holonomy satisfies that

prSO(n)(Hol(M, g)) ⊂ H1 × · · · × Hk, (8.1)

with Hi is equal to SU(mi ), Sp(ki ), G2, Spin(7), or trivial. By Theorem 2, (M, g) is
locally of the form (R×F , 1

u
2
ds2 + hs). Condition (8.1) yields that locally (Fs,hs)

splits into a metric product (F1
s , h1s )×· · ·× (Fk

s , hks ) with Hol(Fk
s , hks ) ⊂ Hk . More-

over, Theorem 3 applied to this situation yields the evolution equations for his as given
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in Theorem 4. This proves (1) in Theorem 4. The proof of the global version in (2)
follows directly from the global statement in Theorem 2.

Conversely, assume that (M, g) is given as in the formulation of Theorem 4. As
an immediate consequence of Theorem 3, (M, g) embeds into a Lorentzian manifold
(M, g) with parallel null vector field V . Moreover, we have that condition (8.1) holds
for the screen holonomy of (M, g) which follows from Theorem 3. However, in
[9,30] it is shown that each such Lorentzian holonomy group fixes a spinor whose
Dirac current as defined in relation (1.10) is up to constant the null vector stabilised
by SO(n) � R

n . By the holonomy principle, there thus exists a parallel spinor φ with
V = Vφ . The well-known hypersurface formulas for the spinor covariant derivative
in [2] imply that φ restricts to an imaginary W-Killing spinor ϕ = φ|M ∈ �(Sg) on
M with W being the Weingarten tensor of M ↪→M as given in Sect. 2. It has been
shown in [10] that

U = prTMV |M = prTMVφ |M = Uϕ.

As Vφ is null, it follows that Vφ · φ = 0, which evaluated on M gives precisely Eq.
(1.8). This shows (3) in Theorem 4 and finishes the proof. ��

8.2 Lorentzian Holonomy and the Proof of Theorem 5

For a manifold of the form (1.11) set F = F1 × · · · × Fm , hw = h1w + · · · + hmw .
Now introduce new coordinates by setting v = −t + s and w = t + s, i.e. the metric
in (1.11) becomes

g = −dt2 + ds2 + ht+s =: −dt2 + gt . (8.2)

The metric (8.2) admits a parallel null spinor if and only if (M := R×F , g0) admits
an imaginary generalised W-Killing spinor additionally solving Eq. (1.8). Indeed, it
is clear that a parallel spinor restricts to an imaginary W-Killing spinor on (M, g0).
On the other hand, if a imaginary W-Killing spinor ϕ additionally solving Eq. (1.8)
exists on (M, g0) we use that (M, g) admits a parallel null vector and exactly the
same argument as in the proof of Proposition 7.1 or in Sect. 8.1 extend ϕ to a parallel
null spinor for (M, g). But with this equivalence, the statement follows immediately
from the local classification result in Theorem 4. ��
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