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Abstract We study the existence of separation theorems by polynomials that are
invariant under a group action. We show that if G is a finite subgroup of GL(n,C), K
is a set in C

n that is invariant under the action of G and z is a point in C
n \ K that

can be separated from K by a polynomial Q, then z can be separated from K by a
G-invariant polynomial P . Furthermore, if Q is homogeneous then P can be chosen
to be homogeneous. As a particular case, if K is a symmetric polynomially convex
compact set in Cn and z /∈ K then there exists a symmetric polynomial that separates
z and K .
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1 Introduction

The complexHahn–Banach Separation Theorem establishes that if K ⊂ C
n is a closed

convex set and z is a point in C
n \ K , then there exists a complex linear form f with

supw∈K {Re( f (w))} < Re( f (z)), see [3, Theorem 2.12] and [5, Theorem 3.4]. Thus,
if we also assume that K is balanced we can replace the real part of f by the modulus
of f in the inequality, obtaining

sup
w∈K

| f (w)| < | f (z)|. (1.1)

If K is neither convex nor balanced, the above inequality does not hold in general.
It seems natural to wonder if assuming a different geometric condition on the set K ,
it is possible to find a “good,” perhaps non-linear, function f that still satisfies the
inequality. For instance, if we assume that the set K is symmetric (i.e., if w ∈ K then
−w ∈ K ) and z /∈ K , is it possible to find a “good” function f satisfying equation (1.1)
and such that f (w) = f (−w) for all w ∈ C

n?
In this work, we answer this question in the affirmative under the assumption that

the set K is invariant under the action of a finite group of linear transformations. The
function f will then turn out to be a polynomial.

Definition 1.1 We say that a polynomial P separates a set K and a point z if

sup
w∈K

|P(w)| < |P(z)|.

As usual, we denote by P(Cn) the set of all complex-valued polynomials defined
on C

n and by GL(n,C) the general linear group of degree n, consisting of the set of
n × n complex invertible matrices. We consider the natural group action of GL(n,C)

on Cn . For a subgroup G ≤ GL(n,C) and a set K ⊂ C
n we denote by

〈G, K 〉 = {gw : g ∈ G, w ∈ K }

the action of the group G on the set K and we say that K is invariant under the action
of G if 〈G, K 〉 = K . Given a finite subgroup G ≤ GL(n,C), and a polynomial
P ∈ P(Cn), we say that P is an invariant polynomial under the groupG orG-invariant
if P(z) = P(gz) for all g ∈ G and all z ∈ C

n . For more details about the theory of
invariant polynomials under the action of finite groups, we recommend [2, Chap. 7].

The main result of this paper will be presented in Sect. 2. We show that if K is a set
in C

n which is invariant under the action of G and z is a point in C
n \ K that can be

separated from K by a polynomial, then z can be separated from K by a G-invariant
polynomial. Furthermore, if K and z can be separated by a homogeneous polynomial
then K and z can be separated by aG-invariant homogenous polynomial. In Sect. 3, we
study separation theorems for polynomially convex sets. Section 4 is devoted to some
examples of sets K that are polynomially convex and invariant under the action of a
group G and also to some specific examples of G-invariant polynomials that separate
points of Cn \ K and K .

123
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It is worth mentioning that Theorem 2.3 and Corollary 2.4 presented in Sect. 2 and
the examples provided in Sect. 4 also hold in the real case with similar proofs.

2 G-Invariant Separating Polynomials and Finite Groups

First we show that given a finite subgroup G ofGL(n,C) we can find arbitrarily small
convex balanced compact sets with non-empty interior that are invariant under the
action of G. We denote by B�n2

(R) the closed euclidean ball of center zero and radius
R > 0 in Cn . When R = 1 we write B�n2

instead of B�n2
(1).

Lemma 2.1 Given a finite subgroup G of GL(n,C) and a positive number R, there
exists a convex balanced compact set K ⊂ C

n with non-empty interior that is invariant
under the action of G and K ⊂ B�n2

(R).

Proof Consider K ′ = 〈G, B�n2
〉. Then, 〈G, K ′〉 = K ′ and since G is finite, K ′ is

compact and hence K ′ ⊂ B�n2
(M) for some positive constant M . Then, the absolutely

convex hull of K ′, absconv(K ′), is convex, balanced, and satisfies that absconv(K ′) ⊂
B�n2

(M). Now, for every w ∈ absconv(K ′) there exists m vectors w1, . . . , wm ∈
K ′ and m complex numbers λ1, . . . , λm ∈ C with

∑m
j=1 |λ j | ≤ 1 such that w =

∑m
j=1 λ jw j . Therefore, for every g ∈ G,

gw = g

⎛

⎝
m∑

j=1

λ jw j

⎞

⎠ =
m∑

j=1

λ j (gw j ) ∈ absconv(K ′).

Thus absconv(K ′) is invariant under the action of G.
Notice that absconv(K ′) contains B�n2

. Hence absconv(K ′) has non-empty interior.
Since K ′ is a compact set in a finite-dimensional space, absconv(K ′) is compact. The
set K = R

M absconv(K ′) satisfies the desired conditions. �	
The following is probably folkloric.

Lemma 2.2 Given r complex numbers of modulus one, {z1 . . . , zr }, there exists a
strictly increasing sequence of natural numbers (mk)

∞
k=1 such that the sequence (zmk

j )

converges to 1 for j = 1, . . . , r .

Proof Denote by Sr the cartesian product of r copies of the unit sphere S = {w ∈ C :
|w| = 1}. Sr is a compact subset ofCr . Therefore given the sequence

(
(zt1, . . . , z

t
r )

)∞
t=0

there exists a subsequence {(ztk1 , . . . , ztkr )}∞k=0 convergent to a point (w1, . . . , wr ) ∈
Sr . Thus, for every natural number n, there exists k(n) such that ‖(ztk1 , . . . , ztkr ) −
(w1, . . . , wr )‖ < 1

2n for every k ≥ k(n). Consider k′(1) > k(1) and, by induction,
choose k′(n) > k(n) such that mn = tk′(n) − tk(n) satisfies mn+1 > mn for every n.
Now, we have that

|zmn
j − 1| = |ztk′(n)

j − z
tk(n)

j | ≤ |ztk′(n)

j − w j | + |w j − z
tk(n)

j | <
1

n
,
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396 R. M. Aron et al.

for j = 1, . . . , r and every n ∈ N. �	
Now we present the main result of this note.

Theorem 2.3 Let G beafinite subgroupofGL(n,C)and K a set inCn that is invariant
under the action of G. If z is an element in Cn \ K that can be separated from K by a
polynomial Q, then there exists a G-invariant polynomial P that separates z and K .
Furthermore, if Q is homogeneous, then P can be chosen to be homogeneous.

Proof Without loss of generality we can assume that

sup
w∈K

|Q(w)| ≤ δ < 1 and |Q(z)| > 1

for some real number δ.
Let us consider the sequence of polynomials

Pm(w) =
∑

g∈G

(
Q(gw)

)m
. (2.1)

Then Pm is aG-invariant polynomial. Furthermore, if Q is a homogeneous polynomial,
then P is also homogeneous. We will show that Pm separates z and K for some big
non-negative entire number m.

On the one hand, since K is invariant under the action of G, for every w in K and
every g ∈ G, we have that gw is in K . Therefore |Q(gw)| ≤ δ < 1 and |(Q(gw)

)m | ≤
δm for every non-negative entire number m. Thus supw∈K |Pm(w)| ≤ |G|δm which
converges to zero as m tends to infinity.

For each g in G, let θg be a real number such that Q(gz) = |Q(gz)|eiθg . Consider
0 < ε < 1. By Lemma 2.2, there exists an increasing sequence of natural numbers
{mk}∞k=1 such that |(eiθg )mk − 1| < ε for every g in the finite set G and every k ∈ N.
Thus, for every natural number k,

|Pmk (z)| =
∣
∣
∣
∣

∑

g∈G

(
Q(gz)

)mk

∣
∣
∣
∣ =

∣
∣
∣
∣

∑

g∈G

∣
∣(Q(gz))|mk eiθgmk

∣
∣
∣
∣

≥
∑

g∈G

∣
∣(Q(gz))|mk −

∑

g∈G

∣
∣(Q(gz))|mk

∣
∣eiθgmk − 1

∣
∣

≥ (1 − ε)
∑

g∈G

∣
∣(Q(gz))|mk

≥ (1 − ε)|Q(z)|mk .

Since |Q(z)| > 1 and supw∈K |Pmk (w)| <
∣
∣G

∣
∣δmk , we have, for k big enough,

|Pmk (z)| > sup
w∈K

|Pmk (w)|.

�	
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Corollary 2.4 Let G be a finite subgroup ofGL(n,C) and K a closed convex balanced
subset of Cn. If K is invariant under the action of G and z is an element in C

n \ K,
then there exists a homogeneous G-invariant polynomial P that separates z and K .

Proof Since K is a closed convex set, there exists a complex linear form Q with

sup
w∈K

{Re(Q(w))} < Re(Q(z)). (2.2)

Moreover, since K is balanced

sup
w∈K

|Q(w)| = sup
w∈K

{Re(Q(w))} < Re(Q(z)) ≤ |Q(z)|.

By Theorem 2.3, we can find a homogeneous polynomial Pm invariant under the
action of G that separates the point z and the set K . �	

The condition of K being balanced in Corollary 2.4 cannot be removed in general.
Indeed, if K is a convex compact set invariant under the action ofG and z is a point not
in K , as a consequence of Theorem 3.1 below, there exists a G-invariant polynomial
that separates z and K . But, if K is not balanced, then there exists a point z0 ∈ K and
a complex number λ of modulus less than or equal to one with λz0 /∈ K . However, for
any m-homogeneous polynomial |P(λz0)| = |λm P(z0)| ≤ |P(z0)| ≤ supz∈K |P(z)|.
Hence, any G-invariant separating polynomial of λz0 and K cannot be homogeneous.

3 G-Invariant Separating Polynomials and Polynomially Convex Sets

The definition of separating polynomial is closely related to that of polynomially
convex set. Recall that the polynomially convex hull of a compact subset K of Cn is
the set

K̂ =
{

z ∈ C
n : |P(z)| ≤ sup

w∈K
|P(w)| for every polynomial P

}

.

A compact set K of Cn is polynomially convex if K̂ = K . By definition we have
that for a compact set K ⊂ C

n , every point in C
n \ K can be separated from K by a

polynomial if and only if the set K is polynomially convex. Some classical examples
of polynomially convex sets are compact convex sets and the closure of polynomial
polyhedrons. Here, for a set of polynomials p1, . . . , pm on Cn and a positive number
r , the polynomial polyhedron defined by p1, . . . , pm of radius r is the set

K = {(w1, . . . , wn) ∈ C
n : |w j | < r, |p j (w)| < r, 1 ≤ j ≤ n}.

See [9] for a comprehensive reference about polynomial convexity.
Since we are working with polynomials of several complex variables, one can ask

if it is possible to obtain a proof of Theorem 2.3 by using only techniques of complex
analysis. The following result is a weaker version of Theorem 2.3 proved in this way.
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398 R. M. Aron et al.

Moreover, the proof presented here has some limitations. This proof only works for
compact sets, and if we assume that the compact set K is convex and balanced, as in
Corollary 2.4, we cannot ensure that the separating polynomials are homogeneous.
Nevertheless, we feel that the argument is worth describing.

Theorem 3.1 Let G be a finite subgroup of GL(n,C). If K is a compact polynomially
convex set that is invariant under the action of G and z is an element in Cn \ K, then
there exists a G-invariant polynomial P separating z and K .

Proof SinceG is a finite group, the orbit of the point z under the action ofG, Orb(z) =
{gz : g ∈ G}, has at most |G| elements. In particular, Orb(z) has zero length inCn and
Orb(z) ∪ K is compact. Then, by [9, Corollary 1.6.3], Orb(z) ∪ K is polynomially
convex.

Since K is invariant under the action of the group G, the sets K and Orb(z)
are disjoint. Thus, as a consequence of the Oka–Weil theorem [9, Theorem 1.5.1],
there exists a polynomial Q with |Q(w) − 3/2| ≤ 1

2 for all w ∈ Orb(z) and
supw∈K |Q(w)| ≤ δ < 1. Since G is a subgroup of GL(n,C), every element g of
G is a linear transformation in C

n . Therefore Q ◦ g is again a polynomial and since
K is invariant under the action of G, supw∈K |(Q ◦ g)(w)| < δ, for all g ∈ G. If we
consider the polynomial

P(w) =
∑

g∈G
(Q ◦ g)(w)

we have that for every w ∈ K , |P(w)| ≤ δ|G|, and

|P(z)| ≥ Re(P(z)) = Re

⎛

⎝
∑

g∈G
Q(gz)

⎞

⎠ ≥
∑

g∈G
1 = |G|.

Therefore P separates z and K . �	
Remark 3.2 Let G be a finite subgroup of GL(n,C) and K a compact set invariant
under the action ofG. The existence, for each z ∈ C

n \K , of aG-invariant polynomial
that separates z and K is actually a characterization of K being polynomially convex.
That is, K̂ = K if and only if every element of Cn \ K can be separated from K by a
G-invariant polynomial. One implication is given by Theorem 3.1. It is easy to check
that the converse implication also holds.

We finish this section by presenting a way to find polynomially convex sets that are
invariant under the action of finite unitary reflection groups.

We recall that a finite unitary reflection group G is a finite subgroup of GL(n,C)

of unitary transformations that is generated by the reflections that it contains. By
reflection we understand a linear transformation T : Cn → C

n that fixes pointwise
only a hyperplane of dimension n − 1. The finite unitary groups were studied and
classified by Shephard and Todd [8] and Flatto [4]. Even more, Hilbert proved that
for any finite unitary reflection group G there exists a finite family of polynomials
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Separation Theorems for Group Invariant Polynomials 399

p1, . . . , pr that areG-invariant and form a basis for the set ofG-invariant polynomials.
That is, given a G-invariant polynomial P , there exists a unique polynomial Q such
that

P(w) = Q(p1(w), . . . , pr (w)).

Chevalley showed that in fact for finite unitary reflectiongroups this basis canbe chosen
to be exactly n homogeneous G-invariant polynomials. See [2, §2.5 Theorem 4] and
[1, Theorem (A)] for the details.

A classic example of finite unitary reflection group is the symmetric group of
order n, consisting of the group of permutations of the set {1, . . . , n} and denoted
by Sn . Sn can be naturally considered as a subgroup of GL(n,Cn), the action of a
permutation σ ∈ Sn on a point (w1, . . . , wn) ∈ C

n being given by σ(w1, . . . , wn) =
(wσ(1), . . . , wσ(n)). For this group, a basis of Sn-invariant polynomials is given by the
set of polynomials

pm(w1, . . . , wn) =
∑

1≤ j1<...< jm≤n

w j1 · · ·w jm , j = 1, . . . , n;

see [2, Theorem 3].
To prove the following proposition, we will use the definition of proper maps

between open connected sets � and �′ in C
n . Recall that a map F : � → �′ is said

to be proper if for every compact set C ⊂ �′, F−1(C) is compact in �; see, e.g., [6,
Chap. 15].

Proposition 3.3 Let G be a finite unitary reflection subgroup of GL(n,C)with invari-
ant polynomials p1, . . . , pn. Consider the mapping F from C

n to C
n defined by

F(w) = (p1(w), . . . , pn(w)). Then, for every polynomially convex compact set X
in C

n, the compact set K = F−1(X) is polynomially convex and invariant under the
action of G.

Proof Fix a polynomially convex compact set X in C
n . The same proof used in [7,

Proposition 2.1] can be used to show that the map F : Cn �→ C
n is proper. Since X is

polynomially convex, by [9, Theorem 1.6.24], K is a polynomially convex compact
set. To finishwe only need to show that 〈G, K 〉 = K . For this, fixw ∈ K . Then, for any
g ∈ G and any polynomial pi , since pi is G-invariant, we have that pi (gw) = pi (w).
Therefore, gw ∈ F−1(F(w)) ⊆ K . �	

4 Examples

In Theorem 2.3, we proved that if K is invariant under the action of a group G and if
a point z can be separated from K by a polynomial Q, then there exists a G-invariant
polynomial that separates z and K . Naturally the first idea to find this G-invariant
polynomial is to consider the polynomial

P(w) =
∑

g∈G
Q(gw).

123



400 R. M. Aron et al.

Our first example shows that this approach does not work in general and that taking
powers in equation (2.1) is necessary.

Example 1 Let us consider the set

K = {(w,w) ∈ C
2 : w ∈ C}.

Then K is invariant under the action of the group S2. Furthermore, every point that does
not belong to K can be separated from K by the polynomial Q(w1, w2) = w1 − w2.
However the polynomial

P(w1, w2) = Q(w1, w2) + Q(w2, w1)

is identically zero. Hence P is S2-invariant but does not separate any point in Cn \ K
from K .

To continue, we present examples of sets that are invariant under the action of a
group.

Example 2 Given a finite group G ≤ GL(n,Cn), a set {p1, . . . , pr } of G-invariant
polynomials and r non-negative numbers R1, . . . , Rr , the set

K = ∩r
j=1 p

−1
j (R jD)

is invariant under the action of G. Here RD denotes the closed disk of center zero and
radius R > 0 in C. Furthermore, every point not in K can be separated from K by
one of the G-invariant polynomials p j , j = 1, . . . , r . Notice that K is not necessarily
bounded.

For the rest of the examples that we consider, the sets K are polynomially convex.

Example 3 (Finite unitary reflection groups)

(a) For every p ∈ [1,∞), the set

B�np
=

⎧
⎪⎨

⎪⎩
(w1, . . . , wn) ∈ C

n : ‖(w1, . . . , wn)‖p =
⎛

⎝
n∑

j=1

|wi |p
⎞

⎠

1
p

≤ 1

⎫
⎪⎬

⎪⎭

is convex, hence polynomially convex and invariant under action of the symmetric
group Sn .

(b) For every finite unitary reflection group G with basis of invariant polynomials
{p1, . . . , pn}, the closure of the polynomial polyhedron defined by p1, . . . , pn
and radius r ,

K = {w = (w1, . . . , wn) ∈ C
n : |p j (w)| ≤ r, 1 ≤ j ≤ n},

is polynomially convex and invariant under the action of G.
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Separation Theorems for Group Invariant Polynomials 401

(c) Now we give an easy example of a set in C2 that is polynomially convex and bal-
anced but not convex. As wementioned before, the set of S2-invariant polynomials
is generated by the polynomials p1(w1, w2) = w1+w2 and p2(w1, w2) = w1w2.
Then, for each R > 0, the set

K = (RD × {0}) ∪ ({0} × RD),

is the inverse image of X = RD×{0} by the proper mapping F(w1, w2) = (w1+
w2, w1w2). X is a convex set and hence polynomially convex in C

2. Therefore,
by Proposition 3.3, any point in C2 \ K can be separated from K by a polynomial
which is invariant under permutations.

Next, we provide an example where the group G is not a finite unitary reflection
group.

Example 4 (Symmetric sets) If we consider any balanced, bounded, and convex set
K in C

n , then K is polynomially convex and invariant under the action of the group
G = {I d,−I d} ≤ GL(n,Cn), where I d denotes the identity permutation. Notice
that since G only fixes the origin in C

n , G is not a finite unitary reflection group for
n ≥ 2.

To continue, we present some specific examples of separating polynomials for
common groups and polynomially convex sets in C

n . The following example can be
seen as a particular case of Proposition 3.3. However, here we present a direct proof
of the result. The idea presented in this construction was the motivation for the proof
of Theorem 2.3.

Example 5 (The polydisk center zero and radius r ) Let K be the closed polydisk in
C
n of radius r > 0 and center zero, K = {(w1, . . . , wn) ∈ C

n : |w j | ≤ r}, and G the
group Sn . As we mentioned before, a polynomial P is invariant under the group Sn if
for any permutation σ ∈ Sn and any point (w1, . . . , wn),

P(w1, . . . , wn) = P(wσ(1), . . . , wσ(n)).

For j = 1, . . . , n let us denote by Q j the linear functional on C
n defined by

Q j (w1, . . . , wn) = w j
r . If z = (z1, . . . , zn) is a point in C

n not contained in K , then
at least one of the coordinates z j0 hasmodulus bigger than r . Then the linear functional
Q j0 satisfies that |Q j0(z)| > 1 = supw∈K |Q j0(w)|.

Then, for every natural number m the polynomial

Pm(w) =
n∑

j=1

(Q j (w))m

is an m-homogeneous Sn-invariant polynomial. As a consequence of Lemma 2.2, and
employing the same ideas used in the proof of Theorem2.3, the lim sup of the sequence
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402 R. M. Aron et al.

{|Pm(z)|}∞m=1 goes to infinity asm goes to infinity. Therefore there existsm0 such that
for for m ≥ m0 we have |Pm(z)| > n. However,

sup
w∈K

|Pm(w)| ≤ n

for every natural number m. Hence for m ≥ m0 the m-homogeneous Sn-invariant
polynomial Pm separates the point z and the set K .

In the following example, we explicitly give the separating polynomials for some
of the sets presented in Example 3. It is worth mentioning that in the above example,
all the separating polynomials depend on the function Q1 and only the number m
depends on the point z that we want to separate from K . In the following example, the
separating polynomials cannot be obtained in this way and it is necessary to consider
different linear forms Q and different numbersm, both of them depending on the point
z that we want to separate from K .

Example 6 (Finite unitary reflection groups)

(a) If we consider K = B�n2
⊂ C

n and the group Sn , then for every (z1, . . . , zn) /∈ K
we have that the linear form

Q(w1, . . . , wn) = 1

‖z‖22

n∑

j=1

z jw j

satisfies Q(z) = 1 = ‖Q‖ and supw∈K |Q(w)| < 1. Therefore a similar argument
to the one given above shows that for a natural number m the m-homogeneous
polynomial

Pm(w) =
∑

g∈Sn
(Q(gw))m

is Sn-invariant and separates the point z and the set K .
(b) Let us consider G = S3 × S2. Then G is a finite unitary reflection group of order

12. Let us consider the set K = B�32
× 2D2, i.e.,

K := {(w1, . . . , w5) : |w1|2 + |w2|2 + |w3|2 ≤ 1 and |w4|, |w5| ≤ 2}.

Clearly 〈G, K 〉 = K and K is polynomially convex. However, it is easy to see
that K is not invariant under the group S5.

Let z be a point not in K . Since z is not in K then |z1|2 + |z2|2 + |z3|2 > 1 or one
of the coordinates z4, z5 has modulus bigger than two.

If |z1|2 + |z2|2 + |z3|2 > 1, then we consider the linear functional Q and the
m-homogeneous polynomials Pm defined by
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Separation Theorems for Group Invariant Polynomials 403

Q(w1, . . . , w5) = 1

(|z1|2 + |z2|2 + |z3|2) 1
2

3∑

j=1

z jw j and

Pm(w) =
∑

g∈S3
(Q(gw))m .

If z4 or z5 has modulus bigger than two, we consider the m-homogeneous poly-
nomials Pm defined by

Pm(w1, . . . , w5) =
(w4

2

)m +
(w5

2

)m
.

The same argument that was given in the above examples shows that for some
natural number m the polynomial Pm separates the point z and the compact K .

Example 6(b) can be generalized in the followingway. Let us consider the sets K1 ⊂
C
n1 , . . . , Kr ⊂ C

nr invariant under the action of the groupsG1, . . . ,Gr , respectively.
Then, if (z1, . . . , zr ) is a point not in K1×· · ·×Kr , for some j ∈ {1, . . . , r}, z j /∈ K j .
If Pj is a polynomial in Cn j that separates z j from K j , then, for some natural number
m the polynomial

P(w) =
∑

g∈G j

(Pj (gw))m

is a G j -invariant polynomial that separates z j and K j .
By considering the natural embedding of the set K j in K1×· · ·×Kr and the natural

embedding of the group G j in the group G1 × · · · × Gr we have that the polynomial
associated to P is G1 × · · · × Gr -invariant and separates the point (z1, . . . , zr ) and
the set K1 × · · · × Kr .
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