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1 Introduction

A basic problem in Riemannian geometry is to construct examples of manifolds with
positive sectional curvature. Such examples are sparse in the literature. On the other
hand, the set of manifolds with non-negative sectional curvature enjoys large classes:
compact Lie groups with bi-invariant metrics, compact symmetric spaces, normal
homogeneous spaces, their Cartesian products, and quotients by free isometric group
actions.

Such discrepancy suggests that only a very restrictive class of manifolds carries a
metric of positive sectional curvature. The question of existence of positively curved
metrics still makes sense in the set of manifolds with symmetry (see [26] for a survey),
where one might be interested in presenting conditions on the orbits, for instance. This
paper establishes a hard obstruction for existence of positive sectional curvature in a
special, although interesting, class of metrics that generalizes (principal) symmetries.
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Given a compact Riemannian manifold (M, g), a foliationF in (M, g) is said to be
Riemannian if its leaves are locally equidistant. Here we only consider non-singular
non-trivial foliations, i.e., all leaves have the same positive dimension. We prove:

Theorem 1 Let F be an odd-codimensional Riemannian foliation with bounded
holonomy on a compact manifold M. Then M has a vertizontal plane with non-positive
sectional curvature.

We say that a foliation has bounded holonomy if there is a constant that uniformly
bounds the norms of all holonomy fields with unit initial condition. This class contains
principal and associated bundleswith compact structure group togetherwith all regular
homogeneous foliations defined by proper group actions (see Sect. 3.3).

Theorem 1 lies in two contexts. The first is a generalization of a classical result
of Berger: every Killing field in a compact even-dimensional manifold with positive
sectional curvature has a zero (see Petersen [19, p. 193] for a proof). Given such a
manifold, Theorem 1 recovers Berger’s result by considering the foliation defined by
a Killing vector field.

The second context is Wilhelms conjecture. (see, e.g., [1,3,7,13]):

Wilhelm’s Conjecture Let π : Mn+k → Bn be a Riemannian submersion from a
compact manifold M with positive sectional curvature. Then k < n.

Theorem 1 completely rules out the possibility of a Riemannian submersion with
compact holonomy group over an odd-dimensional bases, implying Wilhelm’s Con-
jecture under these hypothesis (we refer to [10, p. 13] for the definition of holonomy
group and Sect. 3.1 and Proposition 3.4 for the relation between compact holonomy
group and bounded holonomy).

Theorem 1 also plays a role in a connection between Berger’s result to Wilhelm’s
conjecture: if one considers only principal submersions from positively curved spaces,
then Berger’s result guarantees that their principal group has rank 1—if not, M would
admit a S1×S1-action, and thus either M or M/(S1×{1}) is an even-dimensionalman-
ifold with a non-vanishing Killing field.1 We call a Riemannian foliation F principal
if the leaves of F coincide with the orbits of an isometric action by a (not-necessarily
compact) Lie group G with discrete isotropy groups. Berger’s theorem cannot be
directly applied in this situation since the quotient of M by a one-parameter subgroup
may be an orbifold or even non-Hausdorff.

Theorem 1 provides a generalization of Berger’s result that handles the foliation
case, by considering the Riemannian foliations defined by exp(h′) and exp(h), where
h is a maximal abelian subalgebra of g and h′ is a subalgebra of h of co-dimension 1.
The co-dimension of one of these foliations must be odd.

Corollary 1.1 Let M be a compact Riemannian manifold with positive sectional cur-
vature. If F is a principal Riemannian foliation given by the group G, then the rank
of G is equal to 1.

1 The author thanks W. Ziller for pointing it out.
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In both cases, the group G is reduced to either S1, SO(3), or S3. In particular,
Wilhelm’s conjecture for principal bundles is reduced to the non-existence of free
S3- or SO(3)-actions on positively curved 5-manifolds (in any other case, either the
co-dimension is odd or bigger than 3).

Another particular case of Theorem 1 is interesting in its own right: the vertical
warping of a connection metric, whose proof sheds light on Theorem 1. Let F be
a Riemannian foliation on (M, g0). We call g0 a connection metric if F has totally
geodesic leaves with respect to g0. For any basic function φ, we consider a newmetric
gφ defined as

gφ(X + ξ, X + ξ) = g0(X, X) + e2φg0(ξ, ξ), (1)

for horizontal X and vertical ξ . We prove:

Theorem 2 Let F be a Riemannian foliation in a compact manifold M and g0 be a
connection metric. If gφ has positive sectional curvature for some φ, then F has a fat
point. That is, there is a point p ∈ M where the image of the O’Neill tensor, A∗

Xξ , is
non-zero for all non-zero horizontal X and vertical ξ .

The notion of fatness was introduced by Weinstein [24] and is a required property
for a Riemannian foliation with totally geodesic leaves to have positive sectional
curvature, making it a natural concept to appear in Theorem 2. Theorem 2 has two
straightforward implications (see Sect. 2 for a proof):

Corollary 1.2 Let F be a Riemannian foliation in a compact manifold M and g0 be
a connection metric. If gφ has positive sectional curvature for some φ, then

(i) the co-dimension of F is even,
(ii) the dimension of M is smaller than twice the co-dimension of F .

Item (i) is a strictly weaker version of Theorem 1. Item (ii) states that Wilhelm’s
conjecture holds for F (other results related to rigidity of leaf spaces in the presence
of curvature bounds are in Guijarro and Wilhelm [12] and Ou and Wilhelm [18].
An example in Kerin [14] shows that Wilhelm’s Conjecture does not hold if positive
curvature is required only in an open and dense set).

The proofs of Theorems 1 and 6.5 follow along the same lines of the proof of
Berger’s result, but require two different tools. The main tool is dual holonomy fields
(Sects. 1.2 and 4), analogous to the virtual Jacobi fields introduced in [23]. The second
tool is an auxiliary space, the bundle of infinitesimal holonomy transformations which
we introduce through a natural groupoid associated with the horizontal connection
(Sect. 3).

The author would like to thank W. Ziller for presenting a related question that
motivated Theorem 1, M. Alexandrino, C. Durán, A. Ribeiro, and K. Shankar for
their time helping on specific topics. Special thanks goes to C. Durán and anonymous
referees for suggestions.
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1.1 Notation

Wemostly use the notation ofGromoll andWalschap [10].We follow the usual nomen-
clature in Riemannian foliations, calling vectors tangent to leaves vertical vectors and
vectors orthogonal to leaves horizontal vectors. We denote the space of vertical vec-
tors at p ∈ M by Vp and the space of horizontal vectors as Hp. They define the
vector bundles V and H, respectively. The upper indexes h and v denote orthogonal
projection toH and V , respectively.

The geometry of Riemannian foliations is ruled by two tensors introduced by Gray
[8] and O’Neill [17]. We use slight modifications of these tensors as in [9] and [10].
Given horizontal vector fields X, Y and a vertical vector field ξ , we define

AX Y = ∇v
X Y = 1

2
[X, Y ]v, SXξ = −∇v

ξ X. (2)

The values of A and S at a point p only depend on the values of X, Y and ξ at p, making
them genuine tensors. We use the upper index ∗ to denote the adjoint of an operator
and −∗ as the inverse of the adjoint, as in [23]. In particular, we define A∗

X : V → H
as the unique operator satisfying

〈
A∗

Xξ, Y
〉 = 〈AX Y, ξ 〉 .

All inner products and covariant derivatives are in M . Holonomy fields are denoted
by ξ and η, dual holonomy fields by ν. Vertical vectors are also denoted by ξ and ν

whenever the context is free from ambiguity, otherwise by ξ0 and ν0.

1.2 Holonomy and Dual Holonomy Fields

Given a horizontal curve c on M , a vector field ξ is called a holonomy field if it is
vertical and satisfies

∇ċξ = −A∗̇
cξ − Sċξ (3)

(compare Grove and Gromoll [9] or Gromoll and Walschap [10, p. 17]). Holonomy
fields realize the derivative of local holonomy transformations: every point p ∈ M
has an open neighborhood U 	 p where the leaves of F coincide with the fibers of a
Riemannian submersion π : U → V . Thus given a horizontal curve c, π ◦ c induces a
local holonomy transformations between neighborhoods of c(0) and c(t) on the leaves
Lc(0) and Lc(t), for small t .

Holonomy fields are entirely determined by the horizontal distributionH (see e.g.,
Sect. 3 and Proposition 3.2). In spite of this, lengths of holonomy fields depend very
much on themetric along the vertical distribution. To illustrate this statement, consider
a principal U (1)-bundle π : M → B over a Riemanniain manifold (B, g). Given
ω : T M → R ∼= u(1), a connection 1-form, and λ > 0, M admits the Kaluza–Klein
metric
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2210 L. D. Sperança

g(X + ξ, Y + η) = g(dπ X, dπY ) + λω(ξ)ω(η).

One can see that F = {π−1(b) | b ∈ B} is a Riemannian foliation with horizontal
distributionH= ker ω. Let c be a horizontal geodesic and ξ an action field. Then ξ ◦c
is a holonomy field for every λ (Lemma 3.5), but ||ξ(c(t))|| = λω(ξ(c(t))).

In general, holonomy fields are natural generalizations of action fields in principal
bundles: if F is given by the fibers of a principal bundle, all holonomy fields are
obtained by restricting action fields to horizontal curves (Proposition 3.6). In this
case, if M is compact, we can find a uniform bound for the norm of all holonomy
fields with unit initial data.

A dual holonomy field is a vertical field ν that satisfies

∇ċν = −A∗̇
cν + Sċν. (4)

When leaves are totally geodesic, the inner product between two holonomy fields
is always constant. In this case, one can think of holonomy fields as their own duals.
In any other situation, dual holonomy fields are introduced to play this role (see
Proposition 4.1).

Dual holonomy fields do sense the metric along the leaves. They arise in an inter-
esting way when one considers integration along horizontal directions (as in Durán
and Sperança [5, Theorem 1]).

Although we ask both holonomy and dual holonomy fields to be vertical, a vector
field satisfying ∇h

ċ ξ = −A∗̇
cξ is vertical as long as it is vertical at a point (see Sect. 3,

Remark 3.1). In particular, along a fixed curve, holonomy and dual holonomy fields
are in one-to-one correspondence to initial value.

In contrast to virtual Jacobi fields (whose norms can explode), dual holonomy fields
are well behaved and also give an interesting expression for the sectional curvature
(Propositions 4.1 and 4.2). Both constructions are closely related: in Verdiani and
Ziller [23], based on the choice of a family J = {J1, ..., Js} of Jacobi fields, the
virtual Jacobi fields associated to J are the family of fields {Z1, ..., Zs} satisfying〈
Ji , Z j

〉 = δi j . The family J is a Lagrangian subspace of Jacobi fields with respect to
a natural symplectic form. Such Lagrangian spaces coincide with maximal families of
Jacobi fields with self-adjoint Riccati operator in Wilking [25] or [10, p. 45]. Our dual
holonomy fields are constructed in the same fashion, but using an special isotropic
subspace instead of a Lagrangian one.

As opposed to action fields, both holonomy fields and dual holonomy fields are, in
principle, defined only along curves. This leads to the second tool: we introduce the
groupoid of infinitesimal holonomy transformations as an auxiliary space, where we
can construct global objects similar to action fields, whose restrictions to curves give
rise to all holonomy and dual holonomy fields.

The precise definition of bounded holonomy follows below. Riemannian submer-
sions with compact holonomy groups enjoy interesting properties (see Pro–Wilhelm
[20] and Tapp [21,22]). The condition of bounded holonomy is slightly more general
andmakes sense for foliations. In Sect. 3.3, we prove that it is satisfied for the common
classes of Riemannian foliations mentioned in the beginning.
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On Riemannian Foliations over Positively Curved Manifolds 2211

Definition 1.3 We say that a Riemannian foliation has bounded holonomy if there is
a constant L such that, for every holonomy field ξ and every t , ||ξ(t)|| ≤ L||ξ(0)||.

When M is compact, this condition only depends on the horizontal distribution
and not on all the involved structures (see Theorem 6.5). We can also observe that a
Riemannian foliation has bounded holonomy if and only if its dual holonomy fields
satisfy the bound in Definition 1.3 (Lemma 5.2). This is how the boundedness of
holonomy comes into the proof of Theorem 1.

The rest of the paper is divided in five sections. In Sect. 2 we prove Theorem 2. In
Sect. 3, we construct the groupoid of infinitesimal holonomy transformations and in
Sect. 4 the dual holonomy fields. In Sect. 5 we prove the main theorem and in Sect. 6
we explore further the hypothesis and methods. The boundedness of holonomy is only
used on Sect. 5.

2 Proof of Theorem 2

In a vertical warping of a connection metric, the function φ plays the role of the norm
of the Killing field in the proof of Berger result (see Petersen [19, p. 193]). We prove
Theorem 2 using Gray–O’Neill’s formula for the vertizontal curvatures of M at a
maximum of φ.

Since holonomy fields coincides in the metrics g0 and gφ (since these two metrics
have the same horizontal distribution, it follows from the discussion below Eq. (3)),
we can explicitly compute the S-tensor in the metric gφ . If ξ and η are holonomy fields
along a horizontal curve c,

gφ(ξ(t), η(t)) = e2φg0(ξ(t), η(t)) = e2φg0(ξ(0), η(0)) ,

since the g0-inner product of two holonomy fields is constant. The S-tensor associated
to gφ , Sφ , is determined by

2gφ

(
Sφ

ċ ξ, η
)

= − d

dt
gφ(ξ, η) = − d

dt
[e2φ]g0(ξ, η) = 2gφ(−dφ(ċ)ξ, η).

In particular, at a minimum of φ, Sφ ≡ 0 and the equation for the unreduced sectional
curvature of ċ and ξ (see [10, p. 28] or 13) becomes

K (ξ, ċ) = −1

2
||ξ ||2g0Hessφ(ċ, ċ) + ||A∗̇

cξ ||2gφ
. (5)

In addition, Hessφ is non-negative at this point. Therefore, if K is positive, ||A∗̇
cξ ||2gφ

must be non-zero for every non-zero pair ċ, ξ .
Corollary 1.2 is a direct consequence of linear algebra: both maps X �→ A∗

Xξ and
ξ �→ A∗

Xξ are injective (whenever ξ �= 0 in the first and X �= 0 in the second),
and consequently, being the first map skew-symmetric, they imply item (i) and (ii),
respectively. Following Florit and Ziller [6], injectivity of ξ �→ A∗

Xξ further implies
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2212 L. D. Sperança

that the dimension of V is bounded from above by the maximum number of linearly
independent vector fields on the sphere of dimension dimH − 1. ��

Two difficulties appear in a general metric (not a vertical warping of a connection
metric): there is related function to maximize (as φ) and the Hessian in (5) is replaced
by 〈(∇X S)X ξ, ξ 〉, a term much more difficult to control. The aim of the next sections
is to overcome such difficulties by constructing a function that plays the role of φ in a
general Riemannian foliation. We introduce this function in Sect. 5. It is not defined
on M but in a subset of the groupoid of infinitesimal holonomy transformations.

Theorems1, 2, and 6.4 suggest that positively curved foliationsmay carry fat objects
such as a fat point, or a horizontal vector with the property we conjecture below:

Conjecture 1 (Strong Wilhelm’s Conjecture) Let F in M be a Riemannian foliation
on a compact manifold with positive curvature. Then, it has a horizontal vector X
such that A∗

X is injective.

3 The Infinitesimal Holonomy Bundle

Here we present an auxiliary space used in the proof of Theorem 1. The language of
groupoids presents itself as a natural language to describe this object. We referee to
[16, Chapter 5] for a deeper introduction to the subject.

Foliations usually do not provide holonomy diffeomorphisms between leaves (as
in the case of Riemannian submersions—see [10, p. 12]). However, infinitesimal data
can be recovered from holonomy fields. For a horizontal curve c : [0, 1] → M , we
define h : Vc(0) → Vc(1) as the linear isomorphism given by h(ξ0) = ξ(1), where
ξ(t) is the holonomy field along c with initial condition ξ(0) = ξ0. We call h an
infinitesimal holonomy transformation.

Another way to recover the infinitesimal data is using local horizontal lifts. Given
p ∈ M , let U be an open neighborhood of p such that the restriction of F to U is
realized by a submersion π : U → V .

Given a horizontal curve c on U , we can find a neighborhood of c(0) U ′ ⊂ U of
the leaf passing through c(0) and a map ψ : U × [0, 1] → M such that

(1) ψ(x, 0) = x ;
(2) for every x ∈ U ′, t �→ ψ(x, t) is a horizontal lift of π(c(t)).

Since c is horizontal, it must be the horizontal lift of π ◦ c through c(0), and
thus ψ(c(0), t) = c(t). Therefore, independent of U ′, we can always consider
dψ(c(0),1) : Vc(0) → Vc(1) as an infinitesimal holonomy transformation. Such local
construction of horizontal lifts, together with the possibility to divide curves into
small concatenated curves, shows that the set of dφ’s coincide with the set of holon-
omy transformations defined in the first paragraph.

Each infinitesimal holonomy transformation is an element in the set

Aut(V) = {h : Vp → Vq | p, q ∈ M, h ∈ Iso(Vp,Vq)}, (6)

where Iso(Vp,Vq) stands for the set of linear isomorphisms between Vp and Vq . Com-
position and inversion of linear transformations endows Aut(V) with a Lie groupoid
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On Riemannian Foliations over Positively Curved Manifolds 2213

structure. A Lie groupoid is a pair of smooth manifolds G, M (also known as the set of
arrows and objects) together with two submersions σ, τ : G → M called the source
and target maps; a partially defined multiplication, (h, h′) �→ h′h, defined on pair
of elements satisfying σ(h′) = τ(h); an inverse map i : G → G; and (in our case)
a bi-unit map–a section of both σ and τ that behaves pointwise as a neutral element
(since we deal with natural operations on a set of linear maps, we refer to [16] for fur-
ther details of the general theory.) In the case of Aut(V), themaps σ, τ : Aut(V) → M
defined on h : Vp → Vq by σ(h) = p and τ(h) = q are the source and the target
maps, respectively. They, together with the usual composition of linear maps, sat-
isfy the Lie groupoid axioms: given h, h′ ∈ Aut(V) such that σ(h′) = τ(h), then
σ(h′h) = σ(h) and τ(h′h) = τ(h′); τ(h−1) = σ(h) and vice versa; the unit map,
p �→ idVp , is a section for both σ and τ and works as a neutral element.

E , the collection of all infinitesimal holonomy transformations defined by F , is
naturally included in Aut(V) and is closed by composition and inversion: if h : Vp →
Vq is realized by the horizontal curve c and h′ : Vq → Vr is realized by c′, then h′ ◦ h
is realized by the concatenation of c and c′; h−1 is realized by the curve c̃ defined by
c̃(t) = c(1 − t). The unit map p �→ idVp is realized by constant curves.

We endowAut(V)with the topology defined by the submersion σ ×τ : Aut(V) →
M × M along with the operator norm on Iso(Vp,Vq) induced by the metric on M . The
space E inherits a topology and a groupoid structure from Aut(V). Smoothness and
related questions are discussed in Sect. 6, but neither topology nor differentiability
will be used in the proof of Theorem 1.

As usual for groupoids, the restriction of τ to an orbit of E defines a principal
bundle: let p ∈ M and denote Ep = σ−1(p) ∩ E . Then τp = τ |Ep defines a principal
bundle over τ(σ−1(p)) ∩ E = L#

p, the dual leaf through p (see Wilking [25] or [10,
p. 40] for the definition of dual leaf). The structure group of τp, which we denote by
Hp, is the set of infinitesimal holonomy transformations realized by closed horizontal
loops based at p.

Remark 3.1 In contrast to [25], we consider holonomy fields along general horizontal
curves instead of broken geodesics. We prefer to deal with the generality of smooth
curves sincewe believe that it expresses better the non-Riemannian nature of (infinites-
imal) holonomy transformations. With smooth curves, we still recover the set of
infinitesimal holonomy transformations defined by broken geodesics: every broken
geodesic can be made a smooth curve by a reparametrization that makes its velocity
zero at cusps – since holonomy transformations are defined by their horizontal lifts,
they do not depend on the parametrization of their realizing curves.

To further justify how we are considering general curves, we observe that Eq. (3)
together with a vertical initial value defines a vertical vector field. As mentioned, this
fact is true for any field satisfying ∇h

ċ ξ = −A∗̇
cξ (in particular, dual holonomy fields).

To prove that the equality ∇h
ċ ξ = −A∗̇

cξ preserves the property of being vertical,
observe that ∇v

ċ Z = Aċ Z for every horizontal field Z , and therefore

d

dt
〈ξ, Z〉 = 〈ξ,∇ċ Z〉 +

〈
∇h

ċ ξ, Z
〉
= 〈ξ, Aċ Z〉 +

〈
ξ,∇h

ċ Z
〉
− 〈

A∗̇
cξ, Z

〉 =
〈
ξ,∇h

ċ Z
〉
.
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2214 L. D. Sperança

On the other hand, one can always obtain a horizontal frame of vector fields satisfying
∇h

ċ Z = 0 (for instance, we can use local horizontal lifts of parallel vector fields.)

3.1 Examples

Let us give a brief idea of Ep in some cases:

Case 1 If F is given by the fibers of a Riemannian submersion π̄ : M → B, its
holonomy group at π̄(p) acts via diffeomorphisms on the fiber F = π̄−1(π̄(p)) (see
[10, p. 13]). In this case, Hp coincides with the image of the isotropy representation
of the holonomy group at Vp = Tp F .

Case 2 If π̄ : M = P
π̄→ B is a principal G-bundle, holonomy fields are restrictions

of action fields to horizontal curves (see Lemma 3.5 for a proof), i.e., if ξ̂ is an action
field and c is a horizontal curve, ξ(t) = ξ̂ (c(t)) is a holonomy field along c. In this
case, Hp is trivial since

ξ(0) = ξ̂ (c(0)) = ξ̂ (c(1)) = ξ(1) (7)

for every closed horizontal loop c. Furthermore, π̄ ◦ τp : Ep → B is isomorphic to
the bundle reduction defined by the connection on P (denoted by P(p) in Kobayashi
and Nomizu [15, II.7, Theorem 7.1]), which coincides with L#

p.

Case 3 More generally, for π̄ : M → B a Riemannian submersion with totally
geodesic fibers, π̄ ◦ τp : Ep → B is isomorphic to the holonomy bundle of the restric-
tion π̄p = π̄ |L#

p
: L#

p → B: given a Riemannian submersion π̄ , we can define a

principal bundle P̄ by fixing a fiber F = π̄−1(b) and gathering all holonomy dif-
feomorphisms induced by curves from b. When the submersion has totally geodesic
fibers, all elements of P̄ are inside the bundle P defined by all isometries from F to
any fiber (see [10, Theorem 2.7.2]). Moreover, P inherits a natural connection from
π̄ and P̄ coincides with bundle reduction of P defined by the inherited connection,
passing through id : F → F (P̄ = P(id) in the notation of [15]). The structure group
of P̄ is the holonomy group of π̄ at π̄(p), which we denote here by G.

To see how Ep realizes P̄ , assume that M = L#
p and observe that G acts naturally

on Ep: if g ∈ G and h ∈ Ep are realized by the curves β and c, respectively, we set
h · g as the transformation realized by the concatenation of β followed by the lift of
π̄ ◦ c to g(p). Equivalently, h · g = h̃ ◦ dgp, where h̃ is the infinitesimal holonomy
transformation defined by the lift of π̄ ◦ c to g(p). This action is free, since g is an
isometry: h̃ ◦ dgp = h if and only if g(p) = p and dgp = id, and therefore g = id.

Case 4 The arguments in Case 3 remain valid whenever the holonomy group of the
submersion is compact (see Theorem 6.5).

These facts are the main motivations for defining E and Ep. We give a more detailed
example in Sect. 6.1.
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3.2 The Natural Action and Horizontal Lifts

The groupoid E acts naturally on vertical vectors. As we shall see, this action gives
rise to all holonomy and dual holonomy fields. Let π : V → M be the bundle of
vertical vectors and define

ζ : E�V → V
(h, ξ) �→ h(ξ). (8)

Here E�V is the fibered product

E�V = {(h, ξ) ∈ E × V | σ(h) = π(ξ)}.

Observe that the restriction ζ |Ep×Vp : Ep × Vp → V defines V as a linear bundle
associated to τp : Ep → L#

p.
Holonomy fields give a natural way to lift horizontal curves from M to Ep. For any

horizontal curve c : [0, 1] → M , we define ĉ : I → E as

ĉ(t)ξ0 = ξ(t),

where ξ is the holonomy field along c with initial condition ξ(0) = ξ0. Observe that
σ(ĉ(t)) = c(0) and τ(ĉ(t)) = c(t).

Given h ∈ E and a horizontal curve c starting at τ(h), we define the τp-horizontal
lift of c at h as the curve ĉh : I → Ep such that ĉh(t) = ĉ(t)h. It follows immediately
from definition that all holonomy fields on L#

p are recovered by these lifts. We state it
as a proposition.

Proposition 3.2 Let h ∈ Ep and c be a horizontal curve with c(0) = τ(h). Then

(1) Given ξ0 ∈ Vp, ξ(t) = ζ(ĉh(t), ξ0) is a holonomy field along c;
(2) Given a holonomy field ξ along c, then ξ(t) = ζ(ĉh(t), h−1(ξ(0))) = ĉ(t)(ξ(0)).

3.3 Bounded Holonomy

With Proposition 3.2 at hand, we can give sufficient conditions for bounded holonomy.
We begin with an alternative characterization of this property.

Lemma 3.3 F has bounded holonomy if and only if there is a constant L that bounds
the operator norm of all elements in E . That is, if ||h|| ≤ L for every h ∈ E .

Moreover, the operator norm is continuous in E with the topology induced by
Aut(V), since it is continuous in Aut(V).

Proposition 3.4 Let M be compact and F be the Riemannian foliation given by the
fibers of a Riemannian submersion π̄ : M → B with compact structure group. Then
F has bounded holonomy.
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2216 L. D. Sperança

Proof Since M is compact, every point in B can be connected to a given point x
by a geodesic whose length is less than the diameter of M . Denote the holonomy
diffeomorphism defined by a length minimizing geodesic that connects x to y by
ψ y (the choice of the geodesic is irrelevant). Since the lengths of the geodesics are
uniformly bounded, so are dψ y (Tapp [22, Proposition 2.2]). The same is true for
the differential of any element in the holonomy group, since the last is contained in
a compact structure group. That is, the differentials dψ are bounded for all ψ in the
holonomy group at x .

The proposition follows from the fact that every infinitesimal holonomy transfor-
mation can be decomposed as h = (dψ y)−1dψdψ y′

for some ψ in the holonomy
group, y = π(τ(h)) and y′ = σ(h). ��

When the foliation is given by a subalgebra of Killing fields m, we prove that all
holonomy fields are restrictions of elements of m to horizontal curves. This settled,
the bound on the norm of elements of E is given in terms of the norms of the Killing
fields.

Lemma 3.5 Let F be a Riemannian foliation defined by the action of a Lie algebra
m of Killing vector fields. Then, for every ξ̂ ∈ m and every horizontal curve c, ξ(t) =
ξ̂ (c(t)) is a holonomy field.

Proof Let �θ be the flow of ξ̂ ∈ m. V is preserved by d�θ since V is spanned by
the Lie algebra m. Since ξ̂ is Killing, d�θ also preserves the horizontal distribution.
Therefore, if c is a horizontal curve starting at p, ψ(θ, t) = �θ(c(t)) is a collection
of horizontal curves. Furthermore, X = ∂ψ

∂t is a horizontal vector field along the

image of ψ which satisfies [ξ̂ , X ] = 0. In particular, ∇v
Xξ = ∇v

ξ X = −SX ξ (and

∇h
Xξ = −A∗

X ξ since ξ is vertical), which proves that ξ(t) satisfies Eq. (3). ��
Let F be as in Lemma 3.5. From Lemma 3.5, we conclude that Hp = {id}: given

a horizontal curve c and a holonomy field ξ on it, then there exists an action field ξ̂

such that ξ(t) = ξ̂ (c(t)) for every t . Therefore, if c is a horizontal loop,

ĉ(1)ξ(0) = ξ(1) = ξ̂ (c(1)) = ξ̂ (c(0)) = ξ(0).

In particular, further assuming that F has only one dual leaf, E = M × M (note that
Hp is the fiber of the submersion σ × τ : E → M × M at (p, p)), which is a compact
subset of Aut(V) whenever M is compact, providing the bound L in Lemma 3.3. The
case of non-trivial dual foliations is treated below.

Proposition 3.6 Let M be compact and F be a Riemannian foliation defined by a Lie
algebra m of Killing fields. Then F has bounded holonomy.

Proof Given p ∈ M , denote by ep : m → Vp the evaluation map and fix an inner
product on m. Since m spans the vertical space at every point, the space

E = {(p, ξ̂ ) ∈ M × m | ξ̂ ∈ (ker ep)
⊥}
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defines a smooth vector bundle over M .We further endow it with themetric induced by
ep. Denote the sphere bundle of E by S(E). We can define a function r : S(E) → R

as r(p, ξ̂ ) = maxq∈M ||ξ̂ (q)||. Since r is continuous and S(E) compact, it has a
maximum L . Lemma 3.5 guarantees that this is the desired bound. ��

4 Dual Holonomy Fields

Wegive three equivalent characterizations of dual holonomyfields.Given h ∈ Aut(V),
denote by h−∗ the inverse of the dual of h.

Proposition 4.1 Let ν be a vertical field along a horizontal curve c on M. Then, the
following conditions are equivalent:

(1) For any holonomy field ξ , 〈ξ(t), ν(t)〉 is constant
(2) If c is a horizontal curve, then ν(t) = ζ(ĉ(t)−∗, ν(0)) = ĉ(t)−∗ν0
(3) ∇ċν = −A∗̇

cν + Sċν.

We call a vertical field satisfying any of these conditions as a dual holonomy field.

Proof Items (1) and (2) are equivalent since ξ is a holonomy field if and only if
ξ(t) = ζ(ĉ(t), ξ(0)) (Proposition 3.2). To verify the equivalence between (1) and (3),
note that, for a holonomy field ξ ,

d

dt
〈ξ, ν〉 = 〈∇v

ċ ξ, ν
〉 + 〈

ξ,∇v
ċ ν

〉 = 〈
ξ,∇v

ċ ν − Sċν
〉
, (9)

which is zero for all holonomy fields if and only if ∇v
ċ ν = Sċν. Any vertical vector

field satisfies ∇h
ċ ν = −A∗̇

cν. ��
Item (1) connects dual holonomy fields to the virtual Jacobi fields defined on Ver-

diani and Ziller [23]. According to item (2), if we define ζ̄ : Eσ ×πV → V as

ζ̄ (h, ν) = h−∗(ν), (10)

then, in analogy to Proposition 3.2, all dual holonomy fields can be expressed as
ζ̄ (ĉh(t), h∗ν). Item (3) provides a useful expression for the sectional curvature of the
plane spanned by ċ and ν (Proposition 4.2). We recall that the difference between
a holonomy field and a dual holonomy field is (notation-wise) quite small: while
holonomy fields are defined as ξ(t) = ĉ(t)ξ(0), dual holonomy fields are defined by
ν(t) = ĉ(t)−∗ν(0).

4.1 The Curvature Equation

Proposition 4.2 Let ν be a dual holonomy field and γ a horizontal geodesic. Then,
the unreduced sectional curvature K of the pair γ̇ , ν along γ is given by

K (γ̇ , ν) = 1

2

d2

dt2

∣∣∣
t=0

||ν(t)||2 − 3||Sγ̇ ν||2 + ||A∗̇
γ ν||2. (11)
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Proof Recalling Gray–O’Neill’s curvature equations [10, p. 28], we have

K (γ̇ , ν) = 〈
(∇γ̇ S)γ̇ ν, ν

〉 − ||Sγ̇ ν||2 + ||A∗̇
γ ν||2. (12)

From the first term, we get

〈
(∇γ̇ S)γ̇ ν, ν

〉 = d

dt

〈
Sγ̇ ν, ν

〉 − 〈
Sγ̇ ν,∇γ̇ ν

〉 − 〈
Sγ̇ ∇γ̇ ν, ν

〉

= d

dt

〈∇γ̇ ν, ν
〉 − ||Sγ̇ ν||2 −

〈
∇v

γ̇ ν, Sγ̇ ν
〉

= 1

2

d2

dt2
||ν||2 − 2||Sγ̇ ν||2. ��

The analogous equation for a holonomy field ξ is

K (γ̇ , ξ) = −1

2

d2

dt2
||ξ ||2 + ||Sγ̇ ξ ||2 + ||A∗̇

γ ξ ||2. (13)

The advantage of (11) is the minus sign in front of ||Sγ̇ ν||2.

5 Proof of Theorem 1

Fix a unitary ν0 ∈ Vp and define a real function ρν0 : Ep → R as

ρν0(h) = ||h−∗ν0||2. (14)

Weuse this function to replaceφ in the proof of Theorem1. For instance, at amaximum
of ρν0 , Eq. (12) guarantees that 〈(∇X S)Xν, ν〉 is non-positive and we can use linear
algebra to deal with the A-term.

Theorem 5.1 Suppose that M is compact and F has bounded holonomy. Then, there
exists a non-zero ν ∈ V such that, for every X ∈ Hπ(ν), K (X, ν) ≤ ||A∗

Xν||2.

Theorem 5.1 guarantees the existence of a vector ν ∈ V such that the skew-
symmetric map X �→ A∗

Xν is injective whenever M has positive sectional curvature.
Thus concluding that the dimension ofHmust be even. One may wonder whenever it
is possible to find a vector X such that ξ �→ A∗

Xξ is injective, thus settling Wilhelm’s
Conjecture.

Before proving Theorem 5.1, we make a connection between the hypothesis on
holonomy and the map ρν0 .

Lemma 5.2 A foliation F has bounded holonomy if and only if there are constants
l̄, L̄ > 0 such that l2||ν0||2 ≤ ρν0(h) ≤ L2||ν0||2, for all (h, ν0) ∈ Eσ ×πV .

Proof Let L be a bound for the norm of holonomy fields with unit initial condition.
According to Lemma 3.3, ||h|| ≤ L for all h ∈ E . On the other hand, since E is closed
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by inversion, ||(h∗)−1|| = ||h−1|| ≤ L , which, together with (2) of Proposition 4.1,
make L a bound for all dual holonomy fields with unit initial condition. The constant
l can be taken as L−1. ��

Proof of Theorem 5.1: Given ν ∈ Vq and X ∈ Hq , we take advantage of Proposition
4.2 by exploring the function f (t) = ||ν(t)||2, where ν(t) is the dual holonomy field
defined by ν along the geodesic spanned by X . From Proposition 4.2,

1

2
f ′′(0) = K (γ̇ , ν) + 3||Sγ̇ ν||2 − ||A∗̇

γ ν||2. (15)

In particular, we complete the proof by finding ν that satisfies f ′′(0) ≤ 0 for each
X ∈ Hq . Let {hk ∈ Ep} be a sequence whose images {ρν0(hk)} converges to the
supremum of ρν0 . We shall see that ν can be taken as any accumulation point for
{h−∗

k ν0}.
For simplicity, assume for the sequence {hk} above, that {h−∗

k ν0} converges to
some ν. The limit, ν, must be non-zero since there are constants l, L > 0 such that
l ≤ ||h−∗

k || ≤ L (Lemma 5.2).
The proof is finished if {hk} converges to some h ∈ Ep: in this case, ρν0(h) is a

maximum and, for every X ∈ Hτ(h), the function f (t) = ||ν(t)||2 has a maximum at
0. In the general case, we approximate the function f by similar functions.

Fix X ∈ Hπ(ν) and let {Xk ∈ Hτ(hk )}be a sequence of horizontal vectors converging
to X . Consider the family of real functions { fk} defined by fk(t) = ||νk(t)||2, where
νk(t) is the dual holonomy field defined by h−∗

k ν0 along exp(t Xk). The sequence
{ fk} clearly converges pointwise to f . To conclude that the convergence is Cr , r ≥
2, observe that the derivatives of fk are expressed in terms of S and the covariant
derivatives of S. Since M is compact, we can uniformly bound any finite number of
them.

Assume by contradiction that f ′′(0) > 2d > 0 for some X ∈ H. Let k0 be big
enough so that f ′′

k (0) > d for k > k0. Then, the Taylor expansion of fk gives

fk(ε) = fk(0) + f ′
k(0)ε + f ′′

k (0)
ε2

2
+ O(2)

k (ε) .

The uniform bound on the derivatives guarantees a uniform bound |O(2)
k (ε)| <

lε3/2 for all k > k0. In fact, for each k, there is a ck ∈ R such that

|O(2)
k (ε)| <

∣∣∣∣
f ′′′
k (ck)

3!
∣∣∣∣ |ε|3.

Now, taking d/4l < ε < d/2l, we have

fk(ε) > fk(0) + f ′
k(0)ε + ε2

2
(d − lε) > fk(0) + f ′

k(0)ε + d3

64l2
,
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which converges to a value strictly bigger than f (0), unless f ′(0) is negative.However,
following along the same lines, we conclude that

fk(−ε) > fk(0) − f ′
k(0)ε + d3

64l2

converges to a value strictly bigger than f (0) if f ′(0) is negative. Observing that
fk(t) = ρν0(γ̂k(t)), where γ̂k is the τp-horizontal lift at hk of γk(t) = exp(t Xk), we
contradict the fact that f (0) is a supremum for ρν0 . ��

6 Final Remarks

6.1 Smoothness of E

The foliation F̃ , defined on Aut p(V) = σ−1(p) by

F̃ = {τ−1(L) ∩ Aut p(V) | L ∈ F},

is endowed with a natural horizontal distribution by Proposition 3.2. Its dual leaf
through id ∈ Aut p(V) is Ep. Thus Ep is an immersed submanifold of Aut p(V).
Smoothness of the submersion τp : Ep → L#

p is a much less trivial result—since it
falls out of the scope of this paper, we present the details elsewhere.

Considering the differentiability of Ep, we believe in the Morse Theory of ρν0 as a
genuine approach to generalize Theorem 1 to unbounded holonomy, or even to other
problems, such as Wilhelm’s Conjecture.

To further familiarize with the concept of E , we take the opportunity to give an
example of a foliation where Ep vary along M .

Example 6.1 Let h : S7 → S4 be the S3-principal Hopf fibration, where S7 is
endowed with the metric of constant sectional curvature 1 and S3 is the quaternionic
unit sphere. Denote the principal S3-action as g · x and let M = S7×S3 S3 be the
quotient of S7×S3 by the S3-action g · (x, r) = (g · x, grg−1). Denote the quotient
map as q : S7×S3 → M . M is naturally an associated bundle, π : M → S4, with
projection π(q(x, r)) = h(x).

Let F be the foliation on M given by the fibers of π . The holonomy of F comes
from h: if c is a curve in S4 and cx is its horizontal lift with respect to h with cx (0) =
x ∈ S7, then cq(x,r), the horizontal lift of c with respect to π , is given by cq(x,r)(t) =
q(cx (t), r).

Let �: M → [−1, 1] be the map that sends q(x, r) to the real part of r (observe
that it only depends on the image of q(x, r), not on r ). The level sets of� characterizes
the dual leaves of F : if q(x, r) ∈ M , then L#

q(x,r) = �−1(�(q(x, r))). In particular,

if r �= ± 1, dim L#
q(x,r) = 6 (moreover, the restriction π |L#

q(x,r)
: L#

q(x,r) → S4 is

isomorphic to the classical Penrose fibration CP3 → HP1 described in [4]). On
the other hand, q(S7×{±1}) is a four-sphere, since g · (x,±1) = (g · x,±1) (thus
qS7×{±1} : S7×{±1} → q(S7×{±1}) is isomorphic to h).
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Although such discrepancy may occur among dual leaves, one can identify
τq(x,r) : Eq(x,r) → L#

q(x,r) with q|S7×{r} : S7 × {r} → L#
q(x,r). In particular, although

the bundle τq(x,r) may vary, every Eq(x,r) is diffeomorphic to S7.

Based on Example 6.1, we conjecture:

Conjecture 2 Let F be a Riemannian foliation on M and let FE be the foliation
whose leaves are Ep. Then FE is a smooth non-singular foliation. Furthermore, for
every p ∈ M, L#

p is diffeomorphic to Ep ×Hp L̃ p, for some action of Hp on L̃ p, the
universal cover of L p.

Notice that Example 6.1 has bounded holonomy. Itmay be the case thatConjecture 2
is true only for bounded holonomy.

6.2 A Dual Leaf Theorem

We use the tools developed here to slightly generalize Wilking’s single dual leaf
Theorem in the context of bounded holonomy.

Theorem 6.2 Let F be a Riemannian foliation with bounded holonomy and positive
vertizontal curvature. Then F has only one dual leaf.

We prove this theorem by giving an Ambrose–Singer type of description for the
tangent of the dual leaves. Recall the case of principal bundles, where the Ambrose–
Singer theorem describes the tangent to the dual leaf via the curvature two-form �

(see Case 2 in 3.1 and Kobayashi–Nomizu [15, II.7, Theorem 7.1]). It states that
(after proper identification), the vertical part of T L#

p is spanned by {�(X, Y )}, where
X, Y runs through all horizontal vectors on the bundle. The curvature two-form is not
present in our context and its best replacement is the Gray–O’Neill’s A-tensor, whose
image resides on different fibers of V (making it impossible to get all values together).
To get round this situation, we define the set

Ap = span{h−1(AX Y ) | X, Y ∈ Hτ(h), h ∈ Ep}.

It should be straightforward that Ap = Tp L#
p ∩ Vp (compare Sect. 2.1 and Lemma

2.1 on Guijarro–Walschap [11]). Given a horizontal curve c : R → M , we can define
another (possibly much smaller) set:

C(c) = span{ĉ(t)−1(Aċ(t)Z) | Z ∈ Hc(t) and t ∈ R} ⊂ Vc(0).

In a foliation with positive vertizontal curvature and bounded holonomy, we can prove
that C(c) = Vc(0) (Theorem 6.4).

To prove Theorem 6.4, we follow an idea present in Wilking [25]. Let ξ be a Jacobi
holonomy field whose initial value is orthogonal to the dual leaves. In the context
of non-negatively curved manifolds, [25] proves that such a holonomy field stays
orthogonal to dual leaves. We prove that, in the general case, dual holonomy fields
exhibit a similar behavior with respect to C(c) (orAp). For convenience, denote by cs

the curve cs(t) = c(s + t).
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Lemma 6.3 If ν0 ⊥ C(c), thenν, the dual holonomy field defined byν0 along c, satisfies
ν(s)⊥ C(cs). In particular, A∗̇

cν(s) = 0 for all s.

Proof The first claim follows by observing that C(cs) = ĉ(s)(C(c)). Moreover, since
Aċs Z ∈ C(cs) for all Z ∈ Hc(s), A∗̇

cs
ν(s) = 0. ��

Theorem 6.4 Let F be a Riemannian foliation with bounded holonomy and positive
vertizontal curvature. Then, for any horizontal geodesic c : R → M, C(c) = Vc(0).

Proof Let ν be a non-zero dual holonomy field as in lemma 6.3. Using (11), we have

1

2

d2

dt2
||ν(t)||2 = K (ċ, ν(t)) + 3||Sċν(t)||2.

Since K (ċ, ν(t)) > 0, ||ν(t)||2 is unbounded, contradicting the hypothesis. ��
We believe that Theorem 6.4 might help proving Wilhelm’s conjecture.
We follow [2] and call a foliation twisted if it has only one dual leaf. Theorem 6.4

shows that a foliation with bounded holonomy and positive vertizontal curvature is
twisted.

6.3 Bounded Holonomy as a Generalization of Compact Holonomy

The aim of this section is to introduce the condition of bounded holonomy as a good
replacement in foliations for the property of compact holonomy group, that is only
defined on submersions. Here we present a characterization shared by both conditions.

Theorem 6.5 Let F be a twisted Riemannian foliation on a complete manifold
(M, g0). Then F has bounded holonomy if and only if M admits a connection metric
g1 such that, for every X ∈ H and ξ ∈ V ,

g1(X + ξ, X + ξ) = g0(X, X) + g1(ξ, ξ).

Proof Suppose thatF has bounded holonomy. Then, the closure of Hp on GL(Vp) is
compact, and thus Vp can be endowed with a Hp-invariant inner product 〈, 〉. Given
h ∈ Ep, observe that the metric defined by 〈ξ, η〉q = 〈

h−1ξ, h−1η
〉
does not depend

on the choice of h ∈ τ−1
p (q). In fact, if h, k ∈ τ−1

p (q),

〈
h−1ξ, h−1η

〉
=

〈
h−1kk−1ξ, h−1kk−1η

〉
=

〈
k−1ξ, k−1η

〉
,

since h−1k ∈ Hp.
To see that the foliation is totally geodesic, it is sufficient to check that holonomy

fields have constant length along horizontal curves, since, if ξ(t) is a holonomy field
along c,

d

dt
〈ξ(t), ξ(t)〉 = 2 〈Sċξ, ξ 〉
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and Sċ is a symmetric operator. However, if ξ(t) is a holonomy field, ξ(t) = ĉ(t)ξ0,
for ξ0 = ξ(0). Therefore, recalling that ĉ is in Ep,

〈ξ(t), ξ(t)〉c(t) =
〈
ĉ(t)−1ĉ(t)ξ0, ĉ(t)−1ĉ(t)ξ0

〉
= 〈ξ0, ξ0〉 .

��
We observe that the smoothness of the metric constructed in Theorem 6.5 depends

on the facts that Ep ⊂ Aut(V) is an immersed submanifold and that τp : Ep → M is a
smooth submersion. However, this settled, Theorem 6.5 guarantees that a Riemannian
foliation F with bounded holonomy has a finite dimension Lie group as its holonomy
group and its Lie algebra is compact—details will be provided elsewhere.
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