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Abstract In an infinite-dimensional Teichmüller space, it is known that the geodesic
connecting two points can be unique or not. In this paper, we study the situation on
the geodesic in the universal asymptotic Teichmüller space AT (�). We introduce the
notions of substantial point and non-substantial point in AT (�). The set of all non-
substantial points is open and dense in AT (�). It is shown that there are infinitely
many geodesics joining a non-substantial point to the basepoint. Although we have
difficulty in dealing with the substantial points, we give an example to show that there
are infinitely many geodesics connecting a certain substantial point and the basepoint.
It is also shown that there are always infinitely many straight lines containing two
points in AT (�).
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Substantial boundary point · Substantial point
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1 Introduction

Let S be a hyperbolic Riemann surface, that is, it is covered by a holomorphic map:
� : � → S, where � = {|z| < 1} is the open unit disk. Let T (S) be the Teichmüller
space of S. A quotient space of the Teichmüller space T (S), called the asymptotic
Teichmüller space and denoted by AT (S), was introduced by Gardiner and Sullivan
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1446 G. Yao

(see [11] for S = � and by Earle, Gardiner and Lakic for arbitrary hyperbolic S [2,4,
10]).

AT (S) is interesting only when T (S) is infinite dimensional, which occurs when S
has border or when S has infinite topological type; otherwise, AT (S) consists of just
one point. In recent years, the asymptotic spaces have been extensively studied; for
example, one can refer to [2–4,8,18,19,25].

We shall use some geometric terminology adapted from [1] by Busemann. Let X
and Y be metric spaces. An isometry of X into Y is a distance preserving map. A
straight line in Y is a (necessarily closed) subset L that is an isometric image of the
real line R. A geodesic in Y is an isometric image of a non-trivial compact interval
of R. Its endpoints are the images of the endpoints of the interval, and we say that the
geodesic joins its endpoints.

Geodesics play an important role in the theory of Teichmüller spaces. In a finite-
dimensional Teichmüller space T (S), there is always a unique geodesic connecting
two points. The situation is substantially different in an infinite-dimensional Teich-
müller space (see [5,12,15–17,23,24]). Generally, for a Strebel point, there is a unique
geodesic connecting it and the basepoint. A natural question is whether the geodesic
connecting two points in AT (S) is unique. In [6], by a lengthy computation Fan tried
to give certain examples to show the nonuniqueness of geodesics in AT (�) or in more
general AT (S). Unfortunately, there is a gap in his proof.

The motivation of this paper is to investigate the nonuniqueness of geodesics in the
universal asymptotic Teichmüller space AT (�). We introduce the notions of substan-
tial point and non-substantial point in AT (�). The set of all non-substantial points is
open and dense in AT (�). The first main result is the following theorem.

Theorem 1 For every non-substantial point in AT (�), there are infinitely many geo-
desics joining it with the basepoint.

We have some difficulty in dealing with the substantial points. Nevertheless, we
give an example to show that there are infinitely many geodesics connecting a certain
substantial point and the basepoint which might support the conjecture that there are
always infinitely many geodesics connecting two points in AT (�).

In a finite-dimensional Teichmüller space, there is a unique straight line passing
through two points [13]. In an infinite-dimensional Teichmüller space, the work in [5]
shows that if and only if τ is a Strebel point, there is a unique straight line passing
through τ and the basepoint in T (S). The secondmain result of this paper characterizes
the nonuniqueness of straight lines containing two points in AT (�).

Theorem 2 For any two points in AT (�), there are infinitely many straight lines
containing them.

This paper is organized as follows. In Sect. 2, we introduce some basic notions in
the Teichmüller space theory. Theorems 1 and 2 are proved in Sects. 3 and 4 separately.
We investigate the relationship on the substantial boundary points for points along a
geodesic in Sect. 5. In Sect. 6, an example is given to show the nonuniqueness of
geodesics joining a certain substantial point with the basepoint. Some parallel results
in the infinitesimal setting are obtained in the last section.
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On Nonuniqueness of Geodesics in Asymptotic Teichmüller Space 1447

The method used here can also be used to deal with some more general cases.
However, there are some difficulties in solving the problem in all cases.

2 Some Preliminaries

2.1 Teichmüller Space and Asymptotic Teichmüller Space

Let S be a Riemann surface of topological type. The Teichmüller space T (S) is the
space of equivalence classes of quasiconformal maps f from S to a variable Riemann
surface f (S). Two quasiconformal maps f from S to f (S) and g from S to g(S) are
equivalent if there is a conformal map c from f (S) onto g(S) and a homotopy through
quasiconformal maps ht mapping S onto g(S) such that h0 = c ◦ f , h1 = g and
ht (p) = c ◦ f (p) = g(p) for every t ∈ [0, 1] and every p in the ideal boundary of
S. Denote by [ f ] the Teichmüller equivalence class of f ; also sometimes denote the
equivalence class by [μ] where μ is the Beltrami differential of f .

The asymptotic Teichmüller space is the space of a larger equivalence classes. The
definition of the new equivalence classes is exactly the same as the previous definition
with one exception; the word conformal is replaced by asymptotically conformal. A
quasiconformal map f is asymptotically conformal if for every ε > 0, there is a
compact subset E of S, such that the dilatation of f outside of E is less than 1 + ε.
Accordingly, denote by [[ f ]] or [[μ]] the asymptotic equivalence class of f .

Denote by Bel(S) the Banach space of Beltrami differentials μ = μ(z)dz̄/dz on
S with finite L∞-norm and by M(S) the open unit ball in Bel(S).

For μ ∈ M(S), define

k0([μ]) = inf{‖ν‖∞ : ν ∈ [μ]}.

Define h∗(μ) to be the infimum over all compact subsets E contained in S of the
essential supremum norm of the Beltrami differential μ(z) as z varies over S\E and
h([μ]) to be the infimum of h∗(ν) taken over all representatives ν of the class [μ].
It is obvious that h([μ]) ≤ k0([μ]). Following [5], [μ] is called a Strebel point if
h([μ]) < k0(τ ); otherwise, τ is called a non-Strebel point.

Put
h([[μ]]) = inf{h∗(ν) : ν ∈ [[μ]]}.

We say that μ is extremal in [μ] if ‖μ‖∞ = k0([μ]) and μ is asymptotically extremal
if h∗(μ) = h([[μ]]). The relation h([μ]) = h([[μ]]) is due to the definition.

The Teichmüller metric dT between two points τ, σ ∈ T (S) is defined as follows:

dT (τ, σ ) = 1

2
inf

μ∈τ, ν∈σ
log

1 + ‖(μ − ν)/(1 − ν̄μ)‖∞
1 − ‖(μ − ν)/(1 − ν̄μ)‖∞

.

The asymptotic Teichmüller metric dAT between two points τ̃ , σ̃ ∈ AT (S) is defined
by
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dAT (̃τ , σ̃ ) = 1

2
inf

μ∈τ̃ , ν∈σ̃
log

1 + ‖(μ − ν)/(1 − ν̄μ)‖∞
1 − ‖(μ − ν)/(1 − ν̄μ)‖∞

= 1

2
inf

μ∈τ̃ , ν∈σ̃
log

1 + h∗((μ − ν)/(1 − ν̄μ))

1 − h∗((μ − ν)/(1 − ν̄μ))
.

(2.1)

In particular, the distance between [[μ]] and the basepoint [[0]] is

dAT ([[μ]], [[0]]) = 1

2
log H([[μ]]), where H([[μ]]) = 1 + h([[μ]])

1 − h([[μ]]) . (2.2)

2.2 Tangent Spaces to Teichmüller Space and Asymptotic Teichmüller Space

The cotangent space to T (S) at the basepoint is the Banach space Q(S) of integrable
holomorphic quadratic differentials ϕ on S with L1-norm

‖ϕ‖ =
∫∫

S
|ϕ(z)| dxdy < ∞.

In what follows, let Q1(S) denote the unit sphere of Q(S). Moreover, let Q1
d(S) denote

the set of all degenerating sequence {ϕn} ⊂ Q1(S). By definition, a sequence {ϕn} is
called degenerating if it converges to 0 uniformly on compact subsets of S.

TwoBeltrami differentialsμ and ν in Bel(S) are said to be infinitesimally equivalent
if

∫∫

S
(μ − ν)ϕ dxdy = 0, for any ϕ ∈ Q(S).

The tangent space Z(S) of T (S) at the basepoint is defined as the set of the quotient
space of Bel(S) under the equivalence relations. Denote by [μ]Z the equivalence class
of μ in Z(S).

Z(S) is a Banach space and actually [10] its standard sup-norm satisfies

‖[μ]Z‖ := sup
ϕ∈Q1(S)

∣

∣

∣

∣

∫∫

S
μϕ dxdy

∣

∣

∣

∣

= inf{‖ν‖∞ : ν ∈ [μ]Z }.

Two Beltrami differentials μ and ν in Bel(S) are said to be infinitesimally asymp-
totically equivalent if

sup
Q1
d (S)

lim sup
n→∞

∣

∣

∣

∣

∫∫

S
(μ − ν)ϕn dxdy

∣

∣

∣

∣

= 0,

where the first supremum is taken when {ϕn} varies over Q1
d(S).

The tangent space AZ(S) of AT (S) at the basepoint is defined as the set of the
quotient space of Bel(S) under the asymptotic equivalence relation.Denote by [[μ]]AZ
the equivalence class of μ in AZ(S).

Define b([μ]Z ) to be the infimum over all elements in the equivalence class [μ]Z of
the quantity b∗(ν). Here b∗(ν) is the infimum over all compact subsets E contained in
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On Nonuniqueness of Geodesics in Asymptotic Teichmüller Space 1449

S of the essential supremum of the the Beltrami differential ν as z varies over S − E .
It is obvious that b∗(μ) ≤ ‖[μ]Z‖. [μ]Z is called an infinitesimal Strebel point if
b([μ]Z ) < ‖[μ]Z‖.

Put
b([[μ]]AZ ) = inf{b∗(ν) : ν ∈ [[μ]]AZ }.

We say that μ is (infinitesimally) extremal if ‖μ‖∞ = ‖[μ]Z‖ and μ is (infini-
tesimally) asymptotically extremal if b∗(μ) = b([[μ]]AZ ). We also have b([μ]Z ) =
b([[μ]]AZ ) [10].

AZ(S) is a Banach space and its standard infinitesimal asymptotic norm satisfies
(see [10])

‖[[μ]]AZ‖:= sup
Q1
d (S)

lim sup
n→∞

∣

∣

∣

∣

∫∫

S
μϕn dxdy

∣

∣

∣

∣

= inf{‖ν‖∞ : ν ∈ [[μ]]AZ }=b([[μ]]AZ ).

2.3 Substantial Boundary Points and Hamilton Sequence

Now we define the notion of boundary dilatation of a quasiconformal mapping at a
boundary point. For a Riemann surface, the meaning of what is a boundary point can
be problematic. However, if S can be embedded into a larger surface ˜S such that the
closure of S in ˜S is compact, then it is possible to define the boundary dilatation. In
this section, we assume that S is such a surface.

Let p be a point on ∂S and let μ ∈ Bel(S). Define

h∗
p(μ) = inf{esssupz∈U ⋂

S |μ(z)| : U is an open neighborhood in ˜S containing p}

to be the boundary dilatation of μ at p. If μ ∈ M(S), define

h p([μ]) = inf{h∗
p(ν) : ν ∈ [μ]}

to be the boundary dilatation [μ] at p. For a general μ ∈ Bel(S), define

bp([μ]Z ) = inf{h∗
p(ν) : ν ∈ [μ]Z }

to be the boundary dilatation of [μ]Z at p. If we define the quantities

h p([[μ]]) = inf{h∗
p(ν) : ν ∈ [[μ]]}, bp([[μ]]AZ ) = inf{h∗

p(ν) : ν ∈ [[μ]]AZ },

then h p([μ]) = h p([[μ]]) and bp([μ]Z ) = bp([[μ]]AZ ). In particular, Lakic [14]
proved that when S is a plane domain,

h([[μ]]) = max
p∈∂S

h p([[μ]]), b([[μ]]AZ ) = max
p∈∂S

bp([[μ]]AZ ).
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As is well known, μ is extremal if and only if it has a so-called Hamilton sequence,
namely, a sequence {ψn} ⊂ Q1(S), such that

lim
n→∞

∫∫

S
μψn(z)dxdy = ‖μ‖∞. (2.3)

Similarly, by Theorem 8 on p. 281 in [10], μ is asymptotically extremal if and only
if it has an asymptotic Hamilton sequence, namely, a degenerating sequence {ψn} ⊂
Q1(S), such that

lim
n→∞

∫∫

S
μψn(z)dxdy = h∗(μ). (2.4)

Now, we assume that S is a plane domain with two or more boundary points. Then,
the following lemma derives from Theorem 6 on p. 333 in [10]:

Lemma 2.1 The following three conditions are equivalent for every boundary point p
of S and every asymptotically or infinitesimal asymptotically extremal representative
μ:

(1) h([μ]) = h p([μ]) (equivalently, h([[μ]]) = h p([[μ]])),

(2) b([μ]) = bp([μ]) (equivalently, b([[μ]]AZ ) = bp([[μ]]AZ )),

(3) there exists an asymptotic Hamilton sequence forμ degenerating towards p, i.e., a
sequence {ψn} ⊂ Q1(S) converging uniformly to 0 on compact subsets of S\{p},
such that

lim
n→∞

∫∫

S
μψn(z)dxdy = h∗

p(μ). (2.5)

If one of three conditions in the lemma holds at some p ∈ ∂S, we call p a substantial
boundary point for [[μ]] (or [μ]) and [[μ]]AZ (or [μ]Z ), respectively.

3 Geodesics Joining Non-substantial Points with the Basepoint

[[μ]] (or [[μ]]AZ ) is called a substantial point in AT (�) (or AZ(�)), if every p ∈ ∂�

is a substantial boundary point for [[μ]] (or [[μ]]AZ ); otherwise, [[μ]] (or [[μ]]AZ ) is
called a non-substantial point.

Let SP and I SP denote the collection of all (infinitesimal) substantial points in
AT (�) and AZ(�), respectively. Since every substantial point can be approximated
by a sequence of non-substantial points, it is clear that AT (�)\SP and AZ(�)\I SP
are open and dense in AT (�) and AZ(�), respectively.

Let dH (z1, z2) denote the hyperbolic distance between two points z1, z2 in �, i.e.,

dH (z1, z2) = 1

2
log

1 + | z1−z2
1−z̄1z2

|
1 − | z1−z2

1−z̄1z2
| .
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On Nonuniqueness of Geodesics in Asymptotic Teichmüller Space 1451

To prove Theorem 1, we need a series of lemmas.

Lemma 3.1 Let t1, t2 be two complex numbers and k1, k2 be two real numbers. Then
we have

∣

∣

∣

∣

∣

(t1 − t2)k1
1 − t2t1k21

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(t1 − t2)k2
1 − t2t1k22

∣

∣

∣

∣

∣

, if 0 < k1 ≤ k2 and k22 |t1t2| < 1. (3.1)

Proof Without any loss of generality, we may assume that t1t2 
= 0. Let k be a real
variable and put

F(k) =
∣

∣

∣

∣

(t1 − t2)k

1 − t2t1k2

∣

∣

∣

∣

2

= |t1 − t2|2k2
1 + |t1t2|2k4 − 2k2Re(t2t1)

.

It is easy to verify that F ′(k) ≥ 0 as k ∈ (0, 1/
√|t1t2|). Therefore F(k) is an increasing

function on (0, 1/
√|t1t2|) and hence (3.1) holds. ��

Lemma 3.2 Let μ ∈ Bel(�) and p ∈ ∂�. Then, for any given ε > 0,
(1) if μ ∈ M(�), then there exists a Beltrami differential ν ∈ [μ] such that ν is an
asymptotical extremal and h∗

p(ν) < h p([μ]) + ε;
(2) there exists a Beltrami differential ν ∈ [μ]Z such that ν is an asymptotical extremal
and b∗

p(ν) < bp([μ]Z ) + ε.

Proof We only show the first part for the second part follows from a similar argument.
Case 1. h p([μ]) = h([μ]).
By Theorem 2 on p. 296 of [10], there exists a Beltrami differential ν ∈ [μ] such

that ν is an asymptotical extremal representative, that is, h∗(ν) = h([μ]). It obviously
yields h∗

p(ν) < h p([μ]) + ε.
Case 2. h p([μ]) < h([μ]) := h.
By the definition of boundary dilatation, there exists a Beltrami differential χ(z) ∈

[μ] such that h∗
p(χ) < min{h p([μ]) + ε, h}. Let B(p) = {z ∈ � : |z − p| < r}

for small r > 0. Then, when r is sufficiently small, |χ(z)| < min{h p([μ]) + ε, h} in
B(p) almost everywhere.

Restrict χ on �\B(p) and regard [χ ] as a point in the Teichmüller space
T (�\B(p)). Then h([χ ]) = h (if necessary, let B(p) be smaller). By Theorem 2
on p. 296 of [10] again, we can choose an asymptotical extremal in [χ ], say ν1(z).
Define

ν(z) =
{

ν1(z), z ∈ �\B(p),

χ(z), z ∈ B(p).

Then, ν is the desired asymptotical extremal in [μ]. ��

In [6], Fan obtained a sufficient condition to determine two different geodesics.
That is the following theorem.
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1452 G. Yao

Theorem A Let μ and ν be two asymptotically extremal Beltrami differentials in
[[μ]] ∈ AT (�). If

sup
Q1
d (�)

lim sup
n→∞

|
∫∫

�

(μ − ν)φn dxdy| > 0,

then the two geodesics [[tμ]] and [[tν]] (0 ≤ t ≤ 1) are different, where the first
supremum is taken when {φn} varies over Q1

d(�).

The following corollary is direct.

Corollary 3.1 Supposeμ and ν be two asymptotically extremal Beltrami differentials
in their classes in AT (�) respectively. If h([[μ]]) = h([[ν]]) and

sup
Q1
d (�)

lim sup
n→∞

|
∫∫

�

(μ − ν)φn dxdy| > 0,

then the two geodesics [[tμ]] and [[tν]] (0 ≤ t ≤ 1) are different.

Proof of Theorem 1 Suppose [[μ]] is not a substantial point in AT (�). Let h =
h([[μ]]). There is a non-substantial boundary point q ∈ ∂� such that hq([[μ]]) < h.
By Lemma 3.2, it is convenient to assume that μ is an asymptotical extremal repre-
sentative in [[μ]] satisfying h∗

q(μ) < h.

By the definition of boundary dilatation, we can find a small neighborhood B(q) of q
in � such that |μ(z)| ≤ ρ < h for some ρ > 0 in B(q) almost everywhere. Therefore
for any ζ ∈ ∂� ∩ ∂B(q), h∗

ζ (μ) ≤ ρ.
Choose δ(z) ∈ M(�) such that ‖δ‖∞ ≤ β < h − ρ and δ(z) = 0 when z ∈

�\B(q).
Let � be the collection of the real-valued functions σ(t) defined on [0, h] with the

following conditions:

(A) σ is continuous with σ(0) = 0 and σ(h) = 0,

(B) |s−t |ρ/h+|σ(t)−σ(s)|β
1−(sρ/h+|σ(s)|β)(tρ/h+|σ(t)|β)

≤ |s−t |
1−st , s, t ∈ [0, h].

We claim that � contains uncountably many elements. At first, let σ be a Lipschitz
continuous function on [0, h] with the following conditions,

(i) for some small α > 0, |σ(s) − σ(t)| < α|s − t |, t, s ∈ [0, h],

(ii) σ(0) = 0 and σ(h) = 0,

(iii) for some small t0 in (0, h), σ(t) ≡ 0 when t ≥ t0.

Secondly, we show that when t0 and α are sufficiently small, σ belongs to �, for
which it suffices to show that σ satisfies the condition (B). Let t, s ∈ [0, h]. It is no
harm to assume that t ≤ s.

Case 1. h ≥ t ≥ t0.
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Since σ(s) = σ(t) = 0, by Lemma 3.1, we have

|s − t |ρ/h + |σ(t) − σ(s)|β
1 − (sρ/h + |σ(s)|β)(tρ/h + |σ(t)|β)

= |s − t |ρ/h

1 − st (ρ/h)2

≤
∣

∣

∣

∣

s − t

1 − st

∣

∣

∣

∣

.

Case 2. 0 ≤ t < t0.
Put γ = ρ/h + αβ and choose small α > 0 such that γ < 1. On the one hand,

since |σ(t)| ≤ αt and |σ(s)| ≤ αs, it holds that

|s−t |ρ/h + |σ(t)−σ(s)|β
1 − (sρ/h + |σ(s)|β)(tρ/h + |σ(t)|β)

≤
∣

∣

∣

∣

(s − t)(ρ/h + αβ)

1 − (sρ/h + |σ(s)|β)(tρ/h + |σ(t)|β)

∣

∣

∣

∣

≤
∣

∣

∣

∣

(s − t)(ρ/h + αβ)

1 − [ρ/h + αβ][t0(ρ/h + αβ)]
∣

∣

∣

∣

= γ

∣

∣

∣

∣

s − t

1 − t0γ 2

∣

∣

∣

∣

.

On the other hand, we have

∣

∣

∣

∣

s − t

1 − st

∣

∣

∣

∣

≥
∣

∣

∣

∣

s − t

1 + t0

∣

∣

∣

∣

.

When t0 is sufficiently small, we can get

∣

∣

∣

∣

s − t

1 + t0

∣

∣

∣

∣

≥ γ

∣

∣

∣

∣

s − t

1 − t0γ 2

∣

∣

∣

∣

.

Therefore, when t0 and α are sufficiently small, σ satisfies the condition (B).
For a given σ ∈ �, define for t ∈ [0, h],

μt (z) =
{

tμ(z)/h, z ∈ �\B(q),

tμ(z)/h + σ(t)δ(z), z ∈ B(q).
(3.2)

Step 1 We prove that {[[μt ]] : t ∈ [0, h]} is a geodesic connecting [[0]] and [[μ]].
It is sufficient to verify that whenever t, s ∈ [0, h],

dAT ([[μt ]], [[μs]]) = dH (t, s) = 1

2
log

1 + |s − t |/(1 − st)

1 − |s − t |/(1 − st)
. (3.3)

Let fs : � → � and ft : � → � be quasiconformal mappings with Beltrami
differentials μs and μt respectively. It is convenient to assume that t 
= 0 and t 
= s.
Set Fs,t = fs ◦ f −1

t and assume that the Beltrami differential of Fs,t is νs,t . Then a
simple computation shows,

νs,t ◦ ft (z) = 1

τ

μs(z) − μt (z)

1 − μt (z)μs(z)
,
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1454 G. Yao

where z = f −1
t (w) for w ∈ � and τ = ∂ ft/∂ ft . We have

νs,t ◦ ft (z) =
{ 1

τ
s−t

1−st |μ(z)|2/h2
μ(z)
h , z ∈ �\B(q),

1
τ

(s−t)μ(z)/h+[σ(s)−σ(t)]δ(z)
1−[sμ(z)/h+σ(s)δ(z)]tμ(z)/h+σ(t)δ(z)

, z ∈ B(q).
(3.4)

Since σ(t) ∈ �, due to condition (B) we see that restricted on ft (B(q)),

‖νs,t‖∞ ≤ |s − t |
1 − st

. (3.5)

Suppose p ∈ ∂�∩∂(�\B(q)) is a substantial boundary point for [[μ]]. By Lemma
2.1 there is a degenerating Hamilton sequence {ψn} ⊂ Q1(�) towards p such that

h = lim
n→∞

∫∫

�

μ(z)ψn(z)dxdy.

Then we have

t = lim
n→∞

∫∫

�

μt (z)ψn(z)dxdy.

On the other hand, it is easy to see that h([[μt ]]) = h∗(μt ) = t and hence μt is
an asymptotical extremal. Therefore, the Beltrami differential μ̃t of f −1

t is also an
asymptotical extremal where

μ̃t = −μt ( f
−1
t )∂ f −1

t /∂ f −1
t = −1

τ

tμ(z)

h

Thus ft (p) ∈ ∂� ∩ ∂(�\ ft (B(q))) is a substantial boundary point for [[μ̃t ]] and
there is a degenerating Hamilton sequence {˜ψn} ⊂ Q1(�) towards ft (p) such that

lim
n→∞

∫∫

�

μ̃t ˜ψn(w)dudv = lim
n→∞

∫∫

�\ ft (B(q))

μ̃t ˜ψn(w)dudv = h([[μ̃t ]]) = t.

Note that when w = ft (z) ∈ �\ ft (B(q)),

νs,t (w) = 1

τ

s − t

1 − st |μ(z)|2/h2
μ(z)

h
= t − s

1 − st |μ( f −1
t (w))|2/h2

μ̃t (w)

t
.
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By a simple analysis, we obtain

lim
n→∞

∫∫

�

νs,t (w)˜ψn(w)dudv

= lim
n→∞

∫∫

�

t − s

1 − st |μ( f −1
t (w))|2/h2

μ̃t (w)

t
˜ψn(w)dudv

= lim
n→∞

∫∫

�\ ft (B(q))

t − s

1 − st |μ( f −1
t (w))|2/h2

μ̃t (w)

t
˜ψn(w)dudv

= lim
n→∞

∫∫

�\ ft (B(q))

t − s

1 − st

μ̃t

t
˜ψn(w)dudv = t − s

1 − st
.

(3.6)

In terms of (3.4) and Lemma 3.1, it is not hard to prove that h∗
ζ (νs,t ) ≤ |s−t |

1−st
when ζ ∈ ∂� ∩ ∂(�\ ft (B(q))). Thus, by (3.5), (3.6) and Lemma 2.1, it follows that
h([[νs,t ]]) = |s−t |

1−st , νs,t is asymptotically extremal and the equality (3.3) holds.
Step 2.We show that, when σ(t) varies over � and δ(z) varies over M(�) suitably,

respectively, we can get infinitely many different geodesics.
Firstly, choose δ(z) in M(�) such that

sup
Q1
d (�)

lim sup
n→∞

∣

∣

∣

∣

∫∫

�

δϕn dxdy

∣

∣

∣

∣

= c > 0, (3.7)

where the supremum is over all sequences {ϕn} in Q1
d(�) degenerating towards q.

Secondly, we choose small t0 in (0, h), small α > 0 and σ ∈ � such that σ(t) ≡ 0
when t ∈ [t0, h] and σ(t) = αt when t ∈ [0, t0/2].
Claim When α varies in a small range, the geodesics [[μt ]] (t ∈ [0, h]) are mutually
different.

Let α1 and α2 be two small different positive numbers and σ j (t) = α j t when
t ∈ [0, t0] ( j = 1, 2), respectively. Now, the corresponding expression of equation
(3.2) is

μ
j
t (z) =

{

tμ(z)/h, z ∈ �\B(q),

tμ(z)/h + σ j (t)δ(z), z ∈ B(q), j = 1, 2.

They correspond to geodesics G j = {[[μ j
t ]] : t ∈ [0, h]} ( j = 1, 2), respectively.

Note that when t ∈ [0, t0/2],

μ
j
t (z) =

{

tμ(z)/h, z ∈ �\B(q),

tμ(z)/h + tα jδ(z), z ∈ B(q), j = 1, 2.

Define

μ j (z) =
{

μ(z)/h, z ∈ �\B(q),

μ(z)/h + α jδ(z), z ∈ B(q), j = 1, 2.
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Since

sup
Q1
d (�)

lim sup
n→∞

∣

∣

∣

∣

∫∫

�

(μ1 − μ2)ϕn dxdy

∣

∣

∣

∣

= sup
Q1
d (�)

lim sup
n→∞

∣

∣

∣

∣

∫∫

�

(α1 − α2)δϕn dxdy

∣

∣

∣

∣

≥|α1 − α2|c > 0,

by Corollary 3.1, the geodesics G1 and G2 are different.
Fixing small α > 0 and letting δ vary suitably in M(�), we can also get infinitely

many geodesics as desired. The proof of Theorem 1 is completed.
We say that μ is a non-Strebel extremal if it is an extremal representative in the

non-Strebel point [μ] (or [μ]Z ). Suppose μ ( 
= 0) is a non-Strebel extremal. Then
[tμ] and [[tμ]] (t ∈ [0, 1]) are the geodesics in T (�) and AT (�) respectively. If
μ is uniquely extremal in [μ] with constant modulus, then the geodesic joining [μ]
with [0] is unique in T (�) [5]. Suppose [[μ]] is a non-substantial point in AT (�) in
addition. Then by Theorem 1 there are infinitely many geodesics joining [[μ]] with
[[0]] in AT (�).

In [6], the uniquely extremal Beltrami differential k constructed by Fan for his
Theorem 3.1 actually has the property: except that two points at infinity are two
substantial boundary points, the boundary dilatation of k at other boundary points is
identically zero. Fan’s proof ofTheorem3.1 is lengthy and complicated.Unfortunately,
there is a serious gap in his proof. In his argument, he should have used the definition
of the asymptotic Teichmüller metric by (2.1) carefully. To be precise, he should
prove that restricted on f (S), ν̃(w) = 1

τ
δk−μδ

1−δkμδ
◦ f −1(w) satisfies h([[̃ν(w)]]) > 0

if it is possible, where f is the quasiconformal map from S onto f (S) with Beltrami
differentialμδ and τ = fz/ fz . But Fan directly used the computation h([[ δk−μδ

1−δkμδ
]]) >

0 on S to deduce that dAT (γ̃ (δ), γ (δ)) > 0, which is problematic. There is a similar
problem with the proof of his other main result Theorem 4.1. In our argument, the
construction of �-class just helps overcome these difficulty in computation.

For completeness, here we give a new example.

Example Let φ(z) be holomorphic on � except that it has poles of at most order 2 on
∂�. Assume that φ(z) has a second-order pole at z = 1. Then by Reich’s result [22],

μ = k φ
|φ| (k ∈ (0, 1)) is uniquely extremal and [μ] is a non-Strebel point in T (�). In

addition, it is easy to check that h∗
ζ (μ) = 0 if ζ ∈ ∂� is neither a pole nor a zero of

φ(z). Therefore, [[μ]] is not a substantial point in AT (�).

4 Straight Lines Containing Two Points

The following lemma says that a non-Strebel extremal as an asymptotical extremal
representative always exists in a class [[μ]].
Lemma 4.1 Let μ ∈ Bel(S). Then,

(1) if μ ∈ M(S), then there exists a Beltrami differential ν ∈ [[μ]] such that ν is a
non-Strebel extremal;
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(2) there exists a Beltrami differential ν ∈ [[μ]]AZ such that ν is a non-Strebel
extremal.

Proof We only show the first part (1).
By Theorem 2 on p. 296 of [10], there is an asymptotical extremal representative

in [[μ]], say μ, such that h([[μ]]) = h∗(μ). If h∗(μ) = 0, let ν be identically zero. If
h∗(μ) > 0, put

ν(z) =
{

μ(z), |μ(z)| ≤ h∗(μ),

h∗(μ)μ(z)/|μ(z)|, |μ(z)| > h∗(μ).

In either case, it is easy to verify that ν ∈ [[μ]] and is a non-Strebel extremal. ��
Let μ ( 
= 0) be a non-Strebel extremal. Then there are infinitely many straight lines
containing [0] and [μ] in T (�) [5].However, it cannot be directly inferred that there are
infinitely many straight lines containing [[0]] and [[μ]] in AT (�) since the topologies
induced by metrics in T (�) and AT (�) are essentially different.

Proof of Theorem 2 Up to an isometry of AT (�), it suffices to prove that for any [[μ]]
( 
= [[0]]) in AT (�), there are infinitely many straight lines passing through [[μ]] and
[[0]]. By Lemma 4.1, we choose a non-Strebel extremal representative in [[μ]], say
μ. Then k0([μ]) = h([[μ]]) = h∗(μ) := h.

Case 1. [[μ]] is a substantial point.
Fix a boundary point p ∈ ∂�. Let B(p) = {z ∈ � : |z − p| < r} for small r > 0

and E = �\B(p). Define for t ∈ (−1, 1),

μt (z) :=

⎧

⎪

⎨

⎪

⎩

tμ(z)/h, z ∈ �, |t | ≤ h,

tμ(z)/h, z ∈ �\E, |t | > h,

sgn(t)μ(z), z ∈ E, |t | > h.

(4.1)

We prove that GE = {[[μt ]] : t ∈ (−1, 1)} is a straight line passing through [[0]]
and [[μ]]. Note thatGE differs from the straight lineG[μ] = {[[tμ/h]] : t ∈ (−1, 1)}
only when |t | > h. It is sufficient to show the following two points: for any given
ρ ∈ (h, 1),

(i) dAT ([[μ−ρ]], [[μρ]]) = dH (−ρ, ρ);
(ii) {[[μt ]] : t ∈ [0, ρ]} and {[[μt ]] : t ∈ [−ρ, 0])} are two geodesics
and

dAT ([[μ−ρ]], [[0]]) = dAT ([[0]], [[μρ]]) = 1

2
dH (−ρ, ρ). (4.2)

(i) is relatively clear since on E , |ρμ(z)|/ρ < ρ|μ(z)|/h for ρ > h, so is (4.2).
Due to symmetry, for (ii), it suffices to show that {[[μt ]] : t ∈ [0, ρ]} is a geodesic.
This is reduced to proving that {[[μt ]] : t ∈ [0, h]} and {[[μt ]] : t ∈ [h, ρ])} are two
geodesics, and

dAT ([[0]], [[μh]]) + dAT ([[μh]], [[μρ]]) = dH (0, ρ).
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In such a case, we only need to check that {[[μt ]] : t ∈ [h, ρ])} is a geodesic with
length dH (h, ρ). In fact, when ρ ≤ t < s ≤ h, using the previous notation, we have

νs,t ◦ ft (z) =
{

1
τ

s−t
1−st |μ(z)|2/h2

μ(z)
h , z ∈ �\E,

0, z ∈ E .
(4.3)

Now, it is evident that

dAT ([[μt ]], [[μs]]) = 1

2
log

1 + h([[νs,t ]])
1 − h([[νs,t ]]) = dH (t, s) t, s ∈ [h, ρ].

Comparing [[μt ]] with [[tμ/h]] as |t | > h, we find that [[μt ]] is no longer a
substantial point since the boundary points in the interior of ∂� ∩ ∂E are no longer
substantial ones. Therefore, when the boundary point p or the neighborhood B(p)
varies, we get infinitely many different straight lines.

Case 2. [[μ]] is not a substantial point.
By Theorem 1, there are infinitely many geodesics connecting [[0]] and [[μ]]. We

can then extend these geodesics to straight lines by uniformly defining, [[μt ]] =
[[tμ/h]] for t ∈ (−1, 0) ∪ (h, 1). The verification is similar to Case 1 and is omitted
here. This completes the proof of Theorem 2.

5 Relationship on Substantial Boundary Points for Points Along a
Geodesic

In this section, we investigate the relationship on substantial boundary points for the
points along a geodesic. We have the following result.

Theorem 3 Suppose h([[μ]]) = h ∈ (0, 1) and {[[μt ]] : t ∈ (0, h)} is a geodesic
connecting [[0]] and [[μ]] such that dAT ([[0]], [[μt ]]) = dH (0, t) for t ∈ (0, h). If
p ∈ ∂� is a substantial boundary point for [[μ]], then p is a substantial boundary
point for all [[μt ]], t ∈ (0, h).

Proof Let h = h([[μ]]). Given t ∈ (0, h), let ν(z) ∈ [[μt ]] be an asymptotic extremal
representative with h∗(ν) = t . We need to show that h∗

p(ν) = t .
Let f : � → � and g : � → � be the quasiconformal mappings with Beltrami

differentials μ and ν, respectively. Let � be an asymptotical extremal quasiconformal
mapping in the asymptotic equivalence class [[ f ◦ g−1]]. Assume that λ(w) is the
Beltrami differential of�wherew = g(z), and h([[λ]]) = h∗(λ) = α. Put F = �◦g.
Then F and f is asymptotically equivalent and

μF = ν + λ ◦ g · τ

1 + ν · λ ◦ g · τ
, (5.1)

where τ = ∂zg/∂zg. Since

dAT ([[0]], [[μ]]) = dAT ([[0]], [[μt ]]) + dAT ([[μt ]], [[μ]]),

123



On Nonuniqueness of Geodesics in Asymptotic Teichmüller Space 1459

we have
1

2
log

1 + h

1 − h
= 1

2
log

1 + t

1 − t
+ 1

2
log

1 + α

1 − α
,

equivalently,
1 + h

1 − h
= 1 + t

1 − t
· 1 + α

1 − α
.

This leads to
h = t + α

1 + tα
. (5.2)

On the other hand, by (5.1) we have

|μF | =
∣

∣

∣

∣

ν + λ ◦ g · τ

1 + ν · λ ◦ g · τ

∣

∣

∣

∣

≤ |ν| + |λ ◦ g|
1 + |ν||λ ◦ g| .

Therefore, by the definition of boundary dilatation, we get

h = h p([[μ]]) ≤ h∗
p(μF ) ≤ h∗

p(ν) + h∗
g(p)(λ)

1 + h∗
p(ν)h∗

g(p)(λ)
≤ t + α

1 + tα
. (5.3)

Notice that h∗
p(ν) ≤ t and h∗

g(p)(λ) ≤ α. Combining (5.2) and (5.3), we must have
h∗
p(ν) = t . This concludes the proof. ��

The following corollary follows immediately.

Corollary 5.1 If [[μ]] is a substantial point in AT (�), then every point in a geodesic
connecting [[0]] and [[μ]] is a substantial point.
There is a natural projection from T (�) onto AT (�),

π : T (�) → AT (�),

[μ] → [[μ]].

If μ is a non-Strebel extremal, then the projection of any geodesic connecting [0] and
[μ] in T (�) under π is a geodesic connecting [[0]] and [[μ]] in AT (�). Therefore,
we have the following corollary.

Corollary 5.2 If μ is a non-Strebel extremal and p ∈ ∂� is a substantial boundary
point for [μ], then p is a substantial boundary point for all points in a geodesic
connecting [0] and [μ] in T (�).

Remark 1 If p ∈ � is not a substantial boundary point for [[μ]], it is possible that p
is a substantial boundary point for some point (hence for infinitely many points) in the
geodesic connecting [[0]] and [[μ]] (see Case 1 in the proof of Theorem 2 in Sect. 4).
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6 An Example for Geodesics Joining a Substantial Point with the
Basepoint

The situation on the geodesics joining a substantial pointwith the basepoint is not clear.
The difficulty can be seen from Theorem 3, for which the method used in the proof
of Theorem 1 does not apply for a substantial point. However, one must not expect
that the geodesic passing through a substantial point and the basepoint is necessarily
unique. We now construct a certain counterexample to show how it is.

We divide the construction of the example into three steps.
Step 1 At first, we introduce an example, which we describe below, every point

ζ ∈ ∂� is a substantial boundary point. The example was shown in [7] and was said
to be due to Reich by an oral communication. For the sake of clarity and completeness,
here we include the detail for construction which was demonstrated in [7].

Example Let φn be the sequence defined by

φn(z) := (n + 2)zn

2π
.

For a fixed number k, 0 < k < 1, we define, for every n ∈ N,

κn(z) := k
z̄n

|z|n .

Then for 0 ≤ ρ1 ≤ ρ2 ≤ 1

∫∫

ρ1<|z|<ρ2

κnφndxdy = (n + 2)k

2π

∫ 2π

0

∫ ρ2

ρ1
rn+1drdθ = k(ρn+2

2 − ρn+2
1 )

and
∫∫

ρ1<|z|<ρ2

|φn|dxdy = n + 2

2π

∫ 2π

0

∫ ρ2

ρ1
rn+1drdθ = ρn+2

2 − ρn+2
1 .

Choose a number n1 ∈ N. Then there is a number r1, 0 < r1 < 1, with

rn1+2
1 > 1 − 1

2

and we compute

∫∫

0<|z|<r1
κn1φn1dxdy = krn1+2

1 > k(1 − 1

2
)

and
∫∫

r1<|z|<1
|φn1 |dxdy = 1 − rn1+2

1 <
1

2
.
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Next we choose n2 > n1 such that

rn2+2
1 <

1

22
.

Then there is a number r2, r1 < r2 < 1, such that

rn2+2
2 > 1 − 1

22

and we may also have r2 > r1 + 1−r1
2 . We compute

∫∫

|z|<r1
|φn2 |dxdy = rn2+2

1 <
1

22
,

∫∫

r1<|z|<r2
κn2φn2dxdy = k(rn2+2

2 − rn2+2
1 ) > k(1 − 1

22
− 1

22
) = k(1 − 1

2
)

and
∫∫

r2<|z|<1
|φn2 |dxdy = 1 − rn2+2

2 <
1

22
,

Proceeding with this construction, we get a sequence n j (n j → ∞) and a sequence

r j , r1 < r2 < · · · < 1, r j → 1 ( j → ∞). Furthermore, because of r
n j+2
j−1 < 1/2 j ,

r
n j+2
j > 1 − 1/2 j , we have for j ≥ 2

∫∫

|z|<r j−1

|φn j |dxdy = r
n j+2
j−1 <

1

2 j
, (6.1)

∫∫

r j−1<|z|<r j
κn jφn j dxdy = k(r

n j+2
j − r

n j+2
j−1 ) > k(1 − 1

2 j
− 1

2 j
) = k(1 − 1

2 j−1 ),

(6.2)
∫∫

r j<|z|<1
|φn j |dxdy = 1 − r

n j+2
j <

1

2 j
. (6.3)

Clearly, {φn} ⊂ Q1(�) is a degenerating sequence in �. Set E j = {z : r j−1 ≤ |z| <

r j } for j ≥ 1 where we let r0 = 0. Define

κ(z) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

κn1(z), z ∈ E1,

κn2(z), z ∈ E2,

...

κn j (z), z ∈ E j ,

...

(6.4)
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Then κ(z) has constant modulus k. Regard κ(z) as the complex dilatation of a quasi-
conformal self-mapping f of �. By (6.1), (6.2) and (6.3) we have

Re
∫∫

�

κφn j dxdy ≥ Re
∫∫

r j−1<|z|<r j
κn jφn j dxdy

−
∫∫

|z|≤r j−1 or r j≤|z|<1
k|φn j |dxdy ≥ k(1 − 1

2 j−1 ) − k

2 j−1 .

(6.5)

Thus, we have

lim
j→∞ Re

∫∫

�

κφn j dxdy = k

and henceφn j is aHamilton sequence for the extremal complex dilatation κ .Moreover,
as Fehlmann and Sakan noted in their paper, by Theorem 1.1 in [7], every ζ ∈ ∂� is
a substantial boundary point for [κ].

Step 2.With somemodification on κ , we define a new complex dilatation as follows,

μ(z) :=
{

ακ(z), z ∈ E2m−1,

βκ(z), z ∈ E2m,

where m ≥ 1 and the constants α, β ∈ [0, 1/k).
Claim μ is extremal and k0([μ]) = max{αk, βk}. Moreover, every ζ ∈ ∂� is a
substantial boundary point for [μ].
Proof If α = β, then μ = ακ and the claim is a fortiori.

Let α < β first. By the reasoning deriving (6.5), we have

Re
∫∫

�

μφn2mdxdy ≥ βRe
∫∫

E2m

κ2mφn2mdxdy

−β

∫∫

�\E2m

k|φn2m |dxdy ≥ βk(1 − 1

22m−1 ) − βk

22m−1 .

Thus, we get

lim
m→∞ Re

∫∫

�

μφn2mdxdy = βk.

Henceμ is extremal with ‖μ‖∞ = βk and φn2m is a degenerating Hamilton sequence.
Similarly, if α > β, then μ is extremal with ‖μ‖∞ = αk and φn2m−1 is a degenerating
Hamilton sequence. Anyway, the aforementioned reason implies that every ζ ∈ ∂�

is a substantial boundary point for [μ] or [[μ]]. This claim is proved. ��
Step 3. Fix α ∈ (0, 1) and β = 1. Then μ is extremal with ‖μ‖∞ = k and [[μ]]

is a substantial point in AT (�). We construct infinitely many geodesics connecting
[[μ]] and the basepoint.

Let �′ be the collection of the real-valued functions σ(t) defined on [0, k] with the
following conditions:
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(A) σ is continuous with σ(0) = 0 and σ(k) = k,

(B) |σ(s)−σ(t)|α
|1−σ(t)σ (s)α2| ≤ |s−t |

1−st , t, s ∈ [0, k].
Since 0 < α < 1, it is easy to verify that�′ contains uncountablymany elements.

Given σ ∈ �′, define for t ∈ [0, k],

μt (z) :=
{

σ(t)μ(z)/k, z ∈ E2m−1, m ≥ 1,

tμ(z)/k, z ∈ E2m, m ≥ 1.
(6.6)

One easily proves that {[[μt ]] : t ∈ [0, k]} is a geodesic connecting [[0]] and [[μ]].
Fix some t0 in (0, k). Choose σ(t) ∈ �′ such that σ(t) = λt when t ∈ [0, t0]

where λ ∈ (0, 1) is sufficiently small. We show that for different λ, these geodesics
are mutually different.

Let λ1, λ2 ∈ (0, 1) ( λ1 > λ2) be small and σ j (t) = λ j t when t ∈ [0, t0] ( j = 1, 2),
respectively. Now, on [0, t0] the corresponding expression of Eq. (6.6) is

μ
j
t (z) :=

{

λ j tμ(z)/k, z ∈ E2m−1, m ≥ 1,

tμ(z)/k, z ∈ E2m, m ≥ 1.
(6.7)

They correspond to geodesic segments G j = {[[μ j
t ]] : t ∈ [0, t0]} ( j = 1, 2),

respectively.
Define

μ j (z) :=
{

λ jμ(z)/k, z ∈ E2m−1, m ≥ 1.

μ(z)/k, z ∈ E2m, m ≥ 1.

Then

μ1 − μ2 =
{

(λ1 − λ2)μ(z)/k, z ∈ E2m−1, m ≥ 1,

0, z ∈ E2m, m ≥ 1.

Since

lim
m→∞

∫∫

�

(μ1 − μ2)φn2m−1 dxdy = 1

k
(λ1 − λ2) lim

m→∞

∫∫

�

μφn2m−1dxdy

= λ1 − λ2 > 0,

by Corollary 3.1, the geodesic segments G1 and G2 are different.
The example serves to give infinitely many geodesics connecting the infinitesimal

substantial point [[μ]]AZ and the basepoint in AZ(�) as well.
In an infinite-dimensional Teichmüller space, there always exist closed geodesics

and the spheres are not convex due to Li’s work [17] (also see [5]). Here a closed
geodesic means to be locally shortest. As a byproduct of the example, the following
result in the asymptotic Teichmüller space is fairly direct.

Theorem 4 There exist closed geodesics in the universal asymptotic Teichmüller
space AT (�) and hence the spheres in AT (�) are not convex.
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Proof Define

η1(z) :=
{

κ(z), z ∈ E2m−1, m ≥ 1,

0, z ∈ E2m, m ≥ 1,

η2(z) :=
{

0, z ∈ E2m−1, m ≥ 1,

κ(z), z ∈ E2m, m ≥ 1,

η3(z) = −η1(z) and η4(z) = −η2(z). Let R = 1
2 log

1+k
1−k . It is easy to derive that

dAT [[0]], [[η j ]]= R, j = 1, 2, 3, 4, 2R=dAT ([[η1]], [[η3]])=dAT ([[η2]], [[η4]])

and

R = dAT ([[η1]], [[η2]]) = dAT ([[η2]], [[η3]]) = dAT ([[η3]], [[η4]])
= dAT ([[η4]], [[η1]]).

Define for t ∈ [0, k]

μt (z) :=
{

σ(t)κ(z)/k, z ∈ E2m−1, m ≥ 1,

tκ(z)/k, z ∈ E2m, m ≥ 1,

where σ(t) = k−t
1−tk as t ∈ [0, k]. Using the same notation as in the proof of Theorem

1, we have

νs,t ◦ ft (z) =
{

1
τ

σ (s)−σ(t)
1−σ(s)σ (t)

κ(z)
k , z ∈ E2m−1, m ≥ 1,

1
τ

s−t
1−st

κ(z)
k , z ∈ E2m, m ≥ 1.

(6.8)

Observe that
∣

∣

∣

∣

σ(s) − σ(t)

1 − σ(s)σ (t)

κ(z)

k

∣

∣

∣

∣

=
∣

∣

∣

∣

σ(s) − σ(t)

1 − σ(s)σ (t)

∣

∣

∣

∣

=
∣

∣

∣

∣

s − t

1 − st

∣

∣

∣

∣

=
∣

∣

∣

∣

s − t

1 − st

μ(z)

k

∣

∣

∣

∣

, t, s ∈ [0, k].

It is not hard to prove that that whenever t, s ∈ [0, k],

dT ([μt ], [μs]) = dAT ([[μt ]], [[μs]]) = dH (t, s).

Hence, {[μt ] : t ∈ [0, k]} is a geodesic connecting [η1] and [η2] in the universal
Teichmüller space T (�) as well as {[[μt ]] : t ∈ [0, k]} is a geodesic connecting [[η1]]
and [[η2]] in AT (�). Similarly, one can construct the geodesic connecting η2 and η3,
and so on. Thus, we construct closed geodesics in T (�) and AT (�) simultaneously.
In particular, the latter is the image of the former under the natural projection π .
Moreover, all points in the closed geodesic are substantial ones.

Consider the sphere centered at [[η1]] andwith radius R in AT (�). By the construc-
tion, there are two geodesics connecting [[η2]] and [[η4]]. One is [[η2]] → [[η1]] →
[[η4]] which is located inside the sphere; the other is [[η2]] → [[η3]] → [[η4]] which
is located outside the sphere. Now it is clear that the sphere is not convex. ��
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One can check that the geodesic joining [κ] (defined by (6.4)) with [0] in T (�) is
not unique. However, it is not clear up to present whether the geodesic connecting the
substantial point [[κ]] and [[0]] in AT (�) is unique.

7 Geodesics and Straight Lines in the Tangent Space

The following theorem is the counterpart of Theorem 1 in AZ(�).

Theorem 5 Suppose [[μ]]AZ is not a substantial point in AZ(�), i.e., [[μ]]AZ ∈
AZ(�)\I SP. Then there are infinitely many geodesics connecting [[μ]]AZ and the
basepoint [[0]]AZ .
Proof Let b = b([[μ]]AZ ). Since [[μ]]AZ is not substantial point, there is a point
q ∈ ∂� which is not a substantial boundary point for [[μ]]AZ . By Lemma 3.2, we
may assume that μ is an asymptotical extremal representative in [[μ]]AZ such that
b∗
q(μ) < b.
By the definition of boundary dilatation, we can find a small neighborhood B(q)

of q in � such that |μ(z)| ≤ ρ < b for some ρ > 0 in B(q) almost everywhere.
Therefore for any ζ ∈ ∂� ∩ ∂B(q), b∗

ζ (μ) ≤ ρ.
Choose δ(z) ∈ Bel(�) such that ‖δ‖∞ ≤ β < b − ρ and δ(z) = 0 when z ∈

�\B(q).
Let �′′ be the collection of the real-valued functions σ(t) defined on [0, b] with

the following conditions:

(A) σ is continuous with σ(0) = 0 and σ(b) = 0,

(B) |s − t |ρ/b + |σ(t) − σ(s)|β ≤ |s − t |, t, s ∈ [0, b].
Since ρ < b and β < b − ρ, �′′ contains uncountably many elements. In fact, if

σ is a Lipschitz continuous function on [0, b] with the following conditions,

(i) for some small α > 0, |σ(s) − σ(t)| < α|s − t |, t, s ∈ [0, b],

(ii) σ(0) = 0 and σ(b) = 0,

(iii) ρ/b + αβ < 1,

then σ ∈ �′′.
Given σ ∈ �′′, define for t ∈ [0, b],

μt (z) =
{

tμ(z)/b, z ∈ �\B(q),

tμ(z)/b + σ(t)δ(z), z ∈ B(q).
(7.1)

We show that [[μt ]]AZ (t ∈ [0, b]) is a geodesic. It is sufficient to verify that

‖[[μs − μt ]]AZ‖ = |s − t |, t, s ∈ [0, b]. (7.2)
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At first, it is obvious that

‖μs − μt‖∞ = |s − t |.

Suppose p ∈ ∂� is a substantial boundary point for [[μ]]AZ . By Lemma 2.1 there
is a degenerating Hamilton sequence {ψn} ⊂ Q1(�) towards p such that

b = lim
n→∞

∫∫

�

μ(z)ψn(z)dxdy.

Therefore, we have

s − t = lim
n→∞

∫∫

�

[μs(z) − μt (z)]ψn(z)dxdy,

which implies the equality (7.2).
It remains to show that there are infinitely many geodesics passing through [[μ]]AZ

and [[0]]AZ when σ varies over�′′ and δ(z) varies over Bel(�) suitably, respectively.
Choose δ(z) in Bel(�) such that (3.7) holds. Fix a small t0 in (0, b). Choose

σ ∈ �′′ such that σ(t) ≡ 0 when t ≥ t0 and σ(t) = αt when t ∈ [0, t0/2] where
α > 0 satisfying ρ/b + αβ < 1. Note that when t ∈ [0, t0/2],

μt (z) =
{

tμ(z)/b, z ∈ �\B(q),

tμ(z)/b + tαδ(z), z ∈ B(q).

Due to the equality (3.7), the geodesics Gα = {[[μt ]]AZ : t ∈ [0, b]} are mutually
different when α varies in a small range.

Fixing small α > 0 and letting δ vary suitably in Bel(�), we can also get infinitely
many geodesics as required. ��

The counterpart of Theorem 2 in the infinitesimal setting follows from an almost
identical argument.

Theorem 6 For any two points in AZ(�), there are infinitely many straight lines
containing them.

The following is the infinitesimal version of Theorem 3.

Theorem 7 Suppose b([[μ]]AZ ) = b ∈ (0,+∞) and {[[μt ]]AZ : t ∈ (0, b)} is
a geodesic connecting [[0]]AZ and [[μ]]AZ such that dAZ ([[0]]AZ , [[μt ]]AZ ) = t
for t ∈ (0, b). If p ∈ ∂� is a substantial boundary point for [[μ]]AZ , then p is a
substantial boundary point for all [[μt ]]AZ , t ∈ (0, b).

At last, we end the paper with the infinitesimal version of Theorem 4.

Theorem 8 There exist closed geodesics in the tangent space AZ(�) and hence the
spheres in AZ(�) are not convex.
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