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Abstract In an infinite-dimensional Teichmiiller space, it is known that the geodesic
connecting two points can be unique or not. In this paper, we study the situation on
the geodesic in the universal asymptotic Teichmiiller space AT (A). We introduce the
notions of substantial point and non-substantial point in A7 (A). The set of all non-
substantial points is open and dense in AT (A). It is shown that there are infinitely
many geodesics joining a non-substantial point to the basepoint. Although we have
difficulty in dealing with the substantial points, we give an example to show that there
are infinitely many geodesics connecting a certain substantial point and the basepoint.
It is also shown that there are always infinitely many straight lines containing two
points in AT (A).
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1 Introduction

Let S be a hyperbolic Riemann surface, that is, it is covered by a holomorphic map:
@ : A — S, where A = {|z]| < 1} is the open unit disk. Let 7' (S) be the Teichmiiller
space of S. A quotient space of the Teichmiiller space 7'(S), called the asymptotic
Teichmiiller space and denoted by AT (S), was introduced by Gardiner and Sullivan
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(see [11] for § = A and by Earle, Gardiner and Lakic for arbitrary hyperbolic S [2,4,
10]).

AT (S) is interesting only when 7 (S) is infinite dimensional, which occurs when §
has border or when S has infinite topological type; otherwise, AT (S) consists of just
one point. In recent years, the asymptotic spaces have been extensively studied; for
example, one can refer to [2-4,8,18,19,25].

We shall use some geometric terminology adapted from [1] by Busemann. Let X
and Y be metric spaces. An isometry of X into Y is a distance preserving map. A
straight line in Y is a (necessarily closed) subset L that is an isometric image of the
real line R. A geodesic in Y is an isometric image of a non-trivial compact interval
of R. Its endpoints are the images of the endpoints of the interval, and we say that the
geodesic joins its endpoints.

Geodesics play an important role in the theory of Teichmiiller spaces. In a finite-
dimensional Teichmiiller space 7'(S), there is always a unique geodesic connecting
two points. The situation is substantially different in an infinite-dimensional Teich-
miiller space (see [5,12,15-17,23,24]). Generally, for a Strebel point, there is a unique
geodesic connecting it and the basepoint. A natural question is whether the geodesic
connecting two points in A7 (S) is unique. In [6], by a lengthy computation Fan tried
to give certain examples to show the nonuniqueness of geodesics in AT (A) or in more
general AT (S). Unfortunately, there is a gap in his proof.

The motivation of this paper is to investigate the nonuniqueness of geodesics in the
universal asymptotic Teichmiiller space AT (A). We introduce the notions of substan-
tial point and non-substantial point in AT (A). The set of all non-substantial points is
open and dense in AT (A). The first main result is the following theorem.

Theorem 1 For every non-substantial point in AT (A), there are infinitely many geo-
desics joining it with the basepoint.

We have some difficulty in dealing with the substantial points. Nevertheless, we
give an example to show that there are infinitely many geodesics connecting a certain
substantial point and the basepoint which might support the conjecture that there are
always infinitely many geodesics connecting two points in A7 (A).

In a finite-dimensional Teichmiiller space, there is a unique straight line passing
through two points [13]. In an infinite-dimensional Teichmiiller space, the work in [5]
shows that if and only if 7 is a Strebel point, there is a unique straight line passing
through t and the basepointin 7 (S). The second main result of this paper characterizes
the nonuniqueness of straight lines containing two points in AT (A).

Theorem 2 For any two points in AT (A), there are infinitely many straight lines
containing them.

This paper is organized as follows. In Sect. 2, we introduce some basic notions in
the Teichmiiller space theory. Theorems 1 and 2 are proved in Sects. 3 and 4 separately.
We investigate the relationship on the substantial boundary points for points along a
geodesic in Sect. 5. In Sect. 6, an example is given to show the nonuniqueness of
geodesics joining a certain substantial point with the basepoint. Some parallel results
in the infinitesimal setting are obtained in the last section.
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The method used here can also be used to deal with some more general cases.
However, there are some difficulties in solving the problem in all cases.

2 Some Preliminaries
2.1 Teichmiiller Space and Asymptotic Teichmiiller Space

Let S be a Riemann surface of topological type. The Teichmiiller space 7' (S) is the
space of equivalence classes of quasiconformal maps f from S to a variable Riemann
surface f(S). Two quasiconformal maps f from S to f(S) and g from S to g(S) are
equivalent if there is a conformal map c from f(S) onto g(S) and a homotopy through
quasiconformal maps %, mapping S onto g(S) such that ip = co f, hy = g and
hi(p) = co f(p) = g(p) forevery t € [0, 1] and every p in the ideal boundary of
S. Denote by [ f] the Teichmiiller equivalence class of f; also sometimes denote the
equivalence class by [] where u is the Beltrami differential of f.

The asymptotic Teichmiiller space is the space of a larger equivalence classes. The
definition of the new equivalence classes is exactly the same as the previous definition
with one exception; the word conformal is replaced by asymptotically conformal. A
quasiconformal map f is asymptotically conformal if for every ¢ > 0, there is a
compact subset E of S, such that the dilatation of f outside of E is less than 1 + €.
Accordingly, denote by [[ f]] or [[1¢]] the asymptotic equivalence class of f.

Denote by Bel(S) the Banach space of Beltrami differentials © = pn(z)dz/dz on
S with finite L°°-norm and by M (S) the open unit ball in Bel(S).

For nu € M(S), define

ko([pe]) = inf{{|lvllec = v € [1]}.

Define h*(1) to be the infimum over all compact subsets E contained in S of the
essential supremum norm of the Beltrami differential 1(z) as z varies over S\ E and
h([u]) to be the infimum of 2*(v) taken over all representatives v of the class [u].
It is obvious that A([u]) < ko([i]). Following [5], [u] is called a Strebel point if
h([]) < ko(t); otherwise, t is called a non-Strebel point.

Put

h(I[u1D = inf{h*(v) : v € [[u]]}.

We say that p is extremal in [u] if || t|lco = ko([1t]) and p is asymptotically extremal
if 7* () = h([[]]). The relation 2 ([]) = A([[1]]) is due to the definition.
The Teichmiiller metric dr between two points 7, 0 € T(S) is defined as follows:

T4l =)/ = v lleo

1
dT(‘L" 0’) = — m = :
2 uer, veo 1—|[(w—v)/d—=vu)lleo

The asymptotic Teichmiiller metric d41 between two points T, o € AT (S) is defined
by
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dn(F.5) = 1 L+ ][k =v)/(1 —vu)lleo
ar(T,0) =~ inf _lo -
2petives T 1 —[[(n—v)/(1 —vu)lleo @)
I 1+ h*((n—v)/(1 —vp)) '
=— inf _log —.
2 WET, ver 1 —=h*((u—v)/(1 —Dp))
In particular, the distance between [[1£]] and the basepoint [[0]] is
1 LA
dar ([[p]], [[0]]) = 2 log H([[1]]), where H([[u]]) = = Al (2.2)

2.2 Tangent Spaces to Teichmiiller Space and Asymptotic Teichmiiller Space

The cotangent space to 7 (S) at the basepoint is the Banach space Q(S) of integrable
holomorphic quadratic differentials ¢ on S with L'-norm

ol =//S l0(2)| dxdy < oo.

In what follows, let Ql (S) denote the unit sphere of Q(S). Moreover, let QO i, (S) denote
the set of all degenerating sequence {¢,} C Q!(S). By definition, a sequence {g,} is
called degenerating if it converges to 0 uniformly on compact subsets of S.
Two Beltrami differentials p and v in Bel(S) are said to be infinitesimally equivalent
if
//(M —v)pdxdy =0, forany ¢ € Q(S).
s

The tangent space Z(S) of T'(S) at the basepoint is defined as the set of the quotient
space of Bel(S) under the equivalence relations. Denote by [1t]z the equivalence class
of win Z(S).

Z(S) is a Banach space and actually [10] its standard sup-norm satisfies

lplzll := sup
90! (S)

//S wdxdy‘ =inf{|[vl]lec : v €[]z}

Two Beltrami differentials © and v in Bel(S) are said to be infinitesimally asymp-

totically equivalent if
//(M —V)¢n dxdy‘ =0,
s

where the first supremum is taken when {¢, } varies over Q LIJ(S).

The tangent space AZ(S) of AT (S) at the basepoint is defined as the set of the
quotient space of Bel (S) under the asymptotic equivalence relation. Denote by [[£]]4z
the equivalence class of © in AZ(S).

Define b([11]7) to be the infimum over all elements in the equivalence class [t]z of
the quantity b*(v). Here b*(v) is the infimum over all compact subsets E contained in

sup lim sup
Qy(8) "
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S of the essential supremum of the the Beltrami differential v as z varies over S — E.
It is obvious that b*(u) < |[[u]z|l. []z is called an infinitesimal Strebel point if
b(lnlz) < llplzll.
Put
b([[x1laz) = inf{b*(v) : v € [[u]laz}.

We say that p is (infinitesimally) extremal if |||l = |[[t]z]l and u is (infini-
tesimally) asymptotically extremal if b* () = b([[]]az). We also have b([]z) =
b([[u]laz) [10].

AZ(S) is a Banach space and its standard infinitesimal asymptotic norm satisfies
(see [10])

[[[pe]lazll:= sup limsup
Q;(S) n—o00

//s Hn dxdy‘=inf{IIVI|oo v € [[nllazt=b([ullaz).

2.3 Substantial Boundary Points and Hamilton Sequence

Now we define the notion of boundary dilatation of a quasiconformal mapping at a
boundary point. For a Riemann surface, the meaning of what is a boundary point can
be problematic. However, if S can be embedded into a larger surface S such that the
closure of S in S is compact, then it is possible to define the boundary dilatation. In
this section, we assume that S is such a surface.

Let p be a point on 9 and let i« € Bel(S). Define

h;(u) = inf{esssup,y ns | (z)] : U is an open neighborhood in S containing p}
to be the boundary dilatation of x at p. If © € M(S), define
hp([uD) = inf{n,(v) : v € [ul}
to be the boundary dilatation [u] at p. For a general u € Bel(S), define
bp([nlz) = inf{h},(v) : v €[]z}
to be the boundary dilatation of [it]z at p. If we define the quantities
hp(pl) = inf{h, (V) : v e [[ull}, bp([[ullaz) = inf{h, () : v € [[1]laz},

then A, ([u]) = hp(([r]D) and by(ulz) = bp([ullaz). In particular, Lakic [14]
proved that when S is a plane domain,

h([[pl)) = max h, ([[n]D,  b([[1]laz) = max by([[ullaz).
peasS peods
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As is well known, u is extremal if and only if it has a so-called Hamilton sequence,
namely, a sequence {,} C Q!(S), such that

lim // p¥n(2)dxdy = |1t co- (2.3)

Similarly, by Theorem 8 on p. 281 in [10], x is asymptotically extremal if and only
if it has an asymptotic Hamilton sequence, namely, a degenerating sequence {y,} C
0'(9), such that

lim / / u¥n (2)dxdy = h*(w). 2.4)
n—oo Ky

Now, we assume that S is a plane domain with two or more boundary points. Then,
the following lemma derives from Theorem 6 on p. 333 in [10]:

Lemma 2.1 The following three conditions are equivalent for every boundary point p
of S and every asymptotically or infinitesimal asymptotically extremal representative
e

(D) h([uD) = hp([u]) (equivalently, h([[]]) = hp([[1D),
() b([u]) = bp([1]) (equivalently, b([[n]laz) = bp([[1]]az)),

(3) there exists an asymptotic Hamilton sequence for . degenerating towards p, i.e., a
sequence {,} C Q'(S) converging uniformly to 0 on compact subsets of S\{p},
such that

lim / / W @dxdy = I (1), 25)

If one of three conditions in the lemma holds at some p € 9.5, we call p a substantial
boundary point for [[u]] (or [un]) and [[u]]az (or [1]z), respectively.

3 Geodesics Joining Non-substantial Points with the Basepoint

[[x]] (or [[;]]az) is called a substantial pointin AT (A) (or AZ(A)), ifevery p € dA
is a substantial boundary point for [[]] (or [[1]]4z); otherwise, [[1]] (or [[]]az) is
called a non-substantial point.

Let SP and ISP denote the collection of all (infinitesimal) substantial points in
AT (A) and AZ(A), respectively. Since every substantial point can be approximated
by a sequence of non-substantial points, it is clear that AT (A)\SP and AZ(A)\ISP
are open and dense in AT (A) and AZ(A), respectively.

Let dy (z1, z2) denote the hyperbolic distance between two points 71, z2 in A, i.e.,

1 +|IZIZZZ2
du(z1,22) = Elog —
o |1—Z1Z2
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To prove Theorem 1, we need a series of lemmas.

Lemma 3.1 Let t1, tp be two complex numbers and ki, ky be two real numbers. Then
we have

(t1 — )k
1—Et1k%

(t1 — )k

<
1-— tztlkg

, if 0 <k <k and K3|tita] < 1. (3.1

Proof Without any loss of generality, we may assume that 717> 7# 0. Let k be a real
variable and put

o It — k2
1+ |t12]2k* — 2k2Re(tat))

(t1 — )k
1 — ht1k?

F(k) =

Itis easy to verify that F/(k) > Oask € (0, 1/4/]t112]). Therefore F (k) is an increasing
function on (0, 1/4/|t1£2]) and hence (3.1) holds. O

Lemma 3.2 Let i € Bel(A) and p € OA. Then, for any given € > 0,

(1) if w € M(A), then there exists a Beltrami differential v € [] such that v is an
asymptotical extremal and h’;,(v) < hp([n]) +e;

(2) there exists a Beltrami differential v € []z such that v is an asymptotical extremal
and by (v) < by((]7) + €.

Proof We only show the first part for the second part follows from a similar argument.

Case 1. hp([n]) = h([u]).

By Theorem 2 on p. 296 of [10], there exists a Beltrami differential v € [u] such
that v is an asymptotical extremal representative, that is, 1*(v) = h([u]). It obviously
yields h”;,(v) < hp([u]) +e.

Case 2. hp([u]) < h([u]) := h.

By the definition of boundary dilatation, there exists a Beltrami differential x (z) €
[] such that h;()() < min{h,([u]) + €, h}. Let B(p) = {z € A: |z—p| <71}
for small » > 0. Then, when r is sufficiently small, |x (z)| < min{A,([n]) + €, h} in
B(p) almost everywhere.

Restrict x on A\B(p) and regard [x] as a point in the Teichmiiller space
T(A\B(p)). Then h([x]) = h (if necessary, let B(p) be smaller). By Theorem 2
on p. 296 of [10] again, we can choose an asymptotical extremal in [x], say vi(z).
Define

_|vi@@), z€ A\B(p),
v(z) =
x(@), z € B(p).

Then, v is the desired asymptotical extremal in [x]. O

In [6], Fan obtained a sufficient condition to determine two different geodesics.
That is the following theorem.
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1452 G. Yao

Theorem A Let n and v be two asymptotically extremal Beltrami differentials in
[([n]l € AT (A). If

sup lim supl// (n —v)p, dxdy| > 0,
A

Qq(8) "

then the two geodesics [[ti]] and [[tv]] (O < t < 1) are different, where the first
supremum is taken when {¢,} varies over Q}l(A).

The following corollary is direct.

Corollary 3.1 Suppose p and v be two asymptotically extremal Beltrami differentials
in their classes in AT (A) respectively. If h([[]]) = h([[V]]) and

sup lim supl// (w —v)¢, dxdy| > 0,
A

0j(a) "

then the two geodesics [[tiu]] and [[tv]] (0 <t < 1) are different.

Proof of Theorem 1 Suppose [[u]] is not a substantial point in AT (A). Let h =
h([[x]]). There is a non-substantial boundary point g € 9 A such that 2, ([[¢]]) < h.
By Lemma 3.2, it is convenient to assume that p is an asymptotical extremal repre-
sentative in [[u]] satisfying h; (n) < h.

By the definition of boundary dilatation, we can find a small neighborhood B(g) of ¢
in A such that | (z)| < p < h for some p > 0in B(q) almost everywhere. Therefore
forany ¢ € 9A N3B(q), h?(u) < p.

Choose 6(z) € M(A) such that ||6]lcc < B < h — p and §(z) = 0 when z €
A\B(q).

Let X be the collection of the real-valued functions o (¢) defined on [0, &] with the
following conditions:

(A) o is continuous with 0(0) =0 and o (h) = 0,

ls—tlp/ htlo (1) —o ()18 s
B) TGt ireB = 1 1€ [0, Al

We claim that ¥ contains uncountably many elements. At first, let o be a Lipschitz
continuous function on [0, /] with the following conditions,

(i) for some smalla > 0, |[o(s) —o(¢)] < a|s — |, t, s € [0, K],
(ii) 0(0) =0and o (h) =0,

(iii) for some small 7y in (0, k), o (t) = 0 when ¢t > 1y.

Secondly, we show that when 7y and « are sufficiently small, o belongs to X, for
which it suffices to show that o satisfies the condition (B). Let #, s € [0, A]. It is no
harm to assume that r < s.

Casel.h >t > 1.
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Since o (s) = o(t) = 0, by Lemma 3.1, we have

Is —tlp/h+1o@) —o(s)|B _ ls —tlp/h
1= (sp/h+1o@)|B)tp/h+ o)) 1 —st(p/h)?
s —t
11—t

Case2.0 <t < 19.
Put y = p/h 4+ af and choose small « > 0 such that y < 1. On the one hand,
since |0 (t)] < ot and |o (s)| < as, it holds that

ls—tlp/h+lo(t)—o(s)Ip <‘ (s =0)(p/h +ap)
L= Gp/h+o@®IB)p/h+o@Ip) ~ |1 —(sp/h+ 1o (s)|B)tp/h + |0 (1)|B)
- (s —t)(p/h +ap) _y s —t
~ T =To/h+apllnGo/h+ap)l| ~ T =10y|
On the other hand, we have
s —1 s —t
1 —st I
When 1 is sufficiently small, we can get
il PR el
T+~ [1T=w02|

Therefore, when ¢y and « are sufficiently small, o satisfies the condition (B).
For a given o € X, define for ¢ € [0, k],

3.2)

© = tu(z)/ h, z € A\B(q),
! 1)/ h+o®)8(), z€ Bg).

Step 1 We prove that {[[u,]] : t € [0, h]} is a geodesic connecting [[0]] and [[x]].
It is sufficient to verify that whenever ¢, s € [0, &],

14 |s —t|/(1 —st)
1—|s—t]/d =st)

1
dar (L), ms]) = du(t,s) = Elog (3.3)

Let fy : A - Aand f; : A — A be quasiconformal mappings with Beltrami
differentials g and p,; respectively. It is convenient to assume that # # 0 and ¢ # s.
Set Fy; = fs o f,_l and assume that the Beltrami differential of Fy; is vs,. Then a
simple computation shows,

l s (2) — e (2)

Vst © fi(@) = 71— mﬂs(Z)’

@ Springer
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where 7z = ffl(w) forw € A and T = 3f;,/df;. We have

1 s—t nz)
_ T 1—st|u(z) |2/h2 h z € A\B(Q), 3 4
Vs 0 fi(D) =11 Gonu@/hto ) —o ()18 e B@) G4
T 151 @)/ h+o (8@ h+o (3@ ‘

Since o (¢) € X, due to condition (B) we see that restricted on f;(B(q)),

ls — 1]
1—st

(3.5)

vs.tlloo <

Suppose p € dANI(A\B(q)) is a substantial boundary point for [[1£]]. By Lemma
2.1 there is a degenerating Hamilton sequence {,,} C 0'(A) towards p such that

h= lim // ()Y (@)duxdy.
n—oo A
Then we have
t = lim //Mz(z)wn(z)dxdy-
n— 00 A

On the other hand, it is easy to see that A([[u/]]) = h*(u;) = t and hence u; is
an asymptotical extremal. Therefore, the Beltrami differential &, of fl_l is also an
asymptotical extremal where

ﬁzz—ﬂz(ﬂ )8ft /afz -

1u@@)
T h

Thus f;(p) € dA NA(A\f:(B(q))) is a substantlal boundary point for [[it,]] and
there is a degenerating Hamilton sequence {1//,,} c 0Y(A) towards f:(p) such that

lim / / T (w)dudv = lim / / T (wydudv = WD = 1.
=00 J J A\ fi(B(9))

Note that when w = f;(z) € A\ f;(B(q)),

1 s —t wu(z) t—s e (w)
t1—stlw@P/h2 h 1 —stlpu(f ()2 Rt

Vs,t(w) =
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By a simple analysis, we obtain

hm // v”(w)lﬁn(w)dudv

. I—s iy (w) ~
=1 n dud
'gafél—nmmlmmvw ; Vn(w)dudy

— I—s wy(w) ~
= lim = 5 I/Jn(w)dudv
=00 A\ fi(B@) l—stlu(ﬁ w)|=/h= 1

t—
= lim // =S g ydudy = L7
n— 00 A\ f;(B(q)) 1—st ¢t 1 —st
7”

In terms of (3.4) and Lemma 3.1, it is not hard to prove that hzﬁ(vs ) = o
when ¢ € dA N A(A\ f;(B(g))). Thus, by (3.5), (3.6) and Lemma 2.1, it follows that
h([[vs. 1) = 1—;[‘, vg,+ is asymptotically extremal and the equality (3.3) holds.

Step 2. We show that, when o (¢) varies over X and §(z) varies over M (A) suitably,
respectively, we can get infinitely many different geodesics.

Firstly, choose §(z) in M (A) such that

// S¢n dxdy‘ =c>0, 3.7
A

where the supremum is over all sequences {¢,} in Q}I(A) degenerating towards ¢.
Secondly, we choose small 7y in (0, i), smalle > O and 0 € X suchthato (t) =0
when ¢ € [fg, h] and o (t) = at when ¢ € [0, 1y/2].

(3.6)

sup lim sup
Q(li(A) n— 00

Claim When « varies in a small range, the geodesics [[11;]] (t € [0, h]) are mutually
different.

Let oy and a7 be two small different positive numbers and o (t) = «;t when
t € [0,7] (j = 1, 2), respectively. Now, the corresponding expression of equation
3.2)is
J(2) = 1u(z)/h, z € A\B(q),
’ tn(@)/h+0;(1)8(z), z€Bg), j=12.

They correspond to geodesics G = {[[Mg]] 1t €[0,h]} (j = 1,2), respectively.
Note that when ¢ € [0, 7y/2],

J(g) = tu(z)/ h, z € A\B(q),
! tu(z)/ h 4 1a;8(2), z € B(g), j=1,2.
Define
Wiz = n(z)/h, z € A\B(g).
w@)/h+a;d), ze€Bg), j=1,2.
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Since
sup lim sup // (,u] —,u2)<pn dxdy’ = sup limsup // (1 — a2)8¢y, dxdy
QJ{(A) n—o0o A Q}j(A) n—00 A

>|ap — azlc > 0,

by Corollary 3.1, the geodesics G| and G are different.

Fixing small o > 0 and letting § vary suitably in M (A), we can also get infinitely
many geodesics as desired. The proof of Theorem 1 is completed.

We say that u is a non-Strebel extremal if it is an extremal representative in the
non-Strebel point [i] (or []z). Suppose n (£ 0) is a non-Strebel extremal. Then
[te] and [[zu]] (¢ € [0, 1]) are the geodesics in T(A) and AT (A) respectively. If
W is uniquely extremal in [u] with constant modulus, then the geodesic joining [u]
with [0] is unique in 7'(A) [5]. Suppose [[1£]] is a non-substantial point in AT (A) in
addition. Then by Theorem 1 there are infinitely many geodesics joining [[u]] with
[[0]]in AT (A).

In [6], the uniquely extremal Beltrami differential k& constructed by Fan for his
Theorem 3.1 actually has the property: except that two points at infinity are two
substantial boundary points, the boundary dilatation of k at other boundary points is
identically zero. Fan’s proof of Theorem 3.1 is lengthy and complicated. Unfortunately,
there is a serious gap in his proof. In his argument, he should have used the definition
of the asymptotic Teichmiiller metric by (2.1) carefully. To be precise, he should
prove that restricted on f(S), v(w) = %f—kg_—k% o f~l(w) satisfies A([[V(w)]]) > 0

if it is possible, where f is the quasiconformal map from S onto f(S) with Beltrami
differential us and T = Tz/ f. But Fan directly used the computation & ([[‘sfa;]%]]) >
0 on S to deduce that da7 (¥ (8), y(8)) > 0, which is problematic. There is a similar
problem with the proof of his other main result Theorem 4.1. In our argument, the
construction of X-class just helps overcome these difficulty in computation.

For completeness, here we give a new example.

Example Let ¢ (z) be holomorphic on A except that it has poles of at most order 2 on
dA. Assume that ¢ (z) has a second-order pole at z = 1. Then by Reich’s result [22],

u= kl%\ (k € (0, 1)) is uniquely extremal and [@] is a non-Strebel point in 7' (A). In
addition, it is easy to check that h’{‘(u) = 0if { € dA is neither a pole nor a zero of
¢ (z). Therefore, [[1£]] is not a substantial point in AT (A).

4 Straight Lines Containing Two Points

The following lemma says that a non-Strebel extremal as an asymptotical extremal
representative always exists in a class [[u]].

Lemma 4.1 Let u € Bel(S). Then,

(1) if w € M(S), then there exists a Beltrami differential v € [[t]] such that v is a
non-Strebel extremal;
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(2) there exists a Beltrami differential v € [[u]]laz such that v is a non-Strebel
extremal.

Proof We only show the first part (1).

By Theorem 2 on p. 296 of [10], there is an asymptotical extremal representative
in [[e]], say w, such that 2 ([[n]]) = A* (). If A*() = 0, let v be identically zero. If
h*(u) > 0, put

v(z) = 1(2), ()] < h*(w),
@)/ 1@l Ir@)] > h* (1.

In either case, it is easy to verify that v € [[1]] and is a non-Strebel extremal. O

Let u (# 0) be a non-Strebel extremal. Then there are infinitely many straight lines
containing [0] and [] in T (A) [S]. However, it cannot be directly inferred that there are
infinitely many straight lines containing [[0]] and [[i¢]] in AT (A) since the topologies
induced by metrics in T (A) and AT (A) are essentially different.

Proof of Theorem 2 Up to anisometry of AT (A), it suffices to prove that for any [[1]]
(# [[0]]) in AT (A), there are infinitely many straight lines passing through [[]] and
[[0]]. By Lemma 4.1, we choose a non-Strebel extremal representative in [[u]], say

w. Then ko([p]) = h([[]]) = A*(n) := h.

Case 1. [[11]] is a substantial point.
Fix a boundary point p € dA.Let B(p) ={z € A: |z — p| <r}forsmallr > 0
and E = A\B(p). Define fort € (—1, 1),

tu(z)/ h, z€eA, |t| <h,
we(z) == ytu(z)/h,  z € A\E, |t| > h, 4.1)
sgn(Ou(z), z€E, |t| > h.

We prove that Gg = {[[u:]] : t € (—1, 1)} is a straight line passing through [[0]]
and [[1¢]]. Note that G g differs from the straightline G[u] = {[[t/h]] : ¢t € (—1, 1)}
only when [¢f| > h. It is sufficient to show the following two points: for any given
p € (h,1),

(@) dar([[n-plls [lxplD) = du(—p, p);
@G1) {[[ue1l: t €0, p]} and {[[u+]] : t € [—p, 0])} are two geodesics
and

1
dar ([ln—p11, [[01D) = dar ([[0]1], [[p]D) = EdH(—p, ). (4.2)

(1) is relatively clear since on E, |pu(z)|/p < plu(z)|/h for p > h, sois (4.2).
Due to symmetry, for (ii), it suffices to show that {[[u,]] : ¢ € [0, p]} is a geodesic.
This is reduced to proving that {[[u,]] : t € [0, k]} and {[[(]] : t € [h, p])} are two
geodesics, and

dar (O], [lwn 1)) + dar ([Lpenll, [[iep1]) = du (0, p).
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In such a case, we only need to check that {[[u:]] : ¢ € [h, p])} is a geodesic with
length dy (h, p). In fact, when p <t < s < h, using the previous notation, we have

1 st 1(2)
TTSImMGEE hor L €A\E,
vs.r 0 f1(z) = [f L=st|lu(@)2/h% h \

“4.3)
0, z€E.

Now, it is evident that

1+ A([[vs,. 1)

1 — A([[vs. 1D =dy(t,s)t,s € [h, pl.

1
dar ([Tl [Tis1D) = 5 log

Comparing [[u,]] with [[tu/k]] as |t| > h, we find that [[1;]] is no longer a
substantial point since the boundary points in the interior of d A N  E are no longer
substantial ones. Therefore, when the boundary point p or the neighborhood B(p)
varies, we get infinitely many different straight lines.

Case 2. [[11]] is not a substantial point.

By Theorem 1, there are infinitely many geodesics connecting [[0]] and [[1¢]]. We
can then extend these geodesics to straight lines by uniformly defining, [[u1:]] =
[[¢w/h]] for t € (—1,0) U (h, 1). The verification is similar to Case 1 and is omitted
here. This completes the proof of Theorem 2.

5 Relationship on Substantial Boundary Points for Points Along a
Geodesic

In this section, we investigate the relationship on substantial boundary points for the
points along a geodesic. We have the following result.

Theorem 3 Suppose h([[n]]) = h € (0, 1) and {[[u:]] : t € (0, h)} is a geodesic
connecting [[0]] and [[it]] such that dsr ([[O]], [[u:]]) = du (0, t) fort € (0, h). If
p € JA is a substantial boundary point for [[11]], then p is a substantial boundary
point for all [[1:]], t € (0, h).

Proof Leth = h([[]]). Givent € (0, h),let v(z) € [[u+]] be an asymptotic extremal
representative with 2*(v) = ¢. We need to show that h;(v) =1.

Let f: A— Aandg: A — A be the quasiconformal mappings with Beltrami
differentials u and v, respectively. Let A be an asymptotical extremal quasiconformal
mapping in the asymptotic equivalence class [[f o g~']]. Assume that A(w) is the
Beltrami differential of A where w = g(z),and A([[A]]) = h* (L) = a.Put F = Aog.
Then F and f is asymptotically equivalent and

v+iog- -t

= 5.1
1+vV-Aog-7 .1

WF

where t = 9.g/d.g. Since

dar ([[O11, [[e]D) = dar ([[O1], [[eee 1)) + dar ([Le 11, [T ]D)s
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we have
1l 1+nh 1l I—H—i—ll 4+ o
—log—— =-log—— + - 1o ,
2 BT T 2T T % .
equivalently,
l+h 1+t l+o
1—h 11—t l—a
This leads to
t+«o
h = . 5.2)
14+ ta
On the other hand, by (5.1) we have
v+rog- T [v] + A o gl
lurl = = < :
1+Vv-Aog- 1 14 [v||A o g
Therefore, by the definition of boundary dilatation, we get
hy () + Ry (L) t+a
h=h <h* <L 8w . 5.3
p(nl)) =y (ur) = T i 00~ 1+ 1a (5.3)

Notice that h;‘,(v) < t and hz(p) (M) < a. Combining (5.2) and (5.3), we must have
h’;(v) = t. This concludes the proof. O

The following corollary follows immediately.

Corollary 5.1 If[[u]] is a substantial point in AT (A), then every point in a geodesic
connecting [[0]] and [[i]] is a substantial point.

There is a natural projection from 7 (A) onto AT (A),

7 :T(A) — AT(A),
(] — [l

If 1 is a non-Strebel extremal, then the projection of any geodesic connecting [0] and
[;] in T (A) under 7 is a geodesic connecting [[0]] and [[i]] in AT (A). Therefore,
we have the following corollary.

Corollary 5.2 If i is a non-Strebel extremal and p € dA is a substantial boundary
point for [], then p is a substantial boundary point for all points in a geodesic
connecting [0] and [] in T (A).

Remark 1 If p € A is not a substantial boundary point for [[1¢]], it is possible that p

is a substantial boundary point for some point (hence for infinitely many points) in the
geodesic connecting [[0]] and [[1¢]] (see Case 1 in the proof of Theorem 2 in Sect. 4).
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6 An Example for Geodesics Joining a Substantial Point with the
Basepoint

The situation on the geodesics joining a substantial point with the basepoint is not clear.
The difficulty can be seen from Theorem 3, for which the method used in the proof
of Theorem 1 does not apply for a substantial point. However, one must not expect
that the geodesic passing through a substantial point and the basepoint is necessarily
unique. We now construct a certain counterexample to show how it is.

We divide the construction of the example into three steps.

Step 1 At first, we introduce an example, which we describe below, every point
¢ € dA is a substantial boundary point. The example was shown in [7] and was said
to be due to Reich by an oral communication. For the sake of clarity and completeness,
here we include the detail for construction which was demonstrated in [7].

Example Let ¢, be the sequence defined by

(n+2)7"

on(2) == o

For a fixed number k, 0 < k < 1, we define, for every n € N,

Kn(z) = k|z|n .

Then for0 < p; < pp <1

Dk [F[e
// Kn@ndxdy = (n2+—)/ / r"ldrdo = k(,o"+2 ,of+2)
p1<lzl<p2 T 0 pl

2 P2
// Ionldrdy = % / r"tldrdo = pit? — pi 2,
p1<lzl<p2 b4 0 ol

Choose a number n; € N. Then there is a number r, 0 < r; < 1, with

and

1
AR
2

and we compute

1
// Knl¢nldxdy—krnl+2 >k(1—=3)
0<|z|<ry 2

1
/ / (b ldoxdy = 1 — F"*2 <
ri<|z|l<l1 2

and
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Next we choose ny > np such that

Then there is a number r,, r; < rp < 1, such that

1
732+2 1—2—2

1-r
5. We compute

and we may also have r, > r| +

1
I tomlardy =ri < .
lzl<r

1 1 1
// Knynydxdy = k(ry> 2 — PPy > k(1 — o — ) =k(1 - 2)
r<|zl<ra 2 2

1
/ / (G ldxdy = 1 — 122 < L
r<lzl<l 2

Proceeding with this construction, we get a sequence n; (n; — 00) and a sequence

and

rj,rp <ry <---<1,r; - 1(j — 00). Furthermore, because ofr < 1/2/,

(AR 1/2/, we have for j > 2

|
/ / b, ldxdy = r/ 7% < = ©.1)
lzl<rj1 2
// fn, fn dxdy = k(' ity k(l—i——) k(1 — 1y
ri—1<lzl<r; i Tj-1 27 2j—-17
6.2)
. 1
// (o ldxdy = 1 — 1+ < (6.3)
rj<lz|<l ’ J 27

Clearly, {¢,} C Q'(A) is a degenerating sequence in A. Set Ej={z:rj1 =zl <
rj} for j > 1 where we let ro = 0. Define

[0, (2), z € Ey,
an(z)a Z € E27
k(z):=1 : (6.4)
Kkn;(2), z€Ej,
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Then x (z) has constant modulus k. Regard « (z) as the complex dilatation of a quasi-
conformal self-mapping f of A. By (6.1), (6.2) and (6.3) we have

Re// K¢n/.dxdy > Re// Kn/.¢>njdxdy
A ri—1<lzl<r;
k

1
- Kl |dxdy > k(1 — ——) — ——.
//|z|§rj10rrj§|z|<l " 2j_l 2'I_1
(6.5)

Thus, we have

lim Re// Kn;dxdy =k
j—00 A

and hence ¢, is a Hamilton sequence for the extremal complex dilatation « . Moreover,
as Fehlmann and Sakan noted in their paper, by Theorem 1.1 in [7], every ¢ € dA is
a substantial boundary point for [«].

Step 2. With some modification on «, we define a new complex dilatation as follows,

@) = ak(z), z € Exp—1,
T e <€ Ean,

where m > 1 and the constants «, 8 € [0, 1/k).

Claim p is extremal and ko([;]) = max{ak, Bk}. Moreover, every £ € 0A is a
substantial boundary point for [i].

Proof If o« = B, then u = ok and the claim is a fortiori.
Let o < B first. By the reasoning deriving (6.5), we have

Re // U@y, dxdy > BRe // K2m @y, dxdy
A Eom
1 Bk
—B AE, klen,, ldxdy = k(1 — W) ~ w1

Thus, we get
lim Re // W, dxdy = Bk.
A

m—0Q

Hence p is extremal with ||t]looc = Bk and ¢,,,,, is a degenerating Hamilton sequence.
Similarly, if o > B, then u is extremal with |||l cc = ok and ¢y, , is a degenerating
Hamilton sequence. Anyway, the aforementioned reason implies that every { € 0A
is a substantial boundary point for [x] or [[w¢]]. This claim is proved. O

Step 3. Fix @ € (0, 1) and 8 = 1. Then u is extremal with ||i|lco = k and [[u]]
is a substantial point in AT (A). We construct infinitely many geodesics connecting
[[¢]] and the basepoint.

Let X’ be the collection of the real-valued functions o (¢) defined on [0, k] with the
following conditions:
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(A) o is continuous with o (0) = 0 and o (k) = k,

lo(s)—o (®)|o ls—t]
B) M=o 0o ®)e?] < 1= s €0,k

Since 0 < & < 1, itis easy to verify that ¥’ contains uncountably many elements.

Given o € ¥/, define for ¢ € [0, k],

oMu(z)/k, z€ Eyp—1, m=>1,

(6.6)
tu(z)/k, z€ Ey,, m>1.

we(z) = [

One easily proves that {[[u:]] : ¢ € [0, k]} is a geodesic connecting [[0]] and [[u]].
Fix some g in (0, k). Choose o () € ¥’ such that o (1) = At when ¢ € [0, ty]
where A € (0, 1) is sufficiently small. We show that for different X, these geodesics
are mutually different.
Letd,22 € (0,1) (A1 > Az)besmalland o (t) = At whent € [0, 1] (j = 1,2),
respectively. Now, on [0, #p] the corresponding expression of Eq. (6.6) is
M;j(Z) — [Ajtu(z)/k, z€ Eyp_q1, m>1, ©6.7)
tu(z)/k, 7€ Eyp, m> 1.

They correspond to geodesic segments G; = {[[/L,j]] :t € [0, (G =1,2),
respectively.

Define
A/ k, z€ Eyp—1, m>1.

iy
W [u(z)/k, 7€ Eypy, m> 1.

Then

1 ) (M —2)u(z)/k, z € Eyp—1, m>1,
pw—pt =
0, 7€ Eyy, m>1.

Since

) 1 )

lim / / (1 = 1)y, dxdy = ~(ug — 1) lim / / by dxdy
m—00 A k m— 00 A
=i — A2 >0,

by Corollary 3.1, the geodesic segments G| and G, are different.

The example serves to give infinitely many geodesics connecting the infinitesimal
substantial point [[i]]4z and the basepoint in AZ(A) as well.

In an infinite-dimensional Teichmiiller space, there always exist closed geodesics
and the spheres are not convex due to Li’s work [17] (also see [5]). Here a closed
geodesic means to be locally shortest. As a byproduct of the example, the following
result in the asymptotic Teichmiiller space is fairly direct.

Theorem 4 There exist closed geodesics in the universal asymptotic Teichmiiller
space AT (A) and hence the spheres in AT (A) are not convex.
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Proof Define
k(z), z € By, m>1,
n1(z) =
07 Z € E2m’ m > 1’

07 Z€E2m7],m21»
m2(2) =

k(z), z € Eypy, m>1,

n3(z) = —n1(z) and n4(z) = —n2(z). Let R = % log % It is easy to derive that

darllO1) [[n;11=R, j =1,2,3,4, 2R=dar (([m 11, [[m31D) =dar ([[n211, [[n41])

and

R = dar ([[ni]], [[n2]1]D) = dar ([([n21], [[n31]) = dar ({[n3]], [[n4]])
= dar ([[na]], [ 1D.

Define for z € [0, k]

otk (@)/k, z€ Exyp_1, m>1,
e (2) ==
tk(z)/ k, z2€ Eyy, m>1,

where o (1) = lk_;t’k ast € [0, k]. Using the same notation as in the proof of Theorem
1, we have

o(s)=o (1) % z€ By, m=>1,

1 o(s)—o()
Vst © fi(@) = I i ls_—(:(‘lv()égt)
T

6.8
I—St k b Z e E2m, m Z ]' ( )
Observe that
o(s) —o(t) «(2) o(s)—o(t) s—t s —1t u(z)
IS A ) = = ,t, s €[0,k].
1—o(s)o(t) k 1—0o(s)o(t) 1—st 1—st k

It is not hard to prove that that whenever #, s € [0, k],

dr ([l [s]D = dar (el ps]D) = du (@, s).

Hence, {[u:] : t € [0, k]} is a geodesic connecting [71] and [#2] in the universal
Teichmiiller space T (A) as well as {[[:]] : ¢ € [0, k]} is a geodesic connecting [[71]]
and [[n2]] in AT (A). Similarly, one can construct the geodesic connecting 1, and 13,
and so on. Thus, we construct closed geodesics in 7 (A) and AT (A) simultaneously.
In particular, the latter is the image of the former under the natural projection 7.
Moreover, all points in the closed geodesic are substantial ones.

Consider the sphere centered at [[171]] and with radius R in AT (A). By the construc-
tion, there are two geodesics connecting [[172]] and [[14]]. One is [[n2]] — [[n1]] —
[[n4]] which is located inside the sphere; the other is [[172]] — [[1#3]] — [[n4]] which
is located outside the sphere. Now it is clear that the sphere is not convex. O
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One can check that the geodesic joining [« ] (defined by (6.4)) with [0] in T (A) is
not unique. However, it is not clear up to present whether the geodesic connecting the
substantial point [[«]] and [[0]] in AT (A) is unique.

7 Geodesics and Straight Lines in the Tangent Space

The following theorem is the counterpart of Theorem 1 in AZ(A).

Theorem 5 Suppose [[iu]laz is not a substantial point in AZ(A), ie., [[ullaz €
AZ(A)\ISP. Then there are infinitely many geodesics connecting [[i1]11az and the
basepoint [[0]] 4 7.

Proof Let b = b([[]laz). Since [[]]laz is not substantial point, there is a point
q € dA which is not a substantial boundary point for [[£]]4z. By Lemma 3.2, we
may assume that p is an asymptotical extremal representative in [[£]]4z such that
b;‘ (n) < b.

By the definition of boundary dilatation, we can find a small neighborhood B(q)
of g in A such that |u(z)] < p < b for some p > 0 in B(g) almost everywhere.
Therefore for any ¢ € dA NdB(g), b}‘(u) <op.

Choose 8(z) € Bel(A) such that ||§llcc < B < b — p and §(z) = 0 when z €
A\B(q).

Let X" be the collection of the real-valued functions o (¢) defined on [0, b] with
the following conditions:

(A) o is continuous with 0 (0) = 0 and o (b) = 0,

B) Is —tlp/b+ o) —o(s)|f < |s —1],t, s € [0, b].

Since p < b and B < b — p, X" contains uncountably many elements. In fact, if
o is a Lipschitz continuous function on [0, b] with the following conditions,

(i) for some small @ > 0, |o(s) —o(t)| < a|s —t],t, s € [0, b],
(ii) o(0) =0and o (b) =0,
(i) p/b+aB <1,

theno € X7.
Given o € X", define for t € [0, b],

(@) = tu(z)/b, 7 € A\B(q), a1
tu(z)/b+o()s(z), z € B(g).
We show that [[u:]]az (¢ € [0, b]) is a geodesic. It is sufficient to verify that
I[[es — mellazll = |s —tl, t, s € [0, b. (7.2)
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At first, it is obvious that
s — telloo = Is — 2.

Suppose p € dA is a substantial boundary point for [[£]]4z. By Lemma 2.1 there
is a degenerating Hamilton sequence {y,,} C 0'(A) towards p such that

b = lim / / w2V, (2)dxdy.
n—o0 A

Therefore, we have

STI= nlligo //A[MS(Z) — e (DY (2)dxdy,

which implies the equality (7.2).
It remains to show that there are infinitely many geodesics passing through [[u]]4z
and [[0]]4z when o varies over £ and §(z) varies over Bel(A) suitably, respectively.
Choose §(z) in Bel(A) such that (3.7) holds. Fix a small 7y in (0, »). Choose
o € X" such that o(r) = 0 when ¢t > 1y and o (f) = at when ¢ € [0, f9/2] where
a > 0 satisfying p/b + aff < 1. Note that when ¢ € [0, #9/2],

@ = tu(z)/b, z € A\B(q),
' t1(2)/b + tad(z), z € B(q).

Due to the equality (3.7), the geodesics G, = {[[s]1az : t € [0, b]} are mutually
different when « varies in a small range.

Fixing small & > 0 and letting § vary suitably in Bel(A), we can also get infinitely
many geodesics as required. O

The counterpart of Theorem 2 in the infinitesimal setting follows from an almost
identical argument.

Theorem 6 For any two points in AZ(A), there are infinitely many straight lines
containing them.

The following is the infinitesimal version of Theorem 3.

Theorem 7 Suppose b([[ullaz) = b € (0,400) and {[[uillaz : t € (0,b)} is

a geodesic connecting [[0]]1az and [[u]laz such that daz([[0llaz, [[urllaz) =t
fort € (0,b). If p € dA is a substantial boundary point for [[u]]laz, then p is a
substantial boundary point for all [[u;:11az, t € (0, b).

At last, we end the paper with the infinitesimal version of Theorem 4.

Theorem 8 There exist closed geodesics in the tangent space AZ(A) and hence the
spheres in AZ(A) are not convex.

@ Springer



On Nonuniqueness of Geodesics in Asymptotic Teichmiiller Space 1467

Acknowledgements The work was supported by the National Natural Science Foundation of China (Grant
No. 11271216).

References

o —

11.

12.
13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

Busemann, H.: The Geometry of Geodesics. Academic Press, New York (1955)

. Earle, C.J., Gardiner, F.P., Lakic, N.: Asymptotic Teichmiiller Spaces. Part I. The Complex Structure.

Contemporary Mathematics, vol. 256, pp. 17-38. American Mathematical Society, Providence (2000)

. Earle, C.J., Markovi¢, V., Saric, D.: Barycentric Extension and the Bers Embedding for Asymptotic

Teichmiiller Spaces. Contemporary Mathematics. American Mathematical Society, Providence (2002)
Earle, C.J., Gardiner, F.P., Lakic, N.: Asymptotic Teichmiiller Spaces. Part II. The Metric Structure.
Contemporary Mathematics. American Mathematical Society, Providence (2004)

Earle, C.J., Li, Z.: Isometrically embedded polydisks in infinite-dimensional Teichmiiller spaces. J.
Geom. Anal. 9, 51-71 (1999)

Fan, J.: On geodesics in asymptotic Teichmiiller spaces. Math. Z. 267, 767-779 (2011)

. Fehlmann, R., Sakan, K.: On the set of substantial boundary points for extremal quasiconformal

mappings. Complex Var. 6, 323-335 (1986)

Fujikawa, E.: The action of geometric automorphisms of asymptotic Teichmiiller spaces. Michigan
Math. J. 54, 269-282 (2006)

Gardiner, F.P.: Teichmiiller Theory and Quadratic Differentials. John Wiley & Sons, New York (1987)
Gardiner, F.P., Lakic, N.: Quasiconformal Teichmiiller Theory. American Mathematical Society, Prov-
idence (2000)

Gardiner, F.P., Sullivan, D.P.: Symmetric structures on a closed curve. Am. J. Math. 114, 683-736
(1992)

Hu, Y., Shen, Y.: On angles in Teichmiiller spaces. Math. Z. 277, 181-193 (2014)

Kravetz, S.: On the geometry of Teichmiiller spaces and the structure of their modular groups. Ann.
Acad. Sci. Fenn. Ser. A 278, 1-35 (1959)

Lakic, N.: Substantial boundary points for plane domains and Gardiner’s conjecture. Ann. Acad. Sci.
Fenn. Math. 25, 285-306 (2000)

Li, Z.: Non-uniqueness of geodesics in infinite-dimensional Teichmiiller spaces. Complex Var. Theory
Appl. 16, 261-272 (1991)

Li, Z.: A note on geodesics in infinite dimensional Teichmiiller spaces. Ann. Acad. Sci. Fenn. Ser. A
20, 301-313 (1995)

Li, Z.: Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmiiller
spaces. Proc. Am. Math. Soc. 124, 1459-1465 (1996)

Matsuzaki, K.: Quasiconformal mapping class groups having common fixed points on the asymptotic
Teichmiiller spaces. J. Anal. Math. 102, 1-28 (2007)

. Miyachi, H.: On invariant distances on asymptotic Teichmiiller spaces. Proc. Am. Math. Soc. 134,

1917-1925 (2006)

O’Byrne, B.: On Finsler geometry and applications to Teichmiiller spaces. Ann. Math. Stud. 66, 317—
328 (1971)

Reich, E., Strebel, K.: Extremal quasiconformal mappings with given boundary values. Contributions
to Analysis. A Collection of Papers Dedicated to Lipman Bers, pp. 375-391. Academic Press, New
York (1974)

Reich, E.: Construction of Hamilton sequences for certain Teichmiiller mappings. Proc. Am. Math.
Soc. 103, 789-796 (1988)

Tanigawa, H.: Holomorphic families of geodesic discs in infinite dimensional Teichmiiller spaces.
Nagoya Math. J. 127, 117-128 (1992)

Yao, G.W.: On nonuniqueness of geodesic disks in infinite-dimensional Teichmiiller spaces. Monatsh.
Math. doi:10.1007/s00605-015-0834-4 (to appear)

Yao, G.W.: Harmonic maps and asymptotic Teichmiiller space. Manuscr. Math. 122, 375-389 (2007)

@ Springer


http://dx.doi.org/10.1007/s00605-015-0834-4

	On Nonuniqueness of Geodesics in Asymptotic Teichmüller Space 
	Abstract
	1 Introduction
	2 Some Preliminaries
	2.1 Teichmüller Space and Asymptotic Teichmüller Space
	2.2 Tangent Spaces to Teichmüller Space and Asymptotic Teichmüller Space
	2.3 Substantial Boundary Points and Hamilton Sequence

	3 Geodesics Joining Non-substantial Points with the Basepoint
	4 Straight Lines Containing Two Points
	5 Relationship on Substantial Boundary Points for Points Along a Geodesic
	6 An Example for Geodesics Joining a Substantial Point with the Basepoint
	7 Geodesics and Straight Lines in the Tangent Space
	Acknowledgements
	References




