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1 Introduction

In the seminal work [5], E. Calabi studied the variational problem of the functional
/ uS =S )2, the Calabi energy, among Kihler metrics in a fixed cohomology class.
The vanishing points of the Calabi energy are called the constant scalar curvature
Kiéhler (cscK) metrics. The critical points of the Calabi energy are called the extremal
Kéhler (extK) metrics. To search such metrics, Calabi introduced a geometric flow,
which is now well known as the Calabi flow. Actually, on a compact Kéihler manifold
(M", w, J), the Calabi flow deforms the metric by

ad
87 = 5.7 (L.1)

where g is the metric determined by w(¢) and J, and S is the scalar curvature of g.
Note that in the class [w], every metric form can be written as @ + =1 az'w for some
smooth Kéhler potential function ¢. Therefore, on the Kéhler potential level, the above
equation reduces to

%(p =S§-8=-g" {logdet (gki+¢ki)},if -5 (1.2)
where S is the average of scalar curvature, which is a constant depending only on the
class [w]. Note that equation (1.2) is a fourth-order fully non-linear PDE. This order
incurs extreme technical difficulty. In spite of this difficulty, the short-time existence
of equation (1.2) was proved by X.X. Chen and W.Y. He in [15]. Furthermore, they
also proved the global existence of (1.2) under the assumption that the Ricci curvature
is uniformly bounded.

About two decades after the birth of the Calabi flow, in [30], S.K. Donaldson (See
[33] also) pointed out that the Calabi flow fits into a general frame of moment map
picture. In fact, by fixing the underlying symplectic manifold (M, @) and deforming
the almost complex structures J along Hamiltonian vector fields, C°°(M) has an
infinitesimal action on the moduli space of almost complex structures. The function
S — § can be regarded as the moment map of this action, where S is the Hermitian
scalar curvature in general. Therefore, f (S — §)2 is the moment map square function,
defined on the moduli space of almost complex structures. Then the downward gradient
flow of the moment map norm square can be written as

4, Lyodx 1.3

E = —5 cadsas, (1.3)
where Xg is the symplectic dual vector field of dS. When the flow path of (1.3)
locates in the integrable almost complex structures, the Hermitian scalar coincides
with the Riemannian scalar curvature. Therefore, the flow (1.3) is nothing but the
classical Calabi flow (1.1) up to diffeomorphisms. Based on this moment map picture,
Donaldson then described some conjectural behaviors of the Calabi flow.

Conjecture 1.1 (Donaldson [30]) Suppose the Calabi flows have global existence.
Then the asymptotic behavior of the Calabi flow starting from (M, w, J) falls into one
of the four possibilities.
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2052 H. Lietal.

1. The flow converges to a cscK metric on the same complex manifold (M, J).

2. The flow is asymptotic to a one-parameter family of extK metrics on the same
complex manifold (M, J), evolving by diffeomorphisms.

3. The manifold does not admit an extK metric but the transformed flow J; on J
converges to J'. Furthermore, one can construct a destabilizing test configuration
of (M, J) such that (M, J') is the central fiber.

4. The transformed flow J; on J does not converge in smooth topology and singu-
larities develop. However, one can still make sufficient sense of the limit of J; to
extract a scheme from it, and this scheme can be fitted in as the central fiber of a
destabilizing test configuration.

Conjecture 1.1 has attracted a lot of attentions for the study of the Calabi flow. On
the way to understand it, there are many important works. For example, Berman [3],
He [36], and Streets [45] proved the convergence of the Calabi flow in various topolo-
gies, under different geometric conditions. Székelyhidi [48] constructed examples of
global solutions of the Calabi flow which collapse at time infinity. A finite-dimensional
approximation approach to study the Calabi flow was developed in [32] by Fine.

Note that the global existence of the Calabi flows is a fundamental assumption in
Conjecture 1.1. On Riemann surfaces, the global existence and the convergence of the
Calabi flow have been proved by Chrusical [26], Chen [12], and Struwe [47]. However,
much less is known in high dimension. It was conjectured by Chen [13] that every
Calabi flow has global existence. This conjecture sounds to be too optimistic at the
beginning. However, there are positive evidences for it. In [44], J. Streets proved the
global existence of the minimizing movement flow, which can be regarded as weak
Calabi flow solutions. Therefore, the global existence of the Calabi flow can be proved
if one can fully improve the regularity of the minimizing movement flow, although
there exist terrific analytic difficulties to achieve this. In general, Chen’s conjecture
was only confirmed in particular cases. For example, if the underlying manifold is
an Abelian surface and the initial metric is 7 -invariant, Huang and Feng proved the
global existence in [37].

In short, the Calabi flow can be understood from two points of view: either as a
flow of metric forms (Calabi’s point of view) within a given cohomologous class on
a fixed complex manifold, or as a flow of complex structures (Donaldson’s point of
view) on a fixed symplectic manifold. Let (M", w, J) be a reference compact Kihler
manifold, g be the reference metric determined by w and J. If J is fixed, then the
Calabi flow evolves in the space

H 2wyl e ), 0, = 0+ V=T03p > 0] (1.4)
If w is fixed, then the Calabi flow evolves in the space

J £ {J'|J" is an integrable almost complex structure compatible with w}. (1.5)

We equip both ‘H and J with C ki topology for some sufficiently large k = k(n),
with respect to the reference metric g. Each point of view of the Calabi flow has its
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Regularity Scales and Convergence of the Calabi Flow 2053

own advantage. We shall take both points of view and may jump from one to the other
without mentioning this explicitly.

Theorem 1.2 Suppose (M?, w, J) is a compact extremal Kéihler surface. Define

LH2 {a)(p € H| The Calabi flow initiating from w, has global existence } ,

LH & The path-connected component of LH containing .

Then the modified Calabi flow (c.f. Definition 3.1) starting from any w, € LH con-
verges to o*w for some ¢ € Autg(M, J), in the smooth topology of Kiihler potentials.

In the setup of Conjecture 1.1, we have LH = LH="H automatically. There-
fore, Theorem 1.2 confirms the first two possibilities of Conjecture 1.1 in complex
dimension 2.

Theorem 1.3 Suppose {(Mz, w, Jg),s € D} is a smooth family of compact Kdihler
surfaces parametrized by the disk D = {z|z € C, |z| < 2}, with the following condi-
tions satisfied.

o There is a smooth family of diffeomorphisms {5 : s € D\{0}} such that

ol =lol, ¥J=Ji, ¥1=Id

o [w] is integral.
° (MZ, w, Jo) is a cscK surface.

Denote

/E_Tfé {Js|s € D, the Calabi flow initiating from (M, w, Js) has global existence } ,

LJ & The path-connected component of 2?7/ containing Jy.

Then the Calabi flow starting from any J; € LJ converges to y*(Jy) in the smooth
topology of sections of TM @ T*M, where € Symp(M, w) depends on J;.

Theorem 1.3 partially confirms the third possibility of Conjecture 1.1 in complex
dimension 2, in the case that the C®°-closure of the GC-leaf of J1 contains a cscK
complex structure, for a polarized Kéhler surface. Note that by the integral condition
of [w] and reductivity of the automorphism groups of cscK complex manifolds, the
construction of destabilizing test configurations follows from [29] directly.

Theorems 1.2 and 1.3 have high dimensional counterparts. However, in high dimen-
sion, due to the loss of scaling invariant property of the Calabi energy, we need some
extra assumptions of scalar curvature to guarantee the convergence.

Theorem 1.4 Suppose (M", w, J) is a compact extremal Kihler manifold.
For each big constant A, we set

27{/,4 = { wy € H| The Calabi flow initiating from w, has global existence and
IS| < A},
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2054 H. Lietal.

LHA £ The path-connected component of /L:\ﬁA containing w,

LH 2 ) LHa.
A>0

Then the modified Calabi flow starting from each w, € LH' converges to o*w for
some o = o(¢) € Autog(M, J), in the smooth topology of Kdahler potentials.

Note that by Chen-He’s stability theorem(c.f. [15]), the set LH 4 is non-empty if A is
large enough. Therefore, LH' is a non-empty subset of £LH. We have the relationships

LH Cc LHCH. (1.6)

Therefore, in order to understand the global behavior of the Calabi flow, it is crucial
to set up the equalities.

LH=MH, 1.7)
LH = LH. (1.8)

Equality (1.7) is nothing but the restatement of Chen’s conjecture. Equality (1.8) is
more or less a global scalar curvature bound estimate.

Theorem 1.5 Suppose {(M", w, J5), s € D} is a smooth family of compact Kdhler
manifolds parametrized by the disk D = {z|z € C,|z| < 2}, with the following
conditions satisfied.

e There is a smooth family of diffeomorphisms {5 : s € D\{0}} such that
Wil =[w]l, Vil =Ji, ¥ =]Id.

o [w] is integral.
o (M", w, Jy) is a cscK manifold.

Denote

EjA £ (Js|s € D, the Calabi flow initiating from Jshas global existence and

|S| < A},
LT A & The path-connected component of /E_?/A containing Jo,
Ly & J LT a
A>0

Then the Calabi flow starting from any J; € LJ' converges to y*(Jy), in the smooth
topology of sections of TM @ T*M, where ¥ € Symp(M, w) depends on J;.

It is interesting to compare the Calabi flow and the Kéhler Ricci flow on Fano
manifolds at the current stage. For simplicity, we fix [w] = 2mc1 (M, J). Modulo
the pioneering work of H.D. Cao([9], global existence) and G. Perelman([43], scalar
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curvature bound), Theorems 1.4 and 1.5 basically says that the convergence of the
Calabi flow can be as good as that for the Kihler Ricci flow on Fano manifolds,
whenever some critical metrics are assumed to exist, in a broader sense. The Kihler
Ricci flow version of Theorems 1.4 and 1.5 has been studied by Tian and Zhu in [51]
and [52], based on Perelman’s fundamental estimate. A more general approach was
developed by Székelyhidi and Collins in [27]. Our proof of Theorems 1.4 and 1.5 uses
a general continuity method, see for example, Tian-Zhu’s work [52] in the setting of
Kihler Ricci flow. However, the continuity method does not work without regularity
improvement properties. Therefore, it becomes a key step to obtain such regularity
improvement properties, which is one of our major contributions in this paper. We
prove Theorems 2.22 and 2.23 for the Calabi flow as the regularity improvement
properties.

If the flows develop singularity at time infinity, then the behavior of the Calabi flow
and the Kihler Ricci flow seems much different. Based on the fundamental work of
Perelman, we know collapsing does not happen along the Kéhler Ricci flow. In [23]
and [24], it was proved by Chen and the second author that the Kihler Ricci flow will
converge to a Kéhler Ricci soliton flow on a Q-Fano variety. A different approach was
proposed in complex dimension 3 in [50], by Tian and Zhang. However, under the
Calabi flow, Székelyhidi [48] has shown that collapsing may happen at time infinity,
by constructing examples of global solutions of the Calabi flow on ruled surfaces. In
this sense, the Calabi flow is much more complicated. Of course, this is not surprising
since we do not specify the underlying Kéhler class. A more fair comparison should
be between the Calabi flow and the Kéhler Ricci flow, in the same class 2w ¢y (M, J),
of a given Fano manifold. However, few is known about the Calabi flow in this respect,
except the underlying manifold is a toric Fano surface (c.f. [17]).

Theorems 1.2 and 1.3 push the difficulty of the Calabi flow study on Kihler surfaces
to the proof of global existence, i.e., Chen’s conjecture. Theorems 1.4 and 1.5 indicate
that the study of the Calabi flow with bounded scalar curvature is important. It is not
clear whether the global existence always holds. If global existence fails, what will
happen? In other words, what is the best condition for the global existence of the Calabi
flow? Whether the scalar curvature bound is enough to guarantee the global existence?
In order to answer these questions, we can borrow ideas from the study of the Ricci
flow. In [42], N. Sesum showed that the Ricci flow exists as long as the Ricci curvature
stays bounded. Same conclusion holds for the Calabi flow, due to the work [15] of X.X.
Chen and W.Y. He. However, we can also translate Sesum’s result into the Calabi flow
along another route. Note that the Calabi flow satisfies equation (1.1). So the metrics
evolve by VVS, the complex Hessian of the scalar curvature. Correspondingly, under
the Ricci flow, the metrics evolve by —2R;;. Modulo constants, we can regard VVS
as the counterpart of Ricci curvature in the Calabi flow. Consequently, one can expect
that the Calabi flow has global existence whenever |VV S| is bounded. This is exactly
the case. To state our results precisely, we introduce the notations

Og(t) = sup |Slgwry, Pglt) :supWVS|g(l), Qq(t) = sup |Rmlgqry. (1.9
M M M

We shall omit g and ¢ if they are clear in the context.
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Theorem 1.6 Suppose that {(M", g(t)), —T <t < 0} is a Calabi flow solution on a
compact Kdihler manifold M and t = 0 is the singular time. Then we have

lim sup P|t| > do, (1.10)

t—0

where §o = 8o(n). Furthermore, for each « € (0, 1), we have

lim sup 0% Q>~*|¢| > Co, (1.11)

t—0

where Co = Co(n, o). In particular, ift = 0 is a singular time of type-I, then we have

lim sup O?|¢| > 0. (1.12)

t—0

Theorem 1.6 is nothing but the Calabi flow counterpart of the main theorems in [53]
and [22]. The tools we used in the proof of Theorem 1.6 are motivated by the study of
the analogue question of the Ricci flow by the second author in [22] and [53]. Actually,
the methods in [53] and [22] were built in a quite general frame. It was expected to
have its advantage in the study of the general geometric flows.

The paper is organized as follows. In Sect. 2, we develop two concepts—curvature
scale and harmonic scale— to study geometric flows. Based on the analysis of these
two scales under the Calabi flow, we show global backward regularity improvement
estimates. In Sect. 3, we combine the regularity improvement estimates, the excellent
behavior of the Calabi functional along the Calabi flow and the deformation techniques
to prove Theorems 1.2—1.5. Moreover, we give some examples where Theorems 1.2—
1.5 can be applied. In Sect. 4 we show Theorem 1.6 and in Sect. 5 we discuss some
further research directions of Calabi flow.

2 Regularity Scales
2.1 Preliminaries
Let M" be a compact Kidhler manifold of complex dimension n and g a Kihler metric

on M with the Kéhler form w. The Kéhler class corresponding to w is denoted by
2 = [w]. The space of Kihler potentials is defined by

HM, w) = {(p € C®(M) ‘ W+ —103¢ > o}.
In [5] and [6], Calabi introduced the Calabi functional
2
Ca(w,) = /M (S(@y) — 5)* @,

where S(wy) denotes the scalar curvature of the metric w, = @ + +/— 185(/) and S is
the average of the scalar curvature S(wy). The gradient flow of the Calabi functional
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is called the Calabi flow, which can be written by a parabolic equation of Kihler
potentials:

g
—=3S -S.
91 (wgo) O
The metrics evolve by the equation:
a [ — -
578 =5.j

The evolution equation of curvature tensor can be written as follows(cf. [17]):

0 - -
ERm = —VVVVS = —A’Rm + V’Rm * Rm + VRm * VRm, 2.1
where the operator * denotes some contractions of tensors. Thus, we have the inequal-

ity

9
~IRm| < ‘v“s) + ¢(n)|Rm| )v25’ . 2.2)

2.2 Estimates Based on Curvature Bound

The global high order regularity estimate of the Calabi flow was studied in [17], when
Riemannian curvature and Sobolev constant are bounded uniformly. Taking advantage
of the localization technique developed in [34] and [46], one can localize the estimate
in [17].

Lemma 2.1 Suppose {(2", g(t)),0 <t < T} is a Calabi flow solution on an open
Kdihler manifold 2, and Bg(T)(x, 1) is a geodesic complete ball in Q2. Suppose

Cs(Bgry(x, 1), 8(T)) < K1, 23)
0 0

sup {IRmI+‘—g‘~I—‘V—g‘} < K. (2.4)
By(r)(x,r)x[0,T] at ot

Then for every positive integer j, there exists C = C(j, %, K1, K») such that

sup  |V/Rm|(-,T) <C.
Bg(T) (x,0.57)

Proof This follows from the same argument as Theorem 4.4 of [46] and the Sobolev
embedding theorem. O

Lemma 2.2 Let (M", g, J) be a complete Kcihler manifold with |Rm|+|VRm| < C|.
Then there exist positive constants r1, r» depending only on C1, n such that for each
p € M there is a map ® from the Euclidean ball B©,r)) inC" 1o M satisfying the
following properties.
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2058 H.Lietal

(1) @ is alocal biholomorphic map from é((), r1) to its image.
(2) ©0) = p.

(3) ®*(8)(0) = gk, where g is the standard metric on C".
4) ry'gp < ®*g < ragp in B(O, ).

Proof This is only an application of Proposition 1.2 of Tian-Yau [49]. Similar appli-
cation can be found in [10]. O

Theorem 2.3 (J.Streets [46]) Suppose {(M", g(t)),0 < t < T} is a Calabi flow
solution satisfying

sup |Rm| < K.
Mx[0,T]
Then we have
1\ 145
sup ‘VlRm‘ (x.1)<C <K n —> : 2.5)
xeM «/;
5l 1421
sup |—Rm| (x,1) < C (K + —) , (2.6)
re ‘ o Ji

foreveryt € (0, T] and positive integer l. Here C = C(l, n). In particular, we have

a
sup ’—|Rm|
xeM ot

1
(x,T)fC(K3+—3>.
T2
Proof By equation (2.1), we see that (2.6) follows from (2.5). We shall only prove
(2.5).
We argue by contradiction. As in [46], we define function

22
+J
(

1
fitx.t.9) = 3 |V/Rm|*)

j=1

X).

Suppose that (2.5) does not hold uniformly for some positive integer /. Then there
exists a sequence of Calabi flow solutions {(M}, g;(1)),0 < t < T} satisfying the
assumptions of the theorem and there are points (x;, ;) € M; x [0, T] such that

i filxi ti, 8i)
lim —/————=— =
— 400

K+t ?

Suppose that the maximum of ﬁ(x—ti’) on M x (0, T]is achieved at (x;, t;). We can
K+t 2
rescale the metrics by

gi(x, 1) = hig (x, ti + Ai_2t) .M fixiti, 8i).
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By construction, tikl.z > 1 for i large and the flow g;(¢) exists on the time period
[—1, 0]. Moreover, it satisfies the following properties.

e lim sup |Rmlz = 0.
i—+00 M. x[—1,0]

o sup  fi(,, &@®) <1
M; x[—1,0]

o fi(xi,0,8) =1

By Lemma 2.2, we can construct local biholomorphic map ®; from aball é(O, rycCn
to M;, with respect to the metric g;(0) and base point x;. Note that the radius 7 is
independent of i. Let hi(r) = ®7g;(0). Then we obtain a sequence of Calabi flows
{(3(0, r,hi@),—1 <t < 0} satisfying (2.3) and (2.4), up to shifting of time.
Furthermore, we have

2+

7 0)=1. 2.7
(0)() 2.7

2

1
- ) _ j
lim [Rmlj, ,(0) =0, Z}‘v Rm
j=

hi

By Lemma 2.1, we can take convergence in the smooth Cheeger—Gromov topology.

Cheeger—Gromov—C™®

(é(o, 0.5r), ﬁ,-(O)) (B, ﬁoo(())) .

On one hand, Rmﬁoo 0 = 0 on B, which in turn implies that V/Rm o (0) = Oon B
for each positive integer j. On the other hand, taking smooth limit of (2.7), we obtain

! 2
3 ’Vij ) =1.
= oo (0)
Contradiction. O

The proof of Theorem 2.3 follows the same line as that in [46] by J. Streets, we do
not claim the originality of the result. We include the proof here for the convenience
of the readers and to show the application of the local biholomorphic map @, which
will be repeatedly used in the remainder part of this subsection. Actually, by delicately
using interpolation inequalities, the constants in Theorem 2.3 can be made explicit.

Note that for a given Calabi flow, S = 0 implies that all the high derivatives of S
vanish. Therefore, for the Calabi flows with uniformly bounded Riemannian curvature
and very small scalar curvature S, it is expected that the high derivatives of S are very
small. In the remainder part of this subsection, we will justify this observation. Similar
estimates for the Ricci flow were given by Theorem 3.2 of [53] and Lemma 2.1 of
[22] by the parabolic Moser iteration. However, since the Calabi flow is a fourth-order
parabolic equation, the parabolic Moser iteration in the case of the Ricci flow does not
work any more. Here we use a different method to overcome this difficulty.

To estimate the higher derivatives of the curvature, we need the interpolation
inequalities of Hamilton in [35]:
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2060 H.Lietal

Lemma 2.4 ([35]) For any tensor T and 1 < j <k — 1, we have

. . 2k
/ |V/T|2k//w"gc.max|T|7‘2./ VAT 2 0", (2.8)
M M M

. : -4
f |v1T|2w"§c-</ |VkT|2a)”) (/ |T|2a)”) ; (2.9)
M M M

where C = C(k, n) is a constant.

Combining Lemma 2.4 with Sobolev embedding theorem, we have the following
result.

Lemma 2.5 For any integer i > 1 and any Kdhler metric w, there exists a constant
C = C(Cs(w), i) > 0 such that for any tensor T, we have

1
i 2 2n+1 2 n 4(n+1)
max‘V T‘ < C -max |T|n+ IT|" w
M M M

1
(/ ‘V4(n+l)iT‘2 wn_,’_/ ‘V4(n+1)(i+l)T‘2 wn>4("+“.
M M

Proof Recall that the Sobolev embedding theorem implies that

max | f| < Cs (f <|f|"+|Vf|”>w">"
M M

for every smooth function f.Let f = |Vi T |2 and p = 2(n+1) in the above inequality.
Then we have

1
.2 . 14(n+1) 2(n+1)
max‘V’T‘ gcs</ (‘V’T‘ +|Vf|2<”+‘>> w") .
M M
The Kato’s inequality implies that
. . . i1 .12 i 2
IV £l :2‘VIT‘ : ‘V‘V‘TH sz‘vlT‘ : ‘v” T( < ‘V’T‘ + ‘V’* T‘ .

Combining the above two inequalities, we obtain

2 : 4nt1) Tr D)
max‘V’T’ <C </ (‘V’T T ) a)> . (2.10)
M M

In inequality (2.8), let k = 2(n + 1)i and j = i, we have

/ ‘V’T
M

4(n+1)

n ‘Vi+1

4(n+1)

" < C - max |T|4n+2 . / ‘Vz(n-H)iTr o
M M
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Ifweletk =2(n+ 1)@+ 1), j =i+ 1, then we have

/ ‘vi—HT
M

In inequality (2.9), letk = 4(n + 1)i and j = 2(n + 1)i, then we have

1 1
/ ‘vz(n-l-l)iT‘Z W <C. (/ ‘v4(n+1)iT‘2)2 , (/ |T|2a)n>2
M M M

Combining this with (2.10), we have

4(n+1)

o < C~max|T|4"+2-/ ‘V2(n+1)(i+l)T‘2 o
M M

2
V’T‘

1
n .2 . 2 2+
< C - max |T‘2,,7I11 </ (‘VZ(nH)zT‘ + ‘vz(n+l)(l+l)T’ ) a)”) *
M M

1 1
2n+1 An+D) .12 . 2 FIpEsY)
< C - max T </ |T|2wn) (/ ‘v4(n+l)tT‘ o +/ ‘V4(n+1)(t+l)T‘ wn) ‘
M M M M

The lemma is proved. O

max
M

We next show some local estimates on the derivatives of the scalar curvature.

Lemma 2.6 Fix any o« € (0, 1) and r > 0. There exists an integer N = N(«o) > 0
such that if

N
sup Y )VkRm‘ < Ay @2.11)
B(p,2r) k=0

for some positive constant Ay, then we have the inequalities

sup |[VVS|<C sup [S|% (2.12)
B(p.r) B(p,2r)
sup |[VVVVS| < C sup |VVS[*, (2.13)
B(p.r) B(p,2r)

Sfor some constant C = C (Cs(B(p,2r)),r, Ay, ).

Proof Let n € C°°(R, R) be a cutoff function such that n(s) = 1if s < 1 and
n(s) = 0if s > 2. Moreover, we assume ]n’(s)] < 2. We define x (x) = n (M)
for any x € M, where d,(p, x) is the distance from p to x with respect to the metric

g.Then x = 1 on B(p,r) and x = 0 outside B(p, 2r). The derivatives of x satisfy
the inequalities

)v;,x‘ < C(A;, 1) (2.14)

@ Springer



2062 H. Lietal.

Using Lemma 2.5 for x S, we have the inequality

2 2 2n+1 2 n ﬁ
sup ‘V S‘ <C(Cg)- sup [|S]|nH ISI” w
B(p,r) B(p,2r) B(p,2r)

1
2 2 A(n+T1)
. </ ‘VS(nJr])(XS)‘ " +/ ‘V12(”+])(XS)‘ w”) .
B(p,2r) B(p.2r)

For any integer k we set
. 2
ro=[ s o
B(p.,2r)
Under the assumption (2.11), we have

f k) 5/ 1| ’VZI‘(XS)‘ "
B(p.,2r)

< Vol(B(p,2r))? sup |S|- f(2k)?
B(p,2r)

pl-m

2_
= (VolB(p.2)% swp IsI)" " fem0
B(p,2r)

2-2l-m
= C(Azmsm, 1) (Vol(B(p. 2 sup ISI)"
B(p.2r)

where m is any positive integer. Here we used the fact that Vol(B(p, 2r) is bounded
from above by the volume comparison theorem. Combining the above inequalities,
for any m we have the estimate

1

1_7
sup ‘VZS’ <C (CS, r,m, A12.2m(,,+1)) sup |S| @bt
B(p,r) B(p,2r)

Thus, (2.12) is proved. Applying Lemma 2.5 to VV.S and using the same argument as
above, we have the inequality (2.13). The lemma is proved. O

The following proposition is a weak version of the corresponding result for the
Ricci flow in [22,53].
Proposition 2.7 Fixa € (0, 1). If {(M, g(t)), —s <t < 0} is a Calabi flow solution
with sup Q,(t) < 1, then there is a constant C = C(s, ) > 0 such that
[—s,0]

max |VVS|(0) < C max |S|*(0), (2.15)
M M

max |VVVVS|(0) < Cmﬁx |VVS|®(0). (2.16)
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Proof Since sup Qg(t) < 1, Theorem 2.3 applies. For any integer k > 0, there is a
[—s.,0]
constant C = C(k, s) such that

sup |VFRm| < C(k, s). (2.17)
Mx[-%.0]

By Lemma 2.2, for any p € M there is r = r(n,s) > 0 and a local biholomorphic
map & from E(O, r) € C" to its image in (M, g(0)) and ®(0) = p. Define the
pullback metrics g(r) = ®*g(¢) on 13’(0, r). Then the Kihler metric g(¢) satisfies the
equation of Calabi flow on 1§(0, r) and their injectivity radii on 3(0, r) are bounded
from below. Moreover, on ff(O, r) the Sobolev constant and all the derivatives of the
curvature tensor of g(¢) fort € [—%, 0] are bounded by (2.17). By Lemma 2.6, there
is a constant C (s, o) > 0 such that

sup |VVS], (0) < C max [S]%(0),
~ 8 A 8
B©.%) B(.r)

which implies that the metric g(¢) satisfies the inequality (2.15). Similarly, we can
show the second inequality (2.16). The proposition is proved. O

2.3 From Metric Equivalence to Curvature Bound

If we regard curvature as the 4-th order derivative of Kihler potential function, then
Theorem 2.3 can be roughly understood as from C*-estimate to C!-estimate, for each
! > 5. In this subsection, we shall set up the estimate from C 2 to C* for the Calabi
flow family.

Lemma 2.8 For every § > 0, there exists a constant € = €(n, 8) with the following
properties. If {(M", g(t)),t € [—1,0]} and {(M", h(t)),t € [—1, 0]} are Calabi flow
solutions such that

e 0,(0)=1and Q4(t) <2foranyt € [-1,0].
e On) <2foranyt e[—1,0].
e ¢ “g(0) < h(0) < eg(0).

Then we have

|log Q5 (0)] < 6.

Proof We follow the argument of Proposition 2.1 in [22]. Suppose not, there exist
constants 69 > 0, ¢, — 0 and two sequences of the Calabi flow solutions

{(M;, gi (1), 1 € [-1,01}, {(Mi, hi(1)),t €[—1,0]}

such that the following properties are satisfied.

(1) Qg(0)=1and Qg (t) <2foranyt € [—1,0].
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(2) Qp,;(t) <2foranyt € [—1,0],and |log O, (0)| > do.
(3) e “1gi(0) < h;(0) < eg;(0).

By property (1) and (2), we claim that there is a point z; € M; such that

1
> —§. (2.18)

250 ‘ IRm|p, () (z:)
-2

max{|Rm|p; 0)(zi), IRm|g ) (zi)} = e =,
O si O [Rmlg, 0)(zi)

In fact, by property (2) we have two possibilities Qj, (0) > €% or On,(0) < e %0 If
On,(0) > €%, then we assume that the point z; achieves Qp, (0):

IRm|p; 0)(zi) = Qn; (0).
Then the first inequality of (2.18) obviously holds and the second also holds since

IRm|p; 0)(zi) . IRmz; 0)(zi) > 5.
IRm|g; 0)(zi) 04 (0)

Now we consider the case when Qy, (0) < e~% _ We assume that the point z; achieves

Qg (0) = 1:
IRm|g; 0)(zi) = 1.
Then the first inequality of (2.18) obviously holds and the second also holds since

Rm|,, i
[Rmlg; 0)(zi) > Joge® = 5.

[Rm|p, 0)(zi) —

Thus, (2.18) is proved.

By Theorem 2.3, we have the higher order curvature estimates for the metrics g; (0).
By Lemma 2.2, there is r > 0 independent of i and a local biholomorphic map ®;
from E(O, r) C C" to its image in M; and ®;(0) = z;. Define the pullback metrics

8i(t) = @Fgi(1). hi(t) = @Fhi(1). (2.19)
Then the Kihler metrics g; (¢) anq fli () satisfy the equation of the Calabi flow and their
injectivity radii at the point O € B (0, r) are bounded from below by a uniform positive
constant which is independent of i. Moreover, all the derivatives of the curvature tensor
of g;(¢) and h;(¢) are bounded by Theorem 2.3. Thus, we can take Cheeger—Gromov

smooth convergence

(é(o, ), 0, gi(:)) LOZ (B p§). (1%(0, .0, ﬁi(t)) £6C% (B”, g h’)
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Define the identity map F; by

Fi: (é(o, ), 0, gi(z)) > (é(o, ), 0, ﬁ,-(t)),

X = X.
By property (3), we see that
dj. o)X, Y) di.0)*> ¥) -
log hi(?) — = LI s <e¢—0, Vx,yeB(@,r).
dg ) (F; (), F7 () dg;(0) (%, Y)

Therefore, F; converges to an isometry Fuo :
Feo: (B.p. &) — (B”, », fz’), Feo(p') = p".
By Calabi-Hartman’s theorem in [8], the isometry F, is smooth. Therefore, we have
IRm|z (p') = [Rml;, (p"). (2.21)
However, by the smooth convergence (2.20) and the inequalities (2.18) we obtain

[Rm|g (p')

1
= | = 3%,
[Rm|;, (p") | — 2

max {[Rm|z (p"), Rml;, (p")} = e, ‘lo

which contradicts (2.21). The lemma is proved. O
As a direct corollary, we have the next result.

Lemma 2.9 There exists a constant €y = €o(n) with the following properties.
Suppose {(M", g(t)), —1 <t < K,0 < K} is a Calabi flow solution such that

Q0)=1, Q41) =2, Vie[-10]

and T > 0 is the first time such that ’log Qg(T)| = log2, then we have

T
/ P (1) dt > €. (2.22)
0

Proof Consider two solutions to the Calabi flow {(M, g(¢)),—1 < t < 0} and
{(M,h(t)), —1 <t <0}where h(x,t) = g(x,t+T). Note that | log O, (0)| = log 2.
By Lemma 2.8 there exists a point x € M and a non-zero vector V € Ty M such that

‘1 SO
gV, V)| =
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for some €9 > 0. Using the equation (2.2), we have

g(T)(V, V) r
< logm 5/0 Py (1) dt.

Thus, (2.22) holds and the lemma is proved. O

2.4 Curvature Scale

Inspired by Theorem 2.3, we define a concept “curvature scale,” to study improving
regularity property of the Calabi flow.

Definition 2.10 Suppose {(M, g(t)),t € I C R} is a Calabi flow solution. Define the
curvature scale Fy(fg) of fo € I by

Fg(19) = sup {s >0 ’ sup |Rm|2 < s_l},
M x[ty—s,t9]

where weassume  sup  |Rm)| 2 = co whenever 7 —s ¢ I.We denote the curvature
M x[ty—s,t0]
scale of time # by F, ().

Suppose that {(M, g(t)), =2 < t < T} is a Calabi flow solution and T > 0 is
the singular time. Since the curvature tensor will blowup at the singular time, we
have lirr% Fz(t) = 0. Note that F3(r) is a continuous function, we can assume that

r—

0 < Fz(t) < 1foranyr € [0, T). Choose any 79 € [0, T) and let A be a positive

constant such that A2 = > 1. Rescale the metric g(z) by

1
Fz(10)
t

g,)=Ag (x, 5+ t0> Cte [AZ(—z — 1), AX(T — to)] . 23)

Then we obtain a solution g(¢) with existence time period containing [—2, K] for
some positive K. Moreover, we have F,(0) = 1. In the following, we will calculate
the derivative of Fg(¢) with respect to ¢. Since Fy () might not be differentiable, we
will use the Dini derivative:

_ + _
.ff(t+6) f(t)7 c(li_tf(t)::limsupf(we) f(t).

e—07t €

d- .
a0 it T

(2.24)

The following result is the key estimate on the curvature scale.

Lemma 2.11 Suppose {(M, g(t)), =2 <t < K,0 < K} is a Calabi flow solution,
Fg(0) = 1. Then at time t = 0 we have

4 r (t) > min {0 —2£Q () (2.25)
de 8V~ o Tdr T8 ' ’
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Proof By the definition of curvature scale, there exists time ¢ € [—1, 0] such that
Q) = 1 and we denote by 7y the maximal time ¢ € [—1, 0] with this property.
There are several cases to consider:

(1). Suppose Qg(0) < 1and fy > —1. Then there is a constant § € (0, 7o + 1) such
that Qg (t) < 1 forallt € (0, §). Thus, for any t € [0, §) we have F, () = 1. So we
obtain the derivative of Fg(¢) att =0,

d
SR =0 (226)

(2). Suppose Q,(0) < 1 and #p = —1. By the definition of #y, there exists a small
constant § > O such that for any ¢ € (-1, 6) we have Q,(fr) < 1. This implies that
Fg(t) > 1fort € (0,8) when § small. In other words, we have

d
— F,(t > 0. 227
3 Fe® W (2.27)

(3). Suppose Qg(0) = 1 and there is a small constant § > 0 and a sequence of times
t; € (0, 8) with t; — 0 such that

Qu(t) =1, Q) Fe(t) =1, Vix=1. (2.28)

Therefore, we have the equality

timing 20 = Fe @ _ . - Qe+ Qet)  Q(0) — Qg ()
i—+00 t; i—+00 Qg(o)ng(l‘i)2 li

_ 2 li Qg(ti) - Qg(o)
= — msup —
000 imioo ti
2 df

0,07 ar %

(4). Suppose Q,(0) = 1 and there is a small constant § > 0 and a sequence of
times ¢; € (0, §) with ; — 0 such that

Q,(t) =1, Qgt)*Fe(t)) <1, Vix>1 (2.29)
Since F(2) is a continuous function and Fg(0) = 1, we assume that
|[Fo(t) — 1] < ey, Yte(0,0) (2.30)

for some small g > 0. For each time ¢;, (2.29) implies that

1
Q,(1)* < = sup Q.0 2.31)
o Fo) [ Felnm)
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Since the constant § is small and the inequality (2.30) holds we have t; — F,y(t;) <
0 < t;. Using the fact that Q¢ (0) = 1 and (2.31) we have = — 7 (t) > landso Fg(t;) < 1.

If there exists time f;, such that Fg(t;,) = 1, then for all t+ € (0,t,) we have
F¢(t) = 1. Thus, the inequality (2.25) holds On the other hand, if for all integer i > 1
the inequality F, (#;) < 1 holds, then we can find a maximal time #/ € (0, #;) such that

Q)= sup Q0 (2.32)

[ti—Fg(t),1;]

Moreover, since Q(t) < 1fort € [—1,0] and [t —F(@),t ] C [—1, t;], we have

Q.= sup Qg(1)* =

[t} = Fe (t),4]] g (1)

where we used (2.31) and (2.32) in the last equality. Therefore, at time tl.’ we have
F,(t]) = F,(t;) and the identity

Qg () Fe(t) = Q1) Fe(1i) = 1.

Therefore, there exists a sequence of times {ti’ }(tl./ € (0, t;)) with ti/ — 0 and satisfying
the conditions (2.28) in item (3). Note that

F(t) = F0) _ F@)—-F©O) 4 - F(t)) — F(0)
i B 1! 4T t! ’

where we used the fact that F’ (ti/ ) < F(0) =1 and tl.’ < t;. Therefore, we have

Fo(t, F, (0 F t!) — F,(0 2 4t
lim inf g (i) — Fg( ) ¢ (1)) : o ) > Qg
i—-+oo t H+oo t! Qg(O)3 dt

1

=0
(5). Suppose Qg(0) = 1 and there is a small constant § > 0 and a sequence of

times #; € (0, 6) with #; — 0 such that Q4(#;) < 1. Then by the definition of Fy (1),
we have Fy(#;) > 1. Thus, we have the inequality

Fo(t;) — F4(0
liminf 2200~ Fe©@
i——+00 t;
Combining the above cases, (2.25) holds and the theorem is proved.

Lemma 2.12 Suppose {(M, g(t)), —2 <t < K,0 < K} is a Calabi flow solution
with Fg(0) = 1. Then at time t = 0 we have

< cmin {1, P2, 07},

40
dt

where a be any number in (0, 1) and C = C(«, n).
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Proof Suppose that F(0) = 1. By the definition of curvature scale and Theorem 2.3,
all higher order derivatives of the Riemannian curvature tensor are bounded for ¢ €
[—1., 0]. By Proposition 2.7, for any « € (0, 1) we have the estimates

max [VVVVS| < C max |[VVS|%,
M M

max |[VVS| < C max |S|%.
M M

Therefore, by the inequality (2.2) of |[Rm]|, adjusting « in different inequalities if
necessary, we have

d
—|Rm|
dr

< Cmin {1, max |VVS|%, max |S|°‘} )
M M

The lemma is proved.

A direct corollary of the above results is
Lemma 2.13 Let a € (0, 1). Suppose {(M, g(t)), =2 <t <T,0 < T} is a Calabi
flow solution. For any ty € [—1,T) with F3(t9) € (0, 1), we have the following
inequality at time tg

- : a H2(1—a) « H2—a
T > —Cmin |1, P20} Fy, 0207 Fy} (2.33)
where C = C(a, n) > 0 is a constant.
Proof Werescale the metric g(¢) by (2.23) with A = %.Then we obtain a solution
g

g(s) to the Calabi flow with F(0) = 1. By Lemma 2.11 and Lemma 2.12, at s = 0
we have the following inequality for g(s):

d
< Fe = —Cmin [1. Pz 021" F, 0202 F,}. (2.34)

Clearly, (2.33) follows directly from (2.34) and rescaling, since both sides of (2.34)
are scaling invariant.

Lemma 2.14 Fixa € (0, 1). Suppose {(M", g(t)), —1 <t < K,0 < K} is a Calabi
flow solution such that

(1) Q(0) =1, where Q = Qg;

2) Q(t) <2forallt € [—1,0];

) |log Q(?)] <log2 foreveryt € [0, K] and |log Q(K)| = log 2.

Then there are positive constants A = A(n, o) and €(n, o) such that

K €
/ 0% 0% %dr > T (2.35)
0

‘%Q(t) <A0“Q*®, Vriel0, K] (2.36)
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Proof Under the assumptions, we have the inequalities for ¢ € [0, K]
P = CO*HQ™™ ), max|V*s| < CO" Q.

which are the scaling invariant version of Proposition 2.7. Combining this with Lemma
2.9, we have the inequalities (2.35) and (2.36). The lemma is proved.

The next result shows that under the scalar curvature conditions, if the curvature at
some time is large enough, then the curvature before that can be controlled.

Proposition 2.15 If {(M", g(t)), —1 <t < 0} is a Calabi flow solution with

(1) the scalar curvature |S(t)| < 1 for everyt € [—1, 0],
(2) Q(0) is big enough, i.e.,

3a 1 _20-a) (A @
Q00) >max {2 @ Aa,2" « — ,
€

where € and A are constants given by Lemma 2.14, Q is Q.

Then we have the inequality

0t) < Vie [—Q(O)_z, o] . (2.37)

2
Voo 2+

Consequently, we have

1
F0) > ——. 2.38
Oz 5505 (2.38)
Proof Let \/ﬁ be a barrier function. Clearly, this function bounds Q(¢) when
t = —Q(O)’2 and r = 0. Let I be the collection of € [—Q(O)’z, 0] such that

o> — 2
JOO) 2 +1

We want to show that / is empty.
Suppose I # @. Clearly, I is bounded and closed. Let ¢ be the infimum of /. Then
we have t € [ and

Q@) = (2.39)

2
VOO +1
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Claim 2.16 Foreveryt € I, we have

sup 0(s) <20(0). (2.40)
selt—Q(1)2.1]

Proof First, we show that (2.40) holds at ¢. In fact, by the definition of ¢ for any
s €[t — Q)2 t] we have

2 2

s) < 2 < =
VOO 2+s ~ VOO 2+i-002 V3

o( Q),

where we used (2.39) in the last equality. Thus, (2.40) holds at ¢.
‘We next define

fo = sup {t ‘ Every s € I N[t,t) satisfies (2.40)}.

Clearly, tg € I. In order to prove the Claim, we have to show that 7y = 7, which
denotes the supreme of 7. Actually, at time #(, one of following cases must appear
according to the definition of #;.

Case 1. sup 0(s) =20(ty).

selto— Q0 (10)~2.10]

Case 2. Q(fo) = \/Q(O);——Z_H
0

We will show that both cases will never happen if 7y < 7.
(1). If Case 1 happens, then for some sg € [fop — Q(to)_z, to] we have

Q(so0) = 2Q(10). (2.41)

We now show that sg € I. In fact, since fy € I, we have

4 4
0(s0) = 20(10) = > .
’ =00 2110 JOO) 250+ Qo) 2

(2.42)

This implies that

06s0) =200 > — 23 o 2
VOO)2+50  VO(0)2 459

Thus, we have sg € 1.
By the assumption of ¢y, we have

sup Q(s) = 20(s0)-

s€lso—Q(s0)~2.50]
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Then Q drops from Q(sg) = 2Q (o) to Q(#p) in a time period |ty — so|. By Lemma
2.14 we have

1o €
/ 0% 0% %dr > —.
% A

Note that |ty — so| < Q(to)_2 and O(t) < 1,0 < 2Q(ty) fort € [sg, ty], we then
obtain

€
2270 (1)) % > —.
Ot) ™™ > 1

Combining this with the inequality Q(7) > , we have

-2
A Q07241

0(0) < 22(Ia—a) <§)o¢ ’

which contradicts the choice of Q(0). Therefore, Case 1 cannot happen.
(2). If Case 2 happens, by the definition of #) we have

d d 2
= <\/Q(0)—2 +r>

at time 7. Recall that Q (1)) =

2
——=—— and
A/ Q0)2+1g an
d o H3—a
S0z-40%0 (2.43)

at time f¢. It follows that
1

—AO0(1)* Qo)™ £ —————
(QO)2+1)°

’

which implies that
0(0) < Aw - 275, (2.44)

which contradicts the choice of Q(0). Thus, Case 2 cannot happen and the Claim is
proved. O

Since I is closed, we have the supreme 7 € I. It is clear that 7 < 0 since

2
0) < —.
e = VO@O)2+0
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Then at time 7, we have

d d 2
—0N) = —|——)-
dr dr \ /O(0)~2 +1

Combining this with (2.43), we get the inequality (2.44) again. So this contradiction
implies that our assumption / # ¢ is wrong. The Proposition is proved.

Using Proposition 2.15, we can estimate the curvature scale when the curvature at
some time is not large.

Proposition 2.17 Suppose {(M", g(t)), =2 <t < 0} is a Calabi flow solution satis-
fying

e the scalar curvature |S|(t) < 1 forallt € [—2,0].

e the curvature tensor satisfies

3a 1 20-a) (A @
Q0) <max{2 « Aa,2” « — .
€

Then there is a constant cy = co(n, €, A) > 0 such that

F(0) > co(n, e, A). (2.45)

Proof Let

3¢ 1 _20-0) (A @
L=2max{2 « Ae, 2 « — (2.46)
€
and we define

) {sume(t):L,—lsrsm, if (11Q0)=L,—1<1<0)#0,
1=

-1, if {t]Q)=L,—1<t<0}=40.
If s1 = —1, then the theorem holds. Otherwise, by Proposition 2.15 the curvature
satisfies
1
0(t) <~5L, te€ [sl - m,sl]. (2.47)

On the other hand, we have Q(f) < L for any ¢ € [sy, 0]. Therefore, Q(t) < V5L

holds for any ¢ € [sl — 5%,O]. Since the interval [ 0] is contained in

1
T5L2

[sl — #, 0], we get

00 <L, te [—#,o]

The Proposition is proved. O
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2.5 Harmonic Scale

In Propositions 2.15 and 2.17, we prove the “stability” of the curvature scale under the
scalar bound condition. However, this condition is in general not available. We observe
that Calabi energy is scaling invariant for complex dimension 2. For this particular
dimension, scalar bound condition can more or less be replaced by Calabi energy small,
whenever collapsing does not happen. For the purpose to rule out collapsing, we need
a more delicate scale, which is the harmonic scale introduced in this subsection.

Definition 2.18 (cf. [1,2]) Let (M", g) be an n-dimensional Riemannian manifold.
Given p € (n, 00) and Q > 1, the L7 harmonic radius hr(x, g) at the point x € M
is the largest number r( such that on the geodesic ball B = B, (rp) of radius rg in
(M, g), there is a harmonic coordinate chart U = {ui};’zl : B — R”, such that the

metric tensor g;; = g(%, %) satisfies
i J

1—n
07 (ij) < (gij)) < QGij), 1y "lldgijllLr < Q— 1.
The harmonic radius hrg (M) is defined by

hrg (M) = xlg/l hr(x, g).

For the harmonic radius, Anderson—Cheeger showed the following result.

Lemma 2.19 (c¢f [2]) Fix Q > 1. Let (M;, g;i) be a sequence of Riemannian manifolds
which converges strongly in L'P topology to a limit L'-? Riemannian manifold (M, g).
Then

hrg (M) = lim hrg, (M;).
11—
Moreover, for any x; € M; with x; — x € M we have
hr(x, g) = lim hr(x;, g;).
11— 00
Next, we introduce the harmonic scale which will be used in the convergence of

Calabi flow on Kéhler surfaces.

Definition 2.20 Let (M, g) be a Riemannian manifold. The harmonic scale Hg (M)
is the supreme of r such that

mﬁx|Rm| <r2 hr(x,g) >r, VxeM.

In other words, the harmonic scale of (M, g) is defined by

1
2

Hgy (M) = min { (sup |Rm|) , hrg(M)} .
M
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Lemma 2.21 There is a universal small constant € with the following properties.
Suppose {(M?, g(t)), —K <t < 0} is a Calabi flow solution on a compact Kiihler
surface, K > 2. Then for every t € [—1, 0], we have

1
Hg (M) > 2

whenever Hg0)(M) > 1 and Ca(—K) — Ca(0) < e.

Proof We argue by contradiction. Suppose the statement were wrong. Then we can
find a sequence of Calabi flows {(M;, g;(1)), —K; <t < 0}(K; > 2) violating the
statement with

Cag (—K;) — Cag(0) <€, € — 0.

Let{(M, g(¢)), —K <t < 0} be one of such flows. We shall truncate a critical time
interval from this flow. Check if there is a time such that H(t) < % in [—1, O0]. If no,
stop. Otherwise, choose the first time ¢ such that H(¢) = % and denote it by #1. Then
check the interval [} — H*(t1), t;] to see if there is a time such that H (7) < %H(ll).
If no such time exists, we stop. Otherwise, repeat the process. Note that

) = 5.
1
[tk+1 — tk| < Tk
1 1 16
|tk|§1+E+1—62+-~<E.

This process happens in a compact smooth space time M x [—2, 0] with bounded
geometry. In particular, the harmonic scale is bounded. After each step, the harmonic
scale decreases one half. Therefore, it must stop in finite steps. Suppose it stops at
(k + 1)-step. Therefore, for some time #;+1 € [fx — H4(tk), tr], we have

1
H(tgy1) = EH(tk),

1
H(t) > EH(tk-‘rl)a Vite [tk+1 — H*(ty41), tk+1]-

Denote r = H(t) and let §(r) = ry 2g(tx +ri1), s = ry *(teg1 — 1) € [—1,0).
Then for the flow g, we have

H(M, g0)) =1,

B 1
H(M, g(s)) = X
H(M,é(t))z%, Vit els, 0],
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- 1 1
H(M,g(t))23—2, Vite [S—R,S:|,

Ca(M, g(—2)) — Ca(M, g(0)) < e.

Now for each flow g;, we rearrange the base point and rescale the flow according to
the above arrangement. Denote the new flows by {(M;, g;(t)), —1 <t < 0}. Then the
above equations hold for each g; with some s; € [—1,0) and ¢; — 0. Let x; be the
point where H(g;, s;) achieves value. In other words, we have

H(M, gi(si) = =, (2.48)

hr(x;, gi(si)) = =, or |Rm|g ) (x;) =4 (2.49)

R = N —

Let s be the limit of s;. Then s < 0. On (s — %, 0) we have uniform bound of H
when time is uniformly bounded away from s — %. Then we have bound of curvature,
curvature higher derivatives, injectivity radius, etc. Therefore, we can take smooth
convergence on time interval (s — %, 0),

1 Che -G _c™
{(M’xi,gmm,g— 6 <t§0} Cheeger—Gromov—C* {(

1
M, x, t), —— <t=0¢,
M, x,g1)),s T }

and the Calabi energy of the limit metric g(7) is static for all 7 € (s — %, 0). Note

that for each fixed compact set 2 C M, the integral of [VV.S|> on M x [s — %, 0] is
dominated by

lim Ca(g;(—2)) — Ca(g;(0)) = 0.

Therefore, on the limit flow g(¢), we have [VV S| = 0. Every g(¢) is an extK metric and
g(t) evolves by the automorphisms group generated by V S. In particular, the intrinsic
Riemannian geometry does not evolve along the flow. From t = s to t = 0, suppose
the generated automorphism is o, which is the identity map when s = 0. Clearly, o is
the limit of diffeomorphisms o;, which is the integration of the real vector field VS;
from time ¢ = s; to time ¢ = 0.

Note that at time s and 0, we have a priori bound for all high curvature deriva-
tives of curvature. By Lemma 2.19, the harmonic radius is continuous in the smooth
convergence. Note that at time ¢ = 0, harmonic scale is 1, which implies that

[Rm|g ) (x) <1, hr(x;, g(0)) > 1.
Therefore, we have
hr(x, g(0)) = lim hr(x;, g(0)) > 1,
- 11— 00

hr(x, g(s)) = lim hr(x;, gi(si)).
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Since g evolves by automorphisms, we have
lim hr(x;, gi(si)) = hr(x, g(s)) = hr(e(x), g(0)) = lim hr(o;(x;), & (0)) = 1.
11— 00 - - 11— 00
On the other hand, it is clear that
lim [Rmlg, () (xi) = [Rmg(s) (x) = [Rm|g)(0(x)) = lim [Rmlg (i (xi)) < 1.
11— 0 - - 1—> 00

Therefore, for large i, we have

- 3 4
hr(x;, gi(s;)) > —, sup  |Rmlg ) < 7
4 ) B 3
Bg; (Si)(xl ’ j)
which contradicts (2.49). The lemma is proved. O

2.6 Backward Regularity Improvement

We now can summarize the main results in Sect. 2 as the following backward regularity
improvement theorems.

Theorem 2.22 There is a 6 = 6(Ty, B, co) with the following properties.
Suppose T > Ty and {(M2, w(t),J),0 <t < T}isa Calabi flow solution satisfy-
ing
Ca(0) — Ca(T) < e,
sup [Rm|(-,T) < B,
M

inj(M, g(T)) = co,
where € is the universal small constant in Lemma 2.21. Then we have

sup  |VIRm|<C;, YIeZTU{0}.
Mx[T—=38,T]

Proof Note that Hg (1) (M) is uniformly bounded from below. Therefore, up to rescal-
ing, we can apply Lemma 2.21 to obtain a § such that Hy ;) (M) is uniformly bounded
from below whenever ¢ € [T —248, T']. Then the statement follows from the application
of Theorem 2.3.

Theorem 2.23 There is a § = 8(n, Ty, A, B) with the following properties.
Suppose T > Ty and {(M",w(t), J),0 < t < T} is a Calabi flow solution
satisfying

sup |S| < A,
Mx[0,T]
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sup |[Rm|(-,T) < B.
M

Then we have

sup  |VIRm|<C;, Y1eZTU{0}.
Mx[T—=38,T]

The proof of Theorem 2.23 is nothing but a mild application of Propositions 2.15
and 2.17, with loss of accuracy. The reason for developing Proposition 2.15 and Propo-
sition 2.17 with more precise statement is for the later use in Sect. 4, where we study
the blowup rate of Riemannian curvature tensors. Note that Theorem 2.23 deals with
collapsing case also. If we add a non-collapsing condition at time 7', then the scalar
curvature bound in Theorem 2.23 can be replaced by a uniform bound of || S|/, for
some p > n. This was pointed out by Donaldson [31].

Remark 2.24 All the quantities in Theorems 2.22 and 2.23 are geometric quantities,
and consequently are invariant under the action of diffeomorphisms. Therefore, if
we transform the Calabi flow by diffeomorphisms, then all the estimates in Theo-

rems 2.22 and 2.23 still hold. In particular, they hold for the modified Calabi flow(c.f.
Definition 3.1) and the complex structure Calabi flow(c.f. equation (1.3)).

3 Convergence of the Calabi Flow
3.1 Deformation of the Modified Calabi Flow Around extK Metrics

In this subsection, we fix the underlying complex manifold and evolve the Calabi flow
in a fixed Kihler class.

Let w be an extK metric, X to be the extremal vector field defined by the extremal
Kihler metric w, i.e.,

X =gk—=_—. 3.1

It is well known that X is a holomorphic vector field, due to the work of Calabi [5].
Recall that for every holomorphic vector field V, the Futaki invariant is defined to be

Fut(V, [w]) £ / V()" (3.2)
M
where f is the normalized scalar potential defined by

Af=5-—8, / el " = vol(M).
M
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Note that (3.2) is well-defined since the right-hand side of (3.2) depends only on the
Kiéhler class [w]. Let V = X, then we have

Fut(X, [w]) = f (S — 8’0" = Ca(w).
M

According to [14], in the class [w], the minimal value of the Calabi energy is achieved
at . In other words, for every smooth metric w,, we have

Ca(wy) = Ca(w),

with equality holds if and only if w, is also an extK metric. Note that w,, is extremal
if and only if ojw, = w for some oo € Auto(M, J), by the uniqueness theorem of
extK metrics(c.f. [4,19,21]).

In the Kihler class [w], consider a smooth family of Kédhler metrics g(¢) satisfying

a
3787 = Si7 T LRrex)8ij (3.3)
where Re(X) is the real part of the holomorphic vector field X defined in (3.1). The
above flow was considered in [38] and Sect. 3.2 of [39].

Definition 3.1 Equation (3.3) is called the modified Calabi flow equation. Corre-
spondingly, the functional Ca(wy) — Ca(w) is called the modified Calabi energy.

The space H (c.f. equation (1.4)) has an infinitely dimensional Riemannian sym-
metric space structure, as described by Donaldson [28], Mabuchi [40], and Semmes
[41]. Every two metrics wy, , @y, can be connected by a weak C'1-geodesic, by the
result of Chen [11]. Therefore, H has a metric induced from the geodesic distance d,
which plays an important role in the study of the Calabi flow. For example, the Calabi
flow decreases the geodesic distance in H(c.f. [7]). Furthermore, by the invariance of
geodesic distance up to automorphism action, the modified Calabi flow also decreases
the geodesic distance. However, d is too weak for the purpose of improving regularity.
Even if we know that d(wy, w) is very small, we cannot obtain too much information
of wy,. For the convenience of improving regularity, we introduce an auxiliary function

donH.

Definition 3.2 For each w,, in the class [w], we define

. s
d(wy) = geAultrgM,J) e, — w”c’“%'

Note that d is not really a distance function. The advantage of d is that if d is very
small, then one can choose an automorphism ¢ such that o*w,, is around the extK
metric w, in the C* >_norm. Then regularity improvement of o*w,, becomes possible.
Note that in the Kihler class [w], a metric form w, is extremal if and only if the
modified Calabi energy vanishes, in light of the result of Chen in [14]. Then it follows
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from the uniqueness of extremal metrics that stw = w for some gg € Auto(M, J).
By the definition of d, we have

d(@y) = QeAuitI(l)fM,J) o - w”ck*% < lloges - w”c’“% =0

Inshort, Ca(wy,) —Ca(w) = 0implies that d (wy) = 0. The following lemma indicates
that there is an almost version of this phenomenon.

Lemma 3.3 For each € > 0, there is a § = §(w, €) with the following property.
If ¢ € 'H satisfies

Ha)w —w”ck“% <1, Ca(wy)— Ca(w) < 4,

then cf(wv,) < €.

Proof For otherwise, there is an €9 > 0 and a sequence of ¢; € H satisfying
||a)(pl. — w”ck“*% <1, Ca(wy)—Ca(w) <é — 0, (3.4)
d(wg) > €. (3.5)

. 1 . .
Then we can assume that w,, converges to w,,, in the Ck 2 -topology, which gives

rise to C*2-metric with Calabi energy the same as Ca(w). By the uniqueness theo-
rem(c.f. [4,19,21]), we can find an automorphism g, € Auto(M, J) such that

Ooc@pns = @
Note that o is automatically smooth. Then we have

1l
* c2
Qoowsﬂi w,

which contradicts (3.5). O

There is a modified Calabi flow version of the short-time existence theorem of
Chen-He(c.f. [15]).

Lemma 3.4 There is a & = &y(w) with the following properties.
Suppose ||a)(p —w || ohd < &o. Then the modified Calabi flow starting from w, exists

on time interval [0, 1] and we have

sup @) — wnckﬂ% <1
75[51

Now we fix &) in Lemma 3.4 and define 8y = §o(w, &p) as in Lemma 3.3.
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Lemma 3.5 Suppose no < &g is small enough such that Ca (Ww,) — Ca(w) < &g for
every ¢ € 'H satisfying ||a)(p - chk-% < no. Then the modified Calabi flow starting

from wy has global existence whenever ”a)(p — w“ck‘% < 1o.

Proof Clearly, the flow exists on [0, 1] and ‘?(ww(l)) < &). We continue to use
induction to show that the flow exists on [0, N] for each positive integer N and
d(wepvy) < &o.

Suppose the statement holds for N. Then at time N, we have d (wpv)) < &o.
Therefore, we can find an automorphism gy such that

levwpan = of ) < &

Then the modified Calabi flow starting from o}, wy(v) exists for another time period

with length 1, in light of Lemma 3.4. Moreover, we have the €12 bound of the
metric at the end of this time period. Note that the modified Calabi energy is mono-
tonically decreasing along the flow. Therefore, at the end of the time period 1, one can
apply Lemma 3.3 to obtain that d < &o. Since the intrinsic geometry and d does not
change under the automorphism action, it is clear that the modified Calabi flow starting
from wy () exists for another time length 1 with proper geometric bounds. Therefore,

wgy(r) are well-defined smooth metrics for ¢ € [N, N + 1] and 62(0)<p(N+1)) <&. O
We observe that the automorphisms o; defined in the proof of Lemma 3.5 are
uniformly bounded. Actually, note that the geodesic distance between two modified

Calabi flows is non-increasing. By triangle inequality, we have

(@, 0y) = d(@, 0y0) = d©, (0 )'®) —d((e] ) o, pw)
= d(w, (0] ")'w) — d(w, 0f W)

It follows that
d(w, (0] Y w) < d(w, wy) + d(w, 0f wyi)) < C.

Therefore, o; must be uniformly bounded. Furthermore, since the modified Calabi
energy always tends to zero as t — 00, by the results of Streets [45] and He [36], it
is clear that

Ca(wyi)) — Ca(wyi-1)) — 0.
Applying Lemma 3.3, we can choose & — 0 such that
lofwea) — w”c"*% <& — 0, asi— oo
In particular, we have d(w, Q;‘w(p(i)) — Qasi — oo.
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Theorem 3.6 Suppose ¢ € H satisfying H“’(/) — w“ck* 1< o Then the modified

Calabi flow starting from w, converges to o*w for some o € Autg(M, J), in the
smooth topology of Kdhler potentials.

Proof First, let us show the convergence in distance topology.

Let ¢; be the automorphisms defined in the proof of Lemma 3.5. From the above
discussion, we see that ¢ ; are uniformly bounded, by taking subsequence if necessary,
We can assume Q; converges to 0. Then

. -1 . ~1 .
jlim d(0sg) @, wp(jy) = im d((oj ) @, wpjy) = im d@, @) wp(j)) =0.

Note that (ngl)*w is also an extremal Kdhler metric and hence a fixed point of the
modified Calabi flow. By the monotonicity of geodesic distance along the modified
Calabi flow, we have

d((x) @, W) < d((03) w. wy(j))

whenever ¢ > j. In the above inequality, let t — oo and then let j — oo, we obtain
: -1
lim d((05)"®, wyr) = 0. (3.6)

This means that wy () converges to (ngl)*a) in the distance topology.

Second, we improve the convergence topology from distance topology in (3.6) to
smooth topology.

Define o(t) = ¢; for each t € [j, j + 1). In light of the proof of Lemma 3.5,
both ¢(#)*wy(r) and o(¢) are uniformly bounded. It follows that w;) are uniformly
bounded in each C’-topology. Let ; — oo be a time sequence such that

c*® .
Wy (t;) — Wy s as 1 — OQ.

In view of (3.6), we see that d (wy,, (ngl)*w) = 0, which forces that w,,, = (Qo_ol)*a).
Since {#;} is arbitrary time sequence such that wy ;) converges, the above discussion
actually implies that

COO
—1y*
W) — (0 ) @, as t— o0.

Let 0 = o5 Then the proof of the Theorem is complete. O

The convergence in Theorem 3.6 could be as precise as “exponential” if we have
further conditions on w or .

Theorem 3.7 ([15,38]) Same conditions as those in Theorem 3.6. Suppose one of the
following conditions is satisfied.
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e w is acscK metric.
o wy is G-invariant, where G is a maximal compact subgroup of Auty(M, J).

Then the modified Calabi flow starting from w, converges to 9*w exponentially fast
in the smooth topology of Kdihler potentials. In other words, for each positive integer
1, there are constants C, 0 depending on [ such that

lp(t) — ‘Poo|cl(g) <C 'e_et,Vt > 0.

3.2 Convergence of Kéhler Potentials
The key of this subsection is the following regularity improvement properties.

Proposition 3.8 Suppose {(M?, wer), 1), 0 < t < o0} is a modified Calabi flow
solution satisfying

levpao) — w||ck,% <no, Ca(@yry-1)) — Calwyuy)) < € (3.7

for some ty > 1, where ng is the constant in Theorem 3.6, € is the constant in
Lemma 2.21. Then for each positive integer | > k, there is a constant C; depend-
ing on | and w such that

lopu — @] 1y < Cr (3.8)

Proof The solution of the modified flow (3.3) and the Calabi flow differs only by an
action of p, which the automorphism generated by Re(X) from time #y — 1 to fg,
where X is defined in (3.1). Since X is a fixed holomorphic vector field. It follows that
lell ., 1 is uniformly bounded by A; for each positive integer /. Therefore, in order to

show (3.8) for modified Calabi flow, it suffices to prove it for unmodified Calabi flow.

Clearly, the Riemannian geometry of wy(y,) is uniformly bounded, by shrinking o
if necessary. We also have Ca(wy(;y—1)) — Ca(wy () < €. Therefore, Theorem 2.22
applies and we obtain uniform |V(lp Rm(wy)|g, bound for each non-negative integer /.
Due to the bound of curvature derivatives, one can obtain the metric equivalence for a
fixed time period before 7y, say on [#) — l, to]. Then we see that w (o1 is uniformly

equivalent to w and has uniformly bounded Ricci curvature. This forces that @ (-1
1

has uniform C 1’%—norm, due to Theorem 5.1 of Chen-He [15]. Consequently, (3.8)
follows from the smoothing property of the Calabi flow(c.f. the proof of Theorem 3.3
of [15]). O

Proposition 3.9 Suppose {(M", wyr), J),0 < t < oo} is a modified Calabi flow
solution satisfying

|wgao) — w”ck% < o, sup S| < A, (3.9
M x[ty—1,19]
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for some ty > 1, where ng is the constant in Theorem 3.6. Then for each positive
integer | > k, there is a constant C; depending on |, A and w such that

H“’w(to) - w“cl% < Cy.

Proposition 3.9 is the high dimension correspondence of Proposition 3.8. The proof
of Proposition 3.9 is almost the same as that of Proposition 3.8, except that we use
Theorem 2.23 to improve regularity, instead of Theorem 2.22.

Now we are ready to prove our main theorem for the extremal Kéhler metrics.

Proof of Theorem 1.2 Pick w, € LH, we need to show that the modified Calabi flow
starting from w,, converges to o*(w) for some ¢ € Auto(M, J). For simplicity of
notation, each flow mentioned in the remaining part of this proof is the modified
Calabi flow. According to the definition of £LH, we can choose a path ¢;, s € [0, 1]
connecting @ and wy, i.e.,

Wy = W, Wy = Wy.

Let I be the collection of s € [0, 1] such that the flow starting from w,, converges.
In order to show the convergence of the flow starting from wy, it suffices to show the
openness and closedness of I, since I obviously contains at least one element s = 0.

For each s, let ¢ (7) be the the time-z-Kéhler potential of the flow starting from
wy, . Define function

A
A0 = QEAultI(}fM,J) le* @ = @] .y

Note that bounded closed set in Auto(M, J) is compact since Auto(M, J) is a finite-
dimensional Lie group. Therefore, we can always find a o5, € Auto(M, J) such
that

dA(S’ t) = Hg;k,la)%‘(t) - a)Hck»%'

Therefore, d is a well-defined function. It is also clear that d depends on s, ¢ continu-
ously. One can refer Lemma 3.13 and 3.14 for a similar, but more detailed discussion.
By Theorem 3.6, ifﬁ(so, ty) < 8¢ forsome sg € [0, 1], 19 € [0, 00), then the flow start-
ing from Wy, (19) CONVerges. Consequently, the flow starting from Wy, (0) converges.
By continuous dependence of the metrics on the initial data, we see that / is an open
set.

We continue to show that 7 is also closed. Without loss of generality, we can assume
that [0, 5) C I and it suffices to show that 5 € 1.

For each s € [0,5), let T be the first time such that c?(s, t) = 0.5n0. By the
convergence assumption and the continuity of d, each Ty is a bounded number.
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Claim 3.10 The bound of Ty is uniform, i.e., sup T; < oo.
5€[0,5)

If the Claim fails, we can find a sequence s; — § such that 7y, — oco. For simplicity
of notation, we denote Ty, by T;. Consider the flow starting from ¢5. By the results of
Streets(c.f. [36,45]), we see that

lim Ca(wy; (1)) = Ca(w).
—00 :
Therefore, for each fixed €, we can find L, such that Ca(wy; (L¢)) < Ca(w) + €. By
continuity, we have
lim Ca(wy, (L)) = Ca(wy; (L)) < Ca(w) + €. (3.10)
i—o00 !

Note that the Calabi energy is non-increasing along each flow. Since 7; — 1 > L for
large i, it follows from (3.10) that

im Ca(a)%,(rif])) < Ca(w) +€
1—00 !

for each fixed positive €. Since the Calabi energy is always bounded from below by
Ca(w), it is clear that

lim \Ca(wg, ;1)) — Ca(wws,.m))‘ = lim (Ca(wws,. 1-1) — Calwy, <T,-))) =0.
1—> 00 11— 00
(3.11)

Note that the harmonic scale of wy, (7;) is uniformly bounded away from zero. By
Theorem 2.22, we obtain all the curvature and curvature higher derivative bounds of
Wy, (1) Define

Qi £ Qs;.T;»  Wg; 2 Q?(w‘psi (1))-

Note that wg, has uniform C k'%-norm by the choice of 7;. Because of (3.11), we can

- . 1 .
apply Proposition 3.8 and see that wg, has uniform C2-norm for each integer | > k.
Therefore, we can take the smooth convergence in fixed coordinate charts.

A C® c®
Yi — Poo, Wg —> W, - (3.12)
Since the Calabi energy converges in the above process, by (3.11) and the above

inequality, we obtain that wg_ is an extK metric. By the uniqueness theorem of extK
metrics, we obtain that there is a oo € Autg(M, J) such that

Wg = 0.
Note that o, is automatically smooth. Now (3.12) can be rewritten as
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COO _ k _ k
0 @p, 1) — 0%, (i 00x!) (@g, ) = (02 © 0 @y, )
-1\* c>
= (Qoo) Wy, —> .

It follows from the definition of d that

n *
desi. T < | (10 0x') @py 1) = @] sy = 0.

which contradicts our choice of Tj, i.e., d (si, T;) = 0.5n9. Therefore, the proof of
Claim 3.10 is complete. B
Inlight of Claim 3.10, we can choose asequence of s; — sand7T; = T, — T < oo.

By continuity of c?, we see that
d@, T) = 0.5n.

Consequently, Theorem 3.6 applies and the flow starting from w,, (7 converges. Hence
the flow starting from wy (o) converges and § € I. The proof of the Theorem is
complete. O

Theorem 1.4 can be proved almost verbatim, except replacing Propsotion 3.8 by
Proposition 3.9.

3.3 Convergence of Complex Structures

In this subsection, we regard the Calabi flow as the flow of the complex structures
on a given symplectic manifold (M, w). We also assume this symplectic manifold
has a cscK complex structure Jy. Note that the uniqueness theorem of extK metrics
in a given Kihler class of a fixed complex manifold plays an important role in the
convergence of potential Calabi flow. Similar uniqueness theorem will play the same
role in the convergence of complex structure Calabi flow. Actually, by the celebrated
work of Chen-Sun(c.f. Theorem 1.3 of [20]), on each C*°-closure of a GC-leaf of
a smooth structure J, there is at most one cscK complex structure(i.e., the metric
determined by w and J is cscK), if it exists.

It is important to note that the complex structure Calabi flow solution is invariant
under Hamiltonian diffeomorphism. Suppose J4 and Jp are two isomorphic complex
structures, i.e.,

Po=w, Ja=¢"Jp

for some symplectic diffeomorphism ¢. Let J4(¢) be a Calabi flow solution starting
from Jy, then ¢*J4(¢) is a Calabi flow solution starting from Jg.

Let go be the metric compatible with w and Jy. Then it is clear that g¢ is cscK and
therefore smooth metric. We can choose coordinate system of M such that g, J, ®
are all smooth in each coordinate chart. We equip the tangent bundle and cotangent
bundle and their tensor products with the natural metrics induced from gg. Clearly, if a
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diffeomorphism ¢ preserves both w and Jy, then it preserves go and therefore locates in
ISO(M, go), which is compact Lie group. Therefore, each ¢ is smooth and has a priori

1 e .
bound of C!>2-norm for each positive integer /, whenever ¢ is regarded as a smooth
section of the bundle M x M — M, equipped with natural metric induced from g.
There is an almost version of this property. In other words, if ¢ preserves w and the

C*2 -norm of @*J is very close to Jy, then ¢ has a priori bound of €12 _norm. This
is basically because of the improving regularity property of isometry(c.f. [8]).

Proposition 3.11 Let {Ux, {xi}lr."zl} and {Uy, {y"}z.nzl} be two coordinates of an

open Riemannian manifold (V, ds*). The Riemannian metric in these two coordinates
can be written as

ds? = g;j(x)dx'dx/ = g;;(y)dy'dy’. (3.13)

As subsets of R™, Uy, and U, satisfy

1
{x’|x| :\/xf—kx%—i—---—i—x,% < 5} Cc U, Clx||x| <1},
1
y[bl<3tet cilivl <.
In each coordinate, the metrics are uniform equivalent to Euclidean metrics.

1
58,']' < gl-j(x) < 28,']', VxeU;

1 -
E(SU < 8ij(y) <28;5, VyeU,.

Suppose g;j and g;; are of class ckz for some integer 1 < k < oo. Suppose the
natural map x = f(y) satisfies f(0) = 0. Then f is of class k13 and

. Ck,;([}y)) )

where B is the standard ball in R™ with radius ‘—1‘ and centered at Q.
7

1 ind g < c(
4

cki(U)

Proof Equation (3.13) can be rewritten as

axk ax!

8ij 8klﬁw

Denote Fk and I"k/ as the Christoffel symbol of ds® under the x and y coordinate,

respectlvely Then direct calculation implies that
ok _ oxP ox? . ayk  ayk 92y

ij = a_yzw Pq gyr + ax* dyloyl
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In other words, the second derivatives of x(y) can be expressed as

O2x"_ Ox" ey 0xP9xT (3.14)
0yioyJ ayk tj pq Ayl 9y

Lo~ 1 .
Now suppose the metric g;; is C k.2 for some integer k > 1. Moreover, let us assume

i ”ck%(ux)’ | HCk%(U.\J =

Therefore, f‘f‘j and Ff‘j are C*~1°7 and has uniformly bounded C¥—1- 2 -norm in smaller
balls. By bootstrapping argument, we obtain that

<
1l = Clm ke .
P

Lemma 3.12 Suppose ¢ € Symp(M, w). Then we have

19l ory < € (mkollged g 110y

Proof Regard ¢ as an isometry from (M, w, J) to (M, w, ¢.J). Then the proof boils
down to Proposition 3.11. Note that ¢, J is the push forward of J, which is the same

. 1 . .
as (¢~")*J, and the default metric we take C*2-norm is the metric go. O

Fix Jo as the cscK complex structure. For each complex structure J compatible
with w, we define

d(J) =inf "] = Jo||

where infimum is taken among all symplectic diffeomorphisms with finite C**2 -norm.

Let ¢; be a minimizing sequence to approximate ddJ). By triangle inequality and
Lemma 3.12, we see that ¢; has uniformly bounded C¥+1- 2 norm. Therefore, by taking

subsequence if necessary, we can assume ¢; converges, in the C k"'l’%-topology, toa
limit symplectic diffeomorphism ¢,. Although the convergence topology is weak, it
follows from definition that ¢, has bounded C k+1’%-n0rm. Therefore, we see that
@i d = Jo| o1 < lim |@FJ = Jo| .1 =d(J).
o k7 T e I ckz
On the other hand, by definition, we have

a0 < Joes — ol oy

Combining the above two inequalities, we obtain that d(J) is achieved by ¢ J. We
have proved the following Lemma.
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Lemma 3.13 For each smooth complex structure J compatible with w, d(J) is
1
achieved by a diffeomorphism ¢ € CKtL2(M, M) and o*w = .

Lemma 3.14 d is a continuous function on the moduli space of complex structures,
1
equipped with C* 2 -topology.

Proof Fix Ju, let Jg — J4. Then we need to show that

d(Jp) = hm d(Jp).

B_) A
On one hand, by Lemma 3.13, we can find g4 € Ck“’% (M, M) such that
a0 =i da — ol oy
It follows that

40m) = pesympi. "7 = Jol ay = l9ats = ol g

Let Jg — J4 and take limit on both sides, we have

limsupd(Jp) <11msup lei s — Jo ok = lehda — Jo| ok =d(Jp).

Jp—>Ja Jp—Ja
On the other hand, for each Jg, we have ¢p to achieve the d. Then we see that

hmmfd(JB) = liminf |08 = Joll sy = l03cda = Jo| sy = dCa),

Jp—Ja k3

where ¢ is a limit symplectic diffeomorphism of ¢p as Jp — J4. The existence
and estimates of ¢, follow from Lemma 3.12.

Therefore, d is continuous at J4 by combining the above two inequalities. Since

J 4 is chosen arbitrarily in the moduli space of complex structures, we finish the proof.

O

Lemma 3.15 SuppO{e Ja = Js(t) for some s € D andt > 0. There is a constant
6 > 0 such that if d(J4) < &, then the Calabi flow starting from Ja has global
existence and converges to Yr*(Jy) for some ¢ € Symp(M, w).

Proof By Theorem 5.3 of [20], there is a small § such that every Calabi flow starting

from the §-neighborhood of Jy, in Ck'%-topology, will converge to some cscK J'.
Note that the Calabi flow solution always stays in the g(c-leaf of Jy, hence J’ is in
the C°°-closure of Ji. Also, on the other hand, according to the conditions of J;, we
see that Jy is also in the C*°-closure of Jj. Therefore, one can apply the uniqueness
degeneration theorem, Theorem 1.3 of [20] to obtain that (M, w, Jy) and (M, w, J')
are isomorphic. Namely, (o, J') = n*(w, Jy) for some diffeomorphism 7.
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Ifd(Ja) < 8, then we can find a diffeomorphism ¢ such that

o =w, *Ta — J <
¢ lo*7a = ol it 4y o)
By previous argument, the Calabi flow initiated from ¢* J4 will converge to n*(Jy), for
some symplectic diffeomorphism 7. Then the Calabi flow starting from J4 converges
to (0~ 1)*n*(Jo). Let v = n o ¢!, we then finish the proof. O

With these preparation, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let I to be the collection of s € [0, 1] such that the Calabi flow
initiated from J; converges to ¥ *(Jp) for some symplectic diffeomorphism . By
abusing of notation, we denote

d(s, 1) = d(Js(1)).

In light of Lemma 3.15 and continuity of d, we see that [ is open. In order to show
I = [0, 1], it suffices to show the following claim.

Claim 3.16 Suppose [0, 5) C I for some's € (0, 1], then's € I.

We argue by contradiction.

If the statement was wrong, then d (5,1) > 6, due to Lemma 3.15. For each s €
(0, 5), we see d(s, 1) will converge to zero finally, while d(s, 1) > 0.58 whenever s
is very close to s, say, for s € [s — &, 5). Therefore, for each s nearby s, there is a T
such that d (s, Ts) = 0.56 for the first time. A priori, there are two possibilities for the
behavior of T;:

e There is a sequence of s; such thats; — § and Ty, — oo.

e sup Ts < A forsome constant A.
se[5—£.5)

We shall exclude the first possibility. The proof is parallel to that of Claim 3.10.
Actually, if the first possibility appears, then we see that

lim Ca(J;(Ty,)) = 0.
11— 0

In light of the monotonicity of the Calabi energy along each flow, the continuous
dependence of the Calabi energy on parameters s and ¢, and the fact that

lim Ca(Js(t)) = 0.

—>00
For simplicity of notations, we denote J/ = Jj; (T,). Note that every J/ can be pulled
back to J{ by some diffeomorphisms 7;, which may not preserve w. In other words,

we have

J=nidl, w2, (3.15)
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where w; = w++/—139 f; for some smooth functions f;, with respect to the complex
structure J{. Note also that (M, w, J/) has the same intrinsic geometry as (M, w;, J7),
which has uniformly bounded Riemannian geometry and all high order curvature
covariant derivatives, due to Theorem 2.22. Therefore, we can take Cheeger—Gromov
convergence:

Cheeger—Gromov—C®> -
(M, @,7).

(M, w;, J)
In other words, there exist smooth diffeomorphisms ¢; such that

orwi > @, ¢l ST (3.16)

Note that everything converges smoothly, the limit Kihler manifold (M, &, J) has
zero Calabi energy and consequently is cscK. Moreover, it is adjacent to ([w], J{), in
the sense of Chen-Sun(c.f. Definition 1.4 of [20]). Therefore, the unique degeneration

theorem of Chen-Sun (Theorem 1.6 of [20]) applies, we see that there is a smooth
diffeomorphism ¢ of M such that

o= 0w, J=¢*. (3.17)
Let ¥; = ¢; o 9!, ¥ = n; o ¥;. Combining (3.15), (3.16) and (3.17), we obtain
N
vio < w, Y LN Jo.

Since [w] is integral, we see [y;*w] = [w] for sufficiently large i. Composing with an
extra convergent sequence of diffeomorphisms if necessary, we can assume that

* oo % 7 C%
vio=w, y'J; — Jo.

Then we have d (Jl.’) — 0 asi — oo, which contradicts our choice of Jl.’, namely,
d (J/) = 0.58. This contradiction excludes the first possibility. Therefore, we have

sup Ty < A

se[f—£.5)
for some uniform constant A. Now we choose s; € [0, §) such that s; — 5, we can
assume T, — T5 for some finite 75 by the above estimate. In light of the continuous

dependence of solutions to the initial data, we see that the complex structure J5(75)
is the limit of Jy; (7;). Hence

d(J5(Tz)) = lim d(J;,(Ty;)) = 0.58 < 6.
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Consequently, Lemma 3.15 can be applied for the Calabi flow started from J5(T5).
Therefore, s € I and we finish the proof of Claim 3.16. O

The proof of Theorem 1.5 is almost the same as Theorem 1.3. The only difference
is that we use Theorem 2.23 to improve regularity, rather than Theorem 2.22.

3.4 Examples

In this subsection, we will give higher dimension examples with global existence. On
such examples, our results and methods developed in previous sections can be applied.

Example 3.17 (cf. [17]) Let (M, J) be the blowup of CIP? at three generic points. Let
the Kihler class of @ be

3
3[H] = A([E1] + [E2] + [E3D), 0<)»<§, reQ,

where H denotes the pullback of the hyperplane of CP? in M and E;(1 < i < 3)
denotes the exceptional divisors. Suppose w is invariant under the toric action and the
action of Zs and satisfies

23 —2)°

_—. 3.18
32 (3.18)

f S2dV < 19272 + 327
M

Then the Calabi flow starting from w exists for all time and converges to a cscK metric
in the smooth topology of the Kihler potentials.

Example 3.18 (cf. [16]) Let (M, J) be a toric Fano surface. Let w be a Kéhler metric
with positive extremal Hamiltonian potential. Suppose [w] is rational and w is invariant
under the toric action and satisfies

1 (c1(M) - Q)> 1
S2dV < 272 (AM) + ———Z " ) + | FI?
/M < 3x <c1( )+ >+3||f||,

where || F||? is the norm of Calabi—Futaki invariant. Then the modified Calabi flow
starting from o exists for all time and converges to an extK metric in the smooth
topology of Kihler potentials.

Actually, in [17] and [16], the global existence of the flows in Example 3.17 and 3.18
was already proved by energy method, based on the work of [18]. Furthermore, they
showed the sequence convergence in the Cheeger—Gromov topology. The only new
thing here is the improvement of the convergence topology. Let us sketch a proof of
the statement of Example 3.18. By results of [16], we can take time sequence #; — 00
such that

Cheeger—Gromov—C™®

M, 0(1;), J) M, o', ),
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where (M’, o', J') is an extK metric. In other words, there exist smooth diffeomor-
phisms v; such that

W) vi)) <> @, 1)

in fixed coordinates. The toric symmetry condition forces that J' is isomorphic to J,
i.e., J/ = ¥*J for some smooth diffeomorphism . Let n; = v; o ', we have

ro). i D) <> (=) e, D). (3.19)

The rational condition of [w] forces that [nfw ()] = [(¥~"*w']. Therefore, there
exists smooth diffeomorphisms p; — Id such that

pinfot) = W H*e'. (3.20)

Then equation (3.19) becomes

pintd <5 . (3.21)

We can write ; = @; o g; for 9; € Aut(M, J) and o; — Id. Then (3.19) can be
rewritten as

(ol w(t), o7 ) < (y~ ) o, ),

Qo). J) <> (y~ ) o', D).

Note that Aut(M,J) = Auty(M,J) in our examples. Hence [Q;"a)(t,-)] =
[(yH*@'] = [w]. For simplicity of notation, we denote (¥ ~1)*&’ by weyik.
Then on the fixed complex manifold (M, J), within the Kihler class [w], we have
0fw(ti) — wexrk in the smooth topology of Kihler potentials. For some large i,

o w(t;) locates in a tiny Ck'%—neighborhood of wexrx. Then we can apply Theo-
rems 3.6 and 3.7 to show the modified Calabi flow staring from ¢} (#;) converges to
an extK metric o*wey;x exponentially fast, where o € Autg(M, J).

4 Behavior of the Calabi Flow at Possible Finite Singularities

All our previous discussion in this paper is based on the global existence of the Calabi
flow, and there do exist some non-trivial examples of global existent Calabi flow.
However, it is not clear whether the global existence of the Calabi flow holds in
general. Suppose the Calabi flow starting from w,, fails to have global existence. Then
there must be a maximal existence time 7. By the work of Chen-He [15], we see that
Ricci curvature must blowup at time 7. In this subsection, we will study the behavior
of more geometric quantities at the first singular time 7. For simplicity of notations,
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we often let the singular time 7 to be 0. Recall that P, Q, R are defined in equation
(1.9).

Proposition 4.1 Suppose {(M", g(t)), —1 <t < K, 0 < K}isa Calabiflow solution
satisfying

o0)=1, Q) <2, Vtel[-1,0].
Then we have

1 K
Q(K) < 2% fO Pg (1) dt+l’ (41)

where € is the dimensional constant obtained in Lemma 2.9.

Proof For any non-negative integer i, we define s; = inf {t [t>0,0() =2 } Note
that so = 0. Thus, we have

~1, sup Q@) = Q(sip1) =2

1
|:St Q(si)z’sl+l:|

Si

I
O(s)?
We rescale the metrics by

(1) £ Q(si) A—
gl 'x’ - Sl g x5 Q(Si)z Sl .
Then the flow {(M, g;()), —1 <t < Q(s;)*(K — s;)} is a Calabi flow solution sat-

isfying

L Qg,(o)z 1,
o Qg () <1forallt € [-1,0],

i Qgi(Q(si)2(5i+l _Si)) =2.

Thus, Lemma 2.9 applies and we have

Sitl ()2 (si41—5i)
/ Pe(n)dr = / Py, (1) dt > €.
Si 0

Let N be the largest i such thats; < K. Then
SN K
Neog < / Pe()dr < / Pg(t)dt,
0 0
which implies that N < % foK P, (1) dt. It follows that for any ¢ € [0, K],
Py (1) dt+1

K
o) < 2¥+! < 2w o

Then (4.1) follows trivially and we finish the proof. O
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Since the Riemannian curvature tensor blows up at the singular time along the
Calabi flow, Proposition 4.1 directly implies the following result.

Corollary 4.2 Suppose {(M", g(t)), —1 <t < 0} is a Calabi flow solution. If t = 0
is the singular time, then we have

0
/ Py (1) dt = oo.
1

In particular, Pg(t) will blow up at the singular time t = 0:
lim P, (1) = oo.
tl_{l(l) ¢ (1)

Next, we would like to estimate Q(¢) near the singular time of the Calabi flow.
Analogous results for Ricci flow are proved by the maximum principle (cf. for example,
Lemma 8.7 of [25]). Here we show similar results for the Calabi flow using the higher
order curvature estimates.

Lemma 4.3 There exists a constant §9 = So(n) > 0 with the following properties.
Suppose {(M", g(t)),—1 < t < 0} is a Calabi flow solution and t = 0 is the
singular time. Then

lim sup Q(t)v/—t > &o. 4.2)

t—0

Proof By Theorem 2.3, we can find a constant §;(n) > 1 satisfying the following
properties. If {(M, g(t)), —1 <t < —%} is a Calabi flow solution with |[Rm|(¢) < 1
forr e [—1, —%], then

B]
‘E|Rm| <34. (4.3)

I=—3

We claim that under the assumption of Lemma 4.3, we have

sup  Q(t) > % “4.4)

1
[-1,-3;]

1
Otherwise, we have sup Q(r) < 3 We choose 7y € [—1, 0) the first time such
(1= 5]

that Q(tp) = 1. Clearly, 7y > —ﬁ. Since

1
Q) = 0 <——> + sup

281 Mx[~ 357 0]

9 Rf| - (10 +
— m . — .
Y 07 25,

@ Springer



2096 H.Lietal

we have

1 1 1 1
1< =461t — )| < =—+6 - — <1, 4.5
<2+1<°+251>—2+1231— .5

which is a contradiction. Here we used (4.3) in the first inequality of (4.5). The inequal-
ity (4.4) is proved.

Now we estimate Q(sg) for any s9 € (—1, 0). Since + = 0 is the singular time, we
can assume that Q(¢) < Q(sp) for all # € [—1, s9]. Rescale the metric by

g, =0¢ <x ) t e [-0%0).

t
$o?

Choose Q such that soQ2 = —2171. If |so] < 2+sl’ then we have Q > 1 and

{(M, g(t)),—1 <t < 0} is a Calabi flow solution with the singular time ¢t = 0.

Thus, by (4.4) we have
0, 1 - 1
8 281) — 2’

which is equivalent to say

1 1
—s0 > , Vsope|——,0]).
0(s0)v/—s0 = N 50 [ %, >

The lemma is proved. O

The next result gives an upper bound of Q near the singular time with the assumption
on P.

Lemma 4.4 Suppose that {(M", g(t)), —1 <t < 0} is a Calabi flow with singular
timet = 0. If

limsup P()|t| = C < +o0, (4.6)

t—0

then we have

o) =o(ltI™) (4.7)

for any constant A > %ng. Here € is the constant in Lemma 2.9.

Proof Since t = 0 is the singular time, for any § > 0 we can choose ty = fy(g, d)
such that the following properties hold:

POt <C+8, Vieln,0), (4.8)
o) < 0(t), Ytel-1,1], 4.9
0% (to)|1 + 10| > 1. (4.10)
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Define s; = inf {¢ | 1 > 19, Q(t) = 2'Q(1o)} and we rescale the metrics by
iﬂmanmm(m§%5+n),teﬁwvuowomg%mmﬂ
Then by (4.9) and (4.10) the flow {(M, h; (1)), —1 <t < 0} satisfies
01O =1, Qy» =1, Yrel-1,0],

and Oy, (Qz(si)|s,-+1 — 8 |) = 2. By Lemma 2.9, we have

Si+1 0% (si)lsi+1—si]
/ Pdt = / Py, (t)dt > €. 4.11)
Si 0

On the other hand, by (4.8) we have

Sitl Isi |
/ Pdt <(C+6)log . 4.12)
si Isi+1l
Combining the inequalities (4.11) with (4.12), we have
|$i41] < ook
Isi |
After iteration, we get the inequality
_ ot _ €0t
Isi| < lsole” €+ = |role” C+5. (4.13)

Combining (4.13) with the definition of s; gives the result
. y . A A€ i
Jlim QGsp)lsi|* < lim Q(10) 1] <2e**c+s) =0,
i—>+00 i——+o00

L€
where we choose A such that 2e_CTqS < 1. Thus, for any 7 € [s;, s;+1] we have
Q11" < QGsivlsil* =20G)lsil" — 0
as i — 4-o00. The lemma is proved. O

We now prove Theorem 1.6.

Proof of Theorem 1.6 After rescaling the flow, we can assume that 7 > 1. It is clear
that (1.12) follows from the combination of inequality (1.11) and the definition of
type-I singularity(c.f. [39]), i.e., lim sup Q?|t| < oo. Therefore, we only need to show

t—0
(1.10) and (1.11), which will be dealt with separately.
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1. Proof of inequality (1.10):

If limsup P|¢t| = C > 0, by Lemma 4.3 and Lemma 4.4 we have
t—0

(C+8)log2 1, (C+8)log2

0=1limsup Q(1)|t] < > &1]t| 2 0
t—0

where § > 0 is any small constant. It follows that

> _0
~ 2log2

Thus, (1.10) is proved.
2. Proof of inequality (1.11):
Since 0 is the singular time, we have lir% F(t) = 0. Thus, F(t) € (0,1) when ¢ is
r—

close to 0. It follows that

—F(t):lirr(l)F(s)—F(t)Z—C|t|,=>F(t)§C|t|, (4.14)

where we used the inequality ‘fl—;F (t) > —C by Lemma 2.13. On the other hand, by
Lemma 2.13 again, we have

d
~_F>—-CO0Y0Q*"F.
dt  — 0

Therefore, for any small § > 0 we have
)
log F(—8) —log F(—=T) > —C f 0% 0*“dr,
-T

where C = C(a, n) is a constant. It follows that

F(-T) 1
— —log$é,
C C

-5
1 1 1
0°0%Ydt > —log F(—T) — —log F(—8) > —1
/_T 0 > Slog F(=T) — Zlog F(=8) = ~ log

where we used (4.14). Suppose limsup 0% 0>~%|t| < A. Then we have
t—0

1 F(-T)
— log
C C

1
—Elogés—AlogS—i—AlogT. (4.15)

for every small §. It forces that A > é Replace A by lim sup O“ 0%t + € and let
t—0
€ — 0. Then we have

1
limsup 0% Q>~%|t| >

t—0 C
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Therefore, (1.11) is proved. O

5 Further Study

The methods and results in this paper can be generalized in the following ways.

1. The method we developed in this paper reduces the convergence of the flow
to three important steps: uniqueness of critical metrics, regularity improvement, and
good behavior of some functional along the flow. Theorems 1.3 and 1.5 can be proved
for minimizing extK metrics in a general class, assuming a uniqueness theorem of min-
imizing extK metric in a fixed GClleaf’s C *_closure, or a generalization of Theorem
1.3 of [20]. This will be discussed in a subsequent paper.

2. The fourth possibility of Donaldson’s conjectural picture seems to be extremely
difficult. By the example of G.Székelyhidi, the flow singularity at time infinity could be
very complicated. However, if we assume the underlying Kihler class to be ¢1 (M, J)
which has definite sign or zero, then the limit should be a normal variety and could be
used to construct a destabilizing test configuration.

3. Our deformation method could be applied to a more general situation. In Sect. 3,
we deformed the complex structures and the metrics within a given Kéhler class. Actu-
ally, even the underlying Kéhler classes can be deformed. The general deformations
will be discussed in a separate paper.
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