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Abstract We define regularity scales to study the behavior of the Calabi flow. Based
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1 Introduction

In the seminal work [5], E. Calabi studied the variational problem of the functional∫
M (S − S)2, the Calabi energy, among Kähler metrics in a fixed cohomology class.

The vanishing points of the Calabi energy are called the constant scalar curvature
Kähler (cscK) metrics. The critical points of the Calabi energy are called the extremal
Kähler (extK) metrics. To search such metrics, Calabi introduced a geometric flow,
which is now well known as the Calabi flow. Actually, on a compact Kähler manifold
(Mn, ω, J ), the Calabi flow deforms the metric by

∂

∂t
gi j̄ = S,i j̄ , (1.1)

where g is the metric determined by ω(t) and J , and S is the scalar curvature of g.
Note that in the class [ω], every metric form can be written as ω +√−1∂∂̄ϕ for some
smooth Kähler potential function ϕ. Therefore, on the Kähler potential level, the above
equation reduces to

∂

∂t
ϕ = S − S = −gi j̄

{
log det

(
gkl̄ + ϕkl̄

)}
,i j̄ − S, (1.2)

where S is the average of scalar curvature, which is a constant depending only on the
class [ω]. Note that equation (1.2) is a fourth-order fully non-linear PDE. This order
incurs extreme technical difficulty. In spite of this difficulty, the short-time existence
of equation (1.2) was proved by X.X. Chen and W.Y. He in [15]. Furthermore, they
also proved the global existence of (1.2) under the assumption that the Ricci curvature
is uniformly bounded.

About two decades after the birth of the Calabi flow, in [30], S.K. Donaldson (See
[33] also) pointed out that the Calabi flow fits into a general frame of moment map
picture. In fact, by fixing the underlying symplectic manifold (M, ω) and deforming
the almost complex structures J along Hamiltonian vector fields, C∞(M) has an
infinitesimal action on the moduli space of almost complex structures. The function
S − S can be regarded as the moment map of this action, where S is the Hermitian
scalar curvature in general. Therefore,

∫
M (S−S)2 is themoment map square function,

defined on themoduli space of almost complex structures. Then the downward gradient
flow of the moment map norm square can be written as

d

dt
J = −1

2
J ◦ ∂̄J XS, (1.3)

where XS is the symplectic dual vector field of dS. When the flow path of (1.3)
locates in the integrable almost complex structures, the Hermitian scalar coincides
with the Riemannian scalar curvature. Therefore, the flow (1.3) is nothing but the
classical Calabi flow (1.1) up to diffeomorphisms. Based on this moment map picture,
Donaldson then described some conjectural behaviors of the Calabi flow.

Conjecture 1.1 (Donaldson [30]) Suppose the Calabi flows have global existence.
Then the asymptotic behavior of the Calabi flow starting from (M, ω, J ) falls into one
of the four possibilities.
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1. The flow converges to a cscK metric on the same complex manifold (M, J ).
2. The flow is asymptotic to a one-parameter family of extK metrics on the same

complex manifold (M, J ), evolving by diffeomorphisms.
3. The manifold does not admit an extK metric but the transformed flow Jt on J

converges to J ′. Furthermore, one can construct a destabilizing test configuration
of (M, J ) such that (M, J ′) is the central fiber.

4. The transformed flow Jt on J does not converge in smooth topology and singu-
larities develop. However, one can still make sufficient sense of the limit of Jt to
extract a scheme from it, and this scheme can be fitted in as the central fiber of a
destabilizing test configuration.

Conjecture 1.1 has attracted a lot of attentions for the study of the Calabi flow. On
the way to understand it, there are many important works. For example, Berman [3],
He [36], and Streets [45] proved the convergence of the Calabi flow in various topolo-
gies, under different geometric conditions. Székelyhidi [48] constructed examples of
global solutions of the Calabi flowwhich collapse at time infinity. A finite-dimensional
approximation approach to study the Calabi flow was developed in [32] by Fine.

Note that the global existence of the Calabi flows is a fundamental assumption in
Conjecture 1.1. On Riemann surfaces, the global existence and the convergence of the
Calabi flow have been proved byChrusical [26], Chen [12], and Struwe [47]. However,
much less is known in high dimension. It was conjectured by Chen [13] that every
Calabi flow has global existence. This conjecture sounds to be too optimistic at the
beginning. However, there are positive evidences for it. In [44], J. Streets proved the
global existence of the minimizing movement flow, which can be regarded as weak
Calabi flow solutions. Therefore, the global existence of the Calabi flow can be proved
if one can fully improve the regularity of the minimizing movement flow, although
there exist terrific analytic difficulties to achieve this. In general, Chen’s conjecture
was only confirmed in particular cases. For example, if the underlying manifold is
an Abelian surface and the initial metric is T -invariant, Huang and Feng proved the
global existence in [37].

In short, the Calabi flow can be understood from two points of view: either as a
flow of metric forms (Calabi’s point of view) within a given cohomologous class on
a fixed complex manifold, or as a flow of complex structures (Donaldson’s point of
view) on a fixed symplectic manifold. Let (Mn, ω, J ) be a reference compact Kähler
manifold, g be the reference metric determined by ω and J . If J is fixed, then the
Calabi flow evolves in the space

H �
{
ωϕ

∣
∣
∣ϕ ∈ C∞(M), ωϕ = ω + √−1∂∂̄ϕ > 0

}
. (1.4)

If ω is fixed, then the Calabi flow evolves in the space

J �
{
J ′|J ′ is an integrable almost complex structure compatible with ω

}
. (1.5)

We equip both H and J with Ck, 12 topology for some sufficiently large k = k(n),
with respect to the reference metric g. Each point of view of the Calabi flow has its
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own advantage. We shall take both points of view and may jump from one to the other
without mentioning this explicitly.

Theorem 1.2 Suppose (M2, ω, J ) is a compact extremal Kähler surface. Define

˜LH �
{
ωϕ ∈ H| The Calabi flow initiating from ωϕ has global existence

}
,

LH � The path-connected component of ˜LH containing ω.

Then the modified Calabi flow (c.f. Definition 3.1) starting from any ωϕ ∈ LH con-
verges to �∗ω for some � ∈ Aut0(M, J ), in the smooth topology of Kähler potentials.

In the setup of Conjecture 1.1, we have LH = L̃H = H automatically. There-
fore, Theorem 1.2 confirms the first two possibilities of Conjecture 1.1 in complex
dimension 2.

Theorem 1.3 Suppose
{
(M2, ω, Js), s ∈ D

}
is a smooth family of compact Kähler

surfaces parametrized by the disk D = {z|z ∈ C, |z| < 2}, with the following condi-
tions satisfied.

• There is a smooth family of diffeomorphisms {ψs : s ∈ D\{0}} such that

[ψ∗
s ω] = [ω], ψ∗

s Js = J1, ψ1 = I d.

• [ω] is integral.
• (M2, ω, J0) is a cscK surface.

Denote

˜LJ � {Js |s ∈ D, the Calabi flow initiating from (M, ω, Js) has global existence } ,

LJ � The path-connected component of ˜LJ containing J0.

Then the Calabi flow starting from any Js ∈ LJ converges to ψ∗(J0) in the smooth
topology of sections of T M ⊗ T ∗M, where ψ ∈ Symp(M, ω) depends on Js .

Theorem 1.3 partially confirms the third possibility of Conjecture 1.1 in complex
dimension 2, in the case that the C∞-closure of the GC-leaf of J1 contains a cscK
complex structure, for a polarized Kähler surface. Note that by the integral condition
of [ω] and reductivity of the automorphism groups of cscK complex manifolds, the
construction of destabilizing test configurations follows from [29] directly.

Theorems 1.2 and 1.3 have high dimensional counterparts. However, in high dimen-
sion, due to the loss of scaling invariant property of the Calabi energy, we need some
extra assumptions of scalar curvature to guarantee the convergence.

Theorem 1.4 Suppose (Mn, ω, J ) is a compact extremal Kähler manifold.
For each big constant A, we set

˜LHA �
{
ωϕ ∈ H| The Calabi flow initiating from ωϕ has global existence and

|S| ≤ A} ,
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LHA � The path-connected component of ˜LHA containing ω,

LH′ �
⋃

A>0

LHA.

Then the modified Calabi flow starting from each ωϕ ∈ LH′ converges to �∗ω for
some � = �(ϕ) ∈ Aut0(M, J ), in the smooth topology of Kähler potentials.

Note that byChen-He’s stability theorem(c.f. [15]), the setLHA is non-empty if A is
large enough. Therefore,LH′ is a non-empty subset ofLH. We have the relationships

LH′ ⊂ LH ⊂ H. (1.6)

Therefore, in order to understand the global behavior of the Calabi flow, it is crucial
to set up the equalities.

LH = H, (1.7)

LH′ = LH. (1.8)

Equality (1.7) is nothing but the restatement of Chen’s conjecture. Equality (1.8) is
more or less a global scalar curvature bound estimate.

Theorem 1.5 Suppose {(Mn, ω, Js), s ∈ D} is a smooth family of compact Kähler
manifolds parametrized by the disk D = {z|z ∈ C, |z| < 2}, with the following
conditions satisfied.

• There is a smooth family of diffeomorphisms {ψs : s ∈ D\{0}} such that

[ψ∗
s ω] = [ω], ψ∗

s Js = J1, ψ1 = I d.

• [ω] is integral.
• (Mn, ω, J0) is a cscK manifold.

Denote

˜LJ A � {Js |s ∈ D, the Calabi flow initiating from Jshas global existence and

|S| ≤ A} ,

LJ A � The path-connected component of ˜LJ A containing J0,

LJ ′ �
⋃

A>0

LJ A.

Then the Calabi flow starting from any Js ∈ LJ ′ converges to ψ∗(J0), in the smooth
topology of sections of T M ⊗ T ∗M, where ψ ∈ Symp(M, ω) depends on Js .

It is interesting to compare the Calabi flow and the Kähler Ricci flow on Fano
manifolds at the current stage. For simplicity, we fix [ω] = 2πc1(M, J ). Modulo
the pioneering work of H.D. Cao([9], global existence) and G. Perelman([43], scalar
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curvature bound), Theorems 1.4 and 1.5 basically says that the convergence of the
Calabi flow can be as good as that for the Kähler Ricci flow on Fano manifolds,
whenever some critical metrics are assumed to exist, in a broader sense. The Kähler
Ricci flow version of Theorems 1.4 and 1.5 has been studied by Tian and Zhu in [51]
and [52], based on Perelman’s fundamental estimate. A more general approach was
developed by Székelyhidi and Collins in [27]. Our proof of Theorems 1.4 and 1.5 uses
a general continuity method, see for example, Tian-Zhu’s work [52] in the setting of
Kähler Ricci flow. However, the continuity method does not work without regularity
improvement properties. Therefore, it becomes a key step to obtain such regularity
improvement properties, which is one of our major contributions in this paper. We
prove Theorems 2.22 and 2.23 for the Calabi flow as the regularity improvement
properties.

If the flows develop singularity at time infinity, then the behavior of the Calabi flow
and the Kähler Ricci flow seems much different. Based on the fundamental work of
Perelman, we know collapsing does not happen along the Kähler Ricci flow. In [23]
and [24], it was proved by Chen and the second author that the Kähler Ricci flow will
converge to a Kähler Ricci soliton flow on a Q-Fano variety. A different approach was
proposed in complex dimension 3 in [50], by Tian and Zhang. However, under the
Calabi flow, Székelyhidi [48] has shown that collapsing may happen at time infinity,
by constructing examples of global solutions of the Calabi flow on ruled surfaces. In
this sense, the Calabi flow is much more complicated. Of course, this is not surprising
since we do not specify the underlying Kähler class. A more fair comparison should
be between the Calabi flow and the Kähler Ricci flow, in the same class 2πc1(M, J ),
of a given Fanomanifold. However, few is known about the Calabi flow in this respect,
except the underlying manifold is a toric Fano surface (c.f. [17]).

Theorems 1.2 and 1.3 push the difficulty of the Calabi flow study onKähler surfaces
to the proof of global existence, i.e., Chen’s conjecture. Theorems 1.4 and 1.5 indicate
that the study of the Calabi flow with bounded scalar curvature is important. It is not
clear whether the global existence always holds. If global existence fails, what will
happen? In otherwords, what is the best condition for the global existence of theCalabi
flow?Whether the scalar curvature bound is enough to guarantee the global existence?
In order to answer these questions, we can borrow ideas from the study of the Ricci
flow. In [42], N. Sesum showed that the Ricci flow exists as long as the Ricci curvature
stays bounded. Same conclusion holds for the Calabi flow, due to thework [15] of X.X.
Chen andW.Y. He. However, we can also translate Sesum’s result into the Calabi flow
along another route. Note that the Calabi flow satisfies equation (1.1). So the metrics
evolve by ∇∇̄S, the complex Hessian of the scalar curvature. Correspondingly, under
the Ricci flow, the metrics evolve by −2Ri j . Modulo constants, we can regard ∇∇̄S
as the counterpart of Ricci curvature in the Calabi flow. Consequently, one can expect
that the Calabi flow has global existence whenever |∇∇̄S| is bounded. This is exactly
the case. To state our results precisely, we introduce the notations

Og(t) = sup
M

|S|g(t), Pg(t) = sup
M

∣
∣∇̄∇S

∣
∣
g(t) , Qg(t) = sup

M
|Rm|g(t). (1.9)

We shall omit g and t if they are clear in the context.
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Theorem 1.6 Suppose that {(Mn, g(t)),−T ≤ t < 0} is a Calabi flow solution on a
compact Kähler manifold M and t = 0 is the singular time. Then we have

lim sup
t→0

P|t | ≥ δ0, (1.10)

where δ0 = δ0(n). Furthermore, for each α ∈ (0, 1), we have

lim sup
t→0

OαQ2−α|t | ≥ C0, (1.11)

where C0 = C0(n, α). In particular, if t = 0 is a singular time of type-I, then we have

lim sup
t→0

O2|t | > 0. (1.12)

Theorem 1.6 is nothing but the Calabi flow counterpart of the main theorems in [53]
and [22]. The tools we used in the proof of Theorem 1.6 are motivated by the study of
the analogue question of the Ricci flow by the second author in [22] and [53]. Actually,
the methods in [53] and [22] were built in a quite general frame. It was expected to
have its advantage in the study of the general geometric flows.

The paper is organized as follows. In Sect. 2, we develop two concepts—curvature
scale and harmonic scale— to study geometric flows. Based on the analysis of these
two scales under the Calabi flow, we show global backward regularity improvement
estimates. In Sect. 3, we combine the regularity improvement estimates, the excellent
behavior of the Calabi functional along the Calabi flow and the deformation techniques
to prove Theorems 1.2–1.5. Moreover, we give some examples where Theorems 1.2–
1.5 can be applied. In Sect. 4 we show Theorem 1.6 and in Sect. 5 we discuss some
further research directions of Calabi flow.

2 Regularity Scales

2.1 Preliminaries

Let Mn be a compact Kähler manifold of complex dimension n and g a Kähler metric
on M with the Kähler form ω. The Kähler class corresponding to ω is denoted by

 = [ω]. The space of Kähler potentials is defined by

H(M, ω) =
{
ϕ ∈ C∞(M)

∣
∣
∣ ω + √−1∂∂̄ϕ > 0

}
.

In [5] and [6], Calabi introduced the Calabi functional

Ca(ωϕ) =
∫

M

(
S(ωϕ) − S

)2
ωn

ϕ,

where S(ωϕ) denotes the scalar curvature of the metric ωϕ = ω + √−1∂∂̄ϕ and S is
the average of the scalar curvature S(ωϕ). The gradient flow of the Calabi functional
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is called the Calabi flow, which can be written by a parabolic equation of Kähler
potentials:

∂ϕ

∂t
= S(ωϕ) − S.

The metrics evolve by the equation:

∂

∂t
gi j̄ = S, i j̄ .

The evolution equation of curvature tensor can be written as follows(cf. [17]):

∂

∂t
Rm = −∇∇̄∇∇̄S = −�2Rm + ∇2Rm ∗ Rm + ∇Rm ∗ ∇Rm, (2.1)

where the operator ∗ denotes some contractions of tensors. Thus, we have the inequal-
ity

∂

∂t
|Rm| ≤

∣
∣
∣∇4S

∣
∣
∣ + c(n)|Rm|

∣
∣
∣∇2S

∣
∣
∣ . (2.2)

2.2 Estimates Based on Curvature Bound

The global high order regularity estimate of the Calabi flow was studied in [17], when
Riemannian curvature and Sobolev constant are bounded uniformly. Taking advantage
of the localization technique developed in [34] and [46], one can localize the estimate
in [17].

Lemma 2.1 Suppose {(
n, g(t)), 0 ≤ t ≤ T } is a Calabi flow solution on an open
Kähler manifold 
, and Bg(T )(x, r) is a geodesic complete ball in 
. Suppose

CS(Bg(T )(x, r), g(T )) ≤ K1, (2.3)

sup
Bg(T )(x,r)×[0,T ]

{

|Rm| +
∣
∣
∣
∣
∂

∂t
g

∣
∣
∣
∣ +

∣
∣
∣
∣∇

∂

∂t
g

∣
∣
∣
∣

}

≤ K2. (2.4)

Then for every positive integer j , there exists C = C( j, 1
r , K1, K2) such that

sup
Bg(T )(x,0.5r)

|∇ j Rm|(·, T ) ≤ C.

Proof This follows from the same argument as Theorem 4.4 of [46] and the Sobolev
embedding theorem. ��
Lemma 2.2 Let (Mn, g, J ) be a complete Kähler manifold with |Rm|+|∇Rm| ≤ C1.
Then there exist positive constants r1, r2 depending only on C1, n such that for each
p ∈ M there is a map � from the Euclidean ball B̂(0, r1) in C

n to M satisfying the
following properties.
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(1) � is a local biholomorphic map from B̂(0, r1) to its image.
(2) �(0) = p.
(3) �∗(g)(0) = gE , where gE is the standard metric on C

n.
(4) r−1

2 gE ≤ �∗g ≤ r2gE in B̂(0, r1).

Proof This is only an application of Proposition 1.2 of Tian-Yau [49]. Similar appli-
cation can be found in [10]. ��
Theorem 2.3 (J.Streets [46]) Suppose {(Mn, g(t)), 0 ≤ t ≤ T } is a Calabi flow
solution satisfying

sup
M×[0,T ]

|Rm| ≤ K .

Then we have

sup
x∈M

∣
∣
∣∇lRm

∣
∣
∣ (x, t) ≤ C

(

K + 1√
t

)1+ l
2

, (2.5)

sup
x∈M

∣
∣
∣
∣
∂ l

∂t l
Rm

∣
∣
∣
∣ (x, t) ≤ C

(

K + 1√
t

)1+2l

, (2.6)

for every t ∈ (0, T ] and positive integer l. Here C = C(l, n). In particular, we have

sup
x∈M

∣
∣
∣
∣
∂

∂t
|Rm|

∣
∣
∣
∣ (x, T ) ≤ C

(

K 3 + 1

T
3
2

)

.

Proof By equation (2.1), we see that (2.6) follows from (2.5). We shall only prove
(2.5).

We argue by contradiction. As in [46], we define function

fl(x, t, g) =
l∑

j=1

∣
∣
∣∇ jRm

∣
∣
∣

2
2+ j

g(t)
(x).

Suppose that (2.5) does not hold uniformly for some positive integer l. Then there
exists a sequence of Calabi flow solutions {(Mn

i , gi (t)), 0 ≤ t ≤ T } satisfying the
assumptions of the theorem and there are points (xi , ti ) ∈ Mi × [0, T ] such that

lim
i→+∞

fl(xi , ti , gi )

K + t
− 1

2
i

= ∞.

Suppose that the maximum of fl (x,t,gi )

K+t
− 1
2

i

on M × (0, T ] is achieved at (xi , ti ). We can

rescale the metrics by

g̃i (x, t) � λi g
(
x, ti + λ−2

i t
)

, λi � fl(xi , ti , gi ).
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By construction, tiλ2i ≥ 1 for i large and the flow g̃i (t) exists on the time period
[−1, 0]. Moreover, it satisfies the following properties.

• lim
i→+∞ sup

Mi×[−1,0]
|Rm|g̃i = 0.

• sup
Mi×[−1,0]

fl(·, ·, g̃i (t)) ≤ 1.

• fl(xi , 0, g̃i ) = 1.

ByLemma2.2,we can construct local biholomorphicmap�i fromaball B̂(0, r) ⊂ C

n

to Mi , with respect to the metric g̃i (0) and base point xi . Note that the radius r is
independent of i . Let h̃i (t) = �∗

i g̃i (0). Then we obtain a sequence of Calabi flows

{(B̂(0, r), h̃i (t)),−1 ≤ t ≤ 0} satisfying (2.3) and (2.4), up to shifting of time.
Furthermore, we have

lim
i→∞ |Rm|h̃i (0)(0) = 0,

l∑

j=1

∣
∣
∣∇ jRm

∣
∣
∣

2
2+ j

h̃i (0)
(0) = 1. (2.7)

By Lemma 2.1, we can take convergence in the smooth Cheeger–Gromov topology.

(
B̂(0, 0.5r), h̃i (0)

)
Cheeger−Gromov−C∞
−−−−−−−−−−−−−−→

(
B̃, h̃∞(0)

)
.

On one hand, Rmh̃∞(0) ≡ 0 on B̃, which in turn implies that ∇ j Rmh̃∞(0) ≡ 0 on B̃
for each positive integer j . On the other hand, taking smooth limit of (2.7), we obtain

l∑

j=1

∣
∣
∣∇ jRm

∣
∣
∣

2
2+ j

h̃∞(0)
(0) = 1.

Contradiction. ��
The proof of Theorem 2.3 follows the same line as that in [46] by J. Streets, we do

not claim the originality of the result. We include the proof here for the convenience
of the readers and to show the application of the local biholomorphic map �, which
will be repeatedly used in the remainder part of this subsection. Actually, by delicately
using interpolation inequalities, the constants in Theorem 2.3 can be made explicit.

Note that for a given Calabi flow, S ≡ 0 implies that all the high derivatives of S
vanish. Therefore, for the Calabi flows with uniformly bounded Riemannian curvature
and very small scalar curvature S, it is expected that the high derivatives of S are very
small. In the remainder part of this subsection, we will justify this observation. Similar
estimates for the Ricci flow were given by Theorem 3.2 of [53] and Lemma 2.1 of
[22] by the parabolic Moser iteration. However, since the Calabi flow is a fourth-order
parabolic equation, the parabolic Moser iteration in the case of the Ricci flow does not
work any more. Here we use a different method to overcome this difficulty.

To estimate the higher derivatives of the curvature, we need the interpolation
inequalities of Hamilton in [35]:
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Lemma 2.4 ([35]) For any tensor T and 1 ≤ j ≤ k − 1, we have

∫

M
|∇ j T |2k/j ωn ≤ C · max

M
|T | 2kj −2 ·

∫

M
|∇kT |2 ωn, (2.8)

∫

M
|∇ j T |2 ωn ≤ C ·

(∫

M
|∇kT |2 ωn

) j
k ·

(∫

M
|T |2 ωn

)1− j
k

, (2.9)

where C = C(k, n) is a constant.

Combining Lemma 2.4 with Sobolev embedding theorem, we have the following
result.

Lemma 2.5 For any integer i ≥ 1 and any Kähler metric ω, there exists a constant
C = C(CS(ω), i) > 0 such that for any tensor T , we have

max
M

∣
∣
∣∇ i T

∣
∣
∣
2 ≤ C · max

M
|T | 2n+1

n+1

(∫

M
|T |2 ωn

) 1
4(n+1)

·
(∫

M

∣
∣
∣∇4(n+1)i T

∣
∣
∣
2

ωn +
∫

M

∣
∣
∣∇4(n+1)(i+1)T

∣
∣
∣
2

ωn
) 1

4(n+1)

.

Proof Recall that the Sobolev embedding theorem implies that

max
M

| f | ≤ CS

(∫

M
(| f |p + |∇ f |p) ωn

) 1
p

for every smooth function f . Let f = ∣
∣∇ i T

∣
∣2 and p = 2(n+1) in the above inequality.

Then we have

max
M

∣
∣
∣∇ i T

∣
∣
∣
2 ≤ CS

(∫

M

(∣
∣
∣∇ i T

∣
∣
∣
4(n+1) + |∇ f |2(n+1)

)

ωn
) 1

2(n+1)

.

The Kato’s inequality implies that

|∇ f | = 2
∣
∣
∣∇ i T

∣
∣
∣ ·

∣
∣
∣∇

∣
∣
∣∇ i T

∣
∣
∣
∣
∣
∣ ≤ 2

∣
∣
∣∇ i T

∣
∣
∣ ·

∣
∣
∣∇ i+1T

∣
∣
∣ ≤

∣
∣
∣∇ i T

∣
∣
∣
2 +

∣
∣
∣∇ i+1T

∣
∣
∣
2
.

Combining the above two inequalities, we obtain

max
M

∣
∣
∣∇ i T

∣
∣
∣
2 ≤ C

(∫

M

(∣
∣
∣∇ i T

∣
∣
∣
4(n+1) +

∣
∣
∣∇ i+1T

∣
∣
∣
4(n+1)

)

ωn
) 1

2(n+1)

. (2.10)

In inequality (2.8), let k = 2(n + 1)i and j = i , we have

∫

M

∣
∣
∣∇ i T

∣
∣
∣
4(n+1)

ωn ≤ C · max
M

|T |4n+2 ·
∫

M

∣
∣
∣∇2(n+1)i T

∣
∣
∣
2

ωn .
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If we let k = 2(n + 1)(i + 1), j = i + 1, then we have

∫

M

∣
∣
∣∇ i+1T

∣
∣
∣
4(n+1)

ωn ≤ C · max
M

|T |4n+2 ·
∫

M

∣
∣
∣∇2(n+1)(i+1)T

∣
∣
∣
2

ωn .

In inequality (2.9), let k = 4(n + 1)i and j = 2(n + 1)i , then we have

∫

M

∣
∣
∣∇2(n+1)i T

∣
∣
∣
2

ωn ≤ C ·
(∫

M

∣
∣
∣∇4(n+1)i T

∣
∣
∣
2
) 1

2 ·
(∫

M
|T |2 ωn

) 1
2

.

Combining this with (2.10), we have

max
M

∣
∣
∣∇ i T

∣
∣
∣
2

≤ C · max
M

|T | 2n+1
n+1

(∫

M

(∣
∣
∣∇2(n+1)i T

∣
∣
∣
2 +

∣
∣
∣∇2(n+1)(1+i)T

∣
∣
∣
2
)

ωn
) 1

2(n+1)

≤ C · max
M

|T | 2n+1
n+1

(∫

M
|T |2 ωn

) 1
4(n+1)

(∫

M

∣
∣
∣∇4(n+1)i T

∣
∣
∣
2

ωn +
∫

M

∣
∣
∣∇4(n+1)(i+1)T

∣
∣
∣
2

ωn
) 1

4(n+1)

.

The lemma is proved. ��
We next show some local estimates on the derivatives of the scalar curvature.

Lemma 2.6 Fix any α ∈ (0, 1) and r > 0. There exists an integer N = N (α) > 0
such that if

sup
B(p,2r)

N∑

k=0

∣
∣
∣∇kRm

∣
∣
∣ ≤ �N (2.11)

for some positive constant �N , then we have the inequalities

sup
B(p,r)

∣
∣∇∇̄S

∣
∣ ≤ C sup

B(p,2r)
|S|α, (2.12)

sup
B(p,r)

∣
∣∇∇̄∇∇̄S

∣
∣ ≤ C sup

B(p,2r)

∣
∣∇∇̄S

∣
∣α , (2.13)

for some constant C = C (CS(B(p, 2r)), r,�N , α).

Proof Let η ∈ C∞(R, R) be a cutoff function such that η(s) = 1 if s ≤ 1 and

η(s) = 0 if s ≥ 2. Moreover, we assume
∣
∣η′(s)

∣
∣ ≤ 2. We define χ(x) = η

(
dg(p,x)

r

)

for any x ∈ M , where dg(p, x) is the distance from p to x with respect to the metric
g. Then χ = 1 on B(p, r) and χ = 0 outside B(p, 2r). The derivatives of χ satisfy
the inequalities

∣
∣
∣∇ i

gχ

∣
∣
∣ ≤ C(�i , r). (2.14)
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Using Lemma 2.5 for χ S, we have the inequality

sup
B(p,r)

∣
∣
∣∇2S

∣
∣
∣
2 ≤ C(CS) · sup

B(p,2r)
|S| 2n+1

n+1

(∫

B(p,2r)
|S|2 ωn

) 1
4(n+1)

·
(∫

B(p,2r)

∣
∣
∣∇8(n+1)(χ S)

∣
∣
∣
2

ωn +
∫

B(p,2r)

∣
∣
∣∇12(n+1)(χ S)

∣
∣
∣
2

ωn
) 1

4(n+1)
.

For any integer k we set

f (k) =
∫

B(p,2r)

∣
∣
∣∇k(χ S)

∣
∣
∣
2

ωn .

Under the assumption (2.11), we have

f (k) ≤
∫

B(p,2r)
|S|

∣
∣
∣∇2k(χ S)

∣
∣
∣ ωn

≤ Vol(B(p, 2r))
1
2 sup
B(p,2r)

|S| · f (2k)
1
2

≤
(
Vol(B(p, 2r))

1
2 sup
B(p,2r)

|S|
)2−21−m

f (2mk)
1
2m

≤ C(�2mk,m, r)
(
Vol(B(p, 2r))

1
2 sup
B(p,2r)

|S|
)2−21−m

,

where m is any positive integer. Here we used the fact that Vol(B(p, 2r) is bounded
from above by the volume comparison theorem. Combining the above inequalities,
for any m we have the estimate

sup
B(p,r)

∣
∣
∣∇2S

∣
∣
∣ ≤ C

(
CS, r,m,�12·2m (n+1)

)
sup

B(p,2r)
|S|1−

1
(n+1)2m+2 .

Thus, (2.12) is proved. Applying Lemma 2.5 to ∇∇̄S and using the same argument as
above, we have the inequality (2.13). The lemma is proved. ��

The following proposition is a weak version of the corresponding result for the
Ricci flow in [22,53].

Proposition 2.7 Fix α ∈ (0, 1). If {(M, g(t)),−s ≤ t ≤ 0} is a Calabi flow solution
with sup

[−s,0]
Qg(t) ≤ 1, then there is a constant C = C(s, α) > 0 such that

max
M

∣
∣∇∇̄S

∣
∣ (0) ≤ C max

M
|S|α(0), (2.15)

max
M

∣
∣∇∇̄∇∇̄S

∣
∣ (0) ≤ C max

M

∣
∣∇∇̄S

∣
∣α (0). (2.16)
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Proof Since sup
[−s,0]

Qg(t) ≤ 1, Theorem 2.3 applies. For any integer k ≥ 0, there is a

constant C = C(k, s) such that

sup
M×[− s

2 ,0]
|∇kRm| ≤ C(k, s). (2.17)

By Lemma 2.2, for any p ∈ M there is r = r(n, s) > 0 and a local biholomorphic
map � from B̂(0, r) ⊂ C

n to its image in (M, g(0)) and �(0) = p. Define the
pullback metrics ĝ(t) = �∗g(t) on B̂(0, r). Then the Kähler metric ĝ(t) satisfies the
equation of Calabi flow on B̂(0, r) and their injectivity radii on B̂(0, r) are bounded
from below. Moreover, on B̂(0, r) the Sobolev constant and all the derivatives of the
curvature tensor of ĝ(t) for t ∈ [− s

2 , 0] are bounded by (2.17). By Lemma 2.6, there
is a constant C(s, α) > 0 such that

sup
B̂(0, r2 )

∣
∣∇∇̄S

∣
∣
ĝ (0) ≤ C max

B̂(0,r)
|S|αĝ (0),

which implies that the metric g(t) satisfies the inequality (2.15). Similarly, we can
show the second inequality (2.16). The proposition is proved. ��

2.3 From Metric Equivalence to Curvature Bound

If we regard curvature as the 4-th order derivative of Kähler potential function, then
Theorem 2.3 can be roughly understood as from C4-estimate to Cl -estimate, for each
l ≥ 5. In this subsection, we shall set up the estimate from C2 to C4 for the Calabi
flow family.

Lemma 2.8 For every δ > 0, there exists a constant ε = ε(n, δ) with the following
properties. If {(Mn, g(t)), t ∈ [−1, 0]} and {(Mn, h(t)), t ∈ [−1, 0]} are Calabi flow
solutions such that

• Qg(0) = 1 and Qg(t) ≤ 2 for any t ∈ [−1, 0].
• Qh(t) ≤ 2 for any t ∈ [−1, 0].
• e−εg(0) ≤ h(0) ≤ eεg(0).

Then we have

| log Qh(0)| < δ.

Proof We follow the argument of Proposition 2.1 in [22]. Suppose not, there exist
constants δ0 > 0, εi → 0 and two sequences of the Calabi flow solutions

{(Mi , gi (t)), t ∈ [−1, 0]} , {(Mi , hi (t)), t ∈ [−1, 0]}

such that the following properties are satisfied.

(1) Qgi (0) = 1 and Qgi (t) ≤ 2 for any t ∈ [−1, 0].
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(2) Qhi (t) ≤ 2 for any t ∈ [−1, 0], and | log Qhi (0)| ≥ δ0.
(3) e−εi gi (0) ≤ hi (0) ≤ eεi gi (0).

By property (1) and (2), we claim that there is a point zi ∈ Mi such that

max{|Rm|hi (0)(zi ), |Rm|gi (0)(zi )} ≥ e−2δ0 ,

∣
∣
∣
∣log

|Rm|hi (0)(zi )
|Rm|gi (0)(zi )

∣
∣
∣
∣ ≥ 1

2
δ0. (2.18)

In fact, by property (2) we have two possibilities Qhi (0) ≥ eδ0 or Qhi (0) ≤ e−δ0 . If
Qhi (0) ≥ eδ0 , then we assume that the point zi achieves Qhi (0):

|Rm|hi (0)(zi ) = Qhi (0).

Then the first inequality of (2.18) obviously holds and the second also holds since

log
|Rm|hi (0)(zi )
|Rm|gi (0)(zi )

≥ log
|Rm|hi (0)(zi )

Qgi (0)
≥ δ0.

Now we consider the case when Qhi (0) ≤ e−δ0 . We assume that the point zi achieves
Qgi (0) = 1:

|Rm|gi (0)(zi ) = 1.

Then the first inequality of (2.18) obviously holds and the second also holds since

log
|Rm|gi (0)(zi )
|Rm|hi (0)(zi )

≥ log eδ0 = δ0.

Thus, (2.18) is proved.
By Theorem 2.3, we have the higher order curvature estimates for the metrics gi (0).

By Lemma 2.2, there is r > 0 independent of i and a local biholomorphic map �i

from B̂(0, r) ⊂ C

n to its image in Mi and �i (0) = zi . Define the pullback metrics

ĝi (t) = �∗
i gi (t), ĥi (t) = �∗

i hi (t). (2.19)

Then theKählermetrics ĝi (t) and ĥi (t) satisfy the equation of the Calabi flow and their
injectivity radii at the point 0 ∈ B̂(0, r) are bounded from below by a uniform positive
constant which is independent of i .Moreover, all the derivatives of the curvature tensor
of ĝi (t) and ĥi (t) are bounded by Theorem 2.3. Thus, we can take Cheeger–Gromov
smooth convergence

(
B̂(0, r), 0, ĝi (t)

)
C.G.−C∞−−−−−−→ (

B ′, p′, ĝ′) ,
(
B̂(0, r), 0, ĥi (t)

)
C.G.−C∞−−−−−−→

(
B ′′, p′′, ĥ′) .

(2.20)
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Define the identity map Fi by

Fi :
(
B̂(0, r), 0, ĝi (t)

)
�→

(
B̂(0, r), 0, ĥi (t)

)
,

x �→ x .

By property (3), we see that

∣
∣
∣
∣
∣
log

dĥi (0)(x, y)

dĝi (0)(F
−1
i (x), F−1

i (y))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
log

dĥi (0)(x, y)

dĝi (0)(x, y)

∣
∣
∣
∣
∣
≤ εi → 0, ∀ x, y ∈ B̂(0, r).

Therefore, Fi converges to an isometry F∞ :

F∞ : (
B ′, p′, ĝ′) →

(
B ′′, p′′, ĥ′) , F∞(p′) = p′′.

By Calabi–Hartman’s theorem in [8], the isometry F∞ is smooth. Therefore, we have

|Rm|ĝ′(p′) = |Rm|ĥ′(p′′). (2.21)

However, by the smooth convergence (2.20) and the inequalities (2.18) we obtain

max
{|Rm|ĝ′(p′), |Rm|ĥ′(p′′)

} ≥ e−2δ0 ,

∣
∣
∣
∣
∣
log

|Rm|ĝ′(p′)
|Rm|ĥ′(p′′)

∣
∣
∣
∣
∣
≥ 1

2
δ0,

which contradicts (2.21). The lemma is proved. ��
As a direct corollary, we have the next result.

Lemma 2.9 There exists a constant ε0 = ε0(n) with the following properties.
Suppose {(Mn, g(t)),−1 ≤ t ≤ K , 0 ≤ K } is a Calabi flow solution such that

Qg(0) = 1, Qg(t) ≤ 2, ∀ t ∈ [−1, 0],

and T > 0 is the first time such that
∣
∣log Qg(T )

∣
∣ = log 2, then we have

∫ T

0
Pg(t) dt ≥ ε0. (2.22)

Proof Consider two solutions to the Calabi flow {(M, g(t)),−1 ≤ t ≤ 0} and
{(M, h(t)),−1 ≤ t ≤ 0}where h(x, t) = g(x, t+T ).Note that | log Qh(0)| = log 2.
By Lemma 2.8 there exists a point x ∈ M and a non-zero vector V ∈ TxM such that

∣
∣
∣
∣log

h(0)(V, V )

g(0)(V, V )

∣
∣
∣
∣ ≥ ε0
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for some ε0 > 0. Using the equation (2.2), we have

ε0 ≤
∣
∣
∣
∣log

g(T )(V, V )

g(0)(V, V )

∣
∣
∣
∣ ≤

∫ T

0
Pg(t) dt.

Thus, (2.22) holds and the lemma is proved. ��

2.4 Curvature Scale

Inspired by Theorem 2.3, we define a concept “curvature scale,” to study improving
regularity property of the Calabi flow.

Definition 2.10 Suppose {(M, g(t)), t ∈ I ⊂ R} is a Calabi flow solution. Define the
curvature scale Fg(t0) of t0 ∈ I by

Fg(t0) = sup
{
s > 0

∣
∣
∣ sup

M×[t0−s,t0]
|Rm|2 ≤ s−1

}
,

wherewe assume sup
M×[t0−s,t0]

|Rm|2 = ∞whenever t0−s /∈ I .We denote the curvature

scale of time t0 by Fg(t0).

Suppose that {(M, g̃(t)),−2 ≤ t < T } is a Calabi flow solution and T > 0 is
the singular time. Since the curvature tensor will blowup at the singular time, we
have lim

t→T
Fg̃(t) = 0. Note that Fg̃(t) is a continuous function, we can assume that

0 < Fg̃(t) < 1 for any t ∈ [0, T ). Choose any t0 ∈ [0, T ) and let A be a positive
constant such that A2 = 1

Fg̃(t0)
> 1. Rescale the metric g̃(t) by

g(x, t) = A g̃

(

x,
t

A2 + t0

)

, t ∈
[
A2(−2 − t0), A

2(T − t0)
]
. (2.23)

Then we obtain a solution g(t) with existence time period containing [−2, K ] for
some positive K . Moreover, we have Fg(0) = 1. In the following, we will calculate
the derivative of Fg(t) with respect to t . Since Fg(t) might not be differentiable, we
will use the Dini derivative:

d−

dt
f (t) := lim inf

ε→0+
f (t + ε) − f (t)

ε
,

d+

dt
f (t) := lim sup

ε→0+

f (t + ε) − f (t)

ε
.

(2.24)

The following result is the key estimate on the curvature scale.

Lemma 2.11 Suppose {(M, g(t)),−2 ≤ t ≤ K , 0 ≤ K } is a Calabi flow solution,
Fg(0) = 1. Then at time t = 0 we have

d−

dt
Fg(t) ≥ min

{

0, −2
d+

dt
Qg(t)

}

. (2.25)
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Proof By the definition of curvature scale, there exists time t ∈ [−1, 0] such that
Qg(t) = 1 and we denote by t0 the maximal time t ∈ [−1, 0] with this property.
There are several cases to consider:

(1). Suppose Qg(0) < 1 and t0 > −1. Then there is a constant δ ∈ (0, t0 + 1) such
that Qg(t) < 1 for all t ∈ (0, δ). Thus, for any t ∈ [0, δ) we have Fg(t) = 1. So we
obtain the derivative of Fg(t) at t = 0,

d−

dt
Fg(t) = 0. (2.26)

(2). Suppose Qg(0) < 1 and t0 = −1. By the definition of t0, there exists a small
constant δ > 0 such that for any t ∈ (−1, δ) we have Qg(t) < 1. This implies that
Fg(t) > 1 for t ∈ (0, δ) when δ small. In other words, we have

d−

dt
Fg(t)

∣
∣
∣
∣
t=0

≥ 0. (2.27)

(3). Suppose Qg(0) = 1 and there is a small constant δ > 0 and a sequence of times
ti ∈ (0, δ) with ti → 0 such that

Qg(ti ) ≥ 1, Qg(ti )
2Fg(ti ) = 1, ∀ i ≥ 1. (2.28)

Therefore, we have the equality

lim inf
i→+∞

Fg(ti ) − Fg(0)

ti
= lim inf

i→+∞
Qg(0) + Qg(ti )

Qg(0)2Qg(ti )2
· Qg(0) − Qg(ti )

ti

= − 2

Qg(0)3
lim sup
i→+∞

Qg(ti ) − Qg(0)

ti

≥ − 2

Qg(0)3
d+

dt
Qg

∣
∣
∣
∣
t=0

.

(4). Suppose Qg(0) = 1 and there is a small constant δ > 0 and a sequence of
times ti ∈ (0, δ) with ti → 0 such that

Qg(ti ) ≥ 1, Qg(ti )
2Fg(ti ) < 1, ∀ i ≥ 1. (2.29)

Since Fg(t) is a continuous function and Fg(0) = 1, we assume that

|Fg(t) − 1| < ε0, ∀ t ∈ (0, δ) (2.30)

for some small ε0 > 0. For each time ti , (2.29) implies that

Qg(ti )
2 <

1

Fg(ti )
= sup

[ti−Fg(ti ),ti ]
Qg(t)

2. (2.31)
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Since the constant δ is small and the inequality (2.30) holds, we have ti − Fg(ti ) <

0 < ti . Using the fact that Qg(0) = 1 and (2.31) we have 1
Fg(ti )

≥ 1 and so Fg(ti ) ≤ 1.
If there exists time ti0 such that Fg(ti0) = 1, then for all t ∈ (0, ti0) we have

Fg(t) = 1. Thus, the inequality (2.25) holds. On the other hand, if for all integer i ≥ 1
the inequality Fg(ti ) < 1 holds, then we can find a maximal time t ′i ∈ (0, ti ) such that

Qg(t
′
i ) = sup

[ti−Fg(ti ),ti ]
Qg(t)

2. (2.32)

Moreover, since Q(t) ≤ 1 for t ∈ [−1, 0] and [t ′i − F(ti ), t ′i ] ⊂ [−1, ti ], we have

Qg(t
′
i ) = sup

[t ′i−Fg(ti ),t ′i ]
Qg(t)

2 = 1

Fg(ti )
,

where we used (2.31) and (2.32) in the last equality. Therefore, at time t ′i we have
Fg(t ′i ) = Fg(ti ) and the identity

Qg(t
′
i )Fg(t

′
i ) = Qg(t

′
i )Fg(ti ) = 1.

Therefore, there exists a sequence of times {t ′i }(t ′i ∈ (0, ti ))with t ′i → 0 and satisfying
the conditions (2.28) in item (3). Note that

F(ti ) − F(0)

ti
= F(t ′i ) − F(0)

t ′i
· t

′
i

ti
≥ F(t ′i ) − F(0)

t ′i
,

where we used the fact that F(t ′i ) < F(0) = 1 and t ′i < ti . Therefore, we have

lim inf
i→+∞

Fg(ti ) − Fg(0)

ti
≥ lim inf

i→+∞
Fg(t ′i ) − Fg(0)

t ′i
≥ − 2

Qg(0)3
d+

dt
Qg

∣
∣
∣
∣
t=0

.

(5). Suppose Qg(0) = 1 and there is a small constant δ > 0 and a sequence of
times ti ∈ (0, δ) with ti → 0 such that Qg(ti ) < 1. Then by the definition of Fg(t),
we have Fg(ti ) ≥ 1. Thus, we have the inequality

lim inf
i→+∞

Fg(ti ) − Fg(0)

ti
≥ 0.

Combining the above cases, (2.25) holds and the theorem is proved.

Lemma 2.12 Suppose {(M, g(t)),−2 ≤ t ≤ K , 0 ≤ K } is a Calabi flow solution
with Fg(0) = 1. Then at time t = 0 we have

∣
∣
∣
∣
dQg

dt

∣
∣
∣
∣ ≤ C min

{
1, Pα

g , Oα
g

}
,

where α be any number in (0, 1) and C = C(α, n).
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Proof Suppose that F(0) = 1. By the definition of curvature scale and Theorem 2.3,
all higher order derivatives of the Riemannian curvature tensor are bounded for t ∈
[− 1

2 , 0]. By Proposition 2.7, for any α ∈ (0, 1) we have the estimates

max
M

|∇∇̄∇∇̄S| ≤ C max
M

|∇∇̄S|α,

max
M

|∇∇̄S| ≤ C max
M

|S|α.

Therefore, by the inequality (2.2) of |Rm|, adjusting α in different inequalities if
necessary, we have

∣
∣
∣
∣
d

dt
|Rm|

∣
∣
∣
∣ ≤ C min

{

1,max
M

|∇∇̄S|α,max
M

|S|α
}

.

The lemma is proved.

A direct corollary of the above results is

Lemma 2.13 Let α ∈ (0, 1). Suppose {(M, g̃(t)),−2 ≤ t < T, 0 ≤ T } is a Calabi
flow solution. For any t0 ∈ [−1, T ) with Fg̃(t0) ∈ (0, 1), we have the following
inequality at time t0

d−

dt
Fg̃ ≥ −C min

{
1, Pα

g̃ Q2(1−α)

g̃ Fg̃, O
α
g̃ Q

2−α
g̃ Fg̃

}
, (2.33)

where C = C(α, n) > 0 is a constant.

Proof Werescale themetric g̃(t) by (2.23)with A2 = 1
Fg̃(t0)

.Thenweobtain a solution

g(s) to the Calabi flow with Fg(0) = 1. By Lemma 2.11 and Lemma 2.12, at s = 0
we have the following inequality for g(s):

d−

dt
Fg ≥ −C min

{
1, Pα

g Q2(1−α)
g Fg, O

α
g Q

2−α
g Fg

}
. (2.34)

Clearly, (2.33) follows directly from (2.34) and rescaling, since both sides of (2.34)
are scaling invariant.

Lemma 2.14 Fix α ∈ (0, 1). Suppose {(Mn, g(t)),−1 ≤ t ≤ K , 0 ≤ K } is a Calabi
flow solution such that

(1) Q(0) = 1, where Q = Qg;
(2) Q(t) ≤ 2 for all t ∈ [−1, 0];
(3) | log Q(t)| ≤ log 2 for every t ∈ [0, K ] and | log Q(K )| = log 2.

Then there are positive constants A = A(n, α) and ε(n, α) such that

∫ K

0
OαQ2−αdt ≥ ε

A
, (2.35)

∣
∣
∣
∣
d

dt
Q(t)

∣
∣
∣
∣ ≤ AOαQ3−α, ∀ t ∈ [0, K ]. (2.36)

123



2070 H. Li et al.

Proof Under the assumptions, we have the inequalities for t ∈ [0, K ]

P(t) ≤ COα(t)Q2−α(t), max
M

∣
∣
∣∇4S

∣
∣
∣ ≤ COα(t)Q3−α(t).

which are the scaling invariant version of Proposition 2.7. Combining this with Lemma
2.9, we have the inequalities (2.35) and (2.36). The lemma is proved.

The next result shows that under the scalar curvature conditions, if the curvature at
some time is large enough, then the curvature before that can be controlled.

Proposition 2.15 If {(Mn, g(t)),−1 ≤ t ≤ 0} is a Calabi flow solution with

(1) the scalar curvature |S(t)| ≤ 1 for every t ∈ [−1, 0];
(2) Q(0) is big enough, i.e.,

Q(0) > max

{

2
3−α
α A

1
α , 2

2(1−α)
α

(
A

ε

) 1
α

}

,

where ε and A are constants given by Lemma 2.14, Q is Qg.

Then we have the inequality

Q(t) <
2

√
Q(0)−2 + t

, ∀ t ∈
[
−Q(0)−2, 0

]
. (2.37)

Consequently, we have

F(0) ≥ 1

5Q(0)2
. (2.38)

Proof Let 2√
Q(0)−2+t

be a barrier function. Clearly, this function bounds Q(t) when

t = −Q(0)−2 and t = 0. Let I be the collection of t ∈ [−Q(0)−2, 0] such that

Q(t) ≥ 2
√
Q(0)−2 + t

.

We want to show that I is empty.
Suppose I �= ∅. Clearly, I is bounded and closed. Let t be the infimum of I . Then

we have t ∈ I and

Q(t) = 2
√
Q(0)−2 + t

. (2.39)

��
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Claim 2.16 For every t ∈ I , we have

sup
s∈[t−Q(t)−2,t]

Q(s) < 2Q(t). (2.40)

Proof First, we show that (2.40) holds at t . In fact, by the definition of t for any
s ∈ [t − Q(t)−2, t] we have

Q(s) <
2

√
Q(0)−2 + s

≤ 2
√
Q(0)−2 + t − Q(t)−2

= 2√
3
Q(t),

where we used (2.39) in the last equality. Thus, (2.40) holds at t .
We next define

t0 � sup
{
t
∣
∣
∣ Every s ∈ I ∩ [t, t) satisfies (2.40)

}
.

Clearly, t0 ∈ I . In order to prove the Claim, we have to show that t0 = t̄ , which
denotes the supreme of I . Actually, at time t0, one of following cases must appear
according to the definition of t0.

Case 1. sup
s∈[t0−Q(t0)−2,t0]

Q(s) = 2Q(t0).

Case 2. Q(t0) = 2
√
Q(0)−2 + t0

.

We will show that both cases will never happen if t0 < t̄ .
(1). If Case 1 happens, then for some s0 ∈ [t0 − Q(t0)−2, t0] we have

Q(s0) = 2Q(t0). (2.41)

We now show that s0 ∈ I . In fact, since t0 ∈ I , we have

Q(s0) = 2Q(t0) ≥ 4
√
Q(0)−2 + t0

≥ 4
√
Q(0)−2 + s0 + Q(t0)−2

. (2.42)

This implies that

Q(s0) = 2Q(t0) ≥ 2
√
3

√
Q(0)−2 + s0

≥ 2
√
Q(0)−2 + s0

Thus, we have s0 ∈ I.
By the assumption of t0, we have

sup
s∈[s0−Q(s0)−2,s0]

Q(s) ≤ 2Q(s0).
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Then Q drops from Q(s0) = 2Q(t0) to Q(t0) in a time period |t0 − s0|. By Lemma
2.14 we have

∫ t0

s0
OαQ2−αdt >

ε

A
.

Note that |t0 − s0| < Q(t0)−2 and O(t) ≤ 1, Q ≤ 2Q(t0) for t ∈ [s0, t0], we then
obtain

22−αQ(t0)
−α >

ε

A
.

Combining this with the inequality Q(t0) ≥ 2√
Q(0)−2+t0

, we have

Q(0) < 2
2(1−α)

α

(
A

ε

) 1
α

,

which contradicts the choice of Q(0). Therefore, Case 1 cannot happen.
(2). If Case 2 happens, by the definition of t0 we have

d

dt
Q ≤ d

dt

(
2

√
Q(0)−2 + t

)

at time t0. Recall that Q(t0) = 2√
Q(0)−2+t0

and

d

dt
Q ≥ −AOαQ3−α (2.43)

at time t0. It follows that

−AO(t0)
αQ(t0)

3−α ≤ − 1
(
Q(0)−2 + t0

) 3
2

,

which implies that

Q(0) ≤ A
1
α · 2 3−α

α , (2.44)

which contradicts the choice of Q(0). Thus, Case 2 cannot happen and the Claim is
proved. ��

Since I is closed, we have the supreme t̄ ∈ I . It is clear that t̄ < 0 since

Q(0) <
2

√
Q(0)−2 + 0

.
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Then at time t̄ , we have

d

dt
Q(t) ≤ d

dt

(
2

√
Q(0)−2 + t

)

.

Combining this with (2.43), we get the inequality (2.44) again. So this contradiction
implies that our assumption I �= ∅ is wrong. The Proposition is proved.

Using Proposition 2.15, we can estimate the curvature scale when the curvature at
some time is not large.

Proposition 2.17 Suppose {(Mn, g(t)),−2 ≤ t ≤ 0} is a Calabi flow solution satis-
fying

• the scalar curvature |S|(t) ≤ 1 for all t ∈ [−2, 0].
• the curvature tensor satisfies

Q(0) ≤ max

{

2
3−α
α A

1
α , 2

2(1−α)
α

(
A

ε

) 1
α

}

.

Then there is a constant c0 = c0(n, ε, A) > 0 such that

F(0) ≥ c0(n, ε, A). (2.45)

Proof Let

L = 2max

{

2
3−α
α A

1
α , 2

2(1−α)
α

(
A

ε

) 1
α

}

(2.46)

and we define

s1 =
{
sup {t | Q(t) = L ,−1 ≤ t ≤ 0} , if {t | Q(t) = L ,−1 ≤ t ≤ 0 } �= ∅,

−1, if {t | Q(t) = L ,−1 ≤ t ≤ 0 } = ∅.

If s1 = −1, then the theorem holds. Otherwise, by Proposition 2.15 the curvature
satisfies

Q(t) ≤ √
5L , t ∈

[

s1 − 1

5L2 , s1

]

. (2.47)

On the other hand, we have Q(t) ≤ L for any t ∈ [s1, 0]. Therefore, Q(t) ≤ √
5L

holds for any t ∈
[
s1 − 1

5L2 , 0
]
. Since the interval

[
− 1

5L2 , 0
]
is contained in

[
s1 − 1

5L2 , 0
]
, we get

Q(t) ≤ √
5L , t ∈

[

− 1

5L2 , 0

]

.

The Proposition is proved. ��
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2.5 Harmonic Scale

In Propositions 2.15 and 2.17, we prove the “stability” of the curvature scale under the
scalar bound condition. However, this condition is in general not available.We observe
that Calabi energy is scaling invariant for complex dimension 2. For this particular
dimension, scalar bound condition canmore or less be replaced byCalabi energy small,
whenever collapsing does not happen. For the purpose to rule out collapsing, we need
a more delicate scale, which is the harmonic scale introduced in this subsection.

Definition 2.18 (cf. [1,2]) Let (Mn, g) be an n-dimensional Riemannian manifold.
Given p ∈ (n,∞) and Q > 1, the L1,p harmonic radius hr(x, g) at the point x ∈ M
is the largest number r0 such that on the geodesic ball B = Bx (r0) of radius r0 in
(M, g), there is a harmonic coordinate chart U = {ui }ni=1 : B → R

n , such that the
metric tensor gi j = g( ∂

∂ui
, ∂

∂u j
) satisfies

Q−1(δi j ) ≤ (gi j ) ≤ Q(δi j ), r
1− n

p
0 ‖∂gi j‖L p ≤ Q − 1.

The harmonic radius hrg(M) is defined by

hrg(M) = inf
x∈M hr(x, g).

For the harmonic radius, Anderson–Cheeger showed the following result.

Lemma 2.19 (cf. [2]) Fix Q > 1.Let (Mi , gi ) be a sequence of Riemannianmanifolds
which converges strongly in L1,p topology to a limit L1,p Riemannianmanifold (M, g).
Then

hrg(M) = lim
i→∞ hrgi (Mi ).

Moreover, for any xi ∈ Mi with xi → x ∈ M we have

hr(x, g) = lim
i→∞ hr(xi , gi ).

Next, we introduce the harmonic scale which will be used in the convergence of
Calabi flow on Kähler surfaces.

Definition 2.20 Let (M, g) be a Riemannian manifold. The harmonic scale Hg(M)

is the supreme of r such that

max
M

|Rm| < r−2, hr(x, g) > r, ∀ x ∈ M.

In other words, the harmonic scale of (M, g) is defined by

Hg(M) = min

{(

sup
M

|Rm|
)− 1

2

, hrg(M)

}

.
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Lemma 2.21 There is a universal small constant ε with the following properties.
Suppose {(M2, g(t)),−K ≤ t ≤ 0} is a Calabi flow solution on a compact Kähler

surface, K ≥ 2. Then for every t ∈ [−1, 0], we have

Hg(t)(M) ≥ 1

2

whenever Hg(0)(M) ≥ 1 and Ca(−K ) − Ca(0) < ε.

Proof We argue by contradiction. Suppose the statement were wrong. Then we can
find a sequence of Calabi flows {(Mi , gi (t)),−Ki ≤ t ≤ 0}(Ki > 2) violating the
statement with

Cagi (−Ki ) − Cagi (0) < εi , εi → 0.

Let {(M, g(t)),−K ≤ t ≤ 0} be one of such flows.We shall truncate a critical time
interval from this flow. Check if there is a time such that H(t) < 1

2 in [−1, 0]. If no,
stop. Otherwise, choose the first time t such that H(t) = 1

2 and denote it by t1. Then
check the interval [t1 − H4(t1), t1] to see if there is a time such that H(t) ≤ 1

2H(t1).
If no such time exists, we stop. Otherwise, repeat the process. Note that

H(tk) = 1

2k
,

|tk+1 − tk | ≤ 1

16k
,

|tk | ≤ 1 + 1

16
+ 1

162
+ · · · <

16

15
.

This process happens in a compact smooth space time M × [−2, 0] with bounded
geometry. In particular, the harmonic scale is bounded. After each step, the harmonic
scale decreases one half. Therefore, it must stop in finite steps. Suppose it stops at
(k + 1)-step. Therefore, for some time tk+1 ∈ [tk − H4(tk), tk], we have

H(tk+1) = 1

2
H(tk),

H(t) ≥ 1

2
H(tk+1), ∀ t ∈

[
tk+1 − H4(tk+1), tk+1

]
.

Denote rk = H(tk) and let g̃(t) = r−2
k g(tk + r4k t), s = r−4

k (tk+1 − tk) ∈ [−1, 0).
Then for the flow g̃, we have

H(M, g̃(0)) = 1,

H(M, g̃(s)) = 1

2
,

H(M, g̃(t)) ≥ 1

2
, ∀ t ∈ [s, 0],
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H(M, g̃(t)) ≥ 1

32
, ∀ t ∈

[

s − 1

16
, s

]

,

Ca(M, g̃(−2)) − Ca(M, g̃(0)) < ε.

Now for each flow gi , we rearrange the base point and rescale the flow according to
the above arrangement. Denote the new flows by {(Mi , g̃i (t)),−1 ≤ t ≤ 0}. Then the
above equations hold for each g̃i with some si ∈ [−1, 0) and εi → 0. Let xi be the
point where H(g̃i , si ) achieves value. In other words, we have

H(M, g̃i (si )) = 1

2
, (2.48)

hr(xi , g̃i (si )) = 1

2
, or |Rm|g̃i (si )(xi ) = 4. (2.49)

Let s be the limit of si . Then s ≤ 0. On (s − 1
16 , 0) we have uniform bound of H

when time is uniformly bounded away from s− 1
16 . Then we have bound of curvature,

curvature higher derivatives, injectivity radius, etc. Therefore, we can take smooth
convergence on time interval (s − 1

16 , 0),
{

(M, xi , g̃i (t)) , s − 1

16
< t ≤ 0

}
Cheeger−Gromov−C∞
−−−−−−−−−−−−−−→

{(
M, x, g(t)

)
, s − 1

16
< t ≤ 0

}

,

and the Calabi energy of the limit metric g(t) is static for all t ∈ (s − 1
16 , 0). Note

that for each fixed compact set 
 ⊂ M , the integral of |∇∇S|2 on M × [s − 1
16 , 0] is

dominated by

lim
i→∞Ca(g̃i (−2)) − Ca(g̃i (0)) = 0.

Therefore, on the limit flow g(t), we have |∇∇S| ≡ 0. Every g(t) is an extKmetric and
g(t) evolves by the automorphisms group generated by ∇S. In particular, the intrinsic
Riemannian geometry does not evolve along the flow. From t = s to t = 0, suppose
the generated automorphism is �, which is the identity map when s = 0. Clearly, � is
the limit of diffeomorphisms �i , which is the integration of the real vector field ∇Si
from time t = si to time t = 0.

Note that at time s and 0, we have a priori bound for all high curvature deriva-
tives of curvature. By Lemma 2.19, the harmonic radius is continuous in the smooth
convergence. Note that at time t = 0, harmonic scale is 1, which implies that

|Rm|g̃i (0)(x) ≤ 1, hr(xi , g̃i (0)) ≥ 1.

Therefore, we have

hr(x, g(0)) = lim
i→∞ hr(xi , g̃i (0)) ≥ 1,

hr(x, g(s)) = lim
i→∞ hr(xi , g̃i (si )).
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Since g evolves by automorphisms, we have

lim
i→∞ hr(xi , g̃i (si )) = hr(x, g(s)) = hr(�(x), g(0)) = lim

i→∞ hr(�i (xi ), g̃i (0)) ≥ 1.

On the other hand, it is clear that

lim
i→∞ |Rm|g̃i (si )(xi ) = |Rm|g(s)(x) = |Rm|g(0)(�(x)) = lim

i→∞ |Rm|g̃i (0)(�i (xi )) ≤ 1.

Therefore, for large i , we have

hr(xi , g̃i (si )) >
3

4
, sup

Bg̃i (si )
(xi ,

1
2 )

|Rm|g̃i (si ) <
4

3
,

which contradicts (2.49). The lemma is proved. ��

2.6 Backward Regularity Improvement

Wenow can summarize themain results in Sect. 2 as the following backward regularity
improvement theorems.

Theorem 2.22 There is a δ = δ(T0, B, c0) with the following properties.
Suppose T ≥ T0 and {(M2, ω(t), J ), 0 ≤ t ≤ T } is a Calabi flow solution satisfy-

ing

Ca(0) − Ca(T ) < ε,

sup
M

|Rm|(·, T ) ≤ B,

in j (M, g(T )) ≥ c0,

where ε is the universal small constant in Lemma 2.21. Then we have

sup
M×[T−δ,T ]

|∇l Rm| ≤ Cl , ∀ l ∈ Z

+ ∪ {0}.

Proof Note that Hg(T )(M) is uniformly bounded from below. Therefore, up to rescal-
ing, we can apply Lemma 2.21 to obtain a δ such that Hg(t)(M) is uniformly bounded
frombelowwhenever t ∈ [T−2δ, T ]. Then the statement follows from the application
of Theorem 2.3.

Theorem 2.23 There is a δ = δ(n, T0, A, B) with the following properties.
Suppose T ≥ T0 and {(Mn, ω(t), J ), 0 ≤ t ≤ T } is a Calabi flow solution

satisfying

sup
M×[0,T ]

|S| < A,
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sup
M

|Rm|(·, T ) ≤ B.

Then we have

sup
M×[T−δ,T ]

|∇l Rm| ≤ Cl , ∀ l ∈ Z

+ ∪ {0}.

The proof of Theorem 2.23 is nothing but a mild application of Propositions 2.15
and 2.17, with loss of accuracy. The reason for developing Proposition 2.15 and Propo-
sition 2.17 with more precise statement is for the later use in Sect. 4, where we study
the blowup rate of Riemannian curvature tensors. Note that Theorem 2.23 deals with
collapsing case also. If we add a non-collapsing condition at time T , then the scalar
curvature bound in Theorem 2.23 can be replaced by a uniform bound of ‖S‖L p for
some p > n. This was pointed out by Donaldson [31].

Remark 2.24 All the quantities in Theorems 2.22 and 2.23 are geometric quantities,
and consequently are invariant under the action of diffeomorphisms. Therefore, if
we transform the Calabi flow by diffeomorphisms, then all the estimates in Theo-
rems 2.22 and 2.23 still hold. In particular, they hold for the modified Calabi flow(c.f.
Definition 3.1) and the complex structure Calabi flow(c.f. equation (1.3)).

3 Convergence of the Calabi Flow

3.1 Deformation of the Modified Calabi Flow Around extK Metrics

In this subsection, we fix the underlying complex manifold and evolve the Calabi flow
in a fixed Kähler class.

Let ω be an extK metric, X to be the extremal vector field defined by the extremal
Kähler metric ω, i.e.,

X = gik̄
∂S

∂zk̄
∂

∂zi
. (3.1)

It is well known that X is a holomorphic vector field, due to the work of Calabi [5].
Recall that for every holomorphic vector field V , the Futaki invariant is defined to be

Fut(V, [ω]) �
∫

M
V ( f ) ωn, (3.2)

where f is the normalized scalar potential defined by

� f = S − S,

∫

M
e f ωn = vol(M).

123



Regularity Scales and Convergence of the Calabi Flow 2079

Note that (3.2) is well-defined since the right-hand side of (3.2) depends only on the
Kähler class [ω]. Let V = X , then we have

Fut(X, [ω]) =
∫

M
(S − S)2ωn = Ca(ω).

According to [14], in the class [ω], the minimal value of the Calabi energy is achieved
at ω. In other words, for every smooth metric ωϕ , we have

Ca(ωϕ) ≥ Ca(ω),

with equality holds if and only if ωϕ is also an extK metric. Note that ωϕ is extremal
if and only if �∗

0ωϕ = ω for some �0 ∈ Aut0(M, J ), by the uniqueness theorem of
extK metrics(c.f. [4,19,21]).

In the Kähler class [ω], consider a smooth family of Kähler metrics g(t) satisfying

∂

∂t
gi j̄ = S,i j̄ + LRe(X)gi j̄ , (3.3)

where Re(X) is the real part of the holomorphic vector field X defined in (3.1). The
above flow was considered in [38] and Sect. 3.2 of [39].

Definition 3.1 Equation (3.3) is called the modified Calabi flow equation. Corre-
spondingly, the functional Ca(ωϕ) − Ca(ω) is called the modified Calabi energy.

The space H (c.f. equation (1.4)) has an infinitely dimensional Riemannian sym-
metric space structure, as described by Donaldson [28], Mabuchi [40], and Semmes
[41]. Every two metrics ωϕ1 , ωϕ2 can be connected by a weak C1,1-geodesic, by the
result of Chen [11]. Therefore,H has a metric induced from the geodesic distance d,
which plays an important role in the study of the Calabi flow. For example, the Calabi
flow decreases the geodesic distance inH(c.f. [7]). Furthermore, by the invariance of
geodesic distance up to automorphism action, the modified Calabi flow also decreases
the geodesic distance. However, d is too weak for the purpose of improving regularity.
Even if we know that d(ωϕ, ω) is very small, we cannot obtain too much information
ofωϕ . For the convenience of improving regularity, we introduce an auxiliary function
d̂ on H.

Definition 3.2 For each ωϕ in the class [ω], we define

d̂(ωϕ) � inf
�∈Aut0(M,J )

∥
∥�∗ωϕ − ω

∥
∥
Ck, 12

.

Note that d̂ is not really a distance function. The advantage of d̂ is that if d̂ is very
small, then one can choose an automorphism � such that �∗ωϕ is around the extK

metric ω, in the Ck, 12 -norm. Then regularity improvement of �∗ωϕ becomes possible.
Note that in the Kähler class [ω], a metric form ωϕ is extremal if and only if the
modified Calabi energy vanishes, in light of the result of Chen in [14]. Then it follows
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from the uniqueness of extremal metrics that �∗
0ωϕ = ω for some �0 ∈ Aut0(M, J ).

By the definition of d̂ , we have

d̂(ωϕ) = inf
�∈Aut0(M,J )

∥
∥�∗ωϕ − ω

∥
∥
Ck, 12

≤ ∥
∥�∗

0ωϕ − ω
∥
∥
Ck, 12

= 0.

In short,Ca(ωϕ)−Ca(ω) = 0 implies that d̂(ωϕ) = 0. The following lemma indicates
that there is an almost version of this phenomenon.

Lemma 3.3 For each ε > 0, there is a δ = δ(ω, ε) with the following property.
If ϕ ∈ H satisfies

∥
∥ωϕ − ω

∥
∥
Ck+1, 12

< 1, Ca(ωϕ) − Ca(ω) < δ,

then d̂(ωϕ) < ε.

Proof For otherwise, there is an ε0 > 0 and a sequence of ϕi ∈ H satisfying

∥
∥ωϕi − ω

∥
∥
Ck+1, 12

< 1, Ca(ωϕi ) − Ca(ω) < δi → 0, (3.4)

d̂(ωϕi ) ≥ ε0. (3.5)

Then we can assume that ωϕi converges to ωϕ∞ in the Ck, 12 -topology, which gives

rise to Ck, 12 -metric with Calabi energy the same as Ca(ω). By the uniqueness theo-
rem(c.f. [4,19,21]), we can find an automorphism �∞ ∈ Aut0(M, J ) such that

�∗∞ωϕ∞ = ω.

Note that �∞ is automatically smooth. Then we have

�∗∞ωϕi

Ck, 12−−−→ ω,

which contradicts (3.5). ��
There is a modified Calabi flow version of the short-time existence theorem of

Chen-He(c.f. [15]).

Lemma 3.4 There is a ξ0 = ξ0(ω) with the following properties.
Suppose

∥
∥ωϕ − ω

∥
∥
Ck, 12

< ξ0. Then themodified Calabi flow starting fromωϕ exists

on time interval [0, 1] and we have

sup
1
2≤t≤1

∥
∥ωϕ(t) − ω

∥
∥
Ck+1, 12

< 1.

Now we fix ξ0 in Lemma 3.4 and define δ0 = δ0(ω, ξ0) as in Lemma 3.3.
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Lemma 3.5 Suppose η0 < ξ0 is small enough such that Ca(ωωϕ ) − Ca(ω) < δ0 for
every ϕ ∈ H satisfying

∥
∥ωϕ − ω

∥
∥
Ck, 12

< η0. Then the modified Calabi flow starting

from ωϕ has global existence whenever
∥
∥ωϕ − ω

∥
∥
Ck, 12

< η0.

Proof Clearly, the flow exists on [0, 1] and d̂(ωϕ(1)) < ξ0. We continue to use
induction to show that the flow exists on [0, N ] for each positive integer N and
d̂(ωϕ(N )) < ξ0.

Suppose the statement holds for N . Then at time N , we have d̂(ωϕ(N )) < ξ0.
Therefore, we can find an automorphism �N such that

∥
∥�∗

Nωϕ(N ) − ω
∥
∥
Ck, 12

< ξ0.

Then the modified Calabi flow starting from �∗
Nωϕ(N ) exists for another time period

with length 1, in light of Lemma 3.4. Moreover, we have the Ck+1, 12 -bound of the
metric at the end of this time period. Note that the modified Calabi energy is mono-
tonically decreasing along the flow. Therefore, at the end of the time period 1, one can
apply Lemma 3.3 to obtain that d̂ < ξ0. Since the intrinsic geometry and d̂ does not
change under the automorphism action, it is clear that themodified Calabi flow starting
from ωϕ(N ) exists for another time length 1 with proper geometric bounds. Therefore,
ωϕ(t) are well-defined smooth metrics for t ∈ [N , N + 1] and d̂(ωϕ(N+1)) < ξ0. ��

We observe that the automorphisms �i defined in the proof of Lemma 3.5 are
uniformly bounded. Actually, note that the geodesic distance between two modified
Calabi flows is non-increasing. By triangle inequality, we have

d(ω, ωϕ) ≥ d(ω, ωϕ(i)) ≥ d(ω, (�−1
i )∗ω) − d((�−1

i )∗ω,ωϕ(i))

= d(ω, (�−1
i )∗ω) − d(ω, �∗

i ωϕ(i)).

It follows that

d(ω, (�−1
i )∗ω) ≤ d(ω, ωϕ) + d(ω, �∗

i ωϕ(i)) < C.

Therefore, �i must be uniformly bounded. Furthermore, since the modified Calabi
energy always tends to zero as t → ∞, by the results of Streets [45] and He [36], it
is clear that

Ca(ωϕ(i)) − Ca(ωϕ(i−1)) → 0.

Applying Lemma 3.3, we can choose ξi → 0 such that

∥
∥�∗

i ωϕ(i) − ω
∥
∥
Ck, 12

< ξi → 0, as i → ∞.

In particular, we have d(ω, �∗
i ωϕ(i)) → 0 as i → ∞.
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Theorem 3.6 Suppose ϕ ∈ H satisfying
∥
∥ωϕ − ω

∥
∥
Ck, 12

< η0. Then the modified

Calabi flow starting from ωϕ converges to �∗ω for some � ∈ Aut0(M, J ), in the
smooth topology of Kähler potentials.

Proof First, let us show the convergence in distance topology.
Let � j be the automorphisms defined in the proof of Lemma 3.5. From the above

discussion, we see that � j are uniformly bounded, by taking subsequence if necessary,
we can assume � j converges to �∞. Then

lim
j→+∞ d((�−1∞ )∗ω,ωϕ( j)) = lim

j→+∞ d((�−1
j )∗ω, ωϕ( j)) = lim

j→+∞ d(ω, (� j )
∗ωϕ( j)) = 0.

Note that (�−1∞ )∗ω is also an extremal Kähler metric and hence a fixed point of the
modified Calabi flow. By the monotonicity of geodesic distance along the modified
Calabi flow, we have

d((�−1∞ )∗ω,ωϕ(t)) ≤ d((�−1∞ )∗ω,ωϕ( j))

whenever t ≥ j . In the above inequality, let t → ∞ and then let j → ∞, we obtain

lim
t→∞ d((�−1∞ )∗ω,ωϕ(t)) = 0. (3.6)

This means that ωϕ(t) converges to (�−1∞ )∗ω in the distance topology.
Second, we improve the convergence topology from distance topology in (3.6) to

smooth topology.
Define �(t) = � j for each t ∈ [ j, j + 1). In light of the proof of Lemma 3.5,

both �(t)∗ωϕ(t) and �(t) are uniformly bounded. It follows that ωϕ(t) are uniformly
bounded in each Cl -topology. Let ti → ∞ be a time sequence such that

ωϕ(ti )
C∞−−→ ωϕ∞ , as i → ∞.

In view of (3.6), we see that d(ωϕ∞ , (�−1∞ )∗ω) = 0,which forces thatωϕ∞ = (�−1∞ )∗ω.
Since {ti } is arbitrary time sequence such that ωϕ(ti ) converges, the above discussion
actually implies that

ωϕ(t)
C∞−−→ (�−1∞ )∗ω, as t → ∞.

Let � = �−1∞ . Then the proof of the Theorem is complete. ��
The convergence in Theorem 3.6 could be as precise as “exponential” if we have

further conditions on ω or ωϕ .

Theorem 3.7 ([15,38]) Same conditions as those in Theorem 3.6. Suppose one of the
following conditions is satisfied.
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• ω is a cscK metric.
• ωϕ is G-invariant, where G is a maximal compact subgroup of Aut0(M, J ).

Then the modified Calabi flow starting from ωϕ converges to �∗ω exponentially fast
in the smooth topology of Kähler potentials. In other words, for each positive integer
l, there are constants C, θ depending on l such that

|ϕ(t) − ϕ∞|Cl (g) ≤ Cl · e−θ t ,∀t ≥ 0.

3.2 Convergence of Kähler Potentials

The key of this subsection is the following regularity improvement properties.

Proposition 3.8 Suppose {(M2, ωϕ(t), J ), 0 ≤ t < ∞} is a modified Calabi flow
solution satisfying

∥
∥ωϕ(t0) − ω

∥
∥
Ck, 12

< η0, Ca(ωϕ(t0−1)) − Ca(ωϕ(t0)) < ε (3.7)

for some t0 ≥ 1, where η0 is the constant in Theorem 3.6, ε is the constant in
Lemma 2.21. Then for each positive integer l ≥ k, there is a constant Cl depend-
ing on l and ω such that

∥
∥ωϕ(t0) − ω

∥
∥
Cl, 12

< Cl . (3.8)

Proof The solution of the modified flow (3.3) and the Calabi flow differs only by an
action of �, which the automorphism generated by Re(X) from time t0 − 1 to t0,
where X is defined in (3.1). Since X is a fixed holomorphic vector field. It follows that
‖�‖

Cl, 12
is uniformly bounded by Al for each positive integer l. Therefore, in order to

show (3.8) for modified Calabi flow, it suffices to prove it for unmodified Calabi flow.
Clearly, the Riemannian geometry of ωϕ(t0) is uniformly bounded, by shrinking η0

if necessary. We also have Ca(ωϕ(t0−1)) − Ca(ωϕ(t0)) < ε. Therefore, Theorem 2.22
applies and we obtain uniform |∇l

ϕRm(ωϕ)|gϕ bound for each non-negative integer l.
Due to the bound of curvature derivatives, one can obtain the metric equivalence for a
fixed time period before t0, say on [t0 − 1

4 , t0]. Then we see that ωϕ(t0− 1
4 ) is uniformly

equivalent to ω and has uniformly bounded Ricci curvature. This forces that ωϕ(t0− 1
4 )

has uniform C1, 12 -norm, due to Theorem 5.1 of Chen-He [15]. Consequently, (3.8)
follows from the smoothing property of the Calabi flow(c.f. the proof of Theorem 3.3
of [15]). ��
Proposition 3.9 Suppose {(Mn, ωϕ(t), J ), 0 ≤ t < ∞} is a modified Calabi flow
solution satisfying

∥
∥ωϕ(t0) − ω

∥
∥
Ck, 12

< η0, sup
M×[t0−1,t0]

|S| < A, (3.9)
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for some t0 ≥ 1, where η0 is the constant in Theorem 3.6. Then for each positive
integer l ≥ k, there is a constant Cl depending on l , A and ω such that

∥
∥ωϕ(t0) − ω

∥
∥
Cl, 12

< Cl .

Proposition 3.9 is the high dimension correspondence of Proposition 3.8. The proof
of Proposition 3.9 is almost the same as that of Proposition 3.8, except that we use
Theorem 2.23 to improve regularity, instead of Theorem 2.22.

Now we are ready to prove our main theorem for the extremal Kähler metrics.

Proof of Theorem 1.2 Pick ωϕ ∈ LH, we need to show that the modified Calabi flow
starting from ωϕ converges to �∗(ω) for some � ∈ Aut0(M, J ). For simplicity of
notation, each flow mentioned in the remaining part of this proof is the modified
Calabi flow. According to the definition of LH, we can choose a path ϕs, s ∈ [0, 1]
connecting ω and ωϕ , i.e.,

ωϕ0 = ω, ωϕ1 = ωϕ.

Let I be the collection of s ∈ [0, 1] such that the flow starting from ωϕs converges.
In order to show the convergence of the flow starting from ωϕ , it suffices to show the
openness and closedness of I , since I obviously contains at least one element s = 0.

For each s, let ϕs(t) be the the time-t-Kähler potential of the flow starting from
ωϕs . Define function

d̂(s, t) � inf
�∈Aut0(M,J )

∥
∥�∗ωϕs (t) − ω

∥
∥
Ck, 12

.

Note that bounded closed set in Aut0(M, J ) is compact since Aut0(M, J ) is a finite-
dimensional Lie group. Therefore, we can always find a �s,t ∈ Aut0(M, J ) such
that

d̂(s, t) = ∥
∥�∗

s,tωϕs (t) − ω
∥
∥
Ck, 12

.

Therefore, d̂ is a well-defined function. It is also clear that d̂ depends on s, t continu-
ously. One can refer Lemma 3.13 and 3.14 for a similar, but more detailed discussion.
By Theorem 3.6, if d̂(s0, t0) < δ0 for some s0 ∈ [0, 1], t0 ∈ [0,∞), then the flow start-
ing from ωϕs0 (t0) converges. Consequently, the flow starting from ωϕs0 (0) converges.
By continuous dependence of the metrics on the initial data, we see that I is an open
set.

We continue to show that I is also closed.Without loss of generality, we can assume
that [0, s̄) ⊂ I and it suffices to show that s̄ ∈ I .

For each s ∈ [0, s̄), let Ts be the first time such that d̂(s, t) = 0.5η0. By the
convergence assumption and the continuity of d̂ , each Ts is a bounded number.
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Claim 3.10 The bound of Ts is uniform, i.e., sup
s∈[0,s̄)

Ts < ∞.

If the Claim fails, we can find a sequence si → s̄ such that Tsi → ∞. For simplicity
of notation, we denote Tsi by Ti . Consider the flow starting from ϕs̄ . By the results of
Streets(c.f. [36,45]), we see that

lim
t→∞Ca(ωϕs̄ (t)) = Ca(ω).

Therefore, for each fixed ε, we can find Lε such that Ca(ωϕs̄ (Lε)) < Ca(ω) + ε. By
continuity, we have

lim
i→∞Ca(ωϕsi (Lε )) = Ca(ωϕs̄ (Lε)) < Ca(ω) + ε. (3.10)

Note that the Calabi energy is non-increasing along each flow. Since Ti − 1 > Lε for
large i , it follows from (3.10) that

lim
i→∞Ca(ωϕsi (Ti−1)) ≤ Ca(ω) + ε

for each fixed positive ε. Since the Calabi energy is always bounded from below by
Ca(ω), it is clear that

lim
i→∞

∣
∣
∣Ca(ωϕsi (Ti−1)) − Ca(ωϕsi (Ti )

)

∣
∣
∣ = lim

i→∞

(
Ca(ωϕsi (Ti−1)) − Ca(ωϕsi (Ti )

)
)

= 0.

(3.11)

Note that the harmonic scale of ωϕsi (Ti )
is uniformly bounded away from zero. By

Theorem 2.22, we obtain all the curvature and curvature higher derivative bounds of
ωϕsi (Ti )

. Define

�i � �si ,Ti , ωϕ̂i � �∗
i (ωϕsi (Ti )

).

Note that ωϕ̂i has uniform Ck, 12 -norm by the choice of Ti . Because of (3.11), we can

apply Proposition 3.8 and see that ωϕ̂i has uniform Cl, 12 -norm for each integer l ≥ k.
Therefore, we can take the smooth convergence in fixed coordinate charts.

ϕ̂i
C∞−−→ ϕ̂∞, ωϕ̂i

C∞−−→ ωϕ̂∞ . (3.12)

Since the Calabi energy converges in the above process, by (3.11) and the above
inequality, we obtain that ωϕ̂∞ is an extK metric. By the uniqueness theorem of extK
metrics, we obtain that there is a �∞ ∈ Aut0(M, J ) such that

ωϕ̂∞ = �∗∞ω.

Note that �∞ is automatically smooth. Now (3.12) can be rewritten as
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�∗
i (ωϕsi (Ti )

)
C∞−−→ �∗∞ω,

(
�i ◦ �−1∞

)∗
(ωϕsi (Ti )

) =
(
�−1∞

)∗ ◦ �∗
i (ωϕsi (Ti )

)

=
(
�−1∞

)∗
ωϕ̂i

C∞−−→ ω.

It follows from the definition of d̂ that

d̂(si , Ti ) ≤
∥
∥
∥
(
�i ◦ �−1∞

)∗
(ωϕsi (Ti )

) − ω

∥
∥
∥
Ck, 12

→ 0,

which contradicts our choice of Ti , i.e., d̂(si , Ti ) = 0.5η0. Therefore, the proof of
Claim 3.10 is complete.

In light ofClaim3.10,we can choose a sequence of si → s̄ andTi = Tsi → T̄ < ∞.
By continuity of d̂, we see that

d̂(s̄, T̄ ) = 0.5η0.

Consequently, Theorem3.6 applies and the flow starting fromωϕs̄ (T̄ ) converges. Hence
the flow starting from ωϕs̄ (0) converges and s̄ ∈ I . The proof of the Theorem is
complete. ��

Theorem 1.4 can be proved almost verbatim, except replacing Propsotion 3.8 by
Proposition 3.9.

3.3 Convergence of Complex Structures

In this subsection, we regard the Calabi flow as the flow of the complex structures
on a given symplectic manifold (M, ω). We also assume this symplectic manifold
has a cscK complex structure J0. Note that the uniqueness theorem of extK metrics
in a given Kähler class of a fixed complex manifold plays an important role in the
convergence of potential Calabi flow. Similar uniqueness theorem will play the same
role in the convergence of complex structure Calabi flow. Actually, by the celebrated
work of Chen-Sun(c.f. Theorem 1.3 of [20]), on each C∞-closure of a GC-leaf of
a smooth structure J , there is at most one cscK complex structure(i.e., the metric
determined by ω and J is cscK), if it exists.

It is important to note that the complex structure Calabi flow solution is invariant
under Hamiltonian diffeomorphism. Suppose JA and JB are two isomorphic complex
structures, i.e.,

ϕ∗ω = ω, JA = ϕ∗ JB

for some symplectic diffeomorphism ϕ. Let JA(t) be a Calabi flow solution starting
from JA, then ϕ∗ JA(t) is a Calabi flow solution starting from JB .

Let g0 be the metric compatible with ω and J0. Then it is clear that g0 is cscK and
therefore smooth metric. We can choose coordinate system of M such that g, J, ω
are all smooth in each coordinate chart. We equip the tangent bundle and cotangent
bundle and their tensor products with the natural metrics induced from g0. Clearly, if a
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diffeomorphism ϕ preserves bothω and J0, then it preserves g0 and therefore locates in
ISO(M, g0), which is compact Lie group. Therefore, each ϕ is smooth and has a priori

bound of Cl, 12 -norm for each positive integer l, whenever ϕ is regarded as a smooth
section of the bundle M × M → M , equipped with natural metric induced from g0.
There is an almost version of this property. In other words, if ϕ preserves ω and the

Ck, 12 -norm of ϕ∗ J is very close to J0, then ϕ has a priori bound of Ck+1, 12 -norm. This
is basically because of the improving regularity property of isometry(c.f. [8]).

Proposition 3.11 Let
{
Ux ,

{
xi

}m
i=1

}
and

{
Uy,

{
yi

}m
i=1

}
be two coordinates of an

open Riemannian manifold (V, ds2). The Riemannian metric in these two coordinates
can be written as

ds2 = gi j (x)dx
idx j = g̃i j (y)dy

idy j . (3.13)

As subsets of R

m, Ux , and Uy satisfy

{

x
∣
∣
∣ |x | =

√
x21 + x22 + · · · + x2m <

1

2

}

⊂ Ux ⊂ {x | |x | < 1} ,

{

y
∣
∣
∣ |y| <

1

2

}

⊂ Uy ⊂ {y | |y| < 1} .

In each coordinate, the metrics are uniform equivalent to Euclidean metrics.

1

2
δi j < gi j (x) < 2δi j , ∀ x ∈ Ux

1

2
δi j < g̃i j (y) < 2δi j , ∀ y ∈ Uy .

Suppose gi j and g̃i j are of class Ck, 12 for some integer 1 ≤ k ≤ ∞. Suppose the

natural map x = f (y) satisfies f (0) = 0. Then f is of class Ck+1, 12 and

‖ f ‖
Ck+1, 12 (B 1

4
)
< C

(

m, k,
∥
∥gi j

∥
∥
Ck, 12 (Ux )

,
∥
∥g̃i j

∥
∥
Ck, 12 (Uy)

)

,

where B 1
4
is the standard ball in R

m with radius 1
4 and centered at 0.

Proof Equation (3.13) can be rewritten as

g̃i j = gkl
∂xk

∂ yi
∂xl

∂ y j
.

Denote �k
i j and �̃k

i j as the Christoffel symbol of ds2 under the x and y coordinate,
respectively. Then direct calculation implies that

�̃k
i j = ∂x p

∂ yi
∂xq

∂ y j
�r
pq

∂ yk

∂xr
+ ∂ yk

∂xu
∂2xu

∂yi∂y j
.
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In other words, the second derivatives of x(y) can be expressed as

∂2xu

∂yi∂y j
= ∂xu

∂yk
�̃k
i j − �u

pq
∂x p

∂ yi
∂xq

∂ y j
. (3.14)

Now suppose the metric g̃i j is Ck, 12 for some integer k ≥ 1. Moreover, let us assume
∥
∥gi j

∥
∥
Ck, 12 (Ux )

,
∥
∥g̃i j

∥
∥
Ck, 12 (Uy)

≤ A.

Therefore, �̃k
i j and�k

i j areC
k−1, 12 and has uniformly boundedCk−1, 12 -norm in smaller

balls. By bootstrapping argument, we obtain that

‖ f ‖
Ck+1, 12 (B 1

4
)
≤ C(m, k, A).

��
Lemma 3.12 Suppose ϕ ∈ Symp(M, ω). Then we have

‖ϕ‖
Ck+1, 12

< C
(
n, k, ‖ϕ∗ J‖

Ck, 12
, ‖J‖

Ck, 12

)
.

Proof Regard ϕ as an isometry from (M, ω, J ) to (M, ω, ϕ∗ J ). Then the proof boils
down to Proposition 3.11. Note that ϕ∗ J is the push forward of J , which is the same

as (ϕ−1)∗ J , and the default metric we take Ck, 12 -norm is the metric g0. ��
Fix J0 as the cscK complex structure. For each complex structure J compatible

with ω, we define

d̃(J ) = inf
∥
∥ϕ∗ J − J0

∥
∥
Ck, 12

,

where infimum is taken among all symplectic diffeomorphisms with finiteCk, 12 -norm.
Let ϕi be a minimizing sequence to approximate d̃(J ). By triangle inequality and

Lemma3.12,we see thatϕi has uniformly boundedCk+1, 12 -norm. Therefore, by taking

subsequence if necessary, we can assume ϕi converges, in the Ck+1, 13 -topology, to a
limit symplectic diffeomorphism ϕ∞. Although the convergence topology is weak, it

follows from definition that ϕ∞ has bounded Ck+1, 12 -norm. Therefore, we see that

∥
∥ϕ∗∞ J − J0

∥
∥
Ck, 12

≤ lim
i→∞

∥
∥ϕ∗

i J − J0
∥
∥
Ck, 12

= d̃(J ).

On the other hand, by definition, we have

d̃(J ) ≤ ∥
∥ϕ∗∞ J − J0

∥
∥
Ck, 12

.

Combining the above two inequalities, we obtain that d̃(J ) is achieved by ϕ∗∞ J . We
have proved the following Lemma.
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Lemma 3.13 For each smooth complex structure J compatible with ω, d̃(J ) is

achieved by a diffeomorphism ϕ ∈ Ck+1, 12 (M, M) and ϕ∗ω = ω.

Lemma 3.14 d̃ is a continuous function on the moduli space of complex structures,

equipped with Ck, 12 -topology.

Proof Fix JA, let JB → JA. Then we need to show that

d̃(JA) = lim
JB→JA

d̃(JB).

On one hand, by Lemma 3.13, we can find ϕA ∈ Ck+1, 12 (M, M) such that

d̃(JA) = ∥
∥ϕ∗

A JA − J0
∥
∥
Ck, 12

.

It follows that

d̃(JB) = inf
ϕ∈Symp(M,ω)

∥
∥ϕ∗ JB − J0

∥
∥
Ck, 12

≤ ∥
∥ϕ∗

A JB − J0
∥
∥
Ck, 12

.

Let JB → JA and take limit on both sides, we have

lim sup
JB→JA

d̃(JB) ≤ lim sup
JB→JA

∥
∥ϕ∗

A JB − J0
∥
∥
Ck, 12

= ∥
∥ϕ∗

A JA − J0
∥
∥
Ck, 12

= d̃(JA).

On the other hand, for each JB , we have ϕB to achieve the d̃ . Then we see that

lim inf
JB→JA

d̃(JB) = lim inf
JB→JA

∥
∥ϕ∗

B JB − J0
∥
∥
Ck, 12

≥ ∥
∥ϕ∗∞ JA − J0

∥
∥
Ck, 12

≥ d̃(JA),

where ϕ∞ is a limit symplectic diffeomorphism of ϕB as JB → JA. The existence
and estimates of ϕ∞ follow from Lemma 3.12.

Therefore, d̃ is continuous at JA by combining the above two inequalities. Since
JA is chosen arbitrarily in the moduli space of complex structures, we finish the proof.

��
Lemma 3.15 Suppose JA = Js(t) for some s ∈ D and t ≥ 0. There is a constant
δ > 0 such that if d̃(JA) < δ, then the Calabi flow starting from JA has global
existence and converges to ψ∗(J0) for some ψ ∈ Symp(M, ω).

Proof By Theorem 5.3 of [20], there is a small δ such that every Calabi flow starting

from the δ-neighborhood of J0, in Ck, 12 -topology, will converge to some cscK J ′.
Note that the Calabi flow solution always stays in the GC-leaf of J1, hence J ′ is in
the C∞-closure of J1. Also, on the other hand, according to the conditions of Js , we
see that J0 is also in the C∞-closure of J1. Therefore, one can apply the uniqueness
degeneration theorem, Theorem 1.3 of [20] to obtain that (M, ω, J0) and (M, ω, J ′)
are isomorphic. Namely, (ω, J ′) = η∗(ω, J0) for some diffeomorphism η.
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If d̃(JA) < δ, then we can find a diffeomorphism ϕ such that

ϕ∗ω = ω,
∥
∥ϕ∗ JA − J0

∥
∥
Ck, 12 (M,g0)

< δ.

By previous argument, the Calabi flow initiated from ϕ∗ JA will converge to η∗(J0), for
some symplectic diffeomorphism η. Then the Calabi flow starting from JA converges
to (ϕ−1)∗η∗(J0). Let ψ = η ◦ ϕ−1, we then finish the proof. ��

With these preparation, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let I to be the collection of s ∈ [0, 1] such that the Calabi flow
initiated from Js converges to ψ∗(J0) for some symplectic diffeomorphism ψ . By
abusing of notation, we denote

d̃(s, t) = d̃(Js(t)).

In light of Lemma 3.15 and continuity of d̃ , we see that I is open. In order to show
I = [0, 1], it suffices to show the following claim.

Claim 3.16 Suppose [0, s̄) ⊂ I for some s̄ ∈ (0, 1], then s̄ ∈ I .

We argue by contradiction.
If the statement was wrong, then d̃(s̄, 1) ≥ δ, due to Lemma 3.15. For each s ∈

(0, s̄), we see d̃(s, t) will converge to zero finally, while d̃(s, 1) > 0.5δ whenever s
is very close to s̄, say, for s ∈ [s̄ − ξ, s̄). Therefore, for each s nearby s̄, there is a Ts
such that d̃(s, Ts) = 0.5δ for the first time. A priori, there are two possibilities for the
behavior of Ts :

• There is a sequence of si such that si → s̄ and Tsi → ∞.
• sup

s∈[s̄−ξ,s̄)
Ts < A for some constant A.

We shall exclude the first possibility. The proof is parallel to that of Claim 3.10.
Actually, if the first possibility appears, then we see that

lim
i→∞Ca(Jsi (Tsi )) = 0.

In light of the monotonicity of the Calabi energy along each flow, the continuous
dependence of the Calabi energy on parameters s and t , and the fact that

lim
t→∞Ca(Js̄(t)) = 0.

For simplicity of notations, we denote J ′
i = Jsi (Tsi ). Note that every J ′

i can be pulled
back to J ′

1 by some diffeomorphisms ηi , which may not preserve ω. In other words,
we have

J ′
1 = η∗

i J
′
i , ωi � η∗

i ω, (3.15)
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where ωi = ω+√−1∂∂̄ fi for some smooth functions fi , with respect to the complex
structure J ′

1. Note also that (M, ω, J ′
i ) has the same intrinsic geometry as (M, ωi , J ′

1),
which has uniformly bounded Riemannian geometry and all high order curvature
covariant derivatives, due to Theorem 2.22. Therefore, we can take Cheeger–Gromov
convergence:

(M, ωi , J
′
1)

Cheeger−Gromov−C∞
−−−−−−−−−−−−−−→ (

M, ω̄, J̄
)
.

In other words, there exist smooth diffeomorphisms ϕi such that

ϕ∗
i ωi

C∞−→ ω̄, ϕ∗
i J

′
1

C∞−→ J̄ . (3.16)

Note that everything converges smoothly, the limit Kähler manifold (M, ω̄, J̄ ) has
zero Calabi energy and consequently is cscK. Moreover, it is adjacent to ([ω], J ′

1), in
the sense of Chen-Sun(c.f. Definition 1.4 of [20]). Therefore, the unique degeneration
theorem of Chen-Sun (Theorem 1.6 of [20]) applies, we see that there is a smooth
diffeomorphism ϕ of M such that

ω̄ = ϕ∗ω, J̄ = ϕ∗ J0. (3.17)

Let ψi = ϕi ◦ ϕ−1, γi = ηi ◦ ψi . Combining (3.15), (3.16) and (3.17), we obtain

ψ∗
i ωi

C∞−→ ω, ψ∗
i J

′
1

C∞−→ J0,

γ ∗
i ω

C∞−→ ω, γ ∗
i J

′
i

C∞−→ J0.

Since [ω] is integral, we see [γ ∗
i ω] = [ω] for sufficiently large i . Composing with an

extra convergent sequence of diffeomorphisms if necessary, we can assume that

γ ∗
i ω = ω, γ ∗

i J
′
i

C∞−→ J0.

Then we have d̃(J ′
i ) → 0 as i → ∞, which contradicts our choice of J ′

i , namely,
d̃(J ′

i ) = 0.5δ. This contradiction excludes the first possibility. Therefore, we have

sup
s∈[s̄−ξ,s̄)

Ts < A

for some uniform constant A. Now we choose si ∈ [0, s̄) such that si → s̄, we can
assume Tsi → Ts̄ for some finite Ts̄ by the above estimate. In light of the continuous
dependence of solutions to the initial data, we see that the complex structure Js̄(Ts̄)
is the limit of Jsi (Tsi ). Hence

d̃(Js̄(Ts̄)) = lim
i→∞ d̃(Jsi (Tsi )) = 0.5δ < δ.

123



2092 H. Li et al.

Consequently, Lemma 3.15 can be applied for the Calabi flow started from Js̄(Ts̄).
Therefore, s̄ ∈ I and we finish the proof of Claim 3.16. ��

The proof of Theorem 1.5 is almost the same as Theorem 1.3. The only difference
is that we use Theorem 2.23 to improve regularity, rather than Theorem 2.22.

3.4 Examples

In this subsection, we will give higher dimension examples with global existence. On
such examples, our results andmethods developed in previous sections can be applied.

Example 3.17 (cf. [17]) Let (M, J ) be the blowup of CP

2 at three generic points. Let
the Kähler class of ω be

3[H ] − λ([E1] + [E2] + [E3]), 0 < λ <
3

2
, λ ∈ Q,

where H denotes the pullback of the hyperplane of CP

2 in M and Ei (1 ≤ i ≤ 3)
denotes the exceptional divisors. Suppose ω is invariant under the toric action and the
action of Z3 and satisfies

∫

M
S2 dV < 192π2 + 32π2 (3 − λ)2

3 − λ2
. (3.18)

Then the Calabi flow starting from ω exists for all time and converges to a cscKmetric
in the smooth topology of the Kähler potentials.

Example 3.18 (cf. [16]) Let (M, J ) be a toric Fano surface. Let ω be a Kähler metric
with positive extremalHamiltonian potential. Suppose [ω] is rational andω is invariant
under the toric action and satisfies

∫

M
S2 dV < 32π2

(

c21(M) + 1

3

(c1(M) · 
)2


2

)

+ 1

3
‖F‖2,

where ‖F‖2 is the norm of Calabi–Futaki invariant. Then the modified Calabi flow
starting from ω exists for all time and converges to an extK metric in the smooth
topology of Kähler potentials.

Actually, in [17] and [16], the global existence of the flows in Example 3.17 and 3.18
was already proved by energy method, based on the work of [18]. Furthermore, they
showed the sequence convergence in the Cheeger–Gromov topology. The only new
thing here is the improvement of the convergence topology. Let us sketch a proof of
the statement of Example 3.18. By results of [16], we can take time sequence ti → ∞
such that

(M, ω(ti ), J )
Cheeger−Gromov−C∞
−−−−−−−−−−−−−−→ (M ′, ω′, J ′),
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where (M ′, ω′, J ′) is an extK metric. In other words, there exist smooth diffeomor-
phisms ψi such that

(ψ∗
i ω(ti ), ψ

∗
i J )

C∞−−→ (ω′, J ′)

in fixed coordinates. The toric symmetry condition forces that J ′ is isomorphic to J ,
i.e., J ′ = ψ∗ J for some smooth diffeomorphism ψ . Let ηi = ψi ◦ ψ−1, we have

(η∗
i ω(ti ), η

∗
i J )

C∞−−→ ((ψ−1)∗ω′, J ). (3.19)

The rational condition of [ω] forces that [η∗
i ω(ti )] = [(ψ−1)∗ω′]. Therefore, there

exists smooth diffeomorphisms ρi → I d such that

ρ∗
i η∗

i ω(ti ) = (ψ−1)∗ω′. (3.20)

Then equation (3.19) becomes

ρ∗
i η∗

i J
C∞−−→ J. (3.21)

We can write ηi = �i ◦ σi for �i ∈ Aut (M, J ) and σi → I d. Then (3.19) can be
rewritten as

(σ ∗
i �∗

i ω(ti ), σ
∗
i J )

C∞−−→ ((ψ−1)∗ω′, J ),

(�∗
i ω(ti ), J )

C∞−−→ ((ψ−1)∗ω′, J ).

Note that Aut (M, J ) = Aut0(M, J ) in our examples. Hence [�∗
i ω(ti )] =

[(ψ−1)∗ω′] = [ω]. For simplicity of notation, we denote (ψ−1)∗ω′ by ωextK .
Then on the fixed complex manifold (M, J ), within the Kähler class [ω], we have
�∗
i ω(ti ) → ωextK in the smooth topology of Kähler potentials. For some large i ,

�∗
i ω(ti ) locates in a tiny Ck, 12 -neighborhood of ωextK . Then we can apply Theo-

rems 3.6 and 3.7 to show the modified Calabi flow staring from �∗
i ω(ti ) converges to

an extK metric �∗ωextK exponentially fast, where � ∈ Aut0(M, J ).

4 Behavior of the Calabi Flow at Possible Finite Singularities

All our previous discussion in this paper is based on the global existence of the Calabi
flow, and there do exist some non-trivial examples of global existent Calabi flow.
However, it is not clear whether the global existence of the Calabi flow holds in
general. Suppose the Calabi flow starting from ωϕ fails to have global existence. Then
there must be a maximal existence time T . By the work of Chen-He [15], we see that
Ricci curvature must blowup at time T . In this subsection, we will study the behavior
of more geometric quantities at the first singular time T . For simplicity of notations,
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we often let the singular time T to be 0. Recall that P, Q, R are defined in equation
(1.9).

Proposition 4.1 Suppose {(Mn, g(t)),−1 ≤ t ≤ K , 0 ≤ K } is aCalabi flow solution
satisfying

Q(0) = 1, Q(t) ≤ 2, ∀ t ∈ [−1, 0].

Then we have

Q(K ) < 2
1
ε0

∫ K
0 Pg(t) dt+1

, (4.1)

where ε0 is the dimensional constant obtained in Lemma 2.9.

Proof For any non-negative integer i , we define si = inf
{
t | t ≥ 0, Q(t) = 2i

}
. Note

that s0 = 0. Thus, we have

si − 1

Q(si )2
≥ −1, sup

[

si− 1
Q(si )

2 , si+1

]
Q(t) = Q(si+1) = 2i+1.

We rescale the metrics by

gi (x, t) � Q(si )g

(

x,
t

Q(si )2
+ si

)

.

Then the flow
{
(M, gi (t)),−1 ≤ t ≤ Q(si )2(K − si )

}
is a Calabi flow solution sat-

isfying

• Qgi (0) = 1,
• Qgi (t) ≤ 1 for all t ∈ [−1, 0],
• Qgi

(
Q(si )2(si+1 − si )

)
= 2.

Thus, Lemma 2.9 applies and we have

∫ si+1

si
Pg(t) dt =

∫ Q(si )2(si+1−si )

0
Pgi (t) dt ≥ ε0.

Let N be the largest i such that si ≤ K . Then

Nε0 ≤
∫ sN

0
Pg(t) dt ≤

∫ K

0
Pg(t) dt,

which implies that N ≤ 1
ε0

∫ K
0 Pg(t) dt . It follows that for any t ∈ [0, K ],

Q(t) ≤ 2N+1 ≤ 2
1
ε0

∫ K
0 Pg(t) dt+1

.

Then (4.1) follows trivially and we finish the proof. ��
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Since the Riemannian curvature tensor blows up at the singular time along the
Calabi flow, Proposition 4.1 directly implies the following result.

Corollary 4.2 Suppose {(Mn, g(t)),−1 ≤ t < 0} is a Calabi flow solution. If t = 0
is the singular time, then we have

∫ 0

−1
Pg(t) dt = ∞.

In particular, Pg(t) will blow up at the singular time t = 0:

lim
t→0

Pg(t) = ∞.

Next, we would like to estimate Q(t) near the singular time of the Calabi flow.
Analogous results forRicci floware proved by themaximumprinciple (cf. for example,
Lemma 8.7 of [25]). Here we show similar results for the Calabi flow using the higher
order curvature estimates.

Lemma 4.3 There exists a constant δ0 = δ0(n) > 0 with the following properties.
Suppose {(Mn, g(t)),−1 ≤ t ≤ 0} is a Calabi flow solution and t = 0 is the

singular time. Then

lim sup
t→0

Q(t)
√−t ≥ δ0. (4.2)

Proof By Theorem 2.3, we can find a constant δ1(n) > 1 satisfying the following
properties. If {(M, g(t)),−1 ≤ t ≤ − 1

2 } is a Calabi flow solution with |Rm|(t) ≤ 1
for t ∈ [−1,− 1

2 ], then
∣
∣
∣
∣
∂

∂t
|Rm|

∣
∣
∣
∣
t=− 1

2

≤ δ1. (4.3)

We claim that under the assumption of Lemma 4.3, we have

sup
[−1,− 1

2δ1
]
Q(t) ≥ 1

2
. (4.4)

Otherwise, we have sup
[−1,− 1

2δ1
]
Q(t) <

1

2
. We choose t0 ∈ [−1, 0) the first time such

that Q(t0) = 1. Clearly, t0 > − 1
2δ1

. Since

Q(t0) ≤ Q

(

− 1

2δ1

)

+ sup
M×[− 1

2δ1
,t0]

∣
∣
∣
∣
∂

∂t
|Rm|

∣
∣
∣
∣ ·

(

t0 + 1

2δ1

)

,
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we have

1 <
1

2
+ δ1

(

t0 + 1

2δ1

)

≤ 1

2
+ δ1 · 1

2δ1
≤ 1, (4.5)

which is a contradiction. Herewe used (4.3) in the first inequality of (4.5). The inequal-
ity (4.4) is proved.

Now we estimate Q(s0) for any s0 ∈ (−1, 0). Since t = 0 is the singular time, we
can assume that Q(t) ≤ Q(s0) for all t ∈ [−1, s0]. Rescale the metric by

g̃(x, t) = Q g

(

x,
t

Q2

)

, t ∈ [−Q2, 0).

Choose Q such that s0Q2 = − 1
2δ1

. If |s0| ≤ 1
2δ1

, then we have Q ≥ 1 and
{(M, g̃(t)),−1 ≤ t < 0} is a Calabi flow solution with the singular time t = 0.
Thus, by (4.4) we have

Qg̃

(

− 1

2δ1

)

≥ 1

2
,

which is equivalent to say

Q(s0)
√−s0 ≥ 1

2
√
2δ1

, ∀ s0 ∈
[

− 1

2δ1
, 0

)

.

The lemma is proved. ��
The next result gives an upper bound of Q near the singular timewith the assumption

on P .

Lemma 4.4 Suppose that {(Mn, g(t)),−1 ≤ t < 0} is a Calabi flow with singular
time t = 0. If

lim sup
t→0

P(t)|t | = C < +∞, (4.6)

then we have

Q(t) = o
(|t |−λ

)
(4.7)

for any constant λ >
C log 2

ε0
. Here ε0 is the constant in Lemma 2.9.

Proof Since t = 0 is the singular time, for any δ > 0 we can choose t0 = t0(g, δ)
such that the following properties hold:

P(t)|t | < C + δ, ∀ t ∈ [t0, 0), (4.8)

Q(t) ≤ Q(t0), ∀ t ∈ [−1, t0], (4.9)

Q2(t0)|1 + t0| ≥ 1. (4.10)
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Define si = inf
{
t | t ≥ t0, Q(t) = 2i Q(t0)

}
and we rescale the metrics by

hi (x, t) = Q(si )g

(

x,
t

Q2(si )
+ si

)

, t ∈
[

− (1 + si )Q
2(si ), Q

2(si )|si |
)
.

Then by (4.9) and (4.10) the flow {(M, hi (t)),−1 ≤ t ≤ 0} satisfies

Qhi (0) = 1, Qhi (t) ≤ 1, ∀ t ∈ [−1, 0],

and Qhi

(
Q2(si )|si+1 − si |

)
= 2. By Lemma 2.9, we have

∫ si+1

si
P dt =

∫ Q2(si )|si+1−si |

0
Phi (t) dt ≥ ε0. (4.11)

On the other hand, by (4.8) we have

∫ si+1

si
P dt ≤ (C + δ) log

|si |
|si+1| . (4.12)

Combining the inequalities (4.11) with (4.12), we have

|si+1|
|si | ≤ e− ε0

C+δ .

After iteration, we get the inequality

|si | ≤ |s0|e− ε0i
C+δ = |t0|e− ε0i

C+δ . (4.13)

Combining (4.13) with the definition of si gives the result

lim
i→+∞ Q(si )|si |λ ≤ lim

i→+∞ Q(t0)|t0|λ
(
2e− λε0

C+δ

)i = 0,

where we choose λ such that 2e− λε0
C+δ < 1. Thus, for any t ∈ [si , si+1] we have

Q(t)|t |λ ≤ Q(si+1)|si |λ = 2Q(si )|si |λ → 0

as i → +∞. The lemma is proved. ��
We now prove Theorem 1.6.

Proof of Theorem 1.6 After rescaling the flow, we can assume that T ≥ 1. It is clear
that (1.12) follows from the combination of inequality (1.11) and the definition of
type-I singularity(c.f. [39]), i.e., lim sup

t→0
Q2|t | < ∞. Therefore, we only need to show

(1.10) and (1.11), which will be dealt with separately.
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1. Proof of inequality (1.10):
If lim sup

t→0
P|t | = C ≥ 0, by Lemma 4.3 and Lemma 4.4 we have

0 = lim sup
t→0

Q(t)|t |
(C+δ) log 2

ε0 ≥ δ1|t |−
1
2+ (C+δ) log 2

ε0 ,

where δ > 0 is any small constant. It follows that

C ≥ ε0

2 log 2
.

Thus, (1.10) is proved.
2. Proof of inequality (1.11):
Since 0 is the singular time, we have lim

t→0
F(t) = 0. Thus, F(t) ∈ (0, 1) when t is

close to 0. It follows that

−F(t) = lim
s→0

F(s) − F(t) ≥ −C |t |,⇒ F(t) ≤ C |t |, (4.14)

where we used the inequality d−
dt F(t) ≥ −C by Lemma 2.13. On the other hand, by

Lemma 2.13 again, we have

d−

dt
F ≥ −C OαQ2−αF.

Therefore, for any small δ > 0 we have

log F(−δ) − log F(−T ) ≥ −C
∫ −δ

−T
OαQ2−α dt,

where C = C(α, n) is a constant. It follows that

∫ −δ

−T
OαQ2−α dt ≥ 1

C
log F(−T ) − 1

C
log F(−δ) ≥ 1

C
log

F(−T )

C
− 1

C
log δ,

where we used (4.14). Suppose lim sup
t→0

OαQ2−α|t | < A. Then we have

1

C
log

F(−T )

C
− 1

C
log δ ≤ −A log δ + A log T . (4.15)

for every small δ. It forces that A ≥ 1
C . Replace A by lim sup

t→0
OαQ2−α|t | + ε and let

ε → 0. Then we have

lim sup
t→0

OαQ2−α|t | ≥ 1

C
.
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Therefore, (1.11) is proved. ��

5 Further Study

The methods and results in this paper can be generalized in the following ways.
1. The method we developed in this paper reduces the convergence of the flow

to three important steps: uniqueness of critical metrics, regularity improvement, and
good behavior of some functional along the flow. Theorems 1.3 and 1.5 can be proved
forminimizing extKmetrics in a general class, assuming a uniqueness theorem ofmin-
imizing extK metric in a fixed GC-leaf’s C∞-closure, or a generalization of Theorem
1.3 of [20]. This will be discussed in a subsequent paper.

2. The fourth possibility of Donaldson’s conjectural picture seems to be extremely
difficult. By the example ofG.Székelyhidi, the flow singularity at time infinity could be
very complicated. However, if we assume the underlying Kähler class to be c1(M, J )

which has definite sign or zero, then the limit should be a normal variety and could be
used to construct a destabilizing test configuration.

3. Our deformation method could be applied to a more general situation. In Sect. 3,
we deformed the complex structures and themetrics within a given Kähler class. Actu-
ally, even the underlying Kähler classes can be deformed. The general deformations
will be discussed in a separate paper.
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