

No Smooth Julia Sets for Polynomial Diffeomorphisms of C**² with Positive Entropy**

Eric Bedford1 · Kyounghee Kim[2](http://orcid.org/0000-0002-8588-9843)

Received: 11 March 2016 / Published online: 9 March 2017 © Mathematica Josephina, Inc. 2017

Abstract For any polynomial diffeomorphism f of \mathbb{C}^2 with positive entropy, the Julia set of f is never C^1 smooth as a manifold-with-boundary.

Keywords Polynomial diffeomorphisms of \mathbb{C}^2 · Julia set · Generalized Hénon maps

Mathematics Subject Classification 37F10

1 Introduction

There are several reasons why the polynomial diffeomorphisms of \mathbb{C}^2 form an interesting family of dynamical systems. One of these is the fact that there are connections with two other areas of dynamics: polynomial maps of $\mathbb C$ and diffeomorphisms of $\mathbb R^2$, which have each received a great deal of attention. Among the endomorphisms of \mathbb{P}^k , certain ones have more special, and regular, geometric structure.

The question arises whether, among the polynomial diffeomorphisms of \mathbb{C}^2 , are there analogous special maps with special geometry? The Julia set of such a special map would be expected to have some smoothness. Here we show that this does not happen.

More generally, we consider a holomorphic mapping $f : X \to X$ of a complex manifold *X*. The Fatou set of *f* is defined as the set of points $x \in X$ where the iterates $f^n := f \circ \cdots \circ f$ are locally equicontinuous. If *X* is not compact, then in

 \boxtimes Kyounghee Kim kim@math.fsu.edu Eric Bedford ebedford@math.sunysb.edu

¹ Stony Brook University, Stony Brook, NY 11794, USA

² Florida State University, Tallahassee, FL 32306, USA

the definition of equicontinuity, we consider the one point compactification of X ; in this case, a sequence which diverges uniformly to infinity is equicontinuous. By the nature of equicontinuity, the dynamics of *f* is regular on the Fatou set. The Julia set is defined as the complement of the Fatou set, and this is where any chaotic dynamics of *f* will take place. The first nontrivial case is where $X = \mathbb{P}^1$ is the Riemann sphere, and in this case Fatou (see $[17]$) showed that if the Julia set *J* is a smooth curve, then either *J* is the unit circle or *J* is a real interval. If *J* is the circle, then *f* is equivalent to $z \mapsto z^d$, where *d* is an integer with $|d| \geq 2$; if *J* is the interval, then *f* is equivalent to a Chebyshev polynomial. These maps with smooth *J* play special roles, and this sparked our interest to look for smooth Julia sets in other cases. (The higher dimensional case is discussed, for instance, in Nakane [\[19](#page-13-1)] and Uchimura [\[23,](#page-13-2)[24\]](#page-13-3).)

Here we address the case where $X = \mathbb{C}^2$, and f is a polynomial automorphism, which means that f is biholomorphic, and the coordinates are polynomials. Since f is invertible, there are two Julia sets: J^+ for iterates in forward time, and J^- for iterates in backward time. Polynomial automorphisms have been classified by Friedland and Milnor [\[12](#page-12-0)]; every such automorphism is conjugate to a map which is either affine or elementary, or it belongs to the family *H*. The affine and elementary maps have simple dynamics, and J^{\pm} are (possibly empty) algebraic sets (see [\[12\]](#page-12-0)).

Thus we will restrict our attention to the maps in H , which are finite compositions $f := f_k \circ \cdots \circ f_1$, where each f_i is a generalized Hénon map, which by definition has the form $f_i(x, y) = (y, p_i(y) - \delta_i x)$, where $\delta_i \in \mathbb{C}$ is nonzero, and $p_i(y)$ is a monic polynomial of degree $d_i \geq 2$. The degree of f is $d := d_1 \cdots d_k$, and the complex Jacobian of *f* is $\delta := \delta_1 \cdots \delta_k$. In [\[12](#page-12-0)] and [\[22\]](#page-13-4), it is shown that the topological entropy of f is $\log d > 0$. The dynamics of such maps is complicated and has received much study, starting with the papers [\[3,](#page-12-1)[11](#page-12-2)[,14](#page-13-5)[,15](#page-13-6)].

For maps in H , we can ask whether J^+ can be a manifold. For any saddle point *q*, the stable manifold $W^s(q)$ is a Riemann surface contained in J^+ . Thus J^+ would have to have real dimension at least two. However, J^+ is also the support of a positive, closed current μ^+ with continuous potential, and such potentials cannot be supported on a Riemann surface (see [\[3](#page-12-1)[,11](#page-12-2)]). On the other hand, since $J^+ = \partial K^+$ is a boundary, it cannot have interior. Thus dimension 3 is the only possibility for J^+ to be a manifold. In fact, there are examples of f for which J^+ has been shown to be a topological 3-manifold (see [\[8,](#page-12-3)[11](#page-12-2)[,16](#page-13-7)[,20](#page-13-8)]). Fornæss and Sibony [\[11\]](#page-12-2) have shown that J^+ cannot be smooth for a generic element of *H*.

The purpose of this paper is to prove the following:

Theorem *For any polynomial automorphism of* \mathbb{C}^2 *of positive entropy, neither* J^+ *nor J* $^-$ *is smooth of class* C^1 *, in the sense of manifold-with-boundary.*

We may interchange the roles of J^+ and J^- by replacing f by f^{-1} , so there is no loss of generality if we consider only J^+ .

In an Appendix, we discuss the nonsmoothness of the related sets *J* , *J* ∗, and *K*.

2 No Boundary

Let us start by showing that if J^+ is a C^1 manifold-with-boundary, then the boundary is empty. Recall that if J^+ is C^1 , then for each $q_0 \in J^+$ there is a neighborhood $U \ni q_0$

and $r, \rho \in C^1(U)$ with $dr \wedge d\rho \neq 0$ on *U*, such that $U \cap J^+ = \{r = 0, \rho \leq 0\}$. If J^+ has boundary, it is given locally by $\{r = \rho = 0\}$. For $q \in J^+$, the tangent space $T_q J^+$ consists of the vectors that annihilate *dr*. This contains the subspace $H_q \text{ }\subset T_q J^+$ consisting of the vectors that annihilate ∂r . *H_q* is the unique complex subspace inside $T_q J^+$, so if $M \subset J^+$ is a complex submanifold, then $T_q M = H_q$.

We start by showing that if J^+ is C^1 , then it carries a Riemann surface lamination.

Lemma 2.1 *If* J^+ *is* C^1 *smooth, then* J^+ *carries a Riemann surface foliation* R *with the property that if* $W^s(q)$ *is the stable manifold of a saddle point q, then* $W^s(q)$ *is a leaf of ^R. If J* ⁺ *is a C*¹ *smooth manifold-with-boundary, then ^R extends to a Riemann surface lamination of* J^+ *. In particular, any boundary component is a leaf of R.*

Proof Given $q_0 \in J^+$, let us choose holomorphic coordinates (z, w) such that $dr(q_0) = dw$. We work in a small neighborhood which is a bidisk $\Delta_n \times \Delta_n$. We may choose η small enough that $|r_z/r_w| < 1$. In the (z, w) -coordinates, the tangent space H_a has slope less than 1 at every point $\{|z|, |w| < \eta\}$. Now let \hat{q} be a saddle point, and let $W^s(\hat{q})$ be the stable manifold, which is a complex submanifold of \mathbb{C}^2 , contained in *J*⁺. Let *M* denote a connected component of $W^s(\hat{q}) \cap (\Delta_n \times \Delta_{n/2})$. Since the slope is <1, it follows that there is an analytic function $\varphi : \Delta_n \to \Delta_n$ such that $M \subset \Gamma_{\varphi} := \{(z, \varphi(z)) : z \in \Delta_{\eta}\}.$ Let Φ denote the set of all such functions φ . Since a stable manifold can have no self-intersections, it follows that if $\varphi_1, \varphi_2 \in \Phi$, then either $\Gamma_{\varphi_1} = \Gamma_{\varphi_2}$ or $\Gamma_{\varphi_1} \cap \Gamma_{\varphi_2} = \emptyset$. Now let $\hat{\Phi}$ denote the set of all normal limits (uniform on compact subsets of Δ_{η}) of elements of Φ . We note that by Hurwitz's Theorem, the graphs Γ_{φ} , $\varphi \in \hat{\Phi}$ have the same pairwise disjointness property. Finally, by [\[4\]](#page-12-4), $W^s(q_0)$ is dense in J^+ , so the graphs $\Gamma_\varphi, \varphi \in \hat{\Phi}$ give the local Riemann surface lamination.

If q_1 is another saddle point, we may follow the same procedure and obtain a Riemann surface lamination whose graphs are given locally by $\varphi \in \hat{\Phi}_1$. However, we have seen that the tangent space to the foliation at a point *q* is given by H_q . Since these two foliations have the same tangent spaces everywhere, they must coincide.

We have seen that all the graphs are contained in J^+ , so if J^+ has boundary, then the boundary must coincide locally with one of the graphs.

We will use the observation that $K^+ \subset \{(x, y) \in \mathbb{C}^2 : |y| > \max(|x|, R)\}$. Further, we will use the Green function *G*− which has many properties, including

- (i) G^- is pluriharmonic on $\{G^- > 0\}$,
- (ii) ${G^- = 0} = K^-$, and
- (iii) $G^- \circ f = d^{-1}G^-$.

Further, the restriction of G^- to $\{|y| \le \max(|x|, R)\}$ is a proper exhaustion.

Lemma 2.2 *Suppose that* J^+ *is a* C^1 *smooth manifold-with-boundary, and* M *is a* ϵ omponent of the boundary of J $^+$. Then M is a closed Riemann surface, and $M \cap K \neq \emptyset$ ∅*.*

Proof We consider the restriction $g := G^-|_M$. If $M \cap K = \emptyset$, then g is harmonic on *M*. On the other hand, *g* is a proper exhaustion of *M*, which means that $g(z) \to \infty$ as $z \in M$ leaves every compact subset of M. This means that *g* must assume a minimum value at some point of *M*, which would violate the minimum principle for harmonic \Box functions.

Lemma 2.3 *Suppose that* J^+ *is a* C^1 *smooth manifold-with-boundary. Then the boundary is empty.*

Proof Let *M* be a component of the boundary of J^+ . By Lemma [2.2,](#page-2-0) *M* must intersect Δ_R^2 . Since *J*⁺ is *C*¹, there can be only finitely many boundary components of $J^+\cap \Delta_R^2$. Thus there can be only finitely many components M , which must be permuted by \hat{f} . If we take a sufficiently high iterate f^N , we may assume that *M* is invariant. Now let $h := f^N |_{M}$ denote the restriction to M. We see that h is an automorphism of the Riemann surface *M*, and the iterates of all points of *M* approach $K \cap M$ in forward time. It follows that *M* must have a fixed point $q \in M$, and $|h'(q)| < 1$. The other multiplier of Df at q is $\delta/h'(q)$.

We consider three cases. First, if $|\delta/h'(q)| > 1$, then *q* is a saddle point, and $M = W^s(q)$. On the other hand, by [\[4](#page-12-4)], the stable manifold of a saddle points is dense in J^+ , which makes it impossible for M to be the boundary of J^+ . This contradiction means that there can be no boundary component *M*.

The second case is $|\delta/h'(q)| < 1$. This case cannot occur because the multipliers are less than 1, so *q* is a sink, which means that *q* is contained in the interior of K^+ and not in J^+ .

The last case is where $|\delta/h'(q)| = 1$. In this case, we know that *f* preserves J^+ , so *Df* must preserve $T_q(J^+)$. This means that the outward normal to *M* inside J^+ is preserved, and thus the second multiplier must be $+1$. It follows that *q* is a semiparabolic/semi-attracting fixed point. It follows that J^+ must have a cusp at *q* and cannot be C^1 (see Ueda [\[25](#page-13-9)] and Hakim [\[13\]](#page-12-5)).

3 Maps that Do Not Decrease Volume

We note the following topological result (see Samelson [\[21\]](#page-13-10) for an elegant proof): If *M* is a smooth 3-manifold (without boundary) of class C^1 in \mathbb{R}^4 , then it is orientable. This gives:

Proposition 3.1 *For any* $q \in M$ *, there is a neighborhood U about q so that* $U - M$ *consists of two components* O_1 *and* O_2 *, which belong to different components of* $\mathbb{R}^4 - M$.

Proof Suppose that O_1 and O_2 belong to the same component of $\mathbb{R}^4 - M$. Then we can construct a simple closed curve $\gamma \subset \mathbb{R}^4$ which crosses *M* transversally at *q* and has no other intersection with *M*. It follows that the (oriented) intersection is $\gamma \cdot M = 1$ (modulo 2). But the oriented intersection modulo 2 is a homotopy invariant (see [\[18\]](#page-13-11)), and γ is contractible in \mathbb{R}^4 , so we must have $\gamma \cdot M = 0$ (modulo 2).

Corollary 3.2 *If* J^+ *is* C^1 *smooth, then f is an orientation preserving map of* J^+ *.*

Proof $U^+ := \mathbb{C}^2 - K^+$ is a connected (see [\[15\]](#page-13-6)) and thus it is a component of $\mathbb{C}^2 - J^+$. Since *f* preserves *U*⁺, it also preserves the orientation of *J*⁺, which is $\pm \partial U^+$.

We recall the following result of Friedland and Milnor:

Theorem ([\[12](#page-12-0)]) If $|\delta| > 1$, then K^+ has zero Lebesgue volume, and thus $J^+ = K^+$. $I\{f|\delta\} = 1$, then $\text{int}(K^+) = \text{int}(K^-) = \text{int}(K)$ *. In particular, there exists R such that* $J^+ = K^+$ *outside* Δ_R^2 .

Proof of Theorem in the case $|\delta| \ge 1$. Let $q \in J^+$ be a point outside Δ_R^2 , as in the Theorem above. Then near q there must be a component \mathcal{O} , which is distinct from $U^+ = \mathbb{C}^2 - K^+$. Thus $\mathcal O$ must belong to the interior of K^+ . But by the Theorem above, the interior of K^+ is not near a . above, the interior of K^+ is not near q.

4 Volume Decreasing Maps

Throughout this section, we continue to suppose that J^+ is C^1 smooth, and in addition we suppose that $|\delta| < 1$. For a point $q \in J^+$, we let $T_q := T_q(J^+)$ denote the real tangent space to J^+ . We let $H_q := T_q \cap iT_q$ denote the unique (one-dimensional) complex subspace inside T_q . Since J^+ is invariant under f, so is H_q , and we let α_q denote the multiplier of $D_q f|_{H_q}$.

Lemma 4.1 *Let* $q \in J^+$ *be a fixed point. There is a* $D_q f$ *-invariant subspace* $E_q \subset$ $T_q(\mathbb{C}^2)$ *such that* H_q *and* E_q *generate* T_q *. We denote the multiplier of* $D_q f|_{E_q}$ *by* β_q *. Thus* $D_q f$ *is linearly conjugate to the diagonal matrix with diagonal elements* α_q *and* β_q *. Further,* $\beta_q \in \mathbb{R}$ *and* $\beta_q > 0$ *.*

Proof We have identified an eigenvalue α_q of $D_q f$. If $D_q f$ is not diagonalizable, then it must have a Jordan canonical form $\begin{pmatrix} \alpha_q & 1 \\ 0 & \alpha_q \end{pmatrix}$ 0 α*q*). The determinant is $\alpha_q^2 = \delta$, which has modulus less than 1. Thus $|\alpha_q| < 1$, which means that *q* is an attracting fixed point and thus in the interior of K^+ , not in J^+ . Thus $D_q f$ must be diagonalizable, which means that H_q has a complementary invariant subspace E_q . Since E_q and T_q are invariant under $D_q f$, the real subspace $E_q \cap T_q \subset E_q$ is invariant, too. Thus $\beta_q \in \mathbb{R}$. By Corollary [3.2,](#page-3-0) $D_q f$ will preserve the orientation of T_q , and so $\beta_q > 0$. \Box

Let us recall the Riemann surface foliation of J^+ which was obtained in Lemma [2.1.](#page-2-1) For $q \in J^+$, we let R_q denote the leaf of R containing q. If q is a fixed point, then f defines an automorphism $g := f|_{R_q}$ of the Riemann surface R_q . Since $R_q \subset K^+$, we know that the iterates of g^n are bounded in a complex disk $q \in \Delta_q \subset R_q$. Thus the derivatives $(Dg)^n = D(g^n)$ are bounded at q. We conclude that $|\alpha_q| = |D_q(g)| \leq 1$. If $|\alpha_q| = 1$, then α_q is not a root of unity. Otherwise *g* is an automorphism of R_q fixing *q*, and $Dg^n(q) = 1$ for some *n*. It follows that g^n must be the identity on R_q . This means that Rq would be a curve of fixed points for f^n , but by [FM] all periodic points of *f* are isolated, so this cannot happen.

Lemma 4.2 *If q* \in *J*⁺ *is a fixed point, then q is a saddle point, and* $\alpha_a = \delta/d$ *, and* $\beta_q = d$.

Proof First we claim that $|\alpha_p| < 1$. Otherwise, we have $|\alpha_q| = 1$, and by the discussion above, this means that α_q is not a root of unity. Thus the restriction $g = f|_{R_q}$ is

an irrational rotation. Let $\Delta \subset R_q$ denote a *g*-invariant disk containing *q*. Since $|\delta| = |\alpha_a \beta_a| = |\beta_a|$ has modulus less than 1, we conclude that *f* is normally attracting to Δ , and thus *q* must be in the interior of K^+ , which contradicts the assumption that $q \in J^{+}$.

Now we have $|\alpha_q| < 1$, so if $|\beta_q| = 1$, we have $\beta_q = 1$, since β_q is real and positive. This means that *q* is a semi-parabolic, semi-attracting fixed point for *f* . We conclude by Ueda [\[25](#page-13-9)] and Hakim [\[13](#page-12-5)] that J^+ has a cusp at q and thus is not smooth. Thus we conclude that $|\beta_q| > 1$, which means that *q* is a saddle point.

Now since E_q is transverse to H_q , it follows that $W^u(q)$ intersects J^+ transversally, and thus $J^+ \cap W^u(q)$ is C^1 smooth. Let us consider the uniformization

$$
\phi: \mathbb{C} \to W^u(q) \subset \mathbb{C}^2, \quad \phi(0) = q, \quad f \circ \phi(\zeta) = \phi(\lambda^u \zeta).
$$

The pre-image $\tau := \phi^{-1}(W^u(q) \cap J^+) \subset \mathbb{C}$ is a C^1 curve passing through the origin and invariant under $\zeta \mapsto \lambda^u \zeta$. It follows that $\lambda^u \in \mathbb{R}$, and τ is a straight line containing the origin. Further, $g^+ := G^+ \circ \phi$ is harmonic on $\mathbb{C} - \tau$, vanishing on τ , and satisfying $g^{+}(\lambda^{u}\zeta) = d \cdot g^{+}(\zeta)$. Since τ is a line, it follows that g^{+} is piecewise linear, so we must have $\lambda^u = \pm d$. Finally, since f preserves orientation, we have $\lambda^u = d$.

Lemma 4.3 *There can be at most one fixed point in the interior of* K^+ *. There are at least d* − 1 *fixed points contained in J⁺, and at each of these fixed points, the differential Df has multiplier of d.*

Proof Suppose that *q* is a fixed point in the interior of K^+ . Then *q* is contained in a recurrent Fatou domain Ω, and by [\[4](#page-12-4)], $\partial \Omega = J^+$. If there is more than one fixed point in the interior of K^+ , we would have J^+ simultaneously being the boundary of more than one domain, in addition to being the boundary of $U^+ = \mathbb{C}^2 - K^+$. This is not possible if J^+ is a topological submanifold of \mathbb{C}^2 .

By [FM] there are exactly *d* fixed points, counted with multiplicity. By Lemma [4.3,](#page-5-0) the fixed points in J^+ are of saddle type, so they have multiplicity 1. Thus there are at least $d-1$ of them.

5 Fixed Points with Given Multipliers

If $q = (x, y)$ is a fixed point for $f = f_n \circ \cdots \circ f_1$, then we may represent it as a finite sequence (x_j, y_j) with $j \in \mathbb{Z}/n\mathbb{Z}$, subject to the conditions (x, y) = $(x_1, y_1) = (x_{n+1}, y_{n+1})$ and $f_i(x_i, y_i) = (x_{i+1}, y_{i+1})$. Given the form of f_i , we have $x_{i+1} = y_i$, so we may drop the x_i 's from our notation and write $q = (y_n, y_1)$. We identify this point with the sequence $\hat{q} = (y_1, \ldots, y_n) \in \mathbb{C}^n$, and we define the polynomials

$$
\varphi_1 := p_1(y_1) - \delta_1 y_n - y_2 \n\varphi_2 := p_2(y_2) - \delta_2 y_1 - y_3 \n... \n\varphi_n := p_n(y_n) - \delta_n y_{n-1} - y_1.
$$

The condition to be a fixed point is that $\hat{q} = (y_1, \ldots, y_n)$ belongs to the zero locus $Z(\varphi_1, \ldots, \varphi_n)$ of the φ_i 's. We define $q_i(y_i) := p_i(y_i) - y_i^{d_i}$ and $Q_i := q_i(y_i) - y_{i+1} - z_i^{d_i}$ δ*ⁱ yi*−1, so

$$
\varphi_i = y_i^{d_i} + q_i(y_i) - y_{i+1} - \delta_i y_{i-1} = y_i^{d_1} + Q_i \tag{*}
$$

Since p_i is monic, the degrees of q_i and Q_i are $\leq d_i - 1$.

By the Chain Rule, the differential of f at $q = (y_n, y_1)$ is given by

$$
Df(q) = \begin{pmatrix} 0 & 1 \\ -\delta_n & p'_n(y_n) \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ -\delta_1 & p'_n(y_1) \end{pmatrix}
$$

We will denote this by $M_n = M_n(y_1, ..., y_n) := \begin{pmatrix} m_{11}^{(n)} & m_{12}^{(n)} \\ m_{21}^{(n)} & m_{22}^{(n)} \end{pmatrix}$.

We consider special monomials in $p'_j = p'_j(y_j)$ which have the form $(p')^L :=$ $p'_{\ell_1} \cdots p'_{\ell_s}$, with $L = \{\ell_1, \ldots, \ell_s\} \subset \{1, \ldots, n\}$. Note that the factors p'_{ℓ_i} in $(p')^L$ are distinct. Let us use the notation |L| for the number of elements in L and $H_{\rm m}$ for the linear span of $\{(p')^L : |L| = m - 2k, 0 \le k \le n/2\}$. With this notation, **m** indicates the maximum number of factors of p'_j in any monomial, and in every case the number of factors differs from **m** by an even number.

Lemma 5.1 *The entries of Mn:*

(1) $m_{11}^{(n)}$ and $m_{22}^{(n)} - p_1'(y_1) \cdots p_n'(y_n)$ both belong to H_{n-2} . (2) $m_{12}^{(n)}$, $m_{21}^{(n)}$ ∈ H_{n-1} *.*

Proof We proceed by induction. The case $n = 1$ is clear. If $n = 2$,

$$
M_2 = \begin{pmatrix} 0 & 1 \\ -\delta_2 & p'_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -\delta_1 & p'_1 \end{pmatrix} = \begin{pmatrix} -\delta_1 & p'_1 \\ -\delta_1 p'_2 & p'_1 p'_2 - \delta_2 \end{pmatrix}
$$

which satisfies (1) and (2). For $n > 2$, we have

$$
M_n = \begin{pmatrix} 0 & 1 \\ -\delta_n & p'_n \end{pmatrix} M_{n-1} = \begin{pmatrix} m_{21}^{(n-1)} & m_{22}^{(n-1)} \\ -\delta_n m_{11}^{(n-1)} + m_{21}^{(n-1)} p'_n & -\delta_n m_{12}^{(n-1)} + p'_n m_{22}^{(n-1)} \end{pmatrix}
$$

which gives (1) and (2) for all *n*.

The condition for Df to have a multiplier λ at q is $\Phi(\hat{q}) = 0$, where

$$
\Phi = \det \left(M_n - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right)
$$

Lemma 5.2 $\Phi - p'_1(y_1) \cdots p'_n(y_n) \in H_{n-2}$ *.*

Proof The formula for the determinant gives

$$
\Phi = \lambda^2 - \lambda \text{Tr}(M_n) + \det(M_n) = \lambda^2 - \lambda (m_{11}^{(n)} + m_{22}^{(n)}) + \delta
$$

since δ is the Jacobian determinant of Df . The Lemma now follows from Lemma [5.1.](#page-6-0) \Box

The degree of the monomial $y^a := y_1^{a_1} \cdots y_n^{a_n}$ is deg(y^a) = $a_1 + \cdots + a_n$. We will use the *graded lexicographical order* on the monomials in $\{y_1, \ldots, y_n\}$. That is, $y^a > y^b$ if either deg(y^a) > deg(y^b), or if deg(y^a) = deg(y^b) and $a_i > b_i$, where $i = \min\{1 \le j \le n : a_j \ne b_j\}$. If $f \in \mathbb{C}[y_1, \ldots, y_n]$, we denote $LT(f)$ for the leading term of f , $LC(f)$ for the leading coefficient, and $LM(f)$ for the leading monomial.

Lemma 5.3 *With the graded lexicographical order, G* := { $\varphi_1, \ldots, \varphi_n$ } *is a Gröbner basis.*

Proof We will use Buchberger's Algorithm (see [\[10](#page-12-6), Chapter 2]). For each $i =$ $1, \ldots, n$, $LT(\varphi_i) = LM(\varphi_i) = y_i^{d_i}$, so for $i \neq j$, the least common multiple of the leading terms is L.C.M. = $y_i^{d_i} y_j^{d_j}$. The *S*-polynomial is

$$
S(\varphi_i, \varphi_j) := \frac{\text{L.C.M.}}{\text{LM}(\varphi_j)} \varphi_i - \frac{\text{L.C.M.}}{\text{LM}(\varphi_i)} \varphi_j = y_j^{d_j} Q_i - y_i^{d_i} Q_j = \varphi_j Q_i - Q_j \varphi_i
$$

where we use the Q_i from (4.1) and cancel terms. Now let $\mu_i := \deg(Q_i)$. Since μ_i d_i for all *i*, the monomials $LM(\varphi_j Q_i) = y_j^{d_j} y_i^{\mu_i}$ and $LM(\varphi_i Q_j) = y_i^{d_i} y_j^{\mu_j}$ are not equal in our monomial ordering. Thus $LM(S(\varphi_i, \varphi_j) \ge \max(LM(\varphi_j Q_i), L\check{M}(\varphi_i Q_j)).$
It follows from Buchberger's Algorithm that $\{\varphi_1, \ldots, \varphi_n\}$ is a Gröbner basis. It follows from Buchberger's Algorithm that $\{\varphi_1, \ldots, \varphi_n\}$ is a Gröbner basis.

We will use the Multivariable Division Algorithm, by which any polynomial $g \in$ $\mathbb{C}[y_1, \ldots, y_n]$ may be written as $g = A_1\varphi_1 + \cdots + A_n\varphi_n + R$ where $LM(g) \geq$ LM($A_j\varphi_j$) for all $1 \leq j \leq n$, and *R* contains no terms divisible by any LM(φ_j). An important property of a Gröbner basis is that *g* belongs to the ideal $\langle \varphi_1, \ldots, \varphi_n \rangle$ if and only if $R = 0$ (see, for instance, [\[10\]](#page-12-6) or [\[1\]](#page-12-7)).

If all fixed points have the same value of λ as multiplier, then it follows that Φ must vanish on the whole zero set $Z(\varphi_1, \ldots, \varphi_n)$. Since we have a Gröbner basis, we easily determine the following:

Corollary 5.4 $\Phi \notin \langle \varphi_1, \ldots, \varphi_n \rangle$.

Proof The leading monomial of Φ is $y_1^{d_1-1} \cdots y_n^{d_n-1}$, but this is not divisible by any of the leading monomials $LM(\varphi_j) = y_j^{d_j}$. Since $\{\varphi_1, \ldots, \varphi_n\}$ is a Gröbner basis, it follows that Φ does not belong to the ideal $\langle \varphi_1, \ldots, \varphi_n \rangle$.

6 Proof of the Theorem

In this section we prove the Theorem, which will follow from [4.3,](#page-5-0) in combination with:

Proposition 6.1 *Suppose* $F = f_n \circ \cdots \circ f_1$, $n \geq 3$, *is a composition of generalized Hénon maps with* $|\delta| < 1$ *. Suppose that F* has $d = d_1 \cdots d_n$ *distinct fixed points. It is not possible that* $d - 1$ *of these points have the same multipliers.*

Proof that Proposition [6.1](#page-7-0) implies the Theorem To prove the Theorem, it remains to deal with the case $|\delta|$ < 1. If $f = f_1$ is a single generalized Hénon map, we consider $F = f_1 \circ f_1 \circ f_1$ with $n = 3$ and the same Julia set. Lemma 3.4 asserts that if J^+ is *C*¹, there are *d* − 1 saddle points with unstable multiplier $\lambda = d$. So by Proposition 4.1, we conclude that J^+ cannot be C^1 smooth. 4.1, we conclude that J^+ cannot be C^1 smooth.

We give the proof of Proposition [6.1](#page-7-0) at the end of this section. For $J \subset \{1, \ldots, n\}$, we write

$$
\Lambda_J := \{ (p')^L : L \subset J, |L| = |J| - 2k, \text{ for some, } 1 \le k \le |J|/2 \},
$$

We let H_J denote the linear span of Λ_J . To compare with our earlier notation, we note that *H_J* ⊂ *H*_{|J|−2} and that $(p')^J \notin H_J$. The elements of *H_J* depend only on the variables y_j for $j \in J$. Now we formulate a result for dividing certain terms by φ_j :

Lemma 6.2 *Suppose that* $J \subset \{1, ..., n\}$ *and* $h \in H_J$ *. Then for each* $j \in J$ *and* ^α [∈] ^C*, we have*

$$
(y_j - \alpha) \left((p')^J + h \right) = A(y)\varphi_j + B(y) \left((p')^{J - \{j\}} + \rho_1 \right) + (y_j - \alpha) \cdot \rho_2, \quad (\dagger)
$$

 $where \rho_1, \rho_2 \in H_{J-\{j\}}, and B = \eta_j(y_j) + d_j y_{j+1} + d_j \delta_j y_{j-1}$ with

$$
\eta_j(y_j) = y_j q'_j(y_j) - \alpha p'_j(y_j) - d_j q_j(y_j). \tag{\ddagger}
$$

The leading monomials satisfy

$$
LM\left((y_j - \alpha)\left((p')^J + h\right)\right) = LM(A(y)\varphi_j)
$$

Proof Let us start with the case $J = \{1, \ldots, m\}$, $m \leq n$, and $j = 1$, so $J - \{j\}$ $J_1^{\circ} = \{2, \ldots, n\}$. We divide by p'_1 and remove any factor of p'_1 in *h*. This gives

$$
(p')^J + h = p'_1(y_1)\mu_1 + \rho_2
$$

where $\mu_1 = (p')^{J_1} + \rho_1$, ρ_1 , $\rho_2 \in H_{\{2,...,m\}}$, and μ_1 , ρ_1 , ρ_2 are independent of the variable *y*1. Thus

$$
(y_1 - \alpha) \left((p')^J + h \right) = (y_1 - \alpha) (d_1 y_1^{d_1 - 1} + q'_1(y_1)) \mu_1 + (y_1 - \alpha) \rho_2
$$

= $d_1 y_1^{d_1} \mu_1 + (y_1 q'_1(y_1) - \alpha p'_1(y_1)) \mu_1 + (y_1 - \alpha) \rho_2$
= $(d_1 \mu_1) \varphi_1 + (\eta_1(y_1) + d_1 y_2 + d_1 \delta_1 y_n) \mu_1 + (y_1 - \alpha) \rho_2$

 \mathcal{D} Springer

where in the last line we substitute η_1 defined by (‡). Using (*), we see that this gives (†).

It remains to look at the leading terms of $T_1 := (y_1 - \alpha) ((p')^J + h)$ and $T_2 :=$ $d_1\mu_1\varphi_1$. We see that T_1 and T_2 both contain nonzero multiples of $y_j \prod_{i=1}^m y_i^{d_i-1}$, and all other monomials in T_1 and T_2 have lower degree. Thus we have $LM(T_1) = LM(T_2)$ for the graded ordering, independent of any ordering on the variables y_1, \ldots, y_n . The choices of $J = \{1, ..., m\}$ and $j = 1$ just correspond to a permutation of variables, and this does not affect the conclusion that $LM(T_1) = LM(T_2)$ and this does not affect the conclusion that $LM(T_1) = LM(T_2)$.

Lemma 6.3 *For any* $\alpha \in \mathbb{C}$, $(y_1 - \alpha)\Phi \notin \langle \varphi_1, \ldots, \varphi_n \rangle$.

Proof By [FM], we may assume that $p_j(y_j) = y_j^{d_j} + q_j(y_j)$ and deg(q_j) ≤ d_j − 2. We consider two cases. The first case is that there is at least one *j* such that η_i is not the zero polynomial. If we conjugate by $f_{i-1} \circ \cdots \circ f_1$, we may "rotate" the maps in *f* so that the factor f_i becomes the first factor. If there exists a *j* for which $\eta_i(y_i)$ is nonconstant, we choose this for f_1 . Otherwise, if all the η_j are constant, we choose *f*₁ to be any factor such that $\eta_1 \neq 0$.

We will apply the Multivariate Division Algorithm on $(y_1 - \alpha)\Phi$ with respect to the set $\{\varphi_1,\ldots,\varphi_n\}$. We will find that there is a nonzero remainder, and since $\{\varphi_1,\ldots,\varphi_n\}$ is a Gröbner basis, it will follow that $(y_1 - \alpha)\Phi$ does not belong to the ideal $\langle \varphi_1, \ldots, \varphi_n \rangle$.

We start with Lemma [5.2,](#page-6-1) according to which $\Phi = p'_1 \cdots p'_n + h$, where $h \in$ *H*_{**n**−2} = *H*_{{1,...,*n*}. The leading monomial of $(y_1 - \alpha) \Phi$ is $y_1^{d_1} \prod_{i=2}^n y_i^{d_i-1}$, and φ_1 is} the only element of the basis whose leading monomial divides this. Thus we apply Lemma [6.2,](#page-8-0) with $J = \{1, ..., n\}$, $j = 1$, and $J_1 := J - \{j\} = \{2, ..., n\}$. This gives

$$
(y_1 - \alpha)\Phi = A_1\varphi_1 + (\eta_1(y_1) + d_1y_2 + d_1\delta_1y_n)\left(\prod_{i=2}^n p'_i(y_i) + \rho_1\right) + (y_1 - \alpha)\rho_2
$$

= $A_1\varphi_1 + \left[d_1y_2\left((p')^{J_1} + \rho_1\right)\right]$
+ $\left[d_1\delta_1y_n\left((p')^{J_1} + \rho_1\right)\right] + \left[\eta_1\left((p')^{J_1} + \rho_1\right)\right] + \ell.o.t$
= $A_1\varphi_1 + T_2 + T_n + R_1 + \ell.o.t$

where $\rho_1, \rho_2 \in H_{\{2,\ldots,n\}}$. In particular, T_2 and T_n depend on y_2, \ldots, y_n but not on y_1 . We note that T_2 (respectively, T_n) contains a term divisible by $LM(\varphi_2)$ (respectively, LM(φ _n)). We view R_1 as a remainder term, and note that LM(R_1) is divisible by $y_2^{d_2-1}$ ··· $y_n^{d_n-1}$, as well as the largest power of *y*₁ in $\eta_1(y_1)$. By " $\ell.o.t.$," we mean that none of its monomials is divisible by $LM(R_1)$ or by any of the $LM(\varphi_i)$.

Now we apply Lemma [6.2](#page-8-0) to T_2 , this time with $J = \{2, \ldots, n\}$ and $j = 2$, with $J - \{2\} = J_{\hat{1}\hat{2}} = \{3, \ldots, n\}.$ We have

$$
T_2 = A_2 \varphi_2 + d_2 y_3 ((p')^{J_{\hat{1}\hat{2}}} + \rho_1^{(2)}) + d_2 \delta_2 y_1 ((p')^{J_{\hat{1}\hat{2}}} + \rho_1^{(2)}) + \eta_2 (y_2) (p')^{J_{\hat{1}\hat{2}}} + \ell.o.t.
$$

= $A_2 \varphi_2 + T_2^{(2)} + R_1^{(2)} + R_2^{(2)} + \ell.o.t.$

We see that $T_2^{(2)}$ contains terms that are divisible by $LM(\varphi_3)$, but the monomials in $R_1^{(2)}$ and $R_2^{(2)}$ are not divisible by LM(φ_i) for any *i*. The remainder term here is $R_1^{(2)} + R_2^{(2)}$, and we observe that this cannot cancel the largest term in *R*₁. This is because LM($R_1^{(2)}$) lacks a factor of *y*₂, and LM($R_2^{(2)}$) is equal to $y_3^{d_3-1} \cdots y_n^{d_n-1}$ times the largest power of y_2 in $\eta_2(y_2)$, and by (‡), this power is no bigger than $d_2 - 1$. If η_1 is not constant, then we see that $LM(R_1) > LM(R_2^{(2)})$. If η_1 is constant, then η_2 must be constant, too, and again we have $LM(R_1) > LM(R_2^{(2)})$. Thus, with our earlier notation, $R_1^{(2)} + R_2^{(2)} = \ell.o.t$.

We do a similar procedure with T_n , $T_2^{(2)}$, etc., and again find that the remainder term does not contain a multiple of the leading monomial of R_1 . We see that each time we do this process, the size of the exponent *L* decreases in the term $(p')^L$. When we have $L = \emptyset$, there are no terms that can be divided by any $LM(\varphi_i)$. Thus we end up with

$$
(y_1 - \alpha)\Phi = A_1\varphi_1 + \cdots + A_n\varphi_n + R_1 + \ell.o.t.
$$

and $LT((y_1 - \alpha)\Phi) \ge LT(A_j\varphi_j)$ for all $1 \le j \le n$, and none of the remaining terms is divisible by any of the leading monomials of φ_i . Thus we have now finished the Multivariate Division Algorithm, and we have a nonzero remainder. Thus $(y_1 - \alpha)\Phi$ does not belong to the ideal of the φ_i 's.

Now we turn to the second case, in which $\eta_j = 0$ for all *j*. By [\[12](#page-12-0)], we may assume that $deg(q_j) \leq d_j - 2$. It follows that $\alpha = 0$ and $q_j = 0$. Thus $p_j = y_j^{d_j}$ for all $1 \leq j \leq n$, so $p'_j = d_j y_j^{d_j-1}$, and H_J consists of linear combinations of products $(p')^I = y_{i_1}^{d_{i_1}-1} \cdots y_{i_k}^{d_{i_k}-1}$ for $I = \{i_1, \ldots, i_k\}$ ⊂ *J*, for even $k \leq |J| - 2$. We will go through the Multivariate Division Algorithm again. The principle is the same as before, but the details are different; in the first case we needed $n \geq 2$, and now we will need $n > 3$.

Again, it is only φ_1 which has a leading monomial which can divide some terms in $(y_1 - \alpha)\Phi$. As before, we apply Lemma [6.2](#page-8-0) with $J = \{1, \ldots, n\}$, $j = 1$, and $J - \{1\} = J_1 = \{2, ..., n\}$. The polynomial in (‡) becomes $B = d_j y_{j+1} + d_j \delta_j y_{j-1}$, and we have

$$
y_1 \Phi = A_1 \varphi_1 + d_1 y_2 \left((p')^{J_1} + \rho_1 \right) + d_1 \delta_1 y_n \left((p')^{J_1} + \rho_1 \right) + y_1 \rho_2
$$

= $A_1 \varphi_1 + T_2 + T_n + \ell.o.t.$

where $\rho_1, \rho_2 \in H_{\{2,\ldots,n\}}$. Now we apply Lemma [6.2](#page-8-0) to divide T_2 (respectively, T_n) by φ_2 (respectively, φ_n). This yields

$$
y_1 \Phi = A_1 \varphi_1 + A_2 \varphi_2 + A_n \varphi_n + T_3 + T_n + R + \ell.o.t.,
$$

where

$$
T_3 = d_1 d_2 y_3 \left((p')^{J_{\hat{1}\hat{2}}} + \tilde{\rho}_3 \right), \quad T_n = d_1 d_n \delta_1 \delta_n y_{n-1} \left((p')^{J_{\hat{1}\hat{n}}} + \tilde{\rho}_n \right)
$$

 \mathcal{L} Springer

with $\tilde{\rho}_3 \in H_{\{3,\ldots,n\}}$ and $\tilde{\rho}_n \in H_{\{2,\ldots,n-1\}}$, and

$$
R = \left(d_1 d_2 \delta_2 y_1 y_n^{d_n - 1} + d_1 d_n \delta_1 y_1 y_2^{d_2 - 1}\right) \prod_{i=3}^{n-1} y_i^{d_i - 1}
$$

Since $n > 2$, R is not the zero polynomial. We will continue the Multivariate Division Algorithm by dividing T_3 by φ_3 and T_n by φ_n , but we see that any terms created cannot cancel *R*. Thus when we finish the Multivariable Division Algorithm, we will have a nonzero remainder. As in the previous case, we conclude that $y_1 \Phi$ is not in the ideal $\langle \varphi_1,\ldots,\varphi_n\rangle$.

Proof of Proposition [6.1.](#page-7-0) The fixed points of *f* coincide with the elements of $Z(\varphi_1,\ldots,\varphi_n)$, which is a variety of pure dimension zero. Saddle points have multiplicity 1, and since there are $d - 1$ of these, and since the total multiplicity is d , there must be one more fixed point, also of multiplicity 1. It follows that the ideal $I := \langle \varphi_1, \ldots, \varphi_n \rangle$ is equal to its radical (see [\[1](#page-12-7)]). Since the saddle points all have multiplier λ , Φ must vanish at all the saddle points. If (α, β) is the other fixed point, we conclude that $(y_1 - \alpha)\Phi$ vanishes at all the fixed points. Thus $(y_1 - \alpha)\Phi$ belongs to the radical of *I*, and thus *I* itself. This contradicts Lemma [6.3,](#page-9-0) which completes the proof of Proposition [6.1.](#page-7-0)

Acknowledgements We wish to thank Yutaka Ishii and Paolo Aluffi for helpful conversations on this material.

Appendix: Nonsmoothness of *J***,** *J***∗, and** *K*

Let us turn our attention to other dynamical sets for polynomial diffeomorphisms of positive entropy. These are $J := J^+ \cap J^-$, $K := K^+ \cap K^-$, and the set J^* , which coincides with the closure of the set of periodic points of saddle type. (See [\[3](#page-12-1)[,5](#page-12-8)], and [\[2](#page-12-9)] for other characterizations of J^* .) We have $J^* \subset J \subset K$. We note that none of these sets can be a smooth 3-manifold: otherwise, for any saddle point p , it would be a bounded set containing $W^s(p)$ or $W^u(p)$, which is the holomorphic image of $\mathbb C$. The following was suggested by Remark 5.9 of Cantat in [\[9\]](#page-12-10); we sketch his proof:

Proposition 6.1 *If* $J = J^*$ *, then it is not a smooth 2-manifold.*

Proof Let p be a saddle point, and let $W^u(p)$ be the unstable manifold. The slice $J \cap W^u(p)$ is smooth and invariant under multiplication by the multiplier of Df . This means that in fact, the multiplier must be real, and the restriction of G^+ to the slice must be linear on each (half-space) component of $W^u(p) - J$.

The identity $G^+ \circ f = d \cdot G^+$ means that the canonical metric (defined in [\[6](#page-12-11)]) is multiplied by d . Thus f is quasi-expanding on J^* . Now, applying this argument to f^{-1} we get that *f* is quasi-hyperbolic. Further, $J^* = J$, so it is quasi-hyperbolic on *J*. If *f* fails to be hyperbolic, then by [\[7](#page-12-12)] there will be a one-sided saddle point, which cannot happen since *J* is smooth.

Now that *f* is hyperbolic on *J*, there is a splitting $E^s \oplus E^u$ of the tangent bundle, so we conclude that *J* is a 2-torus. The dynamical degree must be the spectral radius of an invertible 2-by-2 integer matrix, but this means it is not an integer, which contradicts the fact the dynamical degree of a Hénon map is its algebraic degree.

Proposition 6.2 *Suppose that the complex Jacobian is not equal to* ± 1 *. Then for each saddle (periodic) point p and each neighborhood U of p, neither* $J \cap U$ *nor* $J^* \cap U$ *nor* $K \cap U$ *is a* C^1 *smooth* 2-*manifold.*

Proof Let us write $M := J \cap U$ and $g := f|_M$. (The following argument works, too, if we take $M = J^* \cap U$ or $M = K \cap U$.) The tangent space T_pM is invariant under *Df*. The stable/unstable spaces $E^{s/u} \n\subset T_p \mathbb{C}^2$ are invariant under $D_p f$. The space E^s (or E^u) cannot coincide with T_pM , for otherwise the complex stable manifold $W^s(p)$ (or $W^u(p)$) would be locally contained in *M*, and thus globally contained in *J*. But the $W^{s/u}$ are uniformized by \mathbb{C} , whereas *J* is bounded. We conclude that *p* is a saddle point for *g*, and thus the local stable manifold $W_{\text{loc}}^s(p; g)$ is a C^1 -curve inside the complex stable manifold $W^s(p)$. As in Lemma [4.3,](#page-5-0) we conclude that the multiplier for $D_p f|_{E_p^u}$ is $\pm d$ and the multiplier for $D_p f|_{E_p^s}$ is $\pm 1/d$. Thus the complex Jacobian is $\delta = \pm 1$.

Solenoids The two results above concern smoothness, but no example is known where *J*, *J*^{*}, or *K* is even a topological 2-manifold. In the cases where *J*⁺ has been shown to be a topological 3-manifold (see $[8,11,16,20]$ $[8,11,16,20]$ $[8,11,16,20]$ $[8,11,16,20]$ $[8,11,16,20]$ $[8,11,16,20]$) it also happens that *J* is a (topological) real solenoid, and in these cases it is also the case that $J = J^*$. Further, for every saddle (periodic) point *p*, there is a real arc $\gamma_p = W_{\text{loc}}^u(p) \cap J$. If we apply the argument of Proposition [6.2](#page-8-0) to this case, we conclude that γ_p is not C^1 smooth.

References

- 1. Becker, T., Weispfenning, V.: Gröbner Bases, a Computational Approach to Commutative Algebra. Springer, Berlin (1993)
- 2. Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of **C**2. IV. The measure of maximal entropy and laminar currents. Invent. Math. **112**(1), 77–125 (1993)
- 3. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of **C**2: currents, equilibrium measure and hyperbolicity. Invent. Math. **103**(1), 69–99 (1991)
- 4. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of **C**2. II. Stable manifolds and recurrence. J. Am. Math. Soc. **4**(4), 657–679 (1991)
- 5. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of **C**2. III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. **294**(3), 395–420 (1992)
- 6. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of **C**2. VIII. Quasi-expansion. Am. J. Math. **124**(2), 221–271 (2002)
- 7. Bedford, E., Smillie, J.: Real polynomial diffeomorphisms with maximal entropy: tangencies. Ann. of Math. **160**(1), 1–26 (2004)
- 8. Bonnot, S.: Topological model for a class of complex Hénon mappings. Comment. Math. Helv. **81**(4), 827–857 (2006)
- 9. Cantat, S.: Bers and Hénon, Painlevé and Schrödinger. Duke Math. J. **149**(3), 411–460 (2009)
- 10. Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms, p. xvi+551. Springer, New York (2007)
- 11. Fornæss, J.E., Sibony, N.: Complex Hénon mappings in **C**² and Fatou–Bieberbach domains. Duke Math. J. **65**(2), 345–380 (1992)
- 12. Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dyn. Syst. **9**(1), 67–99 (1989)
- 13. Hakim, M.: Attracting domains for semi-attractive transformations of C*p*. Publ. Mat. **38**(2), 479–499 (1994)
- 14. Hubbard, J.H.: The Hénon mapping in the complex domain. Chaotic dynamics and fractals (Atlanta, Ga., 1985). Notes Rep. Math. Sci. Engrg. **2**, 101–111 (1986)
- 15. Hubbard, J.H., Oberste-Vorth, R.: Hénon mappings in the complex domain. I. The global topology of dynamical space. Inst. Hautes Études Sci. Publ. Math. **79**, 5–46 (1994)
- 16. Hubbard, J.H., Oberste-Vorth, R.: Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials. Real and complex dynamical systems (Hillerød, 1993). NATO Adv. Sci. Inst. C **464**, 89–132 (1995)
- 17. Milnor, J.: Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton (2006)
- 18. Milnor, J.: Topology from the Differentiable Viewpoint. Based on Notes by David W. Weaver, p. ix+65. The University Press of Virginia, Charlottesville, VA (1965)
- 19. Nakane, S.: External rays for polynomial maps of two variables associated with Chebyshev maps. J. Math. Anal. Appl. **338**(1), 552–562 (2008)
- 20. Radu, R., Tanase, R.: A structure theorem for semi-parabolic Hénon maps, [arXiv:1411.3824](http://arxiv.org/abs/1411.3824)
- 21. Samelson, H.: Orientability of hypersurfaces in R*n*. Proc. Am. Math. Soc. **22**, 301–302 (1969)
- 22. Smillie, J.: The entropy of polynomial diffeomorphisms of \mathbb{C}^2 . Ergod. Theory Dyn. Syst. 10(4), 823– 827 (1990)
- 23. Uchimura, K.: Generalized Chebyshev maps of \mathbb{C}^2 and their perturbations. Osaka J. Math. 46(4), 995–1017 (2009)
- 24. Uchimura, K.: Holomorphic endomorphisms of $\mathbb{P}^3(\mathbb{C})$ related to a Lie algebra of type A_3 and catastrophe theory. preprint
- 25. Ueda, T.: Local structure of analytic transformations of two complex variables I. J. Math. Kyoto Univ. **26**(2), 233–261 (1986)