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Abstract A Riemannian metric on a compact 4-manifold is said to be Bach-flat if
it is a critical point for the L2-norm of the Weyl curvature. When the Riemannian
4-manifold in question is a Kähler surface, we provide a rough classification of solu-
tions, followed by detailed results regarding each case in the classification. The most
mysterious case prominently involves 3-dimensional CR manifolds.
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1 Introduction

On a smooth connected compact 4-manifold M , theWeyl functional

W(g) :=
∫
M

‖W‖2g dμg, (1)

quantifies the deviation of a Riemannian metric g from local conformal flatness. Here
W denotes the Weyl tensor of g, which is the piece of the Riemann curvature of g
complementary to the Ricci tensor, while the norm ‖ · ‖g and the volume form dμg

in the integrand are those associated with the given metric g. The Weyl functional (1)
is invariant not only under the action of the diffeomorphism group (via pull-backs),
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2492 C. LeBrun

but also under the action of the smooth positive functions f : M → R
+ by conformal

rescaling g � fg.
It is both natural and useful to study metrics that are critical points of the Weyl

functional. The Euler–Lagrange equations for such a metric can be expressed [2,7]
as B = 0, where the Bach tensor B is defined by

Bab :=
(

∇c∇d + 1

2
rcd

)
Wacbd ,

so these critical metrics are said to be Bach-flat. For reasons reviewed in Sect. 2,
every 4-dimensional conformally Einstein metric is Bach-flat, as is every anti-self-
dual metric. Conversely, if the Bach-flat manifold (M4, g) also happens to be Kähler,
Derdziński [17, Prop. 4] discovered that the geometry of g must locally be of one of
these two types near a generic point. Our purpose here is to sharpen this observation
into a global classification of solutions. Our main result is the following:

Theorem A Let (M4, g, J ) be a compact connected Bach-flat Kähler surface. Then
g is either anti-self-dual or else is conformally Einstein on an open dense subset of
M. Moreover, the geometric behavior of (M4, g, J ) fits into exactly one slot of the
following classification scheme:

I. The scalar curvature satisfies s > 0 everywhere. In this case, there are just two
possibilities:
(a) (M, g, J ) is Kähler–Einstein, with Einstein constant λ > 0; or else
(b) (M, s−2g) is Einstein, with λ > 0, but has holonomy SO(4).

II. The scalar curvature satisfies s ≡ 0. There are again two possibilities:
(a) (M, g, J ) is Kähler–Einstein, with λ = 0; or else
(b) (M, J ) is a (possibly blown-up) ruled surface, and g is anti-self-dual, but M

is not even homeomorphic to an Einstein manifold.
III. The scalar curvature satisfies s < 0 somewhere. Then there are again exactly

two possibilities:
(a) (M, g, J ) is Kähler–Einstein, with λ < 0; or else
(b) (M, J ) is a (possibly blown-up) ruled surface, and s vanishes exactly along a

smooth connected totally umbilic hypersurface Z3 ⊂ M4. Moreover, M − Z
has precisely two connected components, and on both of these h := s−2g is a
complete Einstein metric with λ < 0.

A great deal is already known about most cases in this classification:

• A complex surface admits [15,40,47] a metric of class I iff it has c1 > 0.
Moreover, this metric is always unique [3,34] up to complex automorphisms and
homotheties.
– The relevant metric is of type I(a) iff the complex automorphism group is
reductive.

– Up to isometry and rescaling, there are [34] exactly two solutions of type I(b).
• Metrics of class II are generally called scalar-flat Kähler metrics. These are
exactly the Kähler metrics that are anti-self-dual, in the sense that the self-dual
Weyl tensor W+ vanishes identically.
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– The metrics of type II(a) are often called Calabi–Yau metrics. A Kähler-type
complex surface admits such metrics [52] iff it has c1 = 0 mod torsion. This
happens exactly for the minimal complex surfaces of Kodaira dimension 0 for
which b1 is even. When a complex surface admits such a metric, there is then
exactly one such metric in every Kähler class.

– Any complex surface that admits a metric of type II(b) must be projective-
algebraic and have Kodaira dimension −∞; they all violate the Hitchin–
Thorpe inequality, and most of them are non-minimal. Such solutions exist in
great abundance [26,31,42]; in particular, any complex surface with b1 even
and Kodaira dimension −∞ has blow-ups that admit metrics of this type.

• The two cases that make up class III are wildly different.
– A complex surface admits a metric of type III(a) iff [1,51] it has c1 < 0. This
happens [4, Prop. VII.7.1] iff the complex surface is minimal, has Kodaira
dimension 2, and contains no rational curve of self-intersection −2.

– By contrast, any complex surface admitting a metric of type III(b) must have
Kodaira dimension −∞. Infinitely many solutions of this type are currently
known [25,48]. However, the known solutions all display peculiar features
that seem most likely to just be artifacts of the method of construction.

Our exposition begins, in Sect. 2, with a review of some key background facts that
will help set the stage for our main results. We then develop the basic trichotomy of
solutions in Sect. 3. The proof of Theorem A is then completed in Sect. 4 by care-
fully proving various auxiliary assertions regarding specific cases in our classification
scheme. The article then concludes by proving some additional results about specific
types of solutions, with a particular focus on interesting open problems.

2 The Weyl Functional

If (M, g) is any smooth compact oriented Riemannian 4-manifold, the Thom–
Hirzebruch signature theorem p1 = 3τ implies a Gauss–Bonnet-like integral formula

τ(M) = 1

12π2

∫
M

(
|W+|2g − |W+|2g

)
dμg (2)

for the signature τ = b+ − b− of M . In this formula, W± = (W ± �W )/2 denotes
the self-dual (respectively, anti-self-dual) part of the Weyl curvature

Wab
cd = Rab

cd − 2r [a
[c δ

b]
d] + s

3
δa[cδbd]

of the given metric g, here expressed in terms of the Riemann curvature tensor R,
Ricci tensor r , and scalar curvature s. We remind the reader of the fundamental fact
that Wa

bcd is conformally invariant; this in particular explains the conformal invari-
ance of the Weyl functional (1). But also notice that (2) allows one to re-express the
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Weyl functional (1) as

W(g) = −12π2τ(M)+ 2
∫
M

|W+|2dμ. (3)

Now, for any smooth 1-parameter family of metrics

gt := g + t ġ + O(t2)

the first variation of the Weyl functional is given by

d

dt
W(gt )

∣∣∣∣
t=0

= −
∫

ġabBab dμ,

where [2,7] the Bach tensor B is given by

Bab =
(

∇c∇d + 1

2
rcd

)
Wacbd (4)

Notice that the contracted Bianchi identity

∇aWabcd = ∇[crd]b + 1
6gb[c∇d]s

implies that any Einstein metric satisfies the Bach-flat condition B = 0. However,
since the conformal invariance of the Weyl functional also makes it clear that the
Bach-flat condition is conformally invariant, it follows that any conformally Einstein
4-dimensional metric is automatically Bach-flat.

On the other hand, any oriented Riemannian 4-manifold satisfies the remarkable
identity

(
∇a∇b + 1

2
rab

)
(�W )cabd = 0,

which encodes the fact that the first variation of (2) is zero. This allows one to rewrite
(4) as

Bab = (2∇c∇d + rcd)(W+)acbd . (5)

In particular, any metric with W+ ≡ 0 is automatically Bach-flat. Indeed, Eq. (3)
shows that such anti-self-dualmetrics are actually minimizers of the Weyl functional,
and so must satisfy the associated Euler–Lagrange equation B = 0.

The Bach tensor is automatically symmetric, trace-free, and divergence-free. This
reflects the fact that −B is the gradient of

∫ |W |2dμ, which is invariant under dif-
feomorphisms and rescalings. Since B must therefore be L2-orthogonal to any tensor
field of the form ugab or ∇(avb), we have
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Bab = Bba, Ba
a = 0, ∇a Bab = 0 (6)

for any 4-dimensional Riemannian metric.
We now narrow our discussion to the case of Kähler metrics. For any Kähler metric

g on a complex surface (M, J ), with the orientation induced by J , the self-dual Weyl
tensor is given by

(W+)abcd = s

12

[
ωabω

cd − δ[c
a δ

d]
b + Ja

[c Jbd]] (7)

and so is completely determined by the scalar curvature and the Kähler form ω =
g(J ·, ·). In particular, we therefore have

|W+|2 = s2

24
, (8)

a key fact whose lack of conformal invariance ceases to seem paradoxical as soon as
one recalls that the Kähler condition is not conformally invariant either. In conjunc-
tion, Eqs. (3) and (8) now tell us that any Bach-flat Kähler metric is a critical point of
the Calabi functional

C(ω) =
∫

s2dμ, (9)

considered either as a functional on a fixed Kähler class � = [ω] or on the entire
space of Kähler metrics, with� allowed to vary. In particular, a conformally Einstein,
Kähler metric g must be an extremal Kähler metric in the sense of Calabi [12]. One
of several equivalent characterizations of an extremal metric is the requirement that
ξ := J∇s be a Killing field of g.

Plugging (7) into (5), we now obtain a concrete formula

Bab = s

6
r̊ab + 1

4
Ja

c Jb
d∇c∇ds + 1

12
∇a∇bs + 1

12
gab
s

for the Bach tensor of any Kähler metric, where r̊ denotes the trace-free part

r̊ab = rab − s

4
gab

of the Ricci curvature. Setting J ∗(B) = B(J ·, J ·), we next decompose the Bach
tensor

B = B� + B�

into its J -invariant and J -anti-invariant parts, and observe that

B� := 1

2

[
B + J ∗(B)

] = 1

6

[
sr̊ + 2 Hess�0 (s)

]

B� := 1

2

[
B − J ∗(B)

] = 1

12

[
Hess(s)− J ∗ Hess(s)

]
. (10)
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Here Hess = ∇∇ denotes the Hessian of a function, and Hess�0 is its trace-free, J -
invariant part. Now notice that, since s is real-valued, Hess(s) = J ∗ Hess(s) if and
only if

∇μ̄∇νs = gνλ̄∇μ̄∇λ̄s = 0,

and this is exactly Calabi’s equation ∂∇1,0s = 0 for an extremal Kähler metric.
Consequently, a Kähler metric g is extremal iff its Bach tensor B is J -invariant. When
this happens, conditions (6) then tells us that ψ = B(J ·, ·) is a harmonic anti-self-
dual 2-form, and the symmetric tensors g + t B are therefore J -compatible Kähler
metrics for all small t . Since ġ = B for this variation of the metric, and since −B
is the gradient of W , it therefore follows [15] that any critical point of the Calabi
functional C on the space of all J -compatible Kähler metrics must actually be Bach-
flat.

Revisiting (10) now reveals that a Kähler metric is Bach-flat iff it is extremal and
satisfies

0 = sr̊ + 2 Hess0(s). (11)

However, the trace-free Ricci tensor r̊ always transforms [7] under conformal changes
g � u2g by

r̊ � ˆ̊r = r̊ + 2u Hess0(u
−1). (12)

Thus, as was first pointed out by Derdziński [17], the peculiar conformal rescaling
h = s−2g of a Bach-flat Kähler metric satisfies r̊ = 0, and so is locally Einstein,
on the (possibly empty) open set where s 	= 0. We will now begin to systematically
explore the global ramifications of this observation.

3 The Basic Trichotomy

In this section, we will study the global behavior of the scalar curvature s on a com-
pact Bach-flat Kähler surface. Our approach hinges on a general property of strictly
extremal Kähler manifolds:

Lemma 1 Let (M4, g, J ) be a compact connected extremal Kähler surface whose
scalar curvature s is non-constant. Then s : M → R is a generalized Morse function
in the sense of Bott [10]. In other words, the locus where ∇s = 0 is a disjoint union⊔

C j ⊂ M of compact submanifolds, and the Hessian Hess(s) := ∇∇s is non-
degenerate on the normal bundle (TC j )

⊥ of each C j . Moreover, each submanifold
C j is either a single point or a smooth compact connected complex curve.

Proof Since s is non-constant, (M, g, J ) is a strictly extremal Kähler manifold, and
ξ = J∇s is a non-trivial Killing field. The critical points of s are exactly the fixed
points of the flow {�t : M → M |t ∈ R} generated by ξ , and since the diffeomor-
phisms �t are all isometries of (M, g), every connected component C j of the fixed
point set is [27] a totally geodesic submanifold.

At p ∈ C j , let v ∈ (TpC j )
⊥ be a unit vector normal to C j , and let γ : R → M

be the unit speed geodesic through p = γ (0) ∈ C j with initial tangent vector v.
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Since ξ = 0 only at
⊔

Ck , we then have ξ |γ (t) 	= 0 for all sufficiently small t > 0.
However, since ξ is Killing, ξ ◦ γ is a Jacobi field along γ . Because ξ |γ (0) = 0, we
must therefore have ∇γ ′(0)ξ 	= 0, as Jacobi’s equation is a linear second-order ODE,
and ξ would therefore vanish identically along γ if the initial value (ξ |p, (∇vξ)|p)
of this solution vanished. This shows that v cannot belong to the kernel of v �→
(Hess s)(v, ·) = ω(·,∇vξ), and since v is an arbitrary unit normal vector, it follows
that the restriction of the Hessian ∇∇s to the normal bundle (TC j )

⊥ must be non-
degenerate. This shows that s : M → R is a Morse–Bott function, as claimed.

In particular, the tangent space TC j of any component of the critical locus must
exactly coincide with the kernel of the Hessian ∇∇s at any point. But since ∇1,0s
is a holomorphic vector field, this Hessian must be J -invariant. Hence TC j =
ker Hess(s) is also J -invariant, and C j ⊂ M is therefore a complex submanifold.
Since s is non-constant by assumption, and since M is assumed to have complex
dimension 2, the components C j can only have complex dimension 0 or 1. Each com-
ponent C j of the critical locus is therefore either a single point or a totally geodesic
compact complex curve. ��

This immediately tells us something useful about the zero set

Z := {p ∈ M |s(p) = 0}

of the scalar curvature.

Lemma 2 Let (M, g, J ) be a compact extremal Kähler manifold. If s 	≡ 0, then the
open subset M − Z is dense in M.

Proof If s were a non-zero constant, Z would be empty, and there would be nothing
to prove. We may thus assume from now on that s is non-constant. Lemma 1 then
tells us that ∇s and ∇∇s can never vanish at the same point. In particular, if p is any
point where s(p) = 0, Taylor’s theorem with remainder allows us to construct a short
embedded curve γ : (−ε, ε) → M through p = γ (0) on which s ◦ γ vanishes only
at the origin. Hence every point of Z belongs to the closure of M − Z . This shows
that M − Z is dense, as claimed. ��

We now specialize to the case of Bach-flat Kähler surfaces. Since Eq. (10) tells us
that these Kähler manifolds are in particular extremal, the above Lemmata therefore
automatically apply. However, we have already observed that the equation B = 0 can
be expressed as

0 = r̊ + 2s−1 Hess0 s

on the open set M − Z defined by s 	= 0, and, by Eq. (12), this is exactly equivalent
to saying that the metric h := s−2g on M − Z satisfies r̊ = 0. Since the doubly
contracted Bianchi identity 2∇ · r = ∇s implies that a 4-manifold with r̊ = 0 must
have locally constant scalar curvature, this means that the function κ defined by

κ = −6s
s − 12|∇s|2 + s3 (13)
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is locally constant on M − Z; indeed, on this open set

κ = s3(6
+ s)s−1

exactly represents the scalar curvature of the local Einstein metric h = s−2g. On the
other hand, since elliptic regularity implies [36] that any extremal Kähler metric is
smooth with respect to the complex atlas, our definition (13) of κ certainly guarantees
that it is a smooth function on all of M . These facts now allow us to deduce the
following:

Lemma 3 On any compact connected Bach-flat Kähler surface (M, g, J ), the
smooth function κ : M → R defined by (13) is necessarily constant.

Proof If s ≡ 0, Eq. (13) immediately tells us that κ ≡ 0, and we are done. We
may therefore assume henceforth that s 	≡ 0. Now notice that the smooth 1-form dκ
vanishes on the set M − Z , since on this set κ is locally the scalar curvature of the
Einstein metric h = s−2g, and is therefore locally constant. But since (M −Z) ⊂ M
is dense by Lemma 2, it therefore follows that dκ ≡ 0 by continuity. Integration on
paths thus shows that κ is constant, as claimed. ��

The sign of κ thus provides a basic trichotomy that will form the basis of our clas-
sification of these manifolds. However, the sign of κ also has a direct interpretation
in terms of the behavior of the scalar curvature of the given Kähler metric:

Lemma 4 On any compact connected Bach-flat Kähler surface (M, g, J ), the min-
imum value min s of the scalar curvature of g has exactly the same sign (positive,
negative, or zero) as the constant κ .

Proof When the scalar curvature s is constant, (13) says κ = s3 = (min s)3, so
the claim obviously holds. Otherwise, s is non-constant, and Lemma 1 tells us that
Hess(s) 	= 0 at any critical point of s. In particular, if p ∈ M is a point where s
achieves its minimum, 
s := −∇a∇as < 0 at p, since we now know that Hess s =
∇∇s must be positive semi-definite and non-zero at a minimum. However, evaluation
of Eq. (13) at p tells us that

κ = s(p)
[
s2 − 6
s

]
(p),

since |∇s|2(p) = 0. Since [s2 − 6
s](p) > 0, this shows that κ and s(p) = min s
must have the same sign, and the result therefore follows. ��

Our next result leads to a complete understanding of the κ = 0 case.

Proposition 1 A compact connected Kähler surface (M, g, J ) is Bach-flat and has
κ = 0 if and only if its scalar curvature s vanishes identically.

Proof If our Kähler surface (M, g, J ) has s ≡ 0, it is anti-self-dual by (8), and
therefore Bach-flat; the fact that such a manifold has B = 0 is also directly confirmed
by (10). Inspection of Eq. (13) now reveals that it also has κ = 0.
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Conversely, if (M, g, J ) is a Bach-flat Kähler surface with κ = 0, then Lemma
4 tells us that min s = 0. Thus, Z = s−1(0) is non-empty, and every p ∈ Z is a
minimum of s. We will now argue by contradiction, and assume that s 	≡ 0. This
implies that s is non-constant, so Lemma 1 now tells us that Hess(s) := ∇∇s must
be non-zero at any point where ∇s = 0. But since any point p ∈ Z is a minimum
of s, this means that Hess(s) 	= 0 at every point of Z . However, Eq. (11) tells us that
the trace-free part Hess0(s) of the Hessian does vanish along the locus Z defined by
s = 0. Thus, for every point p ∈ Z , there is a constant a = a(p) 	= 0 such that

∇∇s = 2ag (14)

at p. Since p is a minimum of s, we must moreover have a > 0. Hence every p ∈ Z
is a non-degenerate local minimum of s, and it therefore follows that Z is discrete.
Since M is compact, this then implies that Z is finite.

Now let p ∈ Z be any point where s vanishes, and let � be the Riemannian distance
from p in (M, g). Since (14) guarantees that ∇ξ = 2aJ at p, the isometry �π/2a ,
gotten by flowing along ξ for time t = π/2a, therefore fixes p, but reverses the
direction of each geodesic through p. The Taylor expansion of s in geodesic normal
coordinates x j centered at p therefore contains only terms of even order, and (14)
therefore tells us that

s = a�2 + O(�4).

On the other hand, we also have

g jk = δ jk + O(�2)

g jk,� = O(�)

in geodesic normal coordinates. If we now pass to inverted coordinates x̃ j =
x j/(a�2) and set � :=

√∑
j (x̃

j )2 = 1/(a�), the metric h = s−2g thus satisfies

h jk = δ jk + O(�−2)

h jk,� = O(�−3)

so that (M − Z, h) is asymptotically Euclidean. However, since κ = 0, the Einstein
metric h is actually Ricci-flat. This in particular implies [5] that each end of (M −
Z, h) has mass zero. The positive mass theorem [43] therefore asserts that (M−Z, h)
is isometric to Euclidean R

4. In particular, g is conformally flat on M − Z , and so
has W+ ≡ 0 on this open dense set. But by (8), this means that the Kähler metric g
satisfies s ≡ 0 on M − Z . But M − Z is by definition precisely the set where s 	= 0,
so this is a contradiction! In other words, M − Z must actually be empty, and any
compact Bach-flat Kähler surface with κ = 0 must therefore have s ≡ 0, as claimed.

��
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Remark The above proof can be recast in a way that avoids using the positive mass
theorem. Indeed, the volume growth of an asymptotically Euclidean Ricci-flat mani-
fold with one end must be exactly Euclidean in the large-radius limit, and would be
even larger if there were several ends. The Bishop–Gromov inequality [8,23] thus
forces the exponential map of any Ricci-flat asymptotically flat manifold to actually
be an isometry. This shows that the only such manifold is Euclidean space.

The final contradiction could also have been rephrased so as to emphasize topol-
ogy instead of geometry. For example, if M − Z were diffeomorphic to R

4, it would
only have one end, so Z would necessarily consist of a single point p, and M would
have to be homeomorphic to S4 = R

4 ∪ {p}. But this is absurd, because, for exam-
ple, the Kähler class [ω] of (M, g, J ) is a non-zero element of H2(M,R), while
H2(S4,R) = 0. Alternatively, one could obtain a contradiction at this same juncture
by emphasizing that (M, J ) is by hypothesis a complex surface, whereas S4 does not
[49] even admit an almost-complex structure.

It now remains for us to analyze the two cases κ > 0 and κ < 0. The first of these
is simpler, and is quite thoroughly understood.

Proposition 2 If the constant κ is positive, the scalar curvature s of the extremal
Kähler manifold (M, g, J ) is everywhere positive. Consequently, Z is empty, and
(M, h) is a compact Einstein 4-manifold with positive Einstein constant.

Proof If κ > 0, Lemma 4 tells us that min s > 0, too. Thus s > 0 everywhere on M .
Hence Z = s−1(0) = ∅, and M − Z = M . Thus h = s−2g is a globally defined
Einstein metric on M , with positive Einstein constant λ = κ/4. ��

Previous results [34] therefore provide a complete classification of κ > 0 solu-
tions. We will say more about this classification in Sect. 5 below.

By contrast, the κ < 0 case is distinctly more complicated:

Proposition 3 If the constant κ is negative, and if (M, g, J ) is not Kähler–Einstein,
then Z is a smooth connected real hypersurface Z3 ⊂ M4, and the complement
M − Z of this hypersurface consists of exactly two connected components M+ and
M−. The Einstein manifolds (M±, h := s−2g) are both complete, and have negative
Einstein constant. Moreover, these two manifolds are both Poincaré–Einstein, with
the same conformal infinity (Z, [g|Z ]).
Proof When κ < 0, Lemma 4 tells us that min s < 0. If s is constant, the constant
is thus negative, and s is nowhere zero. Equation (11) thus implies that the Kähler
metric g is actually Einstein.

We may thus henceforth assume that s is non-constant. Lemma 1 therefore tells
us that s : M → R is a Morse–Bott function. In particular, Hess s 	= 0 at any
critical point of s. If p is a point where s attains its minimum, we therefore have

s = −∇a∇as < 0 at p. However, since κ < 0, we also have s(p) = min s < 0 by
Lemma 4. Thus s
s > 0 at p. On the other hand, since ∇s = 0 at any minimum, (13)
tells us that 6s
s = s3−κ at p. Hence min(s3−κ) = [s3−κ](p) = [6s
s](p) > 0,
and we therefore have s3 − κ > 0 on all of M . Equation (13) now tells us that
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s
s + 2|∇s|2 = s3 − κ

6
> 0

everywhere. In particular, we have s
s > 0 at every critical point of s.
If q is now a point where s attains its maximum, our Morse–Bott argument predicts

that 
s = −∇a∇as > 0 at q, since Hess s is negative semi-definite and non-zero at
q. Since we have shown that s
s > 0 at every critical point, and so in particular at
q, it therefore follows that max s = s(q) > 0.

Since M is connected, and since s takes on both positive and negative values, the
locus Z defined by s = 0 must therefore be non-empty. Moreover, since s
s > 0 at
every critical point of s, it follows that the locus Z defined by s = 0 cannot contain
any critical points. In other words, 0 is a regular value of s, and Z = s−1(0) is a
therefore a smooth compact non-empty real hypersurface in M .

Now since s : M → R is a Morse–Bott function, and since Hess s is J -invariant,
any complex-codimension-one component C j of the critical set must be a local max-
imum or a local minimum of s. The other critical points of s are isolated, and Hess s
is non-degenerate at these critical points, with index 0, 2, or 4; those of index 0 are
local minima, those of index 4 are local maxima, and those of index 2 are saddle
points where the Hessian is of type (++−−). This dictates the manner in which the
sub-level sets Mt := s−1 ((−∞, t]) can change as we increase t . Indeed, for regular
values t1 < t2, the sub-level set Mt2 is obtained from the lower sub-level set Mt1 in
a manner determined by the critical points with t1 < s < t2 and, up to homotopy, is
gotten by adding

• a disjoint, unattached point for each isolated local minimum;
• a disjoint, unattached connected Riemann surface for each non-isolated local min-
imum;

• a 2-disk, attached along its S1 boundary, for each saddle point;
• a 4-disk, attached along its S3 boundary, for each isolated local maximum; and
• a 2-disk bundle over a connected Riemann surface, attached along its circle-
bundle boundary, for each non-isolated local maximum.

Since these operations always entail adding a path-connected space along a path-
connected boundary, different path components of Mt1 always survive as separate
path components of Mt2 . It therefore follows that only one of the C j can be a local
minimum s, since two different local minima would necessarily end up in different
connected components of the connected 4-manifold M . In particular, the set of all
local minima of s is actually the set of all global minima, and must either be a con-
nected compact complex curve or just a single point. Looking at the same picture
upside down, we similarly see that the set of local maxima of s coincides with the set
of global maxima, and must either be a single point or a connected compact complex
curve.

The open set M− defined by s < 0 is the interior of the compact manifold-with-
boundary M0 := s−1((−∞, 0]), and is therefore homotopy equivalent to it. On the
other hand, since M = Mt for any t > max s, we see that M0 and M have the same
number of connected components. Hence M− must be connected. However, since
−s : M → R is also a Morse–Bott function, the same reasoning also applies when we
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“turn the picture upside down.” The set M+ defined by s > 0 is therefore connected,
too. Thus M − Z = M− � M+ consists of exactly two connected components, as
claimed.

Similar reasoning allows us to understand how ∂Mt changes as we vary t . In the
region min s < s < max s, s is a Morse function in the standard sense, and only has
critical points of index 2. If t1 and t2 are regular values of s with min s < t1 < t2 <
max s, it therefore follows that ∂Mt2 is obtained from ∂Mt1 by performing surgeries
in dimension 2 − 1 = 1. In other words, every time one passes a critical point, one
just modifies the 3-manifold ∂Mt1 by performing a Dehn surgery; that is, one just
removes a solid torus S1 × D2, and then glues it back in via a self-diffeomorphism
of its S1 × S1 boundary. Since Mt is connected when t = min s + ε for sufficiently
small ε > 0, and because Dehn surgery on a connected 3-manifold always produces
another connected 3-manifold, it follows that ∂Mt is connected for any regular value
t ∈ (min s,max s). In particular, since 0 is a regular value of s : M → R, it follows
that Z = ∂M0 is connected, as claimed.

Since the metric h = s−2g on the interior M− of the compact manifold-with-
boundary M0 is obtained by rescaling a smooth metric g by the inverse-square of
a non-negative function −s : M0 → R which vanishes only at ∂M0 = Z and
has non-zero normal derivative along the boundary, the Einstein manifold (M−, h)
is conformally compact [20,29,37] and hence, in particular, is complete. By the same
reasoning, (M+, h) is also conformally compact, and therefore complete. Since, by
construction, both of these manifolds have conformal infinity (Z, [g|Z ]) and Einstein
constant κ/4 < 0, we have thus established all of our claims. ��
Remark A key point in the above result is that max s > 0 when κ < 0 and s is
non-constant. This can also be proved in the following interesting way:

Since the flow of ξ = J∇s preserves both g and the scalar curvature s of g, it
therefore also preserves the conformally rescaled metric h = s−2g on the open set
M − Z where h is defined. If we had max s < 0 for a solution with s non-constant,
Z would be empty, and (M, h) would be a compact Einstein manifold with Einstein
constant κ/4 < 0 which supported a Killing field ξ 	≡ 0. But any Killing field ξ

satisfies the Bochner formula [9]

0 = 1

2

|ξ |2 + |∇ξ |2 − r(ξ, ξ) (15)

and since (M, h)would have negative Ricci curvature r = κ
4 h, this immediately leads

to a contradiction, as the right-hand side would be strictly positive at a maximum of
|ξ |2. Hence (M, g) must have max s ≥ 0. However, Eq. (13) tells us that |∇s|2 =
−κ/12 > 0 along the locus Z where s = 0. The maximum of s therefore cannot
be achieved at a point where s = 0, and it thus follows that we must actually have
max s > 0, as claimed.

4 The Proof of Theorem A

The trichotomy laid out in the previous section proves most of Theorem A. It remains
only to prove the auxiliary claims made regarding the second case of each of our
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three classes. In doing so, we will make repeated use of the following observa-
tion:

Lemma 5 If the compact connected complex surface (M4, J ) admits a strictly
extremal Kähler metric g, then (M, J ) is ruled, and τ(M) ≤ 0.

Proof By hypothesis, the scalar curvature s of g is non-constant, and ξ = J∇s is
a non-trivial Killing field. If p ∈ M is a minimum of the scalar curvature s, it is
fixed by the flow of ξ , and the action of ξ is therefore completely determined, via
the exponential map of g, by the induced isometric action on TpM generated by
∇ξ |p. However, the same observation allows us to identify the isotropy subgroup of
p in the identity component Iso0(M, g) ⊂ Aut(M, J ) of the isometry group with a
subgroup of U(2). Since closure of the 1-parameter group of isometries generated by
ξ is a closed connected Abelian subgroup of the isotropy group of p, and since U(2)
has rank 2, this implies that either ξ is periodic, or that the closure of the group it
generates is a 2-torus in Iso0(M, g) ⊂ Aut0(M, J ).

Let us first consider what happens if the isotropy group of p contains a 2-torus.
Since the action of this torus on M is modeled, near p, on the action ofU(1)×U(1) ⊂
U(2) on C

2, the generators give rise to two global holomorphic vector fields �1 and
�2 which both vanish at p, but which are linearly independent at generic nearby
points. Thus � = �1 ∧ �2 is a holomorphic section of the anti-canonical bundle
K−1 which vanishes at p, but which does not vanish identically. If φ is a holomorphic
section of K �, � > 0, then the contraction 〈φ,�⊗�〉 is a global holomorphic function
on M , and so must be constant. However, since 〈φ,�⊗�〉 certainly vanishes at p,
this constant function consequently vanishes identically. Since �⊗� spans the fiber
of K−� at a generic point, this shows that the holomorphic differential φ vanishes
on an open set, and therefore vanishes identically. Thus, the plurigenera p�(M) =
h0(M,O(K �)), � > 0, must all vanish, and the Kodaira dimension of (M, J ) must
be −∞.

On the other hand, if ξ = J∇s is instead periodic, then (M, J ) contains a family
of rational curves. Indeed, if ξ has period λ, then 2∇1,0s = ∇s− iξ generates a holo-
morphic action of C/〈iλ〉, which we now identify with the punctured complex plane
C

× via ζ �→ exp(2πζ/λ). We will next show that the generic orbit of the resulting
C

×-action on (M, J ) can be compactified by adding two fixed points, corresponding
to 0 and ∞, to produce a rational curve in M . Indeed, we already saw in the proof of
Proposition 3 that the only critical points of s that are not global maxima or minima
are saddle points where Hess s is of type (++−−). Since only a 1-real-parameter
family of trajectories of ∇s ascends to such a saddle point, the generic trajectory of
∇s misses every saddle point, and therefore flows from the minimum value to the
maximum value of s. Now recall that min s is either attained at a unique point p−
or is attained along a single connected totally geodesic Riemann surface, which we
will call �−; similarly, max s is either attained at a unique point p+ or is attained
along a single connected totally geodesic Riemann surface �+. The behavior of the
flow lines of ∇s near�± is particularly simple; asymptotically, they simply approach
�± orthogonally, at a unique point, since in exponential coordinates ξ just generates
rotation in C

2 = {(z, w)} about the z-axis, and since ∇ J = 0, this implies that ∇1,0s
is therefore given in these coordinates by a constant times w ∂

∂w
+ O(|(z, w)|3). On
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the other hand, near p±, the periodicity of ξ analogously allows one to express ∇1,0s
as a constant times kz ∂

∂z + �w ∂
∂w

+ O(|(z, w)|3) for suitable non-zero integers k and
�. In either case, we not only see that a generic C

×-orbit may be completed as a holo-
morphic map CP1 → M , but also that, as we vary the orbit by moving our initial data
through a sufficiently small holomorphic disk Dε transverse to a given generic C

×-
orbit, the map Dε × C

× → M induced by the action extends continuously as a map
� : Dε × CP1 → M , and a variant of the proof of the Riemann removable singulari-
ties theorem then shows that this continuous extension� is necessarily holomorphic.
In particular, any φ ∈ �(M,O(K �)) pulls back as a holomorphic section �∗φ of
O(K �) on Dε×CP1. But the restriction of K �

Dε×CP1
to any {point}×CP1 has negative

degree −2�, so it follows that�∗φ ≡ 0. However, since� is a local biholomorphism
on Dε × C

×, it follows that φ must itself vanish on an open set. Hence φ ≡ 0 by
uniqueness of analytic continuation. Thus, the plurigenera p�(M) = h0(M,O(K �)),
� > 0, must all vanish, and we thus conclude that the Kodaira dimension of (M, J )
must be −∞, just as in the previous case.

Since (M, J ) is of Kähler type, the Eniques–Kodaira classification [4,22] therefore
implies that it is rational or ruled. However, since g is a strictly extremal Kähler metric
on (M, J ), the Futaki invariant of (M, J, [ω]) must also be non-zero [13]. Since the
Futaki invariant aut(M) → C kills the derived Lie algebra [aut(M), aut(M)], this
means that Aut0(M, J ) cannot be semi-simple. Consequently, (M, J ) cannot be CP2.
Since (M, J ) is rational or ruled, it is therefore either a geometrically ruled surface,
or a blow-up of a geometrically ruled surface. In particular, τ(M) ≤ 0, as claimed. ��

This now allows us to prove a useful fact regarding case I(b):

Proposition 4 Let (M, g, J ) be a compact connected Bach-flat Kähler surface with
κ > 0. If g is not Kähler–Einstein, then the conformally related Einstein metric
h = s−2g has holonomy SO(4).

Proof By Proposition 2, (M4, g, J ) must be a strictly extremal Kähler surface, and
Lemma 5 therefore tells us that (M, J ) is a ruled surface with τ(M) ≤ 0. On the
other hand, M also admits a globally defined Einstein metric h = s−2g with λ > 0,
so Bochner’s theorem [9] implies that b1(M) = 0. Surface classification [4] therefore
tells us that (M, J ) is rational, and so in particular is simply connected.

Since M4 is simply connected, the holonomy of any metric on M thus coincides
with its restricted holonomy, and so is a compact connected Lie subgroup of SO(4).
However, the action of SO(4) on �2 = �+ ⊕ �− gives rise to an isomorphism
SO(4)/Z2 = SO(3) × SO(3), where the two copies of SO(3) act on �+ and �−,
respectively, via the tautological 3-dimensional representation. Thus, if the holon-
omy group were smaller than SO(4), its image in at least one factor SO(3) would
have to be contained in SO(2), and some non-zero self-dual or anti-self-dual 2-form
would therefore be fixed by the holonomy group. Rescaling this 2-form α to have
norm

√
2 with respect to h and then extending it as a parallel form to all of M , the

almost-complex structureJ defined by α = h(J ·, ·) would then be integrable, and
(M, h,J ) would then be a Kähler–Einstein manifold. More specifically, a parallel
self-dual α would give rise to aJ compatible with the same orientation as the origi-
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nal complex structure J , while a parallel anti-self-dual α would instead give rise to a
J compatible with the opposite orientation.

Now the Bach-flat Kähler metric g is non-Einstein by assumption. Since h = s−2g
is Einstein and is conformally related to g, it therefore follows that

∫
M
s2gdμg >

∫
M
s2hdμh,

as can either be read off from the conformal invariance of

∫
M

(
s2

24
− |r̊ |2

2

)
dμ = 8π2χ(M)−

∫
M

|W |2dμ

or deduced from the more general fact [39] that Einstein metrics are always Yamabe
minimizers. Since the Kähler metric g satisfies (8), we thus have

∫
M

|W+|2hdμh =
∫
M

|W+|2gdμg =
∫
M

s2g
24

dμg >

∫
M

s2h
24

dμh .

It therefore follows that h cannot satisfy (8), and so cannot be Kähler in a manner
compatible with the given orientation of M . On the other hand, Eq. (2) tells us that

∫
M

|W−|2hdμh = −12π2τ(M)+
∫
M

|W+|2hdμh

and since τ(M) ≤ 0, we therefore have

∫
M

|W−|2hdμh ≥
∫
M

|W+|2hdμh >

∫
M

s2h
24

dμh .

This shows that h cannot satisfy the reverse-oriented analog of (8), and hence cannot
be Kähler with respect to a reverse-oriented complex structure, either. This proves
that, when sg is non-constant and positive, the holonomy group of (M, h) is exactly
SO(4), as claimed. ��

Concerning case II(b), we have the following:

Proposition 5 If κ = 0 and (M, g, J ) is not Kähler–Einstein, then (M, J ) is a
(possibly blown-up) ruled complex surface with c21 < 0. Moreover, no 4-manifold
homeomorphic to M ever admits an Einstein metric.

Proof By Proposition 1, a Bach-flat Kähler surface (M, g, J ) with κ = 0 must have
s ≡ 0. Since one can decompose the Ricci form ρ of any Kähler surface as

ρ = s

4
ω + ρ̊,
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where ρ̊ ∈ �− = �
1,1
R

∩ (ω)⊥ is the primitive part of ρ ∈ �1,1, we see that ρ is anti-
self-dual whenever g is scalar-flat Kähler. It follows [30] that any scalar-flat Kähler
surface satisfies

4π2c21(M, J ) =
∫
M
ρ̊ ∧ ρ̊ = −

∫
M
ρ̊ ∧ �ρ̊ = −

∫
M

|ρ̊|2dμ,

so that c21 ≤ 0, with equality if and only if g is Ricci-flat; cf. [28]. In particular, if
(M, g, J ) is not Kähler–Einstein, we have

(2χ + 3τ)(M) = c21(M, J ) < 0.

However, the Hitchin–Thorpe inequality [7,21,24,46] tells us that the homotopy
invariant (2χ+3τ)(M)must be non-negative for any compact oriented 4-dimensional
Einstein manifold. Thus, if κ = 0 and (M, g, J ) is not Kähler–Einstein, M cannot
even be homeomorphic to an Einstein manifold.

On the other hand, the plurigenera p�(M) = h0(M,O(K �)), � > 0, of a
non-Ricci-flat scalar-flat Kähler surface must all vanish [30,50]. Indeed, if φ is a
holomorphic section of K �, the Ricci form satisfies

�ρ = i∂∂̄ log |φ|2 (16)

away from the zero locus of φ. Taking the inner product of both sides with ω thus
yields

0 = −�s = 
 log |φ|2

wherever φ 	= 0. Since |φ|2 must have a maximum on M , the strong maximum
principle [19] therefore says that log |φ|2 is constant away from the zero set of φ. If φ
does not vanish identically, it therefore has constant non-zero norm, and Eq. (16) then
says that (M, g) is Ricci-flat. If (M, g, J ) is not Kähler–Einstein, its plurigenera must
therefore all vanish, as claimed. The Kodaira dimension of (M, J ) is therefore −∞,
and the Enriques–Kodaira classification [4] therefore tells us that (M, J ) is rational
or ruled. Moreover, since c21 < 0, it certainly cannot be CP2. We thus conclude that
(M, J ) can actually be obtained from some ruled surface by blowing up ≥ 0 points.

��
Putting these facts together, we now immediately have:

Proposition 6 Suppose that (M, g, J ) is a compact connected Bach-flat Kähler sur-
face which is not Kähler–Einstein. Then (M, J ) is ruled.

Proof If g has r̊ 	≡ 0, Eq. (11) tells us that the Bach-flat Kähler manifold (M, g, J )
has either s non-constant or s ≡ 0. If g has s ≡ 0, then Proposition 5 then tells us that
(M, J ) is ruled. Otherwise, g must be a strictly extremal Kähler metric, and Lemma
5 then again guarantees that (M, J ) is ruled, as claimed. ��

Finally, regarding solutions of type III(b), we have the following:
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Proposition 7 Let (M, g, J ) be a compact connected Bach-flat Kähler surface with
κ < 0 that is not Kähler–Einstein. Then the connected real hypersurface Z ⊂ M is
totally umbilic with respect to g. Moreover, the Weyl curvature W of (M, g) vanishes
identically along Z .

Proof While both of these features are general consequences [18,29] of the fact that
h = s−2g is Poincaré–Einstein, we will give quick, self-contained proofs that supply
further information in the present special context.

Let ǧ = g|Z denote the induced Riemannian metric (or first fundamental form) of
our hypersurface, and let � denote the second fundamental form (or shape tensor) of
Z . To say that Z is totally umbilic just means that � = fǧ for some function f : Z →
R, which is then just the mean curvature ofZ . However, the second fundamental form
can be expressed as � = (∇ν)|Z in terms of any unit 1-form ν on M which is normal
to Z along this hypersurface, and which is compatible with the given orientations of
M and Z . However, since Z is defined by s = 0, and since Eq. (13) tells us that
|∇s|2 = − κ

12 along Z , it follows that ν = 2
√
3/|κ| ds is a valid choice for this unit

co-normal field, provided we orient Z in the corresponding manner. Thus

� =
(
2

√
3

|κ| Hess s
)∣∣∣∣∣Z

gives us a convenient formula for the second fundamental form of Z . However, Eq.
(10) tells us that Hess0 s = 0 along the locus where s = 0, so Hess s = −(
s/4)g
along Z , and hence

� = −
( √

3

2
√|κ|
s

)
ǧ. (17)

This shows that Z is totally umbilic, as claimed.
On the other hand, since the Kähler metric g has s = 0 along Z , Eq. (8) tells us

that W+ = 0 there, too. Thus W = W− at Z . However, if we let ν denote the unit
1-form normal to Z , there is a natural bundle isomorphism

T ∗Z −→ �−|Z
θ �−→ (ν ∧ θ)− �(ν ∧ θ).

Applying the identity

W−(ϕ − �ϕ, ϕ − �ϕ)− W+(ϕ + �ϕ, ϕ + �ϕ) = −4R(ϕ, �ϕ),

to ϕ = ν∧θ , and remembering thatW+ = 0 along Z , we therefore see thatW = W−
is completely characterized along Z by knowingR1

234 = W 1
234 for those orthonor-

mal co-frame {e1, . . . , e4} in which e1 = ν. But we can easily understand these
components, using the fact that W is conformally invariant. Indeed, since a confor-
mal change g � u2g changes the second fundamental form by � � u� + 〈du, ν〉ǧ,
a hypersurface is totally umbilic iff it can be made totally geodesic by a conformal
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change. But the unit normal 1-form ν is parallel along any totally geodesic hypersur-
face. In such a conformal gauge, we therefore have R1

234 = W 1
234 = 0. Conformal

invariance thus allows us to deduce that W vanishes identically along Z , as
claimed. ��

Theorem A is now an immediate consequence. Indeed, the basic trichotomy into
solution classes I, II, and III just reflects the sign of κ , or equivalently, by Lemma 4,
the sign of min s. Propositions 1, 2, and 3 then explain the basic features of each class.
If the solution is Kähler–Einstein, it is then of type I(a), II(a), or III(a), depending on
the sign of κ . Otherwise, the underlying complex surface is ruled by Proposition 6,
and the remaining claims made about solutions of type I(b), II(b), and III(b) are then
proved by Propositions 4, 5, and 7, respectively.

5 Problems and Perspectives

As mentioned in Sect. 1, solutions of class I have been completely classified [34].
One key fact that enabled this classification was the observation [32] that in this case
(M, J ) has c1 > 0, and hence is a Del Pezzo surface [16]. Indeed, since s 	= 0, we
can represent 2πc1 by ρ̃ := ρ + 2i∂∂̄ log |s|, where ρ is the Ricci form of (M, g, J ),
and Eq. (11) then tells us that ρ̃ = q(J ·, ·), where the symmetric tensor field q is
given by

q = 2s + κs−2

12
g + s−2|∇s|2g⊥. (18)

Here, g⊥ is defined to be zero on the span of ∇s and J∇s, but to coincide with g on
the orthogonal complement of this subspace; while this of course means that g⊥ is
only defined away from the critical points of s, the tensor field |∇s|2g⊥ has a unique
smooth extension across the critical points, which is explicitly given by declaring it
to be zero at this exceptional set. Since κ > 0 implies that s > 0 everywhere, it
follows that q > 0 for a solution of type I, and that (M, J ) is therefore a Del Pezzo
surface when κ is positive. Conversely, one can show [15,40,47] that every Del Pezzo
(M, J ) admits a J -compatible class-I solution, and that this solution is moreover
unique [3,34] up to complex automorphism and rescaling. In fact, the solution is
Kähler–Einstein except in exactly two cases, namely the blow-up of CP2 at one or
two distinct points. Thus, solutions of type I(a) and I(b) are distinguished by whether
or not the Lie algebra of holomorphic vector fields on (M, J ) is reductive.

By further elaboration on this idea, one is led to the following result:

Proposition 8 Let g and g̃ be two J-compatible Bach-flat Kähler metrics on the
same compact complex surface (M, J ). If these two solutions have different types,
according to the classification scheme of Theorem A, then one is of type II(b), and
the other is of type III(b).

Proof Solutions of type II(a) and III(a) are distinguished from the others by the
Kodaira dimension of (M, J ). On the other hand, we have just seen that solution
of class I exist precisely on complex surfaces with c1 > 0, and solutions of type I(a)
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are then distinguished from those of type I(b) by whether the Lie algebra of holo-
morphic vector fields is reductive. It thus only remains to show that the existence of
solution of class I precludes the existence of a solution of type II(b) or III(b). How-
ever, any extremal Kähler metric on a Del Pezzo surface has positive scalar curvature
[35, Lemmata A.2 and B.2]. Consequently, the presence of a Bach-flat Kähler metric
of class I automatically precludes the existence of a solution of any other class. ��

This makes the following piece of speculation seem irresistible:

Conjecture 1 On a fixed compact complex surface (M, J ), any pair of J -compatible
Bach-flat Kähler metrics are necessarily of the same type, in the sense of Theorem A.

Although the currently known solutions of type III(b) will almost certainly turn
out to be atypical in many respects, these known examples all live on geometrically
ruled surfaces, which necessarily have τ = 0. The following result thus explains why
Conjecture 1 is supported by all known examples:

Proposition 9 No compact complex surface (M, J ) of signature τ = 0 can admit a
pair of J -compatible Bach-flat Kähler metrics that have different types, in the sense
of Theorem A.

Proof By Proposition 8, it suffices to show that there cannot simultaneously be a
solution g of type II(b) and a solution g̃ of type III(b). However, any solution of class
II is scalar-flat Kähler, and therefore has W+ = 0 by Eq. (8), and such a solution is
of type II(b) iff it is not Ricci-flat. If we now assume that τ(M) = 0, Eq. (2) then
tells us that W− = 0, making (M, g) is conformally flat, as well as scalar-flat. The
Weitzenböck formula for 2-forms thus simplifies to say that the Hodge Laplacian on
2-forms coincides with the Bochner Laplacian ∇∗∇, and any harmonic 2-form must
therefore be parallel. Since the assumption that τ = 0 also forces b− = b+ 	= 0, our
metric g is Kähler with respect to both orientations, and, since g is not flat, it follows
[11,30] that (M, J ) is therefore a geometrically ruled surface of the form � ×γ CP1
for some representation γ : π1(�) → PSU(2). The given scalar-flat metric g is
then a twisted product metric, obtained by equipping � and CP1 with metrics of
constant (and opposite) Gauss curvature, and thus belongs to a 2-parameter family of
constant-scalar-curvature metrics gotten by rescaling� and CP1 by arbitrary positive
constants. Since b2(M) = 2, this shows that the Futaki invariant is identically zero
on an open set of the Kähler cone. However, the Futaki invariant is quite generally a
real-analytic function of the Kähler class, as can be seen by locally sweeping out the
Käher cone by real-analytic families of real-analytic Kähler metrics. Hence the Futaki
invariant of (M, J ) vanishes for every Kähler class, and it therefore follows [13] that
any extremal Kähler metric on (M, J ) must have constant scalar curvature. Conse-
quently, (M, J ) cannot admit a strictly extremal Kähler metric, and no J -compatible
solution g̃ of type III(b) can therefore exist on (M, J ). ��

There is a more fundamental reason to hope that Conjecture 1 might be true. Recall
that Bach-flat metrics are critical points of the Weyl functional, and that Bach-flat
Kähler metrics are therefore, in particular, critical points of the Calabi energy (9) on
the space of Kähler metrics compatible with a given complex structure. However, the
known examples are always [44] actually absolute minima for the latter problem.
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Conjecture 2 Let g be a Bach-flat Kähler metric on a compact complex surface
(M, J ). Then g is an absolute minimizer of the Calabi energy C on the space of
all J -compatible Kähler metrics on M.

This conjecture is an easy exercise for solutions of type I(a), II(a), II(b), and II(a).
It is moreover also true for solutions of type I(b), although the proof [34] is much
more subtle in this case. By contrast, we do not currently know whether Conjecture 2
holds for general solutions of this type III(b), although it does in fact hold [44] for all
known solutions. Notice that Conjecture 2 would certainly imply Conjecture 1, since
any solution of type III(b) necessarily has C > 0, whereas any solution of type II(b)
obviously has C = 0.

These remarks make it obvious that solutions of type III(b) represent the area
where our understanding of the subject remains most deficient. Still, it is not hard
to prove a bit more about them. For example:

Proposition 10 Let (M, g, J ) be a solution of type III(b). Then the complete Einstein
Hermitan manifold (M−, h, J ) of Proposition 3 has numerically positive canonical
line bundle KM− . In other words, every compact holomorphic curve C ⊂ M− ⊂ M
satisfies c1 · C < 0.

Proof The flow of −∇s = Jξ for positive time is holomorphic, and preserves the
region M− ⊂ M where s < 0; moreover, s is non-increasing under the flow. How-
ever, since the holomorphic vector field ∇s − iξ has zeroes, its contraction with
any holomorphic 1-form vanishes identically, and the induced action on the Albanese
torus is therefore zero. By duality, the induced action on the Picard torus is also trivial,
so the action sends any holomorphic curve to a curve to which it is linearly equiva-
lent. In particular, any compact holomorphic curve C ⊂ M− ⊂ M gives rise to the
same divisor line bundle L → M as any of its images under the downward flow of the
gradient vector field of s. Taking the limit in P[�(M,O(L))], we can thus represent
the limit of the images of C under the downward flow by a (typically singular) curve
in M− which is sent to itself by the action of C

×. Such a curve is a sum, with non-
negative integer coefficients, of the curve �− at which the minimum of s is achieved
(assuming the minimum does not occur at an isolated point) and of “vertical” rational
curves arising from flow lines descending from saddle points of s in M− ⊂ M . It
therefore suffices to check that c1 is negative on �− and on any curve tangent to ∇s
and ξ = J∇s. However, we can represent 2πc1 on M− by ρ̃ := ρ + 2i∂∂̄ log |s|,
where ρ is the Ricci form of (M, g, J ), and the corresponding symmetric tensor field
is once again given by (18). At critical points of s, or in directions tangent to the
space of ∇s and ξ , this expression simplifies to just become (2s + κs−2)g/12, which
is negative-definite on the region M− given by s < 0, since we also have κ < 0 for a
solution of type III(b). This shows that the given curve C is homologous to a curve C̃
on which c1 · C̃ < 0, and we therefore have c1 · C < 0, too, as claimed. ��

On the other hand, this says nothing at all about (M+, J ), and this is definitely not
a mere matter of accident. For example, when (M, J ) is a Hirzebruch surface, M−
is a tubular neighborhood of a rational curve on which c1 is negative, while M+ is a
tubular neighborhood of a curve on which c1 is positive. Curiously enough, (M−, h)
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and (M+, h) are in fact actually isometric1 in these examples; however, this is not
a paradox, because the relevant isometry is orientation-reversing, and so does not
intertwine the given complex structures on M± in any direct manner.

We can also prove some things about the real hypersurface Z ⊂ M :

Proposition 11 Let (M, g, J ) be a Bach-flat Kähler surface of type III(b), and let
Z ⊂ M be the smooth real hypersurface given by s = 0. Then the compact connected
3-manifold Z is Seifert-fibered. Moreover, the restriction of ξ to Z is a non-trivial
Killing field of constant length with respect to the induced metric ǧ = g|Z , and its
orbits are therefore geodesics of ǧ. The flow of ξ moreover preserves the CR structure
induced on Z by (M, J ), and, at any p ∈ Z , the following are equivalent:

• the Levi form of the induced CR structure is non-degenerate;
• the Ricci curvature of ǧ is positive in the direction of ξ ;
• the second fundamental form � of Z ⊂ M is non-zero; and
• the extrinsic Laplacian 
gs of the scalar curvature is non-zero.

Proof Equation (13) tells us that |ξ |2 = |∇s|2 = −κ/12 > 0 along Z , so the restric-
tion of the Killing field ξ to Z does indeed have constant, non-zero length. Since the
closure of the group of isometries generated by ξ is a compact connected Abelian
Lie group, and hence a torus, we can approximate ξ uniformly by non-zero periodic
Killing fields, and the choice of such an approximation then endows Z with a cir-
cle action for which all isotropy groups are finite, thereby giving it a Seifert-fibered
structure. Since ξ is a Killing field of constant length with respect to ǧ, we also have

ξa∇aξb = −ξa∇bξa = −1

2
∇b|ξ |2 = 0,

on (Z, ǧ), and the trajectories of ξ are therefore geodesic. Finally, since the flow of
ξ on M preserves both J and s, the flow acts on the hypersurface s = 0 by CR
automorphisms.

Since s is a non-degenerate defining function for Z , the restriction of i∂∂̄s to the
CR tangent space of Z exactly represents the Levi form. On the other hand, Eq. (11)
tells us that i∂∂̄s is a multiple of the Kähler form ω along the locus s = 0, so we
therefore conclude that the Levi form is non-degenerate exactly at these points of Z
where
s 	= 0. On the other hand, Eq. (17) tells us that the second fundamental form
of Z is also non-zero exactly at points where 
s 	= 0. Finally, since the unit normal
vector field is a constant multiple of Jξ , the restriction of �(J ·, ·) to ξ⊥ ⊂ TZ
is a non-zero constant times the intrinsic covariant derivative ∇ξ , and since Z is
umbilic, it therefore follows that � 	= 0 exactly when |∇ξ |2 	= 0; but the Bochner
Weitzenböck formula (15) for a Killing field tells us that |∇ξ |2 ≡ r(ξ, ξ) on (Z, ǧ),
so the positivity of the Ricci curvature of ǧ in the direction of ξ is also equivalent to
all the other conditions under discussion. ��

1 These complete Einstein manifolds seem to have been first discovered by Bérard-Bergery [6], who made
a systematic study of cohomogeneity-one Einstein metrics. They have subsequently been rediscovered
several times by various groups of physicists [14,41].
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In the known examples, Z is actually strictly pseudo-convex. Is this a general
feature of all solutions, or is it a mere artifact, reflecting the fact that the known
solutions have universal covers of cohomogeneity one?

As long as we only consider Bach-flat Kähler metrics that are compatible with
some fixed complex structure J on M , Conjecture 1 claims that the solution type,
as per Theorem A, should be completely determined by (M, J ). While there is a
preponderance of evidence in favor of such a conjecture, it is also important to notice
that the type of the solution is certainly not just determined by the diffeotype of M
alone. For example, while the smooth manifolds S2 × S2 and CP2#CP2 each support
a unique complex structure with c1 > 0, each also carries an infinite number of other
complex structures realized by the various Hirzebruch surfaces P(O⊕O(�)) → CP1,
� ≥ 0. Now, every Hirzebruch surface with � > 2 carries [25] a Bach-flat Kähler
metric of type III(b), in contrast to the solutions of type I(b) that instead exist when
� = 0 and 1. Similarly, the 4-manifolds arising as S2-bundles over curves of genus
≥ 2 carry solutions of both of type II(b) and III(b), but this form of peaceful co-
existence is once again only made possible by allowing the complex structure to vary.

Nonetheless, Theorem A does have consequences that do primarily reflect the dif-
ferential topology of the underlying 4-manifold:

Proposition 12 Let M be the underlying smooth 4-manifold of a non-minimal com-
pact complex surface of Kodaira dimension ≥ 0. Then there is no complex structure J
on M for which (M, J ) admits a Bach-flat Kähler metric. Moreover, for complex sur-
faces of Kodaira dimension 1, the existence of Bach-flat Kähler metrics is similarly
obstructed even when the surface is minimal.

Proof On a compact complex surface (M, J ) of Kodaira dimension ≥ 0, Theorem A
tells us that any Bach-flat Kähler metric must be Kähler–Einstein, with Einstein con-
stant λ ≤ 0. This in particular either means that cR1 = 0 or c1 < 0. Hence (M, g)
must be minimal and have Kodaira dimension 0 or 2. However, for complex surfaces
of Kähler type, Seiberg–Witten theory implies [33,38] that Kodaira dimension is a
diffeomorphism invariant, and that non-minimality is moreover a diffeomorphism
invariant whenever the Kodaira dimension is ≥ 0. Thus the operative obstruction
really just reflects the differential topology of M , in a manner that is insensitive to the
detailed complex geometry of the given J . ��

Finally, it should perhaps also be emphasized that Proposition 12 certainly does not
obstruct the existence of more general Bach-flat metrics. Indeed, a result of Taubes
[45] implies that any complex surface has blow-ups that admit anti-self-dual met-
rics. Thus, there are certainly many non-minimal complex surfaces of each possible
Kodaira dimension ≥ 0 that do indeed admit Bach-flat metrics; it is just that these
metrics do not happen to be conformally Kähler!
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