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Abstract We prove stable versions of trace theorems on the sphere in L2 with opti-
mal constants, thus obtaining rather precise information regarding near-extremisers.
We also obtain stability for the trace theorem into Lq for q > 2, by combining a
refined Hardy–Littlewood–Sobolev inequality on the sphere with a duality–stability
result proved very recently by Carlen. Finally, we extend a local version of Carlen’s
duality theorem to establish local stability of certain Strichartz estimates for the kinetic
transport equation.
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Stability of Trace Theorems on the Sphere 1457

1 Introduction

For n ≥ 2, consider the fractional Sobolev inequality for functions on R
n−1, which

for later convenience we state as

‖G‖2Lq (Rn−1)
≤ CFS(n, s)‖(−�)

2s−1
4 G‖2L2(Rn−1)

, (1)

where q = 2(n−1)
n−2s and s ∈ ( 12 ,

n
2 ). The sharp constant and characterisation of extrem-

isers (i.e. non-trivial cases of equality) for this estimate was given for s = 3
2 by Aubin

[3] and Talenti [39] independently, and for general s by Lieb [35]. Further, it is known
that onemay prove refinements, or stable versions, of (1) by adding a term proportional
to the distance to the set of extremisers (we denote this set by MFS = MFS(n, s)) to
the right-hand side:

CFS(n, s)‖(−�)
2s−1
4 G‖2L2 − ‖G‖2Lq ≥ α inf

G∗∈MFS
‖(−�)

2s−1
4 (G − G∗)‖2L2 , (2)

for some α > 0. Inequality (2) was first proved for s = 3
2 by Bianchi–Egnell [15],

extended to some additional values of s in [5] and [37], and finally completed for all
admissible values of s recently by Chen–Frank–Weth [21].

The main purpose of this article is to establish stable versions of trace theorems on
spheres. The classical trace theorems on the unit sphere allow us to givemeaning to the
restriction to S

n−1 of a function defined on R
n , assuming the function is sufficiently

regular. This regularity may be captured by use of Sobolev spaces, in which case there
are differences depending on whether we mean the homogeneous or inhomogeneous
versions of these spaces. A natural way to unify and generalise trace theorems asso-
ciated with these spaces was exposed in [11] and we shall prove our stability theorem
in the same level of generality. The underlying inequality takes the form

‖Swg‖L2(Sn−1) ≤ C(w)‖g‖L2(Rn), (3)

where Sw = R ◦ w(
√−�)

1
2 , R denotes the operation of restriction to S

n−1, and the
function w : (0,∞) → (0,∞) is such that the Fourier transform ŵ(| · |) makes sense
(at least away from the origin) and is positive. The boundedness of R from either
the homogeneous Sobolev space Ḣ s(Rn), or the inhomogeneous space Hs(Rn), to
L2(Sn−1) are the classical cases of interest. Such bounds are clearly equivalent to (3)
by taking w(r) = r−2s and w(r) = (1 + r2)−s , respectively; the well-definedness
and positivity of the Fourier transform are well known in both cases.

We take C(w) to mean the sharp constant in (3), in which case we understand from
[11] that, under the above hypotheses on w, we have

C(w)2 =
∫ ∞

0
Jn−2

2
(r)2rw(r) dr,

where Jν denotes the Bessel function of the first kind of order ν. In the case where
w(r) = r−2s , the sharp form of (3) was studied earlier: the value of C(w) was
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1458 N. Bez et al.

first found in [38], and a characterisation of extremisers was established in [13] and
independently by Beckner in [6].

The following is our first main result. In order to state, it we denote by Hk the
space of spherical harmonics of degree k, that is, the space of homogeneous harmonic
polynomials of degree k on R

n restricted to S
n−1. We take the following Fourier

transform

ĝ(ξ) =
∫
Rn

g(x)e−i x ·ξ dx,

and we use M(Sw) to denote the set of extremisers for (3). We define

λ∗(w) = sup
k≥1

λk(w), (4)

where

λk(w) :=
∫ ∞

0
Jk+ n−2

2
(r)2rw(r) dr, (5)

and we let K = K(w) denote the (possibly empty) set of those k ≥ 1 for which the
supremum in (4) is attained.

Theorem 1 Suppose that w is as above. Then

C(w)2‖g‖2L2(Rn)
− ‖Swg‖2L2(Sn−1)

≥ C inf
g∗∈M(Sw)

‖g − g∗‖2L2(Rn)
(6)

holds with

C = C ′(w) := λ0(w) − λ∗(w)

for any g ∈ L2, where λk(w) is given by (5) and λ∗(w) by (4). If w is such that
C ′(w) > 0 then the constant is optimal, and (6) has an extremiser if and only if
K �= ∅. In this case, equality holds in (6) if and only if there exists c ∈ C and Yk ∈ Hk

such that

|ξ | n−2
2

w(|ξ |) 1
2

ĝ(ξ) = cJn−2
2

(|ξ |) +
∑
k∈K

Yk
(
ξ ′) Jn−2

2 +k(|ξ |),

for ξ ∈ R
n, where ξ ′ := ξ

|ξ | for ξ �= 0. If w is such that C ′(w) is equal to zero, then
the estimate (6) is false for all C > 0.

Remarks • It was proved in [11] (see formula (1.10)) that we have the alternative
representation

λk(w) = |Sn−2|
(2π)n

∫ 1

−1
Fw(1 − t)Pn,k(t)(1 − t2)

n−3
2 dt, (7)
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Stability of Trace Theorems on the Sphere 1459

where Fw is defined by Fw(
|ξ |2
2 ) = ŵ(| · |)(ξ). Here Pn,k denotes the Legendre

polynomial of degree k in n dimensions, whose definition may be found in [2]
along with the fact that

Pn,k(t) ≤ 1 = Pn,0(t)

for all t ∈ [−1, 1], k ≥ 1 and n ≥ 2. Since Fw is positive we see that

λk(w) < λ0(w)

for any k ≥ 1, so we see that C ′(w) is non-negative, and in fact strictly positive if
K �= ∅.

• In the case where K = ∅, we prove the constant in (6) is sharp by explicitly
constructing an extremising sequence; this same argument applies when λ∗(w) =
λ0(w), yielding the failure of (6) in this case.

We now discuss some applications of Theorem 1; for convenience we define

M(R) = w(
√−�)

1
2 M(Sw).

When w(r) = r−2s for s ∈ ( 12 ,
n
2 ), one has

λk(w) = 21−2s �(2s − 1)�(k + n−2s
2 )

�(s)2�(k − 1 + n+2s
2 )

which implies (λk(w))k≥1 is strictly decreasing (see [14], proof of Theorem 1.6 and
Lemma 5.1, also (25) below) and hence K = {1}. Therefore, Theorem 1 immediately
yields a stable version of the trace theorem for functions in the homogeneous Sobolev
space Ḣ s(Rn), and the sharp constant may be given in closed form.

Corollary 1 For s ∈ ( 12 ,
n
2 ), the inequality

‖R‖2‖ f ‖2
Ḣ s (Rn)

− ‖R f ‖2L2(Sn−1)
≥ C inf

f∗∈M(R)
‖ f − f∗‖2Ḣ s (Rn)

(8)

holds for any f ∈ Ḣ s(Rn) with constant

C = 21−2s �(2s − 1)

�(s)2

(
�( n−2s

2 )

�( n+2s−2
2 )

− �( n−2s+2
2 )

�( n+2s
2 )

)
.

The constant is optimal and equality holds in (8) if and only if there exists c ∈ C and
Y1 ∈ H1 such that

|ξ | n−2
2 +2s f̂ (ξ) = cJn−2

2
(|ξ |) + Y1

(
ξ ′) Jn

2
(|ξ |),

for ξ ∈ R
n.
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1460 N. Bez et al.

Corollary 1 of course implies a stable version of the homogeneous trace theoremwhich
may be viewed as an analogue of the stable Sobolev inequality (2). This latter result
also admits a reverse form (see e.g. [21]), and a similar estimate holds for (8); the
proof of this is not difficult and will be postponed to Sect. 5.

The other case of particular interest in Theorem 1 arises from the choice w(r) =
(1+r2)−s for s ∈ ( 12 ,∞), for which (3) is equivalent to the trace theorem for functions
in the inhomogeneous Sobolev space Hs(Rn).

Corollary 2 For s ∈ ( 12 ,∞), the inequality

‖R‖2‖ f ‖2Hs (Rn) − ‖R f ‖2L2(Sn−1)
≥ C inf

f∗∈M(R)
‖ f − f∗‖2Hs (Rn) (9)

holds for any f ∈ Hs(Rn). The constant C is as in Theorem 1, is positive and optimal,
and there exists an extremiser for (9). If in addition s = 1 then we have

C = I n−2
2

(1)K n−2
2

(1) − I n
2
(1)K n

2
(1),

where Iμ and Kμ are modified Bessel functions of the first kind of order μ. In this
case, equality holds in (9) if and only if there exists c ∈ C and Y1 ∈ H1 such that

|ξ | n−2
2 (1 + |ξ |2) f̂ (ξ) = cJn−2

2
(|ξ |) + Y1

(
ξ ′) Jn

2
(|ξ |),

for ξ ∈ R
n.

In the case s = 1, the proof of Corollary 2 is immediate from Theorem 1 and the
observation in [14] that we may write

λk(w) = Ik+ n−2
2

(1)Kk+ n−2
2

(1), (10)

which again implies (λk(w)) is decreasing (see [11]). Although we do not know of
such a precise formula as (10) for general s the proof of Corollary 2 proceeds using
a further analysis of the sequence (λk(w)) based on the formula (5) and some well-
known estimates for the Bessel functions that arise.

Our next result concerns the homogeneous trace theorem into Lq . Specifically, if
we fix w(r) = r−2s for s ∈ ( 12 ,

n
2 ) and q = 2(n−1)

n−2s > 2 then it is known that the
operator S := Sw in fact maps into the smaller space Lq(Sn−1), i.e. we have the
inequality

‖Sg‖Lq (Sn−1) ≤ CTr(n, s)‖g‖L2(Rn), (11)

where the constant is taken to be optimal. The sharp inequality (11) and a character-
isation of extremisers was proved in [13] and independently by Beckner in [6]; this
follows from a duality argument which shows, ultimately, that (11) is equivalent to
the sharp Sobolev inequality (1).
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Stability of Trace Theorems on the Sphere 1461

Theorem 2 Suppose that s ∈ ( 12 ,
n
2 ), and q = 2(n−1)

n−2s . Then1

CTr(n, s)2‖g‖2L2(Rn)
− ‖Sg‖2Lq (Sn−1)

� inf
f∗∈M(S)

‖g − g∗‖2L2(Rn)
(12)

holds for any g ∈ L2(Rn), where M(S) denotes the set of extremisers for (11).

Despite the equivalence of (1) and (11) as demonstrated in [6] and [13], it is not clear
to us how to adapt the proof of (2) from [21] into a proof of (12). One difficulty comes
from the fact that the conformal invariance, which is well known to hold for (1) and
is an important tool in the proof of (2), seems difficult to show for (11) directly. A
manifestation of this difficulty comes from the shape of the extremisers for (11); they
satisfy

g = | · |s−n ∗ J
1
q

τ dσ,

where Jτ is the jacobian of a conformal transformation on S
n−1, and dσ is surface

measure (see [13]).
Our proof of Theorem 2 instead relies on a very recent result of Carlen [16] which

implies that the operation of ‘dualising’ an inequality is stable under refinements such
as (2). It is well known that by duality, (1) is equivalent to the following Hardy–
Littlewood–Sobolev inequality, which was first established in sharp form by Lieb
[35]: ∣∣∣∣∣

∫
R2(n−1)

f (x) f (y)

|x − y|n−2s dxdy

∣∣∣∣∣ ≤ CHLS(n, s)‖ f ‖2
Lq′

(Rn−1)
(13)

for f ∈ Lq ′
(Rn−1), where CHLS(n, s) is the sharp constant and q ′ := q

q−1 is the usual
Hölder conjugate. As a consequence, in [16] a refinement of (13) is obtained using
(2):

CHLS(n, s)‖ f ‖2
Lq′ −

∣∣∣∣∣
∫
R2(n−1)

f (x) f (y)

|x − y|n−2s dxdy

∣∣∣∣∣ � inf
f∗∈MHLS

‖ f − f∗‖2Lq′ , (14)

where MHLS = MHLS(n, s) denotes the set of functions for which one has equality
in (13). Given (14) and the perspective in [16], a revisit of the proof of the sharp
inequality (11) from [13] yields (12) with little additional effort.

Remark The inequality (14) appears to have been first proved by Liu–Zhang via a
direct derivation ([36], Theorem 2.2); however, the approach in [16] permits some
simplifications compared to this. For instance, a lack of smoothness of the functional
given by the left-hand side of (14) occurs since q > 2, and this causes a failure of the
second-order Taylor expansion used in the derivation of (2) (necessitating a result of
Christ from [24]; see [36, Sect. 4.2]).

1 Here and throughout, we use notation A � B and A � B to denote, respectively, A ≤ cB and A ≥ cB
for an arbitrary constant c > 0 which may depend on numbers such as p or q but never on functions such
as f or G. The value of c may change from line to line.
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1462 N. Bez et al.

In the years since the influential work [35], there has been considerable progress
made in the understanding of other inequalities with conformal structure. In order to
motivate our next result we consider the kinetic transport equation

{
∂t F(t, x, v) + v · ∇x F(t, x, v) = 0

F(0, x, v) = f (x, v),
(15)

for n ≥ 1, where (t, x, v) ∈ R × R
n × R

n . For the velocity average

ρ f (t, x) :=
∫
Rn

F(t, x, v) dv =
∫
Rn

f (x − tv, v) dv,

a full range of necessary and sufficient conditions on (p, q, r) for the estimate

‖ρ f ‖Lq
t Lrx (R

n+1) � ‖ f ‖L p
x,v(R2n) (16)

to hold is now known; see [7,20,33]. Since the adjoint operator is given by

ρ∗G(x, v) =
∫
R

G(s, x + vs) ds,

then for p = n+2
n+1 and q = r = n+2

n , the dual inequality to (16)

‖ρ∗G‖Ln+2
x,v (R2n)

� ‖G‖
L

n+2
2

t,x (Rn+1)
(17)

has an alternative interpretation as an estimate for the classical X-ray transform on
R
n+1; see [8] for discussion and further references regarding these estimates (and nat-

ural generalisations such as the Radon transform) from this perspective. In particular,
it follows from the results of [22,27,29] that the optimal constant in (17) is attained
when

G(t, x) = 1

1 + t2 + |x |2

uniquely, up to the invariances of the inequality. This result implies (cf. Lemma 1,
below) that for such p, q and r , the optimal constant in (16) is attained if and only if

f (x, v) = 1(
(1 + |x |2)(1 + |v|2) − (x · v)2

) n+1
2

,

again up to invariances. We remark that the proof of the sharp form of (17) relies on
the conformal invariance of the inequality in this case; for general triples (p, q, r) this
fails and it is an open problem to obtain the sharp constant and characterisation of
extremisers in (16).
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Stability of Trace Theorems on the Sphere 1463

Developing the ideas of [22,27,29] further, in [28] it is proved that the inequality
(17) is locally stable in the following sense: the inequality

‖ρ‖ − ‖ρ∗G‖L p′

‖G‖Lq′
� inf

G∗∈M(ρ∗)

(‖G − G∗‖Lq′

‖G‖Lq′

)2

(18)

holds for any G ∈ Lq ′ \ {0} such that

inf
G∗∈M(ρ∗)

‖G − G∗‖Lq′

‖G‖Lq′
≤ c1

for some computable constant c1 < 1 depending only on n. Here, as usual M(ρ∗)
denotes the set of extremisers for (17). The notion of local stability has proved useful
more generally: such estimates are more tractable than the corresponding global ones
but turn out to be equivalent in many cases (for example, this holds for (1) and is used
in the proof of (2); see [21]). Our next result is the following, which implies that the
inequality (16) is locally stable.

Theorem 3 For p = n+2
n+1 and q = r = n+2

n ,

‖ρ‖ − ‖ρ f ‖Lq

‖ f ‖L p
� inf

f∗∈M(ρ)

(‖ f − f∗‖L p

‖ f ‖L p

)2

(19)

for f ∈ L p(R2n) \ {0} such that

inf
f∗∈M(ρ)

‖ f − f∗‖L p

‖ f ‖L p
≤ c2,

where c2 < 1 is a computable constant. Here M(ρ) denotes the set of extremisers for
(16) for such (p, q, r).

Remarks • Although it is natural to expect (18) to hold globally this is not known
for n ≥ 2. As noted in [28], it would be enough to establish that any extremising
sequence for (17) is precompact, but the inequality has a particularly large group
of symmetries which leads to many ways in which this can fail. It is known when
n = 1 (due to Christ—see [22]) and so the global estimate holds in this case, but
for n = 1 the inequality (16) is self-dual and so (18) and (19) are the same.

• Corollary 3 is related to a number of recent results where properties of the solutions
to (15) have been studied using the relation with the X-ray transform outlined
above. Examples include monotonicity properties for estimates closely related to
(17) [8, Sect. 5], and null-form estimates which may be viewed as multilinear
generalisations of (16) [9, Sect. 7.2].

Our proof of Theorem 3 proceeds using (18) and a duality theorem for local stability
inequalities which is of independent interest; see Theorem 5, below. It is inspired by,
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1464 N. Bez et al.

and is a generalisation of, a result from [16] which was used to prove a local version
of (14) in the case s = 3

2 .
The question of stability has been studied recently for a number of important geo-

metric and analytic inequalities and has found a range of applications (see [17,19,26]).
However, the derivation of estimates of this type with optimal distance norms has in
general proved to be a difficult problem (see e.g. [4,23–25,32] and references therein)
and many important questions remain open. Our results are elementary in comparison
but as far as we know, Theorem 1 provides the first example of a global Bianchi–Egnell
type stability estimate with optimal constant. Further, Theorems 2 and 3 build on the
very recent work [16], using this perspective to derive estimates for which we are not
aware of an alternative approach.

Organisation The next section is devoted to the results relating to stability of trace
theorems into L2; specifically we prove Theorem 1 and show how to deduce Corollary
2. In Sect. 3, we prove the stable Lq trace inequality Theorem 2, and in Sect. 4, we
state and prove the local duality–stability result that we need to deduce Theorem 3.
Finally, in Sect. 5, we prove the reverse form of (8) mentioned above and discuss some
related problems.

2 Stability of Trace Estimates into L2: Proof of Theorem 1 and
Corollary 2

Our proof of Theorem 1 is based on a decomposition of L2(Rn) induced by the spher-
ical harmonics. In order to understand sharp smoothing estimates for linear dispersive
propagators, Walther [40] used such decomposition (later developed in [14] and [10]);
these smoothing estimates are known to imply trace theorems on the sphere and thus
our approach is natural. In particular, we use the following decomposition of L2(Rn)

[14, Sect. 2.1]:

ĝ(ξ) =
∑
k≥0

dim(Hk)∑
m=1

P(k,m)

(
ξ

|ξ |
)
g(k,m)
0 (|ξ |)|ξ | 1−n

2 , ξ ∈ R
n, (20)

where for each k the collection {P(k,m)}dim(Hk)
m=1 forms an orthonormal basis of the

space of spherical harmonics Hk , and g
(k,m)
0 ∈ L2(0,∞) for each k ≥ 0 and 1 ≤ m ≤

dim(Hk). Unless otherwise specified, by (k,m) we mean pairs of integers k and m in
this range, and we use notation

∑
k,m for the double sum in (20). For any Pk ∈ Hk

one has [40, Corollary 5.1]

P̂kdσ(x) = (2π)
n
2

i k
Pk

(
x

|x |
)

|x | 2−n
2 Jk+ n−2

2
(|x |)

for x ∈ R
n , where dσ denotes induced Lebesgue measure on S

n−1. By Fourier inver-
sion, (20) and polar co-ordinates, we deduce that
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Stability of Trace Theorems on the Sphere 1465

w(
√−�)

1
2 g(θ) = 1

(2π)
n
2

∑
k,m

(−1)k
P(k,m)(θ)

i k

∫ ∞

0
g(k,m)
0 (r)r

1
2 w(r)

1
2 Jk+ n−2

2
(r) dr,

for θ ∈ S
n−1. Hence, by orthogonality,

(2π)n‖Swg‖2L2(Sn−1)
=

∑
k,m

(∫ ∞

0
g(k,m)
0 (r)r

1
2 Jk+ n−2

2
(r)w(r)

1
2 dr

)2

=:
∑
k,m

Ak,m .

Define

Bk,m =
∫ ∞

0
|g(k,m)

0 (r)|2 dr.

Recalling that

λk(w) =
∫ ∞

0
Jk+ n−2

2
(r)2rw(r) dr,

by the Cauchy–Schwarz inequality we have Ak,m(w) ≤ λk(w)Bk,m for each (k,m)

with equality if and only if there exists constants ck,m ∈ C such that

g(k,m)
0 (r) = ck,m Jk+ n−2

2
(r)w(r)

1
2 r

1
2 (21)

almost everywhere on (0,∞). Further, using Plancherel’s theorem and orthogonality,
one has

‖g‖L2(Rn) = 1

(2π)n

∑
k,m

Bk,m .

To summarise, we have shown that

‖Swg‖2L2 = 1

(2π)n

∑
k,m

Ak,m ≤ 1

(2π)n

∑
k,m

λk(ω)Bk,m ≤ λ0(w)‖g‖2L2

from which it follows that C(w)2 = λ0(w) and the image under the Fourier transform
of M(Sw) is given by

M̂(Sw) =
{

μw(| · |) 1
2

Jn−2
2

(| · |)
| · | n−2

2

: μ ∈ C \ {0}
}

(see [11, Theorem 1.8] for the original derivation of this). Using this and the Hilbert
structure of L2 we may assume that
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1466 N. Bez et al.

inf
g∗∈M(Sw)

‖g − g∗‖2L2 = ‖g‖2L2 − | 〈g, g∗〉 |2
‖g∗‖2L2

,

where (by abuse of notation) g∗ ∈ M(Sw) is fixed. Using polar co-ordinates, orthog-
onality and the fact that P(0,1) is constant, one can compute that

| 〈g, g∗〉 |2
‖g∗‖2L2

= |Sn−1|
(2π)nλ0(w)

(P(0,1))2A0,1(w) = A0,1(w)

(2π)nλ0(w)
,

where the second equality follows from the condition ‖P(0,1)‖2
L2(Sn−1)

= 1. Com-
bining all of the above, we see that (6) (with C = λ0(w) − λ∗(w)) is equivalent
to

λ0(w)
∑
k,m

Bk,m−
∑
k,m

Ak,m(w) ≥ (λ0(w)−λ∗(w))

(( ∑
k,m

Bk,m

)
− A0,1(w)

λ0(w)

)
, (22)

or

λ∗(w)
∑
k,m

Bk,m ≥ A0,1(w)
λ∗(w)

λ0(w)
+

∑
k,m
k≥1

Ak,m(w).

But

A0,1(w)
λ∗(w)

λ0(w)
+

∑
k,m
k≥1

Ak,m(w) ≤ B0,1λ∗(w) +
∑
k,m
k≥1

λk(w)Bk,m ≤ λ∗(w)
∑
k,m

Bk,m,

(23)

and so (22) holds.
Equality holds in the first inequality in (23) if and only if (21) holds for each (k,m)

with k ≥ 1, and since λk(w) > 0 equality holds in the second inequality only if
Bk,m = 0 for all (k,m) with k ≥ 1 and k /∈ K. Combining these two conditions and
using the fact that the collection {P(k,m)} is a basis for the space Hk , we obtain the
claimed equality condition for (6) in the case K �= ∅.

It remains to demonstrate the sharpness of the constant when K = ∅. In this case,
by the definition of λ∗(w) we can find a subsequence (λh(l)(w)) of (λl(w)) with
λh(l)(w) → λ∗(w) as l → ∞. But then if we define (gl) ⊂ L2(Rn) by

|ξ | n−2
2

(w(|ξ |)) 1
2

ĝl(ξ) = P(h(l),1) (
ξ ′) Jn−2

2 +h(l)(|ξ |),
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then Ak,m(w) = λk(w)Bk,m for all (k,m), with both sides equal to zero if and only if
(k,m) �= (h(l), 1). But then testing (6) on such gl we see

λ0(w)
∑

k,m Bk,m − ∑
k,m Ak,m(w)

(
∑

k,m Bk,m) − A0,1(w)

λ0(w)

=
∑

k,m Bk,m(λ0(w) − λk(w))∑
k,m Bk,m

= λ0(w) − λh(l)(w)

→ λ0(w) − λ∗(w),

where the second equality follows from the fact that the sums have only one term,
since λk(w) > 0. This completes the proof of Theorem 1.

Remarks • We could have combined the results of [16] with the analysis of the dual
inequality to (3) in [13] and [11] to obtain a simpler proof of (6), but doing so does
not seem to yield the additional information given in Theorem 1.

• As far as we know, our argument gives, in particular, the first direct proof of the
sharp trace theorem on the sphere (3); all previous proofs of this result relied upon
duality. We also point out that simple modifications of our argument yield similar
direct proofs of the trace theorem with angular regularity [13, Corollary 3.3], as
well as a stable version of this estimate analogous to (6).

We now turn to the proof of Corollary 2; for the rest of this section we fix w(r) =
(1 + r2)−s and s ∈ ( 12 ,∞). Before proceeding, we record the following two facts
about the Bessel function Jν(k) for ν(k) := k + n−2

2 :

|Jν(k)(r)| � r− 1
3 (24)

for any r > 0 (with implicit constant independent of k and n), and

∫ ∞

0
|Jν(k)(r)|2r1−τ dr = 21−τ

�(τ − 1)�(k + n−τ
2 )

�( τ
2 )2�(k + n+τ

2 )
(25)

for any τ > 1. Inequality (24) is due to Landau [34], while the identity (25) goes back
to Watson [41]. By Stirling’s formula, the left-hand side of (25) converges to zero as
k → ∞, for any fixed τ > 1.

Proof of Corollary 2 We will show that for this choice of w the sequence (λk(w))

converges to zero; this suffices as it then follows that K �= ∅ (for if not then we could
find a subsequence converging to λ∗(w) > 0) so by the first remark after Theorem 1
we can conclude for s �= 1, and the case s = 1 follows from (10) as discussed in the
introduction.

We introduce two numbers p > 1 and ε > 0 depending on s, whose values will be
specified below. Using (24) and Hölder’s inequality we have
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∫ ∞

0
|Jν(k)(r)|2rw(r) dr =

∫ ∞

0
|Jν(k)(r)|

2
p + 2

p′ rw(r) dr

�
∫ ∞

0
|Jν(k)(r)|

2
p r

1− 2
3p′ w(r) dr,

≤
(∫ ∞

0
|Jν(k)(r)|2r−ε dr

) 1
p

(∫ ∞

0
w(r)p

′
r p

′− 2
3+ε(p′−1) dr

) 1
p′

.

Since by (25) the first term converges to zero as k → ∞ for any fixed ε > 0 (and
since λk(w) > 0 for all k), it is enough to find ε > 0 and p > 1 such that second
term is finite, for our choice of w. To see that this is possible, by a simple change of
variables we require

∫ ∞

0
(1 + u)−p′su

1
2 (p′− 5

3+ε(p′−1)) du < ∞,

but elementary considerations show that this holds whenever

s >
1

2
+ 1

6p′ + ε

2p
.

Recalling that s > 1
2 , the conclusion follows by choosing p sufficiently close to 1 and

ε sufficiently small. ��
Remark For s ∈ { n−1

2 , n+1
2 }, it is known that there is a constant c > 0 (depending on

n and s) such that
ŵ(| · |) = c| · |s−( n+1

2 )e−|·|. (26)

When s = n+1
2 , (26) is an elementary fact about the Poisson kernel. When s = n−1

2 ,
it is likely to be known although we could not find it explicitly in the literature; it
may be verified directly for n ∈ {2, 3} ([30], Lemma 5.3 and Lemma 6.3, taking there
t = 0), from which the general case follows by an induction argument ([12], proof
of Theorem 2.2). It is conceivable that a more explicit value of the constant C in (9)
may be obtained in these cases using (26) and the alternative formula (7) for λk(w),
but we do not attempt this here.

3 Stability of Trace Estimates into Lq: Proof of Theorem 2

Our proof of Theorem 2 rests on the following result, which is contained in Theorem
3.3 of [16]. In order to state it, we define, for a bounded linear operator T from L p(X)

to Lq(Y ), the set of extremisers

M(T ) = {g ∈ L p(X) \ {0} : ‖Tg‖Lq (Y ) = ‖T ‖‖g‖L p(X)}.

In what follows, we will shorten ‖ ·‖Lr = ‖·‖r where there is no chance of confusion.
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Theorem 4 Let T be as above for 1 < p ≤ 2 and 1 < q < ∞, and such that
M(T ) �= ∅. If

‖T ‖2‖G‖2q ′ − ‖T ∗G‖2p′ � inf
G∗∈M(T ∗)

‖G − G∗‖2q ′ (27)

holds for G ∈ Lq ′
, then

‖T ‖2‖g‖2p − ‖Tg‖2q � inf
g∗∈M(T )

‖g − g∗‖2p (28)

for any g ∈ L p.

For the rest of this section, we fix s ∈ ( 12 ,
n
2 ), p = 2 and q = 2(n−1)

n−2s , and we recall

the definition S = R(−�)− s
2 . In view of Theorem 4, it is enough to prove (27) for

T = S. In order to do this we use notation from [21], introducing the isometric map
P : Lq ′

(Sn−1) → Lq ′
(Rn−1) defined by

PG(x) := Jπ−1(x)
1
q′ G(π−1x), x ∈ R

n−1,

where π−1 : R
n−1 → S

n−1 is the inverse stereographic projection

π−1(x) :=
(

2x

1 + |x |2 ,
1 − |x |2
1 + |x |2

)
, x ∈ R

n−1

and Jπ−1 is the jacobian of this transformation, which one can check is

Jπ−1(x) =
(

2

1 + |x |2
)n−1

,

again for x ∈ R
n−1. We then have that

‖S∗G‖2L2(Rn)
= Cn,s

∣∣∣∣
∫
Sn−1

∫
Sn−1

G(ω)G(η)(1 − ω · η)s−
n
2 dσωdση

∣∣∣∣
= Cn,s

∣∣∣∣∣
∫
Rn−1

∫
Rn−1

PG(x)PG(y)

|x − y|n−2s dxdy

∣∣∣∣∣ ,

where Cn,s is a constant. The first equality here is proved in [13], while the second is
a well-known fact about the inequality (13) and goes back to [35]. The constant Cn,s

is explicitly computable but we do not record its value here, referring instead to [13].
It follows that

CTr(n, s)2 = Cn,sCHLS(n, s), PM(S∗) = MHLS(n, s), (29)

which in view of Lieb’s result [35] leads to the sharp inequality

‖S∗G‖L2(Rn) ≤ CTr(n, s)‖G‖Lq′
(Sn−1)
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and characterisation of M(S∗) as proved in [13]. Applying (14) and using (29), it
follows that

CTr(n, s)2‖G‖2
Lq′

(Sn−1)
− ‖S∗G‖2L2(Rn)

� inf
G∗∈M(S∗)

‖PG − PG∗‖2Lq′
(Rn−1)

= inf
G∗∈M(S∗)

‖G − G∗‖2Lq′
(Sn−1)

,

which is (27) for T = S.

Remark As noted in [16], it is possible to bound the implicit constant in (28) from
below in terms of the implicit constant in (27). As such, the above argument shows
that the implicit constant in (12) is controlled by the one in (14), which in turn admits
a bound in terms of α in (2) (see [16, Theorem 1.1]).

4 Local Duality–Stability: Proof of Theorem 3

Theorem 3 will follow immediately from the following result which may be viewed
as an analogue of Theorem 4 for local stability estimates. It is closely related to the
result in Sect. 3.2 of [16] in which a local version of (14) in the case s = 3

2 is obtained
using an appropriate local version of (2); we generalise this argument to a framework
suitable for our application by using the results of [19].

Theorem 5 For 1 < p ≤ 2 and 1 < q < ∞, let T : L p(X) → Lq(Y ) be a bounded
linear operator. Assume that

‖T ‖ − ‖T ∗G‖p′

‖G‖q ′
� inf

G∗∈M(T ∗)

(‖G − G∗‖q ′

‖G‖q ′

)2

(30)

holds for any G ∈ Lq ′ \ {0} with

inf
G∗∈M(T ∗)

‖G − G∗‖q ′

‖G‖q ′
< c1 (31)

for some c1 ≤ 1. There is a constant c2 ≤ 1 (with explicit dependence on p, q, ‖T ‖
and c1) such that if g ∈ L p \ {0} is such that

inf
g∗∈M(T )

‖g − g∗‖p

‖g‖p
< c2, (32)

then

‖T ‖ − ‖Tg‖q
‖g‖p

� inf
g∗∈M(T )

(‖g − g∗‖p

‖g‖p

)2

(33)

holds.
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An important tool in the proof of this result is the following lemma, which was made
explicit as a special case of Theorem 2.3 (see also Example 2.1) of [16] and is implicit
for a number of specific operators in earlier works (see e.g. [13,18,24,35]).

Lemma 1 Suppose that T : L p(X) → Lq(Y ) is a bounded linear operator and
1 < p, q < ∞. Then M(T ) �= ∅ if and only if M(T ∗) �= ∅. In this case,

M(T ) = |T ∗M(T ∗)|p′−2T ∗M(T ∗).

We also use the following two inequalities from [19]: for r ≥ 1, if g1, g2 ∈ Lr then

‖Drg1 − Drg2‖r ′ ≤ Cr

( ‖g1 − g2‖r
‖g1‖r + ‖g2‖r

)min{r,2}−1

(34)

holds with constant

Cr =
{
2(r ′)r−1 if r ≤ 2

4(r − 1) if r ≥ 2

and if in addition r ≥ 2 and h1 and h2 are unit vectors in Lr and Lr ′
, respectively,

then ∣∣∣∣
∫

h1h2

∣∣∣∣ ≤ 1 − r ′ − 1

4
‖Drh1 − eiθh2‖2r ′ , (35)

where θ is such that eiθ
∫
h1h2 ≥ 0. Here, Dr is the duality map

Dr F := |F |r−2F

‖F‖r−1
Lr

,

for 0 �= F ∈ Lr , and we note that by homogeneity Dr (λF) = Dr F for all λ > 0.

Proof of Theorem 5 By homogeneity it is enough to prove (33) for ‖g‖p = 1. Set
G = DqTg, then

‖T ‖ − ‖Tg‖q = ‖T ‖ −
∣∣∣∣
∫

TgG

∣∣∣∣
= ‖T ‖ − ‖T ∗G‖p′

∣∣∣∣∣
∫

g
T ∗G

‖T ∗G‖p′

∣∣∣∣∣ .

Assume, for the moment, that (32) for some c2 implies that there exists c1 depending
on c2 such that G as defined above satisfies (31), so that we may apply (30) to the

function G. Taking (h1, h2, r) =
(

T ∗G
‖T ∗G‖p′

, g, p′
)
in (35) (noting that in this case

θ = 0), using the homogeneity of Dp′ and the fact that ‖G‖q ′ = 1, we then have that

‖T ‖ − ‖Tg‖q ≥ ‖T ‖ − ‖T ∗G‖p′
(
1 − p − 1

4

∥∥g − Dp′T ∗G
∥∥2
p

)
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= ‖T ‖ − ‖T ∗G‖p′ + p − 1

4
‖T ∗G‖p′

∥∥g − Dp′T ∗G
∥∥2
p

� inf
G∗

‖G − G∗‖2q ′ + ‖T ∗G‖p′
∥∥g − Dp′T ∗G

∥∥2
p . (36)

Taking (g1, g2, r) = (T ∗G, T ∗G∗, p′) in (34) it follows that

inf
G∗∈M(T ∗)

‖Dp′T ∗G − Dp′T ∗G∗‖2p � inf
G∗

( ‖T ∗G − T ∗G∗‖p′

‖T ∗G‖p′ + ‖T ∗G∗‖p′

)2

�
(

1

‖T ∗G‖p′
inf
G∗

‖G − G∗‖q ′
)2

.

Inserting this into (36) we see that

‖T ‖ − ‖Tg‖q � ‖T ∗G‖p′ ‖g − Dp′T ∗G‖2p + inf
g∗∈M(T )

‖T ∗G‖2p′ ‖Dp′T ∗G − g∗‖2p
(37)

since, by Lemma 1, Dp′T ∗G∗ ∈ M(T ) whenever G∗ ∈ M(T ∗). Next note that if, for
example, (32) holds with c2 = 1

4 then we can find g∗ ∈ M(T )with ‖g−g∗‖p <
‖g‖p
4 .

But then,

‖T ‖−‖Tg‖q = ∣∣‖T ‖−‖T ‖‖g∗‖p +‖Tg∗‖q −‖Tg‖q
∣∣ ≤ 2‖T ‖‖g− g∗‖p ≤ ‖T ‖

2
,

(38)
and hence by Hölder’s inequality we have that ‖T ∗G‖p′ � ‖Tg‖q � 1 which, in
view of (37), completes the proof up to the verification of (30) as discussed above. To
complete this final step, we note that if g ∈ L p with ‖g‖p = 1 and g∗ ∈ M(T ) are
arbitrary,

‖g − g∗‖p � ‖Tg − Tg∗‖q � ‖G − G∗‖η

q ′(‖Tg‖q + ‖Tg∗‖q) � ‖G − G∗‖η

q ′ ,

(39)

where G is as above, G∗ := DqTg∗ ∈ M(T ∗), and η := (min{q, 2} − 1)−1. The
second inequality here follows from (34), and the third follows from (38). By raising
(39) to an appropriate power and keeping track of the constants, one may obtain an
explicit dependence of c2 on c1 and the other quantities as claimed. ��
Remark By following the compactness argument from [15], it is possible to use The-
orem 5 to give a proof of Theorem 4 under the assumption that

lim
m→∞

‖Tgm‖q
‖gm‖p

= ‖T ‖ ⇒ lim
m→∞ inf

g∗∈M(T )

‖gm − g∗‖p

‖gm‖p
= 0

for any (gm) ⊂ L p\{0}.Although it turns out that this conditionholds fairly generically
(in particular, in view of Lemma 1 of [21] it is enough to deduce (14) from (2)),
proceeding in this fashion one loses information about the explicit constant in (28),
and as evidenced by Theorem 3.2 of [16] this need not be the case.
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5 Further Results

First, we establish the reverse form of (8) mentioned in the introduction. A similar
result may be proved for the general estimate (6) by the same argument, using the
relevant results in [11].

Proposition 1 For s ∈ ( 12 ,
n
2 ) the inequality

‖R‖2‖ f ‖2
Ḣ s (Rn)

− ‖R f ‖2L2(Sn−1)
≤ ‖R‖2 inf

f∗∈M(R)
‖ f − f∗‖2Ḣ s (Rn)

holds for any f ∈ Ḣ s(Rn).

Proof We proceed following the proof from [21] of the forthcoming inequality (40).
Let f∗ denote the closest point inM(R) to f , then v := f − f∗ satisfies 〈v, f∗〉Ḣ s = 0.
We then have

‖R‖2‖ f ‖2
Ḣ s − ‖R f ‖2L2(Sn−1)

= ‖R‖2(‖v‖2
Ḣ s + ‖ f∗‖2Ḣ s ) − ‖R(v + f∗)‖2L2(Sn−1)

≤ ‖R‖2‖v‖2
Ḣ s − 2Re〈Rv,R f∗〉L2 .

For convenience we recall the definition S := R(−�)− s
2 from Theorem 2, treating S

as an operator from L2(Rn) to L2(Sn−1). By Theorem 1.1 of [13], (−�)
s
2 f∗ equals a

constant multiple of S∗1, and by Theorem 2.1 of [13] the operator SS∗ preserves the
class of constant functions. Hence there are constants c1, c2 �= 0 such that

〈Rv,R f∗〉L2 = c1〈(−�)
s
2 v,S∗1〉L2 = c2〈v, f∗〉Ḣ s = 0,

as desired. ��
Given the above result, a natural question arises concerning the inequalities (1) and
(13); we recall that in this case q = 2(n−1)

n−2s and s ∈ ( 12 ,
n
2 ). For (1) it is proved in [21]

that
CFS(n, s)‖(−�)

s
2G‖22 − ‖G‖2q � inf

G∗∈MFS
‖(−�)

s
2 (G − G∗)‖22, (40)

while for (13),

CHLS(n, s)‖ f ‖2q ′ −
∣∣∣∣∣
∫
R2(n−1)

f (x) f (y)

|x − y|n−2s dxdy

∣∣∣∣∣ � ‖ f ‖2q ′ inf
f∗∈MHLS

(‖ f − f∗‖q ′

‖ f ‖q ′

)σ

(41)
is proved in [36] for σ = 1 and is conjectured for 1 < σ ≤ 2. An argument similar to
the one used to prove Theorem 5 shows that (41) would follow from (40) if we knew
that

‖h1 − Dr ′h2‖σ
r � 1 −

(∫
h1h2

)2

(42)

held for r < 2 and unit vectors h1 ∈ Lr , h2 ∈ Lr ′
such that

∫
h1h2 ≥ 0. When σ = 1,

(42) is immediate from Hölder’s inequality, and so we recover (41) in this case.
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Although we do not know if (42) is true for some σ > 1 we have the following,
which shows that it fails in the case of particular interest σ = 2 and r < 2.

Proposition 2 If 1 < r < ∞, then a necessary condition for (42) to hold is σ ≤ r .
In particular, if r < 2 then (42) is false for σ = 2.

Proof It is enough to disprove the weaker inequality

‖h1 − Dr ′h2‖σ
r � 1 −

∫
h1h2. (43)

A result of Aldaz [1] implies that

∥∥|h1| r2 − |h2| r
′
2
∥∥2
2 � 1 −

∫
|h1h2|. (44)

Combining (43) with (44) we conclude that if h1 and h2 are non-negative then

∥∥h1 − hr
′−1
2

∥∥σ

r �
∥∥h r

2
1 − h

r ′
2
2

∥∥2
2, (45)

and we claim that σ ≤ r is necessary for (45) to hold. To prove this we modify an
argument from [19]: on the unit interval [0, 1], define

h1 ≡ 1, h2(x) = (1 − δ)
− 2

r ′ χ(0,(1−δ)2)(x)

for 0 < δ � 1 fixed. Then clearly ‖h1‖r = ‖h2‖r ′ = 1, and

∥∥h r
2
1 − h

r ′
2
2

∥∥2
2 = (1 − δ)2

∣∣∣∣1 − 1

1 − δ

∣∣∣∣
2

+ 1 − (1 − δ)2 = 2δ.

Also,

∥∥h1 − hr
′−1
2

∥∥r
r = (1 − δ)2

(∣∣∣1 − (1 − δ)−
2
r

∣∣∣r + (1 − δ)−2 − 1
)

.

By Taylor expansion, for this choice of h1 and h2, it follows that

∥∥h1 − hr
′−1
2

∥∥r
r �

∥∥h r
2
1 − h

r ′
2
2

∥∥2
2,

and so by taking δ sufficiently small it follows that (45) cannot hold whenever σ > r .
��

Remarks • The example we used in Proposition 2 may be easily generalised to R
n ,

for example, by letting h1 be a positive radial Schwartz function of unit Lr norm
and taking h2(x) := (h1(|x |))r−1h

(
x ′) (recall x ′ := |x |−1x), where the function

h on S
n−1 equals (1− δ)

− 2
r ′ on a patch of measure (1− δ)2, and is zero otherwise.
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• The inequality (44)mayof course be viewed as a stable version ofHölder’s inequal-
ity; such estimates have attracted attention in a range of contexts recently (see [31]
and references therein). Although (44) is weaker than (35) in general it still suffices
for certain applications (as noted in [19]), and in view of Proposition 2 it has the
advantage that the reverse inequality is also true (see [1]).
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