

Separation Theorems for Group Invariant Polynomials

Richard M. Aron¹ · Javier Falcó^{[2](http://orcid.org/0000-0001-5435-3053)} \bullet **· Manuel Maestre3**

Received: 3 November 2016 / Published online: 6 March 2017 © Mathematica Josephina, Inc. 2017

Abstract We study the existence of separation theorems by polynomials that are invariant under a group action. We show that if *G* is a finite subgroup of $GL(n, \mathbb{C})$, *K* is a set in \mathbb{C}^n that is invariant under the action of *G* and *z* is a point in $\mathbb{C}^n \setminus K$ that can be separated from K by a polynomial Q , then ζ can be separated from K by a *G*-invariant polynomial *P*. Furthermore, if Q is homogeneous then *P* can be chosen to be homogeneous. As a particular case, if *K* is a symmetric polynomially convex compact set in \mathbb{C}^n and $z \notin K$ then there exists a symmetric polynomial that separates *z* and *K*.

Keywords Group invariant polynomials · Separation theorem · Symmetric polynomials · Polynomial convexity

Mathematics Subject Classification 14L24 · 32E20

 \boxtimes Javier Falcó franciscojavier.falcobenavent@umons.ac.be

Richard M. Aron aron@math.kent.edu

Manuel Maestre manuel.maestre@uv.es

¹ Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

² Département de Mathématique, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium

³ Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot, Valencia, Spain

1 Introduction

The complex Hahn–Banach Separation Theorem establishes that if $K \subset \mathbb{C}^n$ is a closed convex set and *z* is a point in $\mathbb{C}^n \setminus K$, then there exists a complex linear form f with $\sup_{w \in K}$ {*Re*($f(w)$)} < *Re*($f(z)$), see [\[3,](#page-10-0) Theorem 2.12] and [\[5](#page-10-1), Theorem 3.4]. Thus, if we also assume that K is balanced we can replace the real part of f by the modulus of *f* in the inequality, obtaining

$$
\sup_{w \in K} |f(w)| < |f(z)|. \tag{1.1}
$$

If *K* is neither convex nor balanced, the above inequality does not hold in general. It seems natural to wonder if assuming a different geometric condition on the set *K*, it is possible to find a "good," perhaps non-linear, function *f* that still satisfies the inequality. For instance, if we assume that the set *K* is symmetric (i.e., if $w \in K$ then $-w \in K$) and $z \notin K$, is it possible to find a "good" function f satisfying equation [\(1.1\)](#page-1-0) and such that $f(w) = f(-w)$ for all $w \in \mathbb{C}^n$?

In this work, we answer this question in the affirmative under the assumption that the set K is invariant under the action of a finite group of linear transformations. The function *f* will then turn out to be a polynomial.

Definition 1.1 We say that a polynomial *P separates a set K and a point z* if

$$
\sup_{w \in K} |P(w)| < |P(z)|.
$$

As usual, we denote by $\mathcal{P}(\mathbb{C}^n)$ the set of all complex-valued polynomials defined on \mathbb{C}^n and by $GL(n, \mathbb{C})$ the general linear group of degree *n*, consisting of the set of $n \times n$ complex invertible matrices. We consider the natural group action of $GL(n, \mathbb{C})$ on \mathbb{C}^n . For a subgroup $G \le GL(n, \mathbb{C})$ and a set $K \subset \mathbb{C}^n$ we denote by

$$
\langle G, K \rangle = \{ gw : g \in G, w \in K \}
$$

the action of the group *G* on the set *K* and we say that *K* is *invariant under the action of* G if $\langle G, K \rangle = K$. Given a finite subgroup $G \le GL(n, \mathbb{C})$, and a polynomial $P \in \mathcal{P}(\mathbb{C}^n)$, we say that *P* is an *invariant polynomial* under the group *G* or *G*-invariant if $P(z) = P(gz)$ for all $g \in G$ and all $z \in \mathbb{C}^n$. For more details about the theory of invariant polynomials under the action of finite groups, we recommend [\[2](#page-10-2), Chap. 7].

The main result of this paper will be presented in Sect. [2.](#page-2-0) We show that if *K* is a set in \mathbb{C}^n which is invariant under the action of *G* and *z* is a point in $\mathbb{C}^n \setminus K$ that can be separated from K by a polynomial, then ζ can be separated from K by a G -invariant polynomial. Furthermore, if *K* and *z* can be separated by a homogeneous polynomial then *K* and *z* can be separated by a *G*-invariant homogenous polynomial. In Sect. [3,](#page-4-0) we study separation theorems for polynomially convex sets. Section [4](#page-6-0) is devoted to some examples of sets *K* that are polynomially convex and invariant under the action of a group *G* and also to some specific examples of *G*-invariant polynomials that separate points of $\mathbb{C}^n \setminus K$ and *K*.

It is worth mentioning that Theorem [2.3](#page-3-0) and Corollary [2.4](#page-3-1) presented in Sect. [2](#page-2-0) and the examples provided in Sect. [4](#page-6-0) also hold in the real case with similar proofs.

2 *G***-Invariant Separating Polynomials and Finite Groups**

First we show that given a finite subgroup *G* of $GL(n, \mathbb{C})$ we can find arbitrarily small convex balanced compact sets with non-empty interior that are invariant under the action of *G*. We denote by $B_{\ell_2^n}(R)$ the closed euclidean ball of center zero and radius $R > 0$ in \mathbb{C}^n . When $R = 1$ we write $B_{\ell_2^n}$ instead of $B_{\ell_2^n}(1)$.

Lemma 2.1 *Given a finite subgroup G of GL*(*n*, C) *and a positive number R, there exists a convex balanced compact set* $K \subset \mathbb{C}^n$ *with non-empty interior that is invariant under the action of G and* $K \subset B_{\ell_2^n}(R)$ *.*

Proof Consider $K' = \langle G, B_{\ell_2^n} \rangle$. Then, $\langle G, K' \rangle = K'$ and since *G* is finite, K' is compact and hence $K' \subset B_{\ell_2^n}(M)$ for some positive constant *M*. Then, the absolutely convex hull of K' , $absconv(K')$, is convex, balanced, and satisfies that $absconv(K') \subset$ $B_{\ell_2^n}(M)$. Now, for every $w \in absconv(K')$ there exists *m* vectors $w_1, \ldots, w_m \in$ K' and *m* complex numbers $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$ with $\sum_{j=1}^m |\lambda_j| \leq 1$ such that $w = \sum_{j=1}^m \lambda_j w_j$. Therefore, for every $g \in G$, $\sum_{j=1}^{m} \lambda_j w_j$. Therefore, for every $g \in G$,

$$
gw = g\left(\sum_{j=1}^{m} \lambda_j w_j\right) = \sum_{j=1}^{m} \lambda_j(gw_j) \in absconv(K').
$$

Thus $\text{absconv}(K')$ is invariant under the action of *G*.

Notice that $absconv(K')$ contains $B_{\ell_2^n}$. Hence $absconv(K')$ has non-empty interior. Since K' is a compact set in a finite-dimensional space, $\text{absconv}(K')$ is compact. The set $K = \frac{R}{M}$ *absconv*(*K'*) satisfies the desired conditions.

The following is probably folkloric.

Lemma 2.2 *Given r complex numbers of modulus one,* $\{z_1, \ldots, z_r\}$ *, there exists a strictly increasing sequence of natural numbers* $(m_k)_{k=1}^{\infty}$ *such that the sequence* $(z_j^{m_k})$ *converges to* 1 *for* $j = 1, \ldots, r$.

Proof Denote by *S^{<i>r*} the cartesian product of *r* copies of the unit sphere $S = \{w \in \mathbb{C} :$ $|w| = 1$. *S^{<i>r*} is a compact subset of \mathbb{C}^r . Therefore given the sequence $((z_1^t, \ldots, z_r^t))_{t=0}^{\infty}$ there exists a subsequence $\{(z_1^{t_k}, \ldots, z_r^{t_k})\}_{k=0}^{\infty}$ convergent to a point $(w_1, \ldots, w_r) \in$ *S^{<i>r*}. Thus, for every natural number *n*, there exists *k*(*n*) such that $\|(z_1^{t_k}, \ldots, z_r^{t_k}) (w_1, \ldots, w_r)$ $\|$ < $\frac{1}{2n}$ for every $k \geq k(n)$. Consider $k'(1) > k(1)$ and, by induction, choose $k'(n) > k(n)$ such that $m_n = t_{k'(n)} - t_{k(n)}$ satisfies $m_{n+1} > m_n$ for every *n*. Now, we have that

$$
|z_j^{m_n}-1|=|z_j^{t_{k'(n)}}-z_j^{t_{k(n)}}|\leq |z_j^{t_{k'(n)}}-w_j|+|w_j-z_j^{t_{k(n)}}|<\frac{1}{n},
$$

 \mathcal{L} Springer

for $j = 1, \ldots, r$ and every $n \in \mathbb{N}$.

Now we present the main result of this note.

Theorem 2.3 Let G be a finite subgroup of $GL(n, \mathbb{C})$ and K a set in \mathbb{C}^n that is invariant *under the action of G. If z is an element in* $\mathbb{C}^n \setminus K$ *that can be separated from K by a polynomial Q, then there exists a G-invariant polynomial P that separates z and K . Furthermore, if Q is homogeneous, then P can be chosen to be homogeneous.*

Proof Without loss of generality we can assume that

$$
\sup_{w \in K} |Q(w)| \le \delta < 1 \text{ and } |Q(z)| > 1
$$

for some real number δ.

Let us consider the sequence of polynomials

$$
P_m(w) = \sum_{g \in G} \left(\mathcal{Q}(gw) \right)^m. \tag{2.1}
$$

Then *Pm* is a *G*-invariant polynomial. Furthermore, if *Q* is a homogeneous polynomial, then *P* is also homogeneous. We will show that P_m separates *z* and *K* for some big non-negative entire number *m*.

On the one hand, since *K* is invariant under the action of *G*, for every w in *K* and every $g \in G$, we have that $g w$ is in *K*. Therefore $|Q(gw)| \le \delta < 1$ and $|Q(gw)|^m$ | \le δ^{*m*} for every non-negative entire number *m*. Thus sup_{*m∈K*} |*P_m*(*w*)| ≤ |*G*|δ^{*m*} which converges to zero as *m* tends to infinity.

For each *g* in *G*, let θ_g be a real number such that $Q(gz) = |Q(gz)|e^{i\theta_g}$. Consider $0 < \epsilon < 1$. By Lemma [2.2,](#page-2-1) there exists an increasing sequence of natural numbers ${m_k}_{k=1}^{\infty}$ such that $| (e^{i\theta_g})^{m_k} - 1 | < \epsilon$ for every *g* in the finite set *G* and every *k* ∈ N. Thus, for every natural number *k*,

$$
|P_{m_k}(z)| = \left| \sum_{g \in G} (Q(gz))^{m_k} \right| = \left| \sum_{g \in G} |(Q(gz))|^{m_k} e^{i\theta_g m_k} \right|
$$

\n
$$
\geq \sum_{g \in G} |(Q(gz))|^{m_k} - \sum_{g \in G} |(Q(gz))|^{m_k} |e^{i\theta_g m_k} - 1|
$$

\n
$$
\geq (1 - \epsilon) \sum_{g \in G} |(Q(gz))|^{m_k}
$$

\n
$$
\geq (1 - \epsilon) |Q(z)|^{m_k}.
$$

Since $|Q(z)| > 1$ and $\sup_{w \in K} |P_{m_k}(w)| < |G| \delta^{m_k}$, we have, for *k* big enough,

$$
|P_{m_k}(z)| > \sup_{w \in K} |P_{m_k}(w)|.
$$

Corollary 2.4 *Let G be a finite subgroup of GL*(*n*, C) *and K a closed convex balanced subset of* \mathbb{C}^n . If K is invariant under the action of G and z is an element in $\mathbb{C}^n \setminus K$, *then there exists a homogeneous G-invariant polynomial P that separates z and K .*

Proof Since *K* is a closed convex set, there exists a complex linear form *Q* with

$$
\sup_{w \in K} \{ Re(Q(w)) \} < Re(Q(z)). \tag{2.2}
$$

Moreover, since *K* is balanced

$$
\sup_{w \in K} |Q(w)| = \sup_{w \in K} \{ Re(Q(w)) \} < Re(Q(z)) \le |Q(z)|.
$$

By Theorem [2.3,](#page-3-0) we can find a homogeneous polynomial P_m invariant under the action of *G* that separates the point *z* and the set *K*.

The condition of *K* being balanced in Corollary [2.4](#page-3-1) cannot be removed in general. Indeed, if *K* is a convex compact set invariant under the action of *G* and *z* is a point not in *K*, as a consequence of Theorem [3.1](#page-5-0) below, there exists a *G*-invariant polynomial that separates *z* and *K*. But, if *K* is not balanced, then there exists a point $z_0 \in K$ and a complex number λ of modulus less than or equal to one with $\lambda z_0 \notin K$. However, for any *m*-homogeneous polynomial $|P(\lambda z_0)| = |\lambda^m P(z_0)| \leq |P(z_0)| \leq \sup_{z \in K} |P(z)|$. Hence, any *G*-invariant separating polynomial of λz_0 and *K* cannot be homogeneous.

3 *G***-Invariant Separating Polynomials and Polynomially Convex Sets**

The definition of separating polynomial is closely related to that of polynomially convex set. Recall that the *polynomially convex hull* of a compact subset K of \mathbb{C}^n is the set

$$
\widehat{K} = \left\{ z \in \mathbb{C}^n : |P(z)| \le \sup_{w \in K} |P(w)| \text{ for every polynomial } P \right\}.
$$

A compact set *K* of \mathbb{C}^n is *polynomially convex* if $\hat{K} = K$. By definition we have that for a compact set $K \subset \mathbb{C}^n$, every point in $\mathbb{C}^n \setminus K$ can be separated from *K* by a polynomial if and only if the set *K* is polynomially convex. Some classical examples of polynomially convex sets are compact convex sets and the closure of polynomial polyhedrons. Here, for a set of polynomials p_1, \ldots, p_m on \mathbb{C}^n and a positive number *r*, the polynomial polyhedron defined by p_1, \ldots, p_m of radius *r* is the set

$$
K = \{(w_1, \ldots, w_n) \in \mathbb{C}^n : |w_j| < r, |p_j(w)| < r, 1 \leq j \leq n\}.
$$

See [\[9\]](#page-11-0) for a comprehensive reference about polynomial convexity.

Since we are working with polynomials of several complex variables, one can ask if it is possible to obtain a proof of Theorem 2.3 by using only techniques of complex analysis. The following result is a weaker version of Theorem [2.3](#page-3-0) proved in this way.

Moreover, the proof presented here has some limitations. This proof only works for compact sets, and if we assume that the compact set *K* is convex and balanced, as in Corollary [2.4,](#page-3-1) we cannot ensure that the separating polynomials are homogeneous. Nevertheless, we feel that the argument is worth describing.

Theorem 3.1 *Let G be a finite subgroup of GL*(*n*, C)*. If K is a compact polynomially convex set that is invariant under the action of G and z is an element in* $\mathbb{C}^n \setminus K$, then *there exists a G-invariant polynomial P separating z and K .*

Proof Since *G* is a finite group, the orbit of the point *z* under the action of *G*, $Orb(z)$ = ${gz : g \in G}$, has at most |*G*| elements. In particular, $Orb(z)$ has zero length in \mathbb{C}^n and $Orb(z) \cup K$ is compact. Then, by [\[9](#page-11-0), Corollary 1.6.3], $Orb(z) \cup K$ is polynomially convex.

Since *K* is invariant under the action of the group *G*, the sets *K* and $Orb(z)$ are disjoint. Thus, as a consequence of the Oka–Weil theorem [\[9](#page-11-0), Theorem 1.5.1], there exists a polynomial *Q* with $|Q(w) - 3/2| \le \frac{1}{2}$ for all $w \in Orb(z)$ and sup_{*w∈K*} $|Q(w)| \le \delta$ < 1. Since *G* is a subgroup of *GL*(*n*, \mathbb{C}), every element *g* of *G* is a linear transformation in \mathbb{C}^n . Therefore $Q \circ g$ is again a polynomial and since *K* is invariant under the action of *G*, $\sup_{w \in K} |(Q \circ g)(w)| < \delta$, for all $g \in G$. If we consider the polynomial

$$
P(w) = \sum_{g \in G} (Q \circ g)(w)
$$

we have that for every $w \in K$, $|P(w)| \leq \delta |G|$, and

$$
|P(z)| \ge Re(P(z)) = Re\left(\sum_{g \in G} Q(gz)\right) \ge \sum_{g \in G} 1 = |G|.
$$

Therefore *P* separates *z* and *K*.

Remark 3.2 Let *G* be a finite subgroup of *GL*(*n*, C) and *K* a compact set invariant under the action of *G*. The existence, for each $z \in \mathbb{C}^n \setminus K$, of a *G*-invariant polynomial that separates *z* and *K* is actually a characterization of *K* being polynomially convex. That is, $\widehat{K} = K$ if and only if every element of $\mathbb{C}^n \setminus K$ can be separated from *K* by a *C* invariant relayers in One invaluation is given by Theorem 2.1. It is exacts also larger *G*-invariant polynomial. One implication is given by Theorem [3.1.](#page-5-0) It is easy to check that the converse implication also holds.

We finish this section by presenting a way to find polynomially convex sets that are invariant under the action of finite unitary reflection groups.

We recall that a *finite unitary reflection group* G is a finite subgroup of $GL(n, \mathbb{C})$ of unitary transformations that is generated by the reflections that it contains. By *reflection* we understand a linear transformation $T : \mathbb{C}^n \to \mathbb{C}^n$ that fixes pointwise only a hyperplane of dimension $n - 1$. The finite unitary groups were studied and classified by Shephard and Todd [\[8](#page-11-1)] and Flatto [\[4\]](#page-10-3). Even more, Hilbert proved that for any finite unitary reflection group *G* there exists a finite family of polynomials

$$
\Box
$$

 p_1, \ldots, p_r that are *G*-invariant and form a basis for the set of *G*-invariant polynomials. That is, given a *G*-invariant polynomial *P*, there exists a unique polynomial *Q* such that

$$
P(w) = Q(p_1(w), \ldots, p_r(w)).
$$

Chevalley showed that in fact for finite unitary reflection groups this basis can be chosen to be exactly *n* homogeneous *G*-invariant polynomials. See [\[2,](#page-10-2) §2.5 Theorem 4] and $[1,$ $[1,$ Theorem (A)] for the details.

A classic example of finite unitary reflection group is the symmetric group of order *n*, consisting of the group of permutations of the set $\{1, \ldots, n\}$ and denoted by S_n . S_n can be naturally considered as a subgroup of $GL(n, \mathbb{C}^n)$, the action of a permutation $\sigma \in S_n$ on a point $(w_1, \ldots, w_n) \in \mathbb{C}^n$ being given by $\sigma(w_1, \ldots, w_n) =$ $(w_{\sigma(1)},...,w_{\sigma(n)})$. For this group, a basis of S_n -invariant polynomials is given by the set of polynomials

$$
p_m(w_1, ..., w_n) = \sum_{1 \leq j_1 < ... < j_m \leq n} w_{j_1} \cdots w_{j_m}, \quad j = 1, ..., n;
$$

see [\[2](#page-10-2), Theorem 3].

To prove the following proposition, we will use the definition of proper maps between open connected sets Ω and Ω' in \mathbb{C}^n . Recall that a map $F : \Omega \to \Omega'$ is said to be *proper* if for every compact set $C \subset \Omega'$, $F^{-1}(C)$ is compact in Ω ; see, e.g., [\[6,](#page-11-2) Chap. 15].

Proposition 3.3 *Let G be a finite unitary reflection subgroup of GL*(*n*, C) *with invariant polynomials* p_1, \ldots, p_n . Consider the mapping F from \mathbb{C}^n to \mathbb{C}^n defined by $F(w) = (p_1(w), \ldots, p_n(w))$. Then, for every polynomially convex compact set X *in* \mathbb{C}^n , the compact set $K = F^{-1}(X)$ *is polynomially convex and invariant under the action of G.*

Proof Fix a polynomially convex compact set *X* in \mathbb{C}^n . The same proof used in [\[7,](#page-11-3) Proposition 2.1] can be used to show that the map $F: \mathbb{C}^n \mapsto \mathbb{C}^n$ is proper. Since *X* is polynomially convex, by [\[9](#page-11-0), Theorem 1.6.24], *K* is a polynomially convex compact set. To finish we only need to show that $\langle G, K \rangle = K$. For this, fix $w \in K$. Then, for any *g* ∈ *G* and any polynomial p_i , since p_i is *G*-invariant, we have that $p_i(gw) = p_i(w)$.
Therefore, $gw \in F^{-1}(F(w)) \subset K$. Therefore, $gw \in F^{-1}(F(w)) \subseteq K$.

4 Examples

In Theorem [2.3,](#page-3-0) we proved that if *K* is invariant under the action of a group *G* and if a point *z* can be separated from *K* by a polynomial Q , then there exists a *G*-invariant polynomial that separates *z* and *K*. Naturally the first idea to find this *G*-invariant polynomial is to consider the polynomial

$$
P(w) = \sum_{g \in G} Q(gw).
$$

Our first example shows that this approach does not work in general and that taking powers in equation [\(2.1\)](#page-3-2) is necessary.

Example 1 Let us consider the set

$$
K = \{ (w, w) \in \mathbb{C}^2 : w \in \mathbb{C} \}.
$$

Then *K* is invariant under the action of the group *S*2. Furthermore, every point that does not belong to *K* can be separated from *K* by the polynomial $Q(w_1, w_2) = w_1 - w_2$. However the polynomial

$$
P(w_1, w_2) = Q(w_1, w_2) + Q(w_2, w_1)
$$

is identically zero. Hence *P* is S_2 -invariant but does not separate any point in $\mathbb{C}^n \setminus K$ from *K*.

To continue, we present examples of sets that are invariant under the action of a group.

Example 2 Given a finite group $G \le GL(n, \mathbb{C}^n)$, a set $\{p_1, \ldots, p_r\}$ of *G*-invariant polynomials and *r* non-negative numbers R_1, \ldots, R_r , the set

$$
K=\cap_{j=1}^r p_j^{-1}(R_j\mathbb{D})
$$

is invariant under the action of *G*. Here *R*D denotes the *closed* disk of center zero and radius $R > 0$ in \mathbb{C} . Furthermore, every point not in *K* can be separated from *K* by one of the *G*-invariant polynomials p_j , $j = 1, \ldots, r$. Notice that *K* is not necessarily bounded.

For the rest of the examples that we consider, the sets *K* are polynomially convex.

Example 3 (*Finite unitary reflection groups*)

(a) For every $p \in [1, \infty)$, the set

$$
B_{\ell_{p}^{n}} = \left\{ (w_{1}, \ldots, w_{n}) \in \mathbb{C}^{n} : \|(w_{1}, \ldots, w_{n})\|_{p} = \left(\sum_{j=1}^{n} |w_{i}|^{p}\right)^{\frac{1}{p}} \leq 1 \right\}
$$

is convex, hence polynomially convex and invariant under action of the symmetric group *Sn*.

(b) For every finite unitary reflection group *G* with basis of invariant polynomials ${p_1, \ldots, p_n}$, the closure of the polynomial polyhedron defined by p_1, \ldots, p_n and radius *r*,

$$
K = \{w = (w_1, \ldots, w_n) \in \mathbb{C}^n : |p_j(w)| \le r, 1 \le j \le n\},\
$$

is polynomially convex and invariant under the action of *G*.

(c) Now we give an easy example of a set in \mathbb{C}^2 that is polynomially convex and balanced but not convex. As we mentioned before, the set of $S₂$ -invariant polynomials is generated by the polynomials $p_1(w_1, w_2) = w_1 + w_2$ and $p_2(w_1, w_2) = w_1w_2$. Then, for each $R > 0$, the set

$$
K = (R\mathbb{D} \times \{0\}) \cup (\{0\} \times R\mathbb{D}),
$$

is the inverse image of $X = R\mathbb{D} \times \{0\}$ by the proper mapping $F(w_1, w_2) = (w_1 +$ w_2, w_1w_2). *X* is a convex set and hence polynomially convex in \mathbb{C}^2 . Therefore, by Proposition [3.3,](#page-6-1) any point in $\mathbb{C}^2 \setminus K$ can be separated from *K* by a polynomial which is invariant under permutations.

Next, we provide an example where the group *G* is not a finite unitary reflection group.

Example 4 (*Symmetric sets*) If we consider any balanced, bounded, and convex set *K* in \mathbb{C}^n , then *K* is polynomially convex and invariant under the action of the group $G = \{Id, -Id\} \le GL(n, \mathbb{C}^n)$, where *Id* denotes the identity permutation. Notice that since *G* only fixes the origin in \mathbb{C}^n , *G* is not a finite unitary reflection group for $n \geq 2$.

To continue, we present some specific examples of separating polynomials for common groups and polynomially convex sets in \mathbb{C}^n . The following example can be seen as a particular case of Proposition [3.3.](#page-6-1) However, here we present a direct proof of the result. The idea presented in this construction was the motivation for the proof of Theorem [2.3.](#page-3-0)

Example 5 (*The polydisk center zero and radius r*) Let *K* be the closed polydisk in \mathbb{C}^n of radius $r > 0$ and center zero, $K = \{(w_1, \ldots, w_n) \in \mathbb{C}^n : |w_i| \le r\}$, and G the group S_n . As we mentioned before, a polynomial *P* is invariant under the group S_n if for any permutation $\sigma \in S_n$ and any point (w_1, \ldots, w_n) ,

$$
P(w_1,\ldots,w_n)=P(w_{\sigma(1)},\ldots,w_{\sigma(n)}).
$$

For $j = 1, ..., n$ let us denote by Q_j the linear functional on \mathbb{C}^n defined by $Q_j(w_1,...,w_n) = \frac{w_j}{r}$. If $z = (z_1,...,z_n)$ is a point in \mathbb{C}^n not contained in *K*, then at least one of the coordinates z_{j0} has modulus bigger than r . Then the linear functional *Q j*⁰ satisfies that $|Q_{j0}(z)| > 1 = \sup_{w \in K} |Q_{j0}(w)|$.

Then, for every natural number *m* the polynomial

$$
P_m(w) = \sum_{j=1}^n (Q_j(w))^m
$$

is an m -homogeneous S_n -invariant polynomial. As a consequence of Lemma [2.2,](#page-2-1) and employing the same ideas used in the proof of Theorem [2.3,](#page-3-0) the lim sup of the sequence

 ${|P_m(z)|}_{m=1}^{\infty}$ goes to infinity as *m* goes to infinity. Therefore there exists m_0 such that for for $m \ge m_0$ we have $|P_m(z)| > n$. However,

$$
\sup_{w \in K} |P_m(w)| \le n
$$

for every natural number *m*. Hence for $m \geq m_0$ the *m*-homogeneous S_n -invariant polynomial *Pm* separates the point *z* and the set *K*.

In the following example, we explicitly give the separating polynomials for some of the sets presented in Example [3.](#page-7-0) It is worth mentioning that in the above example, all the separating polynomials depend on the function Q_1 and only the number *m* depends on the point *z* that we want to separate from *K*. In the following example, the separating polynomials cannot be obtained in this way and it is necessary to consider different linear forms *Q* and different numbers *m*, both of them depending on the point *z* that we want to separate from *K*.

Example 6 (*Finite unitary reflection groups*)

(a) If we consider $K = B_{\ell_2^n} \subset \mathbb{C}^n$ and the group S_n , then for every $(z_1, \ldots, z_n) \notin K$ we have that the linear form

$$
Q(w_1, ..., w_n) = \frac{1}{\|z\|_2^2} \sum_{j=1}^n \overline{z_j} w_j
$$

satisfies $Q(z) = 1 = ||Q||$ and $\sup_{w \in K} |Q(w)| < 1$. Therefore a similar argument to the one given above shows that for a natural number *m* the *m*-homogeneous polynomial

$$
P_m(w) = \sum_{g \in S_n} (Q(gw))^m
$$

is S_n -invariant and separates the point *z* and the set *K*.

(b) Let us consider $G = S_3 \times S_2$. Then *G* is a finite unitary reflection group of order 12. Let us consider the set $K = B_{\ell_2^3} \times 2\mathbb{D}^2$, i.e.,

$$
K := \{ (w_1, \ldots, w_5) : |w_1|^2 + |w_2|^2 + |w_3|^2 \le 1 \text{ and } |w_4|, |w_5| \le 2 \}.
$$

Clearly $\langle G, K \rangle = K$ and K is polynomially convex. However, it is easy to see that *K* is not invariant under the group S_5 .

Let *z* be a point not in *K*. Since *z* is not in *K* then $|z_1|^2 + |z_2|^2 + |z_3|^2 > 1$ or one of the coordinates *z*4,*z*⁵ has modulus bigger than two.

If $|z_1|^2 + |z_2|^2 + |z_3|^2 > 1$, then we consider the linear functional *Q* and the *m*-homogeneous polynomials *Pm* defined by

$$
Q(w_1, ..., w_5) = \frac{1}{(|z_1|^2 + |z_2|^2 + |z_3|^2)^{\frac{1}{2}}} \sum_{j=1}^{3} \overline{z_j} w_j
$$
 and

$$
P_m(w) = \sum_{g \in S_3} (Q(gw))^m.
$$

If *z*⁴ or *z*⁵ has modulus bigger than two, we consider the *m*-homogeneous polynomials *Pm* defined by

$$
P_m(w_1, ..., w_5) = \left(\frac{w_4}{2}\right)^m + \left(\frac{w_5}{2}\right)^m.
$$

The same argument that was given in the above examples shows that for some natural number *m* the polynomial P_m separates the point *z* and the compact *K*.

Example [6\(](#page-9-0)b) can be generalized in the following way. Let us consider the sets $K_1 \subset$ $\mathbb{C}^{n_1}, \ldots, K_r \subset \mathbb{C}^{n_r}$ invariant under the action of the groups G_1, \ldots, G_r , respectively. Then, if (z_1, \ldots, z_r) is a point not in $K_1 \times \cdots \times K_r$, for some $j \in \{1, \ldots, r\}$, $z_j \notin K_j$. If P_j is a polynomial in \mathbb{C}^{n_j} that separates z_j from K_j , then, for some natural number *m* the polynomial

$$
P(w) = \sum_{g \in G_j} (P_j(gw))^m
$$

is a G_i -invariant polynomial that separates z_i and K_i .

By considering the natural embedding of the set K_i in $K_1 \times \cdots \times K_r$ and the natural embedding of the group G_i in the group $G_1 \times \cdots \times G_r$ we have that the polynomial associated to *P* is $G_1 \times \cdots \times G_r$ -invariant and separates the point (z_1, \ldots, z_r) and the set $K_1 \times \cdots \times K_r$.

Acknowledgements The authors would like to thank Professor David Speyer from the University of Michigan for his help. His suggestions simplified and generalized the original proof of Theorem [2.3.](#page-3-0) The authors Richard M. Aron and Manuel Maestre were supported by MINECO and FEDER MTM2014-57838- C2-2-P. The author Javier Falcó was supported by FNRS project T.0164.16. The author Manuel Maestre was also supported by Prometeo II/2013/013. This research was partially supported through the program "Research in Pairs" by the Mathematisches Forschungsinstitut Oberwolfach in 2015.

References

- 1. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. **77**, 778–782 (1955)
- 2. Cox, D.A., Little, J., O'Shea, D.: Ideals, varieties, and algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 4th edn. Undergraduate Texts in Mathematics. Springer, Cham. ISBN: 978-3-319-16720-6; 978-3-319-16721-3 (2015)
- 3. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York. ISBN: 978-1-4419-7514-0 (2011)
- 4. Flatto, L.: Invariants of finite reflection groups. Enseign. Math. (2) **24**(3–4), 237–292 (1978)
- 5. Rudin, W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York. ISBN: 0-07-054236-8 (1991)
- 6. Rudin, W.: Function Theory in the Unit Ball of \mathbb{C}^n . Reprint of the 1980 edn. Classics in Mathematics. Springer, Berlin. ISBN: 978-3-540-68272-1 (2008)
- 7. Rudin, W.: Proper holomorphic maps and finite reflection groups. Indiana Univ. Math. J. **31**(5), 701–720 (1982)
- 8. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. **6**, 274–304 (1954)
- 9. Stout, E. L.: Polynomial Convexity. Progress in Mathematics, vol. 261. Birkhäuser Boston, Boston. ISBN: 978-0-8176-4537-3; 0-8176-4537 (2007)