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Abstract In this paper, we investigate regularity for solutions to the linearized
Monge–Ampère equations when the nonhomogeneous term has low integrability. We
establish global W 1,p estimates for all p <

nq
n−q for solutions to the equations with

right-hand side in Lq where n/2 < q ≤ n. These estimates hold under natural assump-
tions on the domain, Monge–Ampère measures, and boundary data. Our estimates are
affine invariant analogues of the globalW 1,p estimates of N .Winter for fully nonlinear,
uniformly elliptic equations.
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1 Introduction and statement of the main result

This paper is a sequel to [20] and is concerned with global L p estimates for the
derivatives of solutions to the linearized Monge–Ampère equations. Let � ⊂ R

n(n ≥
2) be a bounded convex domain and φ be a locally uniform convex function on �.
The linearized Monge–Ampère equation corresponding to φ is
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Lφu := −
n∑

i, j=1

�i j ui j = f in �, (1.1)

where

� = (
�i j )

1≤i, j≤n := (det D2φ) (D2φ)−1

is the cofactor matrix of the Hessian matrix D2φ = (φi j )1≤i, j≤n . The operator Lφ

appears in several contexts including affine differential geometry [28–31], complex
geometry [8], and fluid mechanics [1,7,23]. Because � is divergence free, that is,

n∑

i=1

∂i�
i j = 0 for all j , we can also write Lφ as a divergence form operator:

Lφu = −
n∑

i, j=1

∂i

(
�i j u j

)
.

We note that the Monge–Ampère equation can be viewed as a linearized Monge–
Ampère equation because of the identity

Lφφ = −n det D2φ. (1.2)

Caffarelli and Gutiérrez initiated the study of the linearized Monge–Ampère equa-
tions in the fundamental paper [6]. There they developed an interiorHarnack inequality
theory for nonnegative solutions of the homogeneous equation Lφu = 0 in terms of
the pinching of the Hessian determinant

λ ≤ det D2φ ≤ �. (1.3)

This theory is an affine invariant version of the classical Harnack inequality for linear,
uniformly elliptic equations with measurable coefficients.

In applications such as in the contexts mentioned above, one usually encounters
the linearized Monge–Ampère equations with the Monge–Ampère measure det D2φ

satisfying (1.3). As far as Sobolev estimates for solutions are concerned, as elucidated
in [15], one requires the additional assumption that det D2φ is continuous. Let us
recall that for this latter case, D2φ belongs to L p for all p < ∞ by Caffarelli’s
W 2,p estimates [4] but D2φ is not bounded in view of Wang’s counterexamples [32].
Notice that since � is positive semi-definite, Lφ is a linear elliptic partial differential
operator, possibly both degenerate and singular. Despite these, we still have similar
regularity results, both in the interior and at the boundary, as in the classical theory
for linear, uniformly elliptic equations such as Harnack inequality, Hölder, C1,α and
W 2,p estimates; see [6,14–16,20–22]. In [20], we established global W 2,p estimates
for (1.1) when the right-hand side f ∈ Lq(�) for q > max {n, p} and the Monge–
Ampèremeasure det D2φ is continuous. Given this, onemightwonderwhether similar
estimates hold when f is less integrable.
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Global W 1,p estimates for linearized Monge–Ampère 1753

Due to the hidden nonlinear character of the linearized Monge–Ampère equations
as revealed in (1.2), when the right-hand side f of (1.1) belongs to Lq(�) where
q < n, we do not in general expect to get W 2,q estimates for the solutions u, by an
example of Caffarelli [2] concerning solutions of fully nonlinear, uniformly elliptic
equations. However, in [26], Świech obtained surprising W 1,p-interior estimates, for
all p <

nq
n−q , for a large class of fully nonlinear, uniformly elliptic equations

F(x, u(x), Du(x), D2u(x)) = f (x) (1.4)

with Lq right-hand side where n − ε0 < q ≤ n and ε0 depends on the ellipticity
constants of the equations. This result is almost sharp in viewof theSobolev embedding

W 2,q ↪→ W 1, nq
n−q . It is worth mentioning that Świech’s W 1,p estimates in the special

case of fully nonlinear, uniformly elliptic equations of the form

F(D2u) = f (1.5)

follow from Escauriaza’s W 2,q estimates [9] for solutions of (1.5) when f ∈ Lq with
n − ε0 < q ≤ n. Świech’s W 1,p-interior estimates were later extended up to the
boundary by Winter [34].

In view of the aforementioned Hölder, C1,α and W 2,p estimates for solutions of
(1.1), we might expect W 1,p estimates (p <

nq
n−q ) for the linearized Monge–Ampère

equation (1.1) and the main purpose of this paper is to confirm this expectation for a
large range of q: n/2 < q ≤ n. Despite the degeneracy and singularity of (1.1), that is
there are no controls on the ellipticity constants, the integrability range allowed for the
right-hand side of (1.1) in our main result is remarkably larger than the integrability
range allowed for the right-hand side of the nonlinear, uniformly elliptic equations in
the above-mentioned papers of Escauriaza’s, Świech’s, and Winter’s.

1.1 The main result

Our main result establishes global W 1,p estimates (p <
nq

n−q ) for solutions to equa-

tion (1.1) with Lq(n/2 < q ≤ n) right-hand side and C1,γ boundary values under
natural assumptions on the domain, boundary data, and the Monge–Ampère measure.
Precisely, we obtain:

Theorem 1.1 (Global W 1,p estimates) Assume that there exists a small constant ρ >

0 such that � ⊂ B1/ρ(0) and for each y ∈ ∂� there is a ball Bρ(z) ⊂ � that is
tangent to ∂� at y. Let φ ∈ C0,1(�) ∩ C2(�) be a convex function satisfying

det D2φ = g in � with λ ≤ g ≤ �.

Assume further that on ∂�, φ separates quadratically from its tangent planes, namely

ρ |x − x0|2 ≤ φ(x) − φ(x0) − Dφ(x0) · (x − x0) ≤ ρ−1 |x − x0|2 , for all x, x0 ∈ ∂�.

(1.6)
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1754 N. Q. Le, T. Nguyen

Let u : � → R be a continuous function that solves the linearized Monge–Ampère
equation {

�i j ui j = f in �,

u = ϕ on ∂�,

where ϕ is a C1,γ function defined on ∂� (0 < γ ≤ 1) and f ∈ Lq(�) with
n/2 < q ≤ n. Assume in addition that g ∈ C(�). Then for any 1 ≤ p <

nq
n−q , we

have the following global W 1,p estimates

‖u‖W 1,p(�) ≤ K
(‖ϕ‖C1,γ (∂�) + ‖ f ‖Lq (�)

)
,

where K is a constant depending only on n, ρ, γ, λ,�, p, q, and the modulus of
continuity of g.

We note from [25, Proposition 3.2] that the quadratic separation (1.6) holds for solu-
tions to the Monge–Ampère equations with the right-hand side bounded away from
0 and ∞ on uniformly convex domains and C3 boundary data. Furthermore, Theo-
rem 1.1 complements Savin and the first author’s global C1,α estimates [22] for Eq.
(1.1) when the right-hand side f is in Lq (q > n). This result is an affine invari-
ant version of Winter’s global W 1,p estimates for fully nonlinear, uniformly elliptic
equations [34].

Let us say briefly about the integrability range allowed for the right-hand side of
(1.1). Notice that in [26], the exponentq was required to be close to n with the closeness
depends on the ellipticity constants. Moreover, the proof of these W 1,p estimates for
equation (1.4) is rooted in a deep integrability bound of Fabes and Stroock [10] for the
Green’s function of linear, uniformly elliptic operators with measurable coefficients.
In a recent paper [18], the first author establishes the same global integrability of the
Green’s function for the linearized Monge–Ampère operator as the Green’s function
of the Laplace operator which corresponds to φ(x) = |x |2/2 (see also [12,17,27]
for previous related interior results). Namely, under the pinching condition (1.3) and
natural boundary data, the Green’s function of Lφ is globally L p-integrable for all
p < n

n−2 . Thus, as a degenerate and singular nondivergence form operator,Lφ has the
Green’s function with global L p−integrability higher than that of a typical uniformly
elliptic operator in nondivergence form as established in [10, Corollary 2.4]. This is
the reason why we are able to prove Theorem 1.1 for a large range of q: n/2 < q ≤ n.

Our strategy to proving W 1,p estimates for solutions of (1.1) follows Caffarelli’s
perturbation arguments [2,5] (see also Wang [33]) and local boundedness and maxi-
mum principles. Even in the ideal case where φ(x) = |x |2/2 and (1.1) becomes the
Poisson’s equationLφu = −�u = f , we do not have local boundedness for solutions
when f is not Ln/2 integrable. Thus the range n/2 < q ≤ n is almost optimal for our
approach. However, our method does not give any information for the case q ≤ n/2.

To proveTheorem1.1,wefirst establish newpointwiseC1,α estimates in the interior
and at the boundary for the linearized Monge–Ampère equation (1.1) with Lq(�)

(q > n/2) right-hand side. These estimates, respectively, extend previous results of
Gutiérrez and Nguyen [14] and of Savin and the first author [22] where the cases
q > n were treated. Then, we combine these pointwise estimates with the strong-type
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Global W 1,p estimates for linearized Monge–Ampère 1755

inequality for the maximal functionMwith respect to sections of φ [19, Theorem 2.7]
to get the desired global W 1,p estimates. We next indicate some more details on the
proof of Theorem 1.1 after introducing several notations.

Throughout, a convex domain� is called normalized if B1(0) ⊂ � ⊂ Bn(0). Also,
the section of a convex function φ ∈ C1(�) at x ∈ � with height h is defined by

Sφ(x, h) = {
y ∈ � : φ(y) < φ(x) + Dφ(x) · (y − x) + h

}
.

For fixed α ∈ (0, 1) and r0 > 0, we denote for z ∈ � the following quantities
Nφ, f,q,r (z) and Nφ, f,q(z):

Nφ, f,q,r (z) := r
1−α
2

(
1

|Sφ(z, r)|
∫

Sφ(z,r)

| f |q dx

) 1
q

for r > 0, (1.7)

and

Nφ, f,q(z) := sup
r≤r0

Nφ, f,q,r (z) = sup
r≤r0

r
1−α
2

(
1

|Sφ(z, r)|
∫

Sφ(z,r)

| f |q dx

) 1
q

. (1.8)

We will use the letters c, c1, C, C1, C ′, C∗, θ∗, θ̄ , ..., etc., to denote generic constants
depending only on the structural constants n, q, ρ, γ, λ,� that may change from line
to line. They are called universal constants.

We can assume that all functions φ, u in this paper are smooth. However, our
estimates do not depend on the assumed smoothness but only on the given structural
constants.

Themain points of the proof of Theorem 1.1 are as follows. By the global maximum
principle using the optimal integrability of the Green’s function of the operator Lφ ,
we have

‖u‖L∞(�) ≤ C
(‖ϕ‖L∞(�) + ‖ f ‖Lq (�)

)
. (1.9)

Let q ′ ∈ (n/2, q). By applying the foregoing pointwise C1,α estimates in the interior
and at the boundary for (1.1), we obtain the following gradient bound:

|Du(y)| ≤ C
(
‖u‖L∞(�) + Nφ, f,q ′(y)

)
∀y ∈ �. (1.10)

Note that N (y) := Nφ, f,q ′(y) can be∞. However, using volume estimates for sections
of φ, we find that for p ≥ q > q ′

‖N‖L p(�) ≤ C sup
r≤r0

{
r

1
2

[
(1−α)− n

q + n
p

]} (∫

�

M( f q ′
)(y)

q
q′ dy

) 1
p ‖ f ‖

p−q
p

Lq (�).
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1756 N. Q. Le, T. Nguyen

We then employ the strong-type q
q ′ − q

q ′ inequality for the maximal functionM( f q ′
)

with respect to sections of φ and, since p <
nq

n−q , we can choose 0 < α < 1− n
q + n

p
to conclude that

‖N‖L p(�) ≤ C sup
r≤r0

{
r

1
2

[
(1−α)− n

q + n
p

]}
‖ f ‖

q
p

Lq (�)‖ f ‖
p−q

p

Lq (�) ≤ C‖ f ‖Lq (�). (1.11)

By combining (1.9)–(1.11), we obtain the global W 1,p estimate in Theorem 1.1.

1.2 Key estimates

As mentioned above, the new key estimates in the proof of Theorem 1.1 are pointwise
C1,α estimates in the interior and at the boundary for solutions to the linearizedMonge–
Ampère equation (1.1) with Lq right-hand side where q > n/2.

We first state pointwise C1,α estimates in the interior.

Theorem 1.2 (Pointwise C1,α estimates in the interior) Assume that q > n/2, 0 ≤
α′ < α < 1, and r0 > 0. There exists θ = θ(n, q, α, α′, r0) > 0 such that if � is a
normalized convex domain, φ ∈ C(�) is a convex solution of

1 − θ ≤ det D2φ ≤ 1 + θ in �, and φ = 0 on ∂�,

then any solution u ∈ W 2,n
loc (�) of �i j ui j = f in � where f ∈ Lq(�) satisfies the

following pointwise C1,α′
estimate at the minimum point z̄ of φ:

r−(1+α′)‖u − l‖L∞(Br (z̄)) + |l(z̄)| + ‖Dl‖ ≤ C
[
‖u‖L∞(�) + Nφ, f,q(z̄)

]

for all r ≤ μ∗,

for some affine function l, where C, μ∗ are positive constants depending only on
n, q, α, α′, and r0.

Note that, in the above theorem, det D2φ is only required to be close to a positive
constant, but no continuity of det D2φ is needed. Theorem 1.2 extends a previous
result of Gutiérrez and the second author [14, Theorem 4.5] from the case q = n to
all q satisfying n/2 < q ≤ n.

The interior W 1,p estimates for (1.1) then follow.

Theorem 1.3 (Interior W 1,p estimates) Let � be a normalized convex domain and
φ ∈ C(�) be a convex solution to det D2φ = g in � and φ = 0 on ∂�, where
g ∈ C(�) satisfying λ ≤ g(x) ≤ � in �. Suppose that u ∈ W 2,n

loc (�) is a solution of
�i j ui j = f in � with f ∈ Lq(�) where n/2 < q ≤ n. Then for any �′ � � and any
p <

nq
n−q , we have

‖Du‖L p(�′) ≤ C
(
‖u‖L∞(�) + ‖ f ‖Lq (�)

)
, (1.12)
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Global W 1,p estimates for linearized Monge–Ampère 1757

where C > 0 depends only on n, p, q, λ,�, dist(�′, ∂�) and the modulus of conti-
nuity of g.

We next state pointwise C1,α estimates at the boundary for solutions of (1.1) with
Lq right-hand sidewhereq > n/2 andC1,γ boundary data under the local assumptions
(1.13)–(1.16) introduced below. These estimates generalize previous results of Savin
and the first author in [21,22] where the cases q = ∞ and q > n, respectively, were
treated.

Let � ⊂ R
n be a bounded convex set with

Bρ(ρen) ⊂ � ⊂ {xn ≥ 0} ∩ B 1
ρ
(0), (1.13)

for some small ρ > 0 where we denote en := (0, . . . , 0, 1) ∈ R
n . Assume that

for each y ∈ ∂� ∩ Bρ(0), there is a ball Bρ(z) ⊂ � that is tangent to ∂� at y.

(1.14)

Let φ ∈ C0,1(�) ∩ C2(�) be a convex function satisfying

0 < λ ≤ det D2φ ≤ � in �. (1.15)

We assume that on ∂� ∩ Bρ(0), φ separates quadratically from its tangent planes on
∂�. Precisely we assume that if x0 ∈ ∂� ∩ Bρ(0) then

ρ |x − x0|2 ≤ φ(x) − φ(x0) − Dφ(x0) · (x − x0) ≤ ρ−1 |x − x0|2 for all x ∈ ∂�.

(1.16)

Theorem 1.4 Assume that φ and � satisfy assumptions (1.13)–(1.16). Let u : Bρ(0)∩
� → R be a continuous solution to

{
�i j ui j = f in Bρ(0) ∩ �,

u = ϕ on ∂� ∩ Bρ(0),

where f ∈ Lq(Bρ(0) ∩ �) for some q > n/2 and ϕ ∈ C1,γ (Bρ(0) ∩ ∂�). Then
there exist α ∈ (0, 1) and θ small depending only on n, q, ρ, λ,�, γ such that for all
h̄ ≤ θ2, we can find b ∈ R

n satisfying

h̄− 1+α
2 ‖u − u(0) − bx‖L∞(Sφ(0,h̄)) + ‖b‖

≤ C
[
‖u‖L∞(Bρ(0)∩�) + ‖ϕ‖C1,γ (Bρ(0)∩∂�) + sup

h̄≤t≤θ2
Nφ, f,q,2θ−1t (0)

]
,

where C depends only on n, q, ρ, λ,�, and γ . We can take α ∈ (0,min{α0, γ }),
where α0 is the exponent in the boundary Hölder gradient estimates, Theorem 4.1.
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1758 N. Q. Le, T. Nguyen

In proving global W 1,p estimates for solutions of (1.1), we will use new maximum
principles, in the interior and at the boundary, for the linearized Monge–Ampère
equation (1.1) with Lq right-hand side where q is only assumed to satisfy q > n/2.
We state here a global maximum principle and refer to Lemmas 2.1 and 4.2 for the
interior and boundary maximum principles used in the paper.

Lemma 1.5 (Global maximum principle) Assume that � and φ satisfy the hypotheses
of Theorem 1.1 up to (1.6). Let f ∈ Lq(�) for some q > n/2 and u ∈ W 2,n

loc (�)∩C(�)

satisfy

Lφu ≤ f almost everywhere in �.

Then there exists a constant C > 0 depending only on n, λ,�, ρ, and q such that

sup
�

u ≤ sup
∂�

u+ + C |�| 2n − 1
q ‖ f ‖Lq (�).

We will also use the following global strong-type estimates for the maximal function
M with respect to sections of the potential function φ.

Theorem 1.6 (Strong-type p–p estimates, [19, Theorem 2.7]) Assume that � and φ

satisfy the hypotheses of Theorem 1.1 up to (1.6). For f ∈ L1(�), define

M( f )(x) = sup
t>0

1

|Sφ(x, t)|
∫

Sφ(x,t)
| f (y)| dy for all x ∈ �.

Then, for any 1 < p < ∞, there exists C p > 0 depending on p, ρ, λ,�, and n such
that

‖M( f )‖L p(�) ≤ C p ‖ f ‖L p(�).

Note that our new maximum principles in Lemmas 2.1 and 4.2 allow us to estab-
lish global Hölder continuity estimates for solutions to the linearized Monge–Ampère
equation (1.1) with Lq right-hand side where q is only assumed to satisfy q > n/2.
These estimates in turn extend our previous results, [16, Theorem 1.4] and [20, The-
orem 4.1], where the cases of Ln right-hand side were treated.

Theorem 1.7 (Global Hölder estimates) Assume � and φ satisfy (1.13)–(1.16). Let
u ∈ C

(
Bρ(0) ∩ �

) ∩ W 2,n
loc (Bρ(0) ∩ �) be a solution to

{
�i j ui j = f in Bρ(0) ∩ �,

u = ϕ on ∂� ∩ Bρ(0),

where ϕ ∈ Cα(∂� ∩ Bρ(0)) for some α ∈ (0, 1) and f ∈ Lq(� ∩ Bρ(0)). Then for
any q > n/2, there exist constants β, C > 0 depending only on λ,�, n, α, q, and ρ

such that
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Global W 1,p estimates for linearized Monge–Ampère 1759

|u(x)−u(y)| ≤ C |x−y|β
(
‖u‖L∞(�∩Bρ(0)) + ‖ϕ‖Cα(∂�∩Bρ(0)) + ‖ f ‖Lq (�∩Bρ(0))

)

for all x, y ∈ � ∩ B ρ
2
(0).

The rest of the paper is organized as follows. In Sect. 2, we establish an interior
maximum principle, an interior Hölder estimate, and a comparison estimate for the
linearized Monge–Ampère equations with Lq right-hand side. We prove Theorems
1.2 and 1.3 in Sect. 3. The proofs of Theorem 1.4 and Lemma 1.5 will be given in
Sect. 4. In the final Sect. 5, we prove Theorems 1.1 and 1.7.

2 Interior maximum principle and Hölder estimates

In this section, we prove an interior maximum principle (Lemma 2.1), an interior
Hölder estimate (Corollary 2.4), and a comparison estimate (Lemma 2.5) for the
linearized Monge–Ampère equation with Lq right-hand side where q is only assumed
to satisfy q > n/2. These results will be used in Sect. 3 to prove interior W 1,p

estimates.
For convenience, we introduce the following hypothesis:

(H) � is a normalized convex domain and φ ∈ C(�) is a convex function such that

λ ≤ detD2φ ≤ � in � and φ = 0 on ∂�.

Given 0 < α < 1, and � and φ satisfying (H), we define the sections of φ at its
minimum point z̄ to be the sets

�α ≡ �α,φ := Sφ

(
z̄,−αmin

�
φ

)
=

{
x ∈ � : φ(x) < (1 − α) min

�
φ
}
.

We record here how the linearizedMonge–Ampère equation (1.1) transforms under
rescaling. If T x = Ax + z is an affine transformation where A is an n × n invertible
matrix and z ∈ R

n , and

φ̃(x) = 1

a
φ(T x), ũ(x) = 1

b
u(T x),

then from (1.1), we find

Lφ̃ ũ(x) = 1

an−1b
(det A)2 f (T x). (2.1)

Indeed, we can compute

D2φ̃ = 1

a
At D2φ A, D2ũ = 1

b
At D2u A,

123



1760 N. Q. Le, T. Nguyen

and the cofactor matrix �̃ = (det D2φ̃)(D2φ̃)−1 of D2φ̃ is

�̃ = 1

an−1 (det A)2(det D2φ) A−1(D2φ)−1(A−1)t = 1

an−1 (det A)2A−1�(A−1)t .

Thus (2.1) easily follows from

Lφ̃ ũ(x) = −trace(�̃D2ũ) = − 1

an−1b
(det A)2trace(�D2u(T x))

= 1

an−1b
(det A)2 f (T x).

2.1 Interior estimates

Lemma 2.1 (Interior maximum principle) Assume that � and φ satisfy (H). Let V ⊂
� be a subdomain, f ∈ Lq(V ) for some q > n/2, and u ∈ W 2,n

loc (V ) ∩ C(V ) satisfy

Lφu ≤ f almost everywhere in V .

Then for any α ∈ (0, 1), there exists a constant C > 0 depending only on α, n, λ,�,
and q such that

sup
V ∩�α

u ≤ sup
∂V

u+ + C |V | 2n − 1
q ‖ f ‖Lq (V ).

Proof Let GV (x, y) be the Green’s function of Lφ in V with pole y ∈ V , namely
GV (·, y) is a positive solution of

{LφGV (·, y) = δy in V,

GV (·, y) = 0 on ∂V

with δy denoting the Dirac measure giving unit mass to the point y. Define

v(x) :=
∫

V
GV (x, y) f (y) dy for x ∈ V .

Then v is a solution of

Lφv = f in V, and v = 0 on ∂V .

Since Lφ(u − v) ≤ 0 in V , we obtain from the Aleksandrov–Bakelman–Pucci (ABP)
maximum principle (see [11, Theorem 9.1]) that

u(x) ≤ sup
∂V

u+ + v(x) in V . (2.2)
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We next estimate v(x) for the case n ≥ 3 using [27, Lemma 3.3]. The case n = 2 is
treated similarly, using [17, Theorem1.1]. Notice thatAleksandrov’s estimate (see [13,
Theorem 1.4.2]) implies that dist(�α, ∂�) ≥ c(n, λ,�)(1−α)n > 0. It follows from
this and the proof of [27, Lemma 3.3] that there exists a constant K > 0 depending
on α, n, λ, and � such that for every y ∈ V ∩ �α we have

|{x ∈ V : GV (x, y) > t}| ≤ K t−
n

n−2 for t > 0. (2.3)

As the operator Lφ can be written in the divergence form with symmetric coefficient,
we infer from [12, Theorem 1.3] that GV (x, y) = GV (y, x) for all x, y ∈ V . This
together with (2.3) allows us to deduce that for every x ∈ V ∩ �α , there holds

|{y ∈ V : GV (x, y) > t}| = |{y ∈ V : GV (y, x) > t}| ≤ K t−
n

n−2 for t > 0.

It follows that if q > n
2 , then q ′ := q

q−1 < n
n−2 and from the layer cake representation,

we have

∫

V
GV (x, y)q ′

dy = q ′
∫ ∞

0
tq ′−1|{y ∈ V : GV (x, y) > t}| dt

≤ q ′|V |
∫ ε

0
tq ′−1 dt + q ′K

∫ ∞

ε

tq ′−1− n
n−2 dt

= |V |εq ′ + C1ε
q ′− n

n−2 for all ε > 0.

By choosing ε = ( C1|V |
) n−2

n in the above right-hand side, we obtain

sup
x∈V ∩�α

∫

V
GV (x, y)q ′

dy ≤ 2C
n−2

n q ′
1 |V |1− n−2

n q ′
.

We deduce from the definition of v, Hölder inequality and the above estimate for GV

that

|v(x)| ≤ ‖GV (x, ·)‖Lq′
(V )

‖ f ‖Lq (V )

≤ 2C
n−2

n
1 |V | 1

q′ − n−2
n ‖ f ‖Lq (V ) for all x ∈ V ∩ �α.

This estimate and (2.2) yield the conclusion of the lemma.

By employing Lemma 2.1 and the interior Harnack inequality established in [6] for
nonnegative solutions to the homogeneous linearized Monge–Ampère equations, we
get:

Lemma 2.2 (Harnack inequality) Assume that � and φ satisfy (H). Let f ∈ Lq(�)

for some q > n/2 and u ∈ W 2,n
loc (�) satisfy Lφu = f almost everywhere in �. Then

if Sφ(x, t) � � and u ≥ 0 in Sφ(x, t), we have
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1762 N. Q. Le, T. Nguyen

sup
Sφ(x, t

2 )
u ≤ C

(
inf

Sφ(x, t
2 )

u + |Sφ(x, t)| 2n − 1
q ‖ f ‖Lq (Sφ(x,t))

)
, (2.4)

where C > 0 depends only on n, λ,�, and q.

Proof For convenience, let us write Sh for the section Sφ(x, h). Let u0 be the solution
of

Lφu0 = f in St , and u0 = 0 on ∂St .

Then Lφ(u − u0) = 0 in St and u − u0 ≥ 0 on ∂St . Thus we conclude from the ABP
maximum principle that u − u0 ≥ 0 in St . Hence, we can apply the interior Harnack
inequality established in [6, Theorem 5] to obtain

sup
S t
2

(u − u0) ≤ C inf
S t
2

(u − u0),

for some constant C depending only on n, λ, and �, which then implies

sup
S t
2

u ≤ C ′( inf
S t
2

u + sup
S t
2

|u0|
)
.

By normalizing the section St , φ, u0 and applying Lemma 2.1 for α = 1/2, we get

sup
S t
2

|u0| ≤ C |St |
2
n − 1

q ‖ f ‖Lq (St ). (2.5)

Therefore, estimate (2.4) follows as desired.
For reader’s convenience, we include the details of (2.5). By subtracting a linear

function from φ, we can assume that φ(x) = 0 and Dφ(x) = 0. By John’s lemma,
there is an affine transformation T y = Ay + z such that

B1(0) ⊂ �̃ := T −1Sφ(x, t) ⊂ Bn(0), (2.6)

where A is an n × n invertible matrix and z ∈ R
n . Rescale φ and u0 by

φ̃(y) = 1

| det A|2/n
[φ(T y) − t], ũ0(y) = u0(T y), y ∈ �̃.

Then �̃ and φ̃ satisfy (H). Moreover, using (2.1) with a = | det A|2/n and b = 1, we
find

Lφ̃ ũ0(y) = | det A|2/n f (T y) := f̃ (y) in �̃ with ũ0 = 0 on ∂�̃.

123



Global W 1,p estimates for linearized Monge–Ampère 1763

Therefore, we can apply Lemma 2.1 for V = �̃ and α = 1/2 to get

sup
y∈�̃ 1

2 ,φ̃

|ũ0(y)| ≤ C(n, λ,�, q)|�̃| 2n − 1
q ‖ f̃ ‖Lq (�̃). (2.7)

Since

‖ f̃ ‖Lq (�̃) = | det A| 2n − 1
q ‖ f ‖Lq (Sφ(x,t)),

and by (2.6),

C−1
1 (n)|Sφ(x, t)| ≤ | det A| ≤ C1(n)|Sφ(x, t)|,

we find from (2.7) that

sup
Sφ(x,t)

|u0| = sup
y∈�̃ 1

2 ,φ̃

|ũ0(y)| ≤ C(n, λ,�, q)|Sφ(x, t)| 2n − 1
q ‖ f ‖Lq (Sφ(x,t)).

This proves (2.5), completing the proof of the lemma.

As a consequence of Lemma 2.2, we obtain the following oscillation estimate:

Corollary 2.3 Assume that � and φ satisfy (H). Let f ∈ Lq(�) for some q > n/2
and u ∈ W 2,n

loc (�) satisfy Lφu = f almost everywhere in �. Then for any section
Sφ(x, h) � �, we have

oscSφ(x,ρ)u ≤ C
(ρ

h

)α [
oscSφ(x,h)u + h1− n

2q ‖ f ‖Lq (Sφ(x,h))

]
for all ρ ≤ h,

where oscE u := sup
E

u − inf
E

u and the constants C, α > 0 depend only on n, λ,�,

and q.

Proof Let us write St for the section Sφ(x, t). Then, by [13, Corollary 3.2.4], there
exist constants C and C ′ depending only on n, λ,� such that the volume of interior
sections of φ satisfies

Ctn/2 ≤ |St | ≤ C ′tn/2 whenever St � �.

Set

m(t) := inf
St

u, M(t) := sup
St

u, and ω(t) := M(t) − m(t).

Let ρ ∈ (0, h] be arbitrary. Then since ũ := u − m(ρ) is a nonnegative solution of
Lφ ũ = f in Sρ , we can apply Lemma 2.2 for ũ and the volume growth of interior
sections of φ to obtain
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1

C
sup
S ρ
2

ũ ≤ inf
S ρ
2

ũ + ρ
1− n

2q ‖ f ‖Lq (Sρ).

It follows that for all ρ ∈ (0, h], we have

ω
(ρ

2

)
= sup

S ρ
2

ũ − inf
S ρ
2

ũ ≤ (
1 − 1

C

)
sup
S ρ
2

ũ + ρ
1− n

2q ‖ f ‖Lq (Sρ)

≤ (
1 − 1

C

)
ω(ρ) + ρ

1− n
2q ‖ f ‖Lq (Sh).

Thus, by the standard iteration we deduce that

ω(ρ) ≤ C ′(ρ

h

)α
[
ω(h) + h1− n

2q ‖ f ‖Lq (Sh)

]
,

giving the conclusion of the corollary.

Corollary 2.3 implies Hölder estimate. Indeed, from the arguments in [6, pp. 456-
457], we have

|u(x) − u(y)| ≤ C‖A‖β |x − y|β
[
‖u‖L∞(Sφ(x0,2h)) + (2h)

1− n
2q ‖ f ‖Lq (Sφ(x0,2h))

]

for all x, y ∈ Sφ(x0, h),

where C is a universal constant and T x = A(x − x0)+ y0 is the affine transformation
normalizing Sφ(x0, 2θh), i.e., B1(0) ⊂ T

(
Sφ(x0, 2θh)

) ⊂ Bn(0) (θ = θ(n, λ,�) >

1 is the engulfing constant). But when � is normalized, we have from [13, Theo-
rem 3.3.8] the inclusion Bc1h(x0) ⊂ Sφ(x0, h). Therefore ABc1h(0) + y0 ⊂ Bn(0)
and hence ‖A‖ ≤ Ch−1. Consequently,

|u(x) − u(y)| ≤ C∗h−β |x − y|β
[
‖u‖L∞(Sφ(x0,2h)) + (2h)

1− n
2q ‖ f ‖Lq (Sφ(x0,2h))

]

for all x, y ∈ Sφ(x0, h),

where C∗ is a universal constant. From this, we deduce the next result.

Corollary 2.4 (Interior Hölder estimate) Assume that � and φ satisfy (H). Let f ∈
Lq(B1(0)) for some q > n/2 and u ∈ W 2,n

loc (B1(0)) be a solution of Lφu = f in
B1(0). Then there exist constants β ∈ (0, 1) and C > 0 depending only on n, λ,�, q
such that

|u(x) − u(y)| ≤ C |x − y|β
(
‖u‖L∞(B1(0)) + ‖ f ‖Lq (B1(0))

)
for all x, y ∈ B 1

2
(0).

2.2 Comparison and stability estimates

The following lemma allows us to compare explicitly two solutions originating from
two different linearized Monge–Ampère equations.
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Global W 1,p estimates for linearized Monge–Ampère 1765

Lemma 2.5 Let U be a normalized convex domain. Assume that φ,w ∈ C(U ) are
convex functions satisfying 1

2 ≤ det D2φ ≤ 3
2 , det D2w = 1 in U and φ = w = 0

on ∂U. Let � = (�i j ) and W = (W i j ) be the cofactor matrices of D2φ and D2w,
respectively. Denote Uα = Uα,φ for 0 < α < 1. Assume that u ∈ W 2,n

loc (U ) ∩ C(U )

satisfies �i j Di j u = f in U with |u| ≤ 1 in U and f ∈ Lq(U ) (q > n/2). Assume

0 < α1 < 1 and h ∈ W 2,n
loc (Uα1) ∩ C(Uα1) is a solution of

{
Wi j Di j h = 0 in Uα1

h = u on ∂Uα1 .
(2.8)

Then, there exists γ ∈ (0, 1) depending only on n and q such that for any 0 < α2 < α1
we have

‖u − h‖L∞(Uα2 ) + ‖ f − trace([� − W]D2h)‖Lq (Uα2 )

≤ C(α1, α2, n, q)
{
‖� − W‖γ

Lq (Uα1 ) + ‖ f ‖Lq (U )

}

provided that ‖� − W‖Lq (Uα1 ) ≤ (α1 − α2)
2n

1+(n−1)γ .

Lemma 2.5 is an extension of [15, Lemma 4.1]. Its proof is omitted since it is similar
to that of [15, Lemma 4.1]. Instead of using the ABP estimate and interior Hölder
estimate for equation (1.1) with Ln right-hand side as in [15], we use Lemma 2.1 and
Corollary 2.4 for the linearized Monge–Ampère equation with Lq right-hand side.

We close this section by a result about the stability of cofactor matrices, which is a
consequence of [14, Lemma 3.5] and [20, Proposition 3.14].

Lemma 2.6 Let � be a normalized convex domain. Let φ,w ∈ C(�) be convex
functions satisfying

1 − θ ≤ det D2φ ≤ 1 + θ in �, det D2w = 1 in � and φ = w = 0 on ∂�.

Then for any q ≥ 1, there exist θ0 > 0 and C > 0 depending only on q and n such
that

‖� − W‖Lq (B 1
2
(0)) ≤ Cθ

(n−1)δ
n(2nq−δ) for all θ ≤ θ0,

where δ = δ(n) > 0, and �,W are the matrices of cofactors of D2φ and D2w,
respectively.

3 Pointwise C1,α estimates in the interior and interior W1, p estimates

In this section,we sketch the proof ofTheorem1.2 and then use it to proveTheorem1.3.
For the proof of Theorem 1.2, we need the next two lemmas from [14] about

geometric properties of sections of solutions to the Monge–Ampère equation. For a
strictly convex function φ defined on � and t > 0, we denote by St (φ) the section of
φ centered at its minimum point with height t , i.e.,
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St (φ) :=
{

x ∈ � : φ(x) ≤ min
�

φ + t

}
.

We denote by I the identity matrix.

Lemma 3.1 [14, Lemma 3.2] Suppose B1(0) ⊂ � ⊂ Bn(0) is a normalized convex
domain. Then there exist universal constants μ0 > 0, τ0 > 0 and a positive definite
matrix M = At A and p ∈ R

n satisfying

det M = 1, 0 < c1 I ≤ M ≤ c2 I, and |p| ≤ c,

such that if φ ∈ C(�) is a strictly convex function in � with

1 − ε ≤ det D2φ ≤ 1 + ε in �, and φ = 0 on ∂�,

then for 0 < μ ≤ μ0 and ε ≤ τ0μ
2, we have

B(1−C(μ1/2+μ−1ε1/2))
√
2(0) ⊂ μ−1/2T Sμ(φ) ⊂ B(1+C(μ1/2+μ−1ε1/2))

√
2(0),

and
∣∣∣∣φ(x) −

[
φ(x0) + p · (x − x0) + 1

2
〈M(x − x0), (x − x0)〉

]∣∣∣∣

≤ C(μ3/2 + ε) in Sμ(φ),

where x0 ∈ � is the minimum point of φ and T x := A(x − x0).

Lemma 3.2 [14, Lemma 3.3] Suppose B(1−σ)
√
2(0) ⊂ � ⊂ B(1+σ)

√
2(0) is a convex

domain where 0 < σ ≤ 1/4. Then there exist universal constants μ0 > 0, τ0 > 0
which are independent of σ , a positive definite matrix M = At A, and p ∈ R

n with

det M = 1, (1 − Cσ)I ≤ M ≤ (1 + Cσ)I, and |p − x0| ≤ Cσ,

such that if φ ∈ C(�) is a strictly convex function in � with

1 − ε ≤ det D2φ ≤ 1 + ε in �, and φ = 0 on ∂�,

then for 0 < μ ≤ μ0 and ε ≤ τ0μ
2, we have

B(1−C(σμ1/2+μ−1ε1/2))
√
2(0) ⊂ μ−1/2T Sμ(φ) ⊂ B(1+C(σμ1/2+μ−1ε1/2))

√
2(0),

and
∣∣∣∣φ(x) −

[
φ(x0) + p · (x − x0) + 1

2
〈M(x − x0), (x − x0)〉

]∣∣∣∣

≤ C(σμ3/2 + ε) in Sμ(φ),

where x0 ∈ � is the minimum point of φ and T x := A(x − x0).
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We also use the following classical Pogorelov’s estimates [13, formula (4.2.6)], and
interior C1,1 estimates for linear, uniformly elliptic equations [11, Theorem 6.2]; see
also the proof of [14, Lemma 3.2] and [14, Theorem 2.7].

Lemma 3.3 Suppose B1(0) ⊂ � ⊂ Bn(0) is a normalized convex domain. Let w be
the convex solution to the equation det D2w = 1 in � with w = 0 on ∂�.

(i) Let x1 ∈ � be the minimum point of w. Then |w(x1)| ∼ cn for some universal
constant cn and we have the Pogorelov’s estimates

2

C2
2

I ≤ D2w(x) ≤ 2

C2
1

I for all x ∈ � with dist (x, ∂�) ≥ cn,

where C1 and C2 are constants depending only on n.
(ii) For any solution h ∈ C2(B1(0)) of Lwh = 0 in B1(0), we have the classical

interior C1,1 estimate

‖h‖
C1,1

(
B 1
2
(0)

) ≤ ce‖h‖
L∞

(
∂ B 3

4
(0)

)

for some constant ce depending only on n.

Sketch of the proof of Theorem 1.2 Our proof utilizes results obtained in Sect. 2
together with the arguments in the proof of [14, Theorem 4.5]. We sketch its proof
here. Also for convenience, we assume that the minimum point of φ is z̄ = 0.

By diving our equation by K := ‖u‖L∞(�) + θ−1Nφ, f,q(0), we can assume that

�i j ui j (x) = f (x) in � with ‖u‖L∞(�) ≤ 1,

and

(
1

|Sr (φ)|
∫

Sr (φ)

| f |qdx

) 1
q ≤ θr

α−1
2 for all Sr (φ) � � with r ≤ r0.

We need to prove that there exists an affine function l(x) such that

sup
0<r≤μ∗

(
r−(1+α′)‖u − l‖L∞(Br (0))

)
+ |l(0)| + ‖Dl(0)‖ ≤ C (3.1)

with θ, μ∗, and C depending only on n, q, α, α′, and r0. As in the proof of [14,
Theorem 4.5], (3.1) follows from the following Claim.

Claim There exist 0 < μ < 1 depending only on n, α, and r0, a sequence of positive
definite matrices Ak with det Ak = 1 and a sequence of affine functions lk(x) =
ak + bk · x such that for all k = 1, 2, 3, . . .

(1) ‖Ak−1A−1
k ‖ ≤ 1√

c1
, ‖Ak‖ ≤ √

c2(1 + Cδ0)(1 + Cδ1) · · · (1 + Cδk−1);
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1768 N. Q. Le, T. Nguyen

(2) B(1−δk)
√
2(0) ⊂ μ

−k
2 Ak Sμk (φ) ⊂ B(1+δk)

√
2(0);

(3) ‖u − lk−1‖L∞(S
μk (φ)) ≤ μ

k−1
2 (1+α);

(4) |ak − ak−1| + μ
k
2 ‖(A−1

k )t · (bk − bk−1)‖ ≤ 2ceμ
k−1
2 (1+α),

where

A0 := I, l0(x) := 0, δ0 := 0; δ1 := C
(
μ1/2 + μ−1θ1/2

)
< 1 − 6

5
√
2
, and

δk := C
(
δk−1μ

1/2 + μ−1θ1/2
)

for k ≥ 2.

Also C, ce, c1, and c2 are universal constants: ce is the constant in Lemma 3.3; c1 and
c2 are given by Lemma 3.1 and C is given by Lemma 3.2.

The proof of the claim is by induction. It is quite similar to the proof of [14,
Theorem 4.5]. For reader’s convenience, we indicate the proof for the cases k = 1, 2.

Let μ0 > 0 and τ0 > 0 be the small universal constants given by Lemma 3.1. Let

0 < μ ≤ μ0 be fixed such that μ ≤ r0, C2
√
3μ ≤ 1/2, and 6ceC2

2μ
1−α
2 ≤ 1, where

C2 is the universal constant in the Pogorelov’s estimates of Lemma 3.3. The constant
θ ≤ θ0 will be determined later depending only on n, q, μ, α, and α′, where θ0 =
θ0(q, n) is given by Lemma 2.6. In particular by taking θ even smaller if necessary,
we assume that δ1 = C(μ1/2 + μ−1θ1/2) < 1 − 6

5
√
2
.

k = 1 Applying Lemma 3.1 we obtain a positive definite matrix M = At A with
det A = det M = 1, c1 I ≤ M ≤ c2 I such that if we take A1 := A then

B(1−δ1)
√
2(0) ⊂ μ

−1
2 A1Sμ(φ) ⊂ B(1+δ1)

√
2(0), with δ1 := C

(
μ1/2 + μ−1θ1/2

)
.

Then (1) and (2) hold obviously since ‖A−1
1 ‖ ≤ 1/

√
c1 and ‖A1‖ ≤ √

c2. Also
(3) is satisfied as l0 ≡ 0 and ‖u‖L∞(�) ≤ 1.

k = 2 We first construct l1 and verify (3) for k = 2 and (4) for k = 1. Then we
construct A2 and verify (1) and (2) for k = 2.

+Constructing l1(x): Recall that Dφ(0) = 0 since the origin is the minimum point

of φ. Hence Sμ(φ) = {y ∈ � : φ(y)−φ(0)−μ ≤ 0}. Let �∗
1 := μ

−1
2 A1Sμ(φ), and

φ∗(y) := 1

μ

[
φ

(
μ

1
2 A−1

1 y
)

− φ(0) − μ
]
,

v(y) := (u − l0)
(
μ

1
2 A−1

1 y
)

= u
(
μ

1
2 A−1

1 y
)

for y ∈ �∗
1. Then, as D2φ∗(y) = (A−1

1 )t D2φ(μ
1
2 A−1

1 y)A−1
1 , we get

{
1 − θ ≤det D2φ∗≤ 1 + θ in �∗

1
φ∗= 0 on ∂�∗

1
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Let �∗(y) ≡ (
�∗i j (y)

) := det D2φ∗(y) (D2φ∗(y))−1. Then, by (2.1), we get

�∗i jvi j (y) = μ f
(
μ

1
2 A−1

1 y
) =: f̃ (y) in �∗

1.

Notice that, from det A1 = 1 and �∗
1 := μ

−1
2 A1Sμ(φ), we have

(
1

|�∗
1|

∫

�∗
1

| f̃ (y)|qdy

) 1
q

= μ

(
1

|Sμ(φ)|
∫

Sμ(φ)

| f (x)|qdx

) 1
q

≤ μθμ
α−1
2 = θμ

1+α
2 .

We apply Lemma 2.5 with φ � φ∗, f � f̃ , u � v, and U � �∗
1. Note that by (3)

we have ‖v‖L∞(�∗
1)

≤ 1. Recall that θ ≤ θ0, where θ0 is the small constant given by
Lemma 2.6. Hence if h is the solution of

{
Wi j Di j h = 0 in S 1

2
(φ∗)

h = v on ∂S 1
2
(φ∗) where

{
det D2w = 1 in �∗

1
w = 0 on ∂�∗

1,

then

‖v − h‖
L∞

(
S 1
4
(φ∗)

) ≤ C(n, q)
{
‖�∗ − W‖γ

Lq

(
S 1
2
(φ∗)

) + ‖ f̃ ‖Lq (�∗
1)

}

≤ C(n, q)

{
Cθ

(n−1)γ δ
n(2nq−δ) + θμ

1+α
2

}
≤ 1

2
μ

1+α
2 .

We have ‖h‖L∞(B1) ≤ 1 by the maximum principle. Moreover, it follows from the
formulas [14, (3.13) and (3.15)] that, for some C3 = C3(n),

S2μ(φ∗) ⊂ B
C2

√
2μ+C3θ1/2

(0) ⊂ BC2
√
3μ(0).

Thus, by letting l̄(y) := h(0) + Dh(0) · y, applying the interior C1,1 estimate for h
as in Lemma 3.3 and noting that C2

√
3μ ≤ 1/2, we get

‖h − l̄‖L∞(S2μ(φ∗)) ≤ ‖h − l̄‖
L∞

(
BC2

√
3μ(0)

) ≤ 3ceC2
2μ.

Therefore,

‖v − l̄‖L∞(S2μ(φ∗)) ≤ ‖v − h‖L∞(S2μ(φ∗)) + ‖h − l̄‖L∞(S2μ(φ∗))

≤ 1

2
μ

1+α
2 + 3ceC2

2μ ≤ μ
1
2 (1+α). (3.2)

Define

l1(x) := l0(x) + l̄
(
μ

−1
2 A1x

)
. (3.3)
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Then since Sμ(φ∗) = μ
−1
2 A1Sμ2(φ), we obtain from (3.2) for x ∈ Sμ2(φ) that

|u(x) − l1(x)| = |v
(
μ

−1
2 A1x

)
− l̄

(
μ

−1
2 A1x

)
| ≤ ‖v − l̄‖L∞(Sμ(φ∗)) ≤ μ

1
2 (1+α).

Thus (3) for k = 2 is verified. Also (4) for k = 1 holds because it follows from the
definition (3.3) and the definition of l̄ that a1 = a0+h(0) and b1 = b0+μ

−1
2 At

1Dh(0).
Hence using the interior C1,1 estimate for h, we get (4) for k = 1 from

|a1 − a0| + μ
1
2 ‖

(
A−1
1

)t · (b1 − b0)‖ = |h(0)| + ‖Dh(0)‖ ≤ 2ce.

+ Constructing A2: Applying Lemma 3.2 for φ∗ and �∗
1 we obtain a positive

definite matrix M = At A with det M = 1, (1− Cδ1)I ≤ M ≤ (1+ Cδ1)I such that

B(1−δ2)
√
2(0) ⊂ μ

−1
2 ASμ(φ∗) ⊂ B(1+δ2)

√
2(0), with δ2 := C

(
δ1μ

1/2 + μ−1θ1/2
)

.

Define A2 := AA1 which implies in particular that A2 is a positive definite matrix

with det A2 = 1. Then as Sμ(φ∗) = μ
−1
2 A1Sμ2(φ) we conclude that

B(1−δ2)
√
2(0) ⊂ μ−1A2Sμ2(φ) ⊂ B(1+δ2)

√
2(0).

Thus (2) and the first part of (1) for k = 2 hold obviously since A1A−1
2 = A−1 and

‖A−1‖ ≤ 1√
1−Cδ1

≤ 1√
c1
. Next observe from the definition of A that (1− Cδ1)|x |2 ≤

|Ax |2 ≤ (1 + Cδ1)|x |2. Hence

|A2x |2 = |AA1x |2 ≤ (1 + Cδ1)|A1x |2 ≤ c2(1 + Cδ1)|x |2

yielding the second part of (1), i.e., ‖A2‖ ≤ √
c2(1 + Cδ1). ��

We next prove Theorem 1.3, and in this proof we use the following strong-type
inequality for the maximal function with respect to sections:

Theorem 3.4 [15, Theorem 2.2] Assume that � and φ satisfy (H). Let �′ � �. Fix
h0 > 0 such that Sφ(x, 2h0) � � for all x ∈ �′. Define the maximal function M( f )

by

M( f )(x) = sup
t≤h0

1

|Sφ(x, t)|
∫

Sφ(x,t)
| f (y)| dy for x ∈ �′.

For any 1 < p < ∞, there exists a constant C depending on p, n, λ,�, and
dist(�′, ∂�) such that

(∫

�′
|M( f )(x)|p dμ(x)

) 1
p ≤ C

(∫

�

| f (y)|p dμ(y)

) 1
p

.

123



Global W 1,p estimates for linearized Monge–Ampère 1771

Proof of Theorem 1.3 Let �′ � �. Let 0 < α < 1, q ′ be such that n/2 < q ′ < q,
and

N (z) := sup
r≤h0

r
1−α
2

(
1

|Sφ(z, r)|
∫

Sφ(z,r)

| f |q ′
dx

) 1
q′

,

where h0 is to be determined. One of the requirements is that Sφ(y, 2h0) � � for all
y ∈ �′. Then we have the following pointwise estimate for the gradient Du:

|Du(y)| ≤ C
[
‖u‖L∞(�) + N (y)

]
for a.e. y ∈ �′. (3.4)

The L p estimate (1.12) for Du then follows from the volumegrowth of interior sections
of φ and the strong-type inequality for the maximal function M( f ) in Theorem 3.4.
Indeed, by Hölder inequality, it suffices to consider the case q ≤ p <

nq
n−q . From (3.4)

and by using Hölder inequality, we have for any p ≥ q that

‖Du‖L p(�′)
≤ C‖u‖L∞(�) + C‖N‖L p(�′)
≤ C‖u‖L∞(�)

+ C

(∫

�′
sup
r≤h0

{
r

p
2 (1−α)M

(
f q ′)

(y)
q
q′

( 1

|Sφ(y, r)|
∫

Sφ(y,r)

| f (x)|q ′
dx

) p−q
q′ }

dy

) 1
p

≤ C‖u‖L∞(�)

+ C

(∫

�′
sup
r≤h0

{
r

p
2 (1−α)M

(
f q ′)

(y)
q
q′

( 1

|Sφ(y, r)|
∫

Sφ(y,r)

| f (x)|qdx
) p−q

q
}
dy

) 1
p

≤ C‖u‖L∞(�) + C sup
r≤h0

{
r

1
2

[
(1−α)− n

q + n
p

]}(∫

�′
M

(
f q ′)

(y)
q
q′ dy

) 1
p ‖ f ‖

p−q
p

Lq (�).

The last inequality above follows from the volume estimates of interior sections of φ.
These estimates [13, Corollary 3.2.4] say that there exist constantsC andC ′ depending
only on n, λ,� such that

Crn/2 ≤ |Sφ(y, r)| ≤ C ′rn/2 for all y ∈ �′ and r ≤ h0.

As q/q ′ > 1, we can apply Theorem 3.4 to conclude that

‖Du‖L p(�′) ≤ C‖u‖L∞(�) + C sup
r≤h0

{
r

1
2

[
(1−α)− n

q + n
p

]}
‖ f ‖

q
p

Lq (�)‖ f ‖
p−q

p

Lq (�)

= C‖u‖L∞(�) + C sup
r≤h0

{
r

1
2

[
(1−α)− n

q + n
p

]}
‖ f ‖Lq (�).
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Now, since q ≤ p <
nq

n−q , we can choose α ∈ (0, 1 − n
q + n

p ) to obtain estimate
(1.12):

‖Du‖L p(�′) ≤ C
(
‖u‖L∞(�) + ‖ f ‖Lq (�)

)
.

It remains to prove (3.4). Given ε0 > 0, since g ∈ C(�) and by [13, Theorem 3.3.8],
there exists h0 > 0 such that for any y ∈ �′,

BC1h0(y) ⊂ Sφ(y, h0) ⊂ BC2hb
0
(y) and |g(x) − g(y)| ≤ ε0 for all x ∈ Sφ(y, h0).

Fix y ∈ �′, and let T x = A(x − y) + z̄ be an affine transformation such that

B1(0) ⊂ T Sφ(y, h0) ⊂ Bn(0).

Notice that C−1 ≤ | det A| 2n h0 ≤ C for some constant C > 0 depending only on n, λ,
and �.

Define �̃ := T Sφ(y, h0) and consider the functions

φ̃(z) := κ
[
φ(T −1z) − ly(T −1z) − h0

]
and ũ(z) := g(y)κ

α−3
2 u(T −1z), for z ∈ �̃

where κ := g(y)
−1
n | det A| 2n and ly(x) is the supporting function of φ at y. Then

1 − ε0

λ
≤ det D2φ̃(z) ≤ 1 + ε0

λ
and �̃i j ũi j (z) = κ

α−1
2 f (T −1z) =: f̃ (z) in �̃.

We have

r
1−α
2

(
1

|Sφ̃(z̄, r)|
∫

S
φ̃
(z̄,r)

| f̃ |q ′
dz

) 1
q′

= (κ−1r)
1−α
2

(
1

|Sφ(y, κ−1r)|
∫

Sφ(y,κ−1r)

| f |q ′
dx

) 1
q′

for all r ≤ κh0. Since κh0 = g(y)
−1
n | det A| 2n h0 ≥ c(n, λ,�) > 0, it follows by

letting r0 := c(n, λ,�) that N
φ̃, f̃ ,q ′(z̄) ≤ N (y). Note that z̄ is the minimum point

of φ̃ in �̃ . Therefore if we choose ε0 := λθ , where θ > 0 is the constant given in
Theorem 1.2 corresponding to this r0, α′ = 0, and q � q ′, then by Theorem 1.2 there
exist constantsμ∗, C > 0 depending only on n, q ′, α, λ, and�, and an affine function
l̄ such that

|ũ(z) − l̄(z)|+|z − z̄||Dl̄|≤C |z − z̄|
[
‖ũ‖L∞(�̃) + N (y)

]
for all z ∈ Bμ∗(z̄) � �̃.

(3.5)
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Observe that as BC1h0(y) ⊂ Sφ(y, h0), we have T BC1h0(y) ⊂ Bn(0), i.e.,
ABC1h0(0) + z̄ ⊂ Bn(0). This yields ‖A‖ ≤ Ch−1

0 . Thus T BC−1μ∗h0(y) ⊂ Bμ∗(z̄)
and we obtain from (3.5) and by rescaling back and by taking �(x) = �(x, y) :=
g(y)−1κ

3−α
2 l̄(T x) that

|u(x) − �(x)| + |x − y||D�| = g(y)−1κ
3−α
2

[
|ũ(T x) − l̄(T x)| + |x − y||Dl̄ · A|

]

≤ C‖A‖|x − y|g(y)−1κ
3−α
2

[
‖ũ‖L∞(�̃) + N (y)

]

= C‖A‖|x − y|
[
‖u‖L∞(Sφ(y,h0)) + g(y)−1(g(y)

−1
n | det A| 2n ) 3−α

2 N (y)
]

≤ Ch−1
0 h

α−3
2

0 |x − y|
[
‖u‖L∞(Sφ(y,h0)) + N (y)

]
for all x ∈ BC−1μ∗h0(y).

In other words, we proved that for any y ∈ �′ there exists an affine function � such
that

|u(x) − �(x)| + |x − y||D�| ≤ Ch
α−5
2

0 |x − y|
[
‖u‖L∞(�) + N (y)

]

for all x ∈ BC−1μ∗h0(y). (3.6)

Now, let y ∈ �′ be such that Du(y) exists. Then using (3.6) we get

|u(x) − u(y)| ≤ |u(x) − �(x)| + |�(x) − �(y)| + |u(y) − �(y)|
≤ C |x − y|

[
‖u‖L∞(�) + N (y)

]
for all x ∈ BC−1μ∗h0(y),

which yields (3.4). Note that the constant C depends also on h0, and hence it depends
on the modulus of continuity of g. ��

4 Pointwise C1,α estimates at the boundary

In this section, we prove Lemma 1.5 and Theorem 1.4. The proof of Theorem 1.4 is
similar to that of [22, Theorem 1.1] but we include it here for the sake of completeness.
It uses the perturbation arguments in the spirit of Caffarelli [2,5] (see also Wang [33])
and boundary Hölder gradient estimates for the case of bounded right-hand side f and
C1,1 boundary data by Savin and the first author [21]. We recall these estimates in the
following theorem.

Theorem 4.1 [21, Theorem 2.1 and Proposition 6.1] Assume φ and � satisfy assump-
tions (1.13)–(1.16). Denote for simplicity St = Sφ(0, t). Let u : Sr ∩ � → R be a
continuous solution to

�i j ui j = f in Sr ∩ �, and u = 0 on ∂� ∩ Sr
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where f ∈ L∞(Sr ∩ �). Then, for all s ≤ r/2, we have

|∂nu(0)| + s− 1+α0
2 max

Ss
|u − ∂nu(0)xn| ≤ C0

(‖u‖L∞(Sr ∩�) + ‖ f ‖L∞(Sr ∩�)

)
,

where α0 ∈ (0, 1) and C0 are constants depending only on n, ρ, λ,�.

Assume φ and � satisfy (1.13)–(1.16). We can also assume that φ(0) = 0 and
Dφ(0) = 0.

By Savin’s Localization Theorem for solutions to the Monge–Ampère equations
proved in [24,25], there exists a small constant k depending only on n, ρ, λ,� such
that if h ≤ k then

k Eh ∩ � ⊂ Sφ(0, h) ⊂ k−1Eh ∩ �. (4.1)

Here Eh := h1/2A−1
h B1(0) with Ah being a linear transformation (sliding along the

xn = 0 plane)

Ah(x) = x − τh xn, τh · en = 0, det Ah = 1 (4.2)

and

|τh | ≤ k−1 |logh| .

Let us write τh = (νh, 0) with νh ∈ R
n−1. Next, we define the following rescaling of

φ

φh(x) := φ(h1/2A−1
h x)

h
in �h := h−1/2Ah�. (4.3)

Then

λ ≤ det D2φh(x) = det D2φ(h1/2A−1
h x) ≤ � in �h

and

Bk(0) ∩ �h ⊂ Sφh (0, 1) = h−1/2Ah Sφ(0, h) ⊂ Bk−1(0) ∩ �h .

We note that Lemma 4.2 in [21] implies that if h, r ≤ c small then φh satisfies in
Sφh (0, 1) the hypotheses of the Localization Theorem [24,25] at all x0 ∈ Sφh (0, r) ∩
∂Sφh (0, 1). In particular, there exists ρ̃ > 0 small depending only on n, ρ, λ,� such
that if x0 ∈ Sφh (0, r) ∩ ∂Sφh (0, 1) then

ρ̃ |x − x0|2 ≤ φh(x) − φh(x0) − Dφh(x0) · (x − x0) ≤ ρ̃−1 |x − x0|2 ,

∀x ∈ ∂Sφh (0, 1). (4.4)
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Moreover, for h, t ≤ c, we have the following volumes estimates

c1h
n
2 ≤ |Sφ(0, h)| ≤ C1h

n
2 ; c1t

n
2 ≤ |Sφh (0, t)| ≤ C1t

n
2 . (4.5)

We fix r in what follows. Then, the boundary Hölder gradient estimates in Theorem
4.1 for solutions to the linearized Monge–Ampère equation with bounded right-hand
side and C1,1 boundary data hold in Sφh (0, r).

We now employ the Green’s function estimate obtained in [18] to derive a boundary
version of the generalized maximum principle in Lemma 2.1.

Lemma 4.2 (Boundary maximum principle) Let h, t ≤ c where c = c(n, λ,�, ρ) is
universally small. Let f ∈ Lq(Sφh (0, t)) for some q > n/2 and u ∈ W 2,n

loc (Sφh (0, t))∩
C(Sφh (0, t)) satisfy

Lφh u ≤ f almost everywhere in Sφh (0, t).

Then there exists a constant C > 0 depending only on n, λ,�, ρ, and q such that

sup
Sφh (0,t)

u ≤ sup
∂Sφh (0,t)

u+ + C |Sφh (0, t)| 2n − 1
q ‖ f ‖Lq (Sφh (0,t)).

Proof Let V = Sφh (0, t). Let GV (·, y) be the Green’s function of Lφh in V with pole
y ∈ V . As in (2.2), we obtain for all x ∈ Sφh (0, t) the estimate

u(x) ≤ sup
∂Sφh (0,t)

u+ +
∫

V
GV (x, y) f (y)dy.

The conclusion of the lemma follows once we establish that for q ′ = q
q−1 , we have

‖GV (x, ·)‖Lq′
(V )

≤ C |V | 2n − 1
q for all x ∈ V . (4.6)

Thanks to (4.4), one can find a constant θ∗ > 1 depending only on n, λ,�, and ρ such
that

Sφh (0, t) ⊂ Sφh (x, θ∗t) for all x ∈ Sφh (0, t). (4.7)

This is a boundary version of the engulfing property of sections of theMonge–Ampère
equation (see [19, Lemma 4.1]). By the symmetry of the Green’s function, we have

∫

V
Gq ′

V (x, y)dy =
∫

V
Gq ′

V (y, x)dy ≤
∫

Sφh (x,θ∗t)
Gq ′

Sφh (x,θ∗t)(y, x)dy. (4.8)

Due to q ′ < n
n−2 , we have from [18, Corollary 2.6] that

∫

Sφ(x,θ∗t)
Gq ′

Sφ(x,θ∗t)(y, x)dy ≤ C(n, λ,�, ρ, q)|Sφ(x, θ∗t)|1− n−2
n q ′

. (4.9)
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By inspecting the proof of [18, Corollary 2.6] (see the discussion below), we see that
the above inequality also holds with φh replacing φ:

∫

Sφh (x,θ∗t)
Gq ′

Sφh (x,θ∗t)(y, x)dy ≤ C(n, λ,�, ρ, q)|Sφh (x, θ∗t)|1− n−2
n q ′

. (4.10)

The desired estimate (4.6) then follows from (4.8), (4.10), and the volume estimate
for sections of φh given in (4.5).

Let us describe the proof of (4.10). The difference between (4.10) and (4.9) is that
we only know φh and Sφh (0, 1) satisfying the quadratic separation condition (4.4) on
a portion Sφh (0, r) ∩ ∂Sφh (0, 1) of the boundary ∂Sφh (0, 1) while φ and � satisfy a
global condition. For reader’s convenience, we indicate how to obtain (4.10) in our
local setting from the proof of (4.9) in [18, Corollary 2.6]. Three main ingredients
need to be verified are:

(1) The engulfingproperty of sections: there exists someconstant θ̄ = θ̄ (n, λ,�, ρ) >

1 such that if x ∈ Sφh (0, δ)with δ universally small and y ∈ Sφh (x, t)with t ≤ c,
then we have

Sφh (x, t) ⊂ Sφh (y, θ̄ t). (4.11)

(2) The volume growth of sections: if x ∈ Sφh (0, c) and t ≤ c then

C−1
1 t

n
2 ≤ |Sφh (x, t)| ≤ C1t

n
2 .

(3) Boundary Harnack inequality for solutions to the homogeneous linearized
Monge–Ampère equation Lφh v = 0 in Sφh (0, 1).

We now address these ingredients.
Concerning (1): Suppose x ∈ Sφh (0, δ) and y ∈ Sφh (x, t). By (4.7), it suffices

to consider x ∈ Sφh (0, δ) ∩ �h . We use the strict convexity result for φh (see [21,
Lemma5.4] and also [18, Lemma3.8(iv)])which says that themaximal interior section
Sφh (x, h̄(x)) of φh centered at x where

h̄(x) = sup{t | Sφh (x, t) ⊂ �h}

is tangent to ∂�h at z ∈ ∂�h ∩ Sφh (0, r/2). Using equation (4.11) in the proof of
Proposition 2.3 in [19], we find some K = K (n, λ,�, ρ) such that

Sφh (x, 2t) ⊂ Sφh (z, K t) for all h̄(x)/2 < t ≤ c. (4.12)

If t ≤ h̄(x)/2, then Sφh (x, 2t) ⊂ �h and hence the inclusion (4.11) follows from the
engulfing property of interior sections for the Monge–Ampère equation with bounded
right-hand side (see the proof of Theorem 3.3.7 in [13]). Consider now h̄(x)/2 <

t ≤ c. Then we have from (4.12) y ∈ Sφh (z, K t). By (4.7), we have Sφh (z, K t) ⊂
Sφh (y, θ∗K t). Recalling (4.12), we find that (4.11) follows with θ̄ = θ∗K .
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Concerning (2): The proof uses the Localization Theorem and (4.12) as in the proof
of [19, Corollary 2.4] so we omit it.

Concerning (3): Given (1) and (2), the proof of the boundary Harnack inequality
[18, Theorem 1.1] applies in our local setting without change. ��
Proof of Lemma 1.5 Theproof of this lemma is similar to that ofLemma4.2. It uses the
symmetry of the Green’s function G�(x, y) and its global integrability established in
[18, Corollary 2.6] which says that for p ∈ (1, n

n−2 ) in the case n ≥ 3 and p ∈ (1,∞)

in the case n = 2, we have

sup
x∈�

∫

�

G�(x, y)p dy ≤ C(n, λ,�, p, ρ).

��
Proof of Theorem 1.4 Let M := ‖ϕ‖C1,γ (Bρ(0)∩∂�). Since u = ϕ on ∂� ∩ Bρ(0), by
subtracting a suitable affine function l(x), we can assume that u satisfies |u(x)| ≤
M |x ′|1+γ for x = (x ′, xn) ∈ ∂� ∩ Bρ(0). In particular, u(0) = 0.

Fix 0 < α < min{γ, α0}where α0 is in Theorem 4.1. Let h̄ ≤ θ2 with θ being some
universally small constant that will be chosen later. Then by dividing our equation by

K := θ− 1+α
2

[‖u‖L∞(Bρ(0)∩�) + sup
h̄≤t≤θ2

Nφ, f,q,2θ−1t (0) + M
]
,

we may assume that

‖u‖L∞(Bρ(0)∩�) + sup
h̄≤t≤θ2

Nφ, f,q,2θ−1t (0) + M ≤ (θ1/2)1+α =: δ, (4.13)

and we only need to show that there exists b ∈ R
n such that

h̄− 1+α
2 ‖u − bx‖L∞(Sφ(0,h̄)) + ‖b‖ ≤ C(n, q, ρ, α, γ, λ,�). (4.14)

As a consequence of (4.13), we have

|u(x)| ≤ δ|x ′|1+γ for x = (x ′, xn) ∈ ∂� ∩ Bρ(0). (4.15)

Claim There exist θ > 0 small and C2 > 1 depending only on n, ρ, λ,�, γ, q such
that the following holds. If sup1≤m≤k Nφ, f,q,2θm (0) ≤ C2δ for some integer number
k ≥ 2, then for every m = 1, 2, . . . , k we can find a linear function lm(x) := bm xn

with b0 = b1 = 0 such that

(i) ‖u − lm‖L∞(Sθm ) ≤ (θm/2)1+α;
(ii) |bm − bm−1| ≤ C0(θ

m−1
2 )α.

The desired estimate (4.14) follows from the above claim. Indeed, since h̄ ≤ θ2 we
can find a positive integer k ≥ 2 such that θk+1 < h̄ ≤ θk and the conclusion (4.14)
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follows by choosing b = bk . To see this, we use the definition of N in (1.7) and
2θk < 2θ−1h̄ ≤ 2θk−1, together with the volume estimate (4.5) to get

Nφ, f,q,2θk (0) ≤ C2Nφ, f,q,2θ−1h̄(0)

for some universal constant C2. This and (4.13) imply that

sup
1≤m≤k

Nφ, f,q,2θm (0) ≤ C2 sup
h̄≤t≤θ2

Nφ, f,q,2θ−1t (0) ≤ C2δ.

Hence we deduce from the claim by taking into account the affine function lk that

(θk)−
1+α
2 ‖u − bk x‖L∞(S

θk ) + ‖bk‖ ≤ 1 +
k∑

m=1

|bm − bm−1| ≤ 1

+ C0

∞∑

m=1

θ
α
2 (m−1) ≤ C.

Therefore, we obtain (4.14) with b = bk since

h̄− 1+α
2 ‖u − bx‖L∞(Sφ(0,h̄)) + ‖b‖ ≤ (θk+1)− 1+α

2 ‖u − bk x‖L∞(S
θk ) + ‖bk‖ ≤ Cθ− 1+α

2 .

It remains to show the claim and we prove it by induction. Let us fix k ≥ 2 such that

sup
1≤m≤k

Nφ, f,q,2θm (0) ≤ C2δ. (4.16)

Thanks to (4.15) and α < γ , (i) and (ii) clearly hold for m = 1. Suppose (i) and (ii)
hold up to m ∈ {1, . . . , k − 1}. We prove them for m + 1. As a consequence of (4.16),
we have

Nφ, f,q,2θm+1(0) ≤ C2δ.

Let h := θm . We define the rescaled domain �h and function φh as in (4.3). For
x ∈ �h , let

v(x) := (u − lm)(h1/2A−1
h x)

h
1+α
2

, fh(x) := h
1−α
2 f (h1/2A−1

h x),

and

�h(x) = (�
i j
h (x)) = (det D2φh(x))

(
D2φh(x)

)−1
.

Then, by (2.1), �i j
h vi j = fh in Sφh (0, 1) with ‖v‖L∞(Sφh (0,1)) ≤ 1 and

Nφh , fh ,q,2θ (0) = Nφ, f,q,2θh(0) = Nφ, f,q,2θm+1(0) ≤ C2δ. (4.17)
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The first inequality in (4.17) follows from (4.2)–(4.3) and

r
1−α
2

(
1

|Sφh (0, r)|
∫

Sφh (0,r)

| fh |q dx

) 1
q

= (rh)
1−α
2

(
1

|Sφ(0, hr)|
∫

Sφ(0,hr)

| f |q dx

) 1
q

for all r > 0.

Define ϕh as follows: ϕh = 0 on ∂Sφh (0, 2θ)∩ ∂�h and ϕh = v on ∂Sφh (0, 2θ)∩�h .

Let w solve {
�

i j
h wi j = 0 in Sφh (0, 2θ),

w = ϕh on ∂Sφh (0, 2θ).

By the maximum principle, we have

‖w‖L∞(Sφh (0,2θ)) ≤ ‖v‖L∞(Sφh (0,2θ)) ≤ 1.

Let l̄(x) := b̄xn where b̄ := ∂nw(0). Then Theorem 4.1 gives

∣∣b̄
∣∣ ≤ C0‖w‖L∞(Sφh (0,2θ)) ≤ C0 (4.18)

and

‖w − l̄‖L∞(Sφh (0,θ)) ≤ C0

(
θ

1
2

)1+α0 ‖w‖L∞(Sφh (0,2θ))

≤ C0

(
θ

1
2

)1+α0 ≤ 1

2

(
θ

1
2

)1+α

, (4.19)

provided that θ is universally small. Given this, by reducing θ further if necessary, we
show that

‖w − v‖L∞(Sφh (0,2θ)) ≤ 1

2

(
θ

1
2

)1+α

. (4.20)

Combining this with (4.19), we obtain

‖v − l̄‖L∞(Sφh (0,θ)) ≤
(
θ

1
2

)1+α

. (4.21)

Now, let

lm+1(x) := lm(x) + (h1/2)1+α l̄(h−1/2Ah x).

Then, from the definition of v and l̄, and (4.21), we find

‖u − lm+1‖L∞(
S
θm+1

) =
(

h1/2
)1+α ‖v − l̄‖L∞(

Sφh (0,θ)
) ≤

(
h1/2

)1+α (
θ1/2

)1+α

=
(
θ

m+1
2

)1+α

,
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1780 N. Q. Le, T. Nguyen

proving (i). On the other hand, by (4.2), we have

lm+1(x) = bm+1xn with bm+1 := bm + (h1/2)1+αh−1/2b̄ = bm + hα/2b̄.

Therefore, the claim is established since (ii) follows from (4.18) and

|bm+1 − bm | = hα/2
∣∣b̄

∣∣ = θmα/2
∣∣b̄

∣∣ .

It remains to prove (4.20). We will apply Lemma 4.2 to w − v which solves

{
�

i j
h (w − v)i j = − fh in Sφh (0, 2θ),

w − v = ϕh − v on ∂Sφh (0, 2θ).

By this lemma and the way ϕh is defined, we have

‖w − v‖L∞(Sφh (0,2θ)) ≤ ‖v‖L∞(∂Sφh (0,2θ)∩∂�h) + C∗|Sφh (0, 2θ)| 2n − 1
q ‖ fh‖Lq (Sφh (0,2θ))

=: (I) + (II),

where C∗ depends only on n, λ,�, ρ, and q.
We estimate (I) as in the proof of [22, Theorem 1.1] and find that if θ is small then

(I) ≤ 1

4

(
θ1/2

)1+α

.

To estimate (II), we recall Nφh , fh ,q,2θ (0) ≤ C2δ = C2(θ
1/2)1+α , and note that

‖ fh‖Lq (Sφh (0,2θ)) ≤ Nφh , fh ,q,2θ (0)(2θ)− 1−α
2 |Sφh (0, 2θ)| 1q ≤ C2δ(2θ)− 1−α

2 |Sφh (0, 2θ)| 1q .

We therefore obtain from the volume estimates (4.5)

(II) = C∗|Sφh (0, 2θ)| 2n − 1
q ‖ fh‖Lq (Sφh (0,2θ)) ≤ C∗C2|Sφh (0, 2θ)| 2n (2θ)−

1−α
2 δ

≤ C∗C2C2/n
1 (2θ)

1+α
2 δ ≤ 1

4

(
θ1/2

)1+α

if θ is small. It follows that

‖w − v‖L∞(
Sφh (0,2θ)

) ≤ (I) + (II) ≤ 1

2

(
θ

1
2

)1+α

,

proving (4.20). The proof of Theorem 1.4 is complete. ��

5 Proof of the global W1, p and Hölder estimates

In this section, we prove the main result of the paper (Theorem 1.1) regarding global
W 1,p estimates for solutions to (1.1). We also prove the global Hölder estimates in
Theorem 1.7.
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5.1 Global W1, p estimates

Before giving the proof of Theorem 1.1, we indicate its overall structure. First, we
bound the solution using the global maximum principle in Lemma 1.5. Then, using a
consequence of the boundary Localization Theorem for theMonge–Ampère equations
[24,25], we combine the pointwise C1,α estimates in the interior and at the boundary
in Theorems 1.2 and 1.4 to bound the gradient by the function N defined in (1.8).
The rest of the proof of Theorem 1.1 is similar to that of Theorem 1.3. Here, we use
the global strong-type estimate for the maximal function M in Theorem 1.6 and the
volume growth of sections ofφ. Notice that by [19, Corollary 2.4], there exist constants
c∗, C1, C2 depending only on ρ, λ,�, and n such that for any section Sφ(x, t) with
x ∈ � and t ≤ c∗, we have

C1tn/2 ≤ |Sφ(x, t)| ≤ C2tn/2. (5.1)

Proof of Theorem 1.1 We extend ϕ to a C1,γ (�) function in �. By multiplying u by
a suitable constant, we can assume that

‖ f ‖Lq (�) + ‖ϕ‖C1,γ (�) ≤ 1.

By the global maximum principle in Lemma 1.5, we have

‖u‖L∞(�) ≤ C
(‖ f ‖Lq (�) + ‖ϕ‖L∞(�)

) ≤ C (5.2)

for some C depending on n, q, ρ, λ, and �. It remains to show that for all p <
nq

n−q ,
we have

‖Du‖L p(�) ≤ C(n, p, q, γ, ρ, λ,�). (5.3)

Using Theorem 1.3 and restricting our estimates in small balls of definite size
around ∂�, we can assume throughout that 1− θ ≤ g ≤ 1+ θ where θ is the smallest
of the two θ ’s in Theorems 1.2 and 1.4.

Let y ∈ � with r := dist(y, ∂�) ≤ c, for c universal (c � θ ). Since φ is C1,1 on
the boundary ∂�, by Caffarelli’s strict convexity theorem [3], φ is strictly convex in
�. This implies the existence of the maximal interior section Sφ(y, h) of φ centered
at y with h := sup{t |Sφ(y, t) ⊂ �} > 0. By [21, Proposition 3.2] applied at the point
x0 ∈ ∂Sφ(y, h) ∩ ∂�, we have

h1/2 ∼ r, (5.4)

and Sφ(y, h) is equivalent to an ellipsoid E , that is, cE ⊂ Sφ(y, h)− y ⊂ C E,where

E := h1/2A−1
h B1(0), with ‖Ah‖, ‖A−1

h ‖ ≤ C | log h|; det Ah = 1. (5.5)

Moreover, by [19, Theorem 2.1], we have the engulfing property of sections of φ. That
is, there exists θ∗ > 0 depending only on ρ, λ,�, and n such that if y ∈ Sφ(x, t)
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1782 N. Q. Le, T. Nguyen

with x ∈ � and t > 0, then Sφ(x, t) ⊂ Sφ(y, θ∗t). Hence, for any z ∈ Sφ(y, h) the
following inclusions hold:

z ∈ Sφ(y, h) ⊂ Sφ(x0, θ∗h) ⊂ Sφ(x0, 2θ
−1t) ⊂ Sφ(z, 2θ∗θ−1t) for all t ≥ θ∗h.

(5.6)

Let q ′ be such that n
2 < q ′ < q. By Theorem 1.4 applied to the original function u

in Sφ(x0, θ∗h), we can find b ∈ R
n and a universal constant C such that

(θ∗h)−
1+α
2 ‖u(x) − u(x0) − b(x − x0)‖L∞(Sφ(x0,θ∗h)) + ‖b‖

≤ C
[
‖u‖L∞(�) + ‖ϕ‖C1,γ (�) + sup

θ∗h≤t≤θ2
Nφ, f,q ′,2θ−1t (x0)

]
, (5.7)

where in the definition of Nφ, f,q ′,2θ−1t (x0) in (1.7), α ∈ (0, 1) is the exponent in
Theorem 1.4.

We now use (5.5) to rescale our equation. The rescaling φ̃ of φ

φ̃(x̃) := 1

h

[
φ(y + h1/2A−1

h x̃) − φ(y) − Dφ(y)(h1/2A−1
h x̃)

]

satisfies

det D2φ̃(x̃) = g̃(x̃) := g(y + h1/2A−1
h x̃) ∈ [1 − θ, 1 + θ ],

and

Bc(0) ⊂ Sφ̃(0, 1) ⊂ BC (0), Sφ̃(0, 1) = h−1/2Ah
(
Sφ(y, h) − y

)
, (5.8)

where we recall that Sφ̃(0, 1) represents the section of φ̃ at the origin with height 1.

We denote S̃t = Sφ̃(0, t). We define also the rescaling ũ for u

ũ(x̃) := h−1/2[u(x) − u(x0) − b(x − x0)
]
, x̃ ∈ S̃1, x = T x̃ := y + h1/2A−1

h x̃ .

Let �̃ = (�̃i j )1≤i, j≤n be the cofactor matrix of D2φ̃. Then, by (2.1), ũ solves

�̃i j ũi j = f̃ (x̃) := h1/2 f (T x̃).

From (5.7), (5.2), and (5.4), we have

‖ũ‖L∞(S̃1)
≤ Ch−1/2(θ∗h)

1+α
2

[
‖u‖L∞(�) + ‖ϕ‖C1,γ (�) + sup

θ∗h≤t≤θ2
Nφ, f,q ′,2θ−1t (x0)

]

≤ Crα
[
1 + sup

θ∗h≤t≤θ2
Nφ, f,q ′,2θ−1t (x0)

]
. (5.9)
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Now, in the definition of N in (1.8), we let α ∈ (0, 1) be the exponent in Theorem 1.4
and r0 = 2θ∗θ . Apply Theorem 1.2 to ũ and arguing as in (3.4), we obtain

|Dũ(z̃)| ≤ C
[
‖ũ‖L∞(S̃1)

+ N
φ̃, f̃ ,q ′(z̃)

]
for a.e. z̃ ∈ S̃1/2.

Note that, by (5.5) and (5.4),

N
φ̃, f̃ ,q ′(z̃) ≤ h

α
2 Nφ, f,q ′(z) ≤ Crα Nφ, f,q ′(z) with z = T z̃. (5.10)

It is easy to see from the definitions of Nφ, f,q ′,2θ−1t (x0) and Nφ, f,q ′(z), (5.6) and the
volume estimates in (5.1) that

Nφ, f,q ′,2θ−1t (x0) ≤ C Nφ, f,q ′,2θ∗θ−1t (z) ≤ C Nφ, f,q ′(z) for all t ∈ [θ∗h, θ2].(5.11)

Hence, using (5.9) and (5.10), we get

|Dũ(z̃)| ≤ Crα
[
1 + Nφ, f,q ′(z) + sup

θ∗h≤t≤θ2
Nφ, f,q ′,2θ−1t (x0)

]
≤ Crα

[
1 + Nφ, f,q ′(z)

]

for a.e. z̃ = T −1z ∈ S̃1/2. Rescaling back, using

z̃ = h−1/2Ah(z − y), Dũ(z̃) = (A−1
h )t (Du(z) − b) and h1/2 ∼ r,

together with (5.7) and (5.11), we find for all z ∈ Sφ(y, h/2) that

|Du(z)| = |At
h Dũ(z̃) + b| ≤ C |log h| rα

[
1 + Nφ, f,q ′(z)

] + C
[
1 + Nφ, f,q ′(z)

]

≤ C
[
1 + Nφ, f,q ′(z)

]
.

In particular, we obtain the following gradient estimate for a.e. y ∈ � with
dist (y, ∂�) = r ≤ c,

|Du(y)| ≤ C
[
1 + Nφ, f,q ′(y)

]
.

This is a global version of (3.4). Now, we argue as in the proof of Theorem 1.3 and
using a global version of strong-type estimate for the maximal function in Theorem
1.6 and the volume growth of sections in (5.1) to conclude the proof of Theorem 1.1.

��

5.2 Global Hölder estimates

Proof of Theorem 1.7 The proof of the global Hölder estimates in this theorem is
similar to the proofs of [16, Theorem 1.4] and [20, Theorem 4.1]. It combines the
boundary Hölder estimates in Proposition 5.1 and the interior Hölder continuity esti-
mates in Corollary 2.4 using Savin’s Localization Theorem [24,25]. Thus we omit the
details and only present the proof of Proposition 5.1 below. ��
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Proposition 5.1 Let φ and u be as in Theorem 1.7. Then, there exist δ, C depending
only on λ,�, n, α, ρ, and q such that, for any x0 ∈ ∂� ∩ Bρ/2(0), we have

|u(x) − u(x0)|
≤ C |x − x0|

α0
α0+3n

(
‖u‖L∞(�∩Bρ(0)) + ‖ϕ‖Cα(∂�∩Bρ(0)) + ‖ f ‖Lq (�∩Bρ(0))

)

for all x ∈ � ∩ Bδ(x0),

where

α0 := min
{
α,

3

8
(2 − n

q
)
}
.

The proof of Proposition 5.1 relies on an extension of Lemma 4.2 and a construction
of suitable barriers.

In what follows, we assume φ and� satisfy the assumptions in the proposition. We
also assume for simplicity thatφ(0) = 0 and ∇φ(0) = 0.Furthermore,we abbreviate
Br (0) by Br for r > 0.

We now recall the following construction of supersolution in [20].

Lemma 5.2 [20, Lemma 4.4] Given δ universally small (δ ≤ ρ), define

δ̃ := δ3

2
and Mδ := 2n−1�n

λn−1

1

δ3n−3 ≡ �n

(λδ̃)n−1
.

Then the function

wδ(x ′, xn) := Mδxn + φ − δ̃|x ′|2 − �n

(λδ̃)n−1
x2n for (x ′, xn) ∈ �

satisfies

�i j (wδ)i j ≤ −n� in �,

and

wδ ≥ 0 on ∂(� ∩ Bδ), wδ ≥ δ3

2
on � ∩ ∂ Bδ.

The next result is an extension of Lemma 4.2 where sections are now replaced by
balls.

Lemma 5.3 Let A = �∩ Bδ(0) where δ ≤ c with c = c(n, λ,�, ρ) being universally
small. Assume that f ∈ Lq(A) for some q > n/2 and u ∈ W 2,n

loc (A) ∩ C(A) satisfies

Lφu ≤ f almost everywhere in A.
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Then there exists a constant C > 0 depending only on n, λ,�, ρ, and q such that

sup
A

u ≤ sup
∂ A

u+ + C |A| 34
(
2
n − 1

q

)

‖ f ‖Lq (A).

Proof Let G A(·, y) be the Green’s function of Lφ in A with pole y ∈ A. As in the
proof of Lemma 4.2, it suffices to prove that

‖G A(x, ·)‖Lq′
(A)

≤ C |A| 34
(
2
n − 1

q

)

for all x ∈ A. (5.12)

Note that from (4.1) and (4.2) we have for h ≤ c

� ∩ B+
ch1/2/|log h| ⊂ Sφ(0, h) ⊂ � ∩ B+

Ch1/2|log h|.

Hence for |x | ≤ δ ≤ c, we deduce from the first inclusion that

A = � ∩ Bδ(0) ⊂ Sφ

(
0, δ3/2

)
:= V . (5.13)

Arguing as in (4.8), (4.10), we find that

‖GV (x, ·)‖Lq′
(V )

≤ C |V | 2n − 1
q for all x ∈ V . (5.14)

Using the volume estimate for sections in (4.5), we find that

|V | ≤ Cδ
3n
4 ≤ C |A| 34 .

This together with (5.14) and (5.13) implies (5.12).

Proof of Proposition 5.1 Our proof follows closely the proof of Proposition 2.1 in
[16]. We include here the details for reader’s convenience. Since

‖ϕ‖Cα0 (∂�∩Bρ) ≤ C(α0, α, ρ)‖ϕ‖Cα(∂�∩Bρ),

it suffices to show that

|u(x) − u(x0)| ≤ C |x − x0|
α0

α0+3n
(
‖u‖L∞(�∩Bρ) + ‖ϕ‖Cα0 (∂�∩Bρ) + ‖ f ‖Lq (�∩Bρ)

)

for all x ∈ � ∩ Bδ(x0).

We can suppose that K := ‖u‖L∞(�∩Bρ) + ‖ϕ‖Cα0 (∂�∩Bρ) + ‖ f ‖Lq (�∩Bρ) is finite.
By working with the function v := u/K instead of u, we can assume in addition that

‖u‖L∞(�∩Bρ) + ‖ϕ‖Cα0 (∂�∩Bρ) + ‖ f ‖Lq (�∩Bρ) ≤ 1
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and need to show that the inequality

|u(x) − u(x0)| ≤ C |x − x0|
α0

α0+3n for all x ∈ � ∩ Bδ(x0) (5.15)

holds for all x0 ∈ � ∩ Bρ/2, where δ and C depend only on λ,�, n, α, ρ, and q.
We prove (5.15) for x0 = 0. However, our arguments apply to all points x0 ∈

� ∩ Bρ/2 with obvious modifications. For any ε ∈ (0, 1), we consider the functions

h±(x) := u(x) − u(0) ± ε ± 6

δ32
wδ2

in the region

A := � ∩ Bδ2(0),

where δ2 is small to be chosen later and the function wδ2 is as in Lemma 5.2. We
remark that wδ2 ≥ 0 in A by the maximum principle. Observe that if x ∈ ∂� with
|x | ≤ δ1(ε) := ε1/α0 then,

|u(x) − u(0)| = |ϕ(x) − ϕ(0)| ≤ |x |α0 ≤ ε. (5.16)

On the other hand, if x ∈ � ∩ ∂ Bδ2 then from Lemma 5.2, we obtain 6
δ32

wδ2(x) ≥ 3.

It follows that, if we choose δ2 ≤ δ1 then from (5.16) and |u(x) − u(0) ± ε| ≤ 3, we
get

h− ≤ 0, h+ ≥ 0 on ∂ A.

Also from Lemma 5.2, we have

−Lφh+ ≤ f, −Lφh− ≥ f in A.

Here we recall thatLφ = −�i j∂i j .Hence Lemma 5.3 applied in A gives the following
estimates

h− ≤ C1|A| 34
(
2
n − 1

q

)

‖ f ‖Lq (A) ≤ C1δ

3
4

(
2− n

q

)

2 in A (5.17)

and

h+ ≥ −C1|A| 34
(
2
n − 1

q

)

‖ f ‖Lq (A) ≥ −C1δ

3
4

(
2− n

q

)

2 in A (5.18)

where C1 > 1 depends only on n, λ,�, ρ, and q. By restricting ε ≤ C−1
1 (≤ 1), we

can assume that

δ

3
4

(
2− n

q

)

1 = ε

(
2− n

q

)
3

4α0 ≤ ε2 ≤ ε

C1
.
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Then, for δ2 ≤ δ1, we have C1δ
3
4 (2− n

q )

2 ≤ ε and thus, for all x ∈ A, we obtain from
(5.17) and (5.18) that

|u(x) − u(0)| ≤ 2ε + 6

δ32
wδ2(x).

Note that, by construction and the boundary estimate for the function φ, we have in
A

wδ2(x) ≤ Mδ2xn + φ(x) ≤ Mδ2 |x | + C |x |2 |log |x ||2 ≤ 2Mδ2 |x | .

Therefore, choosing δ2 = δ1 and recalling the choice of Mδ2 , we get

|u(x) − u(0)| ≤ 2ε + 12Mδ2

δ32
|x | = 2ε + C2(n, λ,�)

δ3n
2

|x | = 2ε + C2ε
− 3n

α0 |x |
(5.19)

for all x, ε satisfying the following conditions

|x | ≤ δ1(ε) := ε1/α0 , ε ≤ C−1
1 .

Finally, let us choose ε = |x |
α0

α0+3n . It satisfies the above conditions if |x | ≤
C

− α0+3n
α0

1 =: δ. Then, by (5.19), we have |u(x) − u(0)| ≤ (2 + C2)|x |
α0

α0+3n for
all x ∈ � ∩ Bδ(0). ��
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