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Abstract In this paper, we investigate regularity for solutions to the linearized
Monge—Ampere equations when the nonhomogeneous term has low integrability. We
establish global W7 estimates for all p < n”fq for solutions to the equations with
right-hand side in LY where n/2 < g < n. These estimates hold under natural assump-
tions on the domain, Monge—Ampere measures, and boundary data. Our estimates are
affine invariant analogues of the global W17 estimates of N. Winter for fully nonlinear,

uniformly elliptic equations.
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1 Introduction and statement of the main result

This paper is a sequel to [20] and is concerned with global L? estimates for the
derivatives of solutions to the linearized Monge—Ampere equations. Let 2 C R"*(n >
2) be a bounded convex domain and ¢ be a locally uniform convex function on 2.
The linearized Monge—Ampere equation corresponding to ¢ is
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n
Lou = — Z DUy = f in Q, (1.1)
ij=1

where

o= (@i/)lfi,jfn := (det D*¢) (D*¢) ™!
is the cofactor matrix of the Hessian matrix D2¢ = (@ij)1<i, j<n- The operator Ly
appears in several contexts including affine differential geometry [28-31], complex

geometry [8], and fluid mechanics [1,7,23]. Because @ is divergence free, that is,
n

Z 3; " = 0 for all J, we can also write Ly as a divergence form operator:

i=1
Lou = — i 0; (@ijuj).

i,j=1

We note that the Monge—Ampere equation can be viewed as a linearized Monge—
Ampere equation because of the identity

Ly¢ = —ndet D*¢. (1.2)

Caffarelli and Gutiérrez initiated the study of the linearized Monge—Ampere equa-
tions in the fundamental paper [6]. There they developed an interior Harnack inequality
theory for nonnegative solutions of the homogeneous equation Lgyu = 0 in terms of
the pinching of the Hessian determinant

A <detD*¢ < A. (1.3)

This theory is an affine invariant version of the classical Harnack inequality for linear,
uniformly elliptic equations with measurable coefficients.

In applications such as in the contexts mentioned above, one usually encounters
the linearized Monge—Ampére equations with the Monge—Ampére measure det D?¢
satisfying (1.3). As far as Sobolev estimates for solutions are concerned, as elucidated
in [15], one requires the additional assumption that det D%¢ is continuous. Let us
recall that for this latter case, D?¢ belongs to L for all p < oo by Caffarelli’s
W?2 P estimates [4] but D?¢ is not bounded in view of Wang’s counterexamples [32].
Notice that since @ is positive semi-definite, L is a linear elliptic partial differential
operator, possibly both degenerate and singular. Despite these, we still have similar
regularity results, both in the interior and at the boundary, as in the classical theory
for linear, uniformly elliptic equations such as Harnack inequality, Holder, C-¢ and
W2 P estimates; see [6,14-16,20-22]. In [20], we established global W2P estimates
for (1.1) when the right-hand side f € L9(S2) for ¢ > max {n, p} and the Monge—
Ampére measure det D¢ is continuous. Given this, one might wonder whether similar
estimates hold when f is less integrable.
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Global WP estimates for linearized Monge—-Ampere 1753

Due to the hidden nonlinear character of the linearized Monge—Ampere equations
as revealed in (1.2), when the right-hand side f of (1.1) belongs to L9(2) where
g < n, we do not in general expect to get W9 estimates for the solutions u, by an
example of Caffarelli [2] concerning solutions of fully nonlinear, uniformly elliptic
equations. However, in [26], Swiech obtained surprising WP interior estimates, for

q

all p < nan’ for a large class of fully nonlinear, uniformly elliptic equations

F(x,u(x), Du(x), Dzu(x)) = f(x) (1.4)

with L9 right-hand side where n — g9 < ¢ < n and &g depends on the ellipticity
constants of the equations. This result is almost sharp in view of the Sobolev embedding

W24 — W=7 Itis worth mentioning that Swiech’s W17 estimates in the special
case of fully nonlinear, uniformly elliptic equations of the form

F(D*u) = f (1.5)

follow from Escauriaza’s W24 estimates [9] for solutions of (1.5) when f € L7 with
n—e < q < n. Swiech’s W17 interior estimates were later extended up to the
boundary by Winter [34].

In view of the aforementioned Holder, C1* and WP estimates for solutions of
(1.1), we might expect W7 estimates (p < n"_qq) for the linearized Monge—Ampere
equation (1.1) and the main purpose of this paper is to confirm this expectation for a
large range of g: n/2 < g < n. Despite the degeneracy and singularity of (1.1), that is
there are no controls on the ellipticity constants, the integrability range allowed for the
right-hand side of (1.1) in our main result is remarkably larger than the integrability
range allowed for the right-hand side of the nonlinear, uniformly elliptic equations in
the above-mentioned papers of Escauriaza’s, Swiech’s, and Winter’s.

1.1 The main result

Our main result establishes global W7 estimates (p < n’f’q) for solutions to equa-
tion (1.1) with L9(n/2 < ¢ < n) right-hand side and C!"¥ boundary values under
natural assumptions on the domain, boundary data, and the Monge—Ampere measure.

Precisely, we obtain:

Theorem 1.1 (Global W!-? estimates) Assume that there exists a small constant o >

0 such that Q@ C By;,(0) andfor_each y € 0% there is a ball B,(z) C 2 that is

tangent to 3 at y. Let ¢ € CO1(Q) N C%(Q) be a convex function satisfying
detD*p =g in Q with » <g <A.

Assume further that on 02, ¢ separates quadratically from its tangent planes, namely

plx —x0l* < ¢(x) — ¢(x0) — Dp(x0) - (x — x0) < p~ ' |x — xo|*, forall x, xg € Q.
(1.6)
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1754 N. Q. Le, T. Nguyen

Letu : Q@ — R be a continuous function that solves the linearized Monge—Ampére
equation ‘

@”uij = f in Q,

u =@ on a2,

where ¢ is a CVY function defined on 3Q (0 < y < 1) and f € L() with

n/2 < q < n. Assume in addition that g € C(RQ). Then for any 1 < p < n"fq, we

have the following global W' estimates

||u||W1~P(Q) < K(”ﬁo”cl,y(ag) + ||f||Lq(Q)),

where K is a constant depending only on n, p, v, A, A, p,q, and the modulus of
continuity of g.

We note from [25, Proposition 3.2] that the quadratic separation (1.6) holds for solu-
tions to the Monge—Ampere equations with the right-hand side bounded away from
0 and oo on uniformly convex domains and C? boundary data. Furthermore, Theo-
rem 1.1 complements Savin and the first author’s global C!** estimates [22] for Eq.
(1.1) when the right-hand side f is in L (¢ > n). This result is an affine invari-
ant version of Winter’s global W!-? estimates for fully nonlinear, uniformly elliptic
equations [34].

Let us say briefly about the integrability range allowed for the right-hand side of
(1.1). Notice that in [26], the exponent ¢ was required to be close to n with the closeness
depends on the ellipticity constants. Moreover, the proof of these W7 estimates for
equation (1.4) is rooted in a deep integrability bound of Fabes and Stroock [10] for the
Green’s function of linear, uniformly elliptic operators with measurable coefficients.
In a recent paper [18], the first author establishes the same global integrability of the
Green’s function for the linearized Monge—Ampere operator as the Green’s function
of the Laplace operator which corresponds to ¢ (x) = |x|2 /2 (see also [12,17,27]
for previous related interior results). Namely, under the pinching condition (1.3) and
natural boundary data, the Green’s function of Ly is globally L”-integrable for all
p < ;%5 Thus, as a degenerate and singular nondivergence form operator, £ has the
Green’s function with global L” —integrability higher than that of a typical uniformly
elliptic operator in nondivergence form as established in [10, Corollary 2.4]. This is
the reason why we are able to prove Theorem 1.1 for a large range of g: n/2 < g < n.

Our strategy to proving W17 estimates for solutions of (1.1) follows Caffarelli’s
perturbation arguments [2,5] (see also Wang [33]) and local boundedness and maxi-
mum principles. Even in the ideal case where ¢ (x) = |x|2 /2 and (1.1) becomes the
Poisson’s equation Lyu = —Au = f, we do not have local boundedness for solutions
when f is not L"/? integrable. Thus the range n/2 < g < n is almost optimal for our
approach. However, our method does not give any information for the case g < n/2.

To prove Theorem 1.1, we first establish new pointwise C 1% estimates in the interior
and at the boundary for the linearized Monge—Ampere equation (1.1) with L9(£2)
(g > n/2) right-hand side. These estimates, respectively, extend previous results of
Gutiérrez and Nguyen [14] and of Savin and the first author [22] where the cases
q > n were treated. Then, we combine these pointwise estimates with the strong-type
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Global WP estimates for linearized Monge—-Ampere 1755

inequality for the maximal function M with respect to sections of ¢ [19, Theorem 2.7]
to get the desired global W7 estimates. We next indicate some more details on the
proof of Theorem 1.1 after introducing several notations.

Throughout, a convex domain 2 is called normalized if B1(0) C Q C B, (0). Also,
the section of a convex function ¢ € C'(Q) at x € Q with height / is defined by

Sp(x. ) ={y €Q: ¢(y) < ¢(x) + Dp(x) - (y — x) + h}.

For fixed « € (0,1) and rg > 0, we denote for z € Q the following quantities
Ny, f.q.r(z) and Ny 7.4 (2):

1
l—a 1 a
No fgr(@)=r2 | ——— |f19dx ) forr >0, 1.7)
oLt (|S¢(z,r>| Sy

and

| £14 dx)q . (1.8)

l—a 1
Ny, £.q4(z) :==sup Ny rq4.,(2) =supr 2z
¢.fq ey ¢.f.q.r r<ro 1S (2 M| Jsyz.)

We will use the letters ¢, ¢, C, Cy, C’, C*, 0y, 0, ..., etc., to denote generic constants
depending only on the structural constants n, g, p, ¥, A, A that may change from line
to line. They are called universal constants.

We can assume that all functions ¢, u in this paper are smooth. However, our
estimates do not depend on the assumed smoothness but only on the given structural
constants.

The main points of the proof of Theorem 1.1 are as follows. By the global maximum
principle using the optimal integrability of the Green’s function of the operator Ly,
we have

lullzo@) < C (leliee@ + I fllLa@) - (1.9)

Let ¢’ € (n/2, q). By applying the foregoing pointwise C!:® estimates in the interior
and at the boundary for (1.1), we obtain the following gradient bound:

1Du)] = C (Il + Ng. g () ¥y € Q. (1.10)

Note that N (y) := Ny_74/(y) canbe co. However, using volume estimates for sections
of ¢, we find that for p > ¢ > ¢’

1

1 —a)="t4n ’ 'R P 229
INlzoe < € sup [0 q*p]}(/gwquy)q/dy) 111170

r=ro

@ Springer



1756 N. Q. Le, T. Nguyen

We then employ the strong-type % — % inequality for the maximal function M (f¢ b

with respect to sections of ¢ and, since p < %, we can choose 0 < o < 1 — 2’7 + %
to conclude that

P—q

Ha-o-2+2]) 0 onr ;
INIzr@ = € sup {2l 055y 0z, o) 171, gy < CIf oy (11D

r=ro

By combining (1.9)—(1.11), we obtain the global W' estimate in Theorem 1.1.

1.2 Key estimates

As mentioned above, the new key estimates in the proof of Theorem 1.1 are pointwise
C 1 estimates in the interior and at the boundary for solutions to the linearized Monge—
Ampere equation (1.1) with L? right-hand side where ¢ > n/2.

We first state pointwise C'® estimates in the interior.

Theorem 1.2 (Pointwise C1¢ estimates in the interior) Assume that g > n/2,0 <
a <o < 1,and rg > 0. There exists 0 = 0(n, q, o, o', rg) > 0 such that if Q is a
normalized convex domain, ¢ € C(2) is a convex solution of

1—0<detD*¢p<1460inQ, andp =00n 9%,

then any solution u € W/IZO’:(Q) of @ijuij = f in Q where f € L1(Q) satisfies the
following pointwise C'-% estimate at the minimum point 7 of ¢:

P~ = s, @ + 1O+ DU < C[ @) + No..q @]
forallr < u*,

for some affine function I, where C, u* are positive constants depending only on
n,q,a,a, andr.

Note that, in the above theorem, det D?¢ is only required to be close to a positive
constant, but no continuity of det D?¢ is needed. Theorem 1.2 extends a previous
result of Gutiérrez and the second author [14, Theorem 4.5] from the case ¢ = n to
all g satisfyingn/2 < g < n.

The interior W7 estimates for (1.1) then follow.

Theorem 1.3 (Interior W7 estimates) Let 2 be a normalized convex domain and
¢ € C(Q) be a convex solution to det D*¢p = g in Q and ¢ = 0 on 3, where
g € C(2) satisfying A < g(x) < A in Q. Suppose that u € leo’:(Q) is a solution of
<I>ijuij = fin Qwith f € L1(Q2) wheren/2 < q < n. Then for any Q' € Q and any

ng
P < =g We have

1DullLr gy < C(llulle(sz) + ||f||L‘i(Q))s (1.12)
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where C > 0 depends only on n, p, q, A, A, dist(Q', 9Q2) and the modulus of conti-
nuity of g.

We next state pointwise C1'¢ estimates at the boundary for solutions of (1.1) with
L4 right-hand side where ¢ > n/2and C'¥ boundary data under the local assumptions
(1.13)—(1.16) introduced below. These estimates generalize previous results of Savin
and the first author in [21,22] where the cases ¢ = oo and ¢ > n, respectively, were
treated.

Let 2 C R” be a bounded convex set with

B,(pen) C 2 C {x, = 0}N B1(0), (1.13)

for some small p > 0 where we denote ¢,, := (0, ...,0, 1) € R". Assume that

for each y € 02N B,(0), thereis a ball B,(z) C Q2 that is tangent to 92 at y.
(1.14)

Let¢p € C 0.1(Q) N C%(Q) be a convex function satisfying
0<xi<detD’¢ <A inQ. (1.15)

We assume that on €2 N B, (0), ¢ separates quadratically from its tangent planes on
0Q2. Precisely we assume that if xo € 322 N B, (0) then

plx —x0l* < ¢(x) — ¢(x0) — Dp(x0) - (x — x0) < p~ ' |x —x0|> forall x € IQ.
(1.16)

Theorem 1.4 Assume that ¢ and Q2 satisfy assumptions (1.13)—(1.16). Letu : B,(0)N
Q — R be a continuous solution to

®u;; = fin B,(0)NQ,
u =@ on Q2N B,(0),

where f € L1(B,(0) N Q) for some g > n/2 and ¢ € Cl’V(Bp(O) N 0K2). Then
there exist o € (0, 1) and 6 small depending only onn, q, p, 1, A,y such that for all
h < 62, we can find b € R" satisfying

~_lta
h™ 2 |lu — u(0) — bx”LOO(Sq,(()ﬁ)) + 2]l

< C|:||'4||L°O(Bp(0)ﬂ§2) + llellcir s, nagy T sup N¢,f,q,20*1t(0)i|’
h<t<62

where C depends only on n,q, p, A, A, and y. We can take o € (0, min{cg, y}),
where « is the exponent in the boundary Holder gradient estimates, Theorem 4.1.
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1758 N. Q. Le, T. Nguyen

In proving global W7 estimates for solutions of (1.1), we will use new maximum
principles, in the interior and at the boundary, for the linearized Monge—Ampere
equation (1.1) with LY right-hand side where ¢ is only assumed to satisfy ¢ > n/2.
We state here a global maximum principle and refer to Lemmas 2.1 and 4.2 for the
interior and boundary maximum principles used in the paper.

Lemma 1.5 (Global maximum principle) Assume that 2 and ¢ satisfy the hypotheses
of Theorem 1.1 up to (1.6). Let f € L1(2) forsomeq > n/2andu € WIZD’C" ()NC()
satisfy

Lou < [ almost everywhere in Q.

Then there exists a constant C > 0 depending only on n, A, A, p, and q such that

21
supu < supu’ + CIQI" 7| fllLa(e).
Q 90

We will also use the following global strong-type estimates for the maximal function
M with respect to sections of the potential function ¢.

Theorem 1.6 (Strong-type p—p estimates, [19, Theorem 2.7]) Assume that Q2 and ¢
satisfy the hypotheses of Theorem 1.1 up to (1.6). For f € L'(), define

1
M(f)(x) = sup ———— [f()|dy forallx € Q.
>0 1Sp (X, O] Js,x0)

Then, for any 1 < p < oo, there exists C, > 0 depending on p, p, A, A, and n such
that

MO e < Cpll fllLr -

Note that our new maximum principles in Lemmas 2.1 and 4.2 allow us to estab-
lish global Holder continuity estimates for solutions to the linearized Monge—Ampere
equation (1.1) with LY right-hand side where ¢ is only assumed to satisfy ¢ > n/2.
These estimates in turn extend our previous results, [16, Theorem 1.4] and [20, The-
orem 4.1], where the cases of L" right-hand side were treated.

Theorem 1.7 (Global Holder estimates) Assume Q2 and ¢ satisfy (1.13)—(1.16). Let
u € C(B,(0) N'Q) N W2 (B,(0) N Q) be a solution to

®Vu;; = f in B,(0)NQ,
u =¢ on Q2N B,(0),

where ¢ € C*(02 N B,(0)) for some o € (0, 1) and f € L1(2 N B,(0)). Then for

any q > n/2, there exist constants 3, C > 0 depending only on A, A, n, o, q, and p
such that
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Global WP estimates for linearized Monge—-Ampere 1759

lu(x)—u(y)| < Clx—ylﬁ(llulle(me(O)) + ll¢llceaenB, ) + ||f||Lq(s2me(0)))
forallx,y e QN Bg 0).

The rest of the paper is organized as follows. In Sect. 2, we establish an interior
maximum principle, an interior Holder estimate, and a comparison estimate for the
linearized Monge—Ampere equations with L7 right-hand side. We prove Theorems
1.2 and 1.3 in Sect. 3. The proofs of Theorem 1.4 and Lemma 1.5 will be given in
Sect. 4. In the final Sect. 5, we prove Theorems 1.1 and 1.7.

2 Interior maximum principle and Holder estimates

In this section, we prove an interior maximum principle (Lemma 2.1), an interior
Holder estimate (Corollary 2.4), and a comparison estimate (Lemma 2.5) for the
linearized Monge—Ampere equation with L? right-hand side where ¢ is only assumed
to satisfy ¢ > n/2. These results will be used in Sect. 3 to prove interior W7
estimates.

For convenience, we introduce the following hypothesis:
(H) < is anormalized convex domain and ¢ € C(2) is a convex function such that

A <detD’¢ <AinQ and ¢ =0onax.

Given 0 < o < 1, and 2 and ¢ satisfying (H), we define the sections of ¢ at its
minimum point Z to be the sets

Qo = Qg = S (z, —am$n¢) - {x €Q:p(x) < (1—a) ngncp}.

We record here how the linearized Monge—Ampere equation (1.1) transforms under
rescaling. If Tx = Ax + z is an affine transformation where A is an n x n invertible
matrix and z € R”, and

~ 1 1
$p(x) =-9(Tx), ux)=—-u(Tx),
a b
then from (1.1), we find
1
ﬁd;ﬁ(x) = m(det A)zf(Tx). 2.1

Indeed, we can compute
2z 1 Y e
D“¢p = —-A"D°¢pA, D =EADuA,
a
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1760 N. Q. Le, T. Nguyen

and the cofactor matrix ® = (det D2¢)(D2¢)~! of D%¢ is

) %(det A)(det D*¢) A~H(D*¢p) (AT = %(det A?A oA
a a

Thus (2.1) easily follows from

Lyii(x) = —trace(®D%il) = — (det A)*trace(®D*u(Tx))

1
a"1p

_ 1 2
= oy et A’ £ (7).

2.1 Interior estimates

Lemma 2.1 (Interior maximum principle) Assume that 2 and ¢ satisfy (H). Let V C
Q be a subdomain, f € L1(V) for some q > n/2, and u € Wi)’:’(V) N C(V) satisfy

Lyu < f almost everywhere in V.

Then for any a € (0, 1), there exists a constant C > 0 depending only on o, n, A, A,
and g such that

2_1
sup u <supu” + C|V["q| fllLav).
VORy v

Proof Let Gy (x,y) be the Green’s function of L4 in V with pole y € V, namely
Gy (-, y) is a positive solution of

LGy (-, y) =30y in V,
Gy(,y) =0 on dV

with §,, denoting the Dirac measure giving unit mass to the point y. Define

v(x) ::/ Gy(x,y)f(y)dy for x €V.
\%4
Then v is a solution of
Lyv=finV, andv=0o0naV.

Since L4 (1 —v) < 0in V, we obtain from the Aleksandrov—Bakelman—Pucci (ABP)
maximum principle (see [11, Theorem 9.1]) that

u(x) <suput 4+ v(x) in V. (2.2)
A%
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Global W7 estimates for linearized Monge—Ampere 1761

We next estimate v(x) for the case n > 3 using [27, Lemma 3.3]. The case n = 2 is
treated similarly, using [ 17, Theorem 1.1]. Notice that Aleksandrov’s estimate (see [13,
Theorem 1.4.2]) implies that dist(€2,, 92) > c(n, A, A)(1 —a)" > 0. It follows from
this and the proof of [27, Lemma 3.3] that there exists a constant K > 0 depending
on «, n, A, and A such that for every y € V N Q, we have

HxeV: Gyx,y)>1})| <Ki"72 for t>0. (2.3)

As the operator L can be written in the divergence form with symmetric coefficient,
we infer from [12, Theorem 1.3] that Gy (x, y) = Gy (y, x) for all x, y € V. This
together with (2.3) allows us to deduce that for every x € V N €, there holds

HyeV: Gyx,y)>tll=l{yeV: Gy(y,x) >t} <Kt m2 for t>D0.

It follows that if g > 5, theng’ := —4; < - and from the layer cake representation,

gq—1
we have

oo
/ Gy (x, )7 dy =61’/ 11y eV Gy(x,y) > 1} dr
14 0

€ , o0 , n
gq/|V|/0 tq*‘dt+q’K/ 19717 dr
€

= |V|e‘1/ + Cleq/_nnTZ forall € > 0.

n—2
By choosing € = (‘C—“) " in the above right-hand side, we obtain

’ n=2 ./ n=2 1
sup /Gv(x,y)‘f dy <2C," Ty |-
xeVNQe JV

We deduce from the definition of v, Holder inequality and the above estimate for Gy
that

v = 1Gv & Il g oy 1L lza )

=2 1 a2
<2C," V]9 " | fllLavy forallx € VN Q.
This estimate and (2.2) yield the conclusion of the lemma.

By employing Lemma 2.1 and the interior Harnack inequality established in [6] for
nonnegative solutions to the homogeneous linearized Monge—Ampere equations, we
get:

Lemma 2.2 (Harnack inequality) Assume that Q and ¢ satisfy (H). Let f € L9(2)
for some g > n/2 and u € W[i’: () satisfy Lou = f almost everywhere in Q. Then
if Sp(x,t) @ Qandu > 0in Sy (x,t), we have
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1762 N. Q. Le, T. Nguyen

21
sup u < C inf u+[Sp (e, D" 9 N fllLacsy o) | 24
S (x,%) Sp(x.3)

where C > 0 depends only on n, \, A, and q.

Proof For convenience, let us write Sy, for the section Sy (x, /). Let ug be the solution
of

Loug = f inS;, andug =0 on 3S;.
Then Ly (u — up) = 01in S; and u — ug > 0 on 9S;. Thus we conclude from the ABP

maximum principle that u — ug > 0 in S;. Hence, we can apply the interior Harnack
inequality established in [6, Theorem 5] to obtain

sup(u — ug) < Cinf(u — ugp),

S% S%

for some constant C depending only on n, A, and A, which then implies

supu < C'(infu + sup |uo|).
S Sy S,
2 2

By normalizing the section S;, ¢, ug and applying Lemma 2.1 for ¢ = 1/2, we get

2 1
sup lupl < CISi|" 7l fllLacs,)- (2.5)

St

Therefore, estimate (2.4) follows as desired.

For reader’s convenience, we include the details of (2.5). By subtracting a linear
function from ¢, we can assume that ¢ (x) = 0 and D¢ (x) = 0. By John’s lemma,
there is an affine transformation 7y = Ay + z such that

B1(0) € Q:=T7'Sy(x,1) C B,(0), (2.6)

where A is an n x n invertible matrix and z € R”. Rescale ¢ and u( by

~ 1 B -
d(y) = W[‘P(TY) —t], up(y) = uo(Ty), ye.

Then €2 and ¢ satisfy (H). Moreover, using (2.1) with a = | det A" and b = 1, we
find

Liio(y) = |det A" f(Ty) := f(y)in £ with iip = 0 on 9.
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Therefore, we can apply Lemma 2.1 for V = Q and o = 1/2 to get

L2 1 .
sup oW = Cn, &, A, IR 2 fll g (s)- (2.7)
yeQ ;
2.4
Since
- 2_1
1l pa(ey = |det A"l fllLa(sy )
and by (2.6),
Cr m)|Sy(x. )] < |det A < C1(n)[Sg(x, 1),
we find from (2.7) that

2 1
sup |upl = sup |up(y)| = C(n, &, A, @)|Sp(x, D" T fllLa(Sy(x.0))-
S¢ (x,1) yeQd
s

é
This proves (2.5), completing the proof of the lemma.

As a consequence of Lemma 2.2, we obtain the following oscillation estimate:

Corollary 2.3 Assume that Q and ¢ satisfy (H). Let f € L1(2) for some g > n/2
and u € Wfo’cn () satisfy Lou = f almost everywhere in Q. Then for any section
Sy (x, h) € Q, we have

P\« -4
0scsy(x.ppt < C (E) [OSCS¢(x,h)u +h % ||f||L‘1(S¢(x,h))] forall p <h,

where oscpu = supu — inf u and the constants C, a > 0 depend only on n, A, A,
E E

and q.

Proof Let us write S; for the section Sy (x, ¢). Then, by [13, Corollary 3.2.4], there
exist constants C and C’ depending only on n, A, A such that the volume of interior
sections of ¢ satisfies

Ct"? < |S;| < C't"/? whenever S, € Q.
Set

m(t) := irslfu, M(t) :==supu, and w(t):= M(t) —m(t).

S

Let p € (0, h] be arbitrary. Then since & := u — m(p) is a nonnegative solution of
Lyt = fin §,, we can apply Lemma 2.2 for i and the volume growth of interior
sections of ¢ to obtain
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=

I
<infu+p 2| flracs,-

<

1
— Su
c 5P

[
©”n
[SS)

It follows that for all p € (0, k], we have

. 1 - _n
w (B) =supu —infu < (l — —) sup u +,ol 2\ fllzacs,)
2 S% S% C Sg

1 1
<(1- E)w(p) +po 2| fllLacsy)-

Thus, by the standard iteration we deduce that
o _n
w(p) = C'(2)*[0m) + " | flacs, -

giving the conclusion of the corollary.

Corollary 2.3 implies Holder estimate. Indeed, from the arguments in [6, pp. 456-
457], we have

1=
() = u(| < CUAILx = y1P [l v sy 00,2 + CI' ™31 f 1050020
forall x,y € Sg(xo, h),
where C is a universal constant and Tx = A(x — xo) + Yo is the affine transformation
normalizing Sy (x0, 20h), i.e., B1(0) C T(S¢(xo, 20h)) C B,(0) (@ =0, r,A) >
1 is the engulfing constant). But when Q2 is normalized, we have from [13, Theo-

rem 3.3.8] the inclusion B, (xg) C Sg(xo, h). Therefore AB.,(0) + yo C B,(0)
and hence ||A|| < Ch~!. Consequently,

— 1-5
lu(x) —u(y)| < C*h /5|x — y|ﬁ|:||u||L0°(S¢(xo,2h)) + (2h) ||f||Lq(S¢(xo,2h))]
forall x, y € Sg(x0, h),

where C* is a universal constant. From this, we deduce the next result.

Corollary 2.4 (Interior Holder estimate) Assume that Q and ¢ satisfy (H). Let f €
L9(B1(0)) for some ¢ > n/2 and u € Wﬁ)’cn(Bl (0)) be a solution of Lou = [ in
B1(0). Then there exist constants B € (0, 1) and C > 0 depending only onn, A, A, q
such that

u () = u() = Clx = y1# (Il w00 + 1 Flaiop) forallx,y € By (0).

2.2 Comparison and stability estimates

The following lemma allows us to compare explicitly two solutions originating from
two different linearized Monge—Ampere equations.
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Lemma 2.5 Let U be a normalized convex domain. Assume that ¢, w € C (U) are
convex functions satisfying % < det D2¢ < %, det D*w = 1in U and dp=w=0
on dU. Let ® = (®) and W = (W) be the cofactor matrices of D2¢ and D*w,
respectively. Denote Uy = Uy ¢ for 0 < o < 1. Assume that u € Wi)’f(U) N C(ﬁ)
satisfies @ Djju = f in U with |u| < 1in U and f € L9(U) (g > n/2). Assume

O<ayp<landh e Wz’"(Ual) N C(Ual) is a solution of

loc

h =u on 0Uy,. (2.8)

[ WiDjjh =0 in U,
Then, there exists y € (0, 1) depending only on n and g such that forany 0 < oy < o
we have

lu = hll Lo,y + IL.f = trace([® — WID*1)|| La(w,,)

= Claraz m ) {19 = Wiy, , + 1 flawn |

2n
provided that |® — Wl La,,) = (a1 — o) F0=Dr.

Lemma 2.5 is an extension of [15, Lemma 4.1]. Its proof is omitted since it is similar
to that of [15, Lemma 4.1]. Instead of using the ABP estimate and interior Holder
estimate for equation (1.1) with L” right-hand side as in [15], we use Lemma 2.1 and
Corollary 2.4 for the linearized Monge—Ampere equation with L7 right-hand side.

We close this section by a result about the stability of cofactor matrices, which is a
consequence of [14, Lemma 3.5] and [20, Proposition 3.14].

Lemma 2.6 Let 2 be a normalized convex domain. Let ¢, w € C (Q) be convex
functions satisfying

1—9§detD2¢§1+9inQ, detDzwzlinQand¢=w=00n852.

Then for any q > 1, there exist 6y > 0 and C > 0 depending only on q and n such
that

(n—1)s
P — WllLa, (o)) < CO" =5 forall 6 < 6,
2

where § = 8(n) > 0, and ®, W are the matrices of cofactors of D*¢ and D*w,
respectively.

3 Pointwise C1:* estimates in the interior and interior W7 estimates

In this section, we sketch the proof of Theorem 1.2 and then use it to prove Theorem 1.3.

For the proof of Theorem 1.2, we need the next two lemmas from [14] about
geometric properties of sections of solutions to the Monge—Ampere equation. For a
strictly convex function ¢ defined on €2 and # > 0, we denote by S;(¢) the section of
¢ centered at its minimum point with height ¢, i.e.,
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St (@) == [x eEQ:px) < inn¢+t .

We denote by I the identity matrix.
Lemma 3.1 [14, Lemma 3.2] Suppose B1(0) C Q C B, (0) is a normalized convex

domain. Then there exist universal constants ny > 0, 19 > 0 and a positive definite
matrix M = A" A and p € R" satisfying
detM =1, O<cil <M <cyI, and |p|<c,
such that if ¢ € C(Q) is a strictly convex function in Q with
l—g<detD?’¢ <1+¢einQ, and¢p =0on o,
then for 0 < u < po and & < tou?, we have
B(I—C(u1/2+u*151/2))\/§(0) - lfl/zTSuw’) - B(1+C(u1/2+;rlsl/2))f2(0)*

and

1
'qs(x) [0+ p - r = x0) + (M (x —x0). (x = xo))]‘
< C*2 +e) in Su(®),

where xg € Q is the minimum point of ¢ and Tx := A(x — x¢).

Lemma 3.2 [14, Lemma 3.3] Suppose B(l_a)ﬁ(O) cQcC B(1+a)ﬁ(0) is a convex
domain where 0 < o < 1/4. Then there exist universal constants 1o > 0,79 > 0
which are independent of o, a positive definite matrix M = A’ A, and p € R" with
detM =1, (1-Co)Il <M <({+Co)l, and |p— xo| <Co,
such that if ¢ € C(Q) is a strictly convex function in Q with
l—e<detD’¢ <1+¢in, and¢p = 0on I,
then for 0 < u < po and & < tou?, we have
—-1/2
B(1_copt24p-1612y)y3(0) C 1t 2TSu(¢) C B conrpu-1612y)v3(0);
and
1
9 () = [$00) + p - (x = x0) + S (M = x0). (x = x0))
< Clop’? +e)in Su(),

where xo € Q is the minimum point of ¢ and Tx := A(x — xp).
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We also use the following classical Pogorelov’s estimates [13, formula (4.2.6)], and
interior C1! estimates for linear, uniformly elliptic equations [11, Theorem 6.2]; see
also the proof of [14, Lemma 3.2] and [14, Theorem 2.7].

Lemma 3.3 Suppose B1(0) C Q2 C B, (0) is a normalized convex domain. Let w be
the convex solution to the equation det D*w = 1 in Q with w = 0 on 9.

(i) Let x1 € Q2 be the minimum point of w. Then |w(x1)| ~ ¢, for some universal
constant ¢, and we have the Pogorelov’s estimates

2 2
=1 < D*w(x) < =1 forall x € Qwithdist(x, Q) > ¢y,
C2 Cl

where C1 and Co are constants depending only on n.

(i1) For any solution h € Cz(Bl(O)) of Lyh = 0 in B1(0), we have the classical
interior CV1 estimate

11l = celhll
C“(BL(O)) L”(BB;(O))
2 J

for some constant c, depending only on n.

Sketch of the proof of Theorem 1.2 Our proof utilizes results obtained in Sect. 2
together with the arguments in the proof of [14, Theorem 4.5]. We sketch its proof
here. Also for convenience, we assume that the minimum point of ¢ is z = 0.

By diving our equation by K := |[u|| ) + 9_1N¢,f,q(0), we can assume that

Duii(x) = f(x) in Q with  Jullpx@) <1,

and

1 g o
( |f|qu)q <0r°T forall S,(¢) € Qwithr < r.
|S-( @) Js, )

We need to prove that there exists an affine function /(x) such that

sup (1= — e 5,00 + HO) + IDIO)]| = € 3.1)

O<r<p*
with @, u*, and C depending only on 7, g, «, o', and rg. As in the proof of [14,
Theorem 4.5], (3.1) follows from the following Claim.

Claim There exist 0 < u < 1 depending only on n, «, and rg, a sequence of positive
definite matrices Ay with det Ay = 1 and a sequence of affine functions lx(x) =
ayg + by - x such that forallk =1,2,3, ...

(D A1 AT < S0 TAKI < eI+ Cao) (L + C81) -+ (T + Cai—n);
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2 B(]_(;k)ﬁ(o) - ,U'_TkAkSMk (@) C B(1+5k)ﬁ(0);

k=1
3) = le=tllzoos wigpn < 7 H

k — k—1
@) lag — ax—1]+ w2 1AL - (b — b=l < 2cep 7 1+,

where

6
Ao =1, Ip(x):=0, 8 :=0: & :=C (,ﬁﬂ + M—lel/Z) <1——_. and

5 = C (51(—1/11/2 n ,flel/z) for k > 2.

Also C, c,, c1, and ¢; are universal constants: ¢, is the constant in Lemma 3.3; ¢; and
¢ are given by Lemma 3.1 and C is given by Lemma 3.2.

The proof of the claim is by induction. It is quite similar to the proof of [14,
Theorem 4.5]. For reader’s convenience, we indicate the proof for the cases k = 1, 2.

Let 1o > 0 and 79 > 0 be the small universal constants given by Lemma 3.1. Let
0 < 1t < uo be fixed such that u < rg, C24/30 < 1/2, and 6ceC§uFTa < 1, where
C> is the universal constant in the Pogorelov’s estimates of Lemma 3.3. The constant
6 < 6y will be determined later depending only on n, ¢, i, o, and o', where 6y =
6o(g, n) is given by Lemma 2.6. In particular by taking 6 even smaller if necessary,
we assume that §; = C(u'/? + = 16'%) <1 — %.

k = 1 Applying Lemma 3.1 we obtain a positive definite matrix M = A’ A with
det A =detM =1, c;I <M < cpI such that if we take A := A then

zl . —
Bt /20 C 17 A15(0) C By 50), with 8= C (/24 7'0'/2).

Then (1) and (2) hold obviously since ||A1_1 | < 1/y/c1 and ||A1]] < /c2. Also
(3) is satisfied as lp = 0 and ||u| @) < 1.

k = 2 We first construct /1 and verify (3) for k = 2 and (4) for k = 1. Then we
construct A; and verify (1) and (2) for k = 2.

+ Constructing /1 (x): Recall that D¢ (0) = 0 since the origin is the minimum point

of ¢. Hence S, (¢) ={y € Q: ¢(y) —¢(0) —pn < 0}. Let Qf := M%AlSM(¢), and
1 FR—
(y) = — A —¢0) — ul,
") =6 (1247 'y) ~ 0O — 4]
v = = l) (2 A7"y) =u (2a7'y)
for y € QF. Then, as D?¢*(y) = (A;1)1D2¢(M%A;1y)A;1, we get

160 <detD*¢< 1+6 in Qf
¢=0  on I
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Let ®*(y) = (9*/(y)) := det D*¢*(y) (D*¢*(y))~". Then, by (2.1), we get
.. 1 o ~ .
P*v(y) =1 f(rZATy) = F() in Qf.
Notice that, from det A; = 1 and QT = /J,_TIAlS,L(qﬁ), we have

1t+a

1 1
; / | f(nedy q =u 1 [f (x)|7dx ‘7 <ufp T =op .
171 Jor 1S (D) Js, @) -

We apply Lemma 2.5 with ¢ ~» ¢*, f ~ f,u ~ v, and U ~» Q7. Note that by (3)
we have ||v]| L@ = 1. Recall that 8 < 6y, where 0 is the small constant given by
Lemma 2.6. Hence if % is the solution of

WUDijh =0 in S0 o [detD'w=1 in
h =v on 95" W =0 on 39,

then

lv— Al = canflor —wy’ + 1 locep |
o) (o)
2

(n=Dy> 1 i

)y 4o o
=C(n.q) {CQ"@”Q‘” +9/L2] <-p7.

NS}

We have || k| p~;) < 1 by the maximum principle. Moreover, it follows from the
formulas [14, (3.13) and (3.15)] that, for some C3 = C3(n),

$2. (™) C BCz\/W(O) C Bc, /3:(0).

Thus, by letting [(y) := h(0) + Dh(0) - y, applying the interior C!-! estimate for &
as in Lemma 3.3 and noting that Co/3u < 1/2, we get

B = Il Lo (5,007 < I — l_llLoc(Bczm(O)) <3¢, C3pe.
Therefore,
o =l o0 ($5,00%) < 10 = Rl Lo (53,009 F 1B = Ll Lo (53006
< %/LHT& +3c,C2p < ), (3.2)
Define
1 (x) = Ip(x) +l'(;ﬁ1A1x) . (3.3)
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Then since S, (¢*) = ,u_TlAl Suz (¢), we obtain from (3.2) for x € Sﬂz (¢) that

—1 — —1 - 1
) = @] = [ (7 Arx) =T (07 Arx) | < o =Tl (s,0m) < 1207,

Thus (3) for k = 2 is verified. Also (4) for k = 1 holds because it follows from the
- -1

definition (3.3) and the definition of / thata; = ap+h(0) and by = bg+u2 A} Dh(0).

Hence using the interior C'-! estimate for 4, we get (4) for k = 1 from

1 1\ !
jar = aol + 31| (A7) - 1 = bl = (O] + I DAO)| = 2.

+ Constructing As: Applying Lemma 3.2 for ¢* and Q] we obtain a positive
definite matrix M = A’A withdet M =1, (1 — C8§;)I < M < (1 + C&)I such that

B 0) C w7 AS,(¢%) C B 0), with 8 := C (8% + u~16'/2
(1-82)v/2 H 1 (1+8)v2\Y): 2= 1% 2 .

Define A, := AA; which implies in particular that A; is a positive definite matrix
with det A, = 1. Then as S, (¢*) = M%AlSMz (¢) we conclude that

B(1_s,)y3(0) C 1 A2S,2(¢) C B 5,)3(0).

Thus (2) and the first part of (1) for k = 2 hold obviously since AlA_l = A" and
A=Y < ﬁ f Next observe from the definition of A that (1 — C8;)|x|? <

|[Ax|? < (1 4+ C81)|x|>. Hence
|Asx|? = [AA x> < (1 + C81)|Arx]? < ca(1 + C8p)|x|?

yielding the second part of (1), i.e., ||A2|| < V2 (1 + Céy). O

We next prove Theorem 1.3, and in this proof we use the following strong-type
inequality for the maximal function with respect to sections:

Theorem 3.4 [15, Theorem 2.2] Assume that Q and ¢ satisfy (H). Let Q' € Q. Fix
ho > 0 such that S¢(x, 2ho) € Q for all x € Q. Define the maximal function M(f)
by

1
M(f)(x) = sup ———— lfWIdy forx e
1<hy 1Sp (X, 1)] Sp(x,1)

For any 1 < p < oo, there exists a constant C depending on p,n, A, A, and
dist(Q', 0R2) such that

1

(/ IM(f)(X)I”dM(x)) <C (/ If(y)lpdu(y))
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Proof of Theorem 1.3 Let Q' € Q. Let0 < o < 1,4’ be such thatn/2 < ¢’ < g,
and

1
1—a 1 / 4
N(@):=supr 2 | ———— If19dx )
r<ho 1S (2 | s zr)

where Ay is to be determined. One of the requirements is that Sy (y, 2h¢) € Q2 for all
y € /. Then we have the following pointwise estimate for the gradient Du:

1Du(y)| < C[||u||Lm(Q) n N(y)] forae. y € Q. (3.4)

The L? estimate (1.12) for Du then follows from the volume growth of interior sections
of ¢ and the strong-type inequality for the maximal function M (f) in Theorem 3.4.
Indeed, by Holder inequality, it suffices to consider the case ¢ < p < %. From (3.4)
and by using Holder inequality, we have for any p > ¢ that

| Dullrr
< Cllullre) + CINlLr
< CllullL=(e)

1

, 4 1 , 4 r
+C / sup |r7=0 g ( f9 P 09'dx) 7 ld
(mfh%{ (r) o (|S¢(y’r)| o O ) Jay

= Cllullze(o

_ 1
+ C(/Q rs;g {r§<1—a)M (fq’) (y)f (W o |f(x)|qu)”,,}dy)lf

1
H—gy—nan / 4 » =
< Clutimiay + € sup [0 ( aa (1) 00 ay) 1
Q/

r=hg

The last inequality above follows from the volume estimates of interior sections of ¢.
These estimates [ 13, Corollary 3.2.4] say that there exist constants C and C’ depending
only on n, A, A such that

Cr'? < [Sy(y.r)| < C'r"* forally € @ and r < ho.

As q/q’ > 1, we can apply Theorem 3.4 to conclude that

pP—q

Hag—q)—24n 1
1DullLr(ry < ClillL@) + C sup {r2[< D74 p]}nfnzl,(mnfnj(m

r=<hg

Hag—g)—24n
= Clulley + € sup L0255 s .

r=<ho
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: nq
Now, since ¢ < p < n—g°

(1.12):

we can choose a € (0,1 — % + %) to obtain estimate

| DullLr gy < C(||“||L°°(Q) + ||f||Lq(sz))-

It remains to prove (3.4). Given €y > 0, since g € C(£2) and by [13, Theorem 3.3.8],
there exists iy > 0 such that for any y € €/,

Being(y) C Sp(y, ho) C Beyyp(y) and [g(x) —g(y)| = e forall x € Sy (y, ho).
Fix y € @/, and let Tx = A(x — y) + Z be an affine transformation such that

B1(0) C T'Sy(y. ho) C Bn(0).

Notice that C~! < | det A| i ho < C for some constant C > 0 depending only on n, A,
and A. y
Define €2 := T S4(y, ho) and consider the functions

$(2) = k[p(T™'2) = 1,(T™"2) —ho] and ii(z) = gk T u(T~'2), for z e
where « := g( y)77l | det A|% and [, (x) is the supporting function of ¢ at y. Then
& ~ & ~ a—1 _ ~ . ~
|- 70 < det D%¢(2) < 1+7° and il () =k“T F(T7'0) = f(z) in Q.

We have

1

(o geaz)
r To = Z
1S5@ O s @)

:(K_lr)l%a ;1 |f|q/dx .
|S¢(va_ l")| S¢(y,K*1r)

for all r < khy. Since khg = g(y)_71|detA|%ho > c(n, A, A) > 0, it follows by
letting ro := c(n, A, A) that NJ) 7 q/(Z) < N(y). Note that z is the minimum point

of ¢~> in Q . Therefore if we choose &o := A0, where 6 > 0 is the constant given in
Theorem 1.2 corresponding to this rg, ¢’ = 0, and ¢ ~ ¢, then by Theorem 1.2 there
exist constants *, C > 0 depending only on n, ¢’, &, A, and A, and an affine function
[ such that

lii(z) — 1(z)|+]z — Z||DI| <C|z — Z|[||ﬁ||Loo(g~2) + N(y)] forall z e B,«(Z) € Q.
(3.5)
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Observe that as Bcyp (y) C  Sg(y, ho), we have T Bcp(y) C B,(0), ie,
ABc 1(0) + Z C B,(0). This yields [| Al < Chy'. Thus T Be-1 6, (y) C Bu=(2)
and we obtain from (3.5) and by rescaling back and by taking ¢(x) = £(x,y) :=
g(y)_llcs%al_(Tx) that
3—a [ . - -
lu(x) — )|+ Ix — yl|DE| = g(») 'k T [Iu(Tx) —I(Tx)| + |x — yl|DIL - AI]
1 3z« ~
< CllAllx = yIg) ™6 [l @) + N
- =1 2, e
= CIAI = Y[ lele=(sy 00 +80) ™ (67 det AlF) 2N ()]
a—3
< Chg'hy? |x — y|[||u||Lm(S¢(y,ho)) T N(y)] forall x € Beoi e, (1)

In other words, we proved that for any y € Q' there exists an affine function £ such
that

a5
4x) = €0+ 1x = yIIDE] < Cho™ I =y Il + NG
forall x € Bc—lﬂ*ho (y) (36)

Now, let y € @ be such that Du(y) exists. Then using (3.6) we get

[(x) —u()| < |u(x) — L)+ [€(x) — LY + [u(y) — £(Y)]
<Clx - y|[||u||Loc(Q) + N(y)] forall x € Beoi e, (),

which yields (3.4). Note that the constant C depends also on k¢, and hence it depends
on the modulus of continuity of g. O

4 Pointwise C1'® estimates at the boundary

In this section, we prove Lemma 1.5 and Theorem 1.4. The proof of Theorem 1.4 is
similar to that of [22, Theorem 1.1] but we include it here for the sake of completeness.
It uses the perturbation arguments in the spirit of Caffarelli [2,5] (see also Wang [33])
and boundary Holder gradient estimates for the case of bounded right-hand side f and
C!! boundary data by Savin and the first author [21]. We recall these estimates in the
following theorem.

Theorem 4.1 [21, Theorem 2.1 and Proposition 6.1] Assume ¢ and 2 satisfy assump-
tions (1.13)—(1.16). Denote for simplicity S; = S¢(0,¢). Letu : S, N Q2 — R be a
continuous solution to

Sy = finS,NQ, andu =00n9QLNS,
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where f € L*°(S, N Q). Then, for all s < r/2, we have

_lteg
[0,u(0)| +s~ 72 max lu — 0,u(0)x,| < Co (lullzoo(s,ne) + I fllLoeos,ne) »

)

where ag € (0, 1) and Cq are constants depending only onn, p, ;, A.

Assume ¢ and 2 satisfy (1.13)—(1.16). We can also assume that ¢ (0) = 0 and
D¢ (0) =0.

By Savin’s Localization Theorem for solutions to the Monge—Ampere equations
proved in [24,25], there exists a small constant & depending only on n, p, A, A such
that if 4 < k then

kE, N C Sp(0,h) Ck'Ey N Q2. 4.1

Here Ej, := h'/ 2A;lBl(O) with A, being a linear transformation (sliding along the
xn = 0 plane)

Ap(x) =x —tpxpy, Th-ey, =0, detA, =1 “4.2)
and
Tl < k™" lloghl.

Let us write 7, = (vp, 0) with vy, € R"~1, Next, we define the following rescaling of

¢

¢(hl/2A;1X)

- Q, =h~1?4,Q. 4.3)

Pn(x) ==
Then
A < det D*¢y(x) = det D*¢(h'/?A; ' x) < A in
and
Bi(0) N2y C Sp,(0,1) = h™'/2A;54(0, h) C By-1(0) N Q.
We note that Lemma 4.2 in [21] implies that if 7, r < ¢ small then ¢ satisfies in
Sg;, (0, 1) the hypotheses of the Localization Theorem [24,25] at all xg € S, (0,7) N

0S¢, (0, 1). In particular, there exists o > 0 small depending only on n, p, A, A such
that if xog € Sg, (0,7) N 38y, (0, 1) then

p1x — x01* < ¢n(x) — dn(x0) — Dy (x0) - (x — x0) < o~ |x — x0/%,
Vx € 35y, (0, 1). 4.4)
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Moreover, for i, t < ¢, we have the following volumes estimates
cth? < [Sp(0.h)] < C1h?; 112 <S4, (0.1)] < Cy12. (4.5)
We fix r in what follows. Then, the boundary Holder gradient estimates in Theorem
4.1 for solutions to the linearized Monge—Ampere equation with bounded right-hand
side and C1-! boundary data hold in Sy, (0, r).

We now employ the Green’s function estimate obtained in [18] to derive a boundary
version of the generalized maximum principle in Lemma 2.1.

Lemma 4.2 (Boundary maximum principle) Let h, t < ¢ where ¢ = c(n, A, A, p) is
universally small. Let f € L9(Sy,(0, 1)) for someq > n/2andu € Wli’cn (8¢, (0, )N
C (84, (0, 1)) satisfy

Ly,u < f almost everywhere in Sy, (0, t).

Then there exists a constant C > 0 depending only on n, A, A, p, and q such that

2_1
sup u < sup w4 ClS4,0,0" 9| fllzacsy, 0.
Sg;, (0.1) Sy, (0.1)

Proof Let V = Sy, (0,1). Let Gy (-, y) be the Green’s function of Ly, in V with pole
y € V. Asin (2.2), we obtain for all x € Sy, (0, ¢) the estimate

)< sup ut+ / Gy (. ) f(n)dy.
85, (0,1) v

The conclusion of the lemma follows once we establish that for ¢’ = qul’ we have

2 1
”GV(xa ')”Lq’(v) < C|V|ﬁ_5 forallx € V. (46)

Thanks to (4.4), one can find a constant 6, > 1 depending only on n, A, A, and p such
that

Sg,(0,1) C Sg, (x, 6,1) for all x € Sg, (0, 7). 4.7

This is a boundary version of the engulfing property of sections of the Monge—Ampere
equation (see [19, Lemma 4.1]). By the symmetry of the Green’s function, we have

/ GY (x. y)dy = / GY (v, x)dy < / G oDy, (48)
1% 1% Sy, (x.051)
Due to ¢’ < -2, we have from [18, Corollary 2.6] that

n—2"

’ n=2_
/ GY o (o 1)y < Cl 0 A, p, IS (6, 0057 (49)
Sp(x,041)

@ Springer



1776 N. Q. Le, T. Nguyen

By inspecting the proof of [18, Corollary 2.6] (see the discussion below), we see that
the above inequality also holds with ¢, replacing ¢:

’ =2
/ G, (o (: 0y < Cn, 2 A, p,q)|S, (x. 0,07 9. (4.10)
Sy, (x.61)

The desired estimate (4.6) then follows from (4.8), (4.10), and the volume estimate
for sections of ¢;, given in (4.5).

Let us describe the proof of (4.10). The difference between (4.10) and (4.9) is that
we only know ¢, and Sy, (0, 1) satisfying the quadratic separation condition (4.4) on
a portion S, (0, 7) N 35y, (0, 1) of the boundary 9S4, (0, 1) while ¢ and €2 satisfy a
global condition. For reader’s convenience, we indicate how to obtain (4.10) in our
local setting from the proof of (4.9) in [18, Corollary 2.6]. Three main ingredients
need to be verified are:

(1) Theengulfing property of sections: there exists some constantd = 6(n, A, A, p) >
1 such thatif x € Sy, (0, §) with § universally small and y € Sy, (x, 1) witht < c,
then we have

Sp, (X, 1) C Sg, (v, 01). 4.11)

(2) The volume growth of sections: if x € Sg, (0, ¢) and t < ¢ then
CTlt7 < IS4, (x,1)] < Cit3.

(3) Boundary Harnack inequality for solutions to the homogeneous linearized
Monge-Ampere equation Ly, v = 0in Sy, (0, 1).

We now address these ingredients.

Concerning (1): Suppose x € S4,(0,8) and y € Sy, (x,1). By (4.7), it suffices
to consider x € Sg,(0,8) N ;. We use the strict convexity result for ¢, (see [21,
Lemma 5.4] and also [18, Lemma 3.8(iv)]) which says that the maximal interior section
Se (x, h(x)) of ¢y, centered at x where

h(x) = sup{t| Sy, (x,1) C 2}

is tangent to 02, at z € 92, N Sy, (0, 7/2). Using equation (4.11) in the proof of
Proposition 2.3 in [19], we find some K = K (n, A, A, p) such that

Sy (x,2t) C Sy, (z, Kt) forall h(x)/2 <t < c. 4.12)

If r < h(x)/2, then Sg, (x,2t) C Qp and hence the inclusion (4.11) follows from the
engulfing property of interior sections for the Monge—Ampere equation with bounded
right-hand side (see the proof of Theorem 3.3.7 in [13]). Consider now h(x) /2 <
t < c. Then we have from (4.12) y € Sy, (z, Kt). By (4.7), we have Sy, (z, Kt) C
Sg, (v, 6xK1). Recalling (4.12), we find that (4.11) follows with 0 = 0.K.
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Concerning (2): The proof uses the Localization Theorem and (4.12) as in the proof
of [19, Corollary 2.4] so we omit it.

Concerning (3): Given (1) and (2), the proof of the boundary Harnack inequality
[18, Theorem 1.1] applies in our local setting without change. O

Proof of Lemma 1.5 The proof of this lemma is similar to that of Lemma4.2. It uses the
symmetry of the Green’s function G (x, y) and its global integrability established in
[18, Corollary 2.6] which says that for p € (1, #) inthe casen > 3 and p € (1, 00)
in the case n = 2, we have

sup/ Go(x, P dy <C@n, A, A, p,p).
xeQJQ

]

Proof of Theorem 1.4 Let M := ||(p||C1,y(Bp(0)ﬂm). Since u = ¢ on 92 N B, (0), by
subtracting a suitable affine function /(x), we can assume that u satisfies |u(x)| <
M|x'|'*Y for x = (x', x,) € 32 N B, (0). In particular, u(0) = 0.

Fix 0 < a < min{y, ag} where g is in Theorem 4.1. Let & < 62 with 6 being some
universally small constant that will be chosen later. Then by dividing our equation by

_lia
K =072 [llullz=m,0ne + sup Ny r420-1,0) + M|,

h<t<62

we may assume that

lullLos B, n2) + Sup Ny 1400-1,(0) + M < @'/HT* =5, (4.13)

h<t<62

and we only need to show that there exists » € R" such that

~_lte
h 2w = bxll oo (s, 0,0y T 101 = €, g, ps v, Ay A). (4.14)
As a consequence of (4.13), we have
lu(x)| < 8]x'|"TY for x = (x', x,) € 82N B,(0). (4.15)

Claim There exist 6 > 0 small and C» > 1 depending only on n, p, A, A, y, g such
that the following holds. If sup;_,, 4 Ny 1.4.26m (0) < C28 for some integer number
k > 2, then for every m = 1,2, ...,k we can find a linear function [,,(x) := b, x,
with by = b; = 0 such that

() llu =l Loo(sym) < O™

.. m—1

(11) |bm - bm—1| =< CO(Q 2 )a'

The desired estimate (4.14) follows from the above_claim. Indeed, since i < 62 we
can find a positive integer k > 2 such that pk+l < < 6% and the conclusion 4.14)
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follows by choosing b = by. To see this, we use the definition of N in (1.7) and
20 < 20~'h < 20%~!, together with the volume estimate (4.5) to get

Ny 42000 < CaNy 10 2-17(0)
for some universal constant C,. This and (4.13) imply that

sup Ny, 1,4.20m(0) < C2 sup N¢’f’q’2971,(0) < (6.
' _

I<m< h<t<62

Hence we deduce from the claim by taking into account the affine function /; that

k
_l4a
O 3 Nl = baxl Loogs,y + 166l < 1+ D lbw = bua] < 1

m=1

o0
+Co Y gsm=1 < .

m=1

Therefore, we obtain (4.14) with b = by, since
> Lia k41— te —Lia
h™ "2 Ml = bxll oo s, 0,y + 101N = @)™ 2 llu — brxlioos,e) + okl < €O 2
It remains to show the claim and we prove it by induction. Let us fix £ > 2 such that

sup  Ng, 1,4,20m(0) < C28. (4.16)

1<m=<k

Thanks to (4.15) and « < y, (i) and (ii) clearly hold for m = 1. Suppose (i) and (ii)
holduptom € {1, ...,k — 1}. We prove them for m + 1. As a consequence of (4.16),
we have

N¢,f,q,29'"+1 0) < C76.

Let h := 6™. We define the rescaled domain €2, and function ¢ as in (4.3). For
x € Qp, let

. 1/2 4—1 w
o) = & lm)h(ﬁa D = h A ),

2

and
ij 2 2 !
() = (@ (1) = (det D¢ (0) (D))
Then, by (2.1), @}/ vi; = fi in S, (0, 1) with ]| (s, 0.1y < 1 and

Ngy., £1,9.200) = Ny, 1.4.20n(0) = Ny 1 4 2gm+1(0) = C26. 4.17)
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The first inequality in (4.17) follows from (4.2)—(4.3) and

1
S e — it ax ) = o' F (i 717 d
r h X = X
1S9, (0, I S, 0.) 1S (0, hr)| Js,(0.nr)

forall r > O.

q

Define ¢y, as follows: ¢, = 0 on 95y, (0, 20) N 982, and ¢, = v on 95y, (0, 20) N Q2y,.
Let w solve

CI>;l]w,-j =0 1in Sy, (0, 20),
w = ¢p, on 35y, (0, 20).

By the maximum principle, we have
lwllzoo sy, 0.20)) = VllLoe(s,, 0.20)) = 1.
Let {(x) := bx, where b := 9, w(0). Then Theorem 4.1 gives
|| < Collwllzoe(sy, 0.20)) = Co (4.18)

and

_ 1\ [+
llw —= Iz sy, 0.0)) = Co (92) lwllzoe sy, 0.26))

< C (eﬁ)mo < % (9%)1+a, (4.19)

provided that 6 is universally small. Given this, by reducing 6 further if necessary, we
show that

1 1\ I+
lw —vllzoe(s,, 0.26) = 3 (92) . (4.20)

Combining this with (4.19), we obtain
- i\ o
lo = Tlzcsy, 000 = (67) - (“21)
Now, let
b1 (0) = L (0) + (B2 U2 Ap).
Then, from the definition of v and I, and (4.21), we find

4o - 4o 4o
I = () = (#17) 10 = Tlasgs, 00 = (012) 7 (677)

- (9’”7“)”“,
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proving (i). On the other hand, by (4.2), we have
Lns1(x) = b1, With by iy := by 4 (W) R=12h = b, + h%/%b.
Therefore, the claim is established since (ii) follows from (4.18) and
b1 = b | = h*"? [b] = 6"/% [b)|.
It remains to prove (4.20). We will apply Lemma 4.2 to w — v which solves

cD;lj(w _ U)ij == _fh in S¢h (O, 29)’
w— = @p — v on 38y, (0, 20).

By this lemma and the way ¢y, is defined, we have

2.1
lw —vllLeo(s,, 0.20)) = IvliL=@s,, ©.200na2,) + CxlSe, 0, 200" 7l frllLa(s,, 0,20))
=: () + (D),

where C depends only on n, A, A, p, and q.
We estimate (I) as in the proof of [22, Theorem 1.1] and find that if 0 is small then

1 I+
bl (@)™
D= yl
To estimate (I), we recall Ny, 7, 4.20(0) < C26 = C; OYH I+ and note that

l—a 1 1—a 1
10 llLa (sS4, 0.20)) = Ny, firq.20 (O (20) 278, (0,20)[7 = C28(20) 2 [Sg, (0, 20)] 7.
We therefore obtain from the volume estimates (4.5)
2_1 2 _l-a
(D) = Cs184, (0, 20)|" 7| fallLa(sy, 0.26)) = C+C21Sg,(0,20)]7 (20)" 26
o 1 I+a
< C.0CY"20) 75 < : (91/2)

if 6 is small. It follows that

D=

1+o
) 9

proving (4.20). The proof of Theorem 1.4 is complete. O

1
lw = vl oo (s,, 0,20) = D+ AD = 3 (9

5 Proof of the global W1-? and Hélder estimates

In this section, we prove the main result of the paper (Theorem 1.1) regarding global
WP estimates for solutions to (1.1). We also prove the global Hélder estimates in
Theorem 1.7.
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5.1 Global W1:? estimates

Before giving the proof of Theorem 1.1, we indicate its overall structure. First, we
bound the solution using the global maximum principle in Lemma 1.5. Then, using a
consequence of the boundary Localization Theorem for the Monge—Ampere equations
[24,25], we combine the pointwise C¢ estimates in the interior and at the boundary
in Theorems 1.2 and 1.4 to bound the gradient by the function N defined in (1.8).
The rest of the proof of Theorem 1.1 is similar to that of Theorem 1.3. Here, we use
the global strong-type estimate for the maximal function M in Theorem 1.6 and the
volume growth of sections of ¢. Notice that by [19, Corollary 2.4], there exist constants
¢4, C1, C2 depending only on p, A, A, and n such that for any section Sy (x, t) with
x € Qandt < c,, we have

C11"? < |Sy(x, 1)| < Cat"/2. (5.1)

Proof of Theorem 1.1 We extend ¢ to a C7 () function in . By multiplying u by
a suitable constant, we can assume that

I fllLa) + l@llcry g =< 1.

By the global maximum principle in Lemma 1.5, we have

lullzo@ < C (I flliLa + llelle@) < C (5.2)

for some C depending on n, g, p, A, and A. It remains to show that for all p < n"fq ,
we have

IDullpri) < Cm, p,q,y,p, 1, A). (5.3)

Using Theorem 1.3 and restricting our estimates in small balls of definite size
around 9€2, we can assume throughout that 1 —6 < g < 146 where 6 is the smallest
of the two 6’s in Theorems 1.2 and 1.4.

Let y € Q with r := dist(y, Q) < ¢, for ¢ universal (¢ < 6). Since ¢ is C*! on
the boundary 9€2, by Caffarelli’s strict convexity theorem [3], ¢ is strictly convex in
Q. This implies the existence of the maximal interior section Sy (y, h) of ¢ centered
at y with h := sup{r | Sy (y, t) C 2} > 0. By [21, Proposition 3.2] applied at the point
x0 € 05¢(y, h) N 32, we have

n'? ~, (5.4)
and Sy (y, h) is equivalent to an ellipsoid E, thatis, cE C Sg(y, h) —y C CE, where
E:=h'2A;'B1(0), with ||A4ll, IIA; "] < Clloghl; detA, =1. (5.5)

Moreover, by [19, Theorem 2.1], we have the engulfing property of sections of ¢. That
is, there exists 6, > 0 depending only on p, A, A, and n such that if y € Sy(x, t)
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with x € Q and ¢t > 0, then Sp(x,1) C Sy(y, O«t). Hence, for any z € Sy(y, h) the
following inclusions hold:

7 € Sp(y, h) C Sp(x0, 0xh) C Sp(x0,207 ') C Sp(z,20,0'1) forallt > 6,h.
(5.6)

Let ¢" be such that 5 < ¢" < ¢. By Theorem 1.4 applied to the original function u
in Sy (x0, 6+h), we can find b € R" and a universal constant C such that

_lia
(Oxh)™ 7 lu(x) — u(xo) — b(x — x0) [l L0 (S4(x0.0.h)) + 121l

< C[Ilulle(sz) +lellciy +  sup N(p,f,q/,ze—lt(XO)], (5.7)
0.h<t<6?

where in the definition of Ny, 1.q'20-1:(x0) in (1.7), @ € (0, 1) is the exponent in
Theorem 1.4. ~
We now use (5.5) to rescale our equation. The rescaling ¢ of ¢

B = 7[00+ 147D — 90— DoOIR A7 9]
satisfies
det D*¢(¥) = g(X) == g(y +h'2A, ') e [1 — 6,1+ 6],
and
B.(0) C S5(0,1) C Bc(0), S50, 1) =h~"2A,(Sp(v, 1) — ), (5.8)

where we recall that S p (0, 1) represents the section of ¢ at the origin with height 1.
We denote S’t =S F; (0, 1). We define also the rescaling u for u

(%) == h 2[u(x) —u(xo) —b(x —x0)], FeSi, x=Ti:=y+h"?4,'5
Let d = (&Dij)lf,-,jfn be the cofactor matrix of D2<5. Then, by (2.1), i solves
St = f(F) = h'2f(TR).
From (5.7), (5.2), and (5.4), we have
~ B —1/2 e _
||u||LOC(S1) <Ch (Osh) 2 ”M”LOO(Q) + ”(p”CLV(Q) + sup N¢,Af,q’,29*1[(x0)
0 h<t<0?

1+ sup Ny a0 G0)] (5.9)

0 h<t<p?
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Now, in the definition of N in (1.8), we let o € (0, 1) be the exponent in Theorem 1.4
and ro = 260,6. Apply Theorem 1.2 to u and arguing as in (3.4), we obtain

Da@)| = C[lill s,y + Nj g @] forae.ze 5.
Note that, by (5.5) and (5.4),
Nj 7@ ShINg 14(2) < CrNy 1q(2) with z=T%. (5.10)

It is easy to see from the definitions of Ny 1.q'.26-1:(x0) and Ny, 14 (2), (5.6) and the
volume estimates in (5.1) that

Ny f.q20-1100) < CNy 50 29.6-1,(2) < CNy_f4(z) forallr € [6,h,67]5.11)

Hence, using (5.9) and (5.10), we get

|Dﬁ(z)| S Cra[l +N¢,f,q/(Z)+ sup N¢,f’q/,2971,(xo)] S Cl"a[l +N¢,f,q’(z)]
0, h<t<62

forae z=T"'z¢ 5‘1/2. Rescaling back, using
i=h"'"PAuz—y), D) = (A;") (Duz) —b) and h'/* ~r,
together with (5.7) and (5.11), we find for all z € Sy(y, h/2) that

|Du(z)| = |A,Di(Z) + b| < Cllogh|r*[1+ Ny 5] + C[1 4+ Ny, 1.4(2)]
< C[14 Ny 1.9 @]

In particular, we obtain the following gradient estimate for a.e. y € € with
dist(y,02) =r <c,

|Du(y)| < C[14 Ny, r.q D]

This is a global version of (3.4). Now, we argue as in the proof of Theorem 1.3 and
using a global version of strong-type estimate for the maximal function in Theorem
1.6 and the volume growth of sections in (5.1) to conclude the proof of Theorem 1.1.

O

5.2 Global Holder estimates

Proof of Theorem 1.7 The proof of the global Holder estimates in this theorem is
similar to the proofs of [16, Theorem 1.4] and [20, Theorem 4.1]. It combines the
boundary Holder estimates in Proposition 5.1 and the interior Holder continuity esti-
mates in Corollary 2.4 using Savin’s Localization Theorem [24,25]. Thus we omit the
details and only present the proof of Proposition 5.1 below. O
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Proposition 5.1 Let ¢ and u be as in Theorem 1.7. Then, there exist &, C depending
onlyond, A, n,a, p, and q such that, for any xo € 92 N B, 2(0), we have

lu(x) — u(xo)l
a0
< Clx — x|t (”u”LOO(QﬁBp(O)) + llellceens, ©0) + ||f||Lq(ssz,J(0)))
forall x € Q2N Bs(xp),

where

op 1= min {Ol, 2(2 — g)}

The proof of Proposition 5.1 relies on an extension of Lemma 4.2 and a construction
of suitable barriers.

In what follows, we assume ¢ and €2 satisfy the assumptions in the proposition. We
also assume for simplicity that ¢ (0) = 0 and V¢ (0) = 0. Furthermore, we abbreviate
B, (0) by B, forr > 0.

We now recall the following construction of supersolution in [20].

Lemma 5.2 [20, Lemma 4.4] Given 8 universally small (§ < p), define

-8 2IA 1 A
S = ? and M; := an—1 §3n-3 = (AS)”_I.

Then the function

n

wS(x/a Xp) = Msx, + ¢ — glx/|2

_ 2 / S
(Ag)n—lx” for (x',x,) € Q

satisfies
O (ws)ij < —nA in R,

and

83
ws >0 on (2N Bs), ws > > on N oB;.

The next result is an extension of Lemma 4.2 where sections are now replaced by
balls.

Lemma 5.3 Let A = QN Bs(0) where§ < cwithc = c(n, A, A, p) being_universally
small. Assume that f € L1(A) for some q > n/2 andu € leu’cn (A) N C(A) satisfies

Lyu < f almost everywhere in A.
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Then there exists a constant C > 0 depending only on n, A, A, p, and q such that

3(2_1
supu < supu’ + C|A|4(” q)||f||L‘1(A)~
A dA

Proof Let G (-, y) be the Green’s function of Ly in A with pole y € A. As in the
proof of Lemma 4.2, it suffices to prove that

3(2_1
|G a(x, ~)||Lq/(A) < C|A|4(" ‘1) forallx € A. (5.12)
Note that from (4.1) and (4.2) we have for h < ¢

QNB C Sp(0,h) C QN B

+
ch'/2/|log h| Ch!/2|logh|

Hence for |x| < § < ¢, we deduce from the first inclusion that
A=QNBs0) C Sy (o, 53/2) — V. (5.13)

Arguing as in (4.8), (4.10), we find that

1

2
Gy (x, -)||Lq/(v) <C|V|r 4 forallx € V. (5.14)
Using the volume estimate for sections in (4.5), we find that
3n 3
VI < C3+ < ClA|%.

This together with (5.14) and (5.13) implies (5.12).

Proof of Proposition 5.1 Our proof follows closely the proof of Proposition 2.1 in
[16]. We include here the details for reader’s convenience. Since

lellcwo@ans,) < Clao, o, p)ll@lice@ans,)

it suffices to show that

(]
ju(x) = ux0)| = Clx = %05 (lull=(@nm,) + ¢ llcwosans,) + 1f Lsns,)
for all x € Q N Bs(xp).

We can suppose that K := |ullL~@nB,) + ll¢llco@ans,) + | fllLi@ns,) is finite.
By working with the function v := u/K instead of u, we can assume in addition that

lull o @nB,) + l¢llcwo@ens,) + I fllLa@ns,) <1
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and need to show that the inequality

g
lu(x) — u(xg)| < Clx — xg|®*™* forall x € 2N Bs(xp) (5.15)

holds for all xo € 2N B, /2, where § and C depend only on A, A, n, a, p, and g.
We prove (5.15) for xo = 0. However, our arguments apply to all points xg €
QN By, with obvious modifications. For any ¢ € (0, 1), we consider the functions

he(x) :==u(x) —u) e+ B%wgz
2

in the region

A = QN By, (0),

where 8, is small to be chosen later and the function ws, is as in Lemma 5.2. We
remark that ws, > 0in A by the maximum principle. Observe that if x € 02 with
lx| < 81 (e) := /% then,

lu(x) —u(0)] = lp(x) —O)| < x[* <e. (5.16)

On the other hand, if x € N 3 Bs, then from Lemma 5.2, we obtain a%wgz (x) > 3.
2

It follows that, if we choose 6, < §; then from (5.16) and |u(x) — u(0) £ ¢| < 3, we
get

h_ <0, hy >0 on 0A.
Also from Lemma 5.2, we have
—Lyhy = f, —Lyh— = [ in A.

Here we recall that Ly = — i p; ;- Hence Lemma 5.3 applied in A gives the following
estimates

3(2_1 3(2—n
h_ < c1|A|4(" q)||f||Lft(A) < 6162“( ) in A (5.17)
and

2—

1(2-Y) i(-2)
hy = =Ci|A]*\" 47| fliLaca) = —C18, in A (5.18)

where C1 > 1 depends only on n, A, A, p, and g. By restricting ¢ < Cl_l(f 1), we
can assume that

51%(2—3) IR E cT
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3p_n
Then, for 6, < §;, we have Clég( ¢ < ¢ and thus, for all x € A, we obtain from
(5.17) and (5.18) that

6
[u(x) —u(0)] <2+ 8—3w52(x).
2

Note that, by construction and the boundary estimate for the function ¢, we have in
A

ws, (X) < Mg, Xp 4+ ¢ (x) < Mg, |x| + C |x|? [log |x||> < 2Ms, |x|.

Therefore, choosing §, = §; and recalling the choice of Ms,, we get

12Ms, Cr(n, A, N) _3n
lu(x) —u(0)] <26+ —5— |x| =26 + ——5,——Ix[ =2 + Cog 0 |x|
82 82
(5.19)

for all x, ¢ satisfying the following conditions

x| < 81(e) ==/, e <yl

L)
Finally, let us choose ¢ = |x|%*¥ . It satisfies the above conditions if |x| <
_ag+3n a0

C, “ =: §. Then, by (5.19), we have |u(x) — u(0)] < (2 + Cp)|x|*0+3 for
all x € 2N Bs(0). O
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