
J Geom Anal (2018) 28:1151–1181
https://doi.org/10.1007/s12220-017-9857-5

Short-Time Existence of the Möbius-Invariant
Willmore Flow

Ruben Jakob1

Received: 1 September 2015 / Published online: 2 May 2017
© Mathematica Josephina, Inc. 2017

Abstract In this article the author proves existence and uniqueness of a smooth short-
time solution of the “Möbius-invariantWillmore flow”Eq. (9) starting in aC∞-smooth
immersion F0 of a fixed smooth compact torus Σ into R

n without umbilic points.
Hence, for some sufficiently small T ∗ > 0 there exists a unique smooth family { ft } of
smooth immersions of the torus Σ into R

n , with f0 = F0, which solve the evolution
Eq. (9) for t ∈ [0, T ∗] and whose tracefree parts A0

ft
(x) of their second fundamental

forms do not vanish in any (x, t) ∈ Σ × [0, T ∗]. The right-hand side of Eq. (9)
has the specific property that any family { ft } of umbilic-free C4-immersions ft :
Σ −→ R

n solves Eq. (9) if and only if its composition Φ( ft ) with any applicable
Möbius-transformation Φ of Rn solves Eq. (9) as well.
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1152 R. Jakob et al.

1 Introduction and Main Result

The starting point of this article is the L2-gradient-flow

∂t ft = −1

2

(�⊥
ft

H ft + Q(A0
ft
)(H ft )

) =: −δW( ft ) (1)

of the Willmore-functional

W( f ) := 1

4

∫

Σ

| H f |2 dμ f ,

defined on W 4,2-immersions f : Σ −→ R
n of a smooth, compact, orientable surface

Σ without boundary into some Rn . Here A f denotes the second fundamental form of
the immersion f , defined on pairs of tangent vector fields X, Y on Σ by

A f (X, Y ) := DX (DY ( f )) − PTan( f )(DX (DY ( f ))) ≡ (DX (DY ( f )))⊥ f , (2)

where DX ( f ) := D f (X) is the usual derivative of f in direction of X , PTan( f ) : Rn →
Tan( f ) denotes the bundle morphismwhich projectsRn orthogonally onto the tangent
spaces Tan f (x)( f (Σ)) of the immersed surface f (Σ) and where ⊥ f abbreviates the
bundle morphism IdRn − PTan( f ). Furthermore, A0

f denotes the tracefree part of A f ,
i.e.

A0
f (X, Y ) := A f (X, Y ) − 1

2
g f (X, Y ) H f ,

and H f := Trace(A f ) ≡ A f (ei , ei ) (“Einstein’s summation convention”) denotes
the mean curvature of f , where {ei } is a local orthonormal frame of the tangent
bundle of Σ . Finally Q(A f ) operates on vector fields φ which are sections into
the normal bundle of f , i.e. which are normal along f , by assigning Q(A f )(φ) :=
A f (ei , e j )〈A f (ei , e j ), φ〉, which is again a section into the normal bundle of f , by
definition of A f . In fact, (1) is the L2-gradient-flow ofW since it is proved in [9] that
for any vector field φ ∈ W 4,2(Σ,Rn) which is normal along f , i.e. which satisfies
(φ)⊥ f = φ, there holds

δW( f, φ) := d

ds
W( f + sφ) |s=0= 1

2

∫

Σ

〈
�⊥

f H f + Q(A0
f )(H f ), φ

〉
dμ f

=
∫

Σ

〈δW( f ), φ〉 dμ f . (3)

Now, we consider a smooth Riemannian manifold M , endowed with a smooth metric
g, and a two-dimensional smooth submanifold N of M , denote by ∇g the unique Rie-
mannian connection on M and by Ag(X, Y ) := (∇g

X (Y ))⊥N the second fundamental
form of the pair N ↪→ M , for any two tangent vector fields X, Y on N . We introduce

a local smooth chart ψ : Ω
∼=−→ N ′ ⊂ N of a coordinate neighbourhood N ′ of N ,
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Short-Time Existence of the Möbius-Invariant Willmore Flow 1153

yielding partial derivatives ∂1, ∂2 on N ′, and denote (Ag)i j := Ag(∂i , ∂ j ), i, j = 1, 2.
One can easily verify the following transformation formulae

(A0
g)i j := A0

g(∂i , ∂ j ) = A0
ḡ(∂i , ∂ j ) =: (A0

ḡ)i j (4)

and

| A0
g |2 √

g := gik g jl g((A0
g)i j , (A0

g)kl)
√

g

= ḡik ḡ jl ḡ((A0
ḡ)i j , (A0

ḡ)kl)
√

ḡ =| A0
ḡ |2 √

ḡ (5)

for the tracefree part A0
g of the second fundamental form Ag of N ↪→ M and for

the product of their squared lengths | A0
g |2 with √

g := √
det(g(∂i , ∂ j )) subject to a

conformal change of the metric, thus for a change of the Riemannian metric g to the
Riemannian metric ḡ := e2u g (see [7], Chap. II, and [4]). By (2), (10)–(12) and these
two formulae one can compute the following three results (see also Sect. 3, Proposition
13.6 and Lemma 13.7 in [12]):

Lemma 1 (1) Let Σ be a smooth, compact, orientable surface without boundary. The
Willmore-functional W is a ”conformal invariant” on the set of C4-immersions of
Σ into R

n. Precisely, this means that for any immersion f ∈ C4(Σ,Rn) and for
any conformal map Φ : Rn → R

n, for which Φ ◦ f is well defined on Σ , there
holds

W(Φ( f )) = W( f ). (6)

(2) For scaling an immersion f ∈ C4(Σ,Rn) by Φ(y) := λ y, λ ∈ R+, there holds

δW(Φ( f )) = λ−3δW( f )

on Σ , and for any immersion f ∈ C4(Σ,Rn \ {0}) there holds for the inversion
Φ(y) := y

|y|2 :

δW(Φ( f )) =| f |8 DΦ( f )(δW( f ))

on Σ , where DΦ(y) = 1
|y|2

((
δi j −2

yi y j

|y|2
)

i, j=1,...,n

)
and where DΦ( f (x)) denotes

the evaluation of this Jacobi-matrix in some image point f (x) of the surface f ,
and δW( f ) := 1

2

(�⊥
f H f + Q(A0

f )(H f )
)

as in (1) or (3).

(3) The differential operator f �→| A0
f |−4 δW( f ) (of fourth order) transforms

”conformally invariantly” on umbilic-free immersions of any fixed compact torus
intoRn. Precisely this means: Let f : Σ −→ R

n be a umbilic-free C4-immersion
of a fixed compact torus into R

n and Φ be an arbitrary Möbius-transformation
of Rn for which Φ ◦ f is well defined on Σ . Then there holds the following
transformation formula:

| A0
Φ( f ) |−4 δW(Φ( f )) = DΦ( f ) ·

(
| A0

f |−4 δW( f )
)
. (7)
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1154 R. Jakob et al.

Here in part (3), the surface Σ has to be confined to the class of smooth compact
tori, since the assumption on f not to have any umbilic points on Σ forces the Euler-
characteristic of Σ to vanish on account of the general Poincaré–Hopf Theorem for
smooth sections with isolated zeroes into vector bundles over orientable, compact
manifolds. Since for the differential operator ∂t the chain rule applied to continuously
differentiable families { ft } of C4-immersions yields the same transformation formula
as in (7), i.e. ∂t (Φ( ft )) = DΦ( ft ) · ∂t ( ft ), we achieve the following corollary of
Lemma 1:

Corollary 1 (1) If a family { ft } of C4-immersions ft : Σ −→ R
n \ {0} solves the

Willmore flow equation (1) for t ∈ [0, T ), then its inversion Φ( ft ) := ft
| ft |2 solves

the “inverse Willmore flow equation”

∂t ut = −1

2
| ut |8 (�⊥

ut
Hut + Q(A0

ut
)(Hut )

) ≡ − | ut |8 δW(ut ) (8)

on Σ × [0, T ).
(2) Any family { ft } of C4-immersions ft : Σ −→ R

n without umbilic points, i.e. with
| A0

ft
|2> 0 on Σ ∀ t ∈ [0, T ), solves the flow equation

∂t ft = −1

2
| A0

ft
|−4 (�⊥

ft
H ft + Q(A0

ft
)(H ft )

)

≡ − | A0
ft

|−4 δW( ft ) (9)

if and only if its composition Φ( ft ) with any applicable Möbius-transformation
Φ of Rn solves the same flow equation and, thus, if and only if

∂t (Φ( ft )) = − | A0
Φ( ft )

|−4 δW(Φ( ft ))

holds ∀ t ∈ [0, T ) and for every Φ ∈ Möb(Rn) for which Φ( ft ) is well defined on
Σ × [0, T ).

Part (2) of this corollary suggests to term the flow (9) “Möbius-invariant Willmore
flow” (MIWF) and to find sufficient conditions on its initial immersion f0 for its short-
time existence and uniqueness, and also sufficient conditions for its global existence.
So far, there has not been achieved any result at all about this flow. In [12] Mayer was
able to obtain local bounds for the L∞-norm of the second fundamental form A ft and
its higher derivatives up to the existence time T > 0 of any maximal solution { ft }
of the “inverse Willmore flow equation” (8) under appropriate smallness assumptions
about the L2-norms of A ft and its derivatives and about the L∞-norm of ft on small
balls up to T and to use them in order to achieve a lower bound c for the maximal
existence time T and an upper bound for the L∞-norm of ft up to the time t = c,
which only depend on local L2-bounds for A f0 and its second derivatives and on
the L∞-norm of the initial surface f0. The first achievement about the “MIWF” (9)
consists of the proof of unique short-time existence for smooth initial data:
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Short-Time Existence of the Möbius-Invariant Willmore Flow 1155

Theorem 1 (Main result) Let Σ be a smooth compact torus. If F0 : Σ −→ R
n is

a C∞-smooth immersion without umbilic points, thus with | A0
F0

|2> 0 on Σ , then
there exists some T ∗ > 0 such that the Möbius-invariant Willmore flow (9) possesses
a unique solution { ft } on Σ × [0, T ∗], depending smoothly on t ∈ [0, T ∗], which
consists of C∞-smooth, umbilic-free immersions ft : Σ −→ R

n, starting in F0.

We shall see below that the main tools of the existence proof are an adaption of the
“DeTurck-Hamilton-Trick” (see also pp. 38–39 in [1] or the original source in [5]
applied to Hamilton’s investigation of the Ricci-flow in [8]) combined with parabolic
Schauder a priori estimates for linear, uniformly parabolic operators L of fourth order
“in diagonal form” with Cα, α

4 -coefficients—which can be derived from Theorems 1,2
and 4,5 in [13]—the continuity method and the fact that the biharmonic heat operator

∂t + �2
G : {{Gt } ∈ C4+α,1+ α

4 (Σ × [0, T ],Rn) | G0 = 0 on Σ}
∼=−→ Cα, α

4 (Σ × [0, T ],Rn)

yields an isomorphism, for any fixed smooth immersion G of the torus Σ into R
n

and for any fixed α ∈ (0, 1). For the definition of parabolic Hölder spaces, the reader
is referred to pp. 44–45 in [6] and pp. 18–19 in [1]. In the final step, we shall adapt
the “DeTurck-Hamilton-Trick” once again in order to prove uniqueness of the MIWF
with given smooth start immersion. It should be pointed out that one could also use
parabolic L2- and Fredholm Theory, as developed by Mantegazza and Martinazzi in
[11], instead of the author’s “Schauder approach” in order to gain both the existence and
uniqueness result of point (2) of Theorem 3 below. In a forthcoming article, the author
plans to show a sufficient condition for global existence of the MIWF, to examine its
singularities and to discuss some of its applications. In the appendix of this article
the author explains, why the right-hand side of (9) is the “simplest” modification of
the usual Willmore flow in order to achieve the desired “Möbius-invariance” of the
resulting modified flow.

2 Preparations for the Proof of Theorem 1

For any fixed C2-immersion G : Σ → R
n and a smooth chart ψ of an arbitrary

coordinate neighbourhood Σ ′ of a fixed smooth compact torus Σ , we will denote
throughout this article the resulting partial derivatives on Σ ′ by ∂i , i = 1, 2, the
coefficients gi j := 〈∂i G, ∂ j G〉 of the first fundamental form of G w.r.t. ψ and the
associated Christoffel-symbols (ΓG)m

kl := gmj 〈∂kl G, ∂ j G〉 of (Σ ′, G∗(geu)). More-
over, we define the first (covariant) derivatives by ∇G

i (V ) := ∇G
∂i

(V ) := ∂i (V ),
i = 1, 2, and the second covariant derivatives by

∇G
kl (V ) ≡ ∇G

k ∇G
l (V ) := ∂kl V − (ΓG)m

kl ∂m V (10)

of any function V ∈ C2(Σ,R). Moreover, for any vector field V ∈ C2(Σ,Rn) we
define the projections of its first derivatives onto the normal bundle of the immersed
torus G(Σ) by
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1156 R. Jakob et al.

∇⊥G
i (V ) ≡ (∇G

i (V ))⊥G := ∇G
i (V ) − PTan(G)(∇G

i (V ))

and the “normal second covariant derivatives” of V w.r.t. the immersion G by

∇⊥G
k ∇⊥G

l (V ) := ∇⊥G
k (∇⊥G

l (V )) − (ΓG)m
kl ∇⊥G

m (V ).

Using these terms, we define the Beltrami–Laplacian w.r.t. G by �G(V ) :=
gkl∇G

kl (V ), its projection (�G V )⊥G := (
gkl∇G

k ∇G
l (V )

)⊥G onto the normal bun-

dle of the surface G(Σ) and the “normal Beltrami–Laplacian” by �⊥G
G (V ) :=

gkl∇⊥G
k ∇⊥G

l (V ). We shall note here, that Eqs. (2) and (10) together imply

(AG)i j = AG(∂i , ∂ j ) = ∂i j G − (ΓG)m
i j ∂m G = ∇G

i ∇G
j (G), (11)

which shows that the second fundamental form AG is a covariant tensor field of degree
2 and that there holds

HG = gi j (AG)i j = gi j ∇G
i ∇G

j (G) = �G(G) (12)

for the mean curvature of the immersion G.
The main problem about Eq. (9) is its non-parabolicity. We have

�⊥
f H f + Q(A0

f )(H f ) = (� f H f )
⊥ f + 2 Q(A f )(H f ) − 1

2
| H f |2 H f

and by (12)

(� f H f )
⊥ f = gi j

f gkl
f ∇ f

i ∇ f
j ∇ f

k ∇ f
l ( f )

−gi j
f gkl

f 〈∇ f
i ∇ f

j ∇ f
k ∇ f

l ( f ), ∂m f 〉 gmr
f ∂r ( f ) (13)

for any C4-immersion f : Σ → R
n , which shows that the leading operator of the

right-hand side of (9), i.e. of | A0
ft

|−4 δW( ft ), is not uniformly elliptic (of fourth

order), even if | A0
ft

|2 should stay positive on the torus Σ for all times t ∈ [0, T ]. In
order to overcome this unpleasant obstruction, we are going to adapt the “DeTurck-
Hamilton-Trick” (see also pp. 38–39 in [1]), i.e. we fix some further C4-immersion G
of Σ into R

n and compute

∇ f
k ∇ f

l ( f ) = (∂kl f − (ΓG)m
kl∂m( f )) + Cm

kl ( f, G) ∂m( f )

= ∇G
k ∇G

l ( f ) + Cm
kl ( f, G) ∂m( f )

for Cm
kl ( f, G) := ((ΓG)m

kl − (Γ f )
m
kl) on Σ ′. It is important to note here that the

difference (ΓG)m
kl − (Γ f )

m
kl is a tensor field of third degree and that therefore the

difference

gi j
f gkl

f

(∇ f
i ∇ f

j ∇ f
k ∇ f

l ( f ) − ∇ f
i ∇ f

j (Cm
kl ( f, G) ∂m( f ))

) = gi j
f gkl

f ∇ f
i ∇ f

j ∇G
k ∇G

l ( f )
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Short-Time Existence of the Möbius-Invariant Willmore Flow 1157

is a “scalar”, i.e. does not depend on the choice of the local chart ψ and thus yields
a well-defined differential operator of fourth order on C4-immersions f : Σ → R

n

again. Moreover, one can easily verify by (10) and the derivation formulae in (20)
that f �→ gi j

f gkl
f ∇ f

i ∇ f
j ∇G

k ∇G
l ( f ) is a non-linear operator of fourth order whose

leading term is gi j
f gkl

f ∇G
i ∇G

j ∇G
k ∇G

l ( f ), which is uniformly elliptic in the sense of
(47) below, if ‖ f − G ‖C1(Σ) is sufficiently small. Neglecting derivatives of ft of
order < 4 we are thus led to firstly consider the evolution equation

∂t ( ft ) = −1

2
| A0

ft
|−4 (

2 δW( ft ) + gi j
ft

gkl
ft

gmr
ft

〈∇ ft
i ∇ ft

j ∇ ft
k ∇ ft

l ( ft ), ∂m ft 〉 ∂r ft

−gi j
ft

gkl
ft

∇ ft
i ∇ ft

j ((ΓF0)
m
kl − (Γ ft )

m
kl) ∂m( ft )

)

=: DF0( ft ), (14)

for any C∞-smooth start immersion F0 : Σ → R
n satisfying | A0

F0
|> 0 on Σ . The

right-hand side DF0( ft ) of (14) can be expressed by

DF0( ft )(x) = −1

2
| A0

ft
|−4 gi j

ft
gkl

ft
∇ ft

i ∇ ft
j ∇F0

k ∇F0
l ( ft )(x)

+ B(x, Dx ft , D2
x ft , D3

x ft ), (15)

for (x, t) ∈ Σ ′ × [0, T ], where the symbols Dx ft , D2
x ft , D3

x ft abbreviate the matrix-
valued functions (∂1 ft , ∂2 ft ), (∇F0

i j ft )i, j∈{1,2} and (∇F0
i jk ft )i, j,k∈{1,2} and where the

n components of the lower order term B( · , Dx ft , D2
x ft , D3

x ft ) are “scalars”, i.e.
functions on Σ ′ × [0, T ] that do not depend on the choice of the chart ψ of Σ ′.
Similarly as in the proof of Theorem 2 one can infer from this fact that there has to
exist somewell-defined function B : Σ×R

2n×R
4n×R

8n → R
n whose n components

are rational functions in their 14n real variables, such that (15) holds “globally” for
any pair (x, t) ∈ Σ ×[0, T ]. Hence, we arrive at the quasi-linear initial value problem

∂t ( ft ) = −1

2
| A0

ft
|−4 gi j

ft
gkl

ft
∇ ft

i ∇ ft
j ∇F0

k ∇F0
l ( ft ) + B( · , Dx ft , D2

x ft , D3
x ft ),

f0 = F0 on Σ, (16)

of fourth order forC4-immersions ft : Σ → R
n , which is uniformly parabolic as long

as ‖ ft − F0 ‖C4(Σ) remains sufficiently small, i.e. smaller than some δ > 0 for any
t ∈ [0, T ], since this guarantees that | A0

ft
|2> 0 on Σ for t ∈ [0, T ], because of the

assumption on F0 to satisfy | A0
F0

|2> 0 on the compact manifold Σ . This motivates
to look for a short-time solution of (16) either within the open, convex subset

X F0,β,δ,T :=
{
{ ft }∈C4+β,1+ β

4 (Σ×[0, T ],Rn) |‖ ft − F0 ‖C4(Σ)< δ for t∈[0, T ],
f0 = F0 on Σ

}
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1158 R. Jakob et al.

of the affine closed subspace

Yβ,T,F0 := {{ ft } ∈ C4+β,1+ β
4 (Σ × [0, T ],Rn) | f0 = F0 on Σ}

of the Banach space C4+β,1+ β
4 (Σ × [0, T ],Rn) or within the closed convex subset

X̃ F0,β,δ,T :=
{
{ ft }∈C4+β,1+ β

4 (Σ×[0, T ],Rn) |‖ ft−F0 ‖C4(Σ)≤ δ for t∈[0, T ],
f0 = F0 on Σ

}

of C4+β,1+ β
4 (Σ × [0, T ],Rn), for some sufficiently small δ > 0 and some arbitrary

β ∈ (0, 1).
Now, since the operator DF0 does not act linearly on the family { ft }, one cannot
immediately apply the standard theory for linear parabolic systems—as presented in
[10], Chapters 4 and 5, or in Chap. 3 of [1] for linear parabolic systems of second
resp. fourth order—in order to achieve existence of some solution of (16) on some
sufficiently short time interval [0, T ∗]. A first strategy to overcome this problemmight
consist in proving that for any element {Gt } ∈ X̃ F0,β,δ,T the unique solution { ft } of
the semi-linear equation

∂t ( ft ) = −1

2
| A0

Gt
|−4 gi j

Gt
gkl

Gt
∇Gt

i ∇Gt
j ∇F0

k ∇F0
l ( ft ) + B(x, Dx Gt , D2

x Gt , D3
x Gt )

(17)
with f0 = F0 on Σ is again contained in X̃ F0,β,δ,T if T > 0 is chosen sufficiently
small, which would define the map Ψ : X̃ F0,β,δ,T → X̃ F0,β,δ,T , mapping {Gt } onto
the solution { ft }, and then proving continuity ofΨ and that the closure ofΨ (X̃ F0,β,δ,T )

is a compact subset of C4+β,1+ β
4 (Σ × [0, T ],Rn) in order to derive the existence of

some fixed point ofΨ , whichwould in fact be a solution of problem (16) onΣ×[0, T ].
But unfortunately, it is impossible to guarantee—by the use of the a priori estimates
in Corollary 3 or in Proposition 3 below—the existence of some T > 0 such that
the solution { ft } of equation (17) for every (!) given {Gt } ∈ X̃ F0,β,δ,T again satisfies
‖ ft − F0 ‖C4(Σ)≤ δ for all t ∈ [0, T ], implying { ft } ∈ X̃ F0,β,δ,T again. Hence, the
construction of the map Ψ breaks down from the very beginning.

Amore refined strategy is to consider the non-linearmapφ : X F0,β,δ,T −→ Cβ,
β
4 (Σ×

[0, T ],Rn), defined by

φ( ft ) := ∂t ( ft ) − DF0( ft )

≡ ∂t ( ft ) + 1

2
| A0

ft
|−4 gi j

ft
gkl

ft
∇ ft

i ∇ ft
j ∇F0

k ∇F0
l ( ft )

−B(x, Dx ft , D2
x ft , D3

x ft ), (18)

for some sufficiently small δ > 0 and some arbitrarily fixed T > 0 and β ∈ (0, 1),
and to prove the following two theorems, Theorems 2 and 3:
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Short-Time Existence of the Möbius-Invariant Willmore Flow 1159

Theorem 2 Let F0 : Σ −→ R
n be a C∞-smooth immersion of a smooth compact

torus into R
n without umbilic points, thus with | A0

F0
|2> 0 on Σ , and let β ∈ (0, 1)

and T > 0 be arbitrarily fixed. There is a sufficiently small δ > 0 such that the
following three statements hold:

(1) The map φ : X F0,β,δ,T −→ Cβ,
β
4 (Σ ×[0, T ],Rn), defined in (18), is of class C1

on the open subset X F0,β,δ,T ⊂ Yβ,T,F0 .
(2) In any fixed element { ft } ∈ X F0,β,δ,T the Fréchet-derivative of φ is a linear,

uniformly parabolic operator of order 4 whose leading operator of fourth order
acts on each component of f = { ft } separately:

Dφ( f ).η = ∂t (η) + 1

2
| A0

ft
|−4 gi j

ft
gkl

ft
∇F0

i jkl(η)

+Bi jk
3 · ∇F0

i jk(η) + Bi j
2 · ∇F0

i j (η) + Bi
1 · ∇F0

i (η), (19)

on Σ × [0, T ], for any element η = {ηt } of the tangent space

T f X F0,β,δ,T = Yβ,T,0 := {{ηt } ∈ C4+β,1+ β
4 (Σ × [0, T ],Rn) | η0 = 0 on Σ},

where Bi jk
3 , Bi j

2 , Bi
1 are the coefficients of Matn,n(R)-valued, contravariant ten-

sor fields of degrees 3, 2 and 1, which depend on x, Dx ft , D2
x ft , D3

x ft and D4
x ft

and are of class Cβ,
β
4 on Σ × [0, T ].

(3) The Fréchet-derivative of φ yields an isomorphism

Dφ( f ) : Yβ,T,0
∼=−→ Cβ,

β
4 (Σ × [0, T ],Rn)

in any fixed f ∈ X F0,β,δ,T .

Proof (1) We fix an arbitrary smooth chart ψ : Ω
∼=−→ Σ ′ of an arbitrary coordinate

neighbourhoodΣ ′ ofΣ , which yields partial derivatives ∂m , m = 1, 2, onΣ ′. For any
C2-immersion G : Σ → R

n the choice ofψ yields the coefficients gi j := 〈∂i G, ∂ j G〉
of the first fundamental form of G w.r.t. ψ and the associated Christoffel-symbols
(ΓG)m

kl := gmj 〈∂kl G, ∂ j G〉 of (Σ ′, G∗(geu)). On account of (10) and by the general
derivation formulae

∇G
i (ωk) = ∂i (ωk) − (ΓG)m

ikωm

∇G
i (λ jk) = ∂i (λ jk) − (ΓG)m

i j λmk − (ΓG)m
ik λ jm

∇G
i (ζ jkl) = ∂i (ζ jkl) − (ΓG)m

i j ζmkl − (ΓG)m
ik ζ jml − (ΓG)m

il ζ jkm (20)

on Σ ′ for the coefficients ωk , λ jk and ζ jkl (w.r.t. to the chart ψ) of covariant
C1-tensor fields ω, λ and ζ of degrees 1, 2 and 3, one can verify that for any
C4-immersion f : Σ → R

n , for any fixed C∞-immersion G : Σ → R
n

and for fixed i, j, k, l ∈ {1, 2} there is a unique rational function PG
(i jkl) ∈

C∞(Σ ′)[v1, . . . , v2n, w1, . . . , w4n, y1, . . . , y8n] (with n components) in 2n + 4n +
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8n = 14n real variables, whose coefficients are smooth functions which are ratio-
nal functions of the partial derivatives ∂i (G1), . . . , ∂i (Gn), ∂i j (G1), . . . , ∂i j (Gn), ∂i jk

(G1), . . . , ∂i jk(Gn) of the components of G up to third order, such that

∇ f
i ∇ f

j ∇G
k ∇G

l ( f ) = ∇G
i ∇G

j ∇G
k ∇G

l ( f )

+PG
(i jkl)(∇G

1 ( f 1), . . . ,∇G
2 ( f n),∇G

11( f 1), . . . ,∇G
22( f n),∇G

111( f 1), . . . ,∇G
222( f n))

(21)

holds on Σ ′. We note here, that the terms
PG

(i jkl)(∇G
1 ( f 1), . . . ,∇G

2 ( f n),∇G
11( f 1), . . . ,∇G

22( f n),∇G
111( f 1), . . . ,∇G

222( f n))

must be the coefficients of a covariant tensor field of fourth degree on Σ ′. Moreover,
since there holds

| A0
f |2= gik

f g jl
f 〈(A0

f )i j , (A0
f )kl〉

and (A f )i j = A f (∂i , ∂ j ) = ∂i j f − (Γ f )
m
i j ∂m f , one can verify only by (10) that

there is a unique rational function QG ∈ C∞(Σ ′)[v1, . . . , v2n, w1, . . . , w4n] in 6n
real variables whose coefficients are smooth functions which are rational functions of
the partial derivatives ∂i (G1), . . . , ∂i (Gn), ∂i j (G1), . . . , ∂i j (Gn) of the components
of G up to second order, such that

| A0
f |4= QG(∇G

1 ( f 1),∇G
1 ( f 2), . . . ,∇G

2 ( f n),∇G
11( f 1),∇G

11( f 2), . . . ,∇G
22( f n))

(22)

holds on Σ ′, which is a “scalar”, i.e which does not depend on the choice of the
chart ψ of Σ ′. Combining (21) and (22) and recalling that F0 does not have any
umbilic points on Σ , we obtain the existence of a unique rational function RF0 ∈
C∞(Σ ′)[v1, . . . , v2n, w1, . . . , w4n, y1, . . . , y8n] in 2n+4n+8n = 14n real variables,
whose n components are rational functions in 14n real variables whose coefficients
are rational functions of the partial derivatives of the components of F0 up to third
order, such that

1

2
| A0

ft
|−4 gi j

ft
gkl

ft
∇ ft

i ∇ ft
j ∇F0

k ∇F0
l ( ft )

= 1

2
| A0

ft
|−4 gi j

ft
gkl

ft
∇F0

i ∇F0
j ∇F0

k ∇F0
l ( ft )

+RF0(∇F0
1 ( f 1t ), . . . ,∇F0

2 ( f n
t ),∇F0

11 ( f 1t ), . . . ,∇F0
22 ( f n

t ),∇F0
111( f 1t ),

. . . ,∇F0
222( f n

t )) (23)

holds on Σ ′ × [0, T ] for any family of immersions { ft } ∈ X F0,β,δ,T , if δ >

0 is chosen sufficiently small. We should note here that the n components of
RF0(∇F0

1 ( f 1t ), . . . ,∇F0
2 ( f n

t ),∇F0
11 ( f 1t ), . . . ,∇F0

22 ( f n
t ),∇F0

111( f 1t ), . . . ,∇F0
222( f n

t )) are
“scalars” as well, i.e. do not depend on the choice of the chart ψ of Σ ′. On account
of the definition in (18) of the map φ we infer from (23) its representation
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φ( ft )(x) = ∂t ft (x) + 1

2
| A0

ft
(x) |−4 gi j

ft
gkl

ft
∇F0

i ∇F0
j ∇F0

k ∇F0
l ( ft )(x)

+RF0(∇F0
1 ( f 1t ), . . . ,∇F0

2 ( f n
t ), . . . ,∇F0

111( f 1t ),∇F0
111( f 2t ), . . . ,

∇F0
222( f n

t ))(x) − B(x, Dx ft (x), D2
x ft (x), D3

x ft (x))

= ∂t ft (x) + 1

2
| A0

ft
(x) |−4 gi j

ft
gkl

ft
∇F0

i ∇F0
j ∇F0

k ∇F0
l ( ft )(x)

+F(x, Dx ft (x), D2
x ft (x), D3

x ft (x)) (24)

for any family of immersions { ft } ∈ X F0,β,δ,T and for (x, t) ∈ Σ ′ × [0, T ], if δ > 0
is chosen sufficiently small. Here and in the sequel, the symbols Dx f, D2

x f, D3
x f, . . .

abbreviate the matrix-valued functions (∂1 f, ∂2 f ), (∇F0
i j f )i, j∈{1,2}, (∇F0

i jk f )i, j,k∈{1,2},
. . .. On account of the arbitrariness of the choice of the coordinate neighbourhood Σ ′
and its chart ψ and by the compactness of Σ , equation (24) gives rise to a unique and
well-defined function F : Σ × R

2n × R
4n × R

8n → R
n whose n components are

rational functions in their 14n real variables, such that (24) holds on Σ × [0, T ], if
δ > 0 is chosen sufficiently small. Now, since F0 is umbilic-free on Σ , i.e. since there
holds | AF0 |2≥ c0 > 0 onΣ , and asΣ is compact, we know that the modulus of each
denominator which appears in the fractions of F(x, Dx ft (x), D2

x ft (x), D3
x ft (x)) is

bounded from below by some positive constant onΣ ×[0, T ], if { ft } ∈ X F0,β,δ,T and
δ > 0 sufficiently small. Therefore, the rational function (x, h) �→ F(x, h) is of class
C∞ in an open neighbourhoodO of the graph {(x, Dx F0(x), . . . , D3

x F0(x)) | x ∈ Σ}
inΣ ×R

M , where we set M := 14n. For any δ > 0 we define the open neighbourhood

Vδ of the function (x, t) �→ (Dx F0(x), . . . , D3
x F0(x)) in C1+β,

1+β
4 (Σ × [0, T ],RM )

by

h ∈ Vδ ⇐⇒‖ (Dx F0, . . . , D3
x F0) − h ‖L∞(Σ×[0,T ])< 2δ.

[See pp. 44–45 in [6] for the definition of “C1+β,
1+β
4 (Σ × [0, T ],RM )”.] Now, we

choose δ > 0 that small such that there holds (x, ht (x)) ∈ O for any pair (x, t) ∈
Σ×[0, T ] if {ht } ∈ Vδ and obtain that the partial derivatives ofF w.r.t. the components
of h ∈ R

M are of classC∞ about every point (x, ht (x)) (∈ O) if {ht } is contained inVδ .

Hence, fixing such a small δ > 0, some {ht } ∈ Vδ and some η = {ηt } ∈ C1+β,
1+β
4 (Σ×

[0, T ],RM ) with sufficiently small norm 0 <‖ η ‖
C1+β,

1+β
4 (Σ×[0,T ],RM )

< ε̃ we can

derive from the classical mean value theorem:

| DhF(x, ht (x)) − DhF(x, ht (x) + ηt (x)) |
≤ Const(F0, δ, ε̃) | ηt (x) |≤ Const(F0, δ, ε̃) ‖ η ‖

C1+β,
1+β
4 (Σ×[0,T ],RM )

for any t ∈ [0, T ] and any x ∈ Σ , and thus (abbreviating h := {ht } and η := {ηt })

‖ DhF( · , h) − DhF( · , h + η) ‖L∞(Σ×[0,T ])
≤ Const(F0, δ, ε̃) ‖ η ‖

C1+β,
1+β
4 (Σ×[0,T ],RM )

. (25)
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Moreover, as in the proof of the compactness of the embedding Cα, α
4 (Σ ×[0, T ]) ↪→

Cβ,
β
4 (Σ × [0, T ]), for 0 < β < α < 1, we can estimate for any fixed x ∈ Σ , any

ε > 0 and any fixed α ∈ (β, 1):

höl β
4

(
DhF(x, h( · )(x)) − DhF(x, h( · )(x) + η( · )(x))

)
(26)

≤ ε
α−β
4 (höl α

4
DhF(x, h( · )(x)) + höl α

4
DhF(x, h( · )(x) + η( · )(x)))

+2 ε− β
4 ‖ DhF( · , h) − DhF( · , h + η) ‖L∞(Σ×[0,T ])

on [0, T ], and similarly for any fixed t ∈ [0, T ]:

hölβ
(
DhF( · , ht ( · )) − DhF( · , ht ( · ) + ηt ( · )))

≤ εα−β(hölα DhF( · , ht ( · )) + hölα DhF( · , ht ( · ) + ηt ( · )))
+2 ε−β ‖ DhF( · , h) − DhF( · , h + η) ‖L∞(Σ×[0,T ]) (27)

on Σ . Combining (25), (26) and (27) we obtain again on account of the mean value
theorem:

‖ DhF( · , h) − DhF( · , h + η) ‖
Cβ,

β
4 (Σ×[0,T ])

=‖ DhF( · , h) − DhF( · , h + η) ‖L∞(Σ×[0,T ])
+ sup

x∈Σ

höl β
4
(DhF(x, h( · )(x)) − DhF(x, h( · )(x) + η( · )(x)))

+ sup
t∈[0,T ]

hölβ(DhF( · , ht ( · )) − DhF( · , ht ( · ) + ηt ( · )))
≤ Const(F0, δ, ε̃) ‖ η ‖

C1+β,
1+β
4 (Σ×[0,T ])

+ε
α−β
4 Const(F0, δ, ε̃)

(
‖ h ‖

Cα, α
4 (Σ×[0,T ]) + ‖ η ‖

Cα, α
4 (Σ×[0,T ])

)

+2 ε− β
4 Const(F0, δ, ε̃) ‖ η ‖

C1+β,
1+β
4 (Σ×[0,T ])

+εα−β Const(F0, δ, ε̃)
(
ε1−α+ ‖ h ‖

Cα, α
4 (Σ×[0,T ]) + ‖ η ‖

Cα, α
4 (Σ×[0,T ])

)

+2 ε−β Const(F0, δ, ε̃) ‖ η ‖
C1+β,

1+β
4 (Σ×[0,T ])

≤ Const(F0, δ, ε̃, h)
(
(1 + ε− β

4 + ε−β) ‖ η ‖
C1+β,

1+β
4 (Σ×[0,T ])

+ε
α−β
4

+εα−β + ε1−β
)
, (28)

for any ε > 0 and any fixed α ∈ (β, 1). Now, choosing exactly ε =‖
η ‖

C1+β,
1+β
4 (Σ×[0,T ],RM )

∈ (0, ε̃) we arrive at the estimate:

‖ DhF( ·, h) − DhF( · , h + η) ‖
Cβ,

β
4 (Σ×[0,T ])
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≤ Const(F0, δ, ε̃, h)

(
‖ η ‖

C1+β,
1+β
4 (Σ×[0,T ])

+ ‖ η ‖1−
β
4

C1+β,
1+β
4 (Σ×[0,T ])

+ ‖ η ‖1−β

C1+β,
1+β
4 (Σ×[0,T ])

+ ‖ η ‖
α−β
4

C1+β,
β
4 (Σ×[0,T ])

+ ‖ η ‖α−β

C1+β,
1+β
4 (Σ×[0,T ])

)

(29)

for any fixed α ∈ (β, 1). Now, denoting by

F� : Vδ ⊂ C1+β,
1+β
4 (Σ × [0, T ],RM ) −→ Cβ,

β
4 (Σ × [0, T ],Rn)

the non-linear operator which maps h = {ht } ∈ Vδ to the function F( · , h), we obtain

by the classical mean value theorem for any η = {ηt } ∈ C1+β,
1+β
4 (Σ × [0, T ],RM )

with sufficiently small norm 0 <‖ η ‖
C1+β,

1+β
4 (Σ×[0,T ],RM )

< ε̃:

F�(h + η) − F�(h) − DhF( · , h) · η

= F( · , h + η) − F( · , h) − DhF( · , h) · η

=
∫ 1

0
DhF( · , h + sη) · η ds − DhF( · , h) · η

=
∫ 1

0
DhF( · , h + sη) − DhF( · , h) ds · η

on Σ × [0, T ], and therefore together with (29):

‖ F�(h + η) − F�(h) − DhF( · , h) · η ‖
Cβ,

β
4 (Σ×[0,T ])

≤ M
∫ 1

0
‖ DhF( · , h+s η)−DhF( · , h) ‖

Cβ,
β
4 (Σ×[0,T ])

ds ‖ η ‖
Cβ,

β
4 (Σ×[0,T ])

≤ Const(F0, δ, ε̃, h)
( ‖ η ‖

C1+β,
1+β
4

+ ‖ η ‖1−
β
4

C1+β,
1+β
4

+ ‖ η ‖1−β

C1+β,
1+β
4

+ ‖ η ‖
α−β
4

C1+β,
1+β
4

+ ‖ η ‖α−β

C1+β,
1+β
4

)· ‖ η ‖
C1+β,

1+β
4

.

This proves that the operator F� is Fréchet-differentiable in any fixed h ∈ Vδ with

Fréchet-derivative DF�(h) : C1+β,
1+β
4 (Σ × [0, T ],RM ) −→ Cβ,

β
4 (Σ × [0, T ],Rn)

given by

DF�(h).η = DhF( · , h) · η. (30)

Moreover, (29) shows that the Fréchet-derivative DF� is continuous from (Vδ, ‖ ·
‖

C1+β,
1+β
4 (Σ×[0,T ])

) into the Banach space of linear operators mapping C1+β,
1+β
4 (Σ ×

[0, T ],RM ) to Cβ,
β
4 (Σ × [0, T ],Rn). Thus F� is a C1-map from (Vδ, ‖ ·
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‖
C1+β,

1+β
4 (Σ×[0,T ])

) to Cβ,
β
4 (Σ × [0, T ],Rn). Denoting by L the linear mapping

ft �→ (Dx ft , D2
x ft , D3

x ft ) we see that

‖ (Dx F0, . . . , D3
x F0) − L( ft ) ‖L∞(Σ×[0,T ])≤ sup

t∈[0,T ]
‖ F0 − ft ‖C3(Σ)≤ δ < 2δ

for any family of surfaces { ft } ∈ X F0,β,δ,T , which shows that L maps X F0,β,δ,T into
the neighbourhood Vδ .
Moreover, since F0 is umbilic-free on Σ , i.e. since there holds | AF0 |2≥ c0 > 0 on
Σ , and as x �→| A0

f (x) |2 is a “scalar” on Σ for any C2-immersion f : Σ → R
n ,

Eq. (22) yields a well-defined function A : Σ × R
2n × R

4n → R, which is rational
in its 6n real variables, such that there holds

1

2
| A0

f |−4= A( · , Dx f, D2
x f ) on Σ (31)

for any C2-immersion f with sufficiently small C2-distance ‖ f − F0 ‖C2(Σ). Again
on account of | AF0 |2≥ c0 > 0 onΣ the rational function (x, h) �→ A(x, h) is of class
C∞ in an open neighbourhood O of the graph {(x, Dx F0(x), D2

x F0(x)) | x ∈ Σ} in
Σ×R

M , wherewe set now M := 6n. For any δ > 0we define the open neighbourhood

Ṽδ of the function (x, t) �→ (Dx F0(x), D2
x F0(x)) in C2+β,

2+β
4 (Σ × [0, T ],RM ) by

h ∈ Ṽδ ⇐⇒‖ (Dx F0, D2
x F0) − h ‖L∞(Σ×[0,T ])< 2δ.

Now, we choose δ > 0 that small such that there holds (x, ht (x)) ∈ O for any pair
(x, t) ∈ Σ × [0, T ] if {ht } ∈ Ṽδ and obtain that the partial derivatives of A w.r.t. the
components of h ∈ R

M are of class C∞ about every point (x, ht (x)) (∈ O) if {ht } is
contained in Ṽδ . Exactly as above we introduce the map A� : Ṽδ ⊂ C2+β,

2+β
4 (Σ ×

[0, T ],RM ) −→ Cβ,
β
4 (Σ × [0, T ],R) which maps h = {ht } ∈ Ṽδ to the function

A( · , h) and show by the above reasoning that the mapA� is Fréchet-differentiable in

any fixed h ∈ Ṽδ with Fréchet-derivative DA�(h) : C2+β,
2+β
4 (Σ × [0, T ],RM ) −→

Cβ,
β
4 (Σ × [0, T ],R) given by

DA�(h).η = DhA( · , h) · η (32)

and that DA� is continuous from (Ṽδ, ‖ · ‖
C2+β,

2+β
4 (Σ×[0,T ])

) into the Banach space

of linear operators mapping C2+β,
2+β
4 (Σ ×[0, T ],RM ) to Cβ,

β
4 (Σ ×[0, T ],R), and

thus that A� is a C1-map from (Ṽδ, ‖ · ‖
C2+β,

2+β
4 (Σ×[0,T ])

) to Cβ,
β
4 (Σ × [0, T ],R).

We will need below that the linear map L̃ : ft �→ (Dx ft , D2
x ft ) maps X F0,β,δ,T into

the neighbourhood Ṽδ on account of

‖ (Dx F0, D2
x F0) − L̃( ft ) ‖L∞(Σ×[0,T ])≤ sup

t∈[0,T ]
‖ F0 − ft ‖C2(Σ)≤ δ < 2δ
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for any family of surfaces { ft } ∈ X F0,β,δ,T . Finally, as the function

x �→ gi j
f gkl

f ∇F0
i ∇F0

j ∇F0
k ∇F0

l ( f )(x)

is a scalar for any C4-immersion f : Σ → R
n , there is a unique, well-defined

function Q : R2n × R
16n → R

n whose n components are rational functions of its
first 2n variables (h1, . . . , h2n) =: h̄ and linear functions of its last 16n variables
(h2n+1, . . . , h18n) =: h∗ such that there holds

gi j
f gkl

f ∇F0
i ∇F0

j ∇F0
k ∇F0

l ( f ) = Q(Dx f, D4
x f ) on Σ (33)

for any C4-immersion f . Firstly we infer from the “quasi-linearity” of Q that its
derivative in some fixed point h = (h̄, h∗) ∈ R

2n × R
16n in direction of an arbitrary

η = (η̄, η∗) ∈ R
2n × R

16n has the form

DhQ(h) · η = Dh̄Q(h̄, h∗) · η̄ + Q(h̄, η∗). (34)

As Dh̄Q is linear in its last 16n variables as well, we note that there holds:

Dh̄Q(h̄ + sη̄, h∗ + sη∗) − Dh̄Q(h̄, h∗)
= Dh̄Q(h̄ + sη̄, h∗) − Dh̄Q(h̄, h∗)s Dh̄Q(h̄ + sη̄, η∗), (35)

for any s ∈ [0, 1]. Now, we consider the product X := C3+β,
3+β
4 (Σ × [0, T ],R2n) ×

Cβ,
β
4 (Σ × [0, T ],R16n), which becomes a Banach space when equipped with the

norm

‖ h ‖X :=‖ h̄ ‖
C3+β,

3+β
4 (Σ×[0,T ],R2n)

+ ‖ h∗ ‖
Cβ,

β
4 (Σ×[0,T ],R16n)

,

for h = (h̄, h∗) ∈ X . Moreover, we define for small δ > 0 the open neighbourhood
V̂δ of the function (x, t) �→ (Dx F0(x), D4

x F0(x)) in X by

h = (h̄, h∗) ∈ V̂δ ⇐⇒‖ Dx F0 − h̄ ‖L∞(Σ×[0,T ]) + ‖ D4
x F0 − h∗ ‖L∞(Σ×[0,T ])< 2δ.

We firstly estimate for any fixed h = (h̄, h∗) ∈ V̂δ and any η ∈ X with sufficiently
small norm 0 <‖ η ‖X< ε̃ by the mean value theorem and the “quasi-linearity” of
Dh̄Q:

‖ Dh̄Q(h̄ + η̄, h∗) − Dh̄Q(h̄, h∗) ‖L∞(Σ×[0,T ])
≤ Const(F0, δ, ε̃) ‖ η̄ ‖L∞(Σ×[0,T ])‖ h∗ ‖L∞(Σ×[0,T ]) .

Similarly as in (28) we can combine this estimate again with the mean value theorem
in order to estimate:

‖ Dh̄Q(h̄ + η̄, h∗) − Dh̄Q(h̄, h∗) ‖
Cβ,

β
4 (Σ×[0,T ])

=‖ Dh̄Q(h̄ + η̄, h∗) − Dh̄Q(h̄, h∗) ‖L∞(Σ×[0,T ])
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+ sup
x∈Σ

höl β
4
(Dh̄Q(h̄(x) + η̄(x), h∗(x)) − Dh̄Q(h̄(x), h∗(x)))

+ sup
t∈[0,T ]

hölβ(Dh̄Q(h̄t + η̄t , h∗
t ) − Dh̄Q(h̄t , h∗

t ))

≤ Const(F0, δ, ε̃) ‖ h∗ ‖
Cβ,

β
4 (Σ×[0,T ])

‖ η̄ ‖L∞(Σ×[0,T ])

+ε
α−β
4 Const(F0, δ, ε̃)

(
‖ h̄ ‖

Cα, α
4 (Σ×[0,T ]) + ‖ η̄ ‖

Cα, α
4 (Σ×[0,T ])

)
‖ h∗ ‖

Cβ,
β
4

+2 ε− β
4 Const(F0, δ, ε̃) ‖ h∗ ‖

Cβ,
β
4 (Σ×[0,T ])

‖ η̄ ‖L∞(Σ×[0,T ])

+εα−β Const(F0, δ, ε̃)(‖ h̄ ‖
Cα, α

4 (Σ×[0,T ]) + ‖ η̄ ‖
Cα, α

4 (Σ×[0,T ])) ‖ h∗ ‖
Cβ,

β
4

+2 ε−β Const(F0, δ, ε̃) ‖ h∗ ‖
Cβ,

β
4 (Σ×[0,T ])

‖ η̄ ‖L∞(Σ×[0,T ])

≤ Const(F0, δ, ε̃, h) ‖ h∗ ‖
Cβ,

β
4

(
(1 + ε− β

4 + ε−β) ‖ η̄ ‖L∞ +ε
α−β
4 + εα−β

)
,

for any ε > 0 and any fixed α ∈ (β, 1). Now setting ε :=‖ η ‖X> 0 this estimate
implies in particular that

‖ Dh̄Q(h̄ + η̄, h∗) − Dh̄Q(h̄, h∗) ‖
Cβ,

β
4 (Σ×[0,T ])

≤ Const(F0, δ, ε̃, h) ‖ h∗ ‖
Cβ,

β
4 (Σ×[0,T ])

( ‖ η ‖X + ‖ η ‖1−
β
4

X + ‖ η ‖1−β
X + ‖ η ‖

α−β
4

X + ‖ η ‖α−β
X

)
. (36)

Exactly the same reasoning, now using the “quasi-linearity” of Q itself, yields the
estimates

‖ Q(h̄ + η̄, η∗) − Q(h̄, η∗) ‖L∞(Σ×[0,T ])
≤ Const(F0, δ, ε̃) ‖ η̄ ‖L∞(Σ×[0,T ])‖ η∗ ‖L∞(Σ×[0,T ])

and

‖ Q(h̄ + η̄, η∗) − Q(h̄, η∗) ‖
Cβ,

β
4 (Σ×[0,T ])

≤ Const(F0, δ, ε̃, h)
(

‖ η ‖X + ‖ η ‖1−
β
4

X + ‖ η ‖1−β
X + ‖ η ‖

α−β
4

X + ‖ η ‖α−β
X

)

‖ η∗ ‖
Cβ,

β
4 (Σ×[0,T ])

. (37)

As we also have

‖ Dh̄Q(h̄ + η̄, η∗) ‖
Cβ,

β
4 (Σ×[0,T ])

≤ Const(F0, δ, ε̃, h) ‖ η ‖X (38)

on account of the linearity of Dh̄Q in its last 16n variables, we can finally combine
(34)–(38) with the mean value theorem in order to conclude for the operator Q� :
V̂δ ⊂ X −→ Cβ,

β
4 (Σ ×[0, T ],Rn) which maps h = {ht } ∈ V̂δ to the functionQ(h):
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Short-Time Existence of the Möbius-Invariant Willmore Flow 1167

‖ Q�(h + η) − Q�(h) − DhQ(h) · η ‖
Cβ,

β
4 (Σ×[0,T ])

=‖
∫ 1

0
Dh̄Q(h̄ + s η̄, h∗) − Dh̄Q(h̄, h∗) ds · η̄

+
∫ 1

0
s Dh̄Q(h̄ + s η̄, η∗) ds · η̄

+
∫ 1

0
Q(h̄ + sη̄, η∗) − Q(h̄, η∗) ds ‖

Cβ,
β
4 (Σ×[0,T ])

≤ Const(F0, δ, ε̃, h)
( ‖ η ‖X + ‖ η ‖1−

β
4

X + ‖ η ‖1−β
X + ‖ η ‖

α−β
4

X + ‖ η ‖α−β
X

)

‖ η ‖X ,

for any fixed h = (h̄, h∗) ∈ V̂δ . This shows that the operator Q� is Fréchet-
differentiable in any fixed h = (h̄, h∗) ∈ V̂δ with Fréchet-derivative DQ�(h) : X −→
Cβ,

β
4 (Σ × [0, T ],Rn) in direction of an arbitrary η = (η̄, η∗) ∈ X given by

DQ�(h).η = DhQ(h) · η = Dh̄Q(h̄, h∗) · η̄ + Q(h̄, η∗). (39)

Furthermore (35)–(39) show that DQ�(h) is continuous in h ∈ V̂δ w.r.t. ‖ · ‖X . We
finally let L̂ denote the linear map ft �→ (Dx ft , D4

x ft ), which maps X F0,β,δ,T into
the neighbourhood V̂δ on account of

‖ Dx F0 − L̂( ft ) ‖L∞(Σ×[0,T ]) + ‖ D4
x F0 − L̂( ft )

∗ ‖L∞(Σ×[0,T ])
≤ sup

t∈[0,T ]
‖ F0 − ft ‖C4(Σ)≤ δ < 2δ

for any family of immersions { ft } ∈ X F0,β,δ,T . As (24) means by (31) and (33) that

φ = ∂t + A� ◦ L̃ · Q� ◦ L̂ + F� ◦ L, (40)

we can finally infer from the chain- and product rule for C1-maps (on open subsets of

Banach spaces) that φ is a C1-map from X F0,β,δ,T to Cβ,
β
4 (Σ × [0, T ],Rn), if δ > 0

is chosen sufficiently small, as asserted in part (1) of the theorem.
(2) From (30)–(33) and (39)–(40) we infer again by the chain- and product rule for
C1-maps that the Fréchet-derivative of φ in any fixed { ft } ∈ X F0,β,δ,T is given by

Dφ( ft ).η = ∂tηt + DA�(L̃( ft )).L̃(ηt ) · Q�(L̂( ft ))

+A�(L̃( ft ))
(
Dh̄Q(L̂( ft )) · L̂(ηt )

+Q(L̂( ft ), (L̂(ηt ))
∗)

) + DF�(L( ft )).L(ηt )

= ∂tηt + 1

2
| A0

ft
|−4 (

Dh̄Q(Dx ft , D4
x ft ) · Dx (ηt )

+gi j
ft

gkl
ft

∇F0
i ∇F0

j ∇F0
k ∇F0

l (ηt )
)
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1168 R. Jakob et al.

+DhA( · , Dx ft , D2
x ft ) · (

Dxηt , D2
xηt

)
gi j

ft
gkl

ft
∇F0

i ∇F0
j ∇F0

k ∇F0
l ( ft )

+DhF( · , Dx ft , D2
x ft , D3

x ft ) · (
Dxηt , D2

xηt , D3
xηt

)
(41)

on Σ × [0, T ], for η = {ηt } ∈ T f X F0,β,δ,T = Yβ,T,0. First of all, this shows
that the Fréchet-derivative Dφ( ft ) of φ in any fixed { ft } ∈ X F0,β,δ,T is a lin-
ear, uniformly parabolic differential operator of fourth order on Yβ,T,0 in “diagonal

form”, i.e. whose leading operator 1
2 | A0

ft
|−4 gi j

ft
gkl

ft
∇F0

i ∇F0
j ∇F0

k ∇F0
l is uniformly

elliptic in the sense of (47) for some sufficiently large ellipticity constant Λ ≥ 1,
depending on Σ, F0 and on δ, and which acts on each component of {ηt } ∈ Yβ,T,0
separately, if δ > 0 is chosen sufficiently small. Furthermore, the coefficients of
the rational function F are C∞-smooth functions on Σ which only depend on
the derivatives of F0 up to 3rd order. As we also know that the modulus of each
denominator which appears in the fractions of DhF(x, Dx ft (x), D2

x ft (x), D3
x ft (x))

is bounded from below by some positive constant on Σ × [0, T ], if { ft } ∈
X F0,β,δ,T and δ > 0 sufficiently small, we can conclude by the mean value the-
orem that the composition DhF( · , Dx f, D2

x f, D3
x f ) has to be of regularity class

C1+β,
1+β
4 (Σ × [0, T ],R14n) if { ft } ∈ X F0,β,δ,T and δ > 0 sufficiently small;

see again pp. 44–45 in [6] for the definition of “C1+β,
1+β
4 (Σ × [0, T ],RM )”.

By the same reasoning, an appropriate choice of δ > 0 guarantees that the
coefficients 1

2 | A0
ft

|−4 gi j
ft

gkl
ft

of the leading term of Dφ( ft ) are of class

C1+β,
1+β
4 (Σ × [0, T ],R), for any family { ft } ∈ X F0,β,δ,T . We can finally rewrite

formula (41) and obtain that indeed the Fréchet-derivative Dφ( ft ) in any fixed
{ ft } ∈ X F0,β,δ,T is a linear, uniformly parabolic differential operator on Yβ,T,0 of
the form

Dφ( ft ).η = ∂tηt + 1

2
| A0

ft
|−4 gi j

ft
gkl

ft
∇F0

i ∇F0
j ∇F0

k ∇F0
l (ηt )

+Bi jk
3 ( · , Dx ft , D2

x ft , D3
x ft ) · ∇F0

i jk(ηt )

+Bi j
2 ( · , Dx ft , D2

x ft , D3
x ft , D4

x ft ) · ∇F0
i j (ηt )

+Bi
1( · , Dx ft , D2

x ft , D3
x ft , D4

x ft ) · ∇F0
i (ηt )

onΣ×[0, T ], if δ > 0 is chosen sufficiently small, whose leading operator 1
2 | A0

ft
|−4

gi j
ft

gkl
ft

∇F0
i ∇F0

j ∇F0
k ∇F0

l is uniformly elliptic in the sense of (47) and acts on each com-

ponent of any {ηt } ∈ Yβ,T,0 separately, and where Bi jk
3 ( · , Dx ft , D2

x ft , D3
x ft ), . . .,

Bi
1( · , Dx ft , D2

x ft , D3
x ft , D4

x ft ) are coefficients of Matn,n(R)-valued, contravariant

tensor fields of degrees 3, 2 and 1, which are of regularity class Cβ,
β
4 on Σ × [0, T ].

This proves the assertions of part (2) of the theorem.
(3) Since for any fixed { ft } ∈ X F0,β,δ,T the leading coefficient tensor 1

2 | A0
ft

|−4

gi j
ft

gkl
ft

of Dφ( ft ) is of class C1+β,
1+β
4 (Σ × [0, T ]) and consequently of class

Cβ,
β
4 (Σ × [0, T ]), is uniformly elliptic (in the sense of (47)) on Σ × [0, T ] and

acts on each component of any {ηt } ∈ Yβ,T,0 separately, the result of part (2) shows
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Short-Time Existence of the Möbius-Invariant Willmore Flow 1169

in particular that Dφ( ft ) : Yβ,T,0 −→ Cβ,
β
4 (Σ × [0, T ],Rn) meets all requirements

of Proposition 1 resp. of Corollary 3 on Σ × [0, T ], for some appropriate constant
Λ ≥ 1, depending onΣ, F0 and δ, and with α = β and G := F0. Hence, by Corollary

3 Dφ( ft ) yields an isomorphism between Yβ,T,0 and Cβ,
β
4 (Σ × [0, T ],Rn) in any

fixed { ft } ∈ X F0,β,δ,T . ��
Theorem 3 Let F0 : Σ −→ R

n be a C∞-smooth immersion of some smooth compact
torus into R

n without umbilic points, thus with | A0
F0

|2> 0 on Σ , and let β ∈ (0, 1)
be arbitrarily fixed and δ > 0 be fixed as small as required in Theorem 2.

(1) There are sufficiently small T > 0 and T ∗ ∈ (0, T ) and a function χT ∗ ∈
Cγ,

γ
4 (Σ × [0, T ],Rn), for any γ ∈ (0, β), satisfying χT ∗ ≡ 0 on Σ × [0, T ∗],

such that χT ∗ is contained in the image of φ : X F0,γ,δ,T → Cγ,
γ
4 (Σ×[0, T ],Rn).

(2) For this T ∗ > 0 the initial value problem (16) has a unique and C∞-smooth
solution { f ∗

t } ∈ X F0,β,δ,T ∗ on Σ × [0, T ∗].
(3) This short-time solution { f ∗

t } of (16) solves the initial value problem

∂
⊥ ft
t ( ft ) = − | A0

ft
|−4 δW( ft ), f0 = F0 (42)

on Σ ×[0, T ∗], where ∂
⊥ ft
t ( ft )(x) denotes the projection of the vector ∂t ( ft )(x)

onto the normal space of the surface ft at the point ft (x), for any x ∈ Σ .

Proof (1) Since

∂t + �2
F0

: {{Gt } ∈ C4+β,1+ β
4 (Σ × [0, T ],Rn)|G0 = F0 on Σ}

∼=−→ Cβ,
β
4 (Σ × [0, T ],Rn) (43)

yields an isomorphism by Corollary 3, there is exactly one family {ht } ∈ X F0,β,δ,T ,
for T > 0 sufficiently small, which solves the initial value problem

∂t ht + �2
F0

(ht ) = �2
F0

(F0) + DF0(F0), h0 = F0 on Σ,

on Σ × [0, T ], where we recall that DF0 = ∂t − φ by definition of φ. We use this

unique solution {ht } in order to define the function χ ∈ Cβ,
β
4 (Σ × [0, T ],Rn) by

χ(t) := φ(ht ) and see that

χ(0) = φ(h0) = ∂t h0 − DF0(h0) = ∂t h0 − DF0(F0)

= �2
F0

(F0) − �2
F0

(h0) = 0 on Σ.

Now, we introduce the functions χρ on Σ × [0, T ] by

χρ :=
{

0 : t ∈ [0, ρ]
χ(t − ρ) : t ∈ [ρ, T ]
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1170 R. Jakob et al.

for any ρ ∈ [0, T ). On account of χ(0) = 0 on Σ we obtain immediately that

χρ ∈ Cβ,
β
4 (Σ × [0, T ],Rn) with ‖ χρ ‖

Cβ,
β
4
≤‖ χ ‖

Cβ,
β
4
for every ρ ∈ [0, T ). Since

we also have

χρ(t)(x) −→ χ(t)(x) in each fixed (x, t) ∈ Σ × [0, T ]

as ρ → 0, we conclude from the compactness of the embedding

Cβ,
β
4 (Σ × [0, T ],Rn) ↪→ Cγ,

γ
4 (Σ × [0, T ],Rn),

for any γ ∈ (0, β), that

χρ −→ χ in Cγ,
γ
4 (Σ × [0, T ],Rn) (44)

for any γ ∈ (0, β). Now, since X F0,β,δ,T ⊂ X F0,γ,δ,T , for any γ < β, Theorem 2
implies here for ft := ht and with β replaced by γ that the Fréchet-derivative Dφ(h)

of φ in h yields an isomorphism

Dφ(h) : Yγ,T,0 = Th X F0,γ,δ,T
∼=−→ Cγ,

γ
4 (Σ × [0, T ],Rn),

for any γ ∈ (0, β). Hence, as φ is a C1-map on the open subset X F0,γ,δ,T of Yγ,T,F0 ,
the “Inverse Function Theorem” for C1-maps between Banach spaces implies that
there are sufficiently small numbers ε̃ > 0 and δ̃ > 0 such that the open ball Bγ

δ̃
(χ) of

radius δ̃ about χ in Cγ,
γ
4 (Σ × [0, T ],Rn) is contained in the image φ(B4+γ

ε̃
(h)) of

the open ball B4+γ

ε̃
(h) ⊂ X F0,γ,δ,T of radius ε̃ about h w.r.t. φ. Hence, by (44) there

have to exist some T ∗ ∈ (0, T ) and some family f ∗ = { f ∗
t } ∈ X F0,γ,δ,T such that

φ( f ∗) = χT ∗ , just as asserted in claim (1) of the theorem.
(2) Since there holds χT ∗ = 0 on Σ × [0, T ∗], the proved assertion of part (1) shows
by definition of φ and by its reformulation in (24):

∂t ( f ∗
t )(x) = −1

2
| A0

f ∗
t

|−4 gi j
f ∗
t

gkl
f ∗
t

∇ f ∗
t

i ∇ f ∗
t

j ∇F0
k ∇F0

l ( f ∗
t )(x)

+B(x, Dx f ∗
t (x), D2

x f ∗
t (x), D3

x f ∗
t (x))

= −1

2
| A0

f ∗
t

|−4 gi j
f ∗
t

gkl
f ∗
t

∇F0
i jkl( f ∗

t )(x)

−F(x, Dx f ∗
t (x), D2

x f ∗
t (x), D3

x f ∗
t (x)) (45)

on Σ × [0, T ∗], i.e. that { f ∗
t } is a solution of problem (16) on Σ × [0, T ∗], where the

compositionF( · , Dx f ∗, D2
x f ∗, D3

x f ∗) is (at least) of classC1+γ,
1+γ
4 onΣ×[0, T ∗].

Furthermore, the linear operator

L := ∂t + 1

2
| A0

f ∗
t

|−4 gi j
f ∗
t

gkl
f ∗
t
∇F0

i jkl : C4+α,1+ α
4 (Σ × [0, T ∗],Rn)

→ Cα, α
4 (Σ × [0, T ∗],Rn)

123



Short-Time Existence of the Möbius-Invariant Willmore Flow 1171

is uniformly parabolic on Σ × [0, T ∗] on account of { f ∗
t } ∈ X F0,γ,δ,T and is of

diagonal form, and thus meets all conditions of Proposition 1 resp. of Corollary 3 for
T := T ∗ > 0, for some appropriate constant Λ ≥ 1 depending on Σ, F0 and δ, and
for any α ∈ (0, 1). Hence, by Corollary 3 L yields an isomorphism between Yα,T ∗,0
and Cα, α

4 (Σ × [0, T ∗],Rn) and therefore also an isomorphism

L : {{Gt } ∈ C4+α,1+ α
4 (Σ × [0, T ∗],Rn) | G0

= F0 on Σ} ∼=−→ Cα, α
4 (Σ × [0, T ∗],Rn)

for any α ∈ (0, 1). Since { f ∗
t } solves the reformulation

L( f ∗)(x, t) = −F(x, Dx f ∗
t (x), D2

x f ∗
t (x), D3

x f ∗
t (x)) on Σ × [0, T ∗]

with f ∗
0 = F0 on Σ, (46)

of problem (16) and since the right-hand side of this equation is especially of class
Cα, α

4 (Σ × [0, T ∗],Rn), for any α ∈ (0, 1), this proves that { f ∗
t } ∈ C4+α,1+ α

4 (Σ ×
[0, T ∗],Rn), for any α ∈ (0, 1), and thus that { f ∗

t } is indeed a C4+β,1+ β
4 -solution of

equation (16) on Σ × [0, T ∗], and therefore in particular { f ∗
t } ∈ X F0,β,δ,T ∗ . In order

to proveC∞-regularity of the short-time solution { f ∗
t } of problem (16) onΣ ×[0, T ∗]

we again consider the above linear, parabolic operator L . As we know now that { f ∗
t }

is of regularity class C4+β,1+ β
4 , we see as above and as in part (3) of the proof of

Theorem 2 that L satisfies all requirements of the Regularity Theorem 3 for k = 1,
α = β and T := T ∗ > 0. Moreover, { f ∗

t } solves the reformulation (46) of equation

(16) on Σ × [0, T ∗] whose right-hand side is of class C1+β,
1+β
4 (Σ × [0, T ∗],Rn).

Hence, we may apply the Regularity Theorem 3 and obtain that { f ∗
t } is of class

C5+β,
5+β
4 (Σ × [0, T ∗],Rn). Thus, L , the right-hand side of equation (46) and the

initial surface F0 satisfy all requirements of Proposition 3 for k = 2, α = β and
T := T ∗ > 0. We can therefore repeat the above argument and obtain by induction

that { f ∗
t } is of class C4+k+β,1+ k+β

4 (Σ × [0, T ∗],Rn) for any k ∈ N0, i.e. that { f ∗
t } ∈

C∞(Σ × [0, T ∗],Rn), just as asserted in part (2) of the theorem. Finally, having
proved that any solution of equation (16) is smooth and since its right-hand side is
quasi-linear, uniformly elliptic, also in the sense of the article [11], and in diagonal
form, one can use the argument in the proof of Theorem 1.1 in [11], pp. 865–868, in
order to prove also uniqueness of the solution { f ∗

t } of problem (16) within X F0,β,δ,T ∗ .
(3)Since the difference of the right-hand sides of the equations (42) and (14) resp.
(16) is a section into the tangent bundle of their solutions { ft } in each time t , and
since δW( ft ) = 1

2

(�⊥H ft + Q(A0
ft
)(H ft )

)
is a section into the normal bundle of the

surface ft , the short-time solution { f ∗
t } of problem (16) has to be a smooth short-time

solution of problem (42) on Σ × [0, T ∗] as well. ��
For the proof of part (3) of Theorem 2, we need the following Schauder a priori
estimates for uniformly parabolic operators of fourth order with Cα, α

4 -coefficients
and with uniformly elliptic leading operator in diagonal form, which can be derived
from Theorems 1, 2 in [13] together with the compactness of the embedding
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1172 R. Jakob et al.

C4+α,1+ α
4 (Σ × I,Rn) ↪→ C4,1(Σ × I,Rn)

and Ehrling’s Lemma (see also Proposition 3.22 in [1]):

Proposition 1 Let Σ be a smooth, compact, orientable surface without boundary,
G : Σ → R

n a C∞-smooth immersion of Σ into R
n, α ∈ (0, 1) arbitrarily fixed,

I = [a, b] a closed interval of length T > 0, and let ψ : Ω
∼=−→ Σ ′ be a smooth chart

of an arbitrary coordinate neighbourhood Σ ′ of Σ , yielding partial derivatives ∂m,
m = 1, 2, and the induced metric g := G∗(geu) with its coefficients gi j := 〈∂i G, ∂ j G〉
on Σ ′. Moreover, let

L : C4+α,1+ α
4 (Σ × I,Rn) −→ Cα, α

4 (Σ × I,Rn)

be a linear differential operator of order 4 whose leading operator of fourth order
acts “diagonally”, i.e. acts on each component of f separately:

L( f )(x, t) := ∂t ( f )(x, t)

+(
Ai jkl
4 (x, t)∇G

i jkl + Ai jk
3 ∇G

i jk + Ai j
2 ∇G

i j

+Ai
1 ∇G

i + A0(x, t)
)
( f )(x, t),

in every pair (x, t) ∈ Σ ′× I , and L is to meet the following “principal requirements”:

(1) Ai jkl
4 , Ai jk

3 , Ai j
2 , Ai

1, A0 are the coefficients of contravariant tensor fields A4, A3,

A2, A1, A0 on Σ × I of degrees 4, 3, . . . , 0 and of regularity class Cα, α
4 (Σ × I ).

Moreover, the tensor A4 has to be the square E ⊗ E of a contravariant real-
valued symmetric tensor field E of order 2 and of regularity class Cα, α

4 (Σ × I ),
i.e. Ai jkl

4 (x, t) = Ei j (x, t) Ekl(x, t) with Ei j (x, t) = E ji (x, t) ∈ R, and we

assume that Ai jk
3 (x, t), Ai j

2 (x, t), Ai
1(x, t), A0(x, t) ∈ Matn,n(R), in every pair

(x, t) ∈ Σ ′ × I and for all indices i, j, k, l ∈ {1, 2}.
(2) The tensor field E is required to be uniformly elliptic on Σ × I , i.e. there has to

be a number Λ ≥ 1 such that there holds

Ei j (x, t) ξiξ j ≥ Λ−1/2 gi j (x) ξiξ j (47)

for any vector ξ = (ξ1, ξ2) ∈ R
2 and for any pair (x, t) ∈ Σ ′ × I .

(3) There holds ‖ Ar ‖
Cα, α

4 (Σ×I )
≤ Λ, for r = 0, 1, . . . , 4.

Then, there exists some constant C = C(Σ, G, T, α, n,Λ) > 0 such that

‖ η ‖
C4+α,1+ α

4 (Σ×I )
≤ C

( ‖ L(η) ‖
Cα, α

4 (Σ×I )
+ ‖ η ‖L2(Σ×I )

)

holds true for any family of surfaces {ηt } ∈ C4+α,1+ α
4 (Σ × I,Rn) with ηa = 0 on Σ .

Using these a priori estimates we are able to prove the injectivity of the restriction of
any such operator L to Yα,T,0, which still serves as a preparation for the proof of part
(3) of Theorem 2 (see also p. 861 in [11] for a similar reasoning):
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Proposition 2 Let L : C4+α,1+ α
4 (Σ × [0, T ],Rn) −→ Cα, α

4 (Σ × [0, T ],Rn) be a
uniformly parabolic differential operator of order 4, which satisfies all requirements
of Proposition 1 on I = [0, T ]. Then its restriction to Yα,T,0 is injective.

Proof Firstly, we show the subsequent improvement (50) of the a priori estimates of
Proposition 1 for any η ∈ Yα,T,0 which satisfies L(η) = 0. To this end, we fix an

arbitrary smooth chart ψ : Ω
∼=−→ Σ ′ of a normal coordinate neighbourhood Σ ′ of

Σ , some C∞-smooth immersion G : Σ → R
n of Σ into R

n , and some η ∈ Yα,T,0
with L(η) = 0. We extend η to Σ × [−T, T ] by η̄(x, t) ≡ 0 on Σ × [−T, 0], and
extend the coefficient tensor fields A4, A3, A2, A1, A0 of L toΣ ×[−T, T ] by setting

Ār (x,−t) := Ar (x, t), for r = 0, . . . , 4

in every x ∈ Σ and for any t ∈ [0, T ]. Obviously, the extended differential operator
L̄ satisfies all requirements of Proposition 1 on Σ × [−T, T ], i.e. for a := −T and
b := T . Now, since η0 ≡ 0 on Σ and η ∈ C4+α,1+ α

4 (Σ × [0, T ],Rn), we can firstly
conclude that η̄ ∈ Cα, α

4 (Σ × [−T, T ],Rn) and that

∂i jkl η̄0 = 0, ∂i jk η̄0 = 0, ∂i j η̄0 = 0, ∂i η̄0 = 0 on Σ ′. (48)

As we also know that ∂i jklη ∈ Cα, α
4 (Σ ′ × [0, T ],Rn), ∂i jkη ∈ C1+α, 1+α

4 (Σ ′ ×
[0, T ],Rn), . . ., ∂iη ∈ C3+α, 3+α

4 (Σ ′ × [0, T ],Rn) on account of the definition of
parabolic Hölder spaces in [6], we see that

∂i jkl η̄ ∈ Cα, α
4 (Σ ′ × [−T, T ],Rn), ∂i jk η̄ ∈ C1+α, 1+α

4 (Σ ′ × [−T, T ],Rn),

. . . , ∂i η̄ ∈ C3+α, 3+α
4 (Σ ′ × [−T, T ],Rn). (49)

Moreover, using that L(η) = 0 on Σ × [0, T ] together with η0 ≡ 0 on Σ and (48)
we can compute by the mean value theorem that

d

dt
η̄(0+)(x) = d

dt
η(0+)(x) = lim

h↘0

ηh(x)

h

= −(
Ai jkl
4 (x, 0)∇G

i jkl + Ai jk
3 (x, 0)∇G

i jk + Ai j
2 (x, 0)∇G

i j

+Ai
1(x, 0)∇G

i + A0(x, 0)
)
(η0)(x) = 0

for every x ∈ Σ ′. As we trivially have d
dt η̄(0−) = 0 on Σ by definition of η̄, we can

infer the existence of ∂t η̄0 with the value ∂t η̄0 = 0 on Σ ′. Together with (48) this
proves L̄(η̄)( · , 0) = 0 on Σ ′ and thus L̄(η̄) = 0 on Σ ′ × [−T, T ], i.e.

∂t η̄ = −(
Āi jkl
4 ∇G

i jkl + Āi jk
3 ∇G

i jk + Āi j
2 ∇G

i j + Āi
1 ∇G

i + Ā0
)
(η̄) on Σ ′ × [−T, T ].

Combining thiswith (49) andwith theCα, α
4 - regularity of the coefficient tensor fields of

L̄ onΣ×[−T, T ] and coveringΣ byfinitelymanynormal coordinate neighbourhoods,
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we infer that also ∂t η̄ ∈ Cα, α
4 (Σ × [−T, T ],Rn) and therefore η̄ ∈ C4+α,1+ α

4 (Σ ×
[−T, T ],Rn), together with

‖ η̄ ‖
C4+α,1+ α

4 (Σ×[−ε,t])=‖ η ‖
C4+α,1+ α

4 (Σ×[0,t])

for any pair ε, t ∈ [0, T ]. Noting that η̄−T +t = 0 on Σ , for any fixed t ∈ [0, T ], we
can apply Proposition 1 to L̄ and η̄ on the interval I = [a, b] := [−T + t, t] of length
T and obtain together with L̄(η̄) = 0 on Σ × [−T, T ]:

‖ η ‖
C4+α,1+ α

4 (Σ×[0,t]) = ‖ η̄ ‖
C4+α,1+ α

4 (Σ×[−T +t,t])
≤ C(Σ, G, T, α, n,Λ) ‖ η̄ ‖L2(Σ×[−T +t,t]) = C(Σ, G, T, α, n,Λ) ‖ η ‖L2(Σ×[0,t]) .

(50)

Now, integrating the equation d
ds (〈ηs, ηs〉) = 2〈∂sηs, ηs〉 over Σ × [0, t], for some

fixed t ∈ (0, T ], and using η0 = 0 on Σ and estimate (50) we obtain

1

2

∫

Σ

〈ηt , ηt 〉 dμG =
∫ t

0

∫

Σ

〈∂sηs, ηs〉 dμG ds

≤ ‖ η ‖
C4+α,1+ α

4 (Σ×[0,t]) ‖ η ‖L1(Σ×[0,t])
≤ C(Σ, G, T, α, n,Λ) ‖ η ‖L2(Σ×[0,t]) ‖ η ‖L1(Σ×[0,t])
≤ √

t μG(Σ) C(Σ, G, T, α, n,Λ) ‖ η ‖2L2(Σ×[0,t]) .

Hence, the continuous function t �→ z(t) := ∫
Σ

〈ηt , ηt 〉 dμG satisfies the inequalities
0 ≤ z(t) ≤ 2

√
t μG(Σ) C(Σ, G, T, α, n,Λ)

∫ t
0 z(s) ds, for any t ∈ [0, T ], and

therefore Gronwall’s Lemma finally yields z ≡ 0 on [0, T ], which proves the claimed
injectivity of L |Yα,T,0 . ��
A combination of this result with the a priori estimates of Proposition 1 and with the
compactness of the embeddings

C4+α,1+ α
4 (Σ × [0, T ],Rn) ↪→ C4,1(Σ × [0, T ],Rn)

and

Cα, α
4 (Γ (Σ × [0, T ],Sym2((T Σ)∗))) ↪→ C0(Γ (Σ × [0, T ],Sym2((T Σ)∗)))

yields the following corollary by a standard contradiction-argument:

Corollary 2 Let L : C4+α,1+ α
4 (Σ × [0, T ],Rn) −→ Cα, α

4 (Σ × [0, T ],Rn) be a
uniformly parabolic differential operator of order 4 satisfying all requirements of
Proposition 1 on I = [0, T ], for some T > 0 and some Λ ≥ 1. Then there exists some
constant C = C(Σ, G, T, α, n,Λ) > 0 such that

‖ η ‖
C4+α,1+ α

4 (Σ×[0,T ])≤ C ‖ L(η) ‖
Cα, α

4 (Σ×[0,T ])
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holds true for any family of surfaces η ∈ Yα,T,0. ��
Corollary 3 Any uniformly parabolic differential operator

L : C4+α,1+ α
4 (Σ × [0, T ],Rn) −→ Cα, α

4 (Σ × [0, T ],Rn)

of order 4 which satisfies all conditions of Proposition 1 on I = [0, T ] yields an
isomorphism between the Banach subspace Yα,T,0 of C4+α,1+ α

4 (Σ × [0, T ],Rn) and
Cα, α

4 (Σ × [0, T ],Rn).

Proof As is well known (see Proposition 3.23 in [1]), for any fixed smooth immersion
G of Σ into Rn , its associated biharmonic heat operator

∂t + �2
G : Yα,T,0

∼=−→ Cα, α
4 (Σ × [0, T ],Rn) (51)

is bijective and continuous and therefore an isomorphism. Moreover, this operator
certainly satisfies requirements (2) and (3) of Proposition 1 for some constantΛ1 ≥ 1.
If L satisfies requirements (2) and (3) of Proposition 1 with the constant Λ2 ≥ 1, then
each convex combination

Ls := s L + (1 − s) (∂t + �2
G) : C4+α,1+ α

4 (Σ × [0, T ],Rn)

−→ Cα, α
4 (Σ × [0, T ],Rn),

for s ∈ [0, 1], satisfies conditions (2) and (3) of Proposition 1 with the con-
stant Λ := max{Λ1,Λ2}. Hence, by Corollary 2 there exists some constant C =
C(Σ, G, T, α, n,Λ) > 0 such that the estimate

‖ η ‖
C4+α,1+ α

4 (Σ×[0,T ])≤ C ‖ Ls(η) ‖
Cα, α

4 (Σ×[0,T ]) (52)

holds true for any family of surfaces η ∈ Yα,T,0 and uniformly for each s ∈ [0, 1].
Since each operator Ls maps Yα,T,0 continuously into Cα, α

4 (Σ × [0, T ],Rn), the
continuity method finally proves the claim of the corollary on account of (51) and
(52). ��
For the proof of part (2) of Theorem 3, we invoked the following classical “Schauder
regularity theorem” for solutions of uniformly parabolic systems with leading term
in diagonal form, which can be proved by induction, Proposition 1, the “method of
difference quotients” and a precise use of the definition of parabolic Hölder spaces in
[1], pp. 18–19:

Proposition 3 (Schauder Regularity Theorem) Let Σ be a smooth, compact, ori-
entable surface without boundary, G : Σ → R

n a C∞-smooth immersion of Σ into

R
n, and let T > 0, α ∈ (0, 1) and k ∈ N0 be fixed arbitrarily, and ψ : Ω

∼=−→ Σ ′
a smooth chart of an arbitrary coordinate neighbourhood Σ ′ of Σ , yielding partial
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1176 R. Jakob et al.

derivatives ∂m, m = 1, 2, and the induced metric g := G∗(geu) with its coefficients
gi j := 〈∂i G, ∂ j G〉 on Σ ′. Moreover, let

L : C4+α,1+ α
4 (Σ × [0, T ],Rn) −→ Cα, α

4 (Σ × [0, T ],Rn)

be a linear differential operator of order 4 whose leading operator of fourth order
acts on each component of f separately:

L( f )(x, t) := ∂t ( f )(x, t)

+ (
Ai jkl
4 (x, t)∇G

i jkl + Ai jk
3 ∇G

i jk + Ai j
2 ∇G

i j

+ Ai
1 ∇G

i + A0(x, t)
)
( f )(x, t),

in every pair (x, t) ∈ Σ ′ × [0, T ], and L is to meet the following “principal require-
ments”:

(1) Ai jkl
4 , Ai jk

3 , Ai j
2 , Ai

1, A0 are the coefficients of contravariant tensor fields A4, A3,

A2, A1, A0 on Σ × [0, T ] of degrees 4, 3, . . . , 0 and of regularity class

Ck+α, k+α
4 (Σ × [0, T ]). Moreover, the tensor A4 has to be the square E ⊗ E

of a contravariant real-valued symmetric tensor field E of order 2 and of

regularity class Ck+α, k+α
4 (Σ × [0, T ]), i.e. Ai jkl

4 (x, t) = Ei j (x, t) Ekl(x, t)

with Ei j (x, t) = E ji (x, t) ∈ R, and we assume that Ai jk
3 (x, t), Ai j

2 (x, t),
Ai
1(x, t), A0(x, t) ∈ Matn,n(R), in every pair (x, t) ∈ Σ ′ × [0, T ] and for all

indices i, j, k, l ∈ {1, 2}.
(2) The tensor field E is required to be uniformly elliptic on Σ × [0, T ], i.e. there

has to be a number Λ ≥ 1 such that there holds

Ei j (x, t) ξiξ j ≥ Λ−1/2 gi j (x) ξiξ j

for any vector ξ = (ξ1, ξ2) ∈ R
2 and for any pair (x, t) ∈ Σ ′ × [0, T ].

(3) There holds ‖ Ar ‖
Ck+α, k+α

4 (Σ×[0,T ])≤ Λ, for r = 0, 1, . . . , 4.

If moreover F0 : Σ → R
n is an immersion of class C4+k+α and R ∈ Ck+α, k+α

4 (Σ ×
[0, T ],Rn) and if η ∈ C4+α,1+ α

4 (Σ × [0, T ],Rn) is a solution of the initial value
problem

L(u) = R on Σ × [0, T ], u0 = F0 on Σ,

then there holds η ∈ C4+k+α,1+ k+α
4 (Σ × [0, T ],Rn), and there exists some constant

C = C(Σ, G, T, α, k, n,Λ) > 0 such that

‖ η ‖
C4+k+α,1+ k+α

4 (Σ×[0,T ])
≤ C

( ‖ R ‖
Ck+α, k+α

4
+ ‖ η ‖L∞(Σ×[0,T ]) + ‖ F0 ‖C4+k+α(Σ)

)

holds true.
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3 Proof of Theorem 1

We now combine the “DeTurck-Hamilton-Trick” (see also pp. 38–39 in [1]) with the
existence result of Theorem 3: By Theorem 3 there is some T ∗ > 0 and a family
of surfaces { f ∗

t } ∈ X F0,β,δ,T ∗ ∩ C∞(Σ × [0, T ∗],Rn) which solves the initial value
problem (42) on Σ × [0, T ∗]. Moreover, we infer from ‖ F0 − f ∗

t ‖C4(Σ)< δ for
t ∈ [0, T ∗], on account of { f ∗

t } ∈ X F0,β,δ,T ∗ , that f ∗
t is a (umbilic-free) smooth

immersion from Σ to R
n , just as F0 is, if δ is sufficiently small. Therefore, in every

pair (x, t) ∈ Σ × [0, T ∗] there exists a unique tangent vector ξt (x) ∈ TanxΣ that
satisfies

Dx f ∗
t (x).(ξt (x)) = −PTan( f ∗

t )(∂t f ∗
t (x)), (53)

where PTan( f ∗
t ) : R

n → Tan( f ∗
t ) denotes the bundle morphism which projects

R
n orthogonally onto the tangent spaces Tan f ∗

t (x)( f ∗
t (Σ)) of the immersed surface

f ∗
t (Σ), in each time t ∈ [0, T ∗]. From the C∞-smoothness of the family { f ∗

t }, we
infer the C∞-smoothness of the vector field ξ on Σ ×[0, T ∗]. Therefore, by classical
existence and regularity theory of ordinary differential equations on smooth closed
manifolds we know that ξ generates a C∞-smooth flow Ψ : Σ × [0, T ∗] −→ Σ of
smooth automorphisms Ψt of Σ with Ψ ( · , 0) = idΣ , by setting Ψ (x, t) := yx (t),
where yx ( · ) is the unique, maximal solution of the initial value problem

y′(t) = ξt (y(t)), y(0) = x (54)

for t ∈ [0, T ∗] and for any fixed x ∈ Σ . Finally we recall that the invariance of the
Willmore-functional W w.r.t. diffeomorphic reparametrizations implies that

δW( f ∗
t ◦ Ψt ) = δW( f ∗

t ) ◦ Ψt ,

for each t ∈ [0, T ∗], and that the second fundamental forms A f ∗
t
and their traceless

parts A0
f ∗
t

= A f ∗
t

− 1
2 g f ∗

t
H f ∗

t
are covariant tensor fields of degree 2, which implies

| A0
f ∗
t ◦Ψt

|2=| A0
f ∗
t

|2 ◦Ψt

for each t ∈ [0, T ∗] in particular. Using the chain rule we can combine this with (56),
(53) and (42) in order to compute for the composition ft := f ∗

t ◦ Ψ ( · , t):

∂t ft = (∂t f ∗
t ) ◦ Ψt + (Dx f ∗

t ◦ Ψt ).(∂tΨt ) = (∂t f ∗
t ) ◦ Ψt + Dx f ∗

t (ξt ) ◦ Ψt

= (∂t f ∗
t ) ◦ Ψt − PTan( f ∗

t )(∂t f ∗
t ) ◦ Ψt = ∂⊥

t ( f ∗
t ) ◦ Ψt

= −( | A0
f ∗
t

|−4 δW( f ∗
t )

) ◦ Ψt = − | A0
f ∗
t ◦Ψt

|−4 δW( f ∗
t ◦ Ψt )

= − | A0
ft

|−4 δW( ft )

on Σ × [0, T ∗] with f0 = F0 on Σ , which means that { ft } is indeed a smooth
(umbilic-free) solution of the Möbius-invariant Willmore flow (9) on Σ × [0, T ∗],
starting in F0. It remains to show uniqueness of this short-time solution. To this end,
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1178 R. Jakob et al.

let { ft } be some arbitrary smooth family of umbilic-free C∞-immersions which solve
the Möbius-invariant Willmore flow (9) onΣ ×[0, T ∗]with initial condition f0 = F0
on Σ . The Rn-valued function

X (x, t) := −1

2
| A0

ft
(x) |−4 (

gi j
ft

gkl
ft

gmr
ft

〈∇ ft
i ∇ ft

j ∇ ft
k ∇ ft

l ( ft )(x), ∂m ft (x)
〉
∂r ft (x)

−gi j
ft

gkl
ft

∇ ft
i ∇ ft

j ((ΓF0)
m
kl(x) − (Γ ft )

m
kl(x)) ∂m( ft )(x)

)

is a “scalar” onΣ and therefore awell-defined and smooth section of the tangent bundle
Tan( ft ), for every t ∈ [0, T ∗]. Hence, since the derivative Dx ft (x) is an isomorphism
of the tangent space Tanx (Σ) onto Tan ft (x)( ft (Σ)), in every fixed x ∈ Σ and every
t ∈ [0, T ∗], there has to exist a unique tangent vector ξ̄t (x) ∈ Tanx (Σ)which satisfies

Dx ft (x).(ξ̄t (x)) = X (x, t) (55)

in every pair (x, t) ∈ Σ ×[0, T ∗]. Since X and f are smooth, ξ̄ is a smooth section of
Tan(Σ). Therefore, as above, by the classical theory of ordinary differential equations
we can construct a C∞-smooth family Ψ : Σ × [0, T ∗] −→ Σ of smooth automor-
phisms Ψt of Σ with Ψ ( · , 0) = idΣ by setting Ψ (x, t) := yx (t), where yx ( · ) is the
unique, maximal solution of the initial value problem

y′(t) = ξ̄t (y(t)), y(0) = x (56)

for t ∈ [0, T ∗] and for any fixed x ∈ Σ . Now, similarly to the above argument, we can
use the definitions of ft , Ψt , X ( · , t) andDF0 in order to compute for the composition
f̃t := ft ◦ Ψt on account of the relation (55) between ξ̄ and X :

∂t f̃t = (∂t ft ) ◦ Ψt + (Dx ft ◦ Ψt ).(∂tΨt ) = (∂t ft ) ◦ Ψt + Dx ft (ξ̄t ) ◦ Ψt

= −( | A0
ft

|−4 δW( ft )
) ◦ Ψt + X (Ψt , t) = DF0( ft ) ◦ Ψt

= DF0( ft ◦ Ψt ) = DF0( f̃t )

onΣ×[0, T ∗]with f̃0 = F0 onΣ . Hence, on account of Theorem3 the reparametriza-
tions { f̃t } have to be the unique smooth solution to the DeTurck-IW-flow (16) on
Σ × [0, T ∗], starting in F0.
Now, suppose there existed two smooth families { f 1t }, { f 2t } of umbilic-free C∞-
immersions which solve the Möbius-invariant Willmore flow (9) on Σ ×[0, T ∗] with
initial condition f 10 = F0 = f 20 onΣ . As above, we can construct two smooth families
Ψ 1, Ψ 2 : Σ × [0, T ∗] −→ Σ of smooth automorphisms of Σ with Ψ i ( · , 0) = idΣ ,
i = 1, 2, and such that { f̃ i

t } := { f i
t ◦ Ψ i

t } are both the unique smooth solution to
the DeTurck-IW-flow (16), starting in F0, which implies f 1 ◦ Ψ 1 = f 2 ◦ Ψ 2 on
Σ × [0, T ∗], i.e.

f 1t = f 2t ◦ Φt on Σ × [0, T ∗] (57)

for Φt := Ψ 2
t ◦ (Ψ 1

t )−1. Now we can use the chain rule again in order to compute by
means of the definitions of f 1 and f 2, and by (9) and (57):
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− | A0
f 1t

|−4 δW( f 1t ) = ∂t f 1t = ∂t ( f 2t ◦ Φt )

= ∂t ( f 2t ) ◦ Φt + (Dx f 2t ◦ Φt ).(∂tΦt )

= −( | A0
f 2t

|−4 δW( f 2t )
) ◦ Φt + (Dx f 2t ◦ Φt ).(∂tΦt )

= − | A0
f 1t

|−4 δW( f 1t ) + (Dx f 2t ◦ Φt ).(∂tΦt )

on Σ × [0, T ∗], which implies (Dx f 2t ◦ Φt ).(∂tΦt ) ≡ 0 and thus ∂tΦt ≡ 0 on
Σ ×[0, T ∗], as Dx f 2t (x) is injective in every x ∈ Σ . As we know thatΦ0 = idΣ , this
shows that Φt ≡ idΣ for every t ∈ [0, T ∗] and thus in fact f 1 = f 2 on Σ × [0, T ∗]
by (57), which proves the entire assertion of Theorem 1. ��
Acknowledgements The Möbius-invariant Willmore flow (9) was originally motivated by Professor Ben
Andrews. The author would like to express his deep gratitude to him, to the referee for his recommendations
and questions and also to Professor Dr. Reiner Schätzle for his invaluable, steady support.

Appendix

The aim of this section is to show that the right-hand side of (9) is the onlymodification
of the usual Willmore gradient δW( f ) by means of some scalar factor which only
depends on f , D f and D2 f , in order to obtain a Möbius-invariant flow. Let Σ be a
surfacewithout boundary and let Immuf(Σ,Rn) denote the open subset ofC∞(Σ,Rn)

which consists of all umbilic-free C∞-immersions of Σ into Rn . Firstly, we state

Proposition 4 Let B : Rn × R
2n × R

4n → R+ denote some arbitrary real-analytic,
positive function. The flow

∂t ft = −B( ft , D ft , D2 ft )
(�⊥

ft
H ft + Q(A0

ft
)(H ft )

)
on Σ × [0, T )

meets the property of Möbius-invariance—in the sense of Part 2 of Corollary 1—if
and only if the composition ϕ( f ) := B( f, D f, D2 f ) satisfies the following structure
conditions:

(1)

ϕ(λ f ) = λ4 ϕ( f )

ϕ(M( f )) = ϕ( f ) (58)

∀ λ > 0 and for all rigid motions M(y) = O(y) + c, O ∈ O(n), c ∈ R
n.

(2) There has to hold

ϕ(I ( f )) = | f |−8 ϕ( f ) onΣ

for every immersion f ∈ Immuf(Σ,Rn \ {0}), where I (y) := y
|y|2 denotes inver-

sion at the unit sphere S
n−1.

(3) The map f �→ ϕ( f )
(�⊥

f H f + Q(A0
f )(H f )

)
has to be a differential operator on

Immuf(Σ,Rn).
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This proposition follows immediately from the statements of Lemma 1. We note that
the function B does not depend on its 1st variable y ∈ R

n due to property (58) of ϕ.
We now restrict our attention to the special case n = 3, because in this case we can
use the precise knowledge of local, conformally invariant operators on Immuf(Σ,R3)

due to Cairns et al. [2,3].

Theorem 4 Let ϕ : Immuf(Σ,R3) → C∞(Σ,R+) be a real-analytic map of the form
ϕ( f ) = B(D f, D2 f ) which satisfies the structure conditions (1)–(3) of Proposition
4. Then there holds

ϕ( f ) = c |A0
f |−4

for some c > 0 and for any f ∈ Immuf(Σ,R3).

Proof By (4) and (5) one can easily compute that the map f �→ |A0
f |−4 satisfies the

requirements (1)–(3) of Proposition 4 on Immuf(Σ,R3) and is ”local of second order”,
whichmeans that its value in any point p ∈ Σ only depends on the first and second par-
tial derivatives of f . Now, let ϕ : Immuf(Σ,R3) → C∞(Σ,R+) be an arbitrary map
which is local of second order, i.e. of the form ϕ( f ) = B(D f, D2 f ), and which satis-
fies the conditions (1)–(3) of Proposition 4. We consider the quotient Q( f ) := ϕ( f )

|A0
f |−4

and see that f �→ Q( f ) is a map from Immuf(Σ,R3) to C∞(Σ,R+) which is again
local of second order and satisfies Q(Φ( f )) = Q( f ) for any Möbius-transformation
Φ of R3 which is applicable to f . This means that Q is a local, conformally invariant
operator from Immuf(Σ,R3) toC∞(Σ,R+) of second order. Now, by Theorem 5.6 in
[3] any non-constant, local and conformally invariant operator from Immuf(Σ,R3) to
C∞(Σ,R+) has to be at least of third order. Hence, we conclude Q( f ) ≡ const. > 0,
i.e. ϕ( f ) = c |A0

f |−4, for some c > 0. ��
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