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Abstract In this paper, we consider the isoperimetric problem in the spaceRN with a
density. Our result states that, if the density f is lower semi-continuous and converges
to a limit a > 0 at infinity, with f ≤ a far from the origin, then isoperimetric sets
exist for all volumes. Several known results or counterexamples show that the present
result is essentially sharp. The special case of our result for radial and increasing
densities positively answers a conjecture of Morgan and Pratelli (Ann Glob Anal
Geom 43(4):331–365, 2013.
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1 Introduction

In this paper we are interested in the isoperimetric problem with density. This means
that we are given a positive lower semi-continuous function f : RN → R

+, usually
called a “density”, and we measure volume and perimeter of a generic subset E ofRN

as
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|E | f :=H N
f (E) =

∫
E
f (x) dH N

,

Pf (E) :=H N−1
f (∂ME) =

∫
∂M E

f (x) dH N−1
(x),

where the essential boundary of E (which coincides with the usual topological bound-
ary when E is regular) is defined as

∂ME=
{
x∈R : lim inf

r↘0

H N
(E ∩ Br (x))

ωNr N
< 1 and lim sup

r↘0

H N
(E ∩ Br (x))

ωNr N
>0

}
,

Br (x) stands for the ball of radius r centered at x , and ωN is the Euclidean volume of
a ball of radius 1. The isoperimetric problem with density then consists, as always, in
minimizing the perimeter among all the sets with a given volume. This generalization
of the classical isoperimetric problem, as well as many specific cases, has been exten-
sively studied in recent years and has many important applications. Without trying to
describe precisely the history of this problem, we limit ourselves to recalling its main
steps. The idea of studying the isoperimetric problem with a density first appeared in
the paper [9], and it can be seen as a generalization of the well-studied isoperimetric
problem in a Riemannian manifold (see, for instance, [12]). Some preliminary results,
such as the regularity of isoperimetric sets, come from the classical regularity papers
of the 1970s; recall, for instance, the fundamental contribution of Almgren [1,2].
Several authors have recently studied other aspects of the problem. For instance, the
papers [4,14] consider the general problem, its main properties and some open ques-
tions. The papers [3,8] study some of the isoperimetric properties of spheres: this
means that, in some particular cases, balls are isoperimetric sets. An important exam-
ple of these properties is the celebrated “log-convex density conjecture”, see [11],
which has been studied by several authors and finally positively answered by Cham-
bers in [5]. Finally, the most recent general results about the existence of isoperimetric
sets are in [13], while those about the regularity are in [6,7].

In this paper we will consider the most basic question in this setting, which is of
course the existence of isoperimetric sets, i.e., sets E with the property that Pf (E) =
J(|E | f ) where, for any V ≥ 0,

J(V ) := inf
{
Pf (F) : |F | f = V

}
.

Depending on the assumptions on f , the answer to this question can either be trivial
or extremely complicated.

Let us start with a very simple, yet fundamental, observation. Fix a volume V > 0
and let {Ei } be an isoperimetric sequence of volume V : this means that |Ei | f = V
for every i ∈ N, and Pf (Ei ) → J(V ). Thus, possibly up to a subsequence, the sets
Ei converge to some set E in the L1

loc sense. As a consequence, standard lower semi-
continuity results in BV ensure that Pf (E) ≤ lim inf Pf (Ei ) = J(V ); therefore,
if actually |E | f = V , then obviously E is an isoperimetric set. Unfortunately, this
simple observation is not sufficient, in general, to show the existence of isoperimetric
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sets, because there is no general reason why the volume of E should be exactly V
(while it is obviously at most V ). In fact, volume can disappear at infinity.

A second remark is the following: if the weighted volume of the whole spaceRN is
finite, then in the argument above it becomes obvious that |E | f = V . In other words,
the mass cannot vanish to infinity. Hence, in this case isoperimetric sets exist for all
volumes.

Let us then consider the more interesting problem when f /∈ L1(RN ). In this case,
by the different scaling properties of volume and perimeter, roughly speaking we can
say that “isoperimetric sets like small density”. Let us be somewhat more precise: one
can immediately check that, if two different balls B1 and B2 lie in two regions where
the density is constantly d1 resp. d2, and if |B1| f = |B2| f , then Pf (B1) < Pf (B2)

when d1 < d2. More generally, all the simplest examples show that isoperimetric sets
tend to prefer the zones where density is lower, and it is very reasonable to expect
that this behavior is common. Of course, this argument does not predict anything in
situations where the density varies quickly (for instance, it would be very convenient
for a set to liewhere the density is large if at the same time the boundary stayswhere the
density is small!), but nevertheless having this “general rule” in mind may help a lot.

With the aid of the above observations, let us now return to the question of the
existence of isoperimetric sets. First of all, let us consider the case when the density
converges to 0 at infinity. In this case, following the argument above one should expect
that isoperimetric sequences diverge at infinity, to reach the zones with lowest density,
and that the isoperimetric function J is identically 0, so that no isoperimetric set exists.
A formal proof of this fact is quite easy in specific cases, for instance, when the density
goes to 0 as a polynomial, or as an exponential. The general proof is currently a work
in progress.

On the contrary, if the density f blows up at infinity, one may expect isoperimetric
sets to exist, because isoperimetric sequences should remain bounded to avoid zones
where the density is high, so there would be no loss of mass at infinity. A complete
answer to this issue has already been given in [13]: if the density is also radial, then
isoperimetric sets exist for every volume, as expected (Theorem 3.3 in [13]), but if the
density is not radial, then existence might fail (Proposition 5.3 in [13]), contrary to
intuition.

Let us move on and consider the case when the density, at infinity, is neither con-
verging to 0 nor diverging. Again, it is very simple to observe that existence generally
fails if the density is decreasing, at least definitively. Similarly, it is easy to build exam-
ples of both existence and non-existence for oscillating densities (that is, densities for
which the lim inf and the lim sup, at infinity, are different). Summarizing, with regard
to the existence problem, the only interesting case left is when the density has a finite
limit at infinity and it is converging to that limit from below. This leads us to the
following definition.

Definition 1.1 We say that the l.s.c. function f : RN → R is converging from below
if there exists 0 < a < +∞ such that f (x) → a when |x | → ∞, and f (x) ≤ a for
|x | large enough.

Basically, the observations above mean that, for functions f which are not con-
verging densities, there is in general no interesting open question about the issue
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of existence. Indeed, as explained above, in each of these cases it is already known
whether isoperimetric sets exist for all volumes or not. Conversely, for some special
cases of densities converging from below, the existence problem has already been
discussed. In particular, combining the results of [6,13], the existence of isoperimetric
sets follows for densities which are continuous and converging from below and which
satisfy some technical assumptions. For instance it is enough that f is superharmonic,
or that f is radial and for every c > 0 there is some R 	 1 forwhich f (R) ≤ a−e−cR .
Moreover, in [13] it was conjectured that isoperimetric sets exist for all volumes if the
density is radial and increasing.

In this paper we are able to prove the existence for any density converging from
below (this is even stronger than the above-mentioned conjecture).As explained above,
this result is sharp.

Theorem 1.2 Let f ∈ L1
loc(R

N ) be a density converging from below. Then isoperi-
metric sets exist for every volume.

Let us conclude the Introductionwith a quick description of ourmain argument. The
starting point is the following idea, taken from [13]. Let us consider an isoperimetric
sequence {Ei }, converging in L1

loc to some set E . As explained above, if |E | f = V then
E is already an isoperimetric set, thus there is nothing to prove. Otherwise, one can
easily notice (see Lemma 2.1) that J(V ) equals the perimeter of E plus the perimeter
of a “ball at infinity”, that is, the perimeter that a ball of volume V − |E | f has in the
space RN with constant density a. As a consequence, one is led to looking for a set
behaving better than a ball at infinity; in other words, one aims at finding a set F with
volume V − |E | f and with perimeter smaller than the one of a ball at infinity. This
last property can be equivalently expressed by saying that the “mean density” of F is
smaller than a; seeDefinition 3.1. If such a set F exists, and it does not intersect E , then
E ∪ F is clearly isoperimetric, and we are done. Moreover, since one can show that
the set E is bounded (see Lemma 2.3), then the non-intersection with the (a priori not
known) set E is automatic if F is far enough from the origin. Summarizing, the whole
problem has been easily reduced to finding a set, arbitrarily far from the origin, with
a given volume and mean density smaller than a. By making use of this observation,
the existence of isoperimetric sets was already proved in some particular cases in [13].
More precisely, the authors of that paper observed that the needed existence of a set
F with mean density smaller than a follows under some technical assumptions, such
as the rate of convergence of f at a at infinity, or the superharmonicity of f , or other
specific cases.

In the present paper, we are able to show the existence of such a set F with no
additional assumptions, thus getting the sharp Theorem 1.2. To obtain our result,
we start with the same idea as above, but we drastically change strategy. Roughly
speaking, the additional assumptions used in [13] ensured that every ball far from
the origin has mean density smaller than a, while it is enough to find only a single
set—and not necessarily a ball—with this property. Since f is converging to a from
below, it is reasonable to expect that the mean density of a generic ball far from the
origin should be smaller than a. This is not necessarily true for a randomly taken
ball; however, we show that it is impossible that this is false for every ball, because
otherwise an averaging argument would give a contradiction with the fact that f is
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converging from below to a. Hence, we have found a ball with mean density smaller
than a far from the origin. Unfortunately, this is only the first big step of the proof,
still not enough to conclude. Indeed, keep in mind that we need to find a set with mean
density smaller than a and given volume, while with our averaging argument we are
able to consider balls with given radius. As a consequence, the second and last big step
of the proof, which is actually more delicate than the first one, consists in deforming
the balls found above. We are able to do this deformation in such a way to adjust the
volume, but without destroying the property of having the mean density smaller than
a. As explained above, this concludes the proof.

2 General Results About Isoperimetric Sets

In this section we present some general lemmas about the existence and the bounded-
ness of isoperimetric sets.

As already briefly described in the Introduction, let us fix some V > 0 and an
isoperimetric sequence of volume V , that is, a sequence of sets E j ⊆ R

N such that
|E j | f = V for any j , and Pf (E j ) → J(V ) for j → ∞. As already observed, if
(a subsequence of) {E j } converges in L1

loc to a set E , then by lower semicontinuity
Pf (E) ≤ J(V ), and |E | f ≤ V ; thus, the set E is automatically isoperimetric of
volume V if |E | f = V . However, it is always true that E is isoperimetric for its own
volume. We stress that this fact is widely known, but we prefer to give the proof for the
sake of completeness, and also because in the literature we could not find any proof
which works in such a generality. After this lemma, we will show that if there was
loss of mass at infinity (that is, if |E | f < V ), then E is necessarily bounded.

Lemma 2.1 Assume that f ∈ L1
loc(R

N ) and that f is locally bounded from above far
enough from the origin. Let {E j } be an isoperimetric sequence of volume V converging
in L1

loc to some set E. Then E is an isoperimetric set for the volume |E | f . If in addition
f is converging to some a > 0, then

J(V ) = Pf (E) + N (ωNa)
1
N (V − |E | f ) N−1

N . (2.1)

Proof Let us start by proving that E is isoperimetric. As we already observed,
Pf (E) ≤ J(V ) and |E | f ≤ V ; as a consequence, if |E | f = V it is clear that E
is isoperimetric, and on the other hand if |E | f = 0 then the empty set E is still clearly
isoperimetric for the volume 0. As a consequence, we can assume without loss of
generality that 0 < |E | f < V .

Suppose now that the claim is false, and then let F1 be a set satisfying

|F1| f = |E | f , η := Pf (E) − Pf (F1)

6
> 0.

Now choose x ∈ R
N being a point of density 1 in F1 and a Lebesgue point for f with

f (x) > 0: such a point exists; in particular, H N
f -a.e. point of F1 can be taken. The

assumptions on x ensure that, for every radius r̄ small enough,
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1

2
ωN f (x)r̄ N ≤ |Br̄ (x) ∩ F1| f ≤ |Br̄ (x)| f ≤ 2ωN f (x)r̄ N , (2.2)

and in turn this implies that there exist arbitrarily small radii r (not necessarily all
those small enough) such that

H N−1
f

(
∂Br (x)

) ≤ 2NωN f (x)r N−1. (2.3)

Indeed, if the last inequality were false for every 0 < r < r̄ , then by integrating we
would get that (2.2) is false.

Similarly, let y be a point of density 0 for F1 which is a Lebesgue point for f with
f (y) > 0 (the existence of such a point requires that f /∈ L1(RN ), and in turn this
is surely true because |E | f < V ). Since we can find such a point arbitrarily far from
the origin (and far from x), by assumption it is admissible to assume that f ≤ M in
a small neighborhood of y. As a consequence, there exists some radius ρ̄ > 0 such
that, for every 0 < ρ < ρ̄,

∣∣Bρ(y) \ F1
∣∣
f ≥ f (y)

2
ωNρN , H N−1

f

(
∂Bρ(y)

) ≤ MNωNρN−1. (2.4)

Let us now fix a constant δ > 0 such that (possibly decreasing ρ̄)

δ < η,
f (y)

2
ωN ρ̄N > δ, MNωN ρ̄N−1 < η. (2.5)

We claim the existence of some set F ⊆ R
N and of a big constant R > 0 (in particular,

much bigger than both |x | and |y|) such that

F ⊆ BR, Pf (F) < Pf (E) − 5η, 0 < δ′ := |E | f − |F | f <
δ

2
, (2.6)

writing for brevity BR = BR(0). To show this, it is useful to consider two possible
cases. If F1 is bounded, we define F = F1 \ Br (x) for some r very small such that
both (2.2) and (2.3) hold true. Then the inclusion F ⊆ BR is true for every R big
enough, and the two inequalities in (2.6) immediately follow by (2.2), (2.3) and the
definition of η as soon as r is sufficiently small. Otherwise, if F1 is not bounded, then
we define F = F1 ∩ BR for a big constant R: of course, the inclusion F ⊆ BR is
automatically satisfied, and the inequality about δ′ is also true for every R big enough,
say R > R0. Concerning the inequality on Pf (F), if it were false for every R > R0,
then for every R > R0 it would be

H N−1
f

(
F1 ∩ ∂BR

) ≥ η,

and then by integrating we would get

V > |F1| f ≥ |F1 \ BR0 | f =
∫ +∞

R0

H N−1
f

(
F1 ∩ ∂BR

) = +∞.
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The contradiction shows the existence of some suitable R, thus the existence of F
satisfying (2.6) is proved.

We can now select some R′ > R such that

|E \ BR′ | f <
δ′

2
, H N−1

f (∂E ∩ BR′) > Pf (E) − η. (2.7)

Since E j ∩ BR′ (resp., E j ∩ BR′+1) converges in the L1 sense to E ∩ BR′ (resp.,
E ∩ BR′+1), for every j big enough we have

|E | f − δ′ < |E j ∩ BR′ | f ≤ |E j ∩ BR′+1| f < |E | f + δ′, (2.8)

H N−1
f (∂E ∩ BR′) ≤ H N−1

f (∂E j ∩ BR′) + η. (2.9)

Arguing as above, by (2.8) we have

δ > 2δ′ ≥
∣∣∣E j ∩ (

BR′+1 \ BR′
)∣∣∣

f
=

∫ R′+1

R′
H N−1

f (E j ∩ ∂Bt ) dt,

so we can find some R j ∈ (R′, R′ + 1) such that, also recalling (2.5),

H N−1
f (E j ∩ ∂BRj ) < δ < η. (2.10)

Observe that, since |E j | = V by definition, (2.8) implies

V − |E | f − δ′ < |E j \ BRj | f < V − |E | f + δ′.

As a consequence, calling G j = F ∪ (
E j \ BRj

)
and also recalling (2.6), (2.7), (2.9)

and (2.10), we can estimate the volume of G j by

|G j | f = |F | f + |E j \ BRj | f = |E | f − δ′ + |E j \ BRj | f ∈ (V − δ, V ), (2.11)

and the perimeter of G j by

Pf (G j ) = Pf (F) + Pf (E j \ BRj )

< Pf (E) − 5η + H N−1
f (∂E j \ BRj ) + H N−1

f (E j ∩ ∂BRj )

< H N−1
f (∂E ∩ BR′) + H N−1

f (∂E j \ BRj ) − 3η ≤ Pf (E j ) − 2η.

(2.12)

Finally, we define the competitor Ẽ j = G j ∪ Bρ j (y), where ρ j < ρ̄ is the constant
such that |Ẽ j | f = V—this is possible by (2.11), (2.4), and (2.5). Then again applying
(2.4) and (2.5), from (2.12) we deduce

Pf (Ẽ j ) < Pf (E j ) − η
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for every j big enough, and this gives the desired contradiction with the fact that the
sequence E j was isoperimetric. This finally shows that E is an isoperimetric set for
the volume |E | f .

We nowmove to the second part of the proof, namely, we assume that f is converg-
ing to some a > 0 (not necessarily from below), and we aim to prove (2.1). Notice
that we can assume without loss of generality that |E | f < V , because otherwise (2.1)
would be a direct consequence of the fact that E is isoperimetric.

Arguing as in the first part of the proof, for every ε > 0 we can find a very big R
such that, calling F = E ∩ BR , it is

|F | f ≥ |E | f − ε, Pf (F) ≤ Pf (E) + ε.

Then let B be a ball with volume |B| f = V − |F | f : if we take this ball far enough
from the origin, then B ∩ F = ∅, thus |G| f = V , where G = F ∪ B. Moreover,
again taking the ball far enough, we have a − ε ≤ f ≤ a + ε on the whole B. As a
consequence, calling r the radius of B, we have

V − |E | f + ε ≥ V − |F | f = |B| f ≥ (a − ε)ωNr
N ,

from which we get

J(V ) ≤ Pf (G) = Pf (F) + Pf (B) ≤ Pf (E) + ε + (a + ε)NωNr
N−1

≤ Pf (E) + ε + a + ε

(a − ε)
N−1
N

Nω
1
N
N

(
V − |E | f + ε

) N−1
N

,

which in turn implies an inequality in (2.1) by letting ε → 0.
To show the other inequality, consider again the isoperimetric sequence {E j }; for

any given ε > 0, exactly as in the first part we can find an arbitrarily big R so that
a − ε ≤ f ≤ a + ε out of BR and

|E ∩ BR | f ≥ |E | f − ε, Pf (E \ BR) ≤ ε.

For every j 	 1, then, we can find some R j ∈ (R, R + 1) so that

|E j ∩ BRj | f ≤ |E | f + ε, H N−1
f (E j ∩ ∂BRj ) ≤ 2ε,

Pf (E) ≤ Pf (E j ∩ BRj ) + 2ε.

Since a − ε ≤ f ≤ a + ε out of BR we deduce, using the Euclidean isoperimetric
inequality,
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1094 G. De Philippis et al.

Pf (E j \ BRj ) ≥ (a − ε)Peucl(E j \ BRj ) ≥ (a − ε)Nω
1
N
N |E j \ BRj |

N−1
N

eucl

≥ a − ε

(a + ε)
N−1
N

Nω
1
N
N |E j \ BRj |

N−1
N
f

≥ a − ε

(a + ε)
N−1
N

Nω
1
N
N

(
V − |E | f − ε

) N−1
N

,

which in turn gives

Pf (E j ) = Pf (E j ∩ BRj ) + Pf (E j \ BRj ) − 2H N−1
f (E j ∩ ∂BRj )

≥ Pf (E) − 6ε + a − ε

(a + ε)
N−1
N

Nω
1
N
N

(
V − |E | f − ε

) N−1
N

.

Since Pf (E j ) → J(V ) for j → ∞, sending ε → 0 in the last estimate yields the
second inequality for (2.1), thus the proof is concluded.

Remark 2.2 Actually, the claim of Lemma 2.1 can be proved even with weaker
assumptions. More precisely, one could apply the results of [6] to extend the validity
to the more general case when f is “essentially bounded” in the sense of [6].

The second result that we present is a clever observation, which we owe to Frank
Morgan. It shows that whenever a density converges to a limit a > 0 (not necessarily
from below), then if an isoperimetric sequence is losing mass at infinity the remaining
limiting set—which is isoperimetric thanks to Lemma 2.1—is bounded.

Lemma 2.3 [10, Lemma 13.6] Let the density f converge to some a > 0, and let the
isoperimetric sequence {E j } of volume V converge in L1

loc to a set E with |E | f < V .
Then E is bounded.

Proof Assume that |E | f < V . Then for every t > 0 define

m(t) = |E \ Bt | f =
∫ ∞

t
H N−1

f (E ∩ ∂Bσ ) dσ.

For every t , we can select a ball B of volume V − |E | f + m(t) far away from the
origin, in order to have no intersection with E ∩ Bt ; thus, the set (E ∩ Bt ) ∪ B has
precisely volume V , hence J(V ) ≤ Pf (E ∩ Bt ) + Pf (B). Since the ball B can be
taken arbitrarily far from the origin, thus in a region where f is arbitrarily close to a,
exactly as in the second part of the proof of Lemma 2.1 we deduce

J(V ) ≤ Pf (E ∩ Bt ) + N (aωN )
1
N
(
V − |E | f + m(t)

) N−1
N .

Recalling that |E | f < V and comparing the last inequality with (2.1), we obtain

Pf (E) ≤ Pf (E ∩ Bt ) + Cm(t)
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for some strictly positive constant C . Notice now that

Pf (E) = Pf (E ∩ Bt ) + Pf (E \ Bt ) − 2H N−1
f (E ∩ ∂Bt )

= Pf (E ∩ Bt ) + Pf (E \ Bt ) + 2m′(t),

and in turn by the (Euclidean) isoperimetric inequality if t 	 1 we have

Pf (E \ Bt ) ≥ (a − ε)Peucl(E \ Bt )

≥ (a − ε)Nω
1
N
N |E \ Bt |

N−1
N

eucl ≥ a − ε

(a + ε)
N−1
N

Nω
1
N
N m(t)

N−1
N .

Putting everything together, we get

Cm(t) ≥ 2m′(t) + 1

C1
m(t)

N−1
N

for some other constant C1 > 0. And in turn, if t 	 1 then m(t) � 1, thus the last
estimate implies

m(t) ≤ C2
( − m′(t)

) N
N−1 .

Finally, it is well known that a positive decreasing functionm which satisfies the above
differential inequality vanishes in a finite time. Hence,m(t) = 0 for t big enough, and
this means precisely that E is bounded.

3 Proof of the Main Result

This section is devoted to showing the main result of the paper, namely, Theorem 1.2.
The overall idea is to take an isoperimetric sequence of volume V , and to consider a
limiting set E (up to a subsequence, this is always possible). If |E | f = V , then there
is nothing to prove because, as we already saw several times, the set E is already the
desired isoperimetric set of volume V . Instead, if |E | f < V , we know by Lemma 2.1
that E is an isoperimetric set for volume |E | f , and by Lemma 2.3 that E is bounded.
Moreover, formula (2.1) says that an isoperimetric set of volume V can be found as
the union of E and a “ball at infinity” with volume V − |E | f . By “ball at infinity” we
mean a hypothetical ball where the density is constantly a: such a ball does not really
exist, but a sequence of balls of correct volume which escape at infinity will have a
perimeter which converges to that of this “ball at infinity”. In other words, a sequence
of sets consisting of the union of E and a ball escaping at infinity is isoperimetric
thanks to (2.1). Our strategy is then simple: we look for a set B, far away from the
origin, which is better than a ball at infinity, in other words, which has the same volume
and less perimeter than it. Since E is bounded (this is a crucial point, coming from
Lemma 2.3) the sets E and B have no intersection, thus the union of E with B is
isoperimetric. As one can see, the only thing that needs to be done is to find a set of
given volume, arbitrarily far from the origin, which is “better” than a ball at infinity.
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First of all, let us express in a useful way the property of being better than a ball at
infinity, by means of the following definition, first given in [13].

Definition 3.1 We say that the set E ⊆ R
N of finite volume has mean density ρ if

Pf (E) = N (ωNρ)
1
N |E |

N−1
N
f .

The meaning of this definition is evident: ρ is the unique number such that, if
we endow R

N with the constant density ρ, then balls of volume |E | f have perimeter
Pf (E). The convenience of this notion is also clear: being “better than a ball at infinity”
simply means having mean density less than a.

We can then continue our description of the proof of Theorem 1.2: as said above,
one needs only to find a set of volume V − |E | f arbitrarily far from the origin and
having mean density at most a. Since we want to find an isoperimetric set for any
volume V , and we cannot know a priori how big |E | f is, we need to find sets of mean
density less than a of any volume and arbitrarily far from the origin. Actually, by a
trivial rescaling argument, we can assume that a = 1 and search for a set of volume
ωN . Since f is converging to 1 and we must work very far from the origin, everything
will be very close to the Euclidean case; hence a set of volume ωN and mean density
less than 1 (or, equivalently, with perimeter less than NωN ) must be extremely close
to a ball of radius 1. The first big step in our proof will then consist in finding a ball
of radius 1 arbitrarily far from the origin and with mean density less than 1.

Surprisingly enough, this will by no means conclude the proof, due to a seemingly
minor problem: since f converges to 1 from below, the ball of radius 1 that we have
found does not have exactly volume ωN , but a bit less. The further from the origin
the ball is, the smaller this gap will be, yet still positive. Notice that at this point we
cannot rely on a rescaling argument again: we have already rescaled to the case of
volume ωN , so another volume will not solve the problem (in principle, it could be
true that there are sets of mean density less than 1 only for all the rational volumes,
and for no irrational one…). Hence, the second big step in our proof will be to slightly
modify the ball found in the first big step, in such a way that the volume increases
up to exactly ωN , while the mean density remains smaller than 1. At that point, the
proof will be concluded. We should mention that the proof of this second fact is more
delicate than the proof of the first!

Let us now state the claims of the two big steps with more precision, and then use
them to give the formal proof of Theorem 1.2—which is more or less exactly what
we have just described informally. We will then conclude the paper with two sections,
devoted to presenting the proof of the two big claims.

Proposition 3.2 Let f be a density converging from below to 1, and set g = 1 − f .
Then for every ε > 0 there exists a ball B with radius 1 and arbitrarily far from the
origin such that

Pg(B) ≥ (N − ε)|B|g.

Proposition 3.3 Let f be a density converging from below to 1. Then there exists a
set E with volume ωN and mean density smaller than 1 arbitrarily far from the origin.
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Proof of Theorem 1.2 Let {E j } be an isoperimetric sequence of volume V , and let E
be the L1

loc limit of a suitable subsequence. If |E | f = V then the proof is already
concluded. Otherwise, we know that E is bounded by Lemma 2.3 and that (2.1)
holds. Up to a rescaling, we can assume that f converges from below to 1, and that
V −|E | f = ωN . By Proposition 3.3we can find a set F not intersecting E with volume
ωN and mean density less than 1, which means Pf (F) ≤ NωN . The set E ∪ F then
has volume V , and by (2.1) we obtain P(E ∪ F) ≤ J(V ), which means that E ∪ F
is an isoperimetric set. ��

3.1 Proof of Proposition 3.2

This section is devoted to the proof of Proposition 3.2. Before presenting it, it is
convenient to prove a couple of technical lemmas.

Lemma 3.4 Let g : (0,∞) → [0,∞) and α : (−1, 1) → R be L1 functions such
that

lim
t→∞ g(t) = 0,

∫ 1

−1
α(t) dt = 0,

∫ σ

−1
α(t) dt > 0 ∀ σ ∈ (−1, 1). (3.1)

Then there exists an arbitrarily large R such that

∫ 1

−1
α(t)g(t + R) dt ≥ 0,

with strict inequality unless g(t) = 0 for all t big enough.

Proof If the claim were false, then for every choice of R′, R′′ with R′′ ≥ R′ + 2 one
has

0 >

∫ R′′

R′

∫ 1

−1
α(t)g(t + R) dt dR

=
∫ R′+1

R′−1
g(s)

∫ s−R′

−1
α(t) dt ds

+
∫ R′′+1

R′′−1
g(s)

∫ 1

s−R′′
α(t) dt ds

= A(R′) + B(R′′),

where there is no integral over (R′ +1, R′′ −1) because it cancels thanks to (3.1). The
conditions on α and g also ensure that A(R′) ≥ 0 ≥ B(R′′) for every R′, R′′. Now
suppose that for some arbitrarily large R′ one has A(R′) > 0. We can then fix R′ and
send R′′ → ∞: since g → 0, we get B(R′′) → 0, and then there is some R′′ 	 1
such that A(R′)+ B(R′′) > 0, against the above inequality. As a consequence, it must
be that A(R′) = 0 for every R′ big enough, and in turn this means that g is definitively
zero, hence any R big enough satisfies the claim. ��
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Lemma 3.5 Let g : (0,∞) → [0,∞) and β : (−1, 1) → R be L1 functions such
that g and α(t) = ∫ t

−1 β(σ) dσ satisfy condition (3.1), and α(1) = 0. Then there
exists an arbitrarily large R such that

∫ 1

−1
β(t)g(t + R) dt ≥ 0, (3.2)

with strict inequality unless g(t) = 0 for all t big enough.

Proof The proof is analogous to the one of Lemma 3.4 above. Take R′ 	 1 and
assume that the conclusion fails for every R ≥ R′; then for every R′′ > R′ + 2 we
have

0 >

∫ R′′

R′

∫ 1

−1
β(t)g(t + R) dt dR

=
∫ R′+1

R′−1
g(s)

∫ s−R′

−1
β(t) dt ds

+
∫ R′′+1

R′′−1
g(s)

∫ 1

s−R′′
β(t) dt ds.

Exactly as before, since the last term in the right goes to 0 when R′′ → ∞, we find a
contradiction as soon as the first term in the right is strictly positive. In other words,
the proof is concluded as soon as we find some R′ such that

0 <

∫ R′+1

R′−1
g(s)

∫ s−R′

−1
β(t) dt ds

=
∫ R′+1

R′−1
g(s)α(s − R′) ds

=
∫ 1

−1
α(t)g(t + R′) dt.

And in turn, the existence of such an R′ is ensured by Lemma 3.4 since α satisfies
condition (3.1), unless g is definitively zero. And in this latter case, of course any R
big enough would satisfy the required condition. ��

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2 For simplicity, we split the proof in two steps: first we show
that one can always reduce to the case of a radial density, and then we prove the claim
for this case.

Step I Reduction to radial case.
Let us assume that the claim holds for any radial density, and let f be not necessarily
radial. Define then the density f̃ as the radial average of f , namely,

f̃ (x) = −
∫

∂B|x |
f (y) dH N−1

(y). (3.3)
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Of course, then g̃ = 1− f̃ is also the radial average of g. Since the claim holds for the
radial density f̃ , for any ε > 0 we can find a ball B satisfying Pg̃(B) ≥ (N − ε)|B|g̃ .
Let us then call Bθ , for θ ∈ S

N−1, the ball having the same distance from the origin
as B, and which is rotated by an angle θ : all the different balls Bθ are equivalent for
the density f̃ , but not for the original density f . Now observe that by definition

Pg̃(B) = −
∫
SN−1

Pg(B
θ ) dH N−1

(θ), |B|g̃ = −
∫
SN−1

|Bθ |g dH N−1
(θ),

and then of course there exists some θ ∈ S
N−1 such that Pg(Bθ ) ≥ (N − ε)|Bθ |g .

Step II Proof of the radial case.
Thanks to Step I we can assume without loss of generality that f is radial. For a ball
BR having radius 1 and center at a distance R from the origin, we can then calculate
perimeter and volume by integrating over the radial layers, that is, we have

Pg(BR) =
∫ 1

−1
ϕR(t)g(t + R) dt, |BR |g =

∫ 1

−1
ψR(t)g(t + R) dt, (3.4)

where ϕR(t) and ψR(t) can be calculated by the Fubini theorem and the co-area
formula. Actually, it is not important to write down the exact formula, while it is
easy to observe that (basically, since the layers become flat in the limit) the following
uniform limits hold

ϕR(t)

ϕ̃(t)
−−−−→
R→∞ 1,

ψR(t)

ψ̃(t)
−−−−→
R→∞ 1, (3.5)

the limit functions being simply

ϕ̃(t) = (N − 1)ωN−1(1 − t2)
N−3
2 , ψ̃(t) = ωN−1(1 − t2)

N−1
2 .

As a consequence, we can work with the approximated functions ϕ̃ and ψ̃ in place
of ϕ and ψ : more precisely, we call “approximated” perimeter and volume of BR the
functions P̃g(BR) and Ṽg(B) obtained by substituting ϕ and ψ into (3.4) with ϕ̃ and
ψ̃ . The claim will then be automatically obtained, thanks to (3.5), if we can find an
arbitrarily large R such that

P̃g(BR) ≥ NṼg(BR).

We can now define β : (−1, 1) → R as β(t) = ϕ̃(t) − N ψ̃(t), so that we can limit
ourselves to finding an arbitrarily large R such that (3.2) holds. It is elementary to
check that the assumptions of Lemma 3.5 are satisfied: one can either do the simple
calculations, or just observe that α(t) coincides with the perimeter minus N times the
volume of the portion of the unit ball centered at the origin whose first coordinate is
between −1 and t , so that all the conditions to check become trivial. Therefore, the
existence of the sought R directly comes from Lemma 3.5 and the proof is completed.

��
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3.2 Proof of Proposition 3.3

This last section is entirely devoted to giving the proof of Proposition 3.3, again
divided into a few steps. For the reader’s convenience, in Steps I and II we start with
two particular cases, namely, when f is non-decreasing along the half-lines starting at
the origin, and when f is radial: even though these two particular cases are not really
needed for the proof, the argument is similar to the general one but works more easily,
so this helps to understand the general case.

Proof of Proposition 3.3 Let us set ε � 1: thanks to Proposition 3.2, there is a ball
B = B θ̄

R of radius 1 and centered at the point Rθ̄ , with some arbitrarily large R and
some θ̄ ∈ S

N−1, which satisfies Pg(B) ≥ (N − ε)|B|g . Since f ≤ 1 on B, we have
|B| f ≤ ωN : if |B| f = ωN we are already done, because Pf (B) ≤ Peucl(B) = NωN ,
and this automatically implies that the mean density of B is less than 1. Then let us
suppose that |B| f < ωN , or equivalently that |B|g > 0, and let us try to enlarge B so
as to reach volume ωN , but still having mean density less than 1. We will do this in
some steps.

Step I The case of non-decreasing densities.
Let us start with the case when f is a “non-decreasing density”. This means that, for
every θ ∈ S

N−1, the function t �→ f (tθ) is non-decreasing, at least for large t .
In this case, let us define a new set E as follows. First of all, we decompose

B = Bl ∪ Br , where Bl and Br are the “left” and the “right” part of the ball B θ̄
R :

formally, a point x ∈ B is said to belong to Bl or Br if x · θ̄ is smaller or bigger than
R respectively. Then for any small δ we call Bl,δ the half-ball centered at (R − δ)θ̄

with radius (R − δ)/R, and Cδ the cylinder of radius 1 and height δ whose axis is the
segment connecting (R − δ)θ̄ and Rθ̄ ; finally, we let Eδ = Br ∪ Bl,δ ∪Cδ; see Fig. 1,
left. Since f is converging to 1, and R can be taken arbitrarily big, we have

|Eδ| f − |B| f ≥ (1 − ε)ωN−1δ ;

as a consequence, by continuity we can fix δ̄ such that E = Eδ̄ has exactly volume
ωN , and we have

δ̄ ≤ (1 + 2ε)
|B|g
ωN−1

. (3.6)

Thanks to the assumption that f is non-decreasing, we know that

H N−1
f (∂ l Bl,δ) ≤ H N−1

f (∂ l Bl), (3.7)

where we call ∂ l Bl,δ and ∂ l Bδ the “left parts” of the boundaries, that is,

∂ l Bl =
{
y ∈ ∂Bl : y · θ̄ ≤ R

}
, ∂ l Bl,δ =

{
y ∈ ∂Bl,δ : y · θ̄ ≤ R − δ

}
.
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δδ/R

Br

O

∂+B+
δ

∂−B−

Cδ

E
Bl,δ

E δ

Fig. 1 The sets E of Step I (left) and of Step II (right). The half-balls Br and Bl,δ , as well as the half-balls
B− and B+

δ , are light shaded; the cylinder Cδ , as well as the region E \ (B− ∪ B+
δ ), is dark shaded

As a consequence, again using the facts that f ≤ 1 and that R can be taken arbitrarily
big, thanks to (3.6) and (3.7) we can evaluate

Pf (E) ≤ Pf (B)+(N−1+ε)ωN−1δ̄ ≤ NωN − Pg(B) + (N − 1+ε)(1+2ε)|B|g
≤ NωN − (N − ε)|B|g + (N − 1 + ε)(1 + 2ε)|B|g < NωN .

Summarizing, we have built a set E arbitrarily far from the origin, with volume exactly
ωN , and perimeter less than NωN , thus having mean density less than 1. The proof is
then concluded for this case.

Step II The case of radial densities.
Let us now assume that the density is radial. In this case, we cannot use the same
argument as in the previous step, because there would be no way to extend the validity
of (3.7). Nevertheless, we can use a similar idea to enlarge the ball B: instead of
translating half of the ball B we rotate it. More formally, let us take a hyperplane
passing through the origin and the center of the ball B θ̄

R , and let us denote by B± the

two corresponding half-balls into which B θ̄
R is subdivided. Let us then consider the

circle contained in S
N−1 which contains the direction θ̄ and the direction orthogonal

to the hyperplane, and for any small σ > 0 let ρσ denote rotation through angle σ in
this circle. Then let B+

σ = ρσ (B+) and finally let Eδ be the union of B− with all the
half-balls B+

σ for 0 < σ < δ, as in Fig. 1, right. As in the previous step, since f is
converging to 1 we can evaluate the difference of the volumes as

|Eδ| f − |B| f ≥ ωN−1(R − 1)(1 − ε)δ.

Then we can again select δ̄ such that E = Eδ̄ has volume exactly ωN and we have

δ̄ ≤ (1 + 2ε)
|B|g

ωN−1(R − 1)
. (3.8)

This time, the radial assumption on f gives

H N−1
f (∂+B+

δ ) = H N−1
f (∂+B+),
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where ∂+B+
δ and ∂+B+ denote the “upper” parts of the boundaries in the obvious

sense. And finally, almost exactly as in last step we can estimate the perimeter of E
as

Pf (E) ≤ Pf (B) + (N − 1)ωN−1(R + 1)δ̄

≤ NωN − Pg(B) + (N − 1)(1 + 2ε)
R + 1

R − 1
|B|g

≤ NωN − (N − ε)|B|g + (N − 1)(1 + 2ε)
R + 1

R − 1
|B|g < NωN ,

where the last inequality again is true if we have chosen ε � 1 and then R 	 1. Thus,
the set E has volume ωN and mean density less than 1, and the proof is obtained also
in this case.

Step III The general case in dimension 2.
Let us now treat the case of a general density f . For simplicity of notation we now
assume that we are in the two-dimensional situation N = 2. In the next step we
generalize our argument to any dimension.

As in the proof of Proposition 3.2, let us call f̃ the radial average of f according
to (3.3), and g̃ = 1− f̃ the radial average of g. Proposition 3.2 then provides us with
a ball BR , of radius 1 and distance R 	 1 from the origin, such that

Pg̃(BR) ≥ (N − ε)|BR |g̃. (3.9)

For any θ ∈ S
1, as usual, we then call Bθ

R the ball of radius 1 centered at Rθ . Let us now

argue as in Step II: we call Bθ,±
R (resp., ∂±Bθ

R) the two half-balls (resp., half-circles)
made by the points of Bθ

R (resp., ∂Bθ
R) having direction bigger or smaller than θ ; thus,

for any small δ > 0, we define Eθ
δ the union of Bθ,−

R with all the half-balls Bθ+σ,+
R

for 0 < σ < δ. Since the sets Eθ
δ are increasing for δ increasing, if R 	 1 there

is a unique δ̄ = δ̄(θ) such that |Eθ

δ̄
| f = ωN , and exactly as in Step II we have the

estimate (3.8) for δ̄, which for R big enough (since f → 1 and then g → 0) implies

δ̄(θ) ≤ (1 + 3ε)|Bθ
R |g

ωN−1(R − 1)
. (3.10)

Let us then define the function τ : S1 → S
1 as τ(θ) = θ + δ̄(θ), and notice that by

construction this is a strictly increasing bijection of S1 onto itself, with τ(θ) > θ (if
τ(θ) = θ then the ball Bθ

R has already volume ωN , and in this case there is nothing to
prove, as already observed). Let us now fix a generic θ ∈ S

1, and let η � τ(θ) − θ :
if we call

A =
(⋃

0<σ<η
Bθ+σ
R

)
\ Bθ+η

R , B =
( ⋃

0<σ<η
Bτ(θ+σ)
R

)
\ Bτ(θ)

R ,

then, since

∣∣Eθ

δ̄(θ)

∣∣
f = ωN = ∣∣Eθ+η

δ̄(θ+η)

∣∣
f , Eθ+η

δ̄(θ+η)
= (

Eθ

δ̄(θ)
∪ B

) \ A,
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one has |A|g = |B|g . On the other hand, one clearly has

|B|eucl
|A|eucl = τ(θ + η) − τ(θ)

η
.

Taking R big enough, we can assume without loss of generality that 1 − ε ≤ f ≤ 1
for points having distance at least R − 1 from the origin, and this yields

1 − ε ≤ τ(θ + η) − τ(η)

η
≤ 1

1 − ε
.

As an immediate consequence we obtain that the function τ is bi-Lipschitz and 1−ε ≤
τ ′ ≤ (1 − ε)−1. Let us now observe that, by construction, all the sets Eθ = Eθ

τ(θ)−θ

have exactly volumeωN : we thenwant to find some θ̄ ∈ S
1 such that Pf (E θ̄ ) ≤ NωN ,

so E θ̄ has mean density less than 1 and we are done. Now, since a simple change of
variables gives

−
∫
S1
H N−1

g

(
∂+Bθ

R

)
dθ = −

∫
S1
H N−1

g

(
∂+Bτ(ν)

R

)
τ ′(ν) dν

≤ 1

1 − ε
−
∫
S1
H N−1

g

(
∂+Bτ(θ)

R

)
dθ,

we can readily evaluate by (3.9)

0 ≤ Pg̃(BR) − (N − ε)|BR |g̃ = −
∫
S1

Pg(B
θ
R) − (N − ε)|Bθ

R |g dθ

= −
∫
S1
H N−1

g

(
∂+Bθ

R

)
dθ + −

∫
S1
H N−1

g

(
∂−Bθ

R

)
dθ − (N − ε)−

∫
S1

|Bθ
R |g dθ

≤ −
∫
S1

1

1 − ε
H N−1

g

(
∂+Bτ(θ)

R ∪ ∂−Bθ
R

) − (N − ε)|Bθ
R |g dθ,

and hence get the existence of some θ̄ ∈ S
1 such that

H N−1
g

(
∂+Bτ(θ̄)

R ∪ ∂−B θ̄
R

) ≥ (1 − ε)(N − ε)|B θ̄
R |g.

Thanks to (3.10), we then have

Pf
(
E θ̄

) = H N−1
f

(
∂+Bτ(θ̄)

R ∪ ∂−B θ̄
R

) + H N−1
f

(
∂E θ̄ \ (

∂+Bτ(θ̄)
R ∪ ∂−B θ̄

R

))

≤ NωN − H N−1
g

(
∂+Bτ(θ̄)

R ∪ ∂−B θ̄
R

) + (N − 1)ωN−1δ̄(θ̄ )(R + 1)

≤ NωN − (1 − ε)(N − ε)|B θ̄
R |g + (N − 1)(1 + 3ε)|B θ̄

R |g < NωN ,

where the last inequality holds as soon as ε was chosen small enough at the beginning.
The set E θ̄ is then as sought and this step is done.

Step IVThe general case.
We are now ready to present the proof in the general case. We start by noticing that
in the argument of Step III the assumption N = 2 was used only to work with S

1,
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hence to get the validity of (3.9). More precisely, let us assume that there exists some
arbitrarily large R and some circle C ≈ S

1 in SN−1 such that the estimate

−
∫
C
Pg(B

θ
R) dH 1

(θ) ≥ (N − ε)−
∫
C

|Bθ
R |g dH 1

(θ) (3.11)

holds true. Then we can repeat verbatim the proof of Step III: we get the existence of
some θ̄ ∈ C such that the set E θ̄

R has volume ωN and mean density less than 1, and the
proof is concluded. Hence, it remains to find some R and some circle C so that (3.11)
holds; notice that, if N = 2, then C = S

1 and (3.11) reduces to (3.9), which in turn
holds for some arbitrarily large R thanks to Proposition 3.2.

Let us then consider the case of dimension N = 3. By Proposition 3.2 we can take
R 	 1 such that (3.9) holds true; for any θ ∈ S

2, then we denote by Cθ the circle in
S
2 which is orthogonal to θ , and we observe that, by homogeneity,

Pg̃(BR) = −
∫
S2

−
∫
Cθ

Pg(B
σ
R) dH 1

(σ ) dH 2
(θ),

|BR |g̃ = −
∫
S2

−
∫
Cθ

|Bσ
R |g dH 1

(σ ) dH 2
(θ),

so thanks to (3.9) we get the existence of a circle C = Cθ̄ for which (3.11) holds true:
the proof is then concluded also in dimension N = 3.

Notice that the argument above can be rephrased as follows: if there exists some
sphere S ≈ S

2 ⊆ S
N−1 such that the average estimate (3.11) holds with S in place

of C (and in turn in dimension N = 3 this reduces to (3.9) and hence holds), then the
proof is concluded. As a consequence, the claim follows also in dimension N = 4,
arguing exactly as above with the spheres Sθ ≈ S

2 orthogonal to any θ ∈ S
3, and the

obvious argument by induction then gives the thesis for any dimension. ��
Remark 3.6 Notice that, in the proof of Proposition 3.3, we have actually found a set
which has mean density strictly less than 1, unless g ≡ 0 on some ball of radius 1. On
the other hand, as it clearly appears from the proof of Theorem 1.2, it is impossible
to find such a set if some isoperimetric sequence is losing mass at infinity, otherwise
the argument of Theorem 1.2 would give a set with perimeter strictly less than the
infimum. There are then only two possibilities: either there are balls where f ≡ 1
arbitrarily far from the origin, or no isoperimetric sequence can lose mass at infinity.

In particular, our proof shows that no isoperimetric sequence can lose mass at
infinity if f < 1 out of some big ball.
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