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time solution of the “M&bius-invariant Willmore flow” Eq. (9) starting in a C*°-smooth
immersion Fy of a fixed smooth compact torus X' into R"” without umbilic points.
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Keywords Mobius-invariance - Willmore flow - Short-time existence - Parabolic
Schauder theory

Mathematics Subject Classification 53C44 - 35K46 - 46N20 - 35R01 - 5835

B Ruben Jakob
jakob@mail.mathematik.uni-tuebingen.de

I Institute for Mathematics, University Tiibingen, Auf der Morgenstelle 10, 72076 Tiibingen,

Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-017-9857-5&domain=pdf
http://orcid.org/0000-0003-2573-6527

1152 R. Jakob et al.

1 Introduction and Main Result

The starting point of this article is the L2-gradient-flow

1
0 fi = —5 (85 Hy, + QAT (Hp)) =t —SW(fi) (1

of the Willmore-functional
1 2
W(f) =7 | Hp |~ duy,
)

defined on W*2-immersions f : ¥ —> R” of a smooth, compact, orientable surface
% without boundary into some R". Here A y denotes the second fundamental form of
the immersion f, defined on pairs of tangent vector fields X, Y on X by

A¢(X,Y) = Dx(Dy(f)) — P (Dx(Dy(f))) = (Dx(Dy(H)H)), ()

where Dy (f) := Df (X) is the usual derivative of f indirection of X, PTan(/) : R?
Tan( f) denotes the bundle morphism which projects R" orthogonally onto the tangent
spaces Tan f(x)(f (X)) of the immersed surface f(X) and where L/ abbreviates the
bundle morphism Idr» — PTn(f) Furthermore, A(} denotes the tracefree part of A,
ie.

1
AFX,Y) = Ap(X,¥) = 5g7 (X, ¥) Hy,

and Hy := Trace(Ay) = Ay(e;, ¢;) (“Einstein’s summation convention”) denotes
the mean curvature of f, where {e;} is a local orthonormal frame of the tangent
bundle of X. Finally Q(Af) operates on vector fields ¢ which are sections into
the normal bundle of f, i.e. which are normal along f, by assigning Q(As)(¢) :=
Ag(ei,ej){Ayr(ei, ej), ¢), which is again a section into the normal bundle of f, by
definition of A ¢. In fact, (1) is the Lz—gradient—ﬂow of W since it is proved in [9] that
for any vector field ¢ € W*2(X, R") which is normal along f, i.e. which satisfies
(¢)L7 = ¢, there holds

WL 6) = W +59) loom 5 [ (a5 + 0D ). 9)d
) =1 s=0—2 5 FHf f £)é)duy

= /E(SW(f),@duf- (€)

Now, we consider a smooth Riemannian manifold M, endowed with a smooth metric
g, and a two-dimensional smooth submanifold N of M, denote by V¢ the unique Rie-
mannian connection on M and by A,(X,Y) := (Vf((Y ))®V the second fundamental
form of the pair N — M, for any two tangent vector fields X, Y on N. We introduce

a local smooth chart ¢ : §2 —=> N’ C N of a coordinate neighbourhood N’ of N,
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Short-Time Existence of the M&bius-Invariant Willmore Flow 1153

yielding partial derivatives 91, d; on N’, and denote (Ag)ij == Ag(0;,0)),i, ] =1,2.
One can easily verify the following transformation formulae

(AQ)ij = AY(3;. 9)) = AJ (3. 9)) =: (AD); &
and

| AY 1P Vg =g g g((AD)ij. (ADw) V&
= g% g g((AD . ADw) Vi =I AYI* V3 )

for the tracefree part Ag of the second fundamental form Ag of N < M and for

the product of their squared lengths | Ag > with /& = 4/det(g(9;, 9;)) subject to a
conformal change of the metric, thus for a change of the Riemannian metric g to the
Riemannian metric g := e?* g (see [7], Chap. II, and [4]). By (2), (10)—(12) and these
two formulae one can compute the following three results (see also Sect. 3, Proposition
13.6 and Lemma 13.7 in [12]):

Lemma 1 (1) Let X be a smooth, compact, orientable surface without boundary. The
Willmore-functional W is a ”conformal invariant” on the set of C*-immersions of
X into R". Precisely, this means that for any immersion f € C*(X,R") and for
any conformal map ® : R" — R", for which @ o f is well defined on X, there
holds

W(@(f)) =W(). (0)
(2) For scaling an immersion f € C*(X,R") by ®(y) := Ay, A € Ry, there holds

SW(P(f)) = A 38W(f)

on X, and for any immersion f € C*(X,R" \ {0}) there holds for the inversion
P(y) 1=
[¥1

SW@(f) =] f1° DD(fHEW(f))

on X, where D@ (y) = ‘y% (( ij —2%)1.’].:1““)”) andwhere D® ( f (x)) denotes
the evaluation of this Jacobi-matrix in some image point f(x) of the surface f,
and SW([) := 5(AFHyp + QA (Hy)) as in (1) or (3).

(3) The differential operator f +| A(})c |=* SW(f) (of fourth order) transforms
”conformally invariantly” on umbilic-free immersions of any fixed compact torus
intoR". Precisely this means: Let f : X —s> R" be a umbilic-free C*-immersion
of a fixed compact torus into R" and & be an arbitrary Mobius-transformation
of R" for which @ o f is well defined on X. Then there holds the following

transformation formula:

|Gy 174 W@ = Do) - (145174 ow(n). @)
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1154 R. Jakob et al.

Here in part (3), the surface X has to be confined to the class of smooth compact
tori, since the assumption on f not to have any umbilic points on X forces the Euler-
characteristic of X' to vanish on account of the general Poincaré—Hopf Theorem for
smooth sections with isolated zeroes into vector bundles over orientable, compact
manifolds. Since for the differential operator 9, the chain rule applied to continuously
differentiable families { f;} of C*-immersions yields the same transformation formula
as in (7), i.e. 9;(@(f;)) = D®(f;) - 9:(f;), we achieve the following corollary of
Lemma 1:

Corollary 1 (1) If a family {f;} of C*-immersions f; : ¥ —> R™ \ {0} solves the

Willmore flow equation (1) for t € [0, T), then its inversion @ (f;) := I;C_TIZ solves
Jt
the “inverse Willmore flow equation”
1
dur = = L I (D5 Hu + QA (Hu) = = Tuc [P OV @) (8)
on X x [0, 7).

(2) Any family { f;} of C*-immersions f; : ¥ —> R" without umbilic points, i.e. with
| A(}’ |2> Oon X VYt €[0,T), solves the flow equation

1
O fi = =5 1 A5 17 (85 Hy, + QAT (Hy)
— 1A% 17 sW(f) ©)

if and only if its composition ® ( f;) with any applicable Mobius-transformation
@ of R" solves the same flow equation and, thus, if and only if

W(D(f))=—|Ags) I7F W@ (1)

holds V't € [0, T) and for every @ € Mob(R") for which @ (f;) is well defined on
XY x [0, 7).

Part (2) of this corollary suggests to term the flow (9) “Mobius-invariant Willmore
flow” (MIWF) and to find sufficient conditions on its initial immersion f; for its short-
time existence and uniqueness, and also sufficient conditions for its global existence.
So far, there has not been achieved any result at all about this flow. In [12] Mayer was
able to obtain local bounds for the L°°-norm of the second fundamental form A , and
its higher derivatives up to the existence time 7 > 0 of any maximal solution { f;}
of the “inverse Willmore flow equation” (8) under appropriate smallness assumptions
about the L2-norms of A 7, and its derivatives and about the L>-norm of f; on small
balls up to 7" and to use them in order to achieve a lower bound ¢ for the maximal
existence time 7' and an upper bound for the L°°-norm of f; up to the time t = c,
which only depend on local L2-bounds for A fo and its second derivatives and on
the L°°-norm of the initial surface fj. The first achievement about the “MIWF” (9)
consists of the proof of unique short-time existence for smooth initial data:
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Short-Time Existence of the M&bius-Invariant Willmore Flow 1155

Theorem 1 (Main result) Let X be a smooth compact torus. If Fy : ¥ — R" is
a C*®-smooth immersion without umbilic points, thus with | A(I)*"o 1>> 0on X, then
there exists some T* > 0 such that the Mobius-invariant Willmore flow (9) possesses
a unique solution {f;} on X x [0, T*], depending smoothly on t € [0, T*], which
consists of C*°-smooth, umbilic-free immersions f; : ¥ —> R", starting in Fy.

We shall see below that the main tools of the existence proof are an adaption of the
“DeTurck-Hamilton-Trick” (see also pp. 38-39 in [1] or the original source in [5]
applied to Hamilton’s investigation of the Ricci-flow in [8]) combined with parabolic
Schauder a priori estimates for linear, uniformly parabolic operators L of fourth order
“in diagonal form” with C% 7 -coefficients—which can be derived from Theorems 1,2
and 4,5 in [13]—the continuity method and the fact that the biharmonic heat operator

O + AL {{G) € CHIFE (X x [0, T],R") | Go =0 on X}
=, %5 (X x [0, T], RY)

yields an isomorphism, for any fixed smooth immersion G of the torus X' into R”
and for any fixed « € (0, 1). For the definition of parabolic Holder spaces, the reader
is referred to pp. 44-45 in [6] and pp. 18—19 in [1]. In the final step, we shall adapt
the “DeTurck-Hamilton-Trick” once again in order to prove uniqueness of the MIWF
with given smooth start immersion. It should be pointed out that one could also use
parabolic L2- and Fredholm Theory, as developed by Mantegazza and Martinazzi in
[11], instead of the author’s “Schauder approach” in order to gain both the existence and
uniqueness result of point (2) of Theorem 3 below. In a forthcoming article, the author
plans to show a sufficient condition for global existence of the MIWF, to examine its
singularities and to discuss some of its applications. In the appendix of this article
the author explains, why the right-hand side of (9) is the “simplest” modification of
the usual Willmore flow in order to achieve the desired “Mobius-invariance” of the
resulting modified flow.

2 Preparations for the Proof of Theorem 1

For any fixed C2-immersion G : ¥ — R” and a smooth chart ¥ of an arbitrary
coordinate neighbourhood X’ of a fixed smooth compact torus X', we will denote
throughout this article the resulting partial derivatives on X’ by 9;, i = 1,2, the
coefficients g;; := (9;G, 9;G) of the first fundamental form of G w.r.t. ¥ and the
associated Christoffel-symbols (I'6)}; := g™ (3G, 3;G) of (X', G*(geu)). More-
over, we define the first (covariant) derivatives by ViG(V) = Va(l_;(V) = 0;(V),
i =1, 2, and the second covariant derivatives by

VS(V)=VEVEW) ==V — (TG0 8V (10
of any function V € C%(X, R). Moreover, for any vector field V € C3(X,R") we

define the projections of its first derivatives onto the normal bundle of the immersed
torus G(X') by
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1156 R. Jakob et al.

VO (V) = (VE (V) = VI (V) = PO (v))
and the “normal second covariant derivatives” of V w.r.t. the immersion G by
Vi OV (V) = VO (VO (V) = (TG Vi@ (V).

Using these terms, we define the Beltrami-Laplacian w.r.t. G by Ag(V) =
gKVE(V), its projection (AgV)16 = (glekGVIG(V))LG onto the normal bun-
dle of the surface G(X) and the “normal Beltrami—Laplacian” by AéG(V) =
gk V,ﬁ‘ ¢ VZJ‘ % (V). We shall note here, that Egs. (2) and (10) together imply

(AG)ij = A (9, 9)) = 8;;G — (I'6)} 3G = VIV (G), (11)

which shows that the second fundamental form A is a covariant tensor field of degree
2 and that there holds

Hg = ¢ (Ag)ij = 8 VEVT(G) = £6(G) (12)

for the mean curvature of the immersion G.
The main problem about Eq. (9) is its non-parabolicity. We have

X 1
AFHy + QAN (Hy) = (ApHp)™ +2Q(Af)(Hy) — 5 | Hy ? Hy
and by (12)

A pHp =g g VIvIvIv] (P
—g7 g <vif VIVIVI (). 0uf) &1 8, (f) (13)

for any C*-immersion f : ¥ — R”, which shows that the leading operator of the
right-hand side of (9), i.e. of | A(}{t |=* 8W(f,), is not uniformly elliptic (of fourth
order), even if | AO |2 should stay positive on the torus X for all times ¢ € [0, T]. In
order to overcome thls unpleasant obstruction, we are going to adapt the “DeTurck-
Hamilton-Trick” (see also pp. 38-39 in [1]), i.e. we fix some further C*-immersion G

of ¥ into R"” and compute

VIV (f) = @uf — T fom () + Cl(f. G) I (f)
= VEVE) + Cli(f, G) du(f)
for CJ(f, G) = ((Ug)y; — (I'p)fp) on X', 1t is important to note here that the
difference (I')}; — (I'p)j; is a tensor field of third degree and that therefore the

difference

gl & (VIVIVIN] (f) = VIVl G (1)) = & &K VIVIVEVE(p)
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Short-Time Existence of the M&bius-Invariant Willmore Flow 1157

is a “scalar”, i.e. does not depend on the choice of the local chart ¥ and thus yields
a well-defined differential operator of fourth order on C*-immersions f : ¥ — R”
again. Moreover, one can easily verify by (10) and the derivation formulae in (20)

that f +— g;{ gl}l Vf Vf VGVG( f) is a non-linear operator of fourth order whose

leading term is g, 7 g’}lVGVGVGVG( f), which is uniformly elliptic in the sense of
(47) below, if || f — G |l¢1(xy is sufficiently small. Neglecting derivatives of f; of
order < 4 we are thus led to firstly consider the evolution equation

1 .
0(f) = =5 | A% I QW) + gt eh (V) VIV (f). omfi) o f

g’,{g’}f VNI (TR = (T I (f2))
= Dr, (fy), (14)

for any C°°-smooth start immersion Fy : X — R” satisfying | A |> Oon X. The
right-hand side D, (f;) of (14) can be expressed by

Dry (f)(x) = ——|AO 1 ¢ gV IvIv v ()

+B(anXfl7Dxff’Dxfl)a (15)

for (x, 1) € X’ x [0, T, where the symbols Dy f;, D)% fis Di f; abbreviate the matrix-
valued functions (91 f7, 92 f7), (V;O ft)i,jef1,2) and (V;(}(ﬁ)i,j,ke{l,z} and where the

n components of the lower order term B(-, Dy f;, D,%f;, Dg fy) are “scalars”, i.e
functions on X’ x [0, T'] that do not depend on the choice of the chart ¢ of X’.
Similarly as in the proof of Theorem 2 one can infer from this fact that there has to
exist some well-defined function B : X xR?* x R¥* xR¥" — R whose n components
are rational functions in their 14n real variables, such that (15) holds “globally” for
any pair (x, t) € X x [0, T']. Hence, we arrive at the quasi-linear initial value problem

0 (f) =—5 | AG 17 8] VIV () + B(-, Do fi, D fi DI £,
fo= F() on X, (16)
of fourth order for C*-immersions f; : ¥ — R”, which is uniformly parabolic as long

as || fi — Fo |l ¢4(y) remains sufﬁciently small, i.e. smaller than some § > 0O for any
t € [0, T, since this guarantees that | A |2> O on X fort € [0, T], because of the

assumption on Fj to satisfy | A Fo 2> O on the compact manifold ¥. This motivates
to look for a short-time solution of (16) either within the open, convex subset

B
XFypo.7 = {{ft}ec‘”ﬂ*lﬂ (Zx[0, TLRY) ||| fi — Fo ll¢acsy< 8 for te[0, T1,

fo = Fo on E]
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1158 R. Jakob et al.

of the affine closed subspace
B
Ygr.r = {{fi} € CHPIHI(Z x[0.TI.R") | fo=Fo on X}
of the Banach space CcHBITE (X x [0, T], R™) or within the closed convex subset

Xpypor = [UICHBIHE (D X0, TLRY Il fi=Fo llcs z)< 8 for 1€l0, T,

fo = Fo on E]

of C4t# A+ (X x [0, T], R"), for some sufficiently small § > 0 and some arbitrary
B e (0,1).

Now, since the operator Dp, does not act linearly on the family {f;}, one cannot
immediately apply the standard theory for linear parabolic systems—as presented in
[10], Chapters 4 and 5, or in Chap. 3 of [1] for linear parabolic systems of second
resp. fourth order—in order to achieve existence of some solution of (16) on some
sufficiently short time interval [0, 7*]. A first strategy to overcome this problem might
consist in proving that for any element {G,} € X Fo,B,5,T the unique solution { f;} of
the semi-linear equation

3 (f) = —% | AL, 17 gd, gl vEVTV V[ (f) + B(x, DG/, D}G,, DIG))

17
with fo = Fp on X is again contained in X Fo.5,7 if T > 0 is chosen sufficiently
small, which would define the map ¥ : X Fo.B.8,T — X Fo.8,5,T» mapping {G,} onto
the solution { f; }, and then proving continuity of ¥ and that the closure of ¥ (X Fo,B,8.T)
is a compact subset of C4+’3’1+% (X x [0, T], R") in order to derive the existence of
some fixed point of ¥, which would in fact be a solution of problem (16) on X' x [0, T'].
But unfortunately, it is impossible to guarantee—by the use of the a priori estimates
in Corollary 3 or in Proposition 3 below—the existence of some 7' > 0 such that
the solution { f;} of equation (17) for every (!) given {G,} € X Fo,B,8,T again satisfies
I fi = Fo llc4(xy< é forall 7 € [0, T'], implying {f} € Xpo’lg’g‘f again. Hence, the
construction of the map ¥ breaks down from the very beginning.

A morerefined strategy is to consider the non-linearmap ¢ : X g, g.s,7 — Cﬁ,% (X x
[0, T'1, R"), defined by

$(f) = 0:(f) = Dry(fy)
1 L t t
= a(f) +5 1A% 17 gl VIV V)

—B(x, Dy f1, D2 f, D3 fo), (18)

for some sufficiently small § > 0 and some arbitrarily fixed 7 > 0 and 8 € (0, 1),
and to prove the following two theorems, Theorems 2 and 3:
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Short-Time Existence of the M&bius-Invariant Willmore Flow 1159

Theorem 2 Let Fy : ¥ —> R" be a C°°-smooth immersion of a smooth compact
torus into R" without umbilic points, thus with | A Fo 12> 00n X, and let B € (0, 1)
and T > 0 be arbitrarily fixed. There is a sufficiently small 5 > 0 such that the
following three statements hold:

(1) Themap ¢ : Xgy 5,1 — Cﬂ*g(Z‘ x [0, T1, R"), defined in (18), is of class C!
on the open subset X gy gs.1 C Yg.1T,F-

(2) In any fixed element {f;} € Xp, pgs 1 the Fréchet-derivative of ¢ is a linear,
uniformly parabolic operator of order 4 whose leading operator of fourth order
acts on each component of f = { f;} separately:

DY (f)-n = () + 5 |A° I AGAO)!

ljk

+Bj ,,k<n>+B” viia+ Bl Va9

on X x [0, T), for any element n = {n;} of the tangent space
B
TyXrypar = Ypro:={ln) € CHPIHE(Z x [0, ), R") | no = 0 on X},

where B Bzu, Bi are the coefficients of Mat,, , (R)-valued, contravariant ten-
sorﬁelds ofdegrees 3 2 and 1, which depend on x, Dy f;, D2f,, D3f, and D4f,

and are of class Cﬁ donX x|[0,T]
(3) The Fréchet-derivative of ¢ yields an isomorphism

= gL
Do(f) : Ypro — CPT(Z x[0,T],R")
inany fixed f € Xg,.g,5,7-

Proof (1) We fix an arbitrary smooth chart ¥ : 2 —> X’ of an arbitrary coordinate
neighbourhood X’ of X', which yields partial derivatives 9,,, m = 1,2, on X’. For any
C2-immersion G : ¥ — R” the choice of v yields the coefficients g; i :=1(0;G, 9;G)
of the first fundamental form of G w.r.t. ¢ and the associated Christoffel-symbols
Ie)jy = g™ (3G, 9;G) of (X', G*(geu)). On account of (10) and by the general
derivation formulae

V(1) = 0 () — (TGt wom

ViG()tjk) = 0 (A jk) — (TG} Amk — (TG M jm

VE @) = 0i(Cjx) = (TG} Gkt — (T Cjmt — (TG Ejiom (20)
on X' for the coefficients wy, A jk and i (wrt. to the chart ¢) of covariant
Cl-tensor fields w, A and ¢ of degrees 1, 2 and 3, one can verify that for any
C*-immersion f XY — R for any fixed C*®°-immersion G : ¥ — R”

and for fixed i, j,k,I € {1,2} there is a unique rational function P(?jkl) €
C®(XN[V1, ... Von, WLy vy W, V1, -+ -5 Y8n] (With n components) in 2n + 4n +
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1160 R. Jakob et al.

8n = 14n real variables, whose coefficients are smooth functions which are ratio-
nal functions of the partial derivatives 3; (G'), ..., 8;(G"), 0;j (GhH, ..., 0;j(G™"), 9;jk
(GH, ..., 5 ik (G") of the components of G up to third order, such that

vIvIveve(f) = VGVJ-GVkGVZG(f)

PGy VI VE M VUYL VLD Ve (M)
@1

holds on X’. We note here, that the terms

PG (VP VS VR, VU™, VD V5 (")
must be the coefﬁments of a covariant tensor ﬁeld of fourth degree on X’. Moreover,
since there holds

| A% 1P= g ot (ahis. (aDu)

and (Ay)ij = Af(0;,0;) = 0 f — (Ff) dm f, one can verify only by (10) that
there is a unique rational function QG COO(Z‘ MNvi, ..., vou, Wi, ..., W4y] In 61
real variables whose coefficients are smooth functions which are rational functions of
the partial derivatives 9;(G1), ..., 3;(G"), 3;;(G"), ..., 3;j(G") of the components
of G up to second order, such that

| AG 1*= @OV VI, VS VD VR, . V5B U™)
(22)

holds on X', which is a “scalar”, i.e which does not depend on the choice of the
chart ¥ of X’. Combining (21) and (22) and recalling that Fy does not have any
umbilic points on X, we obtain the existence of a unique rational function R0 e
C®(ZN[v1, .. V2, WL, o vy Wan,y Vs - -+, Yen]in2n+4n+8n = 14n real variables,
whose n components are rational functions in 14n real variables whose coefficients
are rational functions of the partial derivatives of the components of Fy up to third
order, such that

—|A° ™ g} g VvV
=§| G gl g VvV ()
+RF°(VF°(ft Voo VR UL VPN VS L VIR,
222(fz ) (23)

holds on X’ x [0, T] for any family of immersions {f;} € XFy.p5,1, 1f 8 >
0 is chosen sufficiently small. We should note here that the n components of
RIOCVIOCAD, o V3 UM, VIR, - VR U, VI D, - Vas (1) are
“scalars” as well, i.e. do not depend on the ch01ce of the chart w of Z‘ On account
of the definition in (18) of the map ¢ we infer from (23) its representation
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Short-Time Existence of the M&bius-Invariant Willmore Flow 1161

I :
SUNE) =8 i) + 5 1 AG @) 17 ] 5 VOV vV () ()

+RONVOGN, VR, VD VI,
VIO (! ))(x) B(x, Dy f,(x), D2 f,(x), D2 fi(x))

=0 fi(x) + 5 | A% 00 17 g e VvV () ()

+F(x, Dy fi(x), D f;(x), D3 f;(x)) (24)

for any family of immersions {f;} € XF, g,s,7 and for (x,7) € ¥’ x [0, T],if § > 0
is chosen sufficiently small. Here and in the sequel, the symbols D, f, D)% £ Di fe..
abbreviate the matrix-valued functions (91 f, 92 f), (VI.I;0 Dije,2) (Vg‘;{f),-,j,ke{l)g},
.. .. On account of the arbitrariness of the choice of the coordinate neighbourhood X’
and its chart v and by the compactness of X', equation (24) gives rise to a unique and
well-defined function F : ¥ x R¥ x R* x R¥ — R whose n components are
rational functions in their 14n real variables, such that (24) holds on X x [0, T], if
6 > 01is chosen sufficiently small. Now, since Fj is umbilic-free on X, i.e. since there
holds | AF, |>> ¢o > Oon X, and as ¥ is compact, we know that the modulus of each
denominator which appears in the fractions of F(x, Dy f;(x), Df fi(x), Di fi(x)) is
bounded from below by some positive constanton X' x [0, T'],if { fi} € X, g,s,7 and
8 > 0O sufficiently small. Therefore, the rational function (x, #) — F(x, h) is of class
C®° in an open neighbourhood O of the graph {(x, Dy Fp(x), ..., D; Fo(x)) | x € X}
in ¥ x RM where we set M := 14n. Forany § > 0 we define the open neighbourhood
Vs of the function (x, ) > (Dy Fo(x), ..., D3 Fo(x)) in 85 (2 % [0, T], RM)
by

h € Vs <= (DyFy, ..., D2Fy) — h || Lo(sx[0.17) < 26.

[See pp. 4445 in [6] for the definition of “C'* "% (X x [0, T], RM)”.] Now, we

choose § > 0 that small such that there holds (x, #,;(x)) € O for any pair (x,t) €

X' x[0, T]if {h;} € Vs and obtain that the partial derivatives of F w.r.t. the components

of h € RM are of class C™ aboutevery point (x, &, (x)) (€ O)if {1} is contained in V.
1

Hence, fixing suchasmall § > 0, some {h;} € Vsand somen ={n} e c‘+ﬂ»%ﬂ(2 X

0, T1, RM) with sufficiently small norm 0 < < € we can
[0, T1, RM) y 10 rep B e <
derive from the classical mean value theorem:

| DpF(x, he(x)) = DpF (x, hi(x) + n:(x)) |
=< COIlSt(F(),(S,g) | nf('x) |§ COnSt(FO,(S,g) ” n ” 1+5 4 (Zx[0.T], RM)

for any ¢ € [0, T] and any x € X, and thus (abbreviating & := {h;} and n := {n;})

| DrF(-,h) — DprF(-,h+n) Loz x0T

< Const(Fo, 8,€) | n |l (25)

148 .
P (2 %[0, T1,RM)
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Moreover, as in the proof of the compactness of the embedding C% i (X x[0,T] —

Cﬁ’g(E x [0, T]), for0 < B < a < 1, we can estimate for any fixed x € X, any
€ > 0 and any fixed @ € (8, 1):

hﬁlg (th(x, hiy(x)) — DpF(x, hey(x) + n(.)(x))) (26)
< eﬁ(hél%Dh}"(x, hiy(x)) + hijl%Dh]:(x, hey(x) + 1y x)))

_B
+2€ 4 | DyF(-,h) — DpF(-, h+n) llLozx0,T])
on [0, T'], and similarly for any fixed ¢ € [0, T']:

hélg (DpF (- hi(+)) = DpF (- i (-) +1:(-)))
< e"‘_’g(hélaDh}—(',ht('))+h61"1Dh}—("h’(')+nt(')))
+2e P | DRF(- h) — DpF (-, h+ ) ez xp0.7) 27

on ¥. Combining (25), (26) and (27) we obtain again on account of the mean value
theorem:

| DaF (- h) = DpF (- h+m) |,
P8 (zxq0.1)

=|| DprF(-,h) — DyF (-, h+n) Loz x[0,T])
+ sup hOlﬁ (DpF(x, h(.y(x)) — DpF(x, h(y(x) +n¢y(x)))

xeX

+ S[gp]holﬁ(DhF(whz(-))—th(~, he(-) +n:(-)))
tel0, T

= Const(Fo. 8. €) 110 1l 1148 2 507D

a—p ~
+¢“T Const(Fy. 8, €) ( Al +lnl

C* % (£ x[0,T]) Cc* % (£x[0,T1) )
B
+2 ¢~ 4 Const(Fy, 8, €
(Fo,8,6) 0l R .

+e¥ P Const(Fo,(S,E)(elfo‘—i- | Al + 1l

c* % (£x[0.T]) ™% (£x[0.T)) )

+26_ﬁ COnSt(FOa 8, g) ” n ” 1+ﬂ 4 (Zx[0.T])

+e Pyl S 0T +e T

< Const(Fy, 8., h) ((1 et

e el—ﬁ)’ (28)

for any € > 0 and any fixed « € (B,1). Now, choosing exactly € =]

€ (0, €) we arrive at the estimate:

nl '+ (mxi0.T1RM)

DpF (- h) — Dy F(-, h
| DAFC ) = DiFCoht )l g
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8
< Const(Fy, 8, €, h) ( (A il E
c+E (mpo.r) ﬁ’%ﬂ(Z‘x[O,T])
a=p
il +lnl? + gl )
‘”‘ HE (exi0.1) 5 (sxo,71) '”* g0

(29)

for any fixed « € (B, 1). Now, denoting by
Fi: Vs c B (3 x [0, TLRM) — 5 (X x [0, T], R")

the non-linear operator which maps & = {h;} € Vs to the function }' (-, h), we obtain

by the classical mean value theorem for any n = {n;} € C”B s (X x [0, T], RM)

with sufficiently small norm 0 <|| n || o T(z 071 RM)
: [0.T].

Fe(h +n) — Fy(h) — Dy F(-,h)-n
=F(,h+n)—F(C,h)—DpF(-,h) -7

1
=f DhF(-.h+sm)-nds — DuF (- h) -
0
1
=/ DhF (- h+ sn) — DyF (- hyds -1
0
on X x [0, T'], and therefore together with (29):

Fe(h — Fy(h) — DRF(-,h
| Folh+m) = Foh) = DiFC ol e

<M/ | DnF (-, h+sn)—DpF (-, h) || IInII
[OT]) x[0,T])
ﬁ
= Const(Fo, 8, & h) (0 1l . 120 +ln o i +||n||  Lip
i
2
Il T I HﬂHﬂ ) Il g 40 -

This proves that the operator F; is Fréchet differentiable in any ﬁxed h € Vs with

Fréchet-derivative DF;(h) : cl+p. (2 x [0, T],RM) — ch i (X %[0, T],R™)
given by

DFy(h).n = DpF (-, h)-n. (30)

Moreover, (29) shows that the Fréchet-derivative DF; is continuous from (Vs, || -

”CH'ﬂ‘#(Zx[O,T])
[0, T],RM) to Cﬁ’§(2 x [0, T],R"). Thus F; is a C'-map from (Vj, |

. B
) into the Banach space of linear operators mapping C'+#- s (X x
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B
to CP7(X x [0, T], R"). Denoting by £ the linear mappin
||c1+f‘~‘%ﬁ<zx[o,n)) ( [0, T],R") g by pping

fi > (Dx fi, D2 f,, D} f;) we see that

I (DyFo, ..., DYFo) — L(f) Iosxpo.rp< sup || Fo — fi le3z)< 8 <268
1€[0,T]

for any family of surfaces { fi} € Xf, g 5,7, which shows that £ maps X, g s, 7 into
the neighbourhood Vs.

Moreover, since Fy is umbilic-free on X, i.e. since there holds | Af, 2> ¢p > O on
Y, and as x | A(} (x) |2 is a “scalar” on X for any C2-immersion f: X =R
Eq. (22) yields a well-defined function A : ¥ x R** x R¥ — R, which is rational
in its 6n real variables, such that there holds

%|A(} ™= A(-,Dyf,D}f) on X 31)

for any C2-immersion f with sufficiently small C2-distance || f — Fo llc2(xy- Again

onaccountof | Af, |22 co > Oon X therational function (x, 1) — A(x, h)isof class
C®° in an open neighbourhood O of the graph {(x, D, Fy(x), D)%Fo(x)) | x € X}in
X xRM where we setnow M := 6n.Forany 8 > 0 we define the open neighbourhood

v . 2 2B e M
s of the function (x, t) = (DyFp(x), D;Fp(x)) in C (X x[0,T],R"™) by
h € Vs <=l (D Fy, DXFo) — h |l1oo (s x[0,77) < 28.

Now, we choose § > 0 that srzlall such that there holds (x, #;(x)) € O for any pair
(x,1) € X x [0, T]if {h;} € Vs and obtain that the partial derivatives of A w.r.t. the
components of 1 € R are of class C* about every point (x, i, (x)) (€ O) if {h,} is

contained in V. Exactly as above we introduce the map Aj : Vs C C 246, 5 (¥ x
[0, T],RM) — Cﬁ'g(Z‘ x [0, T], R) which maps h = {h;} € Vs to the function
A(-, h) and show by the above reasoning that the map .A; is Fréchet-differentiable in
any fixed h € Vs with Fréchet-derivative DA;y(h) : C2+’3’#(2 x [0, T],RM) —
CP5 (2 x [0, T1, R) given by

DAs(h).n = Dy A(-,h) -1 (32)

and that D A; is continuous from (f/a, [| -1l 248 ) into the Banach space
)

P TT (9 x(0,T]
2+
of linear operators mapping C”ﬁ*Tf3 (X x[0,T], RM) to Cﬂ’% (X x[0,T],R), and

thus that Aj is a C'-map from Vs, -l 2ip 2HB ) to Cﬁ’%(ZJ x [0, T1, R).
Pz (Zx[0.1])

We will need below that the linear map o fi = (Dx f3, Df fi) maps X g, g5 7 into
the neighbourhood Vs on account of

| (Dx Fo, D?Fo) — L(f) lzo(zxjo.rp< sup |l Fo — f; lc2(z)< 8 <268
1€[0,T]
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for any family of surfaces {f;} € X g, g 5 r. Finally, as the function
x> g g VIV Vo))

is a scalar for any C*-immersion f ¥ — R” there is a unique, well-defined
function Q : R?" x R" _ R" whose n components are rational functions of its

first 2n variables (hl, el h2”) =: h and linear functions of its last 16n variables
(h2"+1) ..., h'8") =: h* such that there holds
gl kv ivivfo(f) = oDy £ DEf)  on Z (33)

for any C*-immersion f. Firstly we infer from the “quasi-linearity” of Q that its
derivative in some fixed point & = (h, h*) € R** x R!'%" in direction of an arbitrary
n = (7, n") € R¥ x R9" has the form

D, Q(h) - n = D;;Q(h, h*) - i + Q(h, n*). (34)
As Dj, Q is linear in its last 16n variables as well, we note that there holds:

D;Q(h + sij, h* + sn*) — D;; Q(h, h*)
= D;Q(h + 57, h*) — D; Q(h, h*)s D; Q(h + 57, n"), (35)
: i 3-1-/3,ﬂ 2n
for any s € [0, 1]. Now, we consider the product X := C (XY x[0,T],R™") x

Cﬂ’% (X x [0, T], R'%"), which becomes a Banach space when equipped with the
norm

I A llx:=I A I g, 222 ol RO

B )
3+ﬂ'T(Z'><[O,T],]R2") Cﬁ’Z(ZX[O,T],RIG")

forh = (h, h*) € X. Moreover, we define for small § > 0 the open neighbourhood
Vs of the function (x, £) > (Dy Fo(x), D*Fy(x)) in X by
h=(h,h*) € Vs <= DxFo — h ||=(zxj0.1)) + | DfFo — h* |5 xp0,77) < 28.

We firstly estimate for any fixed h = (h, h*) € f),g and any n € X with sufficiently
small norm 0 <|| 1 ||x< € by the mean value theorem and the “quasi-linearity” of
D;, Q:
I D5 Q(h + 7, B*) — D; QU h*) || (s x(0.7))
< Const(Fp, 8, €) || 17 [Ilz=e(zxfo, 71l A* Iz x10,17) -

Similarly as in (28) we can combine this estimate again with the mean value theorem
in order to estimate:

D;; Q(h + i, h*) — D Q(h, h*
| D;Q(h + 1, h") 7 QU )”Cﬁ'g(z‘x[O,T])

=|| D; Q(h + 71, h*) — D; Q(h, h*) || (s [0,
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+ sup hOIﬁ(Dh Q(h(x) + 7(x), h*(x)) — D; Q(h(x), h*(x)))
xeX

+ S[gp ]hiil,s(D,; Q(hy + iy, hf) — D; Q(hy, hF))
tel0, T

< Const(Fp, 8,€) || A* || | 7 ez x10,17)

8B
C” 4 (X x[0,T])

a=p ~ = *
e T Const(F0.8.8) (11l 507y * 1 s (g0 ) 17 1t
_B ~ -
+2¢7 % Const(Fo, 8,€) 11" |l 8 I [l x10,7)
C™ 4 (X x[0.T]
a—p ~ A o *
e~ Const(Fo. 8. I Lt 501y + 1 gt spo.my) 1071 st

+2¢7 Const(Fy, 8, &) || h* | I 77 |z (z x[0.71)

8B

Cc” 4 (Xx[0,T])
- _B — _ [ _

< Const(Fo. 8. h) [ h* | ¢ (A+e S e il +¢T + e F),

for any € > 0 and any fixed o € (B, 1). Now setting € :=| n ||x> O this estimate
implies in particular that

I DFQh + 0, h*) — D Q(h, h*) ||

< Const(Fo, 8, & h) | h* || , s
C 4 (X x[0,T])

Pl (Zx[0,T])

B
(||77||x+||77||X4+II'7I|X’3+||77|IX +In 15 "?). (36)

Exactly the same reasoning, now using the “quasi-linearity” of Q itself, yields the
estimates

| Qh + 77, n*) — Q(h, n*) |l L(sx[0.7)
< Const(Fy, 8, €) || 7 llz=sxio, 7l n* ooz x10,71)

and

I Qh + 71, n*) — QU, ™) |

chh (Z %[0, T])

< Const(Fo. 8. &) (In x + Ul + 0 15 + 0l + 015" )
17 s oo 37

As we also have
| D Qe + i) | = Const(Fo, 8,&, ) [0 x  (9)

chh (Zx[0,T])

on account of the linearity of Dj;Q in its last 16n variables, we can finally combine
(34)—(38) with the mean value theorem in order to conclude for the operator Qy :

]>5 cCX — Cﬁ’%(Z‘ x [0, T], R") which maps h = {h;} € f}g to the function Q(h):
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I Qz(h+m) — Qu(h) — DpQ(h) -1 |

ch 1(}: [0,77)

1
=||f D;QGi +sih*)  — DyQGh h*)ds - 7
0
1
+f s DO +s i, ™) ds - i
0

/ Qi + sii, %) — QU ™) dis |

ch 4(2x[o a))

< Const(Fo, 3, €, )(Ilnllx+llﬂllx4+||17||Xﬂ+llnllx +inl5?)
I llx.

for any fixed h = (h,h*) € )A)(s. This shows that the operator Q; is Fréchet-
differentiable in any fixed h = (h, h*) € \}5 with Fréchet-derivative D Qg (h) : X —
Cﬁ’g (X x [0, T1, R") in direction of an arbitrary n = (1, n*) € X given by

DQ;(h).n = DyQ(h) - n = D; Q(h, h*) - ij + O(h, n*). (39)

Furthermore (35)—(39) show that DQjy(h) is continuous in i € f/(; w.rt || - |lx. We
finally let £ denote the linear map f; +— (Dx f;, Dt f;), which maps X, g.5.7 into
the neighbourhood Vs on account of

|| Dy Fo — L(fy) llzesxio.r) + | DEFo — L£Of)* e (s xq0.71)

< sup || Fo— fillcaxy=8 <28
tel0,T]

for any family of immersions { f;} € X g, g 5, 7. As (24) means by (31) and (33) that
p=0+A0L - Quol+FsoL, (40)

we can finally infer from the chain- and product rule for C'-maps (on open subsets of
Banach spaces) that ¢ is a C'-map from XFy,p,5,T tO Cﬂ’g(z x [0, T],R™"),if§ > 0

is chosen sufficiently small, as asserted in part (1) of the theorem.
(2) From (30)-(33) and (39)—(40) we infer again by the chain- and product rule for
C'-maps that the Fréchet-derivative of ¢ in any fixed {f;} € X Fo,B.5,T 1s given by
D (f)n = dyme + DAL L) - Qe(L(f)
+ALLf) (DFQES)) - L(n)
+Q<é<ft (LM) + DF (L)L)
= o + 3 oy A% |7 (D QD fi. DY fi) - D ()

F F F{ F(
+g;!,g’;fvi°vj°vk°V,°<m>)
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+DpAC-, Dy fio D2£) + (Deni, D2ny) g7 ¥ VOV IOV OV ()
+DyF (-, Dy fy. DY fy. D3 f) - (Dxne, Ding, Dny) (41)

on X x [0,T], for n = {n;} € TrXpy.ps1 = Yp1,0. First of all, this shows
that the Fréchet-derivative D¢ (f;) of ¢ in any fixed {fi} € Xpg pgs,7 is a lin-
ear, uniformly parabolic differential operator of fourth order on Yg 7 ¢ in “diagonal
form”, i.e. whose leading operator 2 | A0 |4 g4 ]}f VFOVFOVFOVFO is uniformly
elliptic in the sense of (47) for some sufﬁcwntly large elhptlclty constant A =1,
depending on X, Fp and on §, and which acts on each component of {n;} € Y5 1,0
separately, if 6 > 0 is chosen sufficiently small. Furthermore, the coefficients of
the rational function F are C°°-smooth functions on ¥ which only depend on
the derivatives of Fj up to 3rd order. As we also know that the modulus of each
denominator which appears in the fractions of D, F(x, Dy f;(x), Df fi(x), Df fir(x))
is bounded from below by some positive constant on X x [0, T], if {f;} €
Xrpy,ps,r and § > O sufficiently small, we can conclude by the mean value the-
orem that the composition D, F (-, Dy f, D? <1 D3 < f) has to be of regularity class

CHBE (2 % [0, T, R if {f,) e Xy ps.7 and 8 > 0 sufficiently small;

see again pp. 44-45 in [6] for the definition of “CIJ”3 (2 x [0, T], RM)”.

By the same reasoning, an appropriate choice of § > 0 guarantees that the

coefﬁcients 1 A(})ct |4 gl/ g’}‘f of the leading term of D¢ (f;) are of class

CH"S (E x [0, T1, R), for any family {f;} € Xpg, g,s,7- We can finally rewrite
formula (41) and obtain that indeed the Fréchet-derivative D¢ (f;) in any fixed
{fi} € XFy,ps,1 is a linear, uniformly parabolic differential operator on Yg 1,0 of
the form

DY (f)-n = demi + 5 Ly gl g viviov v om)
ik
+BY4(- ,Dxﬁ,D,%f,,Diﬁ)-vij‘;((nt>
F
+BY (-, Dy fy. D fy. D3 i DY f) - V0 (np)
i F
+Bi(-. Dy fi, D2fi. D3 fir. DY) - V()

on E x [0, T1,if § > 0is chosen sufficiently small, whose leading operator 1 5 | A | —4
g ft gk f} FO VFO VFO \% F0 is uniformly elliptic in the sense of (47) and acts on each com-

ponent of any {n,} € Yg 0 separately, and where Béj (-, Dy fi, D2 f;, D3 f0), ...,
B{(~ , Dy ft, D% fis D;? fts Dﬁ f1) are coefficients of Mat,, , (R)-valued, contravariant

tensor fields of degrees 3, 2 and 1, which are of regularity class Cﬁ’g on X x [0, T].
This proves the assertions of part (2) of the theorem.
(3) Since for any fixed {f;} € XFg) g, 5 T the leading coefficient tensor | AO |4

gﬂgﬂ of Dp(f;) is of class C1+/3’ =S (¥ x [0,T] and consequently of class

Cﬂ’g(Z’ x [0, T]), is uniformly elliptic (in the sense of (47)) on ¥ x [0, T] and
acts on each component of any {1,} € Yg 7,0 separately, the result of part (2) shows
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. . B .

in particular that D¢ (fy) : Yg 10 —> Cﬂ*K(ZJ x [0, T'], R") meets all requirements
of Proposition 1 resp. of Corollary 3 on X' x [0, T], for some appropriate constant
A > 1,depending on X, Fjy and §, and with« = B and G := Fy. Hence, by Corollary

3 D¢(f;) yields an isomorphism between Yg 7.0 and Cﬂ’g(z x [0, T],R") in any
fixed {f;} € Xpg, 5,7 .

Theorem 3 Let Fy : X —> R”" be a C*°-smooth immersion of some smooth compact
torus into R" without umbilic points, thus with | A(},O 1> 0on X, and let B € (0, 1)
be arbitrarily fixed and § > 0 be fixed as small as required in Theorem 2.

(1) There are sufficiently small T > 0 and T* € (0,T) and a function xpx €
CV’%(E x [0, T1, R™), for any y € (0, B), satisfying xp+ = 0on X x [0, T*],
such that x~ is containedinthe image of ¢ : Xy ys.7 — CV’%(E x[0, T1, R™).

(2) For this T* > 0 the initial value problem (16) has a unique and C°°-smooth
solution { f*} € Xry 5,7+ on X x [0, T*].

(3) This short-time solution { f;*} of (16) solves the initial value problem

O (f) = — 1A% 17 SW(f), o= Fo (42)

on X x [0, T*], where 81Lf’ (ft)(x) denotes the projection of the vector 9; (f;)(x)
onto the normal space of the surface f; at the point f;(x), forany x € X.

Proof (1) Since
% + 03, 1 1{G/) € CHPIHE (S % [0, T], R)|Go = Fo on X)
=, PRz x [0, TLRY) (43)

yields an isomorphism by Corollary 3, there is exactly one family {A;} € X g, g.s5.7,
for T > O sufficiently small, which solves the initial value problem

ihi + A (hy) = AT (Fo) + Dry(Fo).  ho=Fy on X,

on X' x [0, T'], where we recall that Dp, = 9; — ¢ by definition of ¢. We use this

unique solution {/A;} in order to define the function x € Cﬁ’%(}] x [0, T], R") by
x (1) := ¢ (h;) and see that

x(0) = ¢ (ho) = dho — DF,(ho) = d:ho — D, (Fo)
= A2FO(FO) - A%:O(ho) =0 onJX.

Now, we introduce the functions x, on X' x [0, T'] by

L 0 : rel0,p]
=\ xt=p) - 1€lp, T
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for any p € [0,T). On account of x(0) = 0 on X we obtain immediately that
B . .
Xp € Cﬁvz(Z‘ x [0, T, R") with || x, ”Cﬁ'g <l x ”Cﬁ’g for every p € [0, T'). Since

we also have
Xp(®)(x) —> x()(x) in each fixed (x,7) € ¥ x [0, T]
as p — 0, we conclude from the compactness of the embedding
CPE(Z x [0, T R") < C"5(X x [0, T],R"),
for any y € (0, B), that
Xp —> x  in CVT(X x [0, T],R") (44)

for any y € (0, B). Now, since X, gs.71 C XF,y,s5,7, for any y < B, Theorem 2
implies here for f; := h, and with g replaced by y that the Fréchet-derivative D¢ (h)
of ¢ in h yields an isomorphism

Do (h) : Yy 1.0 =ThXFyysr —> CV (2 x [0, T1.R),

for any y € (0, 8). Hence, as ¢ is a Cl-map on the open subset X g , 5.7 of ¥y 1,y
the “Inverse Function Theorem” for C 1-maps~between Banach spaces implies that
there are sufficiently small numbers € > 0 and § > 0 such that the open ball Bg (x) of

radius § about X in CV’%(Z‘ x [0, T'], R") is contained in the image ¢(Bg+y (h)) of

the open ball Bgﬂ’ (h) C XF,,y,s,1 of radius € about & w.r.t. ¢. Hence, by (44) there
have to exist some T* € (0, T) and some family f* = {f*} € Xf,,,,s,7 such that
¢ (f*) = xr+, just as asserted in claim (1) of the theorem.

(2) Since there holds 7+ = 0 on X x [0, T*], the proved assertion of part (1) shows
by definition of ¢ and by its reformulation in (24):

at(f‘[*)(x) - _ | A * | —4 ‘l}{* 1;[* Vft Vf[ FOVZFO(J(‘[*)(X)

+B(x Dy f5(x), D2 £ (x), D3 f*(x))
- | L I A G TC))

—f(x, Dy f(x), D} f(x), D} f(x)) (45)
on X x [0, T*], 1i.e. that { /;*} is a solution of problem (16) on X' x [0, T*], where the

1+
composition F( -, Dy f*, D)%f*, D?Cf*) is (at least) of class C1H7 =1 on I x [0, T*].
Furthermore, the linear operator

L:=d + —|A*| —4 ‘ff*g"’vlfg, cHelti(x x [0, T*], R™)

— C“’4(Z‘ x [0, T*], R™)

@ Springer



Short-Time Existence of the M&bius-Invariant Willmore Flow 1171

is uniformly parabolic on ¥ x [0, T*] on account of {f*} € Xp, , s, and is of
diagonal form, and thus meets all conditions of Proposition 1 resp. of Corollary 3 for
T := T* > 0, for some appropriate constant A > 1 depending on X', Fjy and §, and
for any o € (0, 1). Hence, by Corollary 3 L yields an isomorphism between Y, 7+ o
and C%% (X x [0, T*], R") and therefore also an isomorphism

L:{{G,} € CH*1H5 (X x [0, T*,R") | Go
— Fyon ¥} — C*%(X x [0, T*], R")

for any o € (0, 1). Since { f;*} solves the reformulation

L(f*)(x, 1) = —F(x, Dy f*(x), D2 f(x), D fF(x)) on ¥ x [0, T*]
with fj = Fp on X, (46)

of problem (16) and since the right-hand side of this equation is especially of class
C*%(X x [0, T*],R"), for any a € (0, 1), this proves that { £} € CH* 153 (3 x

[0, T*], R"), for any & € (0, 1), and thus that { f;*} is indeed a C4+ﬁ'1+g-solution of
equation (16) on X x [0, T*], and therefore in particular { f;*} € X, 5,7+ In order
to prove C*°-regularity of the short-time solution { f;*} of problem (16) on X' x [0, T*]
we again consider the above linear, parabolic operator L. As we know now that { f;*}

is of regularity class C4+’3’1+%, we see as above and as in part (3) of the proof of
Theorem 2 that L satisfies all requirements of the Regularity Theorem 3 for k = 1,
o =pand T := T* > 0. Moreover, { f;*} solves the reformulation (46) of equation

(16) on X' x [0, T*] whose right-hand side is of class C1+’3’#(2 x [0, T*], R™).
Hence, we may apply the Regularity Theorem 3 and obtain that {f"} is of class

587 (5 x [0, T*], R"). Thus, L, the right-hand side of equation (46) and the

initial surface Fj satisfy all requirements of Proposition 3 for k = 2, « = § and
T := T* > 0. We can therefore repeat the above argument and obtain by induction
that { £*} is of class CHIHBIHSE (52 % [0, T*], R”) for any k € Ny, i.e. that { fr)e
C® (X x [0, T*], R™), just as asserted in part (2) of the theorem. Finally, having
proved that any solution of equation (16) is smooth and since its right-hand side is
quasi-linear, uniformly elliptic, also in the sense of the article [11], and in diagonal
form, one can use the argument in the proof of Theorem 1.1 in [11], pp. 865-868, in
order to prove also uniqueness of the solution { f;*} of problem (16) within X , g 5 7*.
(3) Since the difference of the right-hand sides of the equations (42) and (14) resp.
(16) is a section into the tangent bundle of their solutions { f;} in each time ¢, and
since SW(f;) = %(AJ-Hf[ + Q(A(}[)(Hft)) is a section into the normal bundle of the
surface f;, the short-time solution { f;*} of problem (16) has to be a smooth short-time
solution of problem (42) on X' x [0, T*] as well. m]

For the proof of part (3) of Theorem 2, we need the following Schauder a priori
estimates for uniformly parabolic operators of fourth order with C* % -coefficients
and with uniformly elliptic leading operator in diagonal form, which can be derived
from Theorems 1, 2 in [13] together with the compactness of the embedding
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CHelti (2 x [ RY) < (T x I, RY)

and Ehrling’s Lemma (see also Proposition 3.22 in [1]):

Proposition 1 Let X be a smooth, compact, orientable surface without boundary,
G : ¥ — R" a C®-smooth immersion of X into R", a € (0, 1) arbitrarily fixed,
I = [a, b] a closed interval of length T > 0, and let s : §2 —=> ¥’ be a smooth chart
of an arbitrary coordinate neighbourhood X' of X, vielding partial derivatives 9,
m =1, 2, and the induced metric g := G*(geu) with its coefficients g;; := (3; G, 9;G)
on X'. Moreover, let

L:CYeti(y x [[R") — C*5(X x I, R")

be a linear differential operator of order 4 whose leading operator of fourth order
acts “diagonally”, i.e. acts on each component of f separately:

L(f)(x, 1) =0 (f)(x,1)
+(Aitjkl ()C, t) ngl + AISJk ng + AIZJ Vg

FALVE 4 Ag(x, 0)()(x, 1),

ineverypair (x,t) € X' x I, and L is to meet the following “principal requirements”:

(1) Ai{kl, Ag]k, Alzj, Ali , Ag are the coefficients of contravariant tensor fields As, Az,
Az, A1, Agon X x I of degrees 4,3, ..., 0and of regularity class C""%(ZJ x I).
Moreover, the tensor A4 has to be the square E ® E of a contravariant real-
valued symmetric tensor field E of order 2 and of regularity class C% i (X x 1),
ie. Ai‘]kl(x, 1) = EV(x,t) E¥(x,t) with EV(x,t) = E/(x,t) € R, and we
assume that Agjk(x, 1), Alzj (x,1), A’i (x,1), Ap(x, t) € Mat, ,(R), in every pair
(x,1) € X’ x I and for all indices i, j, k,1 € {1,2}.

(2) The tensor field E is required to be uniformly elliptic on X x I, i.e. there has to
be a number A > 1 such that there holds

EV(x, 1) 58 > A7V g (x) g&; (47)

for any vector &€ = (£1, &) € R? and for any pair (x,1) € X' x I.
(3) There holds || A, ”C“'%(rxl)s A forr=0,1,...,4

Then, there exists some constant C = C(X, G, T, o, n, A) > 0 such that
10 vt gy = € (VLD Nt 5y + 100 2z

holds true for any family of surfaces {n;} € cHelti(x x 1, Ry withn, = 0on X.

Using these a priori estimates we are able to prove the injectivity of the restriction of
any such operator L to Yy 7,0, which still serves as a preparation for the proof of part
(3) of Theorem 2 (see also p. 861 in [11] for a similar reasoning):

@ Springer



Short-Time Existence of the M&bius-Invariant Willmore Flow 1173

Proposition 2 Ler L : C*¢ 15 (¥ x [0, T],R") — C*5(X x [0, T], R") be a
uniformly parabolic differential operator of order 4, which satisfies all requirements
of Proposition 1 on I = [0, T]. Then its restriction to Y, T is injective.

Proof Firstly, we show the subsequent improvement (50) of the a priori estimates of
Proposition 1 for any n € Y, 10 which satisfies L(n) = 0. To this end, we fix an

arbitrary smooth chart ¥ : £ —> X’ of a normal coordinate neighbourhood X’ of
XY, some C*°-smooth immersion G : ¥ — R” of X into R”, and some n € Yy 7.0
with L(n) = 0. We extend n to ¥ x [T, T] by n(x,¢) = 0on X x [—T,0], and
extend the coefficient tensor fields A4, A3, A2, A1, Agof L to X' x [T, T] by setting

A (x,—t) = A (x,1), for r =0,...,4
ip every x € X and for any ¢ € [0, T]. Obviously, the extended differential operator
L satisfies all requirements of Proposition 1 on ¥ x [—T, T], i.e. fora := —T and
b:=T.Now, since 7o = 0 on ¥ and n € C**!+7 (X x [0, T], R"), we can firstly
conclude that 7 € C* 4 (X x [T, T], R") and that
Bijkio =0, ko =0, o =0, =0 on X" (48)

As we also know that 9;;xn e C*5 (X x [0,T],RY), dijkn € Cclte g (Y x

[0,T],R™), ..., 0in € C3+°‘ = (X" x [0, T], R") on account of the definition of
parabolic Holder spaces in [6], we see that

0ijkin € C*5(2 x [~T,T1,R", 0ijx1 € C”“’WTQ(E/ x [-T,T],R"),
Lo € CHOIE (X X [=T, T], RY). (49)

Moreover, using that L(n) = 0 on X' x [0, T'] together with no = 0 on X and (48)
we can compute by the mean value theorem that

i (x)

d
—n = — = 1
7710+ (x) 77710+ (x) IH}) p

= — (A7, 0 VG, + AV (. 0) VG + AT (x, 0) VS
+A1(x,0) V¥ + Ag(x, 0) ) (70)(x) = 0

ijk

for every x € X’. As we trivially have %ﬁ(o_) = 0 on X by definition of 1, we can
infer the_ existence of d,719 with the val_ue 9;7p = 0 on X'. Together with (48) this
proves L(77)(-,0) =0on X’ and thus L(77) =0on X’ x [T, T], i.e.

ijkl ljk

i = —(AY" VT, + A% +AY VG + AL VE + Ag) () on X' x [T, TI.

ljk

Combining this with (49) and with the C* i- regularity of the coefficient tensor fields of
Lon ¥ x[—T, T]and covering X by finitely many normal coordinate neighbourhoods,
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we infer that also 9,7 € C"‘*%(Z x [=T, T], R") and therefore 7] € C4+a,l+%(2 %
[—T, T],R"), together with

17 gt e =I 1 letrets 00

for any pair €, ¢ € [0, T]. I\_Ioting that 7_74, = 0 on X, for any fixed ¢ € [0, T], we
can apply Proposition 1 to L and 7 on the interval / = [a, b] := [—T +1, 1] of length
T and obtain together with L() =0on X x [-T,T]:

Flparers (mago,my = W1 gt (m_rarn)
<C(Z,G . T.a.n, A) || il ll2sxirieay = C(Z, G, Toa,n, A) |1 125 (0.7 -

(50)

Now, integrating the equation %((ns, ns)) = 2(dsns, ns) over X' x [0, t], for some
fixed t € (0, T'], and using 79 = 0 on X and estimate (50) we obtain

1 t
5/ (e, 1) diac =/ /(i%m,’?s)d,ucds
X 0 )

= 0l paverss 5o 17 1Lt Exi000)
=C&, G T,a,n, A) I nlzzxpom I n L sxo.n
<Ving(®)C(Z, G, T.a,n, ) 10 135410 -

Hence, the continuous function t — z(t) := f = {ne, mr) dug satisfies the inequalities

0 < z(t) < 2/tpug(X)C(X,G, T,a,n, A) fot z(s)ds, for any ¢t € [0, T], and
therefore Gronwall’s Lemma finally yields z = 0 on [0, T'], which proves the claimed
injectivity of L |y, ;- a

A combination of this result with the a priori estimates of Proposition 1 and with the
compactness of the embeddings

C4+a,1+%(2 x [0, T],R") — c*(¥ x [0, T],R")
and
CoH (I (Z x [0, T1, Sym> (T £)) <> C(I'(£ x [0, T1, Sym* (T 2)")))

yields the following corollary by a standard contradiction-argument:

Corollary 2 Let L : C** 15 (X x [0, T],R") — C*3(X x [0, T],R") be a
uniformly parabolic differential operator of order 4 satisfying all requirements of
Proposition 1 on I = [0, T, for some T > 0 and some A > 1. Then there exists some
constant C = C(X,G,T,a,n, A) > 0 such that

=C LI

Il n ”C4+°"1+%(2><[0,T]) c*% (Zx[0.T])

@ Springer



Short-Time Existence of the M&bius-Invariant Willmore Flow 1175

holds true for any family of surfaces n € Y. 1.0. O

Corollary 3 Any uniformly parabolic differential operator
L:CHet5 (3 x [0, T],R") — C*%(X x [0, T],R")

of order 4 which satisfies all conditions of Proposition 1 on I = [0, T] yields an
isomorphism between the Banach subspace Y, 1,0 of C et (3 x [0, T1, R") and
Co5(X x [0, T],RM.

Proof As is well known (see Proposition 3.23 in [1]), for any fixed smooth immersion
G of X into R”, its associated biharmonic heat operator

B + ALt Yo 1.0 —> C%5(Z x [0, T].RY) 51)

is bijective and continuous and therefore an isomorphism. Moreover, this operator
certainly satisfies requirements (2) and (3) of Proposition 1 for some constant A; > 1.
If L satisfies requirements (2) and (3) of Proposition 1 with the constant A, > 1, then
each convex combination

Ly :=sL+(1—5) (3 4 AL) : C*1HT (2 x [0, T], R")
— C*%(X x [0, T],R"),

for s € [0, 1], satisfies conditions (2) and (3) of Proposition 1 with the con-
stant A := max{Aj, Az}. Hence, by Corollary 2 there exists some constant C =
C(X,G,T,a,n, A) > 0 such that the estimate

p=C I Ls( | (52)

|| n ”C4+a’l+%(2X[O,T CO[’%(ZX[O,T])

holds true for any family of surfaces n € Y, 1.0 and uniformly for each s € [0, 1].
Since each operator Ly maps Y, 7,0 continuously into C""%(ZJ x [0, T], R™), the
continuity method finally proves the claim of the corollary on account of (51) and
(52). O

For the proof of part (2) of Theorem 3, we invoked the following classical “Schauder
regularity theorem” for solutions of uniformly parabolic systems with leading term
in diagonal form, which can be proved by induction, Proposition 1, the “method of
difference quotients” and a precise use of the definition of parabolic Holder spaces in
[1], pp. 18-19:

Proposition 3 (Schauder Regularity Theorem) Let X be a smooth, compact, ori-
entable surface without boundary, G : ¥ — R" a C*°-smooth immersion of X into

R", andlet T > 0, « € (0, 1) and k € Nq be fixed arbitrarily, and r : §2 = 3
a smooth chart of an arbitrary coordinate neighbourhood X' of X, yielding partial
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derivatives 0y, m = 1,2, and the induced metric g := G*(gen) with its coefficients
gij = (0;G, 9;G) on X'. Moreover, let

L:Cc*eti(x x [0, T],R") — C%% (X x [0, T], R")

be a linear differential operator of order 4 whose leading operator of fourth order
acts on each component of f separately:

L(f)(x, 1) == 0 (f)(x,1)
+ (A7 ) VG + AT VG + AT VS

+ AL VO + Ag(x, D) (f)(x, 1),

in every pair (x,t) € X' x [0, T), and L is to meet the following “principal require-

ments”:

(1) Al]kl A”k Agj, A’i, Ag are the coefficients of contravariant tensor fields Aa, Az,
Az,Al Ao on ¥ x [0, T] of degrees 4,3,...,0 and of regularity class
lolas = [0, T]). Moreover, the tensor As has to be the square E @ E
of a contravariant real valued symmetric tensor field E of order 2 and of
regularity class Ck+°‘ S (X x [0,T)), ie A”kl(x 1) = EV(x,1) Ekl(x,t)
with EV(x,t) = EJi(x,t) € R, and we assume that A”k(x, 1), Alzj (x,1),
A‘ (x,1), Ap(x, 1) € Mat, ,(R), in every pair (x,t) € X' x [0, T] and for all
indices i,j, k1 e{l,2}.

(2) The tensor field E is required to be uniformly elliptic on ¥ x [0, T, i.e. there
has to be a number A > 1 such that there holds

EV(x,0) &8 = A7 g1 (x) &8
for any vector &€ = (51,52) e R? and for any pair (x,1) € X’ x [0, T].
(3) There holds || A, || kv ke oo, T])< A forr=0,1,...,4

If moreover Fy : ¥ — R" is an immersion of class C*t**% and R € Ck+°‘ (2 X
[0, T],R™) and if n € cHtenltg (X x [0, T],R") is a solution of the initial value
problem

L(u) =R on X x [0, T], uyg = Fy on X,

then there holds n € C4+k+“’l+k# (X x [0, T], R"), and there exists some constant
C=CX,G,T,a,k,n, A) > 0 such that

7l 4+k+al+ (2><[0 ™

<C(IR ||Ck+a‘kjjﬂ + 0 lleezxo,rny + | Fo llcatira s )

holds true.
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3 Proof of Theorem 1

We now combine the “DeTurck-Hamilton-Trick” (see also pp. 38-39 in [1]) with the
existence result of Theorem 3: By Theorem 3 there is some 7* > 0 and a family
of surfaces { f;*} € Xpy.p.5,7+ N C(X x [0, T*], R") which solves the initial value
problem (42) on X' x [0, T*]. Moreover, we infer from || Fy — f* llcacsy< o for
t € [0, T*], on account of {f*} € X, g5 7+ that f* is a (umbilic-free) smooth
immersion from X to R”, just as Fj is, if § is sufficiently small. Therefore, in every
pair (x,1) € X x [0, T*] there exists a unique tangent vector & (x) € Tan, X that
satisfies

Dy f(x).(&(x)) = —PTUD (3, £7(x)), (53)

where PTan(/) . R" — Tan( f7) denotes the bundle morphism which projects
R" orthogonally onto the tangent spaces Tan zx(,)(f," (X)) of the immersed surface
f7(X), in each time ¢ € [0, T*]. From the C*°-smoothness of the family { "}, we
infer the C°°-smoothness of the vector field £ on X' x [0, T*]. Therefore, by classical
existence and regularity theory of ordinary differential equations on smooth closed
manifolds we know that & generates a C°°-smooth flow ¥ : ¥ x [0, T*] — X of
smooth automorphisms ¥; of X' with ¥ (-,0) = idy, by setting ¥ (x, ) := y, (1),
where y, () is the unique, maximal solution of the initial value problem

Y1) =&G(@),  y0) =x (54)

for t € [0, T*] and for any fixed x € X. Finally we recall that the invariance of the
Willmore-functional W w.r.t. diffeomorphic reparametrizations implies that

SW(f o) = SW(f]) o W,

for each ¢ € [0, T*], and that the second fundamental forms A f* and their traceless
parts A(};k =Ap — % g+ Hyx are covariant tensor fields of degree 2, which implies

0 2 0 2
| A%y, P=1 AG 12 09

for each ¢ € [0, T*] in particular. Using the chain rule we can combine this with (56),
(53) and (42) in order to compute for the composition f; 1= f* o W (-, 1):

0 fr = (01 f7) oW + (Dy [ 0 W).(8:W;) = (O ") o Wy + Dy [ (&) o ¥
@ 1) o W — PTUD @, f75) o W, = 8- (f) o W,
—(1 A% 17 sW() 0w = — | Ay, 174 WS 0 W)

— 1 AS 17 sWs)

on X x [0, T*] with fy = Fy on X, which means that {f;} is indeed a smooth
(umbilic-free) solution of the Mobius-invariant Willmore flow (9) on X x [0, T*],
starting in Fp. It remains to show uniqueness of this short-time solution. To this end,
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let { f;} be some arbitrary smooth family of umbilic-free C°°-immersions which solve
the Mobius-invariant Willmore flow (9) on X' x [0, T*] with initial condition fy = Fy
on X. The R"*-valued function

1 ij mr iofiofioft
XG0 = =5 1A% 17 (s8llep (VI VvV (@), 8 i) 8 fi2)
— gL M VI (i) () = (T () B (f) (1)

isa‘“‘scalar” on X' and therefore a well-defined and smooth section of the tangent bundle
Tan( f;), for every ¢ € [0, T*]. Hence, since the derivative Dy f;(x) is an isomorphism
of the tangent space Tan, (X) onto Tan 7, (x)(f; (X)), in every fixed x € X' and every
t € [0, T*], there has to exist a unique tangent vector & (x) € Tan, (X)) which satisfies

Dy fi(x).(5(x)) = X (x,1) (55)

in every pair (x, t) € X x [0, T*]. Since X and f are smooth, é is a smooth section of
Tan(X'). Therefore, as above, by the classical theory of ordinary differential equations
we can construct a C*°-smooth family ¥ : X' x [0, T*] — X of smooth automor-
phisms ¥; of ¥ with ¥ (-, 0) = idy by setting ¥ (x, t) := y,(¢), where y,(-) is the
unique, maximal solution of the initial value problem

V() =&(@), y0) =x (56)

fort € [0, T*] and for any fixed x € X'. Now, similarly to the above argument, we can
use the definitions of f;, ¥;, X (-, t) and Df, in order to compute for the composition
fi := f; o ¥, on account of the relation (55) between £ and X:

O fi = B f1) oW + (D fr o W).( W) = (B f1) oW + Dy fi (&) o W
= —(1AS 7" SW() o ¥ + X (Wi, 1) = Dy (f) o W

= DFo(fl o lp[) = DFo(ﬁ)

on X x [0, T*] with fo = Fpon X'. Hence, on account of Theorem 3 the reparametriza-
tions { f,} have to be the unique smooth solution to the DeTurck-IW-flow (16) on
X x [0, T*], starting in Fp.
Now, suppose there existed two smooth families { ftl}, { ftz} of umbilic-free C°°-
immersions which solve the Mobius-invariant Willmore flow (9) on X' x [0, T*] with
initial condition fo1 =Fy= fo2 on X'. As above, we can construct two smooth families
gl y?. v x [0, T*] — X of smooth automorphisms of X with lPi( -,0) =idy,
i = 1,2, and such that { i} := {f! o ¥/} are both the unique smooth solution to
the DeTurck-IW-flow (16), starting in Fy, which implies f! o ! = f? o w2 on
X x [0, T*], ie.

fl=fro®d, on X x[0, T (57)

for @; := lI/[2 ) (th)_l. Now we can use the chain rule again in order to compute by
means of the definitions of f! and f2, and by (9) and (57):
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— 1AL T SWUD =0t = 0(f7 0 1)

= 0(f7) 0 D + (D f}} 0 ,).(3,®))
= (1A% 17" WD) 0 @i + Dy f? 0 P1).(3,P1)

= — 1A% [T O + (D f2 0 @0). (3, D)

on X x [0, T*], which implies (Dxf,2 o @;).(0;®9;) = 0 and thus 9,9; = 0 on
XY x [0, T*], as Dxftz(x) is injective in every x € X. As we know that @y = idx, this
shows that @; = idx for every ¢ € [0, T*] and thus in fact fl'= f2on X x [0, T*]
by (57), which proves the entire assertion of Theorem 1. O
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Appendix

The aim of this section is to show that the right-hand side of (9) is the only modification
of the usual Willmore gradient $WW(f) by means of some scalar factor which only
depends on f, Df and D? f, in order to obtain a Mobius-invariant flow. Let X be a
surface without boundary and let Immy¢( X, R™) denote the open subset of C*° (X, R")
which consists of all umbilic-free C*°-immersions of X' into R”. Firstly, we state

Proposition 4 Let B : R" x R¥ x R¥ — R denote some arbitrary real-analytic,
positive function. The flow

3 f; = —B(f. Dfi. D> f;) (AL Hy, + Q(AY)(Hy))  on X x[0,7T)

meets the property of Mobius-invariance—in the sense of Part 2 of Corollary 1—if
and only if the composition ¢(f) := B(f, Df, D? f) satisfies the following structure
conditions:

&)

o ) =2o(f)
e(M(f)) = o(f) (58)

VA > 0 and for all rigid motions M(y) = O(y) +¢, O € O(n), c € R".
(2) There has to hold

oI =1f180(f) onx

for every immersion f € Immye(X, R" \ {0}), where I (y) := Iy% denotes inver-

sion at the unit sphere S"~ 1.
(3) Themap f — ¢(f) (A}‘Hf + Q(A(})(Hf)) has to be a differential operator on
Immye( X, R").
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This proposition follows immediately from the statements of Lemma 1. We note that
the function B does not depend on its 1st variable y € R” due to property (58) of ¢.
We now restrict our attention to the special case n = 3, because in this case we can
use the precise knowledge of local, conformally invariant operators on Immys( X, R?)
due to Cairns et al. [2,3].

Theorem 4 Let ¢ : Immyp (X, RY) — C®(X, Ry) be a real-analytic map of the form
@(f) = B(Df, D* f) which satisfies the structure conditions (1)~(3) of Proposition
4. Then there holds

o(f) =clAG™

for some ¢ > 0 and for any f € Immyp(X, R?).

Proof By (4) and (5) one can easily compute that the map f — |A(} |~* satisfies the

requirements (1)—(3) of Proposition 4 on Immy¢( X, R3) and is "local of second order”,
which means that its value in any point p € X only depends on the first and second par-
tial derivatives of f. Now, let ¢ : Immy¢(X, R3) — C®(X, R,) be an arbitrary map
which is local of second order, i.e. of the form ¢( f) = B(Df, D? f), and which satis-

fies the conditions (1)—(3) of Proposition 4. We consider the quotient Q( f) := szé]\( E 7

and see that f — Q(f) is a map from Immy( X, R3) to C®(X, R4) which is again
local of second order and satisfies Q(® (f)) = Q(f) for any Mobius-transformation
@ of R? which is applicable to f. This means that Q is a local, conformally invariant
operator from Immyf( X, R3) to C®(X, R ) of second order. Now, by Theorem 5.6 in
[3] any non-constant, local and conformally invariant operator from Immys(X, R?) to
C°° (X, Ry) has to be at least of third order. Hence, we conclude Q( f) = const. > 0,
i.e.<p(f):c|A(}|_4, for some ¢ > 0. O
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