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Abstract For any polynomial diffeomorphism f ofC2 with positive entropy, the Julia
set of f is never C1 smooth as a manifold-with-boundary.
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1 Introduction

There are several reasons why the polynomial diffeomorphisms of C2 form an inter-
esting family of dynamical systems. One of these is the fact that there are connections
with two other areas of dynamics: polynomial maps ofC and diffeomorphisms of R2,
which have each received a great deal of attention. Among the endomorphisms of Pk ,
certain ones have more special, and regular, geometric structure.

The question arises whether, among the polynomial diffeomorphisms of C2, are
there analogous special maps with special geometry? The Julia set of such a special
map would be expected to have some smoothness. Here we show that this does not
happen.

More generally, we consider a holomorphic mapping f : X → X of a complex
manifold X . The Fatou set of f is defined as the set of points x ∈ X where the
iterates f n := f ◦ · · · ◦ f are locally equicontinuous. If X is not compact, then in
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the definition of equicontinuity, we consider the one point compactification of X ; in
this case, a sequence which diverges uniformly to infinity is equicontinuous. By the
nature of equicontinuity, the dynamics of f is regular on the Fatou set. The Julia set
is defined as the complement of the Fatou set, and this is where any chaotic dynamics
of f will take place. The first nontrivial case is where X = P

1 is the Riemann sphere,
and in this case Fatou (see [17]) showed that if the Julia set J is a smooth curve, then
either J is the unit circle or J is a real interval. If J is the circle, then f is equivalent to
z �→ zd , where d is an integer with |d| ≥ 2; if J is the interval, then f is equivalent to a
Chebyshev polynomial. Thesemapswith smooth J play special roles, and this sparked
our interest to look for smooth Julia sets in other cases. (The higher dimensional case
is discussed, for instance, in Nakane [19] and Uchimura [23,24].)

Here we address the case where X = C
2, and f is a polynomial automorphism,

which means that f is biholomorphic, and the coordinates are polynomials. Since f is
invertible, there are two Julia sets: J+ for iterates in forward time, and J− for iterates
in backward time. Polynomial automorphisms have been classified by Friedland and
Milnor [12]; every such automorphism is conjugate to a map which is either affine or
elementary, or it belongs to the familyH. The affine and elementary maps have simple
dynamics, and J± are (possibly empty) algebraic sets (see [12]).

Thus we will restrict our attention to the maps inH, which are finite compositions
f := fk ◦ · · · ◦ f1, where each f j is a generalized Hénon map, which by definition has
the form f j (x, y) = (y, p j (y)− δ j x), where δ j ∈ C is nonzero, and p j (y) is a monic
polynomial of degree d j ≥ 2. The degree of f is d := d1 · · · dk , and the complex
Jacobian of f is δ := δ1 · · · δk . In [12] and [22], it is shown that the topological entropy
of f is log d > 0. The dynamics of such maps is complicated and has received much
study, starting with the papers [3,11,14,15].

Formaps inH, we can askwhether J+ can be amanifold. For any saddle point q, the
stable manifoldWs(q) is a Riemann surface contained in J+. Thus J+ would have to
have real dimension at least two. However, J+ is also the support of a positive, closed
current μ+ with continuous potential, and such potentials cannot be supported on a
Riemann surface (see [3,11]). On the other hand, since J+ = ∂K+ is a boundary, it
cannot have interior. Thus dimension 3 is the only possibility for J+ to be a manifold.
In fact, there are examples of f for which J+ has been shown to be a topological
3-manifold (see [8,11,16,20]). Fornæss and Sibony [11] have shown that J+ cannot
be smooth for a generic element of H.

The purpose of this paper is to prove the following:

Theorem For any polynomial automorphism of C2 of positive entropy, neither J+
nor J− is smooth of class C1, in the sense of manifold-with-boundary.

We may interchange the roles of J+ and J− by replacing f by f −1, so there is no
loss of generality if we consider only J+.

In an Appendix, we discuss the nonsmoothness of the related sets J , J ∗, and K .

2 No Boundary

Let us start by showing that if J+ is a C1 manifold-with-boundary, then the boundary
is empty. Recall that if J+ isC1, then for each q0 ∈ J+ there is a neighborhoodU � q0
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and r, ρ ∈ C1(U ) with dr ∧ dρ 
= 0 onU , such thatU ∩ J+ = {r = 0, ρ ≤ 0}. If J+
has boundary, it is given locally by {r = ρ = 0}. For q ∈ J+, the tangent space Tq J+
consists of the vectors that annihilate dr . This contains the subspace Hq ⊂ Tq J+
consisting of the vectors that annihilate ∂r . Hq is the unique complex subspace inside
Tq J+, so if M ⊂ J+ is a complex submanifold, then TqM = Hq .

We start by showing that if J+ is C1, then it carries a Riemann surface lamination.

Lemma 2.1 If J+ is C1 smooth, then J+ carries a Riemann surface foliationR with
the property that if Ws(q) is the stable manifold of a saddle point q, then Ws(q) is a
leaf ofR. If J+ is a C1 smooth manifold-with-boundary, thenR extends to a Riemann
surface lamination of J+. In particular, any boundary component is a leaf of R.

Proof Given q0 ∈ J+, let us choose holomorphic coordinates (z, w) such that
dr(q0) = dw. We work in a small neighborhood which is a bidisk �η × �η. We
may choose η small enough that |rz/rw| < 1. In the (z, w)-coordinates, the tangent
space Hq has slope less than 1 at every point {|z|, |w| < η}. Now let q̂ be a saddle
point, and let Ws(q̂) be the stable manifold, which is a complex submanifold of C2,
contained in J+. Let M denote a connected component of Ws(q̂) ∩ (�η × �η/2).
Since the slope is <1, it follows that there is an analytic function ϕ : �η → �η such
that M ⊂ �ϕ := {(z, ϕ(z)) : z ∈ �η}. Let 	 denote the set of all such functions ϕ.
Since a stable manifold can have no self-intersections, it follows that if ϕ1, ϕ2 ∈ 	,
then either �ϕ1 = �ϕ2 or �ϕ1 ∩�ϕ2 = ∅. Now let 	̂ denote the set of all normal limits
(uniform on compact subsets of �η) of elements of 	. We note that by Hurwitz’s
Theorem, the graphs �ϕ , ϕ ∈ 	̂ have the same pairwise disjointness property. Finally,
by [4],Ws(q0) is dense in J+, so the graphs�ϕ , ϕ ∈ 	̂ give the local Riemann surface
lamination.

If q1 is another saddle point, we may follow the same procedure and obtain a
Riemann surface lamination whose graphs are given locally by ϕ ∈ 	̂1. However, we
have seen that the tangent space to the foliation at a point q is given by Hq . Since these
two foliations have the same tangent spaces everywhere, they must coincide.

We have seen that all the graphs are contained in J+, so if J+ has boundary, then
the boundary must coincide locally with one of the graphs. ��

Wewill use the observation that K+ ⊂ {(x, y) ∈ C
2 : |y| > max(|x |, R)}. Further,

we will use the Green function G− which has many properties, including

(i) G− is pluriharmonic on {G− > 0},
(ii) {G− = 0} = K−, and
(iii) G− ◦ f = d−1G−.

Further, the restriction of G− to {|y| ≤ max(|x |, R)} is a proper exhaustion.
Lemma 2.2 Suppose that J+ is a C1 smooth manifold-with-boundary, and M is a
component of the boundary of J+. Then M is a closed Riemann surface, and M∩K 
=
∅.
Proof We consider the restriction g := G−|M . If M ∩ K = ∅, then g is harmonic on
M . On the other hand, g is a proper exhaustion of M , which means that g(z) → ∞ as
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z ∈ M leaves every compact subset of M . This means that g must assume a minimum
value at some point of M , which would violate the minimum principle for harmonic
functions. ��
Lemma 2.3 Suppose that J+ is a C1 smooth manifold-with-boundary. Then the
boundary is empty.

Proof LetM be a component of the boundary of J+. By Lemma 2.2,M must intersect
�2

R . Since J
+ isC1, there can be only finitelymany boundary components of J+∩�2

R .
Thus there can be only finitely many components M , which must be permuted by f .
If we take a sufficiently high iterate f N , we may assume that M is invariant. Now
let h := f N |M denote the restriction to M . We see that h is an automorphism of the
Riemann surface M , and the iterates of all points of M approach K ∩ M in forward
time. It follows that M must have a fixed point q ∈ M , and |h′(q)| < 1. The other
multiplier of Df at q is δ/h′(q).

We consider three cases. First, if |δ/h′(q)| > 1, then q is a saddle point, and
M = Ws(q). On the other hand, by [4], the stable manifold of a saddle points is dense
in J+, which makes it impossible for M to be the boundary of J+. This contradiction
means that there can be no boundary component M .

The second case is |δ/h′(q)| < 1. This case cannot occur because the multipliers
are less than 1, so q is a sink, which means that q is contained in the interior of K+
and not in J+.

The last case is where |δ/h′(q)| = 1. In this case, we know that f preserves J+,
so Df must preserve Tq(J+). This means that the outward normal to M inside J+
is preserved, and thus the second multiplier must be +1. It follows that q is a semi-
parabolic/semi-attracting fixed point. It follows that J+ must have a cusp at q and
cannot be C1 (see Ueda [25] and Hakim [13]). ��

3 Maps that Do Not Decrease Volume

We note the following topological result (see Samelson [21] for an elegant proof): If
M is a smooth 3-manifold (without boundary) of class C1 in R4, then it is orientable.
This gives:

Proposition 3.1 For any q ∈ M, there is a neighborhood U about q so that U − M
consists of two components O1 and O2, which belong to different components of
R
4 − M.

Proof Suppose that O1 and O2 belong to the same component of R4 − M . Then we
can construct a simple closed curve γ ⊂ R

4 which crosses M transversally at q and
has no other intersection withM . It follows that the (oriented) intersection is γ ·M = 1
(modulo 2). But the oriented intersection modulo 2 is a homotopy invariant (see [18]),
and γ is contractible in R4, so we must have γ · M = 0 (modulo 2). ��
Corollary 3.2 If J+ is C1 smooth, then f is an orientation preserving map of J+.

Proof U+ := C
2−K+ is a connected (see [15]) and thus it is a component ofC2− J+.

Since f preserves U+, it also preserves the orientation of J+, which is ±∂U+. ��

123



No Smooth Julia Sets for Polynomial Diffeomorphisms of C2 3089

We recall the following result of Friedland and Milnor:

Theorem ([12]) If |δ| > 1, then K+ has zero Lebesgue volume, and thus J+ = K+.
If |δ| = 1, then int(K+) = int(K−) = int(K ). In particular, there exists R such that
J+ = K+ outside �2

R.

Proof of Theorem in the case |δ| ≥ 1. Let q ∈ J+ be a point outside �2
R , as in the

Theorem above. Then near q there must be a component O, which is distinct from
U+ = C

2 − K+. Thus O must belong to the interior of K+. But by the Theorem
above, the interior of K+ is not near q. ��

4 Volume Decreasing Maps

Throughout this section, we continue to suppose that J+ isC1 smooth, and in addition
we suppose that |δ| < 1. For a point q ∈ J+, we let Tq := Tq(J+) denote the real
tangent space to J+. We let Hq := Tq ∩ iTq denote the unique (one-dimensional)
complex subspace inside Tq . Since J+ is invariant under f , so is Hq , and we let αq

denote the multiplier of Dq f |Hq .

Lemma 4.1 Let q ∈ J+ be a fixed point. There is a Dq f -invariant subspace Eq ⊂
Tq(C2) such that Hq and Eq generate Tq . We denote the multiplier of Dq f |Eq by βq .
Thus Dq f is linearly conjugate to the diagonal matrix with diagonal elements αq and
βq . Further, βq ∈ R and βq > 0.

Proof We have identified an eigenvalue αq of Dq f . If Dq f is not diagonalizable, then

it must have a Jordan canonical form

(
αq 1
0 αq

)
. The determinant is α2

q = δ, which

has modulus less than 1. Thus |αq | < 1, which means that q is an attracting fixed
point and thus in the interior of K+, not in J+. Thus Dq f must be diagonalizable,
which means that Hq has a complementary invariant subspace Eq . Since Eq and Tq
are invariant under Dq f , the real subspace Eq ∩ Tq ⊂ Eq is invariant, too. Thus
βq ∈ R. By Corollary 3.2, Dq f will preserve the orientation of Tq , and so βq > 0. ��

Let us recall theRiemann surface foliation of J+ whichwas obtained in Lemma 2.1.
For q ∈ J+, we let Rq denote the leaf ofR containing q. If q is a fixed point, then f
defines an automorphism g := f |Rq of the Riemann surface Rq . Since Rq ⊂ K+, we
know that the iterates of gn are bounded in a complex disk q ∈ �q ⊂ Rq . Thus the
derivatives (Dg)n = D(gn) are bounded at q. We conclude that |αq | = |Dq(g)| ≤ 1.
If |αq | = 1, then αq is not a root of unity. Otherwise g is an automorphism of Rq

fixing q, and Dgn(q) = 1 for some n. It follows that gn must be the identity on Rq .
This means that Rq would be a curve of fixed points for f n , but by [FM] all periodic
points of f are isolated, so this cannot happen.

Lemma 4.2 If q ∈ J+ is a fixed point, then q is a saddle point, and αq = δ/d, and
βq = d.

Proof Firstwe claim that |αp| < 1.Otherwise,wehave |αq | = 1, andby the discussion
above, this means that αq is not a root of unity. Thus the restriction g = f |Rq is
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an irrational rotation. Let � ⊂ Rq denote a g-invariant disk containing q. Since
|δ| = |αqβq | = |βq | hasmodulus less than 1, we conclude that f is normally attracting
to �, and thus q must be in the interior of K+, which contradicts the assumption that
q ∈ J+.

Now we have |αq | < 1, so if |βq | = 1, we have βq = 1, since βq is real and
positive. This means that q is a semi-parabolic, semi-attracting fixed point for f . We
conclude by Ueda [25] and Hakim [13] that J+ has a cusp at q and thus is not smooth.
Thus we conclude that |βq | > 1, which means that q is a saddle point.

Now since Eq is transverse to Hq , it follows thatWu(q) intersects J+ transversally,
and thus J+ ∩ Wu(q) is C1 smooth. Let us consider the uniformization

φ : C → Wu(q) ⊂ C
2, φ(0) = q, f ◦ φ(ζ ) = φ(λuζ ).

The pre-image τ := φ−1(Wu(q) ∩ J+) ⊂ C is a C1 curve passing through the origin
and invariant under ζ �→ λuζ . It follows that λu ∈ R, and τ is a straight line containing
the origin. Further, g+ := G+ ◦φ is harmonic onC−τ , vanishing on τ , and satisfying
g+(λuζ ) = d · g+(ζ ). Since τ is a line, it follows that g+ is piecewise linear, so we
must have λu = ±d. Finally, since f preserves orientation, we have λu = d.

Lemma 4.3 There can be at most one fixed point in the interior of K+. There are
at least d − 1 fixed points contained in J+, and at each of these fixed points, the
differential D f has multiplier of d.

Proof Suppose that q is a fixed point in the interior of K+. Then q is contained in a
recurrent Fatou domain �, and by [4], ∂� = J+. If there is more than one fixed point
in the interior of K+, we would have J+ simultaneously being the boundary of more
than one domain, in addition to being the boundary of U+ = C

2 − K+. This is not
possible if J+ is a topological submanifold of C2.

By [FM] there are exactly d fixed points, counted with multiplicity. By Lemma 4.3,
the fixed points in J+ are of saddle type, so they have multiplicity 1. Thus there are
at least d − 1 of them. ��

5 Fixed Points with Given Multipliers

If q = (x, y) is a fixed point for f = fn ◦ · · · ◦ f1, then we may represent it
as a finite sequence (x j , y j ) with j ∈ Z/nZ, subject to the conditions (x, y) =
(x1, y1) = (xn+1, yn+1) and f j (x j , y j ) = (x j+1, y j+1). Given the form of f j , we
have x j+1 = y j , so we may drop the x j ’s from our notation and write q = (yn, y1).
We identify this point with the sequence q̂ = (y1, . . . , yn) ∈ C

n , and we define the
polynomials

ϕ1 := p1(y1) − δ1yn − y2
ϕ2 := p2(y2) − δ2y1 − y3

. . . . . . . . .

ϕn := pn(yn) − δn yn−1 − y1.
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The condition to be a fixed point is that q̂ = (y1, . . . , yn) belongs to the zero locus
Z(ϕ1, . . . , ϕn) of the ϕi ’s.We define qi (yi ) := pi (yi )− ydii and Qi := qi (yi )− yi+1−
δi yi−1, so

ϕi = ydii + qi (yi ) − yi+1 − δi yi−1 = yd1i + Qi (*)

Since p j is monic, the degrees of qi and Qi are ≤ di − 1.
By the Chain Rule, the differential of f at q = (yn, y1) is given by

Df (q) =
(

0 1
−δn p′

n(yn)

)
· · ·

(
0 1

−δ1 p′
n(y1)

)

We will denote this by Mn = Mn(y1, . . . , yn) :=
(
m(n)

11 m(n)
12

m(n)
21 m(n)

22

)
.

We consider special monomials in p′
j = p′

j (y j ) which have the form (p′)L :=
p′
�1

· · · p′
�s
, with L = {�1, . . . , �s} ⊂ {1, . . . , n}. Note that the factors p′

�i
in (p′)L are

distinct. Let us use the notation |L| for the number of elements in L and Hm for the
linear span of {(p′)L : |L| = m − 2k, 0 ≤ k ≤ n/2}. With this notation, m indicates
the maximum number of factors of p′

j in any monomial, and in every case the number
of factors differs fromm by an even number.

Lemma 5.1 The entries of Mn:

(1) m(n)
11 and m(n)

22 − p′
1(y1) · · · p′

n(yn) both belong to Hn−2.

(2) m(n)
12 ,m(n)

21 ∈ Hn−1.

Proof We proceed by induction. The case n = 1 is clear. If n = 2,

M2 =
(

0 1
−δ2 p′

2

) (
0 1

−δ1 p′
1

)
=

( −δ1 p′
1−δ1 p′

2 p′
1 p

′
2 − δ2

)

which satisfies (1) and (2). For n > 2, we have

Mn =
(

0 1
−δn p′

n

)
Mn−1 =

(
m(n−1)

21 m(n−1)
22

−δnm
(n−1)
11 + m(n−1)

21 p′
n −δnm

(n−1)
12 + p′

nm
(n−1)
22

)

which gives (1) and (2) for all n. ��
The condition for Df to have a multiplier λ at q is 	(q̂) = 0, where

	 = det

(
Mn −

(
λ 0
0 λ

))

Lemma 5.2 	 − p′
1(y1) · · · p′

n(yn) ∈ Hn−2.
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Proof The formula for the determinant gives

	 = λ2 − λTr(Mn) + det(Mn) = λ2 − λ(m(n)
11 + m(n)

22 ) + δ

since δ is the Jacobian determinant of Df . The Lemma now follows from Lemma 5.1.
��

The degree of the monomial ya := ya11 · · · yann is deg(ya) = a1 + · · · + an . We
will use the graded lexicographical order on the monomials in {y1, . . . , yn}. That
is, ya > yb if either deg(ya) > deg(yb), or if deg(ya) = deg(yb) and ai > bi ,
where i = min{1 ≤ j ≤ n : a j 
= b j }. If f ∈ C[y1, . . . , yn], we denote LT( f ) for
the leading term of f , LC( f ) for the leading coefficient, and LM( f ) for the leading
monomial.

Lemma 5.3 With the graded lexicographical order, G := {ϕ1, . . . , ϕn} is a Gröbner
basis.

Proof We will use Buchberger’s Algorithm (see [10, Chapter 2]). For each i =
1, . . . , n, LT(ϕi ) = LM(ϕi ) = ydii , so for i 
= j , the least common multiple of the

leading terms is L.C.M. = ydii y
d j
j . The S-polynomial is

S(ϕi , ϕ j ) := L.C.M.

LM(ϕ j )
ϕi − L.C.M.

LM(ϕi )
ϕ j = y

d j
j Qi − ydii Q j = ϕ j Qi − Q jϕi

where we use the Q j from (4.1) and cancel terms. Now letμi := deg(Qi ). Sinceμi <

di for all i , the monomials LM(ϕ j Qi ) = y
d j
j yμi

i and LM(ϕi Q j ) = ydii y
μ j
j are not

equal in ourmonomial ordering.ThusLM(S(ϕi , ϕ j ) ≥ max(LM(ϕ j Qi ),LM(ϕi Q j )).
It follows from Buchberger’s Algorithm that {ϕ1, . . . , ϕn} is a Gröbner basis. ��

We will use the Multivariable Division Algorithm, by which any polynomial g ∈
C[y1, . . . , yn] may be written as g = A1ϕ1 + · · · + Anϕn + R where LM(g) ≥
LM(A jϕ j ) for all 1 ≤ j ≤ n, and R contains no terms divisible by any LM(ϕ j ). An
important property of a Gröbner basis is that g belongs to the ideal 〈ϕ1, . . . , ϕn〉 if and
only if R = 0 (see, for instance, [10] or [1]).

If all fixed points have the same value of λ as multiplier, then it follows that	must
vanish on the whole zero set Z(ϕ1, . . . , ϕn). Since we have a Gröbner basis, we easily
determine the following:

Corollary 5.4 	 /∈ 〈ϕ1, . . . , ϕn〉.
Proof The leading monomial of 	 is yd1−1

1 · · · ydn−1
n , but this is not divisible by any

of the leading monomials LM(ϕ j ) = y
d j
j . Since {ϕ1, . . . , ϕn} is a Gröbner basis, it

follows that 	 does not belong to the ideal 〈ϕ1, . . . , ϕn〉. ��

6 Proof of the Theorem

In this section we prove the Theorem, which will follow from 4.3, in combination
with:
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Proposition 6.1 Suppose F = fn ◦ · · · ◦ f1, n ≥ 3, is a composition of generalized
Hénon maps with |δ| < 1. Suppose that F has d = d1 · · · dn distinct fixed points. It is
not possible that d − 1 of these points have the same multipliers.

Proof that Proposition 6.1 implies the Theorem To prove the Theorem, it remains to
deal with the case |δ| < 1. If f = f1 is a single generalized Hénon map, we consider
F = f1 ◦ f1 ◦ f1 with n = 3 and the same Julia set. Lemma 3.4 asserts that if J+ is
C1, there are d − 1 saddle points with unstable multiplier λ = d. So by Proposition
4.1, we conclude that J+ cannot be C1 smooth. ��

We give the proof of Proposition 6.1 at the end of this section. For J ⊂ {1, . . . , n},
we write

�J := {(p′)L : L ⊂ J, |L| = |J | − 2k, for some, 1 ≤ k ≤ |J |/2},

We let HJ denote the linear span of �J . To compare with our earlier notation, we
note that HJ ⊂ H|J|−2 and that (p′)J /∈ HJ . The elements of HJ depend only on the
variables y j for j ∈ J . Now we formulate a result for dividing certain terms by ϕ j :

Lemma 6.2 Suppose that J ⊂ {1, . . . , n} and h ∈ HJ . Then for each j ∈ J and
α ∈ C, we have

(y j − α)
(
(p′)J + h

)
= A(y)ϕ j + B(y)

(
(p′)J−{ j} + ρ1

)
+ (y j − α) · ρ2, (†)

where ρ1, ρ2 ∈ HJ−{ j}, and B = η j (y j ) + d j y j+1 + d jδ j y j−1 with

η j (y j ) = y jq
′
j (y j ) − αp′

j (y j ) − d jq j (y j ). (‡)

The leading monomials satisfy

LM
(
(y j − α)

(
(p′)J + h

))
= LM(A(y)ϕ j )

Proof Let us start with the case J = {1, . . . ,m}, m ≤ n, and j = 1, so J − { j} =
J1̂ = {2, . . . , n}. We divide by p′

1 and remove any factor of p′
1 in h. This gives

(p′)J + h = p′
1(y1)μ1 + ρ2

where μ1 = (p′)J1̂ + ρ1, ρ1, ρ2 ∈ H{2,...,m}, and μ1, ρ1, ρ2 are independent of the
variable y1. Thus

(y1 − α)
(
(p′)J + h

)
= (y1 − α)(d1y

d1−1
1 + q ′

1(y1))μ1 + (y1 − α)ρ2

= d1y
d1
1 μ1 + (y1q

′
1(y1) − αp′

1(y1))μ1 + (y1 − α)ρ2

= (d1μ1)ϕ1 + (η1(y1) + d1y2 + d1δ1yn)μ1 + (y1 − α)ρ2

123



3094 E. Bedford, K. Kim

where in the last line we substitute η1 defined by (‡). Using (∗), we see that this gives
(†).

It remains to look at the leading terms of T1 := (y1 − α)
(
(p′)J + h)

)
and T2 :=

d1μ1ϕ1. We see that T1 and T2 both contain nonzero multiples of y j
∏m

i=1 y
di−1
i , and

all othermonomials in T1 and T2 have lower degree. Thuswe have LM(T1) = LM(T2)
for the graded ordering, independent of any ordering on the variables y1, . . . , yn . The
choices of J = {1, . . . ,m} and j = 1 just correspond to a permutation of variables,
and this does not affect the conclusion that LM(T1) = LM(T2). ��
Lemma 6.3 For any α ∈ C, (y1 − α)	 /∈ 〈ϕ1, . . . , ϕn〉.
Proof By [FM], we may assume that p j (y j ) = y

d j
j + q j (y j ) and deg(q j ) ≤ d j − 2.

We consider two cases. The first case is that there is at least one j such that η j is not
the zero polynomial. If we conjugate by f j−1 ◦ · · · ◦ f1, we may “rotate” the maps in
f so that the factor f j becomes the first factor. If there exists a j for which η j (y j ) is
nonconstant, we choose this for f1. Otherwise, if all the η j are constant, we choose
f1 to be any factor such that η1 
= 0.
We will apply the Multivariate Division Algorithm on (y1 − α)	 with respect

to the set {ϕ1, . . . , ϕn}. We will find that there is a nonzero remainder, and since
{ϕ1, . . . , ϕn} is a Gröbner basis, it will follow that (y1 − α)	 does not belong to the
ideal 〈ϕ1, . . . , ϕn〉.

We start with Lemma 5.2, according to which 	 = p′
1 · · · p′

n + h, where h ∈
Hn−2 = H{1,...,n}. The leading monomial of (y1 − α)	 is yd11

∏n
i=2 y

di−1
i , and ϕ1 is

the only element of the basis whose leading monomial divides this. Thus we apply
Lemma 6.2, with J = {1, . . . , n}, j = 1, and J1̂ := J − { j} = {2, . . . , n}. This gives

(y1 − α)	 = A1ϕ1 + (η1(y1) + d1y2 + d1δ1yn)

(
n∏

i=2

p′
i (yi ) + ρ1

)
+ (y1 − α)ρ2

= A1ϕ1 +
[
d1y2

(
(p′)J1̂ + ρ1

)]

+
[
d1δ1yn

(
(p′)J1̂ + ρ1

)]
+

[
η1

(
(p′)J1̂ + ρ1

)]
+ �.o.t

= A1ϕ1 + T2 + Tn + R1 + �.o.t

where ρ1, ρ2 ∈ H{2,...,n}. In particular, T2 and Tn depend on y2, . . . , yn but not on y1.
We note that T2 (respectively, Tn) contains a term divisible by LM(ϕ2) (respectively,
LM(ϕn)). We view R1 as a remainder term, and note that LM(R1) is divisible by
yd2−1
2 · · · ydn−1

n , as well as the largest power of y1 in η1(y1). By “�.o.t.,” we mean that
none of its monomials is divisible by LM(R1) or by any of the LM(ϕ j ).

Now we apply Lemma 6.2 to T2, this time with J = {2, . . . , n} and j = 2, with
J − {2} = J1̂2̂ = {3, . . . , n}. We have

T2 =A2ϕ2 + d2y3((p
′)J1̂2̂ + ρ

(2)
1 ) + d2δ2y1

(
(p′)J1̂2̂ +ρ

(2)
1

)
+η2(y2)(p

′)J1̂2̂ + �.o.t.

=A2ϕ2 + T (2)
2 + R(2)

1 + R(2)
2 + �.o.t.
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We see that T (2)
2 contains terms that are divisible by LM(ϕ3), but the monomials

in R(2)
1 and R(2)

2 are not divisible by LM(ϕi ) for any i . The remainder term here is

R(2)
1 + R(2)

2 , and we observe that this cannot cancel the largest term in R1. This is

because LM(R(2)
1 ) lacks a factor of y2, and LM(R(2)

2 ) is equal to yd3−1
3 · · · ydn−1

n times
the largest power of y2 in η2(y2), and by (‡), this power is no bigger than d2 − 1. If
η1 is not constant, then we see that LM(R1) > LM(R(2)

2 ). If η1 is constant, then η2

must be constant, too, and again we have LM(R1) > LM(R(2)
2 ). Thus, with our earlier

notation, R(2)
1 + R(2)

2 = �.o.t.

We do a similar procedure with Tn , T
(2)
2 , etc., and again find that the remainder

term does not contain a multiple of the leading monomial of R1. We see that each time
we do this process, the size of the exponent L decreases in the term (p′)L . When we
have L = ∅, there are no terms that can be divided by any LM(ϕ j ). Thus we end up
with

(y1 − α)	 = A1ϕ1 + · · · + Anϕn + R1 + �.o.t.

and LT((y1 − α)	) ≥ LT(A jϕ j ) for all 1 ≤ j ≤ n, and none of the remaining terms
is divisible by any of the leading monomials of ϕ j . Thus we have now finished the
Multivariate Division Algorithm, and we have a nonzero remainder. Thus (y1 − α)	

does not belong to the ideal of the ϕ j ’s.
Nowwe turn to the second case, in which η j = 0 for all j . By [12], we may assume

that deg(q j ) ≤ d j − 2. It follows that α = 0 and q j = 0. Thus p j = y
d j
j for all

1 ≤ j ≤ n, so p′
j = d j y

d j−1
j , and HJ consists of linear combinations of products

(p′)I = y
di1−1
i1

· · · ydik−1
ik

for I = {i1, . . . , ik} ⊂ J , for even k ≤ |J | − 2. We will
go through the Multivariate Division Algorithm again. The principle is the same as
before, but the details are different; in the first case we needed n ≥ 2, and now we
will need n ≥ 3.

Again, it is only ϕ1 which has a leading monomial which can divide some terms
in (y1 − α)	. As before, we apply Lemma 6.2 with J = {1, . . . , n}, j = 1, and
J −{1} = J1̂ = {2, . . . , n}. The polynomial in (‡) becomes B = d j y j+1 +d jδ j y j−1,
and we have

y1	 = A1ϕ1 + d1y2
(
(p′)J1̂ + ρ1

)
+ d1δ1yn

(
(p′)J1̂ + ρ1

)
+ y1ρ2

= A1ϕ1 + T2 + Tn + �.o.t.

where ρ1, ρ2 ∈ H{2,...,n}. Now we apply Lemma 6.2 to divide T2 (respectively, Tn) by
ϕ2 (respectively, ϕn). This yields

y1	 = A1ϕ1 + A2ϕ2 + Anϕn + T3 + Tn + R + �.o.t.,

where

T3 = d1d2y3
(
(p′)J1̂2̂ + ρ̃3

)
, Tn = d1dnδ1δn yn−1

(
(p′)J1̂n̂ + ρ̃n

)
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with ρ̃3 ∈ H{3,...,n} and ρ̃n ∈ H{2,...,n−1}, and

R =
(
d1d2δ2y1y

dn−1
n + d1dnδ1y1y

d2−1
2

) n−1∏
i=3

ydi−1
i

Since n > 2, R is not the zero polynomial. We will continue the Multivariate Division
Algorithm by dividing T3 by ϕ3 and Tn by ϕn , but we see that any terms created cannot
cancel R. Thus when we finish the Multivariable Division Algorithm, we will have a
nonzero remainder. As in the previous case, we conclude that y1	 is not in the ideal
〈ϕ1, . . . , ϕn〉.
Proof of Proposition 6.1. The fixed points of f coincide with the elements of
Z(ϕ1, . . . , ϕn), which is a variety of pure dimension zero. Saddle points have mul-
tiplicity 1, and since there are d − 1 of these, and since the total multiplicity is d,
there must be one more fixed point, also of multiplicity 1. It follows that the ideal
I := 〈ϕ1, . . . , ϕn〉 is equal to its radical (see [1]). Since the saddle points all have
multiplier λ, 	 must vanish at all the saddle points. If (α, β) is the other fixed point,
we conclude that (y1 − α)	 vanishes at all the fixed points. Thus (y1 − α)	 belongs
to the radical of I , and thus I itself. This contradicts Lemma 6.3, which completes the
proof of Proposition 6.1. ��
Acknowledgements We wish to thank Yutaka Ishii and Paolo Aluffi for helpful conversations on this
material.

Appendix: Nonsmoothness of J , J∗, and K

Let us turn our attention to other dynamical sets for polynomial diffeomorphisms of
positive entropy. These are J := J+ ∩ J−, K := K+ ∩ K−, and the set J ∗, which
coincides with the closure of the set of periodic points of saddle type. (See [3,5], and
[2] for other characterizations of J ∗.) We have J ∗ ⊂ J ⊂ K . We note that none of
these sets can be a smooth 3-manifold: otherwise, for any saddle point p, it would be a
bounded set containing Ws(p) or Wu(p), which is the holomorphic image of C. The
following was suggested by Remark 5.9 of Cantat in [9]; we sketch his proof:

Proposition 6.1 If J = J ∗, then it is not a smooth 2-manifold.

Proof Let p be a saddle point, and let Wu(p) be the unstable manifold. The slice
J ∩Wu(p) is smooth and invariant under multiplication by the multiplier of Df . This
means that in fact, the multiplier must be real, and the restriction of G+ to the slice
must be linear on each (half-space) component of Wu(p) − J .

The identity G+ ◦ f = d · G+ means that the canonical metric (defined in [6]) is
multiplied by d. Thus f is quasi-expanding on J ∗. Now, applying this argument to
f −1 we get that f is quasi-hyperbolic. Further, J ∗ = J , so it is quasi-hyperbolic on
J . If f fails to be hyperbolic, then by [7] there will be a one-sided saddle point, which
cannot happen since J is smooth.

Now that f is hyperbolic on J , there is a splitting Es ⊕Eu of the tangent bundle, so
we conclude that J is a 2-torus. The dynamical degree must be the spectral radius of an
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invertible 2-by-2 integer matrix, but this means it is not an integer, which contradicts
the fact the dynamical degree of a Hénon map is its algebraic degree.

Proposition 6.2 Suppose that the complex Jacobian is not equal to±1. Then for each
saddle (periodic) point p and each neighborhood U of p, neither J ∩U nor J ∗ ∩U
nor K ∩U is a C1 smooth 2-manifold.

Proof Let us write M := J ∩U and g := f |M . (The following argument works, too,
if we take M = J ∗ ∩ U or M = K ∩ U .) The tangent space TpM is invariant under
Df . The stable/unstable spaces Es/u ⊂ TpC

2 are invariant under Dp f . The space Es

(or Eu) cannot coincide with TpM , for otherwise the complex stable manifoldWs(p)
(or Wu(p)) would be locally contained in M , and thus globally contained in J . But
theWs/u are uniformized byC, whereas J is bounded. We conclude that p is a saddle
point for g, and thus the local stable manifold Ws

loc(p; g) is a C1-curve inside the
complex stable manifold Ws(p). As in Lemma 4.3, we conclude that the multiplier
for Dp f |Eu

p
is±d and the multiplier for Dp f |Es

p
is±1/d. Thus the complex Jacobian

is δ = ±1.

Solenoids The two results above concern smoothness, but no example is knownwhere
J , J ∗, or K is even a topological 2-manifold. In the cases where J+ has been shown to
be a topological 3-manifold (see [8,11,16,20]) it also happens that J is a (topological)
real solenoid, and in these cases it is also the case that J = J ∗. Further, for every saddle
(periodic) point p, there is a real arc γp = Wu

loc(p) ∩ J . If we apply the argument of
Proposition 6.2 to this case, we conclude that γp is not C1 smooth.
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