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Abstract We study Riemannian manifolds with boundary under a lower N -weighted
Ricci curvature bound for N at most 1, and under a lower weighted mean curvature
bound for the boundary. We examine rigidity phenomena in such manifolds with
boundary.We conclude a volumegrowth rigidity theorem for themetric neighborhoods
of the boundaries, and various splitting theorems. We also obtain rigidity theorems for
the smallest Dirichlet eigenvalues for the weighted p-Laplacians.
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1 Introduction

In this paper, we study Riemannian manifolds with boundary under a lower weighted
Ricci curvature bound, and under a lower weighted mean curvature bound for the
boundary. We develop the preceding studies of the author [33]. As explained below,
we examine rigidity phenomena in such manifolds with boundary beyond the usual
weighted setting.

For n ≥ 2, let M be an n-dimensional Riemannian manifold with or without
boundary with Riemannian metric g, and let f : M → R be a smooth function. We
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2 Y. Sakurai

denote by Ricg the Ricci curvature defined by g, by ∇ f the gradient of f , and by
Hess f the Hessian of f . For N ∈ (−∞,∞], the N -weighted Ricci curvature RicNf
is defined as

RicNf := Ricg +Hess f − ∇ f ⊗ ∇ f

N − n
(1.1)

if N ∈ (−∞,∞)\{n}; otherwise, if N = ∞, then RicNf := Ricg +Hess f ; if N = n,

and if f is a constant function, then RicNf := Ricg; if N = n, and if f is not constant,

then RicNf := −∞ [2]. We notice that the parameter N has been usually chosen from
[n,∞].

On manifolds without boundary under a lower N -weighted Ricci curvature bound,
many results have been already known in the usual weighted case of N ∈ [n,∞]
(see, e.g., [20–22,30,34,35,38]). Recently, in the complemental weighted case of N ∈
(−∞, n), several geometric properties have begun to be studied (see [16,17,23,25,26],
[27,40]). Wylie [39] has obtained a splitting theorem of Cheeger–Gromoll type (cf.
[8]) in the complementary weighted case of N ∈ (−∞, 1], and asked a question
whether the splitting theorem can be extended to the remaining case of N ∈ (1, n).

For manifolds with boundary under a lower N -weighted Ricci curvature bound,
and under a lower weighted mean curvature bound for the boundary, the author [33]
has studied rigidity phenomena in the usual weighted case of N ∈ [n,∞]. In the
present paper, we produce rigidity theorems in the complementary weighted case
of N ∈ (−∞, 1]. Our rigidity theorems in the case of N ∈ (−∞, 1] give natural
extensions of the corresponding results in [33].

To prove our rigidity theorems, we develop comparison theorems. We prove Lapla-
cian comparison theorems for the distance function from the boundary, and volume
comparison theorems for metric neighborhoods of the boundary. The author [33] has
shown such comparison theorems in the usual weighted case of N ∈ [n,∞]. For
manifolds with boundary of non-negative N -weighted Ricci curvature, and of non-
negative weighted mean curvature for the boundary,Wylie [39] has shown a Laplacian
comparison inequality for the distance function from a connected component of the
boundary in the weighted case of N ∈ (−∞, 1]. To conclude our comparison the-
orems, we need slightly more complicated calculations than that done by the author
[33], and by Wylie [39]. Under an assumption concerning a subharmonicity of the
distance function from the boundary, we derive our rigidity theorems from studies of
the equality cases in our comparison theorems.

1.1 Setting

We summarize our setting as follows: For n ≥ 2, let M be an n-dimensional, con-
nected complete Riemannian manifold with boundary with Riemannian metric g. The
boundary ∂M is assumed to be smooth. We denote by dM the Riemannian distance on
M induced from the length structure determined by g. Let f : M → R be a smooth
function. For the Riemannian volume measure volg on M , let

m f := e− f volg . (1.2)
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Rigidity Phenomena in Manifolds 3

For N ∈ (−∞,∞], we denote by RicNf the N -weighted Ricci curvature (see (1.1)).
We note that for N1, N2 ∈ (−∞,∞] \ {n} with N1 ≤ N2, if N1, N2 ∈ (n,∞] or
N1, N2 ∈ (−∞, n), then RicN1

f ≤ RicN2
f ; if N1 ∈ (−∞, n) and N2 ∈ (n,∞], then

RicN2
f ≤ RicN1

f . We denote by RicNf,M the infimum of RicNf on the unit tangent bundle
on the interior Int M of M . For x ∈ ∂M , we denote by ux the unit inner normal vector
on ∂M at x . Let Hx denote the mean curvature of ∂M at x defined as the trace of the
shape operator of ux . The f -mean curvature H f,x at x is defined by

H f,x := Hx + g ((∇ f )x , ux ) . (1.3)

We put H f,∂M := inf x∈∂M H f,x . Ourmain subject is a weighted Riemannianmanifold
(M, dM ,m f ) with boundary such that for κ, λ ∈ R and for N ∈ (−∞, 1] we have
RicNf,M ≥ κ and H f,∂M ≥ λ.

1.2 Volume Growth Rigidity

Let ρ∂M : M → R be the distance function from ∂M defined as ρ∂M (p) :=
dM (p, ∂M). For r ∈ (0,∞), we put Br (∂M) := { p ∈ M | ρ∂M (p) ≤ r }. For
x ∈ ∂M , let γx : [0, T ) → M be the geodesic with initial conditions γx (0) = x and
γ ′
x (0) = ux . We define a function τ : ∂M → R ∪ {∞} by

τ(x) := sup{t ∈ (0,∞) | ρ∂M (γx (t)) = t}. (1.4)

We define a function Fx : [0, τ (x)] \ {∞} → (0,∞) by

Fx (t) := e
f (γx (t))− f (x)

n−1 . (1.5)

Notice that if f is constant, then Fx is equal to 1. For κ, λ ∈ R, we say that κ and λ

satisfy the subharmonic condition if

inf
x∈∂M

inf
t∈(0,τ (x))

κ

∫ t

0
F2
x (s) ds ≥ −λ.

We remark that if κ and λ satisfy the subharmonic condition, then subharmonicity of
ρ∂M is derived from RicNf,M ≥ κ and H f,∂M ≥ λ in the case of N ∈ (−∞, 1] (see
Lemma 3.1). Note that if κ, λ ∈ [0,∞), then they satisfy the subharmonic condition.
We denote by h the induced Riemannian metric on ∂M . For the Riemannian volume
measure volh on ∂M induced from h, we put m f,∂M := e− f |∂M volh .

For an interval I , and for a Riemannian manifold M0 with Riemannian metric g0,
let � : I × M0 → R be a positive smooth function. For each x ∈ M0, let �x : I → R

be the function defined as �x (t) := �(t, x). We say that a Riemannian manifold
(I × M0, dt2 + �2

x (t) g0) is a twisted product space. When τ is infinity on ∂M , we
define [0,∞) ×F ∂M as the twisted product space ([0,∞) × ∂M, dt2 + F2

x (t) h).
For the metric neighborhoods of the boundaries, we prove an absolute volume com-

parison theorem of Heintze–Karcher type, and a relative volume comparison theorem
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4 Y. Sakurai

of Bishop–Gromov type (see Sects. 4.1 and 4.2). We obtain rigidity results concerning
the equality cases in those comparison theorems (see Sect. 4.3).

We conclude the following volume growth rigidity theorem:

Theorem 1.1 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that ∂M is compact. Let κ ∈ R and
λ ∈ R satisfy the subharmonic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ ,
and H f,∂M ≥ λ. If we have

lim inf
r→∞

m f (Br (∂M))

r
≥ m f,∂M (∂M), (1.6)

then (M, dM ) is isometric to ([0,∞) ×F ∂M, d[0,∞)×F ∂M ). Moreover, if N ∈
(−∞, 1), then for every x ∈ ∂M the function f ◦γx is constant on [0,∞); in particular,
(M, dM ) is isometric to ([0,∞) × ∂M, d[0,∞)×∂M ).

When κ = 0 and λ = 0, Theorem 1.1 has been proved in the unweighted case in
[32], and in the usual weighted case in [33].

Remark 1.1 We do not know whether Theorem 1.1 can be extended to the weighted
case of N ∈ (1, n).

Remark 1.2 Under the same setting as in Theorem 1.1, we always have the following
inequality (see Lemma 4.1):

lim sup
r→∞

m f (Br (∂M))

r
≤ m f,∂M (∂M). (1.7)

Theorem 1.1 is concerned with rigidity phenomena.

We have the following corollary of Theorem 1.1:

Corollary 1.2 Under the same setting as in Theorem 1.1, if N = 1 and κ = 0, and if
we have (1.6), then there exist a function f0 : [0,∞) → R and a Riemannian metric
h0 on ∂M such that M is isometric to a warped product space ([0,∞) × ∂M, dt2 +
e2

f0(t)
n−1 h0).

1.3 Splitting Theorems

In our setting,we showLaplacian comparison theorems forρ∂M , and study the equality
cases (see Sect. 3).

By using a Laplacian comparison theorem for ρ∂M , and that for Busemann func-
tions, we prove the following splitting theorem:

Theorem 1.3 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function such that sup f (M) < ∞. For N ∈
(−∞, 1] we suppose RicNf,M ≥ 0, and H f,∂M ≥ 0. If for some x0 ∈ ∂M we have
τ(x0) = ∞, then (M, dM ) is isometric to ([0,∞) ×F ∂M, d[0,∞)×F ∂M ). Moreover,
if N ∈ (−∞, 1), then for every x ∈ ∂M the function f ◦ γx is constant on [0,∞); in
particular, (M, dM ) is isometric to ([0,∞) × ∂M, d[0,∞)×∂M ).
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Rigidity Phenomena in Manifolds 5

In the unweighted case, Kasue [13] has proved Theorem 1.3 under the compactness
assumption for the boundary (see also thework of Croke andKleiner [9]). Theorem 1.3
itself has been proved in the unweighted case in [32], and in the usual weighted case
in [33].

Remark 1.3 We do not know whether Theorem 1.3 can be extended to the weighted
case of N ∈ (1, n).

As a corollary of Theorem 1.3, we see the following:

Corollary 1.4 Under the same setting as in Theorem 1.3, if N = 1, and if for some
x0 ∈ ∂M we have τ(x0) = ∞, then there exist a function f0 : [0,∞) → R and
a Riemannian metric h0 on ∂M such that M is isometric to ([0,∞) × ∂M, dt2 +
e2

f0(t)
n−1 h0).

In Theorem 1.3, by applying the Wylie splitting theorem in [39] to the boundary,
we obtain a multi-splitting theorem (see Sect. 5.3). We also generalize a splitting
theorem studied in [13] (and [9,12]) for the case where boundaries are disconnected
(see Sect. 5.4).

1.4 Eigenvalue Rigidity

For p ∈ [1,∞), the (1, p)-Sobolev space W 1,p
0 (M,m f ) on (M,m f ) with compact

support is defined as the completion of the set of all smooth functions on M whose
support is compact and contained in Int M with respect to the standard (1, p)-Sobolev
norm. We denote by ‖ ·‖ the standard norm induced from g, and by div the divergence
with respect to g. For p ∈ [1,∞), the ( f, p)-Laplacian	 f,p ϕ for ϕ ∈ W 1,p

0 (M,m f )

is defined by

	 f,p ϕ := −e f div
(
e− f ‖∇ϕ‖p−2 ∇ϕ

)

as a distribution on W 1,p
0 (M,m f ). A real number μ is said to be an ( f, p)-Dirichlet

eigenvalue for 	 f,p on M if there exists ϕ ∈ W 1,p
0 (M,m f ) \ {0} such that 	 f,pϕ =

μ|ϕ|p−2 ϕ holds on Int M in a distribution sense on W 1,p
0 (M,m f ). For p ∈ [1,∞),

the Rayleigh quotient R f,p(ϕ) for ϕ ∈ W 1,p
0 (M,m f ) \ {0} is defined as

R f,p(ϕ) :=
∫
M ‖∇ϕ‖p d m f∫
M |ϕ|p d m f

.

We put μ f,1,p(M) := infϕ R f,p(ϕ), where the infimum is taken over all non-zero

functions in W 1,p
0 (M,m f ). The value μ f,1,2(M) is equal to the infimum of the spec-

trum of 	 f,2 on (M,m f ). If M is compact, and if p ∈ (1,∞), then μ f,1,p(M) is
equal to the infimum of the set of all ( f, p)-Dirichlet eigenvalues on M .

Let p ∈ (1,∞). For D ∈ (0,∞), let μp,D be the positive minimum real number
μ such that there exists a function ϕ : [0, D] → R satisfying

(
|ϕ′(t)|p−2ϕ′(t)

)′ + μ |ϕ(t)|p−2ϕ(t) = 0, ϕ(0) = 0, ϕ′(D) = 0. (1.8)
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6 Y. Sakurai

In the case where p = 2, we see μ2,D = π2(2D)−2.
For a positive number D ∈ (0,∞), and for a connected component ∂M1 of ∂M , we

denote by [0, D] ×F ∂M1 the twisted product space ([0, D] × ∂M1, dt2 + F2
x (t) h),

where for every x ∈ ∂M1 the function Fx : [0, D] → (0,∞) is defined as (1.5). The
inscribed radius of M is defined as

D(M, ∂M) := sup
p∈M

ρ∂M (p).

Suppose that M is compact. We say that the metric space (M, dM ) is an F-model
space if M is isometric to either (1) for a connected component ∂M1 of ∂M , the
twisted product space [0, 2D(M, ∂M)] ×F ∂M1; or (2) for an involutive isometry σ

of ∂M without fixed points, the quotient space ([0, 2D(M, ∂M)]×F ∂M)/Gσ , where
Gσ is the isometry group on [0, 2D(M, ∂M)] ×F ∂M of the identity and the involute
isometry σ̂ defined by σ̂ (t, x) := (2D(M, ∂M)− t, σ (x)). If (M, dM ) is an F-model
space, and if for every x ∈ ∂M the function Fx is equal to 1 on [0, D(M, ∂M)],
then we call the F-model space (M, dM ) an equational model space. The notion of
the equational model spaces coincides with that of the (0, 0)-equational model spaces
introduced in [33].

We prove the following rigidity theorem for μ f,1,p:

Theorem 1.5 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that M is compact. Let p ∈ (1,∞),
and let κ ∈ R and λ ∈ R satisfy the subharmonic condition. For N ∈ (−∞, 1] we
suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. For D ∈ (0,∞) we assume D(M, ∂M) ≤ D.
Then

μ f,1,p(M) ≥ μp,D . (1.9)

If the equality in (1.9) holds, then D(M, ∂M) = D, and the metric space (M, dM ) is
an F-model space. Moreover, if N ∈ (−∞, 1), then for every x ∈ ∂M the function
f ◦ γx is constant on [0, D]; in particular, (M, dM ) is an equational model space.

In the unweighted case, Li andYau [18] have obtained the estimate (1.9), and Kasue
[14] has proved Theorem 1.5 when p = 2, κ = 0, and λ = 0. In [33], the author has
proved Theorem 1.5 in the usual weighted case when κ = 0 and λ = 0.

Remark 1.4 We do not know whether Theorem 1.5 can be extended to the weighted
case of N ∈ (1, n).

Suppose that M is compact. We say that the metric space (M, dM ) is a warped
model space if there exist a function f0 : [0, 2D(M, ∂M)] → R and a Riemannian
metric h0 on ∂M such that M is isometric to either (1) for a connected component

∂M1 of ∂M , the warped product space ([0, 2D(M, ∂M)] × ∂M1, dt2 + e2
f0(t)
n−1 h0);

or (2) for an involutive isometry σ of ∂M without fixed points, the quotient space

([0, 2D(M, ∂M)] × ∂M, dt2 + e2
f0(t)
n−1 h0)/Gσ , where Gσ is the isometry group on

([0, 2D(M, ∂M)] × ∂M, dt2 + e2
f0(t)
n−1 h0) of the identity and the involute isometry σ̂

defined as σ̂ (t, x) := (2D(M, ∂M) − t, σ (x)).
We obtain the following corollary of Theorem 1.5:
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Rigidity Phenomena in Manifolds 7

Corollary 1.6 Under the same setting as in Theorem 1.5, if N = 1 and κ = 0, and if
the equality in (1.9) holds, then the metric space (M, dM ) is a warped model space.

1.5 Organization

In Sect. 2, we prepare some notations and recall the basic facts for Riemannian man-
ifolds with boundary. In Sect. 3, we show Laplacian comparison results for ρ∂M . In
Sect. 4, we show volume comparison results, and conclude Theorem 1.1 and Corol-
lary 1.2. In Sect. 5, we prove Theorem 1.3 and Corollary 1.4, and discuss its variants.
In Sect. 6, we prove Theorem 1.5 and Corollary 1.6. We also obtain an explicit lower
bound for μ f,1,p (see Sect. 6.3).

2 Preliminaries

We refer to [31] for the basics of Riemannian manifolds with boundary (cf. Sect. 2 in
[32], and in [33]).

2.1 Riemannian Manifolds with Boundary

For n ≥ 2, let M be an n-dimensional, connected Riemannian manifold with (smooth)
boundary with Riemannian metric g. For a point p ∈ Int M , let TpM be the tangent
space at p on M , and let UpM be the unit tangent sphere at p on M . We denote by
‖ ·‖ the standard norm induced from g. If v1, . . . , vk ∈ TpM are linearly independent,
then it holds that ‖v1 ∧ · · · ∧ vk‖ = √

det(g(vi , v j )).
Let dM be the Riemannian distance on M induced from the length structure deter-

mined by g. For an interval I , we say that a curve γ : I → M is a normal minimal
geodesic if for all s, t ∈ I we have dM (γ (s), γ (t)) = |s − t |, and γ is a normal
geodesic if for each t ∈ I there exists an interval J ⊂ I with t ∈ J such that γ |J is a
normal minimal geodesic. If M is complete with respect to dM , then the Hopf–Rinow
theorem for length spaces (see, e.g., Theorem 2.5.23 in [5]) tells us that the metric
space (M, dM ) is a proper, geodesic space, namely all closed bounded subsets of M
are compact, and for every pair of points in M there exists a normal minimal geodesic
connecting them.

For i = 1, 2, let Mi be connected Riemannian manifolds with boundary with
Riemannian metric gi . For each i , the boundary ∂Mi carries the induced Riemannian
metric hi . We say that a homeomorphism � : M1 → M2 is a Riemannian isometry
with boundary from M1 to M2 if � satisfies the following conditions:

(1) �|Int M1 : Int M1 → Int M2 is smooth, and (�|Int M1)
∗(g2) = g1;

(2) �|∂M1 : ∂M1 → ∂M2 is smooth, and (�|∂M1)
∗(h2) = h1.

If � : M1 → M2 is a Riemannian isometry with boundary, then the inverse �−1

is also a Riemannian isometry with boundary. Notice that there exists a Riemannian
isometry with boundary from M1 to M2 if and only if the metric space (M1, dM1) is
isometric to (M2, dM2) (see, e.g., Sect. 2 in [32]).
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8 Y. Sakurai

2.2 Jacobi Fields Orthogonal to the Boundary

Let M be a connected Riemannian manifold with boundary with Riemannian metric
g. For a point x ∈ ∂M , and for the tangent space Tx∂M at x on ∂M , let T⊥

x ∂M be the
orthogonal complement of Tx∂M in the tangent space at x on M . Take u ∈ T⊥

x ∂M .
For the second fundamental form S of ∂M , let Au : Tx∂M → Tx∂M be the shape
operator for u defined as

g(Auv,w) := g(S(v,w), u).

We denote by ux the unit inner normal vector at x . The mean curvature Hx at x is
defined as Hx := trace Aux . We denote by γx : [0, T ) → M the normal geodesic with
initial conditions γx (0) = x and γ ′

x (0) = ux . We say that a Jacobi field Y along γx is
a ∂M-Jacobi field if Y satisfies the following initial conditions:

Y (0) ∈ Tx∂M, Y ′(0) + Aux Y (0) ∈ T⊥
x ∂M.

We say that γx (t0) is a conjugate point of ∂M along γx if there exists a non-zero
∂M-Jacobi field Y along γx with Y (t0) = 0. We denote by τ1(x) the first conjugate
value for ∂M along γx . It is well known that for all x ∈ ∂M and t > τ1(x), we have
t > ρ∂M (γx (t)).

For the normal tangent bundle T⊥∂M := ⋃
x∈∂M T⊥

x ∂M of ∂M , let 0(T⊥∂M)

be the zero-section
⋃

x∈∂M { 0x ∈ T⊥
x ∂M } of T⊥∂M . On an open neighborhood

of 0(T⊥∂M) in T⊥∂M , the normal exponential map exp⊥ of ∂M is defined as
exp⊥(x, u) := γx (‖u‖) for x ∈ ∂M and u ∈ T⊥

x ∂M .
For x ∈ ∂M and t ∈ [0, τ1(x)), we denote by θ(t, x) the absolute value of the

Jacobian of exp⊥ at (x, tux ) ∈ T⊥∂M . For each x ∈ ∂M , we choose an orthonormal
basis {ex,i }n−1

i=1 of Tx∂M . For each i , let Yx,i be the ∂M-Jacobi field along γx with
initial conditions Yx,i (0) = ex,i and Y ′

x,i (0) = −Aux ex,i . Note that for all x ∈ ∂M and
t ∈ [0, τ1(x)), we have θ(t, x) = ‖Yx,1(t) ∧ · · · ∧ Yx,n−1(t)‖. This does not depend
on the choice of the orthonormal bases.

2.3 Cut Locus for the Boundary

We recall the basic properties of the cut locus for the boundary. The basic properties
seem to be well known. We refer to [32] for the proofs.

Let M be a connected complete Riemannian manifold with boundary with Rie-
mannian metric g. For p ∈ M , we call x ∈ ∂M a foot point on ∂M of p if
dM (p, x) = ρ∂M (p). Since (M, dM ) is proper, every point in M has at least one
foot point on ∂M . For p ∈ Int M , let x ∈ ∂M be a foot point on ∂M of p. Then
there exists a unique normal minimal geodesic γ : [0, l] → M from x to p such that
γ = γx |[0,l], where l = ρ∂M (p). In particular, γ ′(0) = ux and γ |(0,l] lies in Int M .

Let τ : ∂M → R ∪ {∞} be the function defined as (1.4). By the property of τ1,
for all x ∈ ∂M we have 0 < τ(x) ≤ τ1(x). For the inscribed radius D(M, ∂M) of

123



Rigidity Phenomena in Manifolds 9

M , from the definition of τ , we have D(M, ∂M) = supx∈∂M τ(x). The function τ is
continuous on ∂M .

The continuity of τ implies the following (see, e.g., Sect. 3 in [32]):

Lemma 2.1 Suppose that ∂M is compact. Then D(M, ∂M) is finite if and only if M
is compact.

We put

T D∂M :=
⋃

x∈∂M

{ t ux ∈ T⊥
x ∂M | t ∈ [0, τ (x)) },

TCut ∂M :=
⋃

x∈∂M

{ τ(x) ux ∈ T⊥
x ∂M | τ(x) < ∞},

and define D∂M := exp⊥(T D∂M ) and Cut ∂M := exp⊥(TCut ∂M). We call Cut ∂M
the cut locus for the boundary ∂M . From the continuity of τ , the set Cut ∂M is a null
set of M . Furthermore, we have

Int M = (D∂M \ ∂M) � Cut ∂M, M = D∂M � Cut ∂M.

This implies that if Cut ∂M = ∅, then ∂M is connected. The set T D∂M \ 0(T⊥∂M)

is a maximal domain in T⊥∂M on which exp⊥ is regular and injective.
In [33], we have already known the following:

Lemma 2.2 If there exists a connected component ∂M0 of ∂M such that for all x ∈
∂M0 we have τ(x) = ∞, then ∂M is connected and Cut ∂M = ∅.

The function ρ∂M is smooth on Int M \ Cut ∂M . For each p ∈ Int M \ Cut ∂M ,
the gradient vector ∇ρ∂M (p) of ρ∂M at p is given by ∇ρ∂M (p) = γ ′(l), where
γ : [0, l] → M is the normal minimal geodesic from the foot point on ∂M of p to p.

For � ⊂ M , we denote by �̄ the closure of � in M , and by ∂� the boundary of �

in M . For a domain � in M such that ∂� is a smooth hypersurface in M , we denote
by vol∂� the canonical Riemannian volume measure on ∂�.

We have the following fact to avoid the cut locus for the boundary that has been
stated in [33] (see Lemma 2.6 in [33]):

Lemma 2.3 Let � be a domain in M such that ∂� is a smooth hypersurface in
M. Then there exists a sequence {�k}k∈N of closed subsets of �̄ such that for every
k ∈ N, the set ∂�k is a smooth hypersurface in M except for a null set in (∂�, vol∂�)

satisfying the following properties:

(1) for all k1, k2 ∈ N with k1 < k2, we have �k1 ⊂ �k2 ;
(2) �̄ \ Cut ∂M = ⋃

k∈N �k;
(3) for every k ∈ N, and for almost every point p ∈ ∂�k ∩ ∂� in (∂�, vol∂�), there

exists the unit outer normal vector for �k at p that coincides with the unit outer
normal vector on ∂� for � at p;

(4) for every k ∈ N, on ∂�k \ ∂�, there exists the unit outer normal vector field νk
for �k such that g(νk,∇ρ∂M ) ≥ 0.
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10 Y. Sakurai

Moreover, if �̄ = M, then for every k ∈ N, the set ∂�k is a smooth hypersurface in
M, and satisfies ∂�k ∩ ∂M = ∂M.

As noticed in [33], for the cut locus for a single point, we have known a similar fact
to Lemma 2.3 (see, e.g., Theorem 4.1 in [7]). One can prove Lemma 2.3 by a similar
method to the case of the cut locus for a single point.

2.4 Busemann Functions and Asymptotes

Let M be a connected complete Riemannian manifold with boundary. A normal
geodesic γ : [0,∞) → M is said to be a ray if for all s, t ∈ [0,∞) it holds that
dM (γ (s), γ (t)) = |s − t |. For a ray γ : [0,∞) → M , the Busemann function
bγ : M → R of γ is defined as

bγ (p) := lim
t→∞(t − dM (p, γ (t))).

Take a ray γ : [0,∞) → M and a point p ∈ Int M , and choose a sequence {ti }
with ti → ∞. For each i , we take a normal minimal geodesic γi : [0, li ] → M
from p to γ (ti ). Since γ is a ray, it follows that li → ∞. Take a sequence {Tj } with
Tj → ∞. Using the fact that M is proper, we take a subsequence {γ1,i } of {γi },
and a normal minimal geodesic γp,1 : [0, T1] → M from p to γp,1(T1) such that
γ1,i |[0,T1] uniformly converges to γp,1. In this manner, take a subsequence {γ2,i } of
{γ1,i } and a normal minimal geodesic γp,2 : [0, T2] → M from p to γp,2(T2) such
that γ2,i |[0,T2] uniformly converges to γp,2, where γp,2|[0,T1] = γp,1. By means of a
diagonal argument, we obtain a subsequence {γk} of {γi } and a ray γp in M such that
for every t ∈ (0,∞) we have γk(t) → γp(t) as k → ∞. We call such a ray γp an
asymptote for γ from p.

The following lemmas have been shown in [32].

Lemma 2.4 Suppose that for some x ∈ ∂M we have τ(x) = ∞. Take p ∈ Int M. If
bγx (p) = ρ∂M (p), then p /∈ Cut ∂M. Moreover, for the unique foot point y on ∂M of
p, we have τ(y) = ∞.

Lemma 2.5 Suppose that for some x ∈ ∂M we have τ(x) = ∞. For l ∈ (0,∞), put
p := γx (l). Then there exists ε ∈ (0,∞) such that for all q ∈ Bε(p), all asymptotes
for the ray γx from q lie in Int M.

2.5 Weighted Riemannian Manifolds with Boundary

Let M be a connected complete Riemannian manifold with boundary, and let f :
M → R be a smooth function. For a smooth function ϕ on M , theweighted Laplacian
	 f ϕ forϕ is defined by

	 f ϕ := 	ϕ + g(∇ f,∇ϕ),

where 	ϕ is the Laplacian for ϕ defined as the minus of the trace of its Hessian. Note
that 	 f coincides with the ( f, 2)-Laplacian 	 f,2.
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It seems that the following formula of Bochner type is well known (see [19], and
Chap. 14 in [37]).

Proposition 2.6 [19] For every smooth function ϕ on M, we have

−1

2
	 f ‖∇ϕ‖2 = Ric∞

f (∇ϕ) + ‖Hessϕ‖2 − g
(∇	 f ϕ,∇ϕ

)
,

where ‖Hessϕ‖ is the Hilbert–Schmidt norm of Hessϕ.

Notice that for every x ∈ ∂M , and for every t ∈ (0, τ (x)), the value 	ρ∂M (γx (t))
is equal to the mean curvature Hx,t of the t-level set of ρ∂M at γx (t) toward ∇ρ∂M . In
our weighted case, by the definition of the weighted Laplacian, we see the following:

Lemma 2.7 Take x ∈ ∂M. Then for every t ∈ (0, τ (x)), the value 	 f ρ∂M (γx (t)) is
equal to the f -mean curvature H f,x,t of the t-level set of ρ∂M at γx (t) toward ∇ρ∂M

defined as
H f,x,t := Hx,t + g(∇ f,∇ρ∂M )(γx (t)).

In particular, 	 f ρ∂M (γx (t)) tends to H f,x as t → 0, where H f,x is the f -mean
curvature of ∂M at x defined as (1.3).

For x ∈ ∂M and t ∈ [0, τ (x)), we put

θ f (t, x) := e− f (γx (t)) θ(t, x), (2.1)

where θ(t, x) is the absolute value of the Jacobian of the map exp⊥ at (x, tux ) ∈
T⊥∂M . For all x ∈ ∂M and t ∈ (0, τ (x)), it holds that

	 f ρ∂M (γx (t)) = −(log θ(t, x))′ + f (γx (t))
′ = −θ ′

f (t, x)

θ f (t, x)
. (2.2)

Let θ̄ f : [0,∞) × ∂M → R be a function defined by

θ̄ f (t, x) :=
{

θ f (t, x) if t < τ(x),

0 if t ≥ τ(x).
(2.3)

The following has been shown in [33]:

Lemma 2.8 If ∂M is compact, then for all r ∈ (0,∞)

m f (Br (∂M)) =
∫

∂M

∫ r

0
θ̄ f (t, x) dt d volh,

where m f denotes the weighted measure on M defined as (1.2), and h denotes the
induced Riemannian metric on ∂M.
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2.6 Twisted and Warped Product Spaces

In [39], for the proof of a splitting theorem of Cheeger–Gromoll type, Wylie has
proved that a twisted product space over R becomes a warped product space under
a non-negativity of the 1-weighted Ricci curvature (see Proposition 2.2 in [39]). The
proof is based on a pointwise calculation, and the same holds true for a twisted product
space over an arbitrary interval.

From the argument in the proof of Proposition 2.2 in [39], we can derive the fol-
lowing in our setting:

Proposition 2.9 [39] Let M be a Riemannian manifold with boundary, and let f :
M → R be a smooth function. Suppose that there exist an interval I in the form of
[0,∞) or [0, D] for some positive number D, and a connected component ∂M1 of
∂M such that M is isometric to a twisted product space I ×F ∂M1. If Ric1f,M ≥ 0,
then there exist functions f0 : I → R and f1 : ∂M1 → R such that for all t ∈ I
and x ∈ ∂M1 we have f (γx (t)) = f0(t) + f1(x); in particular, M is isometric to a

warped product space (I × ∂M1, dt2 + e
2 f0(t)
n−1 h0), where for the induced metric h on

∂M1 we put h0 := e2
f1−( f |∂M1

)

n−1 h.

Notice that Proposition 2.9 has been implicitly used in the proof of Theorem 5.1 in
[39].

3 Laplacian Comparisons

In this section, let M be an n-dimensional, connected complete Riemannian manifold
with boundary with Riemannian metric g, and let f : M → R be a smooth function.

3.1 Basic Comparisons

Recall that for x ∈ ∂M , the function Fx : [0, τ (x)] \ {∞} → (0,∞) is defined as
(1.5). For κ, λ ∈ R, we define a function Fκ,λ,x : [0, τ (x)] \ {∞} → R by

Fκ,λ,x (t) := κ

∫ t

0
F2
x (s) ds + λ. (3.1)

Note that if κ and λ satisfy the subharmonic condition, then for every x ∈ ∂M the
function Fκ,λ,x is non-negative.

We have the following Laplacian comparison inequality for ρ∂M :

Lemma 3.1 Take x ∈ ∂M. For κ, λ ∈ R and for N ∈ (−∞, 1] we suppose that
for all t ∈ (0, τ (x)) we have RicNf (γ ′

x (t)) ≥ κ , and suppose H f,x ≥ λ. Then for all
t ∈ (0, τ (x)) we have

	 f ρ∂M (γx (t)) ≥ F−2
x (t) Fκ,λ,x (t). (3.2)
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In particular, if κ and λ satisfy the subharmonic condition, then for all t ∈ (0, τ (x))
we have 	 f ρ∂M (γx (t)) ≥ 0.

Proof The function ρ∂M ◦ γx is smooth on (0, τ (x)). We put h f,x := (
	 f ρ∂M

) ◦ γx .
We first show that for all s ∈ (0, τ (x))

(
F2
x (s) h f,x (s) − κ

∫ s

0
F2
x (u) du

)′
≥ 0. (3.3)

Fix s ∈ (0, τ (x)), and put fx := f ◦ γx . We apply Proposition 2.6 to the function
ρ∂M . Since ‖∇ρ∂M‖ = 1 along γx |(0,τ (x)), it holds that

0 = Ric∞
f (γ ′

x (s)) + ‖Hess ρ∂M‖2 (γx (s)) − g
(∇	 f ρ∂M ,∇ρ∂M

)
(γx (s))

=
(
RicNf (γ ′

x (s)) + f ′
x (s)

2

N − n

)
+ ‖Hess ρ∂M‖2 (γx (s)) − h′

f,x (s).

From the assumption RicNf (γ ′
x (s)) ≥ κ , we deduce

0 ≥ κ + f ′
x (s)

2

N − n
+ ‖Hess ρ∂M‖2 (γx (s)) − h′

f,x (s). (3.4)

By the Cauchy–Schwarz inequality, we have

‖Hess ρ∂M‖2 (γx (s)) ≥ (	ρ∂M (γx (s)))2

n − 1
=

(
h f,x (s) − f ′

x (s)
)2

n − 1
. (3.5)

Combining (3.4) and (3.5), we see

0 ≥ κ + f ′
x (s)

2

N − n
+

(
h f,x (s) − f ′

x (s)
)2

n − 1
− h′

f,x (s)

= κ + (1 − N ) f ′
x (s)

2

(n − 1) (n − N )
+ h f,x (s)2

n − 1
−

(
2h f,x (s) f ′

x (s)

n − 1
+ h′

f,x (s)

)
. (3.6)

In the right-hand side of the Eq. (3.6), by N ≤ 1, the second term is non-negative.
The third one is non-negative. The last one satisfies

2h f,x (s) f ′
x (s)

n − 1
+ h′

f,x (s) = e− 2 fx (s)
n−1

(
e
2 fx (s)
n−1 h f,x (s)

)′

= F−2
x (s)

(
F2
x (s) h f,x (s)

)′
.

Hence, we have 0 ≥ κ − F−2
x (s)

(
F2
x (s) h f,x (s)

)′
. This implies (3.3).
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14 Y. Sakurai

We see that Fx (s) tends to 1 as s → 0. Furthermore, by Lemma 2.7, h f,x (s) tends
to H f,x as s → 0. It follows that

F2
x (s) h f,x (s) − κ

∫ s

0
F2
x (u) du → H f,x (3.7)

as s → 0. By (3.3) and (3.7), for all s, t ∈ (0, τ (x)) with s ≤ t

F2
x (t) h f,x (t) − κ

∫ t

0
F2
x (u) du

≥ F2
x (s) h f,x (s) − κ

∫ s

0
F2
x (u) du ≥ H f,x ≥ λ. (3.8)

Thus, we arrive at (3.2). ��
Remark 3.1 Under the same setting as in Lemma 3.1, Wylie [39] has shown a Lapla-
cian comparison inequality for the distance function from a connected component of
the boundary that is similar to (3.2) when κ = 0 and λ = 0 (see the proof of Theorem
5.1 in [39]).

Remark 3.2 Assume that for some t0 ∈ (0, τ (x)) the equality in (3.2) holds. Then
(3.8) implies that F2

x h f,x = Fκ,λ,x and
(
F2
x h f,x

)′ = κ F2
x on (0, t0). Hence, for

every t ∈ (0, t0), the equality in the Cauchy–Schwarz inequality in (3.5) holds; in
particular, there exists a function ϕ on γx ((0, t0)) such that at each point on γx ((0, t0))
we have Hess ρ∂M = ϕ g on the orthogonal complement of ∇ρ∂M . Furthermore, for
every t ∈ (0, t0), the second term and the third one in the right-hand side of (3.6) are
equal to 0; in particular, (1 − N )( f ′

x )
2 = 0 on (0, t0).

From Lemma 3.1, we derive the following:

Lemma 3.2 Take x ∈ ∂M. For κ, λ ∈ R and for N ∈ (−∞, 1] we suppose that
for all t ∈ (0, τ (x)) we have RicNf (γ ′

x (t)) ≥ κ , and suppose H f,x ≥ λ. Then for all
s, t ∈ [0, τ (x)) with s ≤ t we have

θ f (t, x) ≤ e− ∫ t
s F−2

x (u) Fκ,λ,x (u) du θ f (s, x),

where θ f (t, x) is defined as (2.1). In particular, if κ and λ satisfy the subharmonic
condition, then for all s, t ∈ [0, τ (x)) with s ≤ t we have θ f (t, x) ≤ θ f (s, x).

Proof By (2.2) and Lemma 3.1, for all t ∈ (0, τ (x))

d

dt
log

e− ∫ t
0 F−2

x (u)Fκ,λ,x (u) du

θ f (t, x)
= −F−2

x (t)Fκ,λ,x (t) + 	 f ρ∂M (γx (t)) ≥ 0.

It follows that for all s, t ∈ [0, τ (x)) with s ≤ t

θ f (t, x)

θ f (s, x)
≤ e− ∫ t

0 F−2
x (u)Fκ,λ,x (u) du

e− ∫ s
0 F−2

x (u)Fκ,λ,x (u) du
.
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Therefore, we have the lemma. ��

3.2 Equality Cases

We recall the following radial curvature equation (see, e.g., Theorem 2 in [29]):

Lemma 3.3 Letρ be a smooth function defined on adomain in M such that ‖∇ρ‖ = 1.
Let X be a parallel vector field along an integral curve of ∇ρ that is orthogonal to
∇ρ. Then we have

g(R(X,∇ρ)∇ρ, X) = g(∇∇ρ A∇ρX, X) − g(A∇ρ A∇ρX, X),

where R is the curvature tensor induced from g, and A∇ρ is the shape operator of
the level set of ρ toward ∇ρ. In particular, if there exists a function ϕ defined on the
domain of the integral curve such that A∇ρX = −ϕ X, then we have

g(R(X,∇ρ)∇ρ, X) = −(ϕ′ + ϕ2)‖X‖2.

For the equality case of Lemma 3.1, we have the following:

Lemma 3.4 Take x ∈ ∂M. For κ, λ ∈ R and for N ∈ (−∞, 1] we suppose that
for all t ∈ (0, τ (x)) we have RicNf (γ ′

x (t)) ≥ κ , and suppose H f,x ≥ λ. Choose an

orthonormal basis {ex,i }n−1
i=1 of Tx∂M, and let {Yx,i }n−1

i=1 be the ∂M-Jacobi fields along
γx with initial conditions Yx,i (0) = ex,i and Y ′

x,i (0) = −Aux ex,i . Assume that for
some t0 ∈ (0, τ (x)) the equality in (3.2) holds. Then κ = 0 and λ = 0, and for all i
we have Yx,i = Fx Ex,i on [0, t0], where {Ex,i }n−1

i=1 are the parallel vector fields along
γx with initial condition Ex,i (0) = ex,i . Moreover, if N ∈ (−∞, 1), then f ◦ γx is
constant on [0, t0]; in particular, Yx,i = Ex,i .

Proof By the equality assumption, there exists a function ϕ on the set γx ((0, t0))
such that at each point on γx ((0, t0)) we have Hess ρ∂M = ϕ g on the orthogonal
complement of ∇ρ∂M (see Remark 3.2). Put ϕx := ϕ ◦ γx . For each i , it holds that

g(A∇ρ∂M Ex,i , Ex,i ) = −Hess ρ∂M (Ex,i , Ex,i ) = −ϕx .

It follows that A∇ρ∂M Ex,i = −ϕx Ex,i . From Lemma 3.3, we derive

R(Ex,i ,∇ρ∂M )∇ρ∂M = −(ϕ′
x + ϕ2

x )Ex,i . (3.9)

Put fx := f ◦ γx and h f,x := (
	 f ρ∂M

) ◦ γx . By the equality assumption, we
have F2

x h f,x = Fκ,λ,x on [0, t0] (see Remark 3.2). Fix t ∈ [0, t0]. Since h f,x (t) =
F−2
x (t) Fκ,λ,x (t), we have

	ρ∂M (γx (t)) = − f ′
x (t) + F−2

x (t) Fκ,λ,x (t).
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16 Y. Sakurai

On the other hand, from Hess ρ∂M = ϕ g, we deduce 	ρ∂M (γx (t)) = −(n−1)ϕx (t).
Hence, ϕx (t) is equal to

(n − 1)−1
(
fx (t) − f (x) −

∫ t

0
F−2
x (s) Fκ,λ,x (s) ds

)′
.

Now, define a function Fx : [0, t0] → (0,∞) by

Fx (t) := e
∫ t
0 ϕx (s) ds = e−

∫ t
0 F−2

x (s)Fκ,λ,x (s) ds
n−1 Fx (t).

Note that if κ = 0 and λ = 0, thenFx = Fx . By (3.9), a vector field Ỹx,i along γx |[0,t0]
defined by Ỹx,i := Fx Ex,i is a ∂M-Jacobi field along γx |[0,t0] with initial conditions
Yx,i (0) = ex,i and Y ′

x,i (0) = −Aux ex,i . Therefore, Yx,i coincides with Ỹx,i on [0, t0].
From (3.9) and Yx,i = Fx Ex,i , we derive R(Ex,i ,∇ρ∂M )∇ρ∂M = −F ′′

x F−1
x Ex,i .

This implies that for each t ∈ (0, t0)

Ricg(γ
′
x (t)) = −(n − 1)F ′′

x (t)F−1
x (t)

= − f ′′
x (t) − f ′

x (t)
2

n − 1
+ κ − F−4

x (t) F2
κ,λ,x (t)

n − 1
;

in particular, Ric1f (γ
′
x (t)) = κ − (n − 1)−1F−4

x (t)F2
κ,λ,x (t). By the monotonicity of

RicNf with respect to N , we see

κ ≤ RicNf (γ ′
x (t)) ≤ Ric1f (γ

′
x (t)) = κ − F−4

x (t) F2
κ,λ,x (t)

n − 1
,

and hence Fκ,λ,x (t) = 0. We obtain κ = 0 and λ = 0, and Yx,i = Fx Ex,i .
Now, we have (1 − N )( f ′

x )
2 = 0 on [0, t0] (see Remark 3.2). If N is smaller than

1, then f ′
x = 0 on [0, t0]; in particular, fx is constant on [0, t0]. This completes the

proof. ��
By Lemma 3.4, we have the following:

Lemma 3.5 Take x ∈ ∂M. Let κ ∈ R and λ ∈ R satisfy the subharmonic condition.
For N ∈ (−∞, 1] we suppose that for all t ∈ (0, τ (x)) we have RicNf (γ ′

x (t)) ≥ κ ,

and suppose H f,x ≥ λ. We choose an orthonormal basis {ex,i }n−1
i=1 of Tx∂M, and let

{Yx,i }n−1
i=1 be the ∂M-Jacobi fields along γx with initial conditions Yx,i (0) = ex,i and

Y ′
x,i (0) = −Aux ex,i . Assume that for some t0 ∈ (0, τ (x)) we have 	 f ρ∂M (γx (t0)) =

0. Then κ = 0 and λ = 0, and for all i we have Yx,i = Fx Ex,i on [0, t0], where
{Ex,i }n−1

i=1 are the parallel vector fields along γx with initial condition Ex,i (0) = ex,i .
Moreover, if N ∈ (−∞, 1), then f ◦γx is constant on [0, t0]; in particular, Yx,i = Ex,i .

Proof The assumption 	 f ρ∂M (γx (t0)) = 0 implies that the equality in (3.2) holds.
Lemma 3.4 leads to the lemma. ��
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3.3 Distributions

From Lemma 3.1, we derive the following:

Lemma 3.6 Take x ∈ ∂M. Let p ∈ (1,∞), and let κ ∈ R and λ ∈ R satisfy the
subharmonic condition. For N ∈ (−∞, 1] we suppose that for all t ∈ (0, τ (x)) we
have RicNf (γ ′

x (t)) ≥ κ , and suppose H f,x ≥ λ. Let ϕ : [0,∞) → R be a monotone
increasing smooth function. Then for all t ∈ (0, τ (x))

	 f,p(ϕ ◦ ρ∂M )(γx (t)) ≥ −
((

ϕ′)p−1
)′

(t). (3.10)

Proof For all t ∈ (0, τ (x)) we see

	 f,p (ϕ ◦ ρ∂M )(γx (t)) = −
((

ϕ′)p−1
)′

(t) + 	 f,2 ρ∂M (γx (t)) ϕ′(t)p−1.

This together with Lemma 3.1 implies (3.10). ��
Remark 3.3 The equality case in Lemma 3.6 corresponds to that in Lemma 3.1 (see
Lemma 3.5).

From Lemma 3.6, we deduce the following:

Proposition 3.7 Let p ∈ (1,∞), and let κ ∈ R and λ ∈ R satisfy the subharmonic
condition. For N ∈ (−∞, 1]we supposeRicNf,M ≥ κ , and H f,∂M ≥ λ. For amonotone
increasing smooth function ϕ : [0,∞) → R, we put � := ϕ ◦ ρ∂M. Then

	 f,p � ≥ −
((

ϕ′)p−1
)′ ◦ ρ∂M

in a distribution sense on M. More precisely, for every non-negative smooth function
ψ : M → R whose support is compact and contained in Int M, we have

∫
M

‖∇�‖p−2g (∇ψ,∇�) d m f ≥
∫
M

ψ

(
−

((
ϕ′)p−1

)′ ◦ ρ∂M

)
d m f . (3.11)

Proof By Lemma 2.3, there exists a sequence {�k}k∈N of closed subsets of M such
that for every k, the set ∂�k is a smooth hypersurface in M satisfying the following:
(1) for all k1, k2 ∈ N with k1 < k2, we have �k1 ⊂ �k2 ; (2) M \ Cut ∂M = ⋃

k �k ;
(3) ∂�k ∩ ∂M = ∂M for all k; (4) for each k, on ∂�k \ ∂M , there exists the unit outer
normal vector field νk for �k with g(νk,∇ρ∂M ) ≥ 0. For the canonical Riemannian
volume measure volk on ∂�k \ ∂M , put m f,k := e− f |∂�k\∂M volk . Let ψ : M → R

be a non-negative smooth function whose support is compact and contained in Int M .
By the Green formula, and by ∂�k ∩ ∂M = ∂M ,

∫
�k

‖∇�‖p−2g (∇ψ,∇�) d m f

=
∫

�k

ψ 	 f,p� d m f +
∫

∂�k\∂M
‖∇�‖p−2 ψ g (νk,∇�) d m f,k .
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18 Y. Sakurai

From Lemma 3.6 and g(νk,∇ρ∂M ) ≥ 0, we derive

∫
�k

‖∇�‖p−2g (∇ψ,∇�) d m f ≥
∫

�k

ψ

(
−

((
ϕ′)p−1

)′ ◦ ρ∂M

)
d m f .

Letting k → ∞, we have the proposition. ��
Remark 3.4 In Proposition 3.7, we assume that the equality in (3.11) holds. Then for
every x ∈ ∂M , and for every t ∈ (0, τ (x)), the equality in (3.10) also holds. The
equality case in Proposition 3.7 corresponds to that in Lemma 3.6 (see Remark 3.3).

Remark 3.5 Perales [28] has shown aLaplacian comparison inequality for the distance
function from the boundary in a barrier sense for manifolds with boundary of non-
negative Ricci curvature. We can prove that the Laplacian comparison inequality for
ρ∂M in Lemma 3.1 globally holds on M in a barrier sense.

4 Volume Comparisons

Let M be an n-dimensional, connected complete Riemannian manifold with boundary
with Riemannian metric g, and let f : M → R be a smooth function.

4.1 Absolute Volume Comparisons

We have the following absolute volume comparison inequality of Heintze–Karcher
type (cf. [11]):

Lemma 4.1 Suppose that ∂M is compact. For κ, λ ∈ R, and for N ∈ (−∞, 1] we
suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. Then for all r ∈ (0,∞) we have

m f (Br (∂M)) ≤
∫

∂M

∫ min{r,τ (x)}

0
e− ∫ t

0 F−2
x (u) Fκ,λ,x (u) du dt dm f,∂M ,

where Fκ,λ,x is the function defined as (3.1). In particular, if κ and λ satisfy the sub-
harmonic condition, then for all r ∈ (0,∞) we have m f (Br (∂M)) ≤ r m f,∂M (∂M),
and hence (1.7).

Proof Define a function θ̃ : [0,∞) × ∂M → R by

θ̃ (t, x) :=
{
e− ∫ t

0 F−2
x (u) Fκ,λ,x (u) du if t < τ(x),

0 if t ≥ τ(x).

ByLemma 3.2, for all x ∈ ∂M and t ∈ (0,∞)we see θ̄ f (t, x) ≤ θ̃ (t, x) e− f (x), where
θ̄ f is the function defined as (2.3). Integrate the both sides of the inequality over (0, r)
with respect to t , and then do that over ∂M with respect to x . From Lemma 2.8, we
deduce

m f (Br (∂M)) ≤
∫

∂M

∫ r

0
θ̃ (t, x) dt dm f,∂M .
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This implies the lemma. ��
Remark 4.1 Under a lower N -weighted Ricci curvature bound, Bayle [3] has stated an
inequality of Heintze–Karcher type without proof in the case of N ∈ [n,∞). Morgan
[24] has proved it in the case of N = ∞, and Milman [23] has done in the case of
N ∈ (−∞, 1).

4.2 Relative Volume Comparisons

We have the following relative volume comparison theorem of Bishop–Gromov type:

Theorem 4.2 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that ∂M is compact. Let κ ∈ R and
λ ∈ R satisfy the subharmonic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ ,
and H f,∂M ≥ λ. Then for all r, R ∈ (0,∞) with r ≤ R

m f (BR(∂M))

m f (Br (∂M))
≤ R

r
. (4.1)

Proof Lemma 3.2 implies that for all s, t ∈ [0,∞) with s ≤ t we have θ̄ f (t, x) ≤
θ̄ f (s, x), where θ̄ f is the function defined as (2.3). By integrating the both sides over
(0, r) with respect to s, and then doing that over (r, R) with respect to t , we see

r
∫ R

r
θ̄ f (t, x) dt ≤ (R − r)

∫ r

0
θ̄ f (s, x) ds.

From Lemma 2.8, we derive

m f (BR(∂M))

m f (Br (∂M))
= 1 +

∫
∂M

∫ R
r θ̄ f (t, x) dt d volh∫

∂M

∫ r
0 θ̄ f (s, x) ds d volh

≤ 1 + R − r

r
= R

r
.

This proves the theorem. ��
When κ = 0 and λ = 0, Theorem 4.2 has been proved in the unweighted case in

[32], and in the usual weighted case in [33].

Remark 4.2 In [32], the author has proved a measure contraction inequality around
the boundary in the unweighted case. We can prove a similar measure contraction
inequality in our setting. Themeasure contraction inequality enables us to give another
proof of Theorem 4.2.

4.3 Volume Growth Rigidity

We show the following:
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Lemma 4.3 Suppose that ∂M is compact. Let κ ∈ R and λ ∈ R satisfy the subhar-
monic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. Assume
that there exists R ∈ (0,∞) such that for every r ∈ (0, R] the equality in (4.1) holds.
Then τ ≥ R on ∂M.

Proof The proof will be done by contradiction. Suppose that there exists x0 ∈ ∂M
such that τ(x0) < R. Put t0 := τ(x0). Take ε ∈ (0,∞) with t0 + ε < R. By the
continuity of τ , there exists a closed geodesic ball B in ∂M centered at x0 such that τ
is smaller than or equal to t0 + ε on B. Using Lemma 3.2, we see

m f (BR(∂M)) ≤ R m f,∂M (∂M \ B) + (t0 + ε)m f,∂M (B) < R m f,∂M (∂M).

On the other hand, m f (BR(∂M))/m f,∂M (∂M) is equal to R. This is a contradiction.
��

Suppose that ∂M is compact. Let κ ∈ R and λ ∈ R satisfy the subharmonic
condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. Assume that
there exists R ∈ (0,∞) such that for every r ∈ (0, R] the equality in (4.1) holds. Then
for each r ∈ (0, R) the level set ρ−1

∂M (r) is an (n − 1)-dimensional submanifold of
M (see Lemma 4.3). In particular, (Br (∂M), g) is an n-dimensional (not necessarily,
connected) complete Riemannian manifold with boundary. We denote by dBr (∂M)

and by d[0,r ]×F ∂M the Riemannian distances on (Br (∂M), g) and on [0, r ] ×F ∂M ,
respectively, where [0, r ] ×F ∂M is the twisted product space ([0, r ] × ∂M, dt2 +
F2
x (t) h).

Lemma 4.4 Suppose that ∂M is compact. Let κ ∈ R and λ ∈ R satisfy the sub-
harmonic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ.
Assume that there exists R ∈ (0,∞) such that for every r ∈ (0, R] the equality in
(4.1) holds. Then for each r ∈ (0, R) the metric space (Br (∂M), dBr (∂M)) is isometric
to ([0, r ]×F ∂M, d[0,r ]×F ∂M ). Moreover, if N ∈ (−∞, 1), then for every x ∈ ∂M the
function f ◦ γx is constant on [0, r ]; in particular, (Br (∂M), dBr (∂M)) is isometric to
([0, r ] × ∂M, d[0,r ]×∂M ).

Proof Since each connected component of ∂M one-to-one corresponds to the con-
nected component of Br (∂M), it suffices to consider the case where Br (∂M) is
connected. For each x ∈ ∂M we choose an orthonormal basis {ex,i }n−1

i=1 of Tx∂M .
Let {Yx,i }n−1

i=1 be the ∂M-Jacobi fields along γx with initial conditions Yx,i (0) = ex,i
and Y ′

x,i (0) = −Aux ex,i . Since the equality in (4.1) holds, for all t ∈ [0, r ] we see
θ f (t, x) = θ f (r, x). By (2.2), for all t ∈ (0, r ]we see	 f ρ∂M (γx (t)) = 0. Lemma 3.5
implies that we have κ = 0 and λ = 0, and for all i we have Yx,i = Fx Ex,i on
[0, r ], where {Ex,i }n−1

i=1 are the parallel vectors field along γx with initial condition
Ex,i (0) = ex,i ; moreover, if N ∈ (−∞, 1), then f ◦ γx is constant on [0, r ]. Define a
map � : [0, r ] × ∂M → Br (∂M) by �(t, x) := γx (t). For each p ∈ (0, r) × ∂M the
differential map D(�|(0,r)×∂M )p sends an orthonormal basis of Tp([0, r ] × ∂M) to
that of T�(p)Br (∂M), and for each x ∈ {0, r} × ∂M the map D(�|{0,r}×∂M )x sends
an orthonormal basis of Tx ({0, r} × ∂M) to that of T�(x)∂(Br (∂M)). Hence, � is a
Riemannian isometry with boundary from [0, r ] ×F ∂M to Br (∂M). ��
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Now, we are in a position to prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1 Suppose that ∂M is compact. Let κ ∈ R and λ ∈ R satisfy the
subharmonic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ.
Furthermore, we assume (1.6). By Lemma 4.1 and Theorem 4.2, for every R ∈ (0,∞),
and for every r ∈ (0, R],

m f (BR(∂M))

R
= m f (Br (∂M))

r
= m f,∂M (∂M);

in particular, the equality in (4.1) holds. From Lemma 4.3, we deduce τ = ∞ on ∂M .
We see Cut ∂M = ∅, and hence ∂M is connected. Take a sequence {ri } with ri → ∞.
By Lemma 4.4, for every i there exists a Riemannian isometry �i : [0, ri ] × ∂M →
Bri (∂M)with boundary from [0, ri ]×F ∂M to Bri (∂M) defined by�i (t, x) := γx (t).
Moreover, if N ∈ (−∞, 1), then for each x ∈ ∂M the function f ◦ γx is constant on
[0, ri ]. Since Cut ∂M = ∅, we obtain a Riemannian isometry� : [0,∞)× ∂M → M
with boundary from [0,∞) ×F ∂M to M defined by �(t, x) := γx (t) such that
�|[0,ri ]×∂M = �i for all i . Furthermore, if N ∈ (−∞, 1), then f ◦ γx is constant on
[0,∞). Thus, we complete the proof of Theorem 1.1. ��
Proof of Corollary 1.2 Combining Theorem 1.1 and Proposition 2.9, we conclude
Corollary 1.2. ��

5 Splitting Theorems

Let M be an n-dimensional, connected complete Riemannian manifold with boundary
with Riemannian metric g, and let f : M → R be a smooth function.

5.1 Basic Splitting

Let ϕ : M → R be a continuous function, and let U be a domain contained in Int M .
For p ∈ U , and for a function ψ defined on an open neighborhood of p, we say that
ψ is a support function of ϕ at p if we have ψ(p) = ϕ(p) and ψ ≤ ϕ. We say that ϕ
is f -subharmonic on U if for every p ∈ U , and for every ε ∈ (0,∞), there exists a
smooth, support function ψp,ε of ϕ at p such that 	 f ψp,ε(p) ≤ ε.

We recall the followingmaximal principle of Calabi type (see, e.g., [6], and Lemma
2.4 in [10]).

Lemma 5.1 Let U be a domain contained in Int M. If a f -subharmonic function on
U takes the maximal value at a point in U, then it must be constant on U.

Wylie [39] has proved a subharmonicity of Busemann functions onmanifolds with-
out boundary (see Lemma 3.4 in [39]). In our case, under an assumption concerning
asymptotes for a ray defined in Sect. 2.4, the subharmonicity holds in the following
form:

Lemma 5.2 [39]Assume sup f (M) < ∞. For N ∈ (−∞, 1]we supposeRicNf,M ≥ 0.
Let γ : [0,∞) → M be a ray that lies in Int M, and let U be a domain contained in
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Int M such that for each p ∈ U, there exists an asymptote for γ from p that lies in
Int M. Then the Busemann function bγ of γ is f -subharmonic on U.

Now, we prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3 Assume sup f (M) < ∞. For N ∈ (−∞, 1] we suppose
RicNf,M ≥ 0, and H f,∂M ≥ 0. Suppose that for some x0 ∈ ∂M we have τ(x0) = ∞.

For the connected component ∂M0 of ∂M containing x0, put

� := {y ∈ ∂M0 | τ(y) = ∞}.

By the continuity of τ , the set � is a non-empty closed subset of ∂M0.
We show the openness of � in ∂M0. Fix y0 ∈ �. Take l ∈ (0,∞), and put

p0 := γy0(l). There exists an open neighborhoodU of p0 in Int M contained in D∂M .
Taking U smaller, we may assume that for every q ∈ U the unique foot point on
∂M of q belongs to ∂M0. By Lemma 2.5, there exists ε ∈ (0,∞) such that for all
q ∈ Bε(p0), all asymptotes for γy0 from q lie in Int M . We may assumeU ⊂ Bε(p0).
By Lemma 5.2, bγy0

is f -subharmonic on U , and by Lemma 3.1, 	 f ρ∂M ≥ 0 on
U . Hence, bγy0

− ρ∂M is f -subharmonic on U . The function bγy0
− ρ∂M takes the

maximal value 0 at p0. Lemma 5.1 implies that bγy0
= ρ∂M on U . From Lemma 2.4,

it follows that � is open in ∂M0.
Since ∂M0 is a connected component of ∂M , we have � = ∂M0. By Lemma 2.2,

∂M is connected andCut ∂M = ∅. The equality inLemma3.1 holds on Int M . For each
x ∈ ∂M we choose an orthonormal basis {ex,i }n−1

i=1 of Tx∂M . Let {Yx,i }n−1
i=1 be the ∂M-

Jacobi fields along γx with initial conditions Yx,i (0) = ex,i and Y ′
x,i (0) = −Aux ex,i .

By Lemma 3.4, for all i we have Yx,i = Fx Ex,i on [0,∞), where {Ex,i } are the
parallel vector fields along γx with initial condition Ex,i (0) = ex,i . Moreover, if N ∈
(−∞, 1), then f ◦ γx is constant on [0,∞). Define a map � : [0,∞)× ∂M → M by
�(t, x) := γx (t). For every p ∈ (0,∞) × ∂M the differential map D(�|(0,∞)×∂M )p
sends an orthonormal basis of Tp((0,∞) × ∂M) to that of T�(p)M , and for every
x ∈ {0}× ∂M the map D(�|{0}×∂M )x sends an orthonormal basis of Tx ({0}× ∂M) to
that of T�(x)∂M . Then� is a Riemannian isometrywith boundary from [0,∞)×F ∂M
to M . This proves Theorem 1.3. ��
Proof of Corollary 1.4 From Theorem 1.3 and Proposition 2.9, we derive Corol-
lary 1.4. ��

Lemma 2.1 and the continuity of τ imply that if M is non-compact and ∂M is
compact, then for some x ∈ ∂M we have τ(x) = ∞. We have the following corollary
of Theorem 1.3.

Corollary 5.3 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function such that sup f (M) < ∞. For N ∈ (−∞, 1]
wesupposeRicNf,M ≥ 0, and H f,∂M ≥ 0. If M is non-compact and ∂M is compact, then
(M, dM ) is isometric to ([0,∞) ×F ∂M, d[0,∞)×F ∂M ). Moreover, if N ∈ (−∞, 1),
then for every x ∈ ∂M the function f ◦γx is constant on [0,∞); in particular, (M, dM )

is isometric to ([0,∞) × ∂M, d[0,∞)×∂M ).
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5.2 Weighted Ricci Curvature on the Boundary

For x ∈ ∂M , we recall that ux denotes the unit inner normal vector on ∂M at x .
The following seems to be well known, especially in a submanifold setting (see,

e.g., Proposition 9.36 in [4], and Lemma 5.4 in [32]).

Lemma 5.4 Take x ∈ ∂M, and a unit vector u in Tx∂M. Choose an orthonormal
basis {ex,i }n−1

i=1 of Tx∂M with ex,1 = u. Then we have

Rich(u) = Ricg(u) − Kg(ux , u) + trace AS(u,u) −
n−1∑
i=1

‖S(u, ex,i )‖2,

where h is the induced Riemannian metric on ∂M, and Kg(ux , u) is the sectional
curvature at x in (M, g) determined by ux and u.

By using Lemma 5.4, we have the following:

Lemma 5.5 Take x ∈ ∂M, and a unit vector u in Tx∂M. Choose an orthonormal
basis {ex,i }n−1

i=1 of Tx∂M with ex,1 = u. Then for all N ∈ (−∞,∞) we have

RicN−1
f |∂M (u) = RicNf (u) + g((∇ f )x , ux ) g(S(u, u), ux )

− Kg(ux , u) + trace AS(u,u) −
n−1∑
i=1

‖S(u, ex,i )‖2, (5.1)

where Kg(ux , u) is the sectional curvature at x in (M, g) determined by ux and u.

Proof First, we assume N �= n. We see

h((∇( f |∂M ))x , u) = g((∇ f )x , u),

Hess( f |∂M )(u, u) = Hess f (u, u) + g ((∇ f )x , ux ) g (S(u, u), ux ) ,

where h is the induced Riemannian metric on ∂M . Hence, we have

RicN−1
f |∂M (u) = Rich(u) + Hess( f |∂M )(u, u) − h((∇( f |∂M ))x , u)2

(N − 1) − (n − 1)

= Rich(u) + Hess f (u, u) + g((∇ f )x , ux ) g(S(u, u), ux ) − g((∇ f )x , u)2

N − n
.

From Lemma 5.4, we derive (5.1).
Next, we assume N = n. If f is constant, then RicN−1

f |∂M (u) = Rich(u) and

RicNf (u) = Ricg(u), and hence Lemma 5.4 implies (5.1). If f is not constant, then
both the left-hand side of (5.1) and the right-hand side are equal to −∞. Therefore,
we complete the proof. ��

From Lemma 5.5, we derive the following:
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Lemma 5.6 Take x ∈ ∂M, and a unit vector u in Tx∂M. If (M, dM ) is isometric to
([0,∞) ×F ∂M, d[0,∞)×F ∂M ), then for all N ∈ (−∞,∞)

RicN−1
f |∂M (u) = RicNf (u) + Hess f (ux , ux )

n − 1
.

Proof Choose an orthonormal basis {ex,i }n−1
i=1 of Tx∂M with ex,1 = u. Let {Yx,i }n−1

i=1
be the ∂M-Jacobi fields along γx with initial conditions Yx,i (0) = ex,i and Y ′

x,i (0) =
−Aux ex,i . Since (M, dM ) is isometric to ([0,∞)×F ∂M, d[0,∞)×F ∂M ), there exists a
Riemannian isometry with boundary from M to [0,∞) ×F ∂M . In particular, for all
i we see Yx,i = Fx Ex,i , where {Ex,i }n−1

i=1 are the parallel vector fields along γx with
initial condition Ex,i (0) = ex,i . Hence, for all i

Aux ex,i = −Y ′
x,i (0) = −g((∇ f )x , ux )

n − 1
ex,i . (5.2)

By (5.2), for all i �= 1 we have S(u, ex,i ) = 0x , and we have

S(u, u) = −g((∇ f )x , ux )

n − 1
ux , trace AS(u,u) = g((∇ f )x , ux )2

n − 1
. (5.3)

Furthermore, the sectional curvature Kg(ux , u) at x in (M, g) determined by ux and
u satisfies

Kg(ux , u) = −g(Y ′′
x,1(0), u) = −

(
Hess f (ux , ux )

n − 1
+

(
g((∇ f )x , ux )

n − 1

)2
)

. (5.4)

By Lemma 5.5, and by (5.3) and (5.4), we see

RicN−1
f |∂M (u) = RicNf (u) − g((∇ f )x , ux )2

n − 1
+ Hess f (ux , ux )

n − 1

+
(
g((∇ f )x , ux )

n − 1

)2

+ g((∇ f )x , ux )2

n − 1
−

(
g((∇ f )x , ux )

n − 1

)2

= RicNf (u) + Hess f (ux , ux )

n − 1
.

This completes the proof. ��

5.3 Multi-splitting

Let M0 be a connected complete Riemannian manifold (without boundary). A normal
geodesic γ : R → M0 is said to be a line if for all s, t ∈ Rwe have dM0(γ (s), γ (t)) =
|s − t |.

Wylie [39] has proved the following splitting theorem of Cheeger–Gromoll type
(see Theorem 1.2 and Corollary 1.3 in [39]):
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Theorem 5.7 [39] Let M0 be a connected complete Riemannian manifold, and let
f : M0 → R be a smooth function bounded from above. For N ∈ (−∞, 1] we
suppose RicNf,M0

≥ 0. If M0 contains a line, then there exists a connected complete
Riemannian manifold N0 such that M0 is isometric to a warped product space over
R × N0. Moreover, if N ∈ (−∞, 1), then M0 is isometric to the standard product
R × N0.

Remark 5.1 For manifolds of non-negative N -weighted Ricci curvature, Lichnerow-
icz [19] has generalized the Cheeger–Gromoll splitting theorem in the case where
N = ∞ and f is bounded. Fang, Li, and Zhang [10] have done in the case where
N ∈ [n,∞), and in the case where N = ∞ and f is bounded above.

We obtain the following corollary of Theorem 1.3:

Corollary 5.8 Let M be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f : M → R be a smooth function such that sup f (M) < ∞.
For N ∈ (−∞, 1) we suppose RicNf,M ≥ 0, and H f,∂M ≥ 0. Assume that for some
x0 ∈ ∂M we have τ(x0) = ∞. Then there exist k ∈ {0, . . . , n−1} and an (n−1−k)-
dimensional, connected complete Riemannian manifold N0 containing no line such
that (∂M, d∂M ) is isometric to (Rk ×N0, dRk×N0

). In particular, (M, dM ) is isometric
to ([0,∞) × R

k × N0, d[0,∞)×Rk×N0
).

Proof Due to Theorem 1.3, the metric space (M, dM ) is isometric to ([0,∞) ×F

∂M, d[0,∞)×F ∂M ). Moreover, for every x ∈ ∂M , the function f ◦ γx is constant on
[0,∞); in particular, (M, dM ) is isometric to ([0,∞) × ∂M, d[0,∞)×∂M ). For every
x ∈ ∂M , it holds that Hess f (ux , ux ) = 0. By Lemma 5.6, we have RicN−1

f |∂M = RicNf
on the unit tangent bundle over ∂M . It follows that RicN−1

f |∂M ,∂M ≥ 0. Note that N −1 is
smaller than 1, and supx∈∂M f (x) is finite. Applying Theorem 5.7 to ∂M inductively,
we complete the proof. ��

5.4 Variants of the Splitting Theorem

We have already known several rigidity results studied in [13] (and [9,12]) for mani-
folds with boundary whose boundaries are disconnected. In [33], the author has given
generalizations of them in the usualweighted case (see Sect. 6.4 in [33]).We generalize
one of them in our setting.

For A1, A2 ⊂ M , we put dM (A1, A2) := inf p1∈A1,p2∈A2 dM (p1, p2).
The following has been shown in [13] (see Lemma 1.6 in [13]):

Lemma 5.9 [13] Suppose that ∂M is disconnected. Let {∂Mi }i=1,2,... denote
the connected components of ∂M. Assume that ∂M1 is compact. Put D :=
inf i=2,3,... dM (∂M1, ∂Mi ). Then there exists a connected component ∂M2 of ∂M such
that dM (∂M1, ∂M2) = D. Furthermore, for every i = 1, 2 there exists xi ∈ ∂Mi such
that dM (x1, x2) = D. The normal minimal geodesic γ : [0, D] → M from x1 to x2 is
orthogonal to ∂M both at x1 and at x2, and the restriction γ |(0,D) lies in Int M.

We prove the following splitting theorem:
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Theorem 5.10 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that ∂M is disconnected. Let
{∂Mi }i=1,2,... denote the connected components of ∂M. Suppose that ∂M1 is compact,
and put D := inf i=2,3,... dM (∂M1, ∂Mi ). Let κ ∈ R and λ ∈ R satisfy the subhar-
monic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. Then
(M, dM ) is isometric to ([0, D] ×F ∂M1, d[0,D]×F ∂M1). Moreover, if N ∈ (−∞, 1),
then for every x ∈ ∂M1 the function f ◦ γx is constant on [0, D]; in particular,
(M, dM ) is isometric to ([0, D] × ∂M1, d[0,D]×∂M1).

Proof By Lemma 5.9, there exists a connected component ∂M2 of ∂M such that
dM (∂M1, ∂M2) = D. For each i = 1, 2, let ρ∂Mi : M → R be the distance function
from ∂Mi defined as ρ∂Mi (p) := dM (p, ∂Mi ). Put

� := {p ∈ Int M | ρ∂M1(p) + ρ∂M2(p) = D}.

Lemma 5.9 implies that � is a non-empty closed subset of Int M .
We show that � is open in Int M . Take p ∈ �. For each i = 1, 2, there exists

a foot point xp,i ∈ ∂Mi on ∂Mi of p such that dM (p, xp,i ) = ρ∂Mi (p). From the
triangle inequality, we derive dM (xp,1, xp,2) = D. The normal minimal geodesic
γ : [0, D] → M from xp,1 to xp,2 is orthogonal to ∂M at xp,1 and at xp,2. Furthermore,
γ |(0,D) lies in Int M and passes through p. There exists an open neighborhood U of
p such that U is contained in Int M and ρ∂Mi is smooth on U . By using Lemma 3.2,
we see 	 f ρ∂Mi ≥ 0 on U ; in particular, −(ρ∂M1 + ρ∂M2) is f -subharmonic on U .
Lemma 5.1 implies that � is open in Int M .

Since Int M is connected, we have Int M = �. For each x ∈ ∂M1, choose an
orthonormal basis {ex,i }n−1

i=1 of Tx∂M . Let {Yx,i }n−1
i=1 be the ∂M-Jacobi fields along

γx with initial conditions Yx,i (0) = ex,i and Y ′
x,i (0) = −Aux ex,i . Using Lemma 3.5,

for all i we see Yx,i = Fx Ex,i on [0, D], where {Ex,i }n−1
i=1 are the parallel vector

fields along γx with initial condition Ex,i (0) = ex,i . Moreover, if N ∈ (−∞, 1),
then for every x ∈ ∂M1 the function f ◦ γx is constant on [0, D]. Define a map
� : [0, D] × ∂M1 → M by �(t, x) := γx (t). The map � is a Riemannian isometry
with boundary from [0, D] ×F ∂M1 to M . ��
Remark 5.2 Wylie [39] has proved the same result as Theorem 5.10 when κ = 0 and
λ = 0 (see Theorem 5.1 in [39]).

6 Eigenvalue Rigidity

Let M be an n-dimensional, connected complete Riemannian manifold with boundary
with Riemannian metric g, and let f : M → R be a smooth function.

6.1 Lower Bounds

In [33], the author has shown the followingPicone-type inequality provedbyAllegretto
and Huang [1] in the Euclidean case (see Theorem 1.1 in [1], and Lemma 7.1 in [33]).
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Lemma 6.1 [33] Let ϕ and ψ be functions on M that are smooth on a domain U in
M, and satisfy ϕ > 0 andψ ≥ 0 on U. Then for all p ∈ (1,∞) we have the following
inequality on U:

‖∇ψ‖p ≥ ‖∇ϕ‖p−2g
(
∇

(
ψ p ϕ1−p

)
,∇ϕ

)
. (6.1)

Moreover, if the equality in (6.1) holds on U, then for some constant c �= 0 we have
ψ = c ϕ on U.

We now give a proof of the inequality (1.9) in Theorem 1.5.

Proposition 6.2 Suppose that M is compact. Let p ∈ (1,∞). Let κ ∈ R and λ ∈ R

satisfy the subharmonic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and
H f,∂M ≥ λ. For D ∈ (0,∞) we assume D(M, ∂M) ≤ D. Then we have (1.9).

Proof Let ϕp,D : [0, D] → R be a function satisfying (1.8) for μ = μp,D . We may
assume ϕp,D|(0,D] > 0. Then we see ϕ′

p,D|[0,D) > 0. Put � := ϕp,D ◦ ρ∂M . Take
a non-negative, non-zero smooth function ψ on M whose support is compact and
contained in Int M . By Lemma 6.1

‖∇ψ‖p ≥ ‖∇�‖p−2g
(
∇

(
ψ p �1−p

)
,∇�

)
(6.2)

on Int M \ Cut ∂M . From (6.2) and Proposition 3.7, we derive

∫
M

‖∇ψ‖p d m f ≥
∫
M

‖∇�‖p−2g
(
∇

(
ψ p �1−p

)
,∇�

)
d m f

≥
∫
M

(
ψ p �1−p

)(
−

((
ϕ′
p,D

)p−1
)′

◦ ρ∂M

)
d m f

= μp,D

∫
M

ψ p d m f .

It follows that R f,p(ψ) ≥ μp,D . Hence, we arrive at (1.9). ��
Remark 6.1 In Proposition 6.2, we assume that there exists a non-negative, non-zero
smooth function ψ : M → R whose support is compact and contained in Int M such
that R f,p(ψ) = μp,D . Then the equality in (6.2) holds on Int M \Cut ∂M , and hence
for some constant c �= 0 we have ψ = c� on M (see Lemma 6.1). The equality case
in (3.11) also happens (see Remark 3.4).

6.2 Equality Cases

For a positive number D ∈ (0,∞), we put SD(∂M) := BD(∂M) \UD(∂M).
For the proof of Theorem 1.5, we show the following lemma concerning the F-

model space introduced in Sect. 1.4:
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Lemma 6.3 Suppose that M is compact. Let κ ∈ R andλ ∈ R satisfy the subharmonic
condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. Assume that
for some D ∈ (0,∞) we have Cut ∂M = SD(∂M). For each x ∈ ∂M, choose an
orthonormal basis {ex,i }n−1

i=1 of Tx∂M, and let {Yx,i }n−1
i=1 be the ∂M-Jacobi fields along

γx with initial conditions Yx,i (0) = ex,i and Y ′
x,i (0) = −Aux ex,i . Assume further that

for all i we have Yx,i = Fx Ex,i on [0, D], where {Ex,i }n−1
i=1 are the parallel vector

fields along γx with initial condition Ex,i (0) = ex,i . Then (M, dM ) is an F-model
space.

Proof First, we assume that ∂M is disconnected. Let {∂Mi }i=1,2,... be the connected
components of ∂M . Put D1 := inf i=2,3,... dM (∂M1, ∂Mi ). By Theorem 5.10, there
exists a connected component ∂M1 such that (M, dM ) is isometric to ([0, D1] ×F

∂M1, d[0,D1]×F ∂M1). From Cut ∂M = SD(∂M), it follows that D(M, ∂M) = D and
D1 = 2D, and hence (M, dM ) is an F-model space.

Next, we assume that ∂M is connected. By Cut ∂M = SD(∂M), we have
D(M, ∂M) = D. From the property of Jacobi fields, SD(∂M) is a smooth hyper-
surface in M , and every point in SD(∂M) has two distinct foot points on ∂M .
For every x ∈ ∂M , the vector γ ′

x (D) is orthogonal to SD(∂M), and hence the
number of foot points on ∂M of γx (D) is equal to two. Now, we define an invo-
lutive isometry σ : ∂M → ∂M without fixed points by σ(x) := y, where y
is the foot point on ∂M of γx (D) that is different from x . We also define a map
� : [0, 2D] × ∂M → M as follows: If t ∈ [0, D), then �(t, x) := γx (t); if
t ∈ (D, 2D], then �(t, x) := γσ(x)(2D − t). We see that � is surjective and contin-
uous. For all x ∈ ∂M and t ∈ [0, 2D] we have �(t, x) = �(2D − t, σ (x)). Since
for all x ∈ ∂M and i we have Yx,i = Fx Ex,i on [0, D], the map �|[0,D) gives an
isometry between (UD(∂M), g) and the twisted product space [0, D)×F ∂M . There-
fore, M is isometric to the quotient space ([0, 2D] ×F ∂M)/Gσ , where Gσ is the
isometry group on [0, 2D]×F ∂M of the identity and the involute isometry σ̂ defined
by σ̂ (t, x) := (2D − t, σ (x)). This implies that (M, dM ) is an F-model space. We
complete the proof. ��

Furthermore, we recall the following fact concerning eigenfunctions for the ( f, p)-
Laplacian (see, e.g., [33,36]):

Proposition 6.4 Suppose that M is compact. Let p ∈ (1,∞). Then there exists a
non-negative, non-zero function� in W 1,p

0 (M,m f ) such that R f,p(�) = μ f,1,p(M).
Moreover, for some α ∈ (0, 1) the function � is C1,α-Hölder continuous on M.

Now, we prove Theorem 1.5 and Corollary 1.6.

Proof of Theorem 1.5 Suppose that M is compact. Let p ∈ (1,∞), and let κ ∈ R and
λ ∈ R satisfy the subharmonic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ ,
and H f,∂M ≥ λ. For D ∈ (0,∞), we assume D(M, ∂M) ≤ D. From Proposition 6.2,
we derive (1.9).

We assume that the equality in (1.9) holds. Proposition 6.4 implies that there exists
a non-negative, non-zero function� inW 1,p

0 (M,m f ) such that R f,p(�) = μp,D and
� is C1,α-Hölder continuous on M . Let ϕp,D : [0, D] → R be a function satisfying
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(1.8) for μ = μp,D , and let ϕp,D|(0,D] > 0. Putting � := ϕp,D ◦ ρ∂M , we see that �
coincides with a constant multiplication of � on M (see Remark 6.1); in particular,
� is also C1,α-Hölder continuous on M .

For each x ∈ ∂M , we choose an orthonormal basis {ex,i }n−1
i=1 of Tx∂M . Let {Yx,i }n−1

i=1
be the ∂M-Jacobi fields along γx with initial conditions Yx,i (0) = ex,i and Y ′

x,i (0) =
−Aux ex,i . Then for all i we have Yx,i = Fx Ex,i on [0, τ (x)], where {Ex,i }n−1

i=1 are
the parallel vector fields along γx with initial condition Ex,i (0) = ex,i ; moreover, if
N ∈ (−∞, 1), then f ◦ γx is constant on [0, τ (x)] (see Remark 6.1).

We show Cut ∂M = SD(∂M). From D(M, ∂M) ≤ D we deduce SD(∂M) ⊂
Cut ∂M . We prove the opposite. Take p0 ∈ Cut ∂M . By the property of Jacobi
fields, ρ∂M is not differentiable at p0. From the regularity of �, it follows that
ϕ′
p,D(ρ∂M (p0)) = 0; in particular, ρ∂M (p0) = D. Hence, Cut ∂M = SD(∂M). This

implies D(M, ∂M) = D. By Lemma 6.3, we complete the proof of Theorem 1.5. ��

Proof of Corollary 1.6 By Theorem 1.5 and Proposition 2.9, we complete the proof
of Corollary 1.6. ��

By Theorem 1.5 and μ2,D = π2(2D)−2, we have the following:

Corollary 6.5 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that M is compact. Let κ ∈ R and
λ ∈ R satisfy the subharmonic condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ ,
and suppose H f,∂M ≥ λ. For D ∈ (0,∞) we assume D(M, ∂M) ≤ D. Then

μ f,1,2(M) ≥ π2

4D2 . (6.3)

If the equality in (6.3) holds, then D(M, ∂M) = D, and the metric space (M, dM ) is
an F-model space. Moreover, if N ∈ (−∞, 1), then for every x ∈ ∂M the function
f ◦ γx is constant on [0, D]; in particular, (M, dM ) is an equational model space.

6.3 Explicit Lower Bounds

Let � be a relatively compact domain in M such that ∂� is a smooth hypersurface in
M satisfying ∂�∩ ∂M = ∅. For the canonical Riemannian volume measure vol∂� on
∂�, let m f,∂� := e− f |∂� vol∂�. Put

δ1(�) := inf
p∈�

ρ∂M (p), δ2(�) := sup
p∈�

ρ∂M (p). (6.4)

In the usualweighted case, the author [33] has proved the following volume estimate
(see Propositions 8.1 and 8.2 in [33]):

Proposition 6.6 [33] Let M be an n-dimensional, connected complete Riemannian
manifold with boundary, and let f : M → R be a smooth function. For N ∈ [n,∞]
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we suppose RicNf,M ≥ 0, and H f,∂M ≥ 0. Let � be a relatively compact domain in M
such that ∂� is a smooth hypersurface in M satisfying ∂� ∩ ∂M = ∅. Then

m f (�) ≤ m f,∂� (∂�) (δ2(�) − δ1(�)) ,

where δ1(�) and δ2(�) are the values defined as (6.4).

Kasue [15] has obtained Proposition 6.6 in the unweighted case.
In our setting, we have the following volume estimate:

Proposition 6.7 Let M be a connected complete Riemannianmanifoldwith boundary,
and let f : M → Rbea smooth function. Letκ ∈ Randλ ∈ R satisfy the subharmonic
condition. For N ∈ (−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. Let � be a
relatively compact domain in M such that ∂� is a smooth hypersurface in M satisfying
∂� ∩ ∂M = ∅. Then

m f (�) ≤ m f,∂� (∂�) (δ2(�) − δ1(�)) ,

where δ1(�) and δ2(�) are the values defined as (6.4).

We can prove Proposition 6.7 only by replacing the role of the comparison result
in the usual weighted case with that of Lemma 3.1 in the proof of Proposition 6.6. We
omit the proof.

From Proposition 6.6, the author [33] has derived the following estimate in the
usual weighted case (see Theorems 8.4 and 8.5 in [33]):

Theorem 6.8 [33] Let M be an n-dimensional, connected complete Riemannianman-
ifold with boundary, and let f : M → R be a smooth function. Suppose that ∂M is
compact. Let p ∈ (1,∞). For N ∈ [n,∞] we suppose RicNf,M ≥ 0, and H f,∂M ≥ 0.
For D ∈ (0,∞) we assume D(M, ∂M) ≤ D. Then we have μ f,1,p(M) ≥ (pD)−p.

The author [32] has shown Theorem 6.8 in the unweighted case.
In our setting, we can prove the following result by using Proposition 6.7 instead

of Proposition 6.6 in the proof of Theorem 6.8. The argument is in [33].

Theorem 6.9 Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that ∂M is compact. Let p ∈
(1,∞), and let κ ∈ R and λ ∈ R satisfy the subharmonic condition. For N ∈
(−∞, 1] we suppose RicNf,M ≥ κ , and H f,∂M ≥ λ. For D ∈ (0,∞) we assume

D(M, ∂M) ≤ D. Then we have μ f,1,p(M) ≥ (pD)−p.
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