
J Geom Anal (2018) 28:2886–2901
https://doi.org/10.1007/s12220-017-9939-4

On Instability of the Nikodym Maximal Function
Bounds over Riemannian Manifolds

Christopher D. Sogge1 · Yakun Xi2 · Hang Xu1

Received: 5 May 2017 / Published online: 6 October 2017
© Mathematica Josephina, Inc. 2017

Abstract We show that, for odd d, the L
d+2
2 bounds of Sogge (J Am Math Soc

12:1–31, 1999) and Xi (Trans Am Math Soc 369:6351–6372, 2017) for the Nikodym
maximal function over manifolds of constant sectional curvature are unstable with
respect to metric perturbation, in the spirit of the work of Minicozzi and Sogge (Math
Res Lett 4:221–237, 1997). A direct consequence is the instability of the bounds for
the corresponding oscillatory integral operator. Furthermore, we extend our construc-
tion to show that the same phenomenon appears for any d-dimensional Riemannian
manifold with a local totally geodesic submanifold of dimension � d+1

2 � if d ≥ 3.

In contrast, Sogge’s L
7
3 bound for the Nikodym maximal function on 3-dimensional

variably curved manifolds is stable with respect to metric perturbation.
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1 Introduction

A classical Nikodym set N in Euclidean space Rd is a measure one subset of the unit
cube [0, 1]d , which has the property that for each x ∈ N there is a straight line γx
such that γx ∩ N = {x}. Because of these, the relative complement N = [0, 1]d \ N
must be a set of measure zero, which contains a line segment passing through each
point of N .

It is implicit in the work of Córdoba that such a set N in R
2 must have Hausdorff

dimension 2. The Nikodym set conjecture asserts that all such set N in R
d should

have Hausdorff dimension equal to d.
The so-called maximal Nikodym conjecture is actually a stronger conjecture that

involves the following Nikodym maximal function:

f ∗∗
δ (x) = sup

1

|T δ
x |
∫
T δ
x

| f (y)|dy,

where T δ
x is a 1× δ × · · · × δ tube with central axis γx passing through x ∈ R

d . This
maximal conjecture (formulated by Córdoba [3]) states for any ε > 0

‖ f ∗∗
δ ‖Ld (Rd ) ≤ Cεδ

−ε‖ f ‖Ld (Rd ). (1.1)

Interpolating with the trivial L1 → L∞ bound, we see that (1.1) is equivalent to

‖ f ∗∗
δ ‖Lq (Rd ) ≤ Cεδ

1− d
p −ε‖ f ‖L p(Rd ), (1.2)

where 1 ≤ p ≤ d and q = (d − 1)p′.
Tao [11] showed that in R

d a bound like (1.2) is equivalent to the corresponding
bound for theKakeyamaximal function f ∗

δ , and thus themaximalNikodymconjecture
and the maximal Kakeya conjecture are equivalent in Euclidean space.

It is well known (see Lemma 2.15 in [1]) that for a given p (1.2) implies that
the set N must have Hausdorff dimension at least p. For the case d = p = 2,
(1.1) was proved by Córdoba [3]. However, it is still open for any d ≥ 3. When
p = (d+1)/2, q = (d−1)p′ = d+1, (1.2) follows fromDrury [4] in 1983. In 1991,
Bourgain [1] improved this result for each d ≥ 3 to some p(d) ∈ ((d+1)/2, (d+2)/2)
by the so-called bush argument, where Bourgain considered the “bush” where lots of
tubes intersect at a given point. Four years later, Wolff [12] generalized Bourgain’s
bush argument to the hairbrush argument, by considering tubes with lots of “bushes”
on them. Combining this hairbrush argument and the induction on scales,Wolff proved
the following bound.

Theorem 1 (Wolff [12]) The Nikodym maximal function satisfies

‖ f ∗∗
δ ‖

L
(d−1)(d+2)

d (Rd )
≤ Cεδ

1− 2d
d+2−ε‖ f ‖

L
d+2
2 (Rd )

. (1.3)

As mentioned before, (1.3) implies that the Hausdorff dimension of N is at least
(d + 2)/2. This is still the best result for the Nikodym set conjecture when d = 3, 4.
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2888 C. D. Sogge et al.

One can get better results for larger d or for the weaker Minkowski dimension; see,
e.g., [2,5,6].

Even though the Kakeya set is not well defined for curved space, one can naturally
extend the definition of the Nikodym set and the corresponding maximal function to
manifolds.

Definition 1 For a Riemannian manifold (M, g), we call N ⊂ M a Nikodym-type
set if there exists a setN ∗ ⊂ M with positive measure such that for each point x ∈ N ∗
there exists a geodesic γx passing through x with |γx ∩ N | > 0.

Definition 2 We define f ∗∗
δ to be the Nikodym maximal function over a Riemannian

manifold (M, g), such that

f ∗∗
δ (x) = sup

1

|T δ
γx

|
∫
T δ
γx

| f (y)|‘dy,

where T δ
γx

is the δ-neighborhood of a geodesic segment γx of length β that passes
through x . Here β can be chosen to be any fixed number less than one half of the
injectivity radius of (M, g).

In 1997, Minicozzi and Sogge [7] showed for a general manifold that Drury’s result
for p = (d + 1)/2 still holds, but surprisingly counter examples were constructed to
show that it is indeed sharp in odd dimensions.

Theorem 2 (Minicozzi and Sogge [7]) Given (Md , g) of dimension d ≥ 2, then for
f supported in a compact subset K of a coordinate patch and all ε > 0

‖ f ∗∗
δ ‖Lq (Md ,g) ≤ Cεδ

1− d
p −ε‖ f ‖L p(Md ,g),

where p = d+1
2 and q = (d − 1)p′.

Furthermore, there exists an arbitrarily small perturbation of the Euclidean metric,
g̃, such that over (Rd , g̃) the above estimate breaks down for (Md , g) = (Rd , g̃) if
p > � d+1

2 �.1

In 1999, Sogge [8] managed to adapt Wolff’s method for the generalized Nikodym
maximal function to 3-dimensional manifolds with constant curvature. Combining a
modified version ofWolff’s multiplicity argument with an auxiliarymaximal function,
Sogge proved the following.

Theorem 3 (Sogge [8]) Assume that (M3, g) has constant sectional curvature. Then
for f supported in a compact subset K of a coordinate patch and all ε > 0

‖ f ∗∗
δ ‖

L
10
3 (M3,g)

≤ Cεδ
− 1

5−ε‖ f ‖
L

5
2 (M3,g)

. (1.4)

1 Here � · � is the usual ceiling function, i.e., � d+1
2 � denotes the smallest integer no less than d+1

2 .
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On Instability of the Nikodym Maximal Function Bounds 2889

In his proof, Sogge was able to avoid the induction-on-scales argument, which
is hard to perform in curved space. Xi managed to generalize Sogge’s result to any
dimension d ≥ 3 [13]. Therefore, Wolff’s bounds hold for all manifolds with constant
curvature.

Theorem 4 (Xi [13]) Assume that (Md , g) has constant sectional curvature with
d > 3. Then for f supported in a compact subset K of a coordinate patch and all
ε > 0

‖ f ∗∗
δ ‖

L
(d−1)(d+2)

d (Md ,g)
≤ Cεδ

1− 2d
d+2−ε‖ f ‖

L
d+2
2 (Md ,g)

. (1.5)

In this paper, we show that the bounds of Sogge [8] and Xi are also unstable with
respect to metric perturbation.

Theorem 5 Given (Md , g) of dimension d ≥ 3 with constant sectional curvature, for
every ε > 0, there exists a metric gε, such that for any k, ‖gi j − gi jε ‖Ck ≤ Bkε, for
some positive constant Bk and over (Md , gε), the estimate

‖ f ∗∗
δ ‖Lq (Md ,gε)

≤ Cεδ
1− d

p −ε‖ f ‖L p(Md ,gε)

fails to hold if p > � d+1
2 � and q = (d − 1)p′.

We prove this in the spirit of Minicozzi and Sogge [7], by constructing a metric
perturbation so that the Nikodym-type set could be concentrated inside a submanifold
of dimension � d+1

2 �.
Indeed, we shall prove that this instability is generic, in the sense that for any

Riemannianmanifolds (Md , g)with a local totally geodesic submanifold of dimension
� d+1

2 �, we can always perturb themetric locally, tomake the trivial bound inTheorem2
to be best possible.

Theorem 6 Given (Md , g) of dimension d ≥ 3 such that Md has a local totally
geodesic submanifold of dimension � d+1

2 �. Then for every ε > 0 there exists a metric

gε, such that for any k, ‖gi j − gi jε ‖Ck ≤ Bkε, for some positive constant Bk and over
(Md , gε), the estimate

‖ f ∗∗
δ ‖Lq (Md ,gε)

≤ Cεδ
1− d

p −ε‖ f ‖L p(Md ,gε)

fails to hold if p > � d+1
2 � and q = (d − 1)p′. Indeed, there exist Nikodym-type sets

of dimension � d+1
2 � on (Md , gε).

Even though the numerology here (and in the work of Sogge and Minicozzi) may
seem a bit odd at first, it can be easily understood through a simple parameter counting.
For a piece of totally geodesic submanifoldN n ⊂ Md of dimensionn to be aNikodym-
type set, there must be a collection of geodesic segments within N such that their
extensions fill up a d-dimensional setN ∗. We know that the family of geodesics inN
locally can be parametrized using 2n − 2 parameters, together with the 1-parameter
coming from each geodesic, and we must have 2n − 2 + 1 ≥ d, which clearly shows
that n = � d+1

2 � is the smallest possible choice.
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2890 C. D. Sogge et al.

A direct consequence of the above results is that the corresponding oscillatory
integral operator, which has the Riemannian distance function dg(x, y) as the phase
function, cannot have preferable stable bound with respect to the metric perturbation.

Also, in contrast, by a simple compactness argument, the L
7
3 bound of Sogge [8] is

stable with respect to metric perturbation.
Our paper is organized as follows. In the next section, as a model case, we shall

prove Theorem 6 for 3-dimensional manifolds with a 2-dimensional totally geodesic
submanifold, since things are much simpler in this case, yet it still provides the
essential insights into this problem. In Sect. 3, we shall prove Theorem 6 for (2d +1)-
dimensional manifolds with the help of a simple ODE lemma. In Sect. 4, we finish
the proof of Theorem 6 by pointing out how to easily generalize the proof to the even
dimensional cases. Theorem 5 then follows as a corollary to Theorem 6. Finally, in
the last section, we shall briefly discuss what Theorem 6 tells us about the related
oscillatory integral operators.

2 Instability of Nikodym Bounds in Dimension 3

We work on a 3-dimensional Riemannian manifold (M3, g) with a totally geodesic,
two-dimensional submanifold N 2. In a local coordinate chart (U1, (x1, x2, x3)), with-
out loss of generality, we can assume N ∩ U1 = {x3 = 0} and ∂

∂x3
is the unit normal

vector of N ∩ U1. Further, we assume that in coordinates (x1, x2) on N ∩ U1 the
cometric can be written as

ds2 = dp21 + g̃22(x1, x2)dp
2
2 + dp23, when x3 = 0,

where g̃22(x1, x2) = g22(x1, x2, 0). This can be done, for example, by choosing the
polar coordinates on N . Since N ⊂ M is totally geodesic, the metric tensor must
satisfy

∂gi j

∂x3

∣∣∣
x3=0

= 0, for 1 ≤ i, j ≤ 2.

Therefore, by taking the Taylor expansion of each gi j (x1, x2, x3) at x3 = 0,

ds2 = dp21 + g̃22(x1, x2)dp
2
2 + dp23 + x3

3∑
i=1

2hi3dpidp3 + x23
∑

1≤i, j≤2

2 f i j dpi dp j ,

where hi3, 1 ≤ i ≤ 3, and f i j , 1 ≤ i, j ≤ 3, are certain smooth functions of variable
x = (x1, x2, x3) ∈ U1 for f i j = f j i . The factor 2’s in the last two terms are added
only to simplify our calculations.

To prove Theorem 6 in this model case, we shall seek a small perturbation gε of
the metric g such that in (M, gε) there exists a Nikodym-type set of dimension 2. For
any small ε > 0, we set α = αε = ερ, where ρ is a fixed function in C∞(R) such that
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On Instability of the Nikodym Maximal Function Bounds 2891

• ρ(t) = 0 for t ≤ 0,
• ρ(t) > 0 for t > 0, and
• |ρ(t)| < 1 for any t ∈ R.

Let U ⊂⊂ U1 be a relative compact subset and let ϕ(x) ∈ C∞
0 (U1) be a compactly

supported bump function such that ϕ|U = 1. Define

gε = gi j dpi dp j + 2ϕ(x)αε(x1)dp2dp3.

When ε is sufficiently small, gε is still positive definite and hence a Riemannian
cometric on M . In the following lemma, we will investigate the geodesics in U with
respect to gε. After a translation in x1, we may assume U = (−δ0, δ0)

3.

Lemma 1 For x ∈ U, let

H(x, p) = 1

2

⎛
⎝p21 + g22(x1, x2)p

2
2 + p23 + x3

3∑
i=1

2hi3 pi p3 + x23
∑

1≤i, j≤2

2 f i j pi p j

⎞
⎠

+α(x1)p2 p3

be the Hamiltonian associated to the cometric gε. Given θ ∈ (−1, 1), a ∈ (−δ0, δ0),
we denote the unique geodesicwith initial position x(0) = (0, a, 0) and initial momen-
tum p(0) = (

√
1 − θ2, θ, 0) as x(a, θ; s); then we have

x(a, 0; s) = (s, a, 0).

Furthermore, when θ = 0 and a = 0, there exists 0 < s < δ0, such that the Jacobian
determinant of the map

(a, θ, s) → x(a, θ, s)

is nonzero.

Proof To verify that the curves x(a, 0; s) = (s, a, 0) are geodesics for our metric, we
can look at the Hamiltonian system

⎧⎪⎪⎨
⎪⎪⎩

dp

ds
= −∂H

∂x
,

dx

ds
= ∂H

∂p
.

with initial data x(0) = (0, a, 0), p(0) = (1, 0, 0). This system generates the geodesic
flow over the cotangent bundle; see, e.g., [9]. By a straightforward calculation, the
Hamiltonian system becomes
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2892 C. D. Sogge et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
ds

= p1 + x23

2∑
i=1

2 f i1 pi + x3h
13 p3,

dx2
ds

= g̃22(x1, x2)p2 + x23

2∑
i=1

2 f i2 pi + x3h
23 p3 + α(x1)p3,

dx3
ds

= p3 + x3

3∑
i=1

hi3 pi + x3h
33 p3 + α(x1)p2,

dp1
ds

= −1

2
g̃22x1 (x1, x2)p

2
2 − x23

∑
1≤i, j≤2

f i jx1 pi p j − x3

3∑
i=1

hi3x1 pi p3 − α′(x1)p2 p3,

dp2
ds

= −1

2
g̃22x2 (x1, x2)p

2
2 − x23

∑
1≤i, j≤2

f i jx2 pi p j − x3

3∑
i=1

hi3x2 pi p3,

dp3
ds

= −x3
∑

1≤i, j≤2

2 f i j pi p j − x23
∑

1≤i, j≤2

f i jx3 pi p j −
3∑

i=1

hi3 pi p3 − x3

3∑
i=1

hi3x3 pi p3.

(2.1)
It is then straightforward to check that

{
x(a, 0; s) = (s, a, 0)

p(a, 0; s) = (1, 0, 0)
(2.2)

solve the system (2.1).
Now we verify the second part of Lemma 1. Note that

x(a, 0; s) = (x1(a, 0; s), x2(a, 0; s), x3(a, 0; s)) = (s, a, 0).

Thus, when θ = 0, the Jacobian is given by

|J | =
∣∣∣∣∂x(a, θ, s)

∂(θ, s, a)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎣

∂x1
∂θ

∂x1
∂s

∂x1
∂a

∂x2
∂θ

∂x2
∂s

∂x2
∂a

∂x3
∂θ

∂x3
∂s

∂x3
∂a

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

⎡
⎢⎣

∗ 1 0
∗ 0 1

∂x3
∂θ

0 0

⎤
⎥⎦
∣∣∣∣∣∣∣
=
∣∣∣∣∂x3∂θ

∣∣∣∣ .

Now our goal is to find some s > 0 such that ∂x3
∂θ

�= 0. By taking ∂
∂θ

on the third
equation in (2.1) and restricting to θ = a = 0, with the help of (2.2), we obtain

∂

∂s

∂x3
∂θ

= ∂p3
∂θ

+ h13(s, 0, 0)
∂x3
∂θ

+ α(s)
∂p2
∂θ

.
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On Instability of the Nikodym Maximal Function Bounds 2893

As ∂p2
∂θ

and ∂p3
∂θ

on the right-hand side above are unknown, we also take ∂
∂θ

on the last
two equations in (2.1) and restrict to θ = a = 0. Similarly, we obtain

⎧⎪⎨
⎪⎩

∂

∂s

∂p2
∂θ

= 0,

∂

∂s

∂p3
∂θ

= −2 f 11(s, 0, 0)
∂x3
∂θ

− h13(s, 0, 0)
∂p3
∂θ

.

The initial data p2(0) = θ yield that ∂p2
∂θ

= 1 for any s, when θ = a = 0. Hence,
∂x3
∂θ

(0, 0; s) and ∂p3
∂θ

(0, 0; s) satisfy the following ODE system:

⎧⎪⎨
⎪⎩

∂

∂s

∂x3
∂θ

= ∂p3
∂θ

+ h13(s, 0, 0)
∂x3
∂θ

+ α(s),

∂

∂s

∂p3
∂θ

= −2 f 11(s, 0, 0)
∂x3
∂θ

− h13(s, 0, 0)
∂p3
∂θ

.

(2.3)

Then we can argue that if ∂x3
∂θ

is identically zero on a small interval (0, ε0), then
∂p3
∂θ

has to be identically zero by the second equation above and the fact that ∂p3
∂θ

∣∣
s=0 = 0.

However, this leads to a contradiction since α(s) �= 0 for s > 0. ��
Now we can use Lemma 1 to prove Theorem 6 for the 3-dimensional case. Notice that
in our coordinate system gε agrees with g when x1 ≤ 0. Moreover, since αε(x1) > 0
when x1 > 0, if we choose the point (s, 0, 0) with s > 0 as in Lemma 1, then there
is an open neighborhood N ∗ of the point (s, 0, 0), such that if x ∈ N ∗ then there is
a unique geodesic γx containing x and having the property that when x1 ≤ 0, γx is
contained in the submanifold N . If we let

f δ(x) =
{
1, if x ∈ U, x1 < 0, and |x3| < δ,

0, otherwise,
(2.4)

then it follows that for small fixed x1 > 0, ( f δ)∗∗
δ must be bounded from below by a

positive constant on N ∗; therefore, for any p, q ≥ 1

‖( f δ)∗∗
δ ‖Lq (N ∗)/‖ f δ‖L p ≥ c0δ

−1/p,

for some c0 > 0 depending on N ∗. Since

3/p − 1 < 1/p when p > 2,

we conclude that

‖ f ∗∗
δ ‖Lq (M3,gε)

≤ Cεδ
1− 3

p −ε‖ f ‖L p(M3,gε)

cannot hold for p > 2.
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3 Instability of Nikodym Bounds in Dimension 2d + 1

We work on a 2d + 1-dimensional Riemannian manifold (M2d+1, g) with a
totally geodesic, d + 1-dimensional submanifold Nd+1. In a local coordinate chart
(U1, (x1, x2, · · · , x2d+1)), without loss of generality, wemay assume N∩U1 = {x ′ =
�0}where x ′ = (xd+2, xd+3, · · · , x2d+1), and assume { ∂

∂xd+2
, ∂

∂xd+3
, · · · , ∂

∂x2d+1
} form

an orthonormal basis of the normal bundle of N ∩ U1. Further, we assume that
(x1, x2, · · · , xd+1) give polar coordinate on N ∩ U1 around some point. Thus, when
x ′ = 0, the cometric can be written as

ds2 = dp21 +
∑

2≤i, j≤d+1

g̃i j (x1, · · · , xd+1)dpidp j +
∑

d+2≤i≤2d+1

dp2i ,

where g̃i j (x1, · · · , xd+1) = gi j (x1, · · · , xd+1, 0, · · · , 0). Indeed, one may use any
coordinates that give the metric in the above form. Since N ⊂ M is totally geodesic,
the metric tensor must satisfy

∂gi j

∂xk

∣∣∣
x ′=0

= 0, for 1 ≤ i, j ≤ d + 1, d + 2 ≤ k ≤ 2d + 1.

Therefore, by taking the Taylor expansion of each gi j (x) at x ′ = 0,

ds2 = dp21 +
∑

2≤i, j≤d+1

g̃i jdpidp j +
2d+1∑
i=d+2

dp2i

+
2d+1∑
i=1

∑
d+2≤k,l≤2d+1

2xlh
ikldpidpk

+
∑

1≤i, j≤d+1

∑
d+2≤k,l≤2d+1

2xkxl f
i jkldpidp j , (3.1)

where hikl , f i jkl are certain smooth functions of variable x ∈ U1 and f i jkl = f j ikl =
f i jlk .
Our goal is to find a small perturbation gε of the metric g such that in (M, gε)

there exists a Nikodym-type set of dimension d + 1. For any small ε > 0, we set
α = αε = ερ, where ρ is a fixed function in C∞(R) such that

• ρ(t) = 0 for t ≤ 0,
• ρ(t) > 0 for t > 0, and
• |ρ(t)| < 1 for any t ∈ R.

Let U ⊂⊂ U1 be a relative compact subset and let ϕ(x) ∈ C∞
0 (U1) be a compactly

supported bump function such that ϕ|U = 1. Define

gε = gi j dpi dp j + 2ϕ(x)αε(x1)
d+1∑
i=2

pi pd+i . (3.2)
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On Instability of the Nikodym Maximal Function Bounds 2895

When ε is sufficiently small, gε is still positive definite and hence a Riemannian
cometric on M . In the following lemma, we will investigate the geodesics in U with
respect to gε. After a translation in x1, we may assume U = (−δ0, δ0)

2d+1 for some
positive constant δ0.

Lemma 2 For x ∈ U, let

H(x, p) = 1

2
p21 + 1

2

∑
2≤i, j≤d+1

g̃i j pi p j + 1

2

2d+1∑
i=d+2

p2i

+
2d+1∑
i=1

∑
d+2≤k,l≤2d+1

xlh
ikl pi pk +

∑
1≤i, j≤d+1,

∑
d+2≤k,l≤2d+1

xkxl f
i jkl pi p j

+ α(x1)
d+1∑
i=2

pi pd+i

be the Hamiltonian associated to the cometric gε. Let �0 be the zero row vector in
R
d . Given θ = (θ2, θ3, . . . , θd+1) ∈ R

d such that |θ |2 = ∑d+1
i=2 θ2i < 1 and a =

(a2, a3, . . . , ad+1) ∈ (−δ0, δ0)
d , we denote the unique geodesic with initial position

x(0) = (0, a, �0) and initial momentum p(0) = (
√
1 − |θ |2, θ, �0) as x(a, θ; s); then

we have

x(a, �0; s) = (s, a, �0).

Furthermore, when θ = �0 and a = �0, the absolute value of the Jacobian determinant
of the map

(a, θ, s) → x(a, θ, s)

is positive for s in some sufficiently small interval (0, ε0).

Proof To verify that the curves x(a, �0; s) = (s, a, �0) are geodesics for our metric, we
can look at the Hamiltonian system

⎧⎪⎪⎨
⎪⎪⎩

dp

ds
= −∂H

∂x
,

dx

ds
= ∂H

∂p
.

with initial data x(0) = (0, �a, �0), p(0) = (1, �0, �0). This system generates the geodesic
flow over the cotangent bundle. In order to avoid tedium, we will adopt the Einstein
summation convention. We assume that i, j, k, l, i ′, j ′, n are the indices within the
following ranges: 1 ≤ i, j ≤ d + 1, d + 2 ≤ k, l ≤ 2d + 1, 2 ≤ i ′, j ′ ≤ d + 1, and
1 ≤ n ≤ 2d + 1. By a straightforward calculation, the Hamiltonian system becomes
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
ds

= p1 + xlh
1kl pk + xk xl f

1 jkl p j ,

dxm
ds

= 1

2
g̃m j ′ p j ′ + xlh

mkl pk + 2xk xl f
mjkl p j + α(x1)pd+m , 2 ≤ m ≤ d + 1,

dxm
ds

= pm + xlh
mkl pk + xlh

nml pn + α(x1)pm−d , m ≥ d + 2,

dp1
ds

= −1

2
g̃i

′ j ′
x1 pi ′ p j ′ − xlh

nkl
x1 pn pk − xk xl f

i jkl
x1 pi p j − α′(x1)pi ′ pd+i ′ ,

dpm
ds

= −1

2
g̃i

′ j ′
xm pi ′ p j ′ − xlh

nkl
xm pn pk − xk xl f

i jkl
xm pi p j , 2 ≤ m ≤ d + 1,

dpm
ds

= −hnkm pn pk − xlh
nkl
xm pn pk − 2xl f

i jml pi p j − xk xl f
i jkl
xm pi p j , m ≥ d + 2.

(3.3)
It is not hard to see that {

x(a, �0; s) = (s, a, �0)
p(a, �0; s) = (1, �0, �0) (3.4)

solve the system (3.3).
Now we verify the second part of Lemma 2. Since x(a, �0; s) = (s, a, �0), when

θ = �0, the Jacobian is given by

|J | =

∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎣

∂x1
∂θ

∂x1
∂s

∂x1
∂a

...
...

...
∂x2d+1

∂θ

∂x2d+1

∂s

∂x2d+1

∂a

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

∗ 1 �0
∗ �0ᵀ Id(

∂xk
∂θ j ′

)
k j ′

�0ᵀ 0

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
=
∣∣∣∣∣
(

∂xk
∂θ j ′

)
k j ′

∣∣∣∣∣ ,

where 0 represents the zero d × d matrix. Now our goal is to calculate
(

∂xk
∂θ j ′

)
k j ′
. By

taking the gradient ∂
∂θ

of the equations with dxm
ds for d + 2 ≤ m ≤ 2d + 1 on the

left-hand side in (3.3) and restricting to θ = a = 0, with the help of (3.4), we obtain

∂

∂s

∂xm
∂θ

= ∂pm
∂θ

+ ∂xl
∂θ

h1ml(s, �0, �0) + α(s)
∂pm−d

∂θ
, when d + 2 ≤ m ≤ 2d + 1.

As the ∂pm
∂θ

in the right-hand side above is unknown, we also take ∂
∂θ

on the last two
lines of equations in (3.3) and restrict to θ = a = 0. Similarly, we obtain

⎧⎪⎪⎨
⎪⎪⎩

∂

∂s

∂pm
∂θ

= 0, when 2 ≤ m ≤ d + 1,

∂

∂s

∂pm
∂θ

= −h1km (s, �0, �0) ∂pk
∂θ

− 2 f 11ml (s, �0, �0) ∂xl
∂θ

, when d + 2 ≤ m ≤ 2d + 1.

For 1 ≤ i ≤ d, let ei be the unit vector in R
d whose i-th component is 1. The initial

data (p2(0), · · · , pd+1(0)) = θ yield that ∂pm
∂θ

= em−1 for 2 ≤ m ≤ d + 1 when

θ = a = 0. And thus ∂xm
∂θ

(s, �0, �0) and ∂pm
∂θ

(s, �0, �0) for d + 2 ≤ m ≤ 2d + 1 satisfy
the following ODE system:
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⎧⎪⎨
⎪⎩

∂

∂s

∂xm
∂θ

= ∂pm
∂θ

+ h1ml(s, �0, �0)∂xl
∂θ

+ α(s)em−d−1,

∂

∂s

∂pm
∂θ

= −h1km(s, �0, �0)∂pk
∂θ

− 2 f 11ml(s, �0, �0)∂xl
∂θ

.

(3.5)

We shall then need the following ODE lemma.

Lemma 3 For the ODE system

⎧⎪⎨
⎪⎩

ξ̇ (s) = A(s)ξ(s) + α(s)

(
Id
0

)
,

ξ(0) = 0,

(3.6)

where

ξ(s) =
(

ξ11
ξ21

)

is a 2d×d matrix and A(s) is a fixed 2d×2d matrix with smooth entries. The solution
ξ(s) then satisfies that

(det ξ11)(s) >

(
1

2

∫ s

0
α(t)dt

)d

for s in some sufficiently small interval (0, ε0).

Proof Let Z(s) be the fundamental matrix for the homogeneous ODE system ξ̇ = Aξ .
That is to say, Z(s) is a 2d × 2d invertible matrix that satisfies

{
Ż = AZ ,

Z(0) = I2d .
(3.7)

Let η(s) be a 2d×d matrix-valued function such that ξ = Z ·η. Using this substitution,
(3.6) simplifies to ⎧⎪⎨

⎪⎩
η̇(s) = Z−1(s)α(s)

(
Id
0

)
,

η(0) = 0.

We now integrate both sides of the equation and obtain the solution

η(s) =
∫ s

0
α(t)Z−1(t)

(
Id
0

)
dt.

Let

η =
(

η11
η21

)
, and Z−1(t) =

(
w(t) ∗

∗ ∗
)

,
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wherew(t) is the up-left d×d matrix block. Thus η11(s) = ∫ s0 α(t)w(t)dt .We denote
w(t) = (w1(t), w2(t), · · · , wd(t)). By a straightforward calculation, we obtain

det η11(s)

=
∫ s

0
· · ·
∫ s

0
α(t1)α(t2) · · · α(td) det (w1(t1), w2(t2), · · · , wd(td)) dt1 · · · dtd .

As a fundamental matrix, Z satisfies that Z(0) = I2d , whence Z−1(t) = I2d + O(t)
as t → 0. In particular, w(t) = Id + O(t). Recall that α(t) > 0 for any t ∈ R

+. If we
use α−1 to denote the anti-derivative of α, then clearly det η11(s) >

( 1
2α−1(s)

)d
> 0

for s in some sufficiently small interval (0, ε0). As ξ = Z(s) · η = (I2d + O(s)) · η,
we obtain ξ11 = η11 + O(s). So the result follows by possibly choosing a smaller
positive ε0. ��

Now we may apply the above lemma to finish the proof of Lemma 2. If we denote
the 2d × d matrix

ξ(s) =
(

ξ11
ξ21

)
=

⎛
⎜⎜⎜⎝

(
∂xk
∂θ j ′

)
k j ′(

∂pk
∂θ j ′

)
k j ′

⎞
⎟⎟⎟⎠ ,

and the 2d × 2d matrix

A(s) =
( (

h1kl
)
kl Id

− (2 f 11kl)kl − (h1lk)kl
)

,

then (3.6) is satisfied and we have det
( ∂xk
∂θ j ′

)
k j ′

= det(ξ11) >
( 1
2

∫ s
0 α(t)dt

)d
, com-

pleting the proof of Lemma 2. ��
Nowwe apply Lemma 2 to prove Theorem 6 for odd dimensions 2d+1. Notice that

in our coordinate system gε agrees with g when x1 ≤ 0. Moreover, since αε(x1) > 0
when x1 > 0, if we fix a point (s0, �0, �0) with s0 > 0, Lemma 2 implies that there is an
open neighborhood N ∗ of the point (s0, �0, �0), such that if x ∈ N ∗, there is a unique
geodesic γx containing x and having the property that when x1 ≤ 0, γx is contained
in the submanifold {x : x ′ = �0}. If we let

f δ(x) =
{
1, x ∈ U, x1 < 0, and|x ′| = |(xd+2, . . . , x2d+1)| < δ,

0, otherwise,
(3.8)

then it follows that for small fixed x1 > 0, ( f δ)∗∗
δ must be bounded from below by a

positive constant on N ∗; therefore, for any q, p ≥ 1

‖( f δ)∗∗
δ ‖Lq (N ∗)/‖ f δ‖L p ≥ c0δ

−d/p,
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for some c0 > 0 depending on N ∗. Since

(2d + 1)/p − 1 < d/p when p > d + 1,

we conclude that

‖ f ∗∗
δ ‖Lq (M2d+1,gε)

≤ Cεδ
1− 2d+1

p −ε‖ f ‖L p(M2d+1,gε)

cannot hold for p > d + 1.

4 Instability of Nikodym Bounds in Dimension 2d

In this section, we work on a 2d-dimensional Riemannian manifold (M2d , g) with a
totally geodesic, d +1-dimensional submanifold Nd+1. As the construction is similar
as in the odd dimensional case, we will only indicate the differences here. Using the
same simplifications as before, like in (3.1), we can write the Riemannian cometric as

ds2 = dp21 +
∑

2≤i, j≤d+1

g̃i jdpidp j +
2d∑

i=d+2

dp2i

+
2d∑
i=1

∑
d+2≤k,l≤2d

2xlh
ikldpidpk +

∑
1≤i, j≤d+1

∑
d+2≤k,l≤2d

2xkxl f
i jkldpidp j ,

where hikl , f i jkl are certain smooth functions of variable x ∈ U1 and f i jkl = f j ikl =
f i jlk . In this case, instead of (3.2), we take

gε = gi jdpidp j + 2αε(x1)
d+1∑
i=3

dpidpd−1+i

to be the perturbed cometric. Therefore, by the proof of Lemma 2, given θ =
(θ2, θ3, . . . , θd) ∈ R

d−1 with |θ |2 = ∑d
i=2 θ2i < 1 and a = (a2, a3, . . . , ad+1) ∈

(−δ0, δ0)
d , we denote the unique geodesic with initial position x(0) = (0, a, �0) and

initial momentum p(0) = (
√
1 − |θ |2, θ, �0) as x(a, θ; s); then we have

x(a, �0; s) = (s, a, �0).

Furthermore, the absolute value of the Jacobian determinant of the map

(a, θ, s) → x(a, θ, s)

is positive for θ = �0, a = �0 and s in some sufficiently small interval (0, δ). Conse-
quently, if we fix a point (s0, �0, �0) with s0 > 0, there is an open neighborhood N ∗
of the point (s0, �0, �0), such that if x ∈ N ∗, there is a unique geodesic γx through x
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and lying in the submanifold N ∩ U = {x : x ′ = (xd+2, xd+3, . . . , x2d) = �0} when
x1 ≤ 0. As a result, if we put

f (x) =
{
1, if x ∈ U, x1 < 0 and |x ′| = |(xd+2, . . . , x2d)| < δ,

0, otherwise,

it follows that for small fixed x1 > 0, f ∗∗
δ must be bounded from below by a positive

constant on N ∗; therefore, for any q, p ≥ 1

‖ f ∗∗
δ ‖Lq (N ∗)/‖ f ‖L p ≥ c0δ

−(d−1)/p,

for some c0 > 0 depending on N ∗. Since

(2d)/p − 1 < (d − 1)/p when p > d + 1,

we conclude that

‖ f ∗∗
δ ‖Lq (M2d ,gε)

≤ Cεδ
1− 2d

p −ε‖ f ‖L p(M2d ,gε)

cannot hold for p > d + 1.

5 Instability for Oscillatory Integral Bounds

Following the same strategy as in [10, p. 290], one may easily derive the following
instability results for the related oscillatory integrals.

We consider the oscillatory integral operator

Sgλ f (x) =
∫
M
eiλdg(x,y)a(x, y) f (y) dy, (5.1)

where a(x, y) ∈ C∞
0 vanishes near the diagonal. Then we have the following:

Corollary 1 Given (Md , g) of dimension d ≥ 3 such that Md has a local totally
geodesic submanifold of dimension � d+1

2 �, then for every ε > 0, such that for any k,

‖gi j − gi jε ‖Ck ≤ Bkε, for some positive constant Bk, and over (Md , gε), the estimate

‖Sgε

λ f ‖Lq (Md ,gε)
≤ Cελ

− d
p+ε‖ f ‖L p(Md ,gε)

fails to hold if

p >

⎧⎪⎪⎨
⎪⎪⎩

2(3d + 1)

3(d − 1)
, when d ≥ 3 is odd,

2(3d + 2)

3d − 2
, when d ≥ 4 is even.

(5.2)
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