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Abstract Given a rational map R, we consider the complement of the postcritical set
SR . In this paper we discuss the existence of invariant Beltrami differentials supported
on an R invariant subset X of SR . Under some geometrical restrictions on X , we
show the absence of invariant Beltrami differentials with support intersecting X . In
particular, we show that if X has finite hyperbolic area, then X cannot support invariant
Beltrami differentials except in the case where R is a Lattès map.
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1 Introduction

This article is a complementary part to the work done in [3] with its own independent
interest. We discuss geometric conditions under which there are no invariant Beltrami
differentials supported on the dissipative set of a rational map R.

In this paper we will always assume that the Fatou set does not contain rotation
domain cycles.

Now, let us introduce the geometric objects to be treated in this paper.
Denote by J (R) the Julia set and by P(R) the closure of the postcritical set of R.

Consider the surface SR := C̄\P(R), this surface is not always connected; however,
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on each connected component of SR we fix a Poincaré hyperbolic metric and denote
by λ the family of all these metrics.

Let Q(SR) be the subspace of L1(SR) of holomorphic integrable functions on SR .

A rational map R defines a complex pushforwardmap on L1(C), with respect to the
Lebesgue measure m, which is a contracting endomorphism and is called the complex
Ruelle–Perron–Frobenius, or the Ruelle operator for short. The Ruelle operator has
the following formula:

R∗(φ)(z) =
∑

y∈R−1(z)

φ(y)

R′(y)2
=

∑

i

φ(ζi (z))(ζ
′
i (z))

2,

where ζi is a local complete system of branches of R−1. The space Q(SR) is invariant
under the action of theRuelle operator. TheBeltrami operatorBel : L∞(C) → L∞(C)

given by

Bel(μ) = μ(R)
R′
R′

is dual to the Ruelle operator acting on L1(C).
The fixed point space Fix(B) of the Beltrami operator is called the space of invari-

ant Beltrami differentials. An element α ∈ L∞(C) is called non-trivial if and only if
the functional given by

vα(φ) =
∫

SR

φ(z)α(z)|dz|2

is non-zero on Q(SR). The norm of vα in Q∗(SR), for a non-trivial element α, is called
the Teichmüller norm of α and it is denoted by ‖α‖T .

A non-trivial element α is called extremal if and only if ‖α‖∞ = ‖α‖T .

A sequence of unit vectors {φi } is called a Hamilton–Krushkal sequence for an
extremal element α if and only if

lim
i→∞ |vα(φi )| = ‖α‖∞.

A Hamilton–Krushkal sequence {φi } is called degenerating if it converges to 0
uniformly on compact sets.

Nowwe recall some basic concepts from ergodic theorywhichwill be used through-
out this text (see for example [6]). For A, B ⊂ C̄ measurable sets, the expressions
A = B and A∩ B = ∅ are understood up to sets of zero Lebesgue measure. A positive
measure set M ⊂ C̄ is called wandering if the sets {R−k(M)}k are pairwise disjoint
Lebesgue measurable sets. Let D(R) be the union of all wandering sets. The set D(R)

is called the dissipative set and the complement C(R) = C\D(R) is the conservative
set. Due to the classification of the components of the Fatou set, C(R) intersects the
Fatou set precisely at the union of rotation domain cycles. Hence, our assumption that
there are no rotation domain cycles on the Fatou set implies that C(R) ⊂ J (R).
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Lemma 1 We have the following facts:

(1) For every f ∈ L1(C), the sequence (R∗)n( f ) converges to 0 almost everywhere
on D(R).

(2) If m(Y ) < ∞, where Y = ⋃
n≥0 R−n(W ) for a wandering set W , then for every

f ∈ L1(Y ) we have

lim
n

∫

Y
|(R∗)n( f (z))||dz|2 = 0.

(3) If C(R) �= C then for every φ ∈ Q(SR) the sequence (R∗)n(φ) converges point-
wise to 0 on SR.

Proof Indeed, for the first part of the lemma it is sufficient to check that the series∑∞
n=0(R∗)n( f )(z) converges absolutely almost everywhere on every wandering set

W. In otherwords, it is enough to show that the function
∑∞

n=0 |(R∗)n( f )| is integrable
on W. But

∫

W

∞∑

n=0

|(R∗)n( f )(z)||dz|2 =
∞∑

n=0

∫

W
|(R∗)n( f )(z)||dz|2

≤
∞∑

n=0

∫

R−n(W )

| f (z)||dz|2

≤
∫

⋃
n R−n(W )

| f (z)||dz|2

≤
∫

C

| f (z)||dz|2.

The assumption on the second part means that m(R−n(Y )) converges to 0, then the
inequality

∫

Y
|(R∗)n f (z)||dz|2 ≤

∫

R−n(Y )

| f (z)||dz|2

finishes the proof.
For the last part, if a connected component S ⊂ SR intersects D(R) on a set

of positive Lebesgue measure, then for every φ ∈ Q(SR), the sequence (R∗)n(φ)

converges to 0 pointwise on S. To check this, note that (R∗)n(φ) is a sequence of
holomorphic functions on S with uniformly bounded integrals

∫

S
|(R∗)n(φ(z))||dz|2 ≤ ‖φ‖L1(SR)

hence by the mean value theorem (R∗)n(φ) forms a normal family which converges
to 0 on a set of positive measure.

Recall that C(R) �= C̄ and C(R) ⊂ J (R). If J (R) �= C̄, then again by the
classification of the components of the Fatou set, every component of SR intersects
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the dissipative set. If J (R) = C̄, then D(R) is a dense subset of J (R) and hence D(R)

also intersects every component of SR . ��
Let T : B → B be a linear contraction of a Banach space B. An element b ∈ B is

called mean ergodic with respect to T if and only if the sequence of Cesàro averages
with respect to T , given by Cn(b) = 1

n

∑n−1
i=0 T i (b), forms a weakly precompact

family. Indeed, if y ∈ B is a weak accumulation point of the sequence Cn(b), then the
Cn(b) converges in norm to y and y is a fixed point for T (see Krengel [6]). If every
element b ∈ B is mean ergodic with respect to T then the operator T is called mean
ergodic.

By theBers representation theorem, the space Q∗(SR) is linearly quasi-isometrically
isomorphic to the Bers space B(SR) which is the space of holomorphic functions φ

on SR with the norm ‖λ−2φ‖L∞(SR).

In the case where SR has finitely many components, a classical theorem states that
Q(SR) is continuously included in B(SR) if and only if the infimum of the length of
simple closed geodesics is bounded away from 0 (see for example [9] and references
within). If SR has infinitely many components, then one can still verify that if the
infimum of the length of simple closed geodesics is bounded away from 0 then the
inclusion Q(SR) in B(SR) is continuous. However, we do not know if there is an
example of a rational map R such that SR has infinitely many components.

2 Main Theorem

Let X be an R forward-invariant set of positive Lebesgue measure, then the set W :=⋃
R−n(X) is its saturation undertaking pre-images. In the following theorem we will

only consider Cesàro averages with respect to the Ruelle operator R∗ in L1(W ).

Theorem 2 Let X ⊂ SR be an R forward-invariant set of positive measure such that
the restriction map r(φ) = φ|X from Q(SR) to L1(X) is weakly precompact. Then for
every φ ∈ Q(SR), the function φ|W is mean ergodic with respect to R∗ in L1(W ).

Proof If X is R forward-invariant then the Ruelle operator R∗ defines an endomor-
phism of L1(X). Given φ ∈ Q(SR), the family of Cesàro averages Cn(φ) restricted
to X forms a weakly precompact subset of L1(X). We claim that Cn(φ) converges in
norm on L1(X). Indeed, first we show that every weak accumulation point of Cn(φ)

is a fixed point for the Ruelle operator. Let f ∈ L1(X) be the weak limit of Cni (φ),
for some subsequence {ni }, then R∗( f ) is the weak limit of R∗(Cni (φ)). By the Fatou
Lemma

∫

X
| f − R∗( f )| ≤ lim inf

∫

X
|Cni (φ) − R∗(Cni (φ))|

≤ lim inf ‖Cni (φ) − R∗(Cni (φ))‖L1(SR)

≤ lim sup ‖Cni (I − R∗)(φ)‖L1(SR).

But

‖Cni (I − R∗)(φ)‖L1(SR) ≤ 2

ni
‖φ‖L1(SR).
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Then f is a non-zero fixed point of the Ruelle operator. As in Lemma 11 of [8] we have
that | f | defines a finite absolutely continuous invariant measure, and even more, by
Corollary 12 of [8] the set

⋃
n R−n(supp f ) supports an invariant Beltrami differential

μ such that μ(z) = | f (z)|
f (z) almost everywhere on supp f. Since the support of f is a

non-trivial subset of the conservative set of R, by the Poincaré recurrence theorem,
almost every point of supp f is recurrent. By Lyubich’s ergodicity theorem (see [7],
Theorem 3.9 in [10]) and the fact that X does not intersect the postcritical set, we
have supp f = C up to a set of measure 0. But f is non-zero, hence μ �≡ 0. By
Theorem 3.17 in [10], the map R is, so-called, a flexible Lattès map, in particular R
is postcritically finite. In this situation, the space Q(SR) is finitely dimensional, the
Ruelle operator R∗ is a compact endomorphism of Q(SR), which implies that R∗ is
mean ergodic on Q(SR).

If R is not a flexible Lattès map then every weak limit of Cn(φ) is 0. Since the weak
closure of convex bounded sets is equal to the closure in norm of convex bounded sets,
we conclude our claim.

Now we promote the mean ergodicity of R∗ on L1(X) to mean ergodicity on
L1(W ) as follows. Let Wn = R−n(X), one can inductively prove that φ|Wn is mean
ergodic with respect to R∗ on L1(Wn). Indeed, let ψn = φ|Wn , since R∗ : L1(Wn) →
L1(Wn−1) ⊂ L1(Wn) and R∗(ψn) = R∗(φ)|Wn−1 , then by arguments above we are
done.

Consider φ|W − φ|Wn , the L1 norm of this difference converges to 0 in L1(W ),
since the Cesàro averages does not expand the L1 norm we have

‖Ck(φ|W − φ|Wn )‖ ≤ ‖φ|W − φ|Wn ‖.

Hence Ck(φ|W ) converges to 0 and φ|W is mean ergodic with respect to R∗ on
L1(W ). ��

Then we have the following immediate corollary.

Corollary 3 The Ruelle operator R∗ has a non-zero fixed point in Q(SR) if and only
if R is a flexible Lattés map.

Proof Recall that C(R) ⊂ J (R). If D(R) has positive Lebesgue measure, then by
Lemma 1 for every φ ∈ Q(SR) the Cesàro averages Cn(φ) converge to 0 pointwise
on SR . Hence, if φ ∈ Q(SR) is a non-zero fixed point of R∗ then D(R) has zero
Lebesgue measure. Thus, as in Theorem 2 by Corollary 12 in [8] there exist μ(z) =
|φ(z)|
φ(z) invariant Beltrami differential and supp(|φ|) = C(R) = J (R) = C̄. Again by
Theorem 3.17 in [10] the map R is a flexible Lattés map. ��

Now we state our Main Theorem.

Theorem 4 Let R be a rational map and let X ⊂ SR be an R forward-invariant set of
positive Lebesgue measure. Assume that the restriction map r(φ) = φ|X from Q(SR)

into L1(X) is weakly precompact. If μ is a non-trivial invariant Beltrami differential,
then m(supp μ ∩ X) > 0 if and only if R is a flexible Lattès map.
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On Hyperbolic Metric and Invariant Differentials 2351

Proof Assume that R is a flexible Lattès map. Then R is ergodic on the Riemann
sphere, and therefore, the support of every invariant Beltrami differential μ is the
whole Riemann sphere. Hence, if X is a forward-invariant set of positive Lebesgue
measure then m(supp μ ∩ X) = m(X) > 0.

Again letW = ⋃
R−n(X). Now letμ be a non-trivial invariantBeltrami differential

supported on W . Then for every φ ∈ Q(SR) we have

∫

SR

μ(z)φ(z)|dz|2 =
∫

SR

μ(z)Ck(φ(z))|dz|2 =
∫

W
μ(z)Ck(φ(z))|dz|2.

By Theorem 2, if R is not Lattès, the right- hand side converges to 0 as k converges
to ∞. Hence

∫
φμ = 0 for every φ ∈ Q(SR) and the functional φ �→ ∫

φμ is 0 on
Q(SR). This contradicts the assumption that μ is non-trivial. ��

In the proofs of the previous theorems, the only ingredient was the precompactness
of the Cesàro averagesCn(φ). Hence, it is enough to assume the weak precompactness
only of Cesàro averages on elements of Q(SR). By results of the second author in [8],
see also a related work in [3], it is enough to consider the Cesàro averages of rational
functions in Q(SR) having poles only on the set of critical values.

3 Compactness

We will discuss the conditions under which the restriction map φ �→ φ|A is weakly
precompact. Unfortunately, so far we have not found conditions where the restriction
is weakly precompact but not compact. Let us start with the following definition.

Definition A rational map R satisfies the B-condition if and only if for every φ ∈
Q(SR) we have

‖λ−2(z)φ(z)‖L∞(SR) ≤ C‖φ(z)‖L1(SR),

where C is a constant independent of φ.

In other words, if R satisfies the B-condition, then Q(SR) ⊂ B(SR) and the inclu-
sion map Q(SR) → B(SR) is continuous. As it was noted in the introduction, this
happens when the infimum of the length of simple closed geodesics on SR is bounded
away from 0.

Proposition 5 If R satisfies the B-condition and Areaλ(X) < ∞ then the restriction
map rX : φ �→ φ|X from Q(SR) to L1(X) is a compact operator.

Proof If R satisfies the B-condition then

λ−2(z)|φ(z)| ≤ sup
z∈SR

|λ−2(z)φ(z)| ≤ C‖φ‖L1(SR),

hence |φ(z)| ≤ C‖φ‖L1(SR)λ
2(z) for z ∈ SR . If φi ∈ Q(SR) is a sequence with

‖φi‖L1(SR) ≤ 1, then φi forms a normal family of holomorphic locally uniformly
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bounded functions on SR . If ψ is a pointwise limit of a subsequence φi j , then by
Fatou’s Lemma ψ ∈ Q(SR), and by the Lebesgue dominated convergence theorem,
rX (φi j ) converges to rX (ψ) in norm in L1(X). Hence rX is a compact operator. ��

Combining Theorem 4 and Proposition 5 we have the following.

Corollary 6 Assume that R satisfies the B-condition and X is a forward-invariant
set of positive Lebesgue measure with Areaλ(X) < ∞. If μ is a non-trivial invariant
Beltrami differential, then m(supp μ∩ X) > 0 if and only if R is a flexible Lattès map.

In general, the finiteness of the hyperbolic area of X does not imply the finiteness of
hyperbolic area of W . Generically, it could be that the hyperbolic area of W is infinite
regardless of the area of X .

On the other hand, by Corollary 6, if R satisfies the B-condition and the hyperbolic
area Areaλ(J (R)) is bounded then R satisfies the Sullivan’s conjecture, which states:
A rational map R admitting a non-zero invariant Beltrami differential supported on
the Julia set is a flexible Lattès map. However, in this situation, we believe that the
following stronger statement holds true:

The Areaλ(J (R)) < ∞ if and only if either m(J (R)) = 0 or R is postcritically
finite.

Let us discuss how the B-condition fits into the context of holomorphic dynamics.
First, due to McMullen (Theorem 8.4 in [11]) there exist a set of quadratic poly-

nomials R such that P(R) ∩ J (R) is a Cantor set with bounded geometry, this is
equivalent to the fact that the length of simple closed geodesics on SR is bounded
above and below. These polynomials are infinitely renormalizable maps with bounded
combinatorics and definite moduli also known as polynomials with a priori bounds
(see [11]). Evenmore,McMullen’s rigidity result was based on the boundedness of the
length of simple closed geodesics from above. Recently, Avila and Lyubich announced
that among polynomials with a priori bounds there are polynomials with Julia set of
positive Lebesgue measure (see [1]). Moreover, these examples form a set of positive
Hausdorff dimension under a suitable parameterization.

Second, by a result due to Childers (see Theorem 1.2 in [4]) there are polynomials
such that J (R) ∩ P(R) is a non-separating planar continuum; these examples include
Cremer polynomials with only one recurrent critical point. In this case, the surface
SR is conformally equivalent to the punctured unit disk. Moreover, the well-known
examples of Buff and Cheritat of polynomials with Julia set of positive Lebesgue
measure are Cremer quadratic polynomials (see [2]).

By results of [9], the examples above satisfy the B-condition. However, if an infinite
renormalizable quadratic polynomial satisfies the B-condition then not necessarily has
a priori bounds.

In general, one of the obstacles for a planar Riemann surface to satisfy the B-
condition is the existence of infinitely many cusps. As the arguments of Theorems
2 and 4 show, it is sufficient to have the B-condition on a small neighborhood of
J (R) ∩ P(R). So, if R does not have parabolic periodic points, the behavior of the
postcritical set on the Fatou set is irrelevant to study Beltrami differentials supported
on the Julia set.

Now, let R be such that SR ∩ J (R) contains infinitely many cusps of SR , this is
equivalent to say that there exists a critical point c ∈ J (R) such that Rn(c) is an
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infinite sequence of cusps of SR . In this case, Rn(c) is non-recurrent for every n and,
using Shishikura and Lei generalization of Mañé’s theorem [14], the series

∞∑

n=0

1

(Rn)′(R(c))

is geometric, and in particular, is absolutely convergent with non-zero sum. Then by
results of the second author, such a map R is not structurally stable (see [8]). In other
words, this means that the dimension of the space of invariant Beltrami differentials
on the Julia set is strictly smaller than the number of critical values on the Julia set.
Therefore, possible candidates to satisfy the B-condition on the whole SR are rational
maps with finitely many postcritical points on the Fatou set.

Now we consider a more general condition when the restriction map rX is compact
and which reflects the geometry of the postcritical set.

On the product SR × SR ⊂ C
2 there exists a unique function K (z, ζ ) which is

characterized by the following conditions.

(1) K (ζ, z) = −K (z, ζ )

(2) For every ζ0 ∈ SR , the function φζ0(z) = K (z, ζ0) belongs to the intersection
Q(SR) ∩ B(SR).

(3) If z0, ζ0 belong to different components of SR , then K (z0, ζ0) = 0.
(4) The operator P( f )(z) = ∫

λ−2(ζ )K (z, ζ ) f (ζ )|dζ |2 from L1(SR) to L1(SR) is
a continuous projection with P(L1(SR)) = Q(SR).

In fact, the function K (z, ζ ) is defined on every planar hyperbolic Riemann surface
S. For further details on this subject, see for example Chap. 3, §7 of the book of Kra
[5].

Let us consider the function

ω(ζ, z) = λ−2(ζ )K (z, ζ )

and

α(z) = sup
ζ∈SR

|ω(z, ζ )|.

The following proposition is a consequence of the property (4) above.

Proposition 7 If

∫

X
α(z)|dz|2 < ∞

then rX is a compact operator.

Proof For every φ ∈ Q(SR) and every z ∈ SR property (4) gives

φ(z) =
∫

SR

λ−2(ζ )K (z, ζ )φ(ζ )|dζ |2
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hence

|φ(z)| ≤ sup
ζ∈SR

|λ−2(ζ )K (z, ζ )|
∫

SR

|φ(ζ )||dζ |2

thus

|φ(z)| ≤ α(z)‖φ‖L1(SR)

for almost every z ∈ SR .

When α is integrable on X , then again as in the proof of Proposition 5 and the
Lebesgue dominated convergence theorem rX is a compact operator. ��

As a consequence we have:

Corollary 8 If
∫

J (R)
α(z)|dz|2 < ∞ then R satisfies Sullivan’s conjecture.

Proof If an invariant Beltrami differential μ has support in J (R) then μ is non-trivial
(see Theorem 3 in [8]), now applying Theorem 4 and Proposition 7, we finish the
proof. ��

Let us note that Propositions 5 and 7 also imply that if X is a positive Lebesgue
measure set, satisfying an integrability condition, then X cannot support extremal
differentials with degenerating sequences.

Hence, Corollaries 6 and 8, in the case when X is a completely invariant, derive
from results in [3].

Remark If SR has finitely many components and R satisfies the B-condition then
by classical results (see the comments before Proposition 1 in [12]), we have that
α(z) ≤ Cλ2(z) where C does not depend on z. In particular, if X has bounded
hyperbolic area then α(z) is integrable on X . In this situation, Proposition 7 implies
Proposition 5. As it is mentioned in [12], the conditions of Proposition 7 are strictly
weaker than conditions of Proposition 5. Moreover, in general, the boundedness of
the hyperbolic area is not a quasiconformal invariant (see Proposition 3 in [13]).

4 Quasi-Compactness

Let Yn be an exhaustion of SR by compact subsets such that m(Yn+1\Yn) converges
to zero. Let Pn be the sequence of restrictions Pn : L1(SR) → L1(SR) given by
Pn( f ) = χn P( f ) where χn is the characteristic function on Yn . Immediately from
the definition we have the following facts:

(1) For each n, the map Pn is a compact operator.
(2) The limit

lim
n→∞ ‖Pn( f ) − P( f )‖L1(SR) → 0

for all f on L1(SR).
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Definition A measurable set X ⊂ SR is called inefficient at infinity, or inefficient for
short, if and only if there exists an exhaustion as above so that

inf
n

‖Pn − P‖L1(X) < 1.

In terms of operator theory, the operator rX ◦ P is called a quasi-compact operator.
This quasi-compactness, in general, does not imply that rX is weakly compact.

We have the following theorem:

Theorem 9 Let μ �= 0 be an invariant Beltrami differential such that supp μ is a finite
measure subset of J (R). If X ⊂ SR is an inefficient forward-invariant measurable set,
then m(supp μ ∩ X) = 0.

In fact, we can reformulate Theorem 9 as: the Ruelle operator R∗ : L1(W ) →
L1(W ) is mean ergodic, whenever W = ⋃

R−n(X) with a forward-invariant ineffi-
cient set X of positive Lebesgue measure. Compare with Theorems 2 and 4.

To prove the theorem we need the following general lemmas:

Lemma 10 Let μ be an invariant Beltrami differential with supp μ ⊂ J (R) ∩ SR

then μ is an extremal Beltrami differential.

Proof First we show that μ admits an extremal representative. Indeed, if μ is not
extremal then by the Banach extension theorem and Riesz representation theorem
there exist another Beltrami differential α such that α is extremal, satisfies ‖α‖∞ =
‖μ‖T < ‖μ‖∞, and defines the same functional as μ in Q(SR). Let β be a ∗-weak
limit of the Cesàro averages Cn(α) = 1

n

∑n−1
i=0 α(Ri )

(Ri )′
(Ri )′ , then β(R) R′

R′ = β almost
everywhere and ‖β‖∞ ≤ ‖α‖∞. Then we claim that vβ = vμ. Let {Cni (α)} be a
sequence of averages ∗-weakly converging to β. For every γ ∈ Q(SR) we have

∫

SR

γ (z)β(z)|dz|2 = lim
i

∫

SR

Cni (α(z))γ (z)|dz|2

by duality the previous limit is equal to

lim
i

∫

SR

α(z)
1

ni

ni −1∑

k=0

R∗k(γ (z))|dz|2 = lim
i

∫

SR

μ(z)
1

ni

ni −1∑

k=0

R∗k(γ (z))|dz|2

but μ is an invariant differential and again using duality the previous limit becomes

lim
i

∫

SR

μ(z)
1

ni

ni −1∑

k=0

R∗k(γ (z))|dz|2 =
∫

SR

μ(z)γ (z)|dz|2.

Since α is extremal we have ‖β‖∞ = ‖α‖∞ = ‖μ‖T . Thus β is the desired extremal
invariant differential.

Now, let us consider β = β1 + β2, where β1 and β2 are the restrictions of β on the
Fatou and Julia set, respectively, extended by 0 on its complements. Note that β2 �= 0,
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otherwise β is supported on the Fatou set and defines the same functional as μ which
contradicts Theorem 3 in [8].

If β2 �= μ almost everywhere, then vβ1 = vμ−β2 which again contradicts Theorem
3 in [8]. Then β2 = μ and vβ1 = 0, hence μ is extremal. ��
Lemma 11 An inefficient set does not support extremal differentials with degenerating
sequences.

Proof We argue by contradiction. Let μ be an extremal differential supported on an
inefficient set X . Suppose that {φn} is a degenerating sequence for μ.

By assumption, there exist n0 such that

sup
f ∈L1(X),‖ f ‖=1

∫
|Pn0( f ) − P( f )| = r < 1.

Since φn is degenerating and by the compactness of Pn0 we have that

lim
j→∞ ‖Pn0(φ j )‖L1(SR) → 0.

Hence

‖μ‖∞ = lim
j

∣∣∣∣
∫

supp μ

μ(z)φ j (z)|dz|2
∣∣∣∣

= lim
j

∣∣∣∣
∫

supp μ

μ(z)(Pn0(φ j (z)) − P(φ j (z)))|dz|2
∣∣∣∣

≤ ‖μ‖∞ sup
f ∈L1(X),‖ f ‖=1

∫
|Pn0( f (z)) − P( f (z))||dz|2 = r‖μ‖∞ < ‖μ‖∞,

which is a contradiction. ��
As it is shown by the arguments of the previous lemma, it is sufficient to consider

any measurable exhaustion where Pk are weakly compact operators. For instance, one
can consider an exhaustion satisfying the conditions of Propositions 5 and 7. A simple
corollary of the previous two lemmas is the following.

Corollary 12 Let μ be an invariant Beltrami differential supported on J (R), then the
supp μ is inefficient if and only if R is a flexible Lattès map.

Proof If R is a flexible Lattès map, then Q(SR) is finite dimensional then the operators
Pn converge to P in norm. Hence, the infimum infn ‖Pn − P‖L1(supp μ) = 0 and
therefore supp μ is an inefficient set.

If supp μ is inefficient, then by Lemmas 10 and 11, μ is an extremal differential
which does not accept degenerating sequences.

Let φ j be a Hamilton–Krushkal sequence for μ and fix Pn0 and r as in the proof of
Lemma 11. Choose ε = 1−r

2 , then there exists an i0 so that

(1 − ε)‖μ‖∞ ≤
∣∣∣∣
∫

SR

μ(z)φi0(z)|dz|2
∣∣∣∣.
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Letψk = Clk (φi0) be a sequence of Cesàro averages which pointwise converge to a
functionψ, then by the Fatou lemmaψ ∈ Q(SR). Let us show thatψ �≡ 0.Otherwise,
ψk converges pointwise to 0 and Pn0(ψk) converges to 0 in norm in L1(supp μ). By
the invariance of μ we have

(1 − ε)‖μ‖∞ ≤
∣∣∣∣
∫

SR

μ(z)φi0(z)|dz|2
∣∣∣∣ =

∣∣∣∣
∫

supp μ

μ(z)ψk(z)|dz|2
∣∣∣∣

=
∣∣∣∣
∫

supp μ

μ(z)[P(ψk(z)) − Pn0(ψk(z))]|dz|2

+
∫

supp μ

μ(z)Pn0(ψk(z))|dz|2
∣∣∣∣

then again, as in the Lemma 11, we get a contradiction for sufficiently large k. So,
ψ is not identically 0. Since R∗ is continuous with respect to the pointwise topology
then R∗(ψ) = ψ. Now, by Corollary 3 we are done. ��

In the situation of Corollary 12, we have that supp μ = C̄ almost everywhere, and
hence, every completely invariant set X of positive Lebesguemeasure is a full measure
subset of C̄.

If SR is connected then Corollary 12 is a simple consequence of Lemma 11 and
Teichmüller theory. In this case, μ is so-called a Teichmüller differential. Unfortu-
nately, we did not find in the literature analogous statements for when SR has infinitely
many components.

Nowweare ready to proveTheorem9using similar ideas as in the proof ofCorollary
12.

Proof of Theorem 9 By contradiction, assume that m(supp μ ∩ X) > 0. Without loss
of generality, we can assume that supp μ = ⋃

n≥0 R−n(X). By Lemma 10, μ is an
extremal differential. Let us show that μ does not accept degenerating sequences. If
φi is a degenerating sequence for μ, then for every ε > 0 there exists an i0 such that

(1 − ε)‖μ‖∞ ≤
∣∣∣∣
∫

supp μ

μ(z)φi0(z)|dz|2.
∣∣∣∣

By invariance of μ, the last expression is equal to

lim
n

∣∣∣∣
∫

supp μ

μ(R∗)n(φi0(z))|dz|2
∣∣∣∣.

But supp μ\X = ⋃
n≥0 R−n

[
R−1(X)\X

]
. By Lemma 1,

lim
n

∫

supp μ

μ(z)(R∗)n(φi0(z))|dz|2 = lim
n

∫

X
μ(z)(R∗)n(φi0(z))|dz|2.

If m(supp μ\X) > 0, then again by Lemma 1, (R∗)n(φi0) converges pointwise to 0 on
SR . Since X is inefficient, there exist δ > 0 and k0 such that ‖P − Pk0‖L1(X) ≤ 1− δ.
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Since (R∗)n(φi0) converges to 0 pointwise and Pk0 is compact then Pk0((R∗)n(φi0))

converges to 0 in the L1(X) norm. Therefore

(1 − ε)‖μ‖∞ ≤ lim
n

∣∣∣∣
∫

X
μ(z)(R∗)n(φi0)(z)|dz|2

∣∣∣∣

= lim
n

∣∣∣∣
∫

X
μ(z)

[
P((R∗)n(φi0(z))) − Pk0((R∗)n(φi0(z)))

] |dz|2
∣∣∣∣

≤ (1 − δ)‖μ‖∞.

Taking ε < δ we get a contradiction.
If m(supp μ\X) = 0 then supp μ is inefficient and μ does not accept degenerating

sequences by Lemma 11. Altogether μ does not accept degenerating sequences.
Now, as in the last part of the proof of Corollary 12, the map R is a flexible

Lattès map and supp μ has full Lebesgue measure on C, this is a contradiction to
m(supp μ) < ∞. ��

The following proposition is an illustration of when the conditions of Theorem 9
are fulfilled.

Proposition 13 If R is a rational map satisfying the B condition. If A is a measurable
subset of SR with

∫

A

∫

SR

|K (z, ζ )||dz|2|dζ |2 < ∞

then for any exhaustion of SR by measurable sets Yn and operators Pn defined as
above we have lim ‖Pn − P‖L1(A) = 0.

Proof LetYn be an exhaustion ofmeasurable sets as above. Since K (z, ζ ) is absolutely
integrable on A × SR then

|χn K (z, ζ )| ≤ |K (z, ζ )|

and χn K (z, ζ ) → K (z, ζ ) pointwise on A×SR .By the Lebesgue dominated theorem

inf
n

∫

A

∫

SR

|K (z, ζ ) − χn K (z, ζ )| = 0.

For all φ ∈ Q(SR), we have

‖Pn(φ) − P(φ)‖L1(A) ≤
∫

A
|Pn(φ) − P(φ)|

≤
∫

A

∫

SR

|λ−2(ζ )φ(ζ )(K (z, ζ ) − χn K (z, ζ ))||dζ |2|dz|2

≤ ‖λ−2φ‖∞
∫

A

∫

SR

|K (z, ζ ) − χn K (z, ζ )||dζ |2|dz|2
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then by the B-condition, the latter is bounded above by

C‖φ‖L1(SR)

∫

A

∫

SR

|K (z, ζ ) − χn K (z, ζ )||dζ |2|dz|2,

for some constant C which does not depend on φ.
Now let f ∈ L1(A), since P is a projection then f = φ + ω where φ ∈

Q(SR), P(ω) = Pn(ω) = 0, and

‖φ‖Q(SR) ≤ ‖P‖‖ f ‖L1(A).

Hence lim ‖Pn − P‖L1(A) = 0. ��
To conclude, let us note that the arguments of the theorems in this paper work

for entire and meromorphic functions in the class of Eremenko–Lyubich. This is the
class of all entire or meromorphic functions with finitely many critical and singular
values. It is not completely clear whether these arguments can be carried on entire or
meromorphic functions whose asymptotic value set contains a compact set of positive
Lebesgue measure.
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