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Abstract We obtain area growth estimates for constant mean curvature graphs in
E(κ, τ )-spaces with κ ≤ 0, by finding sharp upper bounds for the volume of geodesic
balls in E(κ, τ ). We focus on complete graphs and graphs with zero boundary values.
For instance, we prove that entire graphs in E(κ, τ ) with critical mean curvature have
at most cubic intrinsic area growth.We also obtain sharp upper bounds for the extrinsic
area growth of graphs with zero boundary values, and study distinguished examples
in detail such as invariant surfaces, k-noids, and ideal Scherk graphs. Finally, we give
a relation between height and area growth of minimal graphs in the Heisenberg space
(κ = 0), and prove a Collin–Krust type estimate for such minimal graphs.
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1 Introduction

Constantmean curvature surfaces in simply connected homogeneous 3-manifolds have
been the object of study of many authors in the last decade. Special attention has been
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given to those 3-manifolds with isometry group of dimension at least 4, which are
classified in a 2-parameter family E(κ, τ ), κ, τ ∈ R, with the exception of the hyper-
bolic space H

3. Also E(κ, τ ) admits a Riemannian submersion with bundle curvature
τ over M

2(κ), the simply connected 2-dimensional manifold with constant curvature
κ , such that the fibers of the submersion are the integral curves of a distinguished
unit Killing vector field [10,24]. It arises the natural question of studying graphs (i.e.,
sections of the Riemannian submersion) with constant mean curvature, over domains
of M

2(κ), as a non-parametric version of the constant mean curvature condition (see
Sect. 3).

A fundamental tool in the comprehension of surfaces in E(κ, τ )-spaces is Daniel
correspondence [10], which couples isometric constant mean curvature surfaces in
different E(κ, τ )-spaces with different constant mean curvatures, and respects locally
the graphical condition.

We will actually focus on the case of constant mean curvature graphs in E(κ, τ ),
for any τ ≥ 0 and κ ≤ 0. If τ �= 0, this restriction leads to the Heisenberg group
Nil3(τ ) = E(0, τ ) and ˜SL2(R) for κ < 0. If τ = 0, one has E(0, 0) = R

3 and
E(κ, 0) = H

2(κ) × R for κ < 0. If κ > 0, the submersion is over the round sphere
S
2(κ) and the only complete graphs with constant mean curvature in E(κ, τ ) are the

horizontal sections S
2(κ) × {t0} in S

2(κ) × R, so the kind of results we are looking
for is not natural for κ > 0 and we will skip this case.

Our first aim is to evaluate how fast the area of a minimal graph in E(κ, τ ) can
grow. Up to our knowledge, questions related to area growth of surfaces in E(κ, τ )

have not been tackled yet.
Herewewill propose three different notions of area growth of a surface� ⊂ E(κ, τ )

as the growth of the function R �→ area(�∩ AR), where AR is either the geodesic ball
in � of radius R (intrinsic area growth), or the extrinsic geodesic ball in E(κ, τ ) of
radius R (extrinsic area growth), or a solid cylinder of radius R (i.e., the preimage of
a disk of radius R in M

2(κ) by the submersion) in E(κ, τ ) (cylindrical area growth).
These three notions are independent of the point where the sets AR are centered, and it
is easy to see that intrinsic area growth is always slower than the extrinsic one, which
is in turn slower than the cylindrical one.

Our first estimate on the area will rely on a detailed study of the volume of geodesic
balls in E(κ, τ ). For instance, we obtain that geodesic balls BR of radius R in Nil3(τ )

have quartic area growth, in the sense that R−4 vol(BR) remains bounded between two
positive constants, when R is bounded away from zero (Proposition 1), in contrast to
the case of R

3, where this growth is cubic. Moreover, we give explicit expressions for
the geodesics of E(κ, τ ), κ ≤ 0, in terms of initial conditions.

The key idea in the extrinsic estimates of the area is to relate the area of the intersec-
tion of the surface with an extrinsic ball BR and geometric quantities computed on the
base M

2(κ) (Lemmas 4, 5). The main result (Theorem 1) states that, if� ⊂ E(κ, τ ) is
a minimal graph over a domain� ⊂ M

2(κ) such that either� extends to ∂�with zero
boundary values, or length(∂(� ∩ DR)) is suitably controlled, being DR = π(BR) a
disk of radius R in M

2(κ), then:

(a) If E(κ, τ ) = R
3, then � has at most quadratic extrinsic area growth.

(b) If E(κ, τ ) = Nil3(τ ), then � has at most cubic extrinsic area growth.
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(c) If κ < 0, then � has at most extrinsic area growth of order R �→ R e
√−κR .

Items (a) and (b) in Theorem 1 are sharp as many examples show (e.g., non-vertical
planes in R

3 and invariant surfaces in Nil3(τ ) show, see Proposition 2). If κ < 0,
horizontal umbrellas have extrinsic area growth of order R �→ e

√−κR (see Sect. 4.1),
but no example is hitherto known of order R �→ R e

√−κR so Theorem 1 might not be
sharp in this case.

As a first consequence of the extrinsic estimate, we are able to analyze the intrinsic
area growth of a complete graph � with constant mean curvature H in E(κ, τ ) (The-
orem 2). If 4H2 + κ > 0, then it is proved in [25] that κ > 0 and � = S

2(κ) × {t0} in
S
2(κ)×R. If 4H2+κ = 0 (i.e.,� has criticalmean curvature), then� has atmost cubic

intrinsic area growth. Finally, if the mean curvature is subcritical (4H2 +κ < 0), then

the intrinsic area grows at most exponentially as ReR
√−κ−4H2

. The same estimates
hold for extrinsic area growth if H = 0.

As a second application, we get some intrinsic and extrinsic properties of impor-
tant examples in the theory, such as horizontal umbrellas, minimal graphs in Nil3(τ )

invariant by a one-parameter family of ambient isometries (classified by Figueroa–
Mercuri–Pedrosa [18]), symmetric k-noids with subcritical constant mean curvature
inH

2(κ)×R [28,30,31], and ideal Scherk graphs (i.e., graphs on unbounded domains
of H

2(κ) bounded by ideal polygons with a finite number of sides, taking ±∞-values
alternately along the boundary) with subcritical constant mean curvature [9,17,27].
In the case of k-noids and ideal Scherk graphs, we conclude that they have quadratic
intrinsic area growth, so they are parabolic (i.e., the only non-positive subharmonic
functions on the surface are the constant ones) by a classical result of Cheng and
Yau [6].

As a byproduct of our technique we obtain some intermediate results of interest
by themselves. On the one hand, we get that the area of the projection to M

2(κ),
κ ≤ 0, of a complete graph with constant mean curvature H is finite if and only if
it is an ideal Scherk graph (Proposition 3), which allows us to prove that the class
of ideal Scherk graphs is preserved by the Daniel correspondence (Corollary 1). On
the other hand, we discover that Figueroa–Mercuri–Pedrosa examples are parabolic,
though their intrinsic area growth is exactly cubic (Proposition 2). We employ this to
correct a small mistake in the Bernstein-type theorem for parabolic horizontal graphs
given by the first author, Pérez and Rodríguez [25, Theorem 3]: we deduce that a
complete parabolic minimal surface in Nil3(τ ) which is transversal to a non-vertical
right-invariant Killing vector field is either a plane or congruent to an invariant surface
(Theorem 3).

Lower bounds on the area come from analyzing the cylindrical area growth (see
Sect. 5), which is a suitable tool to study the area of entire graphs. We obtain that an
entire graph in Nil3(τ ) has at least cubic cylindrical area growth, while in ˜SL2(R)

it has at least cylindrical area growth of order eR
√−κ (Corollary 2). We emphasize

that these estimates do not have assumptions on the mean curvature of the graph, and
follow from a classical application of the divergence theorem.

It is worthwhile noticing that the cylindrical area growth of entire minimal graphs
in Nil3(τ ) is at least cubic, and the extrinsic one is at most cubic. Hence proving
that they coincide for some entire minimal graph �, would ensure that � has exactly
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cubic extrinsic area growth. Here height estimates come in handy and tell us that
the slower the height of the surface grows, the better the extrinsic area growth is
controlled. In particular, if the height of an entire minimal graph � ⊂ Nil3(τ ) grows
at most quadratically with respect to the distance to the origin in the base R

2, then
� has exactly cubic extrinsic area growth (Corollary 3). Height is always measured
with respect to the usual zero section in Nil3(τ ), so this situation applies to many
known explicit examples of entire minimal graphs (e.g., see [5,11,18,29]). In this
sense, the last part of the paper deals with height estimates for minimal graphs in
Nil3(τ ).

On the one hand, we obtain that the height of an entire minimal graph � ⊂ Nil3(τ )

grows at most cubically, which ensures that the extrinsic area growth of � is between
quadratic and cubic (Theorem 6). This is achieved by getting a global gradient esti-
mate for entire spacelike graphs in the Lorentz–Minkowski space L

3 with positive
constant mean curvature (Lemma 6), based on the work of Cheng and Yau [7] and
Treibergs [33] through the Calabi-type correspondence by Lee [22]. It is worth empha-
sizing that our gradient estimate for � is sharper than the general estimates for the
angle function in Killing submersions given by Rosenberg et al. [32]. As a byprod-
uct, we improve a result of Espinar [15, Corollary 5.2] by showing that a complete
orientable stable surface with constant mean curvature H in E(κ, τ ), with τ �= 0 and
4H2 + κ ≥ 0, whose angle function is square integrable must be a vertical cylinder
(Corollary 4).

On the other hand, we complete the study of the height by getting a sharp Collin–
Krust type estimate [8], which establishes that the height of aminimal graph in Nil3(τ )

with zero boundary values over an unbounded domain cannot grow less than linearly
(Theorem 7 and Corollary 5). Essentially, we prove that all such graphs grow at
least as catenoids (i.e., the situation is similar to R

3, where Collin and Krust proved
at least logarithmic height growth [8]; see also the generalization by Leandro and
Rosenberg [21]).

As a final remark we point out that our results also yield a new estimate for minimal
surfaces in R

3 (Theorem 1) and that some of them can be directly generalized to the
setting of Killing submersions (Remark 3).

The paper is organized as follows. In the second section, we deal with geodesic
balls in E(κ, τ ) and describe their shape and volume. In the third section, we recall
the equation of a minimal graph in E(κ, τ ), and describe many known examples. The
fourth and fifth sections contain the most important results of the paper about the
intrinsic, extrinsic, and cylindrical area growth of constant mean curvature surfaces in
E(κ, τ )-spaces. In the sixth section, we obtain the height estimates à la Collin–Krust.
Table 1 summarizes our principal results about area growth.

2 Geodesics in E(κ, τ)-Spaces

Given κ, τ ∈ R, we will consider the model for the 3-manifold E(κ, τ ) as

E(κ, τ ) =
{

(x, y, z) ∈ R
3 : 1 + κ

4 (x2 + y2) > 0
}

,
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Table 1 Summary of the results on area growth in terms of the radius R

Surface Curvature Space EAG CAG IAG CT

Umbrellas H = 0 Nil3(τ ) R3 R3 R3 Hyp.

κ < 0 eR
√−κ eR

√−κ eR
√−κ

FMP surfaces H = 0 Nil3(τ ) R3 R3 R3 Par.

Ideal Scherk 4H2 + κ < 0 E(κ, τ ) ≤R2 ≤R2

k-noids H
2(κ) × R (H = 0)

Entire graphs H = 0 Nil3(τ ) ≥ R2,≤ R3 ≥ R3, ≤ R4 ≤R3

4H2 + κ = 0 κ < 0 ≥eR
√−κ ≤R3

4H2 + κ < 0 ≥eR
√−κ ≤ReR

√
−κ−4H2

H = 0 ≤ReR
√−κ ≥eR

√−κ ≤ReR
√−κ

Graphs with
zero
boundary
values

H = 0 R
3 ≤R2 ≤R2

Nil3(τ ) ≤R3 ≤R3

κ < 0 ≤ReR
√−κ ≤ReR

√−κ

EAG extrinsic area growth, CAG cylindrical area growth, IAG intrinsic area growth, CT conformal type
(hyperbolic or parabolic)

endowed with the only Riemannian metric such that

E1 = ∂x

λ
− τ y ∂z, E2 = ∂y

λ
+ τ x ∂z, E3 = ∂z,

defines a global orthonormal frame, where

λ(x, y, z) =
(

1 + κ

4
(x2 + y2)

)−1
, (x, y, z) ∈ E(κ, τ ).

The projection to the first two components (x, y, z) �→ (x, y), is a Riemannian sub-
mersion with bundle curvature τ onto M

2(κ), the simply connected surface with
constant curvature κ . The fibers of the submersion are geodesics, and coincide with
the integral curves of the unit Killing vector field E3. The Levi-Civita connection ∇
on E(κ, τ ) in the frame {E1, E2, E3} is given by

∇E1E1 = κ
2 yE2, ∇E1E2 = − κ

2 yE1 + τ E3, ∇E1E3 = −τ E2,

∇E2E1 = − κ
2 xE2 − τ E3, ∇E2E2 = κ

2 xE1, ∇E2E3 = τ E1,

∇E3E1 = −τ E2, ∇E3E2 = τ E1, ∇E3E3 = 0.
(2.1)

Let us describe the equations of the geodesics in E(κ, τ ). Given a curve γ :
R → E(κ, τ ), it can be expressed as γ (t) = (x(t), y(t), z(t)) ∈ R

3 so γ ′(t) =
x ′(t)∂x + y′(t)∂y + z′(t)∂z = ∑3

k=1 ak(t)Ek , for some functions ak : R → R. It is
straightforward to check that
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a1 = x ′

1 + κ
4 (x2 + y2)

, a2 = y′

1 + κ
4 (x2 + y2)

, a3 = z′ + τ
yx ′ − xy′

1 + κ
4 (x2 + y2)

.

By means of the Levi-Civita connection (2.1), the condition ∇γ ′γ ′ = 0 is easily
developed. We conclude that γ is a geodesic if and only if (a1, a2, a3) is a solution to
the following ode system:

⎧

⎪

⎨

⎪

⎩

a′
1 = − κ

2 xa
2
2 + κ

2 ya1a2 − 2τa2a3,

a′
2 = − κ

2 ya
2
1 + κ

2 xa1a2 + 2τa1a3,

a′
3 = 0.

(2.2)

On the other hand, we know that if γ is a geodesic, then π ◦ γ : R → M
2(κ) has

constant geodesic curvature and constant speed, and the angle function a3 = 〈γ ′, E3〉
is also constant [24], which allows us to obtain the explicit solutions of (2.2) given
below.

In the sequel, we will denote by BR(p) (resp. DR(x)) the geodesic ball of E(κ, τ )

(resp. M
2(κ)) of radius R ≥ 0 centered at p ∈ E(κ, τ ) (resp. x ∈ M

2(κ)).

2.1 Geodesics Balls in Nil3(τ)

Given φ ∈ [0, π ], φ �= π
2 , and θ ∈ R, it is straightforward to check that

x(t) = tan(φ)

2τ
(cos(2τ cos(φ)t + θ) − cos(θ)) ,

y(t) = tan(φ)

2τ
(sin(2τ cos(φ)t + θ) − sin(θ)) ,

z(t) = 1 + cos2(φ)

2 cos(φ)
t − tan2(φ)

4τ
sin(2τ cos(φ)t),

(2.3)

defines a complete geodesic in Nil3(τ ) such that x(0) = y(0) = z(0) = 0, and
x ′(0) = − sin(θ) sin(φ), y′(0) = cos(θ) sin(φ) and z′(0) = cos(φ). This shows that
these are all the geodesics inNil3(τ ) passing through the originwith unit length, except
for the horizontal ones, which are straight lines given by t �→ (cos(θ)t, sin(θ)t, 0)
and correspond to the limit value of the parameter φ = π

2 .
Given R > 0, we are interested in calculating the maximum height of BR(0),

the geodesic ball of radius R in Nil3(τ ) centered at the origin. This is equivalent
to find a value of φ ∈ [0, π ] maximizing z(R), where z(t) is the function given
by (2.3). It is not difficult to prove that z(R) > 0 if and only if φ ∈ [0, π

2 [. Since
limφ→ π

2
z(R) = 0, we conclude that the maximum is attained for some value of

φ ∈ [0, π
2 [, and we will restrict ourselves to this interval. After considering the change

of variable s = 2τ R cos(φ) ∈ ]0, 2τ R], we can reduce the problem to maximize the
real-valued function ζR : ]0, 2τ R] → R given by

ζR(s) = z(R) = s(s2 + 4τ 2R2) + (s2 − 4τ 2R2) sin(s)

4τ s2
.
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In order to get the critical points of ζR , we calculate

ζ ′
R(s) = s(s2 − 4τ 2R2)(1 + cos(s)) + 8τ 2R2 sin(s)

4τ s3
. (2.4)

The equation ζ ′
R(s) = 0 has two different kinds of solutions:

• On the one hand, the values s ∈ ]0, 2τ R] satisfying cos(s) = −1. Observe that for
such a value s, one gets that sin(s) = 0 so ζR(s) = s2+4τ 2R2

4τ s . This last expression
is a decreasing function of s for s ∈ [0, 2τ R], which implies that, among all critical
values of ζR with cos(s) = −1, the one where ζR has a greater value is the smaller
one, i.e., s = π . Note that this only makes sense for 2τ R > π ; otherwise there
are no critical values of ζR with cos(s) = −1.

• On the other hand, if s ∈ ]0, 2τ R] is a critical value of ζR such that cos(s) �= −1,
we can deduce from making (2.4) equal zero that

tan
( s

2

)

= sin(s)

1 + cos(s)
= s(4τ 2R2 − s2)

8τ 2R2 . (2.5)

Note that equation (2.5) has many solutions for R big enough. Moreover, it allows
us to work out

sin(s) = 2 tan( s2 )

1 + tan2( s2 )
= 16τ 2R2s

(

4τ 2R2 − s2
)

16τ 4R4
(

s2 + 4
)− 8τ 2R2s4 + s6

,

cos(s) = 1 − tan2( s2 )

1 + tan2( s2 )
= 128τ 4R4

16τ 4R4
(

s2 + 4
)− 8τ 2R2s4 + s6

− 1.

(2.6)

Taking derivatives in (2.4) and using (2.6), the second derivative of ζR at a critical
point s such that cos(s) �= −1 can be written as

ζ ′′
R(s) =

(

4τ 2R2
(

s2 − 6
)− s4

)

sin(s) + 8τ 2R2s(2 cos(s) + 1)

4τ s4

= 2τ R2(4τ 2R2 − s2)2 + 96τ 3R4

s3(4τ 2R2 − s2)2 + 64τ 4R4s
> 0.

In particular, ζR does not have a (local) maximum at s.

As a consequence of this discussion, the maximum value of ζR(s) is attained either
at s = π (for 2τ R > π ) or at the extremal value s = 2τ R (we recall that the other
extremal value s = 0 is discarded since lims→0 ζR(s) = 0). Taking into account that
ζR(π) = π2+4τ 2R2

4τπ
and ζR(2τ R) = R, we realize that ζR(π) > ζR(2τ R) if and

only if 2τ R > π . Hence we get the following sharp approximation of the spheres by
cylinders.

Lemma 1 Given R > 0, let BR(0) be the geodesic ball in Nil3(τ ) centered at the
origin and let DR(0) = {(x, y) ∈ R

2 : x2 + y2 < R2}.
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(a) If R ≤ π
2τ , then BR(0) ⊂ DR(0)×] − R, R[.

(b) If R > π
2τ , then BR(0) ⊂ DR(0) ×

]

− π2+4τ 2R2

4τπ
, π2+4τ 2R2

4τπ

[

.

Using this estimate, we are able to give an upper bound on the volume growth
of geodesic balls in Nil3(τ ). We would like to point out that it seems hard to get an
explicit computation of their volume due to the difficulties coming from conjugate
values along geodesics. Some explicit results for small radii are given in [20] and the
references therein.

Let us consider the function d : R
3 → R such that d(p) is the distance in Nil3(τ )

from p to the origin, i.e., BR(0) = {p ∈ R
3 : d(p) < R}. Given α > 0, we will also

define the function

δα : R
3 → R, δα(p) = max

{
√

x2 + y2, 1
α

√|z|
}

. (2.7)

Next lemma shows that d and δα are equivalent, away from the origin, in the sense
of distances. Note that the ball of radius R for δα is given by {p ∈ R

3 : δα(p) <

R} = DR(0)× ] − α2R2, α2R2[, which motivates this definition in view of item (b)
in Lemma 1.

Lemma 2 Given α > 0, there exist constants M,m > 0 such that

m d(p) ≤ δα(p) ≤ M d(p),

for all p ∈ Nil3(τ ) with d(p) > π
2τ .

Proof Let us suppose that p = (x, y, z) ∈ R
3 is such that R = d(p) > π

2τ . Then

Lemma 1 ensures that p ∈ DR(0)×] − π2+4τ 2R2

4τπ
, π2+4τ 2R2

4τπ
[, so x2 + y2 < R2 and

|z| < π2+4τ 2R2

4τπ
. From (2.7), we get that δα(p) ≤ MR = M d(p), for some constant

M not depending on p.
In order to prove the other inequality, let us consider the Carnot–Carathéodory dis-

tance dCC(p), defined as the infimum of the lengths of horizontal curves in Nil3(τ )

joining p and the origin. As the infimum is taken over horizontal curves, it is obvious
that d ≤ dCC, so we will prove that there exists K > 0 such that dCC(p) ≤ K δα(p)
for all p, and we will be done. Observe that both dCC and δα are homogeneous
of degree 1 with respect to the dilations (x, y, z) �→ (λx, λy, λ2z), i.e., they sat-
isfy dCC(λx, λy, λ2z) = λdCC(x, y, z) and δα(λx, λy, λ2z) = λδα(x, y, z) for all
(x, y, z) ∈ R

3 and λ ≥ 0. Hence, using such dilations, we only need to prove that
dCC(p) ≤ K δα(p) for all points p ∈ R

3 with dCC(p) = 1. This last assertion easily
follows from the compactness of the unit sphere of dCC and the continuity of δα (this
is a standard argument, see [4, Section 2.2]). ��
Remark 1 An inequality of the type m d(p) ≤ δα(p) is true for all p ∈ Nil3(τ ),
but the inequality δα(p) ≤ M d(p) is not valid in general since the quotient δα

d is
not bounded from above when one approaches to the origin. In fact, the statement of
Lemma 2 is still valid after substituting π

2τ by any other positive real number.
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Proposition 1 Geodesic balls in Nil3(τ ) have quartic volume growth in the sense
that, fixing p ∈ Nil3(τ ), the function R �→ R−4 vol(BR(p)) is bounded between two
positive constants independent of p, when R is bounded away from zero.

Proof Since Nil3(τ ) is homogeneous, we can assume that p = 0. For any R > 0,
let us define CR = DR(0)×] − R2, R2[. Lemma 2 with α = 1 yields the existence
of M,m > 0 such that CmR ⊂ BR(0) ⊂ CMR for all R > π

2τ . Since the volume
form in Nil3(τ ) coincides with the Euclidean volume form in R

3 (i.e., the identity
map Nil3(τ ) → R

3 is volume-preserving) we conclude that vol(CR) = 2πR4 for all
R > 0, so 2πm4R4 ≤ vol(BR(0)) ≤ 2πM4R4, and the statement follows. ��

2.2 Geodesic Balls in ˜SL2(R)

Let us first observe that there exist four kinds of geodesics in E(κ, τ ), κ < 0, τ �= 0,
depending on the nature of π ◦ γ , i.e., the curve π ◦ γ can be a geodesic, a circle, a
horocycle, or a hypercycle in H

2(κ). Up to a rotation about the z-axis, we will choose
the geodesic γ = (x, y, z) with unit speed and γ (0) = (0, 0, 0) so that x ′(0) = 0 and
y′(0) ≥ 0. Hence γ lies in one of the following families of examples:

(1) Horizontal geodesics (projecting onto a geodesic of H
2(κ))

γ (t) =
(

0, 2√−κ
tanh(

√−κ
2 t), 0

)

,

from where γ ′(0) = (0, 1, 0).
(2) Elliptic geodesics (projecting onto a circle of H

2(κ))

x(t) = 4a(κa2 − 4)(1 − cos(mt))

16 + κ2a4 + 8κa2 cos(mt)
,

y(t) = 4a(κa2 + 4) sin(mt)

16 + κ2a4 + 8κa2 cos(mt)
,

z(t) = 4 + a2(8τ 2 − κ)
√

(4 − κa2)2 + 64a2τ 2
t + 4τ

κ
arctan

( −κa2 sin(mt)

4 + κa2 cos(mt)

)

,

where 0 ≤ a < 2√−κ
is arbitrary, and we take the auxiliary parameter

m = 2(4 + κa2)τ
√

(4 − κa2)2 + 64a2τ 2
.

Note that the initial condition γ ′(0) is given by

γ ′(0) =
(

0,
8aτ

√

(4 − κa2)2 + 64a2τ 2
,

4 − κa2
√

(4 − κa2)2 + 64a2τ 2

)

.

We remark that the vertical geodesic γ (t) = (0, 0, t) is obtained for a = 0.
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(3) Parabolic geodesics (projecting onto a horocycle of H
2(κ))

x(t) = −2
√−κτ 2t2

4τ 2 − κ(1 + τ 2t2)
,

y(t) = 2τ
√
4τ 2 − κ t

4τ 2 − κ(1 + τ 2t2)
,

z(t) =
√
4τ 2 − κ√−κ

t + 4τ

κ
arctan

(

τ
√−κ√
4τ 2 − κ

t

)

.

If follows that the tangent vector at the origin is

γ ′(0) =
(

0,
2τ√

4τ 2 − κ
,

√−κ√
4τ 2 − κ

)

(4) Hyperbolic geodesics (projecting onto a hypercycle of H
2(κ))

x(t) = 4a sinh2(mt)

4 + κa2 cosh2(mt)
,

y(t) = a
√−κa2 − 4 sinh(2mt)

4 + κa2 cosh2(mt)
,

z(t) = 4τ 2 − κ

κ
√
1 + a2τ 2

t + 4τ

κ
arctan

(

2 tanh(mt)√−κa2 − 4

)

,

for any choice of a > 2√−κ
, where m = τ

√−κa2−4
2
√
a2τ 2+1

. Note that

γ ′(0) =
(

0,
aτ√

1 + a2τ 2
,

1√
1 + a2τ 2

)

.

Remark 2 This classification does not extend to the case κ < 0 and τ = 0, because
the geodesics of H

2(κ) × R are just the product of geodesics of each factor.

We shall now estimate the maximum height of the geodesic ball BR(0) in E(κ, τ )

when κ < 0.

Lemma 3 Given R > 0, let BR(0) be the geodesic ball of radius R in E(κ, τ ), κ < 0,

centered at the origin, and let DR(0) = {(x, y) ∈ R
2 : x2 + y2 < 4

−κ
tanh2(

√−κ
2 R)}

be the corresponding disk in H
2(κ). Then there exists M > 0 such that BR(0) ⊂

DR(0)×]− MR, MR[, for R big enough.

Proof Reasoning in the same way we have done in Nil3(τ ), this is equivalent to
estimate z(R) for a unit-speed geodesic γ = (x, y, z) with γ (0) = (0, 0, 0). If τ = 0,
then the statement is trivial (clearly we can take M = 1), so we will suppose that
τ �= 0. Taking into account the explicit expressions for z(t) above, it is clear that
the geodesic maximizing z(R) cannot be horizontal and, in the other cases, we can
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estimate the arctan term by ±π
2 . Since the remaining term is linear in t , it suffices to

get a bound on its coefficient not depending on the parameter a. It is not difficult to
check that

z(R) ≤
(

1 − 1

κ
(8τ 2 − κ)

)

R − 2πτ

κ
, (Elliptic case)

z(R) ≤
√
4τ 2 − κ√−κ

R − 2πτ

κ
, (Parabolic and hyperbolic cases)

from where the statement follows. ��

3 Minimal Graph Equation in E(κ, τ) and Examples

Given a domain � ⊂ M
2(κ) and a function u ∈ C2(�) we define the graph of u (with

respect to the zero section (x, y) �→ (x, y, 0)) as the surface

� = {(x, y, u(x, y)) : (x, y) ∈ �}.

It is well known that the mean curvature H(u) of the graph � ⊂ E(κ, τ ) is given as a
function on M

2(κ) by the following divergence-type expression:

H(u) = 1

2
div

(

Gu
√

1 + |Gu|2
)

, (3.1)

where the divergence and the norm are computed in M
2(κ), and Gu is a vector field

on � given in coordinates by Gu = ( ux
λ

+ τ y) ∂x
λ

+ (
uy
λ

− τ x)
∂y
λ
. The most important

feature of Gu is the fact that it can be expressed as Gu = ∇u + Z , where ∇u is the
gradient of u in M

2(κ), and Z = τ y ∂x
λ

− τ x
∂y
λ
is a vector field in M

2(κ) independent

of u. We will also denote Wu = √1 + |Gu|2, as usual.

Remark 3 Equation (3.1) is one of the keystones of our arguments below, and it is
still valid in the more general scenario of Killing submersions, i.e., in an orientable
3-manifold E that admits a Riemannian submersion π : E → M , being M a surface,
such that the fibers of π are the integral curves of a unit Killing vector field ξ . After
choosing an initial smooth section F0 : M → E transversal to the fibers, we can
understand graphs as surfaces parametrized by Fu : � ⊂ M → E, given by Fu(p) =
φu(p)(F0(p)), being u ∈ C∞(�) and {φt }t∈R the 1-parameter group of isometries
associated to ξ . It turns out that the mean curvature H(u) of Fu , as a function on
M , satisfies (3.1), where Gu = ∇u + Z for some vector field Z on � [23]. In that
sense, some of our results extend without changes to the Killing submersion setting
(see Lemmas 4, 5).

Next we will briefly describe some examples of minimal surfaces in Nil3(τ ).
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(1) Planes In our model of Nil3(τ ) ≡ R
3, all affine planes are minimal. On the one

hand, vertical planes (i.e., those projecting to a geodesic in R
2) are flat and admit

two foliations: one by vertical geodesics and the other by horizontal geodesics.
On the other hand, if � is a non-vertical plane, then � is a horizontal umbrella
(i.e., the union of all horizontal geodesics passing through a point p ∈ �), and
has negative Gauss curvature.

(2) Vertical catenoids Let us briefly explain how the equation of catenoids is deduced
(see also [18]). Given the parametrization of a rotationally invariant surface

�(t, s) = (r(t) cos(s), r(t) sin(s), h(t)), (t, s) ∈ � ⊂ R
2,

we can reparametrize it in such a way that there exists an auxiliary function α(t)
satisfying h′(t) = cos(α(t)) and r ′(t)

√

1 + τ 2r(t)2 = sin(α(t)). Using this, �
has constant mean curvature H if and only if the following system of ODE is
satisfied:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

h′(t) = cos(α(t)),

r ′(t) = sin(α(t))√
1+τ 2r(t)2

,

α′(t) = cos(α(t))+2Hr(t)

r(t)
√

1+τ 2r(t)2
.

(3.2)

The quantity E = r cos(α) + Hr2 is constant along any solution of (3.2). If
H = E = 0, we get that z must be constant. If H = 0 and E �= 0, we
reparametrize (3.2) by taking r = √x2 + y2 as a variable to obtain a 1-parameter
family of catenoids depending on the parameter E > 0, given by:

h(r) = ±
∫ r

E

E
√
1 + τ 2s2√
s2 − E2

ds, r ≥ E .

This means that half of the catenoid is a graph over the exterior domain r ≥ E
with zero boundary values. We also observe that r is the arc-length parameter
in R

2, so the height growth of the catenoids is linear. Moreover, catenoids have
negative Gauss curvature.

(3) Graphs Fernández and Mira [16] showed that there exists a vast family of
entire minimal graphs in Nil3(τ ), namely, they associate with any holomorphic
quadratic differential Q on C or D = {z ∈ C : |z| < 1} a 2-parameter fam-
ily of entire minimal graphs with Abresch-Rosenberg differential Q. The only
restriction is Q �= 0 if the domain is C.
• Figueroa, Mercuri, and Pedrosa [18] classified minimal graphs in Nil3(τ )

invariant by a 1-parameter group of left-invariant isometries. Such surfaces
are given by the graph of the function

fθ (x, y) = τ xy + sinh(θ)

4τ

[

2τ y
√

1 + 4τ 2y2 + arcsinh(2τ y)

]

, (3.3)

for any θ ∈ R (see also [2,3]).
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• Cartier [5, Corollary 3.8] proved that there are non-zero minimal graphs on
any wedge ofR

2 of angle ]0, π [ , with zero boundary values. The techniques in
the construction involve the deformation of a horizontal umbrella. The second
author, Sa Earp and Toubiana [29] proved that, for any wedge S with vertex at
the origin and angle θ ∈]π

2 , π [, there exists a non-zero minimal graph over S,
with zero boundary value. Here the proof is based on classical PDE’s theory
joint with a suitable construction of barriers.

• Daniel [11, Examples 8.4 and 8.5] constructed entire parabolic minimal graphs
of the form z = x f (y) for some real function f growing linearly at ±∞.

4 Extrinsic (Spherical) Area Growth

Let us consider a minimal graph � ⊂ E(κ, τ ), κ ≤ 0, over an unbounded domain
� ⊂ M

2(κ) given by a function u : � → R. We will assume that ∂� is piecewise
regular and in each of its regular arcs, the function u either takes continuous boundary
values or has ±∞ limit value. It is well known that if u takes ±∞ limit value along a
curve γ , then γ must be a geodesic arc.

Given a point p0 ∈ E(κ, τ ), we are interested in estimating the area of the intersec-
tion of� with BR(p0), the geodesic ball of E(κ, τ ) of radius R, centered at p0.Given
a continuous positive increasing function f : R → R

+, the surface � has extrinsic
area growth of order at least f (R) (resp. at most f (R)) if

lim inf
R→∞

area(� ∩ BR(p0))

f (R)
> 0

(

resp. lim sup
R→∞

area(� ∩ BR(p0))

f (R)
< ∞

)

.

This definition does not depend on p0, so we will assume that p0 = 0. When f (R) is
a polynomial of degree k, we say that the extrinsic area growth is of order at least (or
at most) k.

The following results will give estimates of the extrinsic area growth in terms of
quantities computed in the base � ⊂ M

2(κ). Given R > 0, for simplicity we will
denote�(R) = �∩DR(0) and�(R1, R2) = �(R2)��(R1). The proof of Lemma 4
is inspired by the work of Elbert and Rosenberg (see [14, Lemma 4.1]).

Lemma 4 Let � ⊂ E(κ, τ ) be a minimal graph given by a function u ∈ C∞(�),
where � ⊂ M

2(κ). Given R > 0, let us suppose that we can decompose ∂�(R) =
�(R) ∪ �(R) ∪ �(R), where u takes limit values ±∞ along �(R) ⊂ ∂�, u has
continuous boundary values along �(R) ⊂ ∂�, and �(R) = � ∩ ∂�(R). We will
also assume that BR(0) ⊂ DR(0) × [−h(R), h(R)], for some positive function h.
Then the following area estimate holds:

area(� ∩ BR(0)) ≤ area(�(R))

+
∫

�(R)

|Z | + h(R) length(�(R) ∪ �(R)) +
∫

�(R)

|u|.
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Proof SinceW = √1 + |Gu|2 ∈ C∞(�) is the area element of� in the base domain
� through the projection π : E(κ, τ ) → M

2(κ), we get that

area(� ∩ BR(0)) =
∫

π(�∩BR(0))
W ≤

∫

�(R)∩{|u|≤h(R)}
W

=
∫

�(R)∩{|u|≤h(R)}
|Gu|2
W

+
∫

�(R)∩{|u|≤h(R)}
1

W
.

(4.1)

SinceW ≥ 1 and �(R)∩{|u| ≤ h(R)} ⊂ �(R), the second term in the RHS of (4.1)
satisfies

∫

�(R)∩{|u|≤h(R)}
1

W
≤
∫

�(R)

1 = area(�(R)). (4.2)

In order to estimate the first term in the RHS of (4.1), we fix δ > 0 and define the
following auxiliary functions over �:

uR(x) =

⎧

⎪

⎨

⎪

⎩

h(R) if u(x) > h(R),

u(x) if |u(x)| ≤ h(R),

−h(R) if u(x) < −h(R),

φR(x) =

⎧

⎪

⎨

⎪

⎩

1 if r(x) < R,
(1+δ)R−r(x)

δR if R ≤ r(x) ≤ (1 + δ)R,

0 if (1 + δ)R < r(x),

where r(x) denotes the distance to the origin in M
2(κ). Observe that the cut-off

function φR is such that 0 ≤ φR ≤ 1. By decomposing Gu = ∇u + Z and using that
∇uR = ∇u if |u| < h(R), and ∇uR = 0 if |u| > h(R), we get

∫

�(R)∩{|u|≤h(R)}
|Gu|2
W

≤
∫

�((1+δ)R)∩{|u|≤h(R)}
φR

|Gu|2
W

=
∫

�((1+δ)R)∩{|u|≤h(R)}
φR

〈Z ,Gu〉
W

+
∫

�((1+δ)R)

φR
〈∇uR,Gu〉

W

≤
∫

�((1+δ)R)

(

|Z | + φR
〈∇uR,Gu〉

W

)

. (4.3)

In the last step we have used the Cauchy–Schwarz inequality, as well as the fact that
φR

|Gu|
W ≤ 1. To get rid of the last summand in (4.3), we integrate the following identity

in �((1 + δ)R):

0 = φRuR div

(

Gu

W

)

= div

(

φRuR
Gu

W

)

− φR〈∇uR,Gu〉
W

− uR〈∇φR,Gu〉
W

. (4.4)

Stokes theorem yields

∫

�((1+δ)R)

φR〈∇uR,Gu〉
W

=
∫

∂�((1+δ)R)

φRuR
〈Gu, η〉

W
−
∫

�((1+δ)R)

uR〈∇φR,Gu〉
W

,

(4.5)
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where η denotes an outer unit conormal vector field to�((1+δ)R) along its boundary.
We will now estimate the two terms in the RHS of (4.5). For the first one, we notice
that the integral over ∂�((1+ δ)R) can be decomposed in integrals over �((1+ δ)R)

and �((1 + δ)R), because φR vanishes at the rest of points of ∂�((1 + δ)R). Hence,
using Cauchy–Schwarz inequality and the fact that |φR | ≤ 1, we obtain

∫

∂�((1+δ)R)

φRuR
〈Gu, η〉

W
=
∫

�((1+δ)R)

φRuR
〈Gu, η〉

W
+
∫

�((1+δ)R)

φRuR
〈Gu, η〉

W

≤
∫

�((1+δ)R)

|uR | +
∫

�((1+δ)R)

|uR |

≤ h(R) length(�((1 + δ)R)) +
∫

�((1+δ)R)

|u|,
(4.6)

where we have used that |uR | = h(R) along �((1 + δ)R) since u takes unbounded
values there, and |uR | ≤ |u| along �((1+ δ)R). In order to get a bound on the second
term in the RHS of (4.5) we will use again Cauchy–Schwarz inequality and the fact
that |∇φR | = 1

δR on �(R, (1 + δ)R) and |∇φR | = 0 in �(R). We get that

−
∫

�((1+δ)R)

uR
〈∇φR,Gu〉

W
≤
∫

�(R,(1+δ)R)

|∇φR ||uR ||Gu|
W

≤ h(R)

δR
area(�(R, (1 + δ)R)). (4.7)

Plugging (4.6) and (4.7) into (4.5), and combining the result with (4.3) and (4.2),
it suffices to take limits for δ → 0 to get the inequality in the statement. The only
non-trivial limit is limδ→0

1
δR area(�(R, (1 + δ)R)), but it equals length(�(R)) by

the coarea formula. ��
Observe that the term

∫

�(R)
|u|may be useful, for instance, in the case we know that

u has zero (or bounded) boundary values along some components of the boundary, or
when �(R) = ∅. Nonetheless, we can slightly simplify the inequality in Lemma 4 by
estimating |uR | ≤ h(R) along �(R) in (4.6), to obtain the following.

Lemma 5 Under the assumptions of Lemma 4,

area(� ∩ BR(0)) ≤
∫

�(R)

(1 + |Z |) + h(R) length(∂�(R)).

These estimates could be adapted to many particular situations to obtain upper
bounds on the extrinsic area growth, but now we will focus on the cases we will need
in the sequel. Lemmas 4 and 5 can be clearly generalized to the Killing submersion
setting (see Remark 3).

Theorem 1 Let � ⊂ E(κ, τ ) be a minimal graph over a domain � ⊂ M
2(κ), whose

boundary is piecewise regular and consists of curves along which the graph either
extends continuously or takes infinite limit values. Suppose that (at least) one of the
following conditions holds:
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(i) The graph extends continuously to ∂� with zero boundary values.
(ii) There exists K > 0 such that length(∂�(R)) ≤ K length(∂DR(0)) for R suffi-

ciently large.

Then � admits the following area estimate:

(a) If E(κ, τ ) = R
3, then � has at most quadratic extrinsic area growth.

(b) If E(κ, τ ) = Nil3(τ ), then � has at most cubic extrinsic area growth.
(c) If κ < 0, then � has at most extrinsic area growth of order R �→ R eR

√−κ .

Proof If κ = 0 and τ �= 0, then�(R) ⊂ {(x, y) ∈ R
2 : x2 + y2 < R2}. As the metric

in � ⊂ R
2 is the Euclidean one and Z = τ y∂x − τ x∂y ,

∫

�(R)

(1 + |Z |) ≤
∫

x2+y2<R2

(

1 + τ

√

x2 + y2
)

= πR2 + 2πτ

3
R3. (4.8)

Lemma 1 implies that we can choose h(R) = CR2 for some C > 0 and R > π
2τ . If (i)

holds then we can apply Lemma 4 with �(R) = ∅ and
∫

�(R)
|u| = 0. Since �(R) ⊂

∂DR(0), we also have that h(R) length(�(R)∪�(R)) ≤ 2CπR3, giving atmost cubic
area growth. If (ii) holds, thenwe directly apply Lemma5with h(R) length(∂�(R)) ≤
2CKπR3, and we are done. Note that the case of E(κ, τ ) = R

3 is similar to this one,
but taking into account that Z = 0 and h(R) = R, so the estimate only gives quadratic
terms.

Let us now consider the case κ < 0. Likewise we compare �(R) and DR(0) ⊂
H

2(κ), given by the inequality x2 + y2 ≤ 4
−κ

tanh2(
√−κ
2 R). Moreover, Z = τ y ∂x

λ
−

τ x
∂y
λ

so |Z | = τ
√

x2 + y2 in H
2(κ). Using polar coordinates, it is not difficult to

show that
∫

�(R)

(1 + |Z |) ≤ 4π
−κ

sinh2
(√−κ

2 R
)

+ 2πτ
−κ

(

1√−κ
sinh

(√−κR
)− R

)

.

It is also straightforward to compute length(∂DR(0)) = 2π√−κ
sinh(

√−κR), and

Lemma 3 allows us to consider h(R) as a linear function. We conclude by the same
argument as in the case κ = 0, and applying either Lemmas 4 or 5. ��

As a first consequence of Theorem 1, we will use the Daniel correspondence [10] to
obtain some intrinsic area estimates for a complete constant mean curvature H graph
inE(κ, τ ). We recall that, if 4H2+κ > 0, then the only complete graphs with constant
mean curvature H are the horizontal slices S

2(κ) × {t0} in S
2(κ) × R (see [25]), so

the next result cover all non-trivial cases.

Theorem 2 Let � ⊂ E(κ, τ ) be a graph with constant mean curvature H such that
4H2 + κ ≤ 0, and suppose that � is complete.

(a) If κ + 4H2 = 0, then � has at most cubic intrinsic area growth.
(b) If κ + 4H2 < 0, then � has at most intrinsic area growth of order R �→

R eR
√−κ−4H2

.
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Proof Under the assumption of completeness, � is the graph of a function defined on
a domain of M

2(κ) whose boundary (possibly empty) consists of complete curves of
constant geodesic curvature ±2H (see [26, Theorem 1]). In particular, � is simply
connected and Daniel correspondence [10] yields the existence of a sister minimal
surface �∗ immersed in E(κ + 4H2,

√
H2 + τ 2). The surface �∗ is isometric to �

and has the same angle function, so it is also complete and transversal to the vertical
Killing vector field. By means of [26, Theorem 1], this implies that �∗ is also a
complete minimal vertical graph over some domain of M

2(κ + 4H2).

(a) If κ + 4H2 = 0, then �∗ is a complete minimal graph in Nil3(
√
H2 + τ 2), and

we deduce from [12] that �∗ is entire, so it has at most cubic extrinsic area by
Theorem 1.

(b) If κ + 4H2 < 0, then �∗ is the graph on a domain of H
2(κ + 4H2) bounded by

geodesic curves. Given R > 0, the set ∂�(R) consists of finitely many geodesic
segments and finitely many arcs in ∂DR(0). Since geodesics in H

2(κ + 4H2)

minimize length, it turns out that each of the geodesic segments in ∂�(R) has
smaller length than the arc in ∂DR(0) connecting its two endpoints. It follows
that length(∂�(R)) ≤ length(∂DR(0)), so �∗ has extrinsic area growth of order
at most R �→ R e

√−κ−4H2R by Theorem 1.

These estimates also hold for the intrinsic area growth, since it is always bounded from
above by the extrinsic one. Since the correspondence is isometric, we deduce that �

has the same intrinsic area growth as �∗, which finishes the proof. ��

In the following subsections, we will apply our results about extrinsic area growth,
in order to estimate the area of some known examples.

4.1 Area of Horizontal Umbrellas in E(κ, τ)

Let us consider � to be the plane z = 0 in the model for E(κ, τ ), which is nothing
but the horizontal umbrella centered at the origin (i.e., it is the union of all horizontal
geodesics in E(κ, τ ) passing through the origin) and it is minimal.

• If E(κ, τ ) = Nil3(τ ), since horizontal geodesics are Euclidean geodesics, it fol-
lows that � ∩ BR(0) = {(x, y, 0) : x2 + y2 < R2} for all R > 0. It is easy to
compute

area(� ∩ BR(0)) = 2π

3τ 2

(

(1 + τ 2R2)3/2 − 1
)

= 2π

3
τ R3 + O(R).

• In the case κ < 0 (for any τ ), the expression of horizontal geodesics in Sect. 2.2
gives

� ∩ BR(0) =
{

(x, y, 0) ∈ D

(

2√−κ

)

× R : x2 + y2 ≤ 4
−κ

tanh2
(√−κ

2 R
)}

.
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The area of � ∩ BR(0) can be computed easily via the parametrization (x, y) �→
(x, y, 0) and using polar coordinates. After some computations we get

area(� ∩ BR(0)) = 2π
∫ 2√−κ

tanh(
√−κ
2 R)

0

r
√
1 + τ 2r2

(1 + κ
4 r

2)2
dr

= π

√
4τ 2 − κ

−κ
√−κ

e
√−κR + O(R).

Note that in both cases the intrinsic ball of radius R centered at the origin is given
by B�

R (0) = � ∩ BR(0). This is due to the fact that horizontal geodesics are always
minimizing, and proves that intrinsic and extrinsic area growths coincide for horizontal
umbrellas.

It is worth mentioning that umbrellas in Nil3(τ ) are hyperbolic surfaces (i.e., con-
formally equivalent to the unit disk D), see [11, Example 8.1]. We can generalize this
idea for κ ≤ 0 and τ �= 0. In fact, it is easy to check that the global parameterization

� : D(σ ) → E(κ, τ ), �(u, v) =
(

2u

τ(1 − u2 − v2)
,

2v

τ(1 − u2 − v2)
, 0

)

is well defined and conformal, where D(σ ) ⊂ R
2 is the disk of radius σ =

1
2τ (

√−κ + 4τ 2 − √−κ) < 1 with center at the origin. If τ = 0, then horizontal
umbrellas are nothing but horizontal sections M

2(κ) × {t0}, which are parabolic for
κ ≥ 0 and hyperbolic otherwise.

4.2 Area of Figueroa–Mercuri–Pedrosa Examples

Let θ ∈ R, and let �θ be the entire minimal graph of the function fθ given by (3.3).
In this case, we are able to compute the exact intrinsic and extrinsic area growths.

Proposition 2 The minimal graph �θ ⊂ Nil3(τ ) satisfies the following properties:

(a) �θ has extrinsic and intrinsic cubic area growth.
(b) �θ is a parabolic surface.

Proof First of all, we observe that the global parametrization

(u, v) ∈ R
2 �→ ( 1

2τ (cosh(θ)u

+ sinh(θ) cosh(v)), 1
2τ sinh(v), 1

4τ (cosh(θ)u sinh(v) − sinh(θ)v)
)

is conformal and the metric of �θ reads 1
4τ 2

cosh2(θ) cosh2(v)( du2 + dv2) in these
coordinates (see [22, Example 7]). Hence �θ is globally conformally C, so it is
parabolic (see also [11, Example 8.2]). Moreover, all the surfaces �θ are intrinsi-
cally homothetic. We will prove that �0 has at least cubic intrinsic area growth. From
that, it follows that �θ has at least cubic intrinsic area growth for all θ , and then �θ
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will have exactly cubic intrinsic and extrinsic area growths, since the extrinsic area
grows faster than the intrinsic one, and it is at most cubic by Theorem 1.

Via the parametrization (x, y) �→ (x, y, τ xy), the surface �0 is isometric to R
2

endowed with the metric ds2 = (1 + 4τ 2y2) dx2 + dy2. Given (x, y) ∈ R
2, let us

consider the curve α joining (0, 0) and (x, y) consisting in two straight segments, α1
(joining (0, 0) and (x, 0)), and α2 (joining (x, 0) and (x, y)). It is easy to see that
length(α1) = |x | and length(α2) = |y| with respect to ds2. This means that the ds2-
distance from (0, 0) and (x, y) is smaller than |x | + |y|, so the geodesic ball B�0

R (0)
in �0 ≡ (R2, ds2) centered at (0, 0) of radius R contains the square S(R) of vertexes
(0,±R) and (±R, 0). Since the area element for ds2 in the (x, y)-coordinates is
√

1 + 4τ 2y2, we obtain the following lower bound for the area of B�0
R (0):

area(B�0
R (0)) ≥

∫

S(R)

√

1 + 4τ 2y2 dx dy = 4
∫ R

0

∫ R−y

0

√

1 + 4τ 2y2 dx dy

= 1

3τ 2

(

1 + (2τ 2R2 − 1)
√

1 + 4τ 2R2 + 3τ R arcsinh(2τ R)
)

.

Hence, area(B�0
R (0)) ≥ 4

3τ R
3 + O(R2) and we are done. ��

Using this result, we will correct a mistake in the Bernstein theorem for horizontal
minimal multigraphs in Nil3( 12 ) given in [25].

Let us take the surface ̂�θ ⊂ Nil3( 12 ) parametrized by

(u, v) ∈ R
2 �→

(

gθ (u, v), u, v + 1

2
ugθ (u, v)

)

,

where gθ : R
2 → R

2 is given by

gθ (u, v) = v + sinh(θ)

2

(

(1 + u)
√

1 + (1 + u)2 + arcsinh(1 + u)
)

.

Hence ̂�θ is an entire graph in the direction of the Killing vector field X = E1 + yE3
(see [25, Section 5]) and the isometry F : Nil3( 12 ) → Nil3( 12 ) given by F(x, y, z) =
(x, y + 1, z − 1

2 x) satisfies F(̂�θ) = �θ . In particular, ̂�θ = F−1(�θ ) is an entire
minimal graph in the direction of X , and it is parabolic by Proposition 2. Theorem
3 in [25] contains a subtle mistake in the way �θ is discarded as a horizontal graph
(in the proof, both the surface and the Killing vector field were normalized under an
ambient isometry, but this yields a loss of generality). It is fixed as follows:

Theorem 3 (Correction of Theorem 3 in [25]) Let � ⊂ Nil3( 12 ) be a complete
minimal surface transversal to theKilling vector field X = E1+yE3. If� is parabolic,
then it is either a vertical plane or an invariant surface�θ , up to an ambient isometry.
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4.3 Area of Ideal Scherk Graphs (κ < 0)

Let � ⊂ H
2(κ) be an unbounded domain whose boundary is an ideal polygon con-

sisting of finitely many complete curves with alternating constant geodesic curvature
±2H , meeting at some points at the ideal boundary ∂∞H

2(κ). Let � ⊂ E(κ, τ ) be
the graph of a function u defined over �, with constant mean curvature H satisfying
4H2 +κ < 0, and such that u has boundary values ±∞ along each curve in ∂�. Such
surface � is known as an ideal Scherk graph. The existence of minimal ideal Scherk
graphs in H

2 × R was proven by Collin and Rosenberg in [9], under some conditions
on the shape of the domain �. In fact, the conditions were inspired by those found by
Jenkins and Serrin for aminimal graph inR

3 with infinite boundary values. Analogous
existence results were given by Folha and Melo [17] (0 < H < 1

2 in H
2 × R) and

Melo [27] (H = 0 in˜SL2(R)).
The aim of this section is to show that the area growth of ideal Scherk graphs is

similar to the area growth of the vertical surfaces they are asymptotic to (Theorem 4).

Remark 4 Let � = π−1(�) ⊂ E(κ, τ ), being � ⊂ M
2(κ) a geodesic. Then � is

minimal and has quadratic intrinsic area growth provided that κ ≤ 0, for it is isometric
to R

2 endowed with the Euclidean flat metric. Let us suppose that � is given by the
equation x = 0 in our model.

• If κ = 0,E(κ, τ ) = Nil3(τ ), we get byLemma2 (α = 1) that there existm, M > 0
such that�∩CmR ⊂ �∩BR(0) ⊂ �∩CMR for R > π

2τ . Herewe have considered
the cylinders CR = DR(0)×]−R2, R2[ that satisfy area(� ∩ CR) = 4R3 for all
R > 0, which implies that � has cubic extrinsic area growth.

• If κ < 0, then BR(0) ⊂ DR(0)×] − MR, MR[ for some M > 0 by Lemma 3, so
area(BR(0) ∩ �) ≤ area(� ∩ (DR(0)×] − MR, MR[)) ≤ 4MR2 and � has at
most quadratic extrinsic area growth. Since the intrinsic area growth is quadratic
and it represents a lower bound for the extrinsic one, we deduce that the extrinsic
area growth of � is also quadratic.

Next we will analyze the area of the projection of a complete graph � in E(κ, τ ),
which will be the key step in the proof of Theorem 4. Let us mention that the angle
function ν = 〈E3, N 〉, being N the upward-pointing unit normal to �, is such that
∫

G ν = area(π(G)) for any region G ⊂ �, where π : E(κ, τ ) → H
2(κ) denotes the

usual projection. This assertion follows from the fact that the Jacobian of π|� equals
|ν|, and ν > 0 because of our choice of the unit normal N .

Proposition 3 Let � ⊂ E(κ, τ ) be a complete graph with constant mean curvature
H such that 4H2 + κ < 0, and projecting onto a domain � ⊂ H

2(κ).

(a) If � is an ideal Scherk graph and � has 2n ideal vertexes, then � has finite area
given by

area(�) = 2(n − 1)π

−κ − 4H2 .

(b) If � is not an ideal Scherk graph, then � has infinite area.
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Proof Given R > 0, let us consider �(R) = � ∩ DR(0). Then ∂�(R) can be
decomposed in three finite families of arcs, namely, those with geodesic curvature
2H (along which � takes +∞ limit boundary value), those with geodesic curvature
−2H (with −∞ limit boundary value) and those in � ∩ ∂DR(0). Geodesic curvature
is always computed with respect to the inner conormal vector field to �(R) along its
boundary. Let us call α(R), β(R) and �(R) the lengths of the segments in the first,
second, and third family, respectively. Gauss–Bonnet theorem applied to �(R) ⊂
H

2(κ) yields the following identity:

κ area(�(R)) = 2π − 2H(α(R) − β(R)) − κg(R)�(R) − �(R), (4.9)

where κg(R) > 1 is the geodesic curvature of ∂DR(0), and �(R) denotes the sum of
all exterior angles at the vertexes of ∂�(R). Now, let us consider T = E3 − νN to be
the tangent part of the vertical Killing vector field E3, which satisfies div�(T ) = 2Hν.
By a classical application of the divergence theorem to T (also known as flux formula)
on �(R) = π−1

|� (�(R)), it follows that

2H area(�(R)) =
∫

�(R)

div�(T ) = α(R) − β(R) +
∫

∂�(R)

〈T, η〉, (4.10)

where η stands for an unit conormal to�(R) along its boundary. The termα(R)−β(R)

appears sincewe indeed apply the divergence theorem to compact subdomains of�(R)

uniformly converging to �(R), and the angle function uniformly tends to 0 along the
boundary curves with geodesic curvature ±2H . Hence, combining (4.9) and (4.10),
we get that

(−κ − 4H2) area(�(R)) = −2π + �(R) + κg(R)�(R) − 2H
∫

∂�(R)

〈T, η〉. (4.11)

Observe that ∂�(R) consists of curves of infinite length, but the last integral in (4.11)
is finite. If we parametrize one of these curves by γ : R → E(κ, τ ) with unit speed
and consider J to be the π

2 -rotation in T�, we have that 〈T, η〉 = 〈JT, γ ′〉. Since
{T, JT } is an orthogonal frame on � with |T |2 = |JT |2 = 1 − ν2, we can express
1 − ν2 = 〈T, γ ′〉2 + 〈JT, γ ′〉2, and hence

∣

∣

∣

∣

∫

γ

〈T, η〉
∣

∣

∣

∣

≤
∫

γ

|〈JT, γ ′〉|

=
∫

γ

√

1 − ν2 − 〈T, γ ′〉2 ≤
∫

γ

√

1 − 〈T, γ ′〉2 = length(π ◦ γ ). (4.12)

The last equality in (4.12) follows from the fact that 〈T, γ ′〉 = 〈E3, γ
′〉 (note that

γ ′ is tangent), and the fact that |(π ◦ γ )′|2 + 〈E3, γ
′〉2 = 1, which follows from

decomposing γ ′ in vertical and horizontal components. Hence, the absolute value of
the last integral in (4.11) is at most �(R).

Let us now take limits in (4.11) when R → ∞ and distinguish two cases:
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(a) If � is an ideal Scherk graph, then it is easy to prove that limR→∞ �(R) = 0,
since two successive components of ∂� approach exponentially in R. Moreover,
limR→∞ κg(R) = −κ . On the other hand, �(R) = 2nπ for R sufficiently large
(it suffices to take R such that ∂DR(0) intersects transversally all the components
of ∂�). Thus it follows from (4.11) that (−κ − 4H2) area(�) = 2(n − 1)π and
the statement follows.

(b) Let us now suppose that� is not an ideal Scherk graph. Then we have two possible
situations: either � contains an arc at infinity (so it is clear that area(�) = ∞ and
we are done), or ∂� consists of infinitely many curves of geodesic curvature
±2H . In the latter case, we have proved that κg(R)�(R) − 2H

∫

∂�(R)
〈T, η〉 ≥

(κg(R) − 2H)�(R) > 0, and hence (4.11) implies (−κ − 4H2) area(�(R)) >

−2π +�(R) for all R > 0. It suffices to check that limR→∞ �(R) = ∞, but this
is straightforward since ∂�(R) contains eventually an arbitrarily large number of
vertexes, and the exterior angle at each of these vertexes converges to some value,
bounded away from zero, only depending on H .

��
Corollary 1 If � ⊂ E(κ, τ ) and �∗ ⊂ E(κ∗, τ ∗) are sister surfaces by the Daniel
correspondence, and � is an ideal Scherk graph, then so is �∗. Moreover, they are
graphs over ideal polygons with the same number of ideal vertexes.

Proof As mentioned in the proof of Theorem 2, if � is an ideal Scherk graph, then it
follows from [26] that �∗ is a complete graph over a domain �∗ = π(�∗) ⊂ H

2(κ∗)
bounded by curves of geodesic curvature ±2H∗, where H∗ is the mean curvature of
�∗. Since � = π(�) has finite area by Proposition 3.(a), the angle function is pre-
served by the correspondence, and the integral of the angle is the area of the projection,
we get that �∗ also has finite area, so it is a Scherk graph by Proposition 3.(b). Since
κ + 4H2 = κ∗ + 4H∗2, the number of vertexes is also preserved. ��

Finally, we can prove the desired area estimate.

Theorem 4 If � ⊂ E(κ, τ ) is an ideal Scherk graph, then � has at most quadratic
intrinsic area growth. In particular, the underlying conformal structure of � is
parabolic.

If � is minimal, then it also has quadratic extrinsic area growth.

Proof Let �∗ ⊂ E(κ + 4H2,
√

τ 2 + H2) be the sister minimal surface by Daniel
correspondence, and let us prove that �∗ has at most quadratic extrinsic area growth.
This implies that �∗, and hence �, has at most quadratic intrinsic area growth, so we
will be done. Moreover, the assertion about the conformal structure follows from a
result by Cheng and Yau [6, Corollary 1].

ByCorollary 1, the surface�∗ is also an ideal Scherk graph over somedomain�∗ ⊂
H

2(κ+4H2)with 2n ideal vertexes for some n ∈ N. In order to apply Lemma 5 to�∗,
we first observe that area(�∗) is finite and |Z | = √(τ 2 + H2)(x2 + y2) is bounded
so
∫

�∗(R)
(1+|Z |) is bounded independently on R. Moreover, for R sufficiently large,

∂�∗(R) consist of 2n geodesic segments as well as some arcs contained in ∂DR(0).
On the one hand, the length of these arcs in ∂DR(0) can be easily shown to converge
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to zero when R → ∞. On the other hand, each geodesic segment in ∂�∗(R) has
length at most 2R, the diameter of DR(0), because geodesics minimize length in
H

2(κ + 4H2). Hence length(∂�∗(R)) grows linearly. As κ + 4H2 < 0, Lemma 3
allows us to take h(R) as a linear function. By applying Lemma 5, we can guarantee
that area(�∗ ∩ BR(0)) grows at most quadratically. ��

4.4 Area of Catenoids and k-noids in H
2(κ) × R

As a last family of examples, we will study symmetric k-noids in H
2(κ) × R with

constant mean curvature H such that 4H2+κ < 0.Minimal k-noids were constructed
independently by Morabito and Rodríguez [28], and Pyo [31], though in [28] the
non-symmetric case is also considered. We emphasize that horizontal catenoids are
recovered as 2-noids, and were first obtained by Daniel and Hauswirth [12] for H = 1

2
in H

2 × R, by means of a representation formula for the Gauss map of minimal
surfaces in Nil3( 12 ). For the rest of values of the mean curvature, symmetric k-noids
were obtained by Plehnert [30]. They are complete embedded surfaces in H

2 × R

with genus zero and k ends, which are asymptotic to vertical cylinders over curves of
geodesic curvature−2H . We will prove that they have at most quadratic intrinsic area
growth, illustrating how our techniques can be easily adapted to conjugate Plateau
constructions.

The key idea in the construction is to realize that such a k-noid�k ⊂ H
2(κ)×R can

be decomposed in 4k pieces which are congruent by ambient isometries. By Daniel
correspondence, each piece is isometric to a minimal graph �∗ in E(κ + 4H2, H),
which is obtained by solving an improper Plateau problem. The graph �∗ projects
onto an ideal geodesic triangle � ⊂ H

2(κ + 4H2) which has a vertex at infinity (so
two of its sides have infinite length), and the other two vertexes having angles π

2 and
π
k (see [30, Section 3.3]). The surface�∗ is obtained by solving the Dirichlet problem
with zero boundary values along the sides sharing the π

k -angle, and +∞ limit value
along the third side of�. Hence it is clear that area(�) < ∞ and length(∂�(R)) grows
linearly, so Lemma 4 yields that�∗ has at most quadratic extrinsic (and intrinsic) area
growth. Since sister surfaces are isometric and �k consists of 4k pieces isometric to
�∗, we get the following result.

Theorem 5 Given k ≥ 2, the k-noid �k ⊂ H
2(κ) × R with constant mean curvature

H such that 4H2 + κ < 0, constructed in [30], has at most quadratic intrinsic area
growth. In particular, �k is parabolic, so it is conformally equivalent to S

2 minus k
points.

We remark that minimal k-noids and saddle towers constructed by Morabito and
Rodríguez [28] are known to have finite total Gaussian curvature. Since their Gaussian
curvature is negative, a classical result of Hartman [19] implies that such surfaces have
quadratic intrinsic area growth. Our arguments can be used to provide an alternative
proof of this fact for the surfaces in [28]. Nonetheless, the case H > 0 ismore involved
in principle, since it may happen that the Gaussian curvature does not have a global
sign.
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5 Cylindrical Area Growth

Now we will introduce a different concept related to the area growth of a surface in
E(κ, τ ).Given x ∈ M

2(κ) and R > 0, the cylinder centered at x0 of radius R is the open
subset CR(x0) = π−1(DR(x0)). In analogy to Sect. 4, we define the cylindrical area
growth of� as follows. Given a positive increasing continuous function f : R → R

+,
the surface � has cylindrical area growth of order at least f (R) (resp. at most f (R))
if

lim inf
R→∞

area(� ∩ CR(x0))

f (R)
> 0

(

resp. lim sup
R→∞

area(� ∩ CR(x0))

f (R)
< ∞

)

.

When f (R) is a polynomial of degree k, we say that the cylindrical area growth is
of order at least (resp. at most) k. This definition does not depend on the choice of
x0 ∈ M

2(κ) either, and it is invariant under ambient isometries of E(κ, τ ) (note that
any isometry F of E(κ, τ ) satisfies F(CR(π(p))) = CR(π(F(p)) for all p ∈ E(κ, τ )

and R > 0). The cylindrical area is appropriate to study the area growth of entire
graphs in E(κ, τ ), as will shall see below.

In Example 4.1, it is proved that the horizontal umbrella �0 given by z = 0 has
cubic cylindrical area growth in Nil3(τ ), whereas it grows as R �→ eR

√−κ in the
case κ < 0. This follows from the fact that �0 ∩ CR(0) = �0 ∩ BR(0), so both
cylindrical and extrinsic area growths coincide over �. Next result proves that the
graphical surfaces which minimize area with free boundary over vertical cylinders are
precisely horizontal umbrellas.

Proposition 4 Let� ⊂ E(κ, τ ) be the graph of a function u : DR(x0) ⊂ M
2(κ) → R

which extends continuously to DR(x0), and let�0 be the horizontal umbrella centered
at p0 such that π(p0) = x0. Then

area(�) ≥ area(�0 ∩ CR(x0)).

Equality holds if and only if � = �0 ∩ CR(x0), up to a vertical translation.

Proof By applying an appropriate isometry ofE(κ, τ ) and choosing�0 up to a vertical
translation, we may assume that x0 = 0, u > 0 in DR(0), and also that �0 is given
by the equation z = 0. The upward-pointing unit normal vector field to �0 is

N0 = −τ yE1 + τ xE2 + E3
√

1 + τ 2(x2 + y2)
.

This expression extends N0 to a global unit vector field inE(κ, τ )with zero divergence
(it is the unit normal to a foliation of E(κ, τ ) by minimal surfaces). Now, let U ⊂
E(κ, τ ) be the bounded regionwith boundary�0∩CR(0),�, and the cylinder ∂CR(0),
and apply the divergence theorem to N0 inU . Since N0 is orthogonal to�0 and tangent
to ∂CR(0), we get

∫

�

〈N0, N 〉 = area (�0 ∩ CR(0)) ,

123



Height and Area Estimates for Constant Mean Curvature Graphs 3465

where N denotes the upward-pointing unit normal vector field to �. Since 〈N0, N 〉 ≤
1, Cauchy–Schwarz inequality yields that area(�) ≥ ∫

�
〈N0, N 〉, and we are done.

If equality holds, then 〈N0, N 〉 = 1, so N = N0 and � differs from �0 by a vertical
translation. ��

Combining Proposition 4 with the explicit cylindrical area growth of horizontal
umbrellas, we get a global estimate for entire graphs.

Corollary 2 Let � ⊂ E(κ, τ ) be an entire graph.

(a) If E(κ, τ ) = Nil3(τ ), then � has at least cubic cylindrical area growth.
(b) If κ < 0, then � has at least cylindrical area growth of order R �→ e

√−κR.

We observe that the cylindrical area growth and the extrinsic area growth of entire
minimal graphs in Nil3(τ ) admit estimates, from below and from above, respectively,
of order 3. If we could guarantee that they coincide for some entire minimal graph �,
then we would be able to prove that � has exactly cubic extrinsic area growth. Next
result shows that this is the case when we assume a restriction on the growth of the
height of the entire graph.

Corollary 3 Let � ⊂ Nil3(τ ) be an entire minimal graph given by a function u ∈
C∞(R2), and assume that there exist constants M > 0 and β ≥ 1 such that |u| ≤
M(1 + r2)β , being r the distance to the origin in R

2. Then the extrinsic area growth
of � has order at least 3

β
.

In particular, if β = 1, then � has exactly cubic extrinsic area growth.

Proof Let us consider the distance δα defined by (2.7) for some α >
√
M . The

equivalence between d and δα established in Lemma 2 implies that the growth of
the function R �→ area(� ∩ BR(0)) is asymptotically the same as the growth of
R �→ area(� ∩ (DR(0)×]−α2R2, α2R2[)) (we recall that DR(0)×]−α2R2, α2R2[
is the ball of radius R for δα). Since β ≥ 1, we get that

area(� ∩ (DR(0)×] − α2R2, α2R2[)) ≥ area(� ∩ (DR1/β (0)×] − α2R2, α2R2[)).

Now we observe that, by hypothesis, |u| ≤ M(1 + R2/β)β on DR1/β (0), and
M(1+ R2/β)β ≤ α2R2 for R sufficiently large. This implies that � ∩ (DR1/β (0)×]−
α2R2, α2R2[) = � ∩CR1/β (0) for R sufficiently large, so area(� ∩CR1/β (0)) grows
at least as the function R �→ (R1/β)3 = R3/β by Corollary 2, and we get the desired
estimate.

If β = 1, this estimate implies that � has at least cubic extrinsic area growth, and
we conclude by Theorem 1 that the extrinsic area growth is exactly cubic. ��

Corollary 3 gives a relation between the area growth and height of the graph. In
this direction we can prove the following gradient, height, and area estimates.

Theorem 6 Let � ⊂ Nil3(τ ) be an entire minimal graph, given by a function u ∈
C∞(R2), and consider r = √x2 + y2. Then

(a) there exists a constant B > 0 such that |Gu| ≤ B(1 + r2),
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(b) there exists a constant C > 0 such that |u| ≤ C(1 + r2)3/2.

In particular, the extrinsic area growth of � is at least quadratic, and at most cubic,
while the cylindrical area growth of � is at least cubic, and at most quartic.

The proof of Theorem6will rely on the following gradient estimate for entire space-
like graphs in Lorentz–Minkowski 3-space L

3 with constant positive mean curvature,
via the Calabi-type correspondence by Lee [22, Corollary 2].

Lemma 6 Let � ⊂ L
3 be an entire spacelike graph with constant mean curvature

H > 0, given by a global parametrization (x, y) �→ (x, y, v(x, y)) for a certain
function v ∈ C∞(R2). Then there exists a constant A > 0 such that

|∇v|2 ≤ 1 − A

(1 + r2)2
,

being r the distance to the origin in R
2 and ∇v the usual gradient of v in R

2.

Proof First we can assume that � is not a ruled surface, and apply a translation in L
3

such that the origin belongs to �, and no straight line through the origin is contained
in �. Notice that this normalization does not affect the estimate we are looking for.
Note also that, if� were a ruled surface, then the classification of ruled constant mean
curvature surfaces in L

3 given in [13] implies that � is either minimal, or a circular
cylinder, or a hyperbolic cylinder or an isoparametric surfacewith null curves. Sincewe
are dealingwith H > 0 and the surface is spacelike, we conclude that� is a hyperbolic
cylinder, i.e., up to an isometry ofL

3, we can suppose that v(x, y) = 1
2H

√
1 + 4H2x2,

so |∇v|2 = 1− (1+ 4H2x2)−1 and the statement follows. Moreover, it follows from
the work of Treibergs [33] that � is the boundary a convex set in L

3 (see also [1]) so,
up to a mirror reflection with respect to z = 0, we may also assume that v is a convex
function.

Following the arguments in [7] (see also [33]), the surface� is completewith respect
to its induced Riemannian metric, and the Lorentzian support function � : L

3 → R

given by �(x, y, z) = x2 + y2 − z2 is a proper function on � satisfying the gradient
estimate |∇��|2 ≤ C(1+�)2, where the gradient is computed on�.Wewill develop
this inequality to get our result.

By taking into account that ∇�� = ∇� + 〈∇�, N 〉N , where ∇� = 2x∂x +
2y∂y + 2z∂z denotes the gradient of � in the ambient space L

3, and N = (1 − v2x −
v2y)

−1/2(vx∂x + vy∂y + ∂z) is a unit normal to �, we reach the following expression:

|∇��|2 = |∇�|2 + 〈∇�, N 〉2 ≥ 〈∇�, N 〉2 = 4(v − xvx − yvy)2

1 − v2x − v2y
. (5.1)

Next we estimate the numerator in the RHS of (5.1), for what we observe that the
intersection of the z-axis and the tangent line to � at (x, y, v) in the direction of the
tangent vector (x, y, xvx + yvy) is precisely the point (0, 0, v − xvx − yvy). Using
this and the fact that � is convex and does not contain a line through the origin, we
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get that

w(x, y) ≤ w

(

x
√

x2 + y2
,

y
√

x2 + y2

)

< 0, if x2 + y2 ≥ 1, (5.2)

where w = v − xvx − yvy . Since w is continuous and the unit circle is compact,
equation (5.2) implies that there exists a constant M > 0 such that w2 = (v − xvx −
yvy)2 ≥ M provided that x2 + y2 ≥ 1. Hence the gradient estimate for the support
function by Cheng and Yau (see[7, Theorem 1] and [33, Proposition 2]) yields

4M2

1 − |∇v|2 ≤ |∇��|2 ≤ C(1 + �)2 = C(1 + x2 + y2 − v2)2 ≤ C(1 + x2 + y2)2.

Equivalently, |∇v|2 ≤ 1− 4M2

C (1+ r2)−2. Although this inequality is valid for r ≥ 1,
it trivially extends for all r ≥ 0 by possibly changing the constant M , so the statement
follows. ��
Proof of Theorem 6 By taking into account the Calabi-type correspondence in [22],
we can associate to � a function v ∈ C∞(R2) such that (x, y) �→ (x, y, v(x, y))
defines an entire spacelike graph in L

3 with constant mean curvature τ , and v satisfies
the relation (1 − |∇v|2)(1 + |Gu|2) = 1. From Lemma 6 we get that there exists
A > 0 such that 1 + |Gu|2 = (1 − |∇v|2)−1 ≤ A−1(1 + r2)2 < 1 + A−1(1 + r2)2,
and we get item (a) by just taking B = A−1/2.

Applying the Minkowski inequality to the expression ∇u = Gu + Z , where Z =
τ y∂x − τ x∂y , we get that |∇u| ≤ |Gu| + |Z | ≤ B(1+ r2)+ τr . Hence |∇u| grows at
most quadratically in r , from where it is easy to see that there exists a constant C > 0
satisfying item (b).

The assertion about extrinsic area growth in the statement is a consequence of
Corollary 3 (β = 3

2 ) and Theorem 1. Finally, the assertion about cylindrical area
growth follows from Corollary 2 and a simple integration in polar coordinates using
item (b):

area(� ∩ CR(0)) =
∫

DR(0)

√

1 + |Gu|2 ≤ 2π
∫ R

0
r
√

1 + B2(1 + r2)2 dr ≤ DR4,

for r big enough and some constant D > 0. ��
As mentioned above, our estimates of the gradient Gu give estimates on the angle

function ν = 〈N , E3〉 = (1 + |Gu|2)−1/2, where N is a unit normal to the surface.
This allows us to improve a result by Espinar [15, Corollary 5.2] on complete stable
surfaces with constant mean curvature. Here, stability is understood in a strong sense
(i.e., a constant mean curvature H surface is said stable if it is a stable critical point
of the functional J = area−2H vol, for all normal variations of � with compact
support, see also [25]).
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Corollary 4 Let � be an orientable complete stable surface with constant mean
curvature H immersed in E(κ, τ ), with τ �= 0 and 4H2 + κ ≥ 0. If ν2 ∈ L1(�),
then κ + 4H2 = 0 and � is a vertical cylinder over a complete curve in M

2(κ) with
constant geodesic curvature 2H.

Proof Under these hypothesis, [15, Corollary 5.2] implies that κ ≤ 0, � has critical
mean curvature, and it is either a vertical cylinder or an entire graph. By the Daniel
correspondence, we will suppose that E(κ, τ ) = Nil3(τ ) without loss of generality
(stability is also preservedby the correspondence, see [10, Proposition5.12]).Nonethe-
less, if � is an entire minimal graph in Nil3(τ ) given by a function u ∈ C∞(R2), then

∫

�

ν2 =
∫

R2
ν =

∫

R2

1
√

1 + |Gu|2 ≥
∫ ∞

0

2πr dr
√

1 + B2(1 + r2)2
= ∞. (5.3)

In the first equality in (5.3), we have transformed the integral over � into an integral
over R

2 with the flat metric using the area element W = ν−1, and then the fact that
ν = (1 + |Gu|2)−1/2. Notice that we used Theorem 6 and polar coordinates to get to
the last integral. Hence � must be a vertical plane. As vertical surfaces are preserved
by the correspondence, we are done. ��

Estimates on the growth of the height of minimal graphs seem to be quite useful
in the comprehension of the area growth. As far as we know, there is no example
whose height grows more than quadratically. In fact, we conjecture that the height of
an entire minimal graph grows at most quadratically, for what it suffices to prove that
the estimate in Lemma 6 can be improved to |∇v| ≤ 1 − A(1 + r2)−1.

In the next section, we will give a result in the opposite direction, by proving that
the growth of the height of a minimal graph in Nil3(τ )with zero boundary values over
an unbounded domain is at least linear.

6 Height Growth Estimates à la Collin–Krust

This section is devoted to study the behavior at infinity of the height of aminimal graph
� in Nil3(τ ) with zero boundary values over an unbounded domain � ⊂ R

2. The
very first results on this subject are due to Collin and Krust [8] for minimal surfaces in
R
3. Some generalizations to the E(κ, τ )-setting have been obtained by Leandro and

Rosenberg [21, Theorem 2]. We shall give a sharper result by comparing � with the
zero section, inspired by the linear height growth of catenoids (see Sect. 3).

Theorem 7 Let � ⊂ R
2 be an unbounded domain and let u ∈ C∞(�) be a non-

constant function whose graph over � is minimal with respect to the Nil3(τ )-metric,
such that u extends continuously as zero to ∂�. If we denote M(r) = sup�∩Dr (0) |u|,
then

lim inf
r→∞

M(r)

r
> 0.
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If additionally there exists C > 0 such that length(� ∩ ∂Dr (0)) < C for all r > 0,
then

lim inf
r→∞

M(r)

r2
> 0.

In order to prove Theorem 7, we need the following result that is proved in [21].
We will follow the notation of Sect. 3, and also denote by Nu the upward-pointing
normal vector field to the graph given by the function u.

Lemma 7 For any u, v ∈ C1(M),

〈

Gu

Wu
− Gv

Wv

,Gu − Gv

〉

= 1

2
(Wu + Wv) |Nu − Nv|2 ≥ 0.

Equality holds at some point p ∈ M if and only if ∇u(p) = ∇v(p).

Proof of Theorem 7 We will assume that A = {x ∈ � : u(x) > 0} is not bounded
and connected (we can restrict to a connected component if necessary and changing
the sign of u does not affect the arguments below). Given r > 0, we define the sets
A(r) = A∩ Dr (0) and �(r) = A∩ ∂Dr (0) ⊂ ∂A(r). Notice that W0 = √1 + τ 2ρ2,
being ρ the distance to the origin in R

2. Moreover, the fact that u is positive on A
implies that there exists r0 > 0 satisfying μ = ∫A(r0)

|Gu
Wu

− Z
W0

|2 > 0.

Let us define η(r) = ∫
�(r) |Gu

Wu
− Z

W0
|, for all r ≥ r0. UsingLemma7, the divergence

theorem, the conditions u = 0 along ∂� and H(u) = 0 in �, and the fact that
|Nu − N0| ≥ |Gu

Wu
− Z

W0
|, we can estimate for all r ≥ r0

M(r)η(r) ≥
∫

∂A(r)
u

∣

∣

∣

∣

Gu

Wu
− Z

W0

∣

∣

∣

∣

≥
∫

∂A(r)
u

〈

Gu

Wu
− Z

W0
, χ

〉

=
∫

A(r)
div

(

u

(

Gu

Wu
− Z

W0

))

=
∫

A(r)

〈

Gu − Z ,
Gu

Wu
− Z

W0

〉

=
∫

A(r)

Wu + W0

2

∣

∣

∣

∣

Gu

Wu
− Z

W0

∣

∣

∣

∣

2

,

whereχ denotes a unit conormal vector field to A(r) along its boundary.Wedecompose
the last integral in two integrals, one over A(r0), where we estimateWu ≥ 1 andW0 ≥
1, and another one over A(r) \ A(r0), where we estimate Wu ≥ 1 and W0 ≥ τρ − 1.
We obtain

M(r)η(r) ≥
∫

A(r0)

∣

∣

∣

∣

Gu

Wu
− Z

W0

∣

∣

∣

∣

2

+
∫

A(r)\A(r0)

τρ

2

∣

∣

∣

∣

Gu

Wu
− Z

W0

∣

∣

∣

∣

2

= μ + τ

2

∫ r

r0
s

(

∫

�(s)

∣

∣

∣

∣

Gu

Wu
− Z

W0

∣

∣

∣

∣

2
)

ds ≥ μ + τ

2

∫ r

r0

s η(s)2 ds

length(�(s))
.

(6.1)
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As length(�s) ≤ 2πs, we conclude that there exists m > 0 such that, for all r ≥ r0,

M(r)η(r) ≥ μ + m
∫ r

r0
η(s)2 ds.

The function r �→ M(r) is non-decreasing by definition. Given r1 > r0, let us write
a = M(r1) so a η(r) ≥ M(r)η(r) for all r0 < r < r1. Hence η satisfies the integral
inequality η(r) ≥ μ

a + m
a

∫ r
r0

η(s)2 ds. Let us define the function ζ : [r0, L) → R as

ζ(r) = aμ

2a2 − mμ(r − r0)
, L = r0 + 2a2

mμ
,

and observe that ζ(r) = μ
2a + m

a

∫ r
r0

ζ(s)2 ds, so a simple comparison yields η ≥ ζ

for all r0 ≤ r ≤ L . Since η is well defined for all r ≥ r0 and ζ diverges when r → L ,
we conclude that r1 ≤ L = r0 + 2a2

mμ
. Equivalently,

M(r1) = a ≥
√

mμ

2
(r1 − r0), for all r1 > r0. (6.2)

We claim that the function η is bounded away from zero at infinity. Note that, for
any r > r0,

η(r) ≥
∣

∣

∣

∣

∫

�(r)

〈

Gu

Wu
− Z

W0
, χ

〉∣

∣

∣

∣

=
∣

∣

∣

∣

∫

∂A(r)

〈

Gu

Wu
− Z

W0
, χ

〉

−
∫

∂A(r)\�(r)

〈

Gu

Wu
− Z

W0
, χ

〉∣

∣

∣

∣

(6.3)

The first integral of the RHS of (6.3) vanishes by Stokes Theorem. As for the second
integral, we proceed as follows. We prove that

∫

�
〈Gu
Wu

− Z
W0

, χ〉 has constant sign on
any arc � contained in ∂A (different from one point). Notice that, Gu − Z = ∇u �= 0
along ∂A, except at isolated points, because u ≥ 0 in A by assumption. In particular,
Gu − Z is oriented toward A, where it is not zero. Hence Gu − Z can be used to
orient ∂A. Then, if 〈Gu

Wu
− Z

W0
,Gu − Z〉 has constant sign along ∂A, the same holds

for 〈Gu
Wu

− Z
W0

, χ〉. By Lemma 7,

〈

Gu

Wu
− Z

W0
,Gu − Z

〉

= 1

2
(W + W0)|Nu − N0|2

is positive at any point where Gu − Z is not zero. Then there exists a constant c such
that η(r) ≥ ∫

�
〈Gu
Wu

− Z
W0

, χ〉 ≥ c > 0, which proves the claim.
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For any r2 > r0 we deduce that

μ(r2) :=
∫

A(r2)

∣

∣

∣

∣

Gu

Wu
− Z

W0

∣

∣

∣

∣

2

≥ τ

2

∫ r2

r0

s η(s)2

length(�(s))
ds ≥ τc2

2

∫ r2

r0

s

length(�(s))
ds

≥ τc2

4π
(r2 − r0), (6.4)

where the first inequality follows from (6.1), the second one from the claim above, and
the third one from the fact that length(�(s)) ≤ 2πs. Applying (6.2) to r2 = r0+r1

2 < r1
instead of r0 we get

M(r1) ≥
√

mμ(r2)

2
(r1 − r2) ≥ c

√
mτ

2
√

π

√

(r1 − r2)(r2 − r0) = c
√
mτ

4
√

π
(r1 − r0)

(6.5)
for all r1 > r0, which gives the desired estimate.

Assume now that there exists C > 0 such that length(�(r)) ≤ C for all r > 0.
Proceeding as above, inequality (6.1) now reads

M(r)η(r) ≥ μ + n
∫ r

r0
sη(s)2 ds

for some constant n > 0. Let us take r3 > r0 and write b = M(r3) so b η(r) ≥
M(r)η(r) for all r0 < r < r3. Hence, η satisfies the integral inequality η(r) ≥
μ
b + n

b

∫ r
r0
sη(s)2 ds. Let also be

ξ :
[

r0,
√

4b2
nμ

+ r20

[

→ R, ξ(r) = 2bμ

4b2 − nμ(r2 − r20 )
,

which satisfies ξ(r) = μ
2b + n

b

∫ r
r0
s ξ(s)2 ds, so η ≥ ξ for all r0 ≤ r ≤ ( 4b

2

nμ
+ r0)1/2

by comparison. Since ξ diverges when r → ( 4b
2

nμ
+ r0)1/2, we conclude that ( 4b

2

nμ
+

r0)1/2 ≥ r3. Equivalently,

M(r3) = b ≥
√

nμ

4
(r23 − r20 ) for all r3 > r0. (6.6)

In this case, instead of inequality (6.4), we have μ(r4) ≥ τc2
4C (r24 − r20 ) for all r4 > r0.

Taking r4 = (
r23+r20

2 )1/2 rather than r0 in (6.6), it becomes

M(r3) ≥ c
√

τn

2
√
C

√

(r23 − r24 )(r24 − r20 ) = c
√

τn

4
√
C

(r23 − r20 ) (6.7)

for all r3 > r0, which finishes the proof. ��
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Remark 5 Theorem 7 holds in a more general case. Our hypothesis that the function
u has zero boundary value enables us to compare u with the zero section, and the
key property for our improvement is that W0 is a radial function that grows linearly,
which gives a sharper result than simply taking W0 ≥ 1. In fact, this technique can be
adapted to Killing submersions having a rotational symmetry.

We conjecture that, given u, v ∈ C∞(�) spanning minimal graphs and such that
u = v along ∂�, the same result as in Theorem 7 holds forM(r) = sup�∩Dr (0) |u−v|,
provided that u − v is not constant. Nevertheless, it does not seem that the proof of
Theorem7 or the arguments in [21] can be easily adapted to thismore general situation.

As a consequence of Theorem 7, we generalize the fact that a bounded minimal
graph with zero boundary values is unique (see [21]).

Corollary 5 Let � ⊂ R
2 be an unbounded domain.

(a) If ∂� �= ∅, then the only minimal graph over � in Nil3(τ ) with zero boundary
values and sublinear growth (i.e., such that lim supr→∞

M(r)
r = 0) is given by the

constant zero u ≡ 0.
(b) In the case ∂� = ∅, it follows that the only entire minimal graphs in Nil3(τ ) with

sublinear growth are the constant ones.

Let us make a final remark about the height of a minimal graph in Nil3(τ ). In
Theorem6,weprove that the height of an entireminimal graph inNil3(τ )grows atmost
cubically, and Theorem 7 shows that it is at least linear (unless the graph is constant).
This result is sharp, as half of a catenoid or planes of the form u(x, y) = ax + by
show. Other non-trivial examples of graphs over a sector with angle between π

2 and
π, with either linear or at least quadratic height growth, are given in [5,29] (see also
Sect. 3).
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