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Abstract We study a characterization of 4-dimensional (not necessarily complete)
gradient Ricci solitons (M, g, f ) which have harmonic Weyl curvature, i.e., δW = 0.
Roughly speaking, we prove that the soliton metric g is locally isometric to one of
the following four types: an Einstein metric, the product R2 × Nλ of the Euclidean
metric and a 2-d Riemannian manifold of constant curvature λ �= 0, a certain singular
metric and a locally conformally flat metric. The method here is motivated by Cao–
Chen’s works (in Trans AmMath Soc 364:2377–2391, 2012; DukeMath J 162:1003–
1204, 2013) and Derdziński’s study on Codazzi tensors (in Math Z 172:273–280,
1980). Combined with the previous results on locally conformally flat solitons, our
characterization yields a new classification of 4-d complete steady solitons with δW =
0. For the shrinking case, it re-proves the rigidity result (Fernández-López and García-
Río inMath Z 269:461–466, 2011;Munteanu and Sesum in J. GeomAnal 23:539–561,
2013) in 4-d. It also helps to understand the expanding case; we now understand all
4-d non-conformally flat ones with δW = 0. We also characterize locally 4-d (not
necessarily complete) gradient Ricci solitons with harmonic curvature.
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1 Introduction

A gradient Ricci soliton consists of a Riemannian manifold (M, g) and a smooth
function f satisfying ∇d f = −Rc + λg, where Rc denotes the Ricci tensor of g and
λ is a constant. Gradient Ricci solitons are essential in Hamilton’s Ricci flow theory
as singularity models of the flow. So it is important to understand their geometry and
classify them. A gradient Ricci soliton is said to be shrinking, steady or expanding if
λ is positive, zero or negative, respectively.

Two-dimensional gradient Ricci solitons arewell understood; see [2] and references
therein. Any 3-d complete noncompact non-flat shrinker (shrinking Ricci soliton) is
proved to be a quotient of the round cylinder S2 × R in [8]; see also [22,25,26]. For
the 3-d gradient steadiers (steady Ricci solitons), one may refer to [3,4] and references
therein.

In higher dimension, there are numerous rigidity and classification results under
various geometric conditions. For the relevance to the current work, we shall focus on
locally conformally flat solitons and their generalizations.

Complete locally conformally flat gradient shrinkers are classified to be a finite
quotient of Rn , Sn , or Sn−1 × R, n ≥ 4, in [9,29,32]; see also [18,25]. Complete
locally conformally flat gradient steadiers are classified to be either flat or isometric
to the Bryant soliton [6,10]. The 4-d half conformally flat steadiers and shrinkers are
studied in [14]. More generally, Bach-flat shrinkers are classified in [7] and Bach-flat
steadiers with positive Ricci curvature in [5].

A gradient soliton is said to be rigid if it is isometric to a quotient of N ×R
k where

N is an Einstein manifold and f = λ
2 |x |2 on the Euclidean factor. Fernández-López

and García-Río [19] showed that an n-dimensional compact Ricci soliton (M, g) is
rigid if and only if it has harmonic Weyl tensor W . Then Munteanu and Sesum [24]
proved that any n-dimensional complete gradient shrinker with harmonic Weyl tensor
is rigid. In [31], Wu, Wu andWylie showed that a 4-d complete gradient shrinker with
δW+ = 0 is either Einstein, or a finite quotient of S3 × R, S2 × R

2 or R4.
The purpose of this article is to study 4-dimensional gradient Ricci solitons

(M, g, f ) which have harmonic Weyl curvature. This work is most related to the
above-mentioned works on locally conformally flat solitons and to [24] on shrink-
ing solitons with δW = 0. The latter needs control on geometric decay of curvature
and volume from the shrinker condition, while the former resorts to the nonnegative
curvedness of metrics for locally conformally flat shrinking or steady solitons, which
is proved in [12,32].

As our study includes steady and expanding solitons with δW = 0, we can use nei-
ther geometric decay nor nonnegative curvedness. Thiswork takes a different approach
and is inspired by Cao and Chen’s works [6,7] and Derdziński’s [17]. Note that the
harmonicity of the Weyl tensor provides a Codazzi tensor Rc− R

6 g. Riemannian met-
rics with a Codazzi tensor which have more than two distinct eigenvalue functions of
Ricci tensor have been little understood; see Chap. 16 of [1]. In this article, combining
with the soliton condition, we managed to analyze in detail the Codazzi tensor with
three and four distinct eigenvalues.

Our argument is mostly local and produces a local description of soliton metrics
and potential functions. So far, we worked out only in four dimensions, but we hope
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that our perspective might provide some way to understand the higher-dimensional
case.

The main theorem of this paper is as follows.

Theorem 1.1 Any four-dimensional (not necessarily complete) connected gradient
Ricci soliton (M, g, f ) with harmonic Weyl curvature is one of the following four
types.

(i) g is an Einstein metric with f a constant function.
(ii) For each point p ∈ M, there exists a neighborhood V of p such that (V, g) is

isometric to a domain in the productR2×Nλ whereR2 has the Euclidean metric
and Nλ is a 2-dimensional Riemannian manifold of constant curvature λ �= 0.
And f = λ

2 |x |2 modulo a constant on the Euclidean factor.
(iii) For each point p ∈ M, there exists a neighborhood V of p with coordinates

(s, t, x3, x4) such that (V, g) is isometric to a domain in R
4\{s = 0} with the

Riemannian metric ds2 + s
2
3 dt2 + s

4
3 g̃, where g̃ is the Euclidean metric on the

(x3, x4)-plane. Also, λ = 0 and f = 2
3 ln(s) modulo a constant.

(iv) For each point p in an open dense subset of M, there exists a neighborhood V
of p with coordinates (s, t, x3, x4) such that (V, g) is isometric to a domain in
R × W 3 with the warped product metric ds2 + h(s)2 g̃, where g̃ is a constant
curvature metric on a 3-manifold W 3 and f is not constant. And g is locally
conformally flat.

For the 4-d complete shrinking soliton case,we re-prove the rigidity result in [19,24]
by a distinct method. For the 4-d complete steady case, with the result of [6,10] on
locally conformally flat solitons, we obtain the following classification.

Theorem 1.2 A 4-dimensional complete steady gradient Ricci soliton with δW = 0
is either Ricci flat, or isometric to the Bryant soliton.

The expanding solitons are much less rigid, and many works have been done
recently, e.g., [13,15,28,30] and references therein. We prove:

Theorem 1.3 A 4-dimensional complete expanding gradient Ricci soliton with har-
monic Weyl curvature is one of the following:

(i) g is an Einstein metric with f a constant function.
(ii) g is isometric to a finite quotient of R2 × Nλ where R2 has the Euclidean metric

and Nλ is a 2-dimensional Riemannian manifold of constant curvature λ < 0.
And f = λ

2 |x |2 on the Euclidean factor.
(iii) g is locally conformally flat.

In [28] Petersen and Wylie proved that any complete gradient Ricci soliton with
harmonic curvature is rigid. But it is not clear if their argument extends to work for a
local soliton. The classification of any (not necessarily complete) gradient Ricci soliton
with harmonic curvature comes from Theorem 1.1; we demonstrated it as Corollary
8.3 in the final section.

To prove Theorem 1.1, from the harmonic Weyl curvature condition on gradient
Ricci solitons, we observe by the arguments of [7,19] that ∇ f

|∇ f | is a Ricci-eigenvector
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field with its eigenvalue λ1, there is a local function s with ∇s = ∇ f
|∇ f | , and λ1 and

R are functions of s only. Next we obtain important geometric information on (Ricci-
)eigenvalues, eigenvectors and eigenspaces from the Codazzi tensor Rc− R

6 g through
Derdziński’s Lemma 2.4 and its extension Lemma 2.8.

Based on all the above, we show in Lemma 2.7 that the Ricci-eigenvalues λi ,
i = 1, . . . , 4, locally depend only on the variable s; this key lemma is crucial in the
later argument. Then we divide the proof of Theorem 1.1 into several cases, depending
on the distinctiveness of λ2, λ3, λ4. There arise two subtle cases: when these three are
pairwise distinct and when exactly two of them are equal. In the latter case we reduce
the analysis to ordinary differential equations in Lemma 6.1 and resolve them to get
the types (ii) and (iii). In the former we compute on the soliton equation using Codazzi
tensor property, which eliminates the case, in Proposition 3.4.

The last case λ2 = λ3 = λ4 is relatively simpler and produces the types (i) and
(iv). Theorem 1.2, 1.3 and Corollary 8.3 on the harmonic curvature case can be easily
deduced from Theorem 1.1.

This paper is organized as follows. In Sect. 2 we develop properties common to any
gradient Ricci solitons with harmonicWeyl curvature and nonconstant f ; in particular
we prove that λi ’s, i = 1, . . . , 4, depend only on s. In Section 3 we study the case
where the three λi ’s, i = 2, 3, 4, are pairwise distinct. In Sections 4, 5 and 6, we
analyze the case where two of the three λi ’s, i = 2, 3, 4, are equal. In Sect. 7, we treat
the remaining case where λ2 = λ3 = λ4. In the final Sect. 8, we summarize and prove
theorems.

2 Gradient Ricci Solitons with Harmonic Weyl Curvature

We shall begin by recalling some properties of a gradient Ricci soliton with harmonic
Weyl curvature in a few lemmas.

Lemma 2.1 For any gradient Ricci soliton (M, g, f ), we have:

(i) 1
2dR = R(∇ f, ·), where R in the left-hand side denotes the scalar curvature,
and R(·, ·) is a Ricci tensor.

(ii) R + |∇ f |2 − 2λ f = constant.

Our notational convention is as follows: for orthonormal vector fields Ei , i =
1, . . . , n, on an n-dimensional Riemannian manifold, the curvature components are

Ri jkl := R(Ei , E j , Ek, El) = 〈∇Ei ∇E j Ek − ∇E j ∇Ei Ek − ∇[Ei ,E j ]Ek, El〉.

We recall the formula (2.1) in [19]:

Lemma 2.2 For a gradient Ricci soliton (Mn, g, f ) with harmonic Weyl curvature
on an n-dimensional manifold Mn, we have:

R(X,Y, Z ,∇ f ) = 1

n − 1
R(X,∇ f )g(Y, Z) − 1

n − 1
R(Y,∇ f )g(X, Z)

= 1

2(n − 1)
dR(X)g(Y, Z) − 1

2(n − 1)
dR(Y )g(X, Z).
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One may mimic arguments in [7] and get the next lemma.

Lemma 2.3 Let (Mn, g, f ) be a gradient Ricci soliton with harmonicWeyl curvature.
Let c be a regular value of f and �c = {x | f (x) = c} be the level surface of f . Then
the following hold:

(i) Where ∇ f �= 0, E1 := ∇ f
|∇ f | is an eigenvector field of Rc.

(ii) R and |∇ f |2 are constant on a connected component of �c.
(iii) There is a function s locally defined with s(x) = ∫ d f

|∇ f | , so that ds = d f
|∇ f |

and E1 = ∇s.
(iv) R(E1, E1) is constant on a connected component of �c.
(v) Near a point in �c, the metric g can be written as g = ds2 +∑

i, j>1 gi j (s, x2, . . . , xn)dxi ⊗ dx j , where x2, . . . , xn is a local coordinate sys-
tem on �c.

(vi) ∇E1E1 = 0.

Proof Lemma 2.2 gives R(∇ f, X) = 0 for X ⊥ ∇ f , hence E1 = ∇ f
|∇ f | is an eigen-

vector of Rc.
As dR = 2R(∇ f, ·) from Lemma 2.1, dR(X) = 0 for X ⊥ ∇ f . Also,

1
2∇X |∇ f |2 = −R(∇ f, X) + λg(∇ f, X) = 0 for X ⊥ ∇ f . We proved (ii).

d(
d f

|∇ f | ) = − 1

2|∇ f | 32
d|∇ f |2 ∧ d f = 0 as ∇X (|∇ f |2) = 0 for X ⊥ ∇ f . So, (iii)

is proved.
Locally, R may be considered as a function of the local variable s only. We can

express dR(E1) = dR
ds ds(E1) = dR

ds g(∇s,∇s) = dR
ds . By Lemma 2.1, we have

dR(E1) = 2R(E1, E1)|∇ f |, so R(E1, E1) is constant on a connected component of
�c.

As ∇ f and the level surfaces of f are perpendicular, one gets (v).
For (vi), one follows the proof of Proposition 5.1 in [7]; with the local coordinates

s, x2, . . . , xn in (v), one readily gets∇s = ∂
∂s so that [ ∂

∂xi
,∇s] = 0. Then 〈∇s,∇s〉 =

1 and 〈 ∂
∂xi

,∇s〉 = 0 yield (vi). ��
ACodazzi tensor on a RiemannianmanifoldM is a symmetric tensor A of covariant

order 2 such that d∇ A = 0, which can be written in local coordinates as ∇k Ai j =
∇i Ak j . Derdziński [17] described the following: for a Codazzi tensor A and a point
x in M , let EA(x) be the number of distinct eigenvalues of Ax , and set MA = {x ∈
M | EA is constant in a neighborhood of x}, so that MA is an open dense subset of M
and that in each connected component of MA, the eigenvalues are well-defined and
differentiable functions. The next lemma is from Sect. 2 of [17].

Lemma 2.4 For a Codazzi tensor A on a Riemannian manifold M, in each connected
component of MA,

(i) Given distinct eigenfunctions λ,μ of A and local vector fields v, u such that
Av = λv, Au = μu with |u| = 1, it holds that v(μ) = (μ − λ)〈∇uu, v〉.

(ii) For each eigenfunction λ, the λ-eigenspace distribution is integrable, and its
leaves are totally umbilic submanifolds of M.

(iii) Eigenspaces of A form mutually orthogonal differentiable distributions.
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When a RiemannianmanifoldM of dimension n ≥ 4 has harmonicWeyl curvature,
i.e., δW = 0, it is equivalent to d∇(Rc − R

2n−2g) = 0. So, A := Rc − R
2n−2g is a

Codazzi tensor. By Lemma 2.4, each eigenspace distribution of A is integrable in
the open dense subset MA of M . The leaves are totally umbilic submanifolds of M .
Let D1, . . . , Dk be all the eigenspace distributions ofA in a connected component of
MA. Then, the Ricci tensor also has D1, . . . , Dk as its eigenspace distributions. Let
the dimension of Dl be dl for l = 1, . . . , k. Then in a neighborhood of each point
of the connected component of MA, there exist orthonormal Ricci-eigenvector fields
Ei , i = 1, . . . , n, with corresponding eigenfunctions λi such that E1, . . . , Ed1 ∈ D1,
Ed1+1, . . . , Ed1+d2 ∈ D2, . . . , and Ed1+···+dk−1+1, . . . , En ∈ Dk .
Let (Mn, g, f ) be a gradient Ricci soliton with harmonic Weyl curvature. As a

gradient Ricci soliton, (M, g, f ) is real analytic in harmonic coordinates; see [21] or
argue as in [20, Prop. 2.4]. Then if f is not constant, {∇ f �= 0} is open and dense in
M . As in the above paragraph, we consider orthonormal Ricci-eigenvector fields Ei

in a neighborhood of each point in MA ∩ {∇ f �= 0}. By just requiring E1 = ∇ f
|∇ f | to

be in D1 and using Lemma 2.3, we obtain:

Lemma 2.5 Let (Mn, g, f ) be an n-dimensional gradient Ricci solitonwith harmonic
Weyl curvature and non-constant f . For any point p in the open dense subset MA ∩
{∇ f �= 0} of Mn, there is a neighborhood U of p where there exist orthonormal
Ricci-eigenvector fields Ei , i = 1, . . . , n such that for all the eigenspace distributions
D1, . . . , Dk of A in U,

(i) E1 = ∇ f
|∇ f | is in D1,

(ii) for i > 1, Ei is tangent to smooth level hypersurfaces of f ,
(iii) let dl be the dimension of Dl for l = 1, . . . , k, then E1, . . . , Ed1 ∈ D1,

Ed1+1, . . . , Ed1+d2 ∈ D2, . . . , and Ed1+···+dk−1+1, . . . , En ∈ Dk.

These local orthonormal Ricci-eigenvector fields Ei of Lemma 2.5 shall be called
an adapted frame field of (M, g, f ).

For an adapted frame field Ei , i = 1, . . . , n, with Ri j := R(Ei , E j ) = λiδi j , from
Lemma 2.2, for j ∈ {2, . . . , n} we get

R(E1, E j , E j ,∇ f ) = 1

n − 1
Ric(E1,∇ f ) = 1

2(n − 1)
dR(E1). (1)

Due to Lemma 2.3, in a neighborhood of a point p ∈ MA∩{∇ f �= 0}, f and Rmay
be considered as functions of the variable s only, and we write the derivative in s by a
prime: f ′ = d f

ds and R′ = dR
ds , etc. We recall dR(E1) = R′ds(E1) = R′g(∇s,∇s) =

R′ and similarly d f (E1) = f ′. Also, d f (E1) = g(∇ f, ∇ f
|∇ f | ) = |∇ f |. So, |∇ f | = f ′.

Then (1) becomes:

R1 j j1|∇ f | = 1

n − 1
R11|∇ f | = 1

2(n − 1)
R′. (2)

Lemma 2.6 For a gradient Ricci soliton (M, g, f )with harmonicWeyl curvature, and
for a local adapted frame field {Ei } in MA ∩ {∇ f �= 0}, setting ζi = −〈∇Ei Ei , E1〉,
for i > 1, we have:
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∇E1E1 = 0, and ∇Ei E1 = 1

|∇ f | (λ − λi )Ei . (3)

ζi = 1

|∇ f | (λ − λi ). (4)

Proof From Lemma 2.3 we get∇E1E1 = 0. From the gradient Ricci soliton equation,

for i > 1, ∇Ei E1 = ∇Ei (
∇ f
|∇ f | ) = ∇Ei ∇ f

|∇ f | = −R(Ei ,·)+λg(Ei ,·)
|∇ f | = − 1

|∇ f | (λi − λ)Ei .

Then, ζi = −〈∇Ei Ei , E1〉 = 〈Ei ,∇Ei E1〉 = 1
|∇ f | (λ − λi ). ��

Lemma 2.7 For a 4-dimensional gradient Ricci soliton (M, g, f ) with harmonic
Weyl curvature, and for a local adapted frame field {Ei } in MA ∩ {∇ f �= 0}, the
Ricci-eigenfunctions λi , i = 1, . . . , 4, are constant on a connected component of
a regular level hypersurface �c of f , and so depend on the local variable s only.
And ζi , i = 2, 3, 4, in Lemma 2.6 also depend on s only. In particular, we have
Ei (λ j ) = Ei (ζk) = 0 for i, k > 1 and any j .

Proof Wewrite Ri j := R(Ei , E j ). Recall thatλi = Rii .We set Rc1 = Rc and for k ≥
2, Rcki j = ∑4

s1,s2,...,sk−1=1 Ris1Rs1s2 · · · Rsk−1 j with its trace tr(Rck) = ∑4
i=1(λi )

k .

We will show tr(Rck), k = 1, 2, 3, depend on s only.
First, R = tr(Rc1) and λ1 = R11 depend on s only by Lemma 2.3. Next, for k ≥ 1,

writing the Hessian ∇ j∇i R := ∇E j ∇Ei R, by Lemma 2.6 we compute the following:

4∑

j,s1,s2,...,sk−1=1

(∇ j∇s1R)Rs1s2 · · · Rsk−1 j

=
4∑

j=1

(∇ j∇ j R)(R j j )
k−1

= (∇1∇1R)λk−1
1 +

∑

i>1

(∇i∇i R)λk−1
i

= (R′′)λk−1
1 +

∑

i>1

{Ei Ei (R) − (∇Ei Ei )R}λk−1
i

= (R′′)λk−1
1 −

∑

i>1

R′

|∇ f |
(
λki − λ · λk−1

i

)
.

(5)

In particular, for k = 1, (5) shows that

4∑

j=1

∇ j∇ j R = R′′ −
∑

i>1

R′

|∇ f | (λi − λ) = R′′ − R′

|∇ f | (R − λ1 − 3λ),

which depends only on s. We drop summation symbols using the Einstein summation
convention below.
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4∑

j=1

1

2
∇ j∇ j R = ∇ j ( fi Ri j ) = fi j Ri j + fi∇ j Ri j = −(Ri j − λgi j )Ri j + 1

2
fi Ri

= −Ri j Ri j + λR + 1

2
f ′R′.

So, tr(Rc2) = Ri j Ri j depends only on s.
We shall use the Codazzi equation ∇k Ri j = ∇i Rk j − Ri

6 gkj + Rk
6 gi j .

∇k( fi Ri j R jk) = fik Ri j R jk + fi (∇k Ri j )R jk + fi Ri j∇k R jk

= −(Rik − λgik)Ri j R jk + fi (∇i Rk j − Ri

6
gkj + Rk

6
gi j )R jk

+1

2
fi Ri j R j (6)

= −tr(Rc3) + λRi j Ri j + 1

2
fi∇i (R jk R jk) − fi

Ri

6
R + fi Rk

6
Rik

+1

2
fi Ri j R j .

All terms except tr(Rc3) in the right-hand side of (6) depend on s only. From (5)
we also get

2∇k( fi Ri j R jk) = ∇k(R j R jk) = (∇k R j )R jk + 1

2
R j R j

= R′′R11 −
∑

i>1

R′

|∇ f | (R
2
i i − λRii ) + 1

2
R j R j ,

which depends only on s. So, we compare this with (6) to see that tr(Rc3) depends
only on s. Now λ1 and

∑4
i=1(λi )

k , k = 1, . . . , 3, depend only on s. This implies that
each λi , i = 1, . . . , 4, is a constant depending only on s. By (4), ζi , i = 2, 3, 4 depend
on s only. ��

We now extend Lemma 2.4 (i):

Lemma 2.8 For a Riemannian metric g of dimension n ≥ 4 with harmonic Weyl
curvature, consider orthonormal vector fields Ei , i = 1, . . . , n, such that Rc(Ei , ·) =
λi g(Ei , ·). Then the following hold:

(i) (λ j−λk)〈∇Ei E j , Ek〉+∇Ei 〈Ek,AE j 〉=(λi−λk)〈∇E j Ei , Ek〉+∇E j 〈Ek,AEi 〉,
for any i, j, k = 1, . . . , n.

(ii) If k �= i and k �= j , (λ j − λk)〈∇Ei E j , Ek〉 = (λi − λk)〈∇E j Ei , Ek〉.

Proof The tensorA = Rc− R
2n−2g is a Codazzi tensor with eigenfunctions λi − R

2n−2 .
We have
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〈(∇EiA)E j , Ek〉 = −〈∇Ei E j ,AEk〉 − 〈∇Ei Ek,AE j 〉 + ∇Ei 〈Ek,AE j 〉
= −(λk − R

2n − 2
)〈∇Ei E j , Ek〉 − (λ j − R

2n − 2
)〈∇Ei Ek, E j 〉 + ∇Ei 〈Ek,AE j 〉

= (λ j − λk)〈∇Ei E j , Ek〉 + ∇Ei 〈Ek,AE j 〉.

As A is a Codazzi tensor, 〈(∇EiA)E j , Ek〉 = 〈(∇E jA)Ei , Ek〉. So, we get (i). Then
(ii) holds since ∇Ei 〈Ek,AE j 〉 = ∇E j 〈Ek,AEi 〉 = 0. ��

Lemma 2.9 For a gradient Ricci soliton (M, g, f ) with harmonic Weyl curvature,
and for a local adapted frame field {Ei } in MA ∩ {∇ f �= 0}, the following holds.

For i, j, k > 1, with k �= i and k �= j , setting �k
i j := 〈∇Ei E j , Ek〉,

(ζk − ζ j )�
k
i j = (ζk − ζi )�

k
ji , (ζk − ζ j )�

k
i j = (ζi − ζ j )�

i
k j and �k

i j = −�
j
ik .

Proof From (4) and Lemma 2.8, (ζk − ζ j )�
k
i j = (ζk − ζi )�

k
ji . Others hold readily. ��

3 4-Dimensional Solitons with Distinct λ2, λ3, λ4

Let (M, g, f ) be a four-dimensional gradient Ricci soliton with harmonic Weyl cur-
vature and non-constant f . In a neighborhood of any point in the open dense subset
MA ∩ {∇ f �= 0} of M , there exists an adapted frame field E j , j = 1, 2, 3, 4, of
Lemma 2.5 with its eigenfunction λ j

We may only consider three cases depending on the distinctiveness of λ2, λ3, λ4:
the first case is when λi , i = 2, 3, 4, are all equal (on an open subset), and the second is
when exactly two of the three are equal. And the last is when the three λi , i = 2, 3, 4,
are mutually different.

In this section we shall study the last case.

Lemma 3.1 Let (M, g, f )bea four-dimensional gradientRicci solitonwith harmonic
Weyl curvature and non-constant f . Suppose that for an adapted frame field E j ,
j = 1, 2, 3, 4, in an open subset W of MA ∩ {∇ f �= 0}, the eigenfunctions λ2, λ3, λ4
are distinct from each other. Then the following hold in W:
for i, j > 1, i �= j ,

∇E1E1 = 0, ∇Ei E1 = ζi Ei , ∇Ei Ei = −ζi E1, ∇E1Ei = 0.

∇Ei E j = �k
i j Ek where k �= 1, i, j.

Proof From Lemma 2.6 we have ∇E1E1 = 0 and ∇Ei E1 = ζi Ei . From Lemma 2.4
(i) and Lemma 2.7, 〈∇Ei Ei , E j 〉 = 0. And 〈∇Ei Ei , E1〉 = −〈Ei ,∇Ei E1〉 = −ζi .
So, we get ∇Ei Ei = −ζi E1. Now, −〈∇Ei E j , Ei 〉 = 0, 〈∇Ei E j , E j 〉 = 0. And
〈∇Ei E j , E1〉 = −〈∇Ei E1, E j 〉 = 0. So, ∇Ei E j = �k

i j Ek where k �= 1, i, j . Clearly

�k
i j = −�

j
ik .

From Lemma 2.8 (ii), (λi − λ j )〈∇E1Ei , E j 〉 = (λ1 − λ j )〈∇Ei E1, E j 〉. As
〈∇Ei E1, E j 〉 = 0, 〈∇E1Ei , E j 〉 = 0. This gives ∇E1Ei = 0. ��

123



4-d Gradient Ricci Solitons with Harmonic Weyl Curvature... 995

From the above lemma, we may write

[E2, E3] = αE4, [E3, E4] = βE2, [E4, E2] = γ E3. (7)

Lemma 3.2 Under the hypothesis of Lemma 3.1, we have the following relation on
ζi ’s and the coefficients of (7).

E1(α) = α(ζ4 − ζ2 − ζ3), E1(β) = β(ζ2 − ζ3 − ζ4), E1(γ ) = γ (ζ3 − ζ2 − ζ4)

β = (ζ3 − ζ4)
2

(ζ2 − ζ3)2
α, γ = (ζ2 − ζ4)

2

(ζ2 − ζ3)2
α.

Proof From Jacobi identity [[X,Y ], Z ] + [[Y, Z ], X ] + [[Z , X ],Y ] = 0 applied to
(X,Y, Z) = (E1, E2, E3) gives E1(α) = α(ζ4 − ζ2 − ζ3). Apply it to E1, E2, E4 and
E1, E3, E4, we get the next two.

Using 2〈∇XY, Z〉 = X〈Y, Z〉+Y 〈X, Z〉− Z〈X,Y 〉+〈[X,Y ], Z〉−〈[X, Z ],Y 〉−
〈[Y, Z ], X〉 for vector fields X,Y, Z , from Lemma 2.9 we get: −α−γ+β

2 = �3
24 =

(ζ2−ζ4)
ζ3−ζ4

�2
34 = (ζ2−ζ4)

ζ3−ζ4

α−γ+β
2 . So, −α − γ + β = (ζ2−ζ4)

ζ3−ζ4
(α − γ + β). By symmetry,

we have −β − α + γ = (ζ3−ζ2)
ζ4−ζ2

(β − α + γ ) and −γ − β + α = (ζ4−ζ3)
ζ2−ζ3

(γ − β + α).
From these, we can get the other formulas. ��
Lemma 3.3 Let a four-dimensional gradient Ricci soliton (M, g, f ) with harmonic
Weyl curvature satisfy the hypothesis of Lemma 3.1. Then the following hold in W:
For distinct i, j, k > 1, R1i i1 = −ζ ′

i − ζ 2
i = R1 j j1, where ζ ′

i = dζi
ds , R1i j1 = 0.

R11 = −3ζ ′
2 − 3ζ 2

2 .

R22 = −ζ ′
2 − ζ 2

2 − ζ2ζ3 − ζ2ζ4 − 2�2
34�

2
43.

R33 = −ζ ′
3 − ζ 2

3 − ζ3ζ2 − ζ3ζ4 + 2
(ζ2 − ζ4)

ζ3 − ζ4
�2
34�

2
43.

R44 = −ζ ′
4 − ζ 2

4 − ζ4ζ2 − ζ4ζ3 + 2
(ζ2 − ζ3)

ζ4 − ζ3
�2
34�

2
43.

R1i = 0, Ri j = Ek(�
k
i j ).

Proof One uses Lemma 3.1 and Lemma 2.7. Recall R1i i1 = R1 j j1 from (2). By direct

computation we get R1i i1 = −ζ ′
i − ζ 2

i , R jii j = −ζ jζi − �k
ji�

j
ik − �k

ji�
j
ki + �k

i j�
j
ki

and Rki jk = Ek(�
k
i j ). Use Lemma 2.9 to express R33 and R44. ��

Here we set a := ζ2, b := ζ3 and c := ζ4. From the soliton equation λ − ζi f ′ = Rii ,
i > 1 and Lemma 3.3,

−(a − b) f ′ = R22 − R33 = (b − a)c − 2{1 + (a−c)
b−c }�2

34�
2
43. So,

f ′ = c + 2
(a + b − 2c)

(a − b)(b − c)
�2
34�

2
43. (8)

Similarly, −(a − c) f ′ = (c − a)b − 2{1 + (a−b)
c−b }�2

34�
2
43. So,
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f ′ = b + 2
(a + c − 2b)

(a − c)(c − b)
�2
34�

2
43. (9)

From (8) and (9), we get

4�2
34�

2
43 = (a − b)(a − c)(b − c)2

(a2 + b2 + c2 − ab − bc − ac)
, (10)

f ′ = a2b + a2c + ab2 + ac2 + b2c + c2b − 6abc

2(a2 + b2 + c2 − ab − bc − ac)
. (11)

We are now ready to prove the following.

Proposition 3.4 Let (M, g, f ) be a four-dimensional gradient Ricci soliton with
harmonic Weyl curvature and non-constant f . For any adapted frame field E j ,
j = 1, 2, 3, 4, in an open dense subset MA∩{∇ f �= 0} of M, the three eigenfunctions
λ2, λ3, λ4 cannot be pairwise distinct, i.e., at least two of the three coincide.

Proof Suppose that λ2, λ3, λ4 are pairwise distinct. We shall prove then that g should
be an Einstein metric, so a contradiction.
In this proof again we set a := ζ2, b := ζ3 and c := ζ4. From (10) and Lemma 2.9,

(α − γ + β)2 = 4(�2
34)

2 = 4�2
34�

2
43

(a − b)

(a − c)
= (a − b)2(b − c)2

(a2 + b2 + c2 − ab − bc − ac)
.

For convenience set P := a2 + b2 + c2 − ab − bc − ac. From Lemma 3.2,

(α − γ + β)2 = α2
{

1 − (a − c)2

(a − b)2
+ (b − c)2

(a − b)2

}2

= 4α2(b − c)2

(a − b)2
.

So, α2 = (a−b)4

4P . Since a, b, c are all functions of s only, so is α.
Differentiating this in s and using b′ − a′ = a2 − b2 and c′ − a′ = a2 − c2, we get

2αα′ = (a − b)3(a′ − b′)
P

− (a − b)4(2aa′ + 2bb′ + 2cc′ − ab′ − ba′ − ac′ − ca′ − cb′ − bc′)
4P2

= −(a − b)3(a2 − b2)

P

− (a − b)4{(a − b)(a′ − b′) + (a − c)(a′ − c′) + (b − c)(b′ − c′)}
4P2

= −(a − b)4(a + b)

P

+ (a − b)4{(a − b)(a2 − b2) + (a − c)(a2 − c2) + (b − c)(b2 − c2)}
4P2
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= − (a − b)4

P

[

(a + b)

−{2(a3 + b3 + c3 − 3abc)+ 6abc− a2b− ab2 − a2c− ac2 − b2c− bc2}
4P

]

= − (a − b)4

P

[

(a + b)

− (a + b + c)

2
− {6abc − a2b − ab2 − a2c − ac2 − b2c − bc2}

4P

]

= − (a − b)4

P

[
(a + b − c)

2

−{6abc − a2b − ab2 − a2c − ac2 − b2c − bc2}
4P

]

.

Meanwhile, from Lemma 3.2 and α2 = (a−b)4

4P ,

2αα′ = 2αE1(α) = −2α2(a + b − c) = − (a − b)4

2P
(a + b − c).

Equating these two expressions for 2αα′, we get: 6abc = a2b + b2a + a2c + c2a +
b2c + c2b. From (11), f ′ = 0. So, g is an Einstein metric. ��

4 4-Dimensional Soliton with λ2 �= λ3 = λ4

In this section we begin to study the case when exactly two of the three eigenvalues
λ2, λ3, λ4 are equal. We may well assume that λ2 �= λ3 = λ4.

Lemma 4.1 Let (M, g, f )bea four-dimensional gradientRicci solitonwith harmonic
Weyl curvature. Suppose that λ2 �= λ3 = λ4 for an adapted frame field E j , j =
1, 2, 3, 4, on an open subset of MA ∩ {∇ f �= 0}. Then the following hold on the open
subset:

∇E1E1 = 0 .
∇Ei E1 = ζi (s)Ei f ori = 2, 3, 4, with ζi (s) = 1

|∇ f | (λ − λi ) .
∇E2E2 = −ζ2(s)E1 .
∇E3E3 = −ζ3E1−β3E4 ,∇E4E4 = −ζ4E1+β4E3 , for some functionsβ3andβ4.
∇E1E2 = 0,∇E1E3 = ρE4 and ∇E1E4 = −ρE3 for some function ρ.
∇E2E3 = qE4 and ∇E2E4 = −qE3 for some function q.
∇E3E2 = 0 and ∇E4E2 = 0.
∇E3E4 = β3E3 and ∇E4E3 = −β4E4 .
[E1, E2] = −ζ2E2 and [E3, E4] = β3E3 + β4E4.

In particular, the distribution spanned by E1 and E2 is integrable. So is that spanned
by E3 and E4.

Proof The formula for ∇Ei E1, i ≥ 1, comes from (3).
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Then from Lemma 2.7 and Lemma 2.4 (i): (λ2 − λi )〈∇E2E2, Ei 〉 = Ei (λ2) = 0
for i = 3, 4 and 〈∇E2E2, E1〉 = −〈E2,∇E2E1〉 = −ζ2(s). So, ∇E2E2 = −ζ2(s)E1.
By similar argument, ∇E3E3 = −ζ3E1 − β3E4, ∇E4E4 = −ζ4E1 + β4E3, for some
functions β3 and β4.

From Lemma 2.8 (ii), (λ2 − λi )〈∇E1E2, Ei 〉 = (λ1 − λi )〈∇E2E1, Ei 〉 = (λ1 −
λi )〈ζ2E2, Ei 〉 = 0, for i = 3, 4. So, 〈∇E1E2, Ei 〉 = 0, for i = 3, 4.As 〈∇E1E2, E1〉 =
−〈E2,∇E1E1〉 = 0, we have ∇E1E2 = 0.

As 〈∇E1E3, E2〉 = −〈E3,∇E1E2〉 = 0, one can readily get ∇E1E3 = ρE4 for
some function ρ and ∇E1E4 = −ρE3. And ∇E2E3 = qE4 for some function q and
∇E2E4 = −qE3.

From Lemma 2.8 (ii), (λ2 − λ4)〈∇E3E2, E4〉 = (λ3 − λ4)〈∇E2E3, E4〉 = 0. So,
〈∇E3E2, E4〉 = 0. As we have 〈∇E3E2, Ea〉 = 0 for i = 1, 3 from above, we get
∇E3E2 = 0. Similarly, ∇E4E2 = 0.

One can easily compute ∇E3E4 = β3E3 and ∇E4E3 = −β4E4. From above we
get [E1, E2] = −ζ2E2 and [E3, E4] = β3E3 + β4E4. ��
Lemma 4.2 Let D1 and D2 be both two-dimensional smooth integrable distribu-
tions on a domain � of a four-dimensional manifold that span the tangent space
Tp� for each p ∈ �. Let p0 be a point in �. Then there is a coordinate
neighborhood (x1, x2, x3, x4) near p0 so that D1 is tangent to the 2-dimensional
level sets {(x1, x2, x3, x4)| x3, x4 constants} and D2 is tangent to the level sets
{(x1, x2, x3, x4)| x1, x2 constants}.
Proof By Frobenius’s theorem, there is a coordinate neighborhood x := (x, y, z, w)

near p0 so that D2 is tangent to the sets {(x, y, z, w)| x, y constants}. We may assume
that (x(p0), y(p0), w(p0), z(p0)) = (0, 0, 0, 0).

Then there are two vector fields v1 = (a1, b1, c1, d1) := a1
∂
∂x + b1

∂
∂y + c1

∂
∂z +

d1
∂

∂w
and v2 = (a2, b2, c2, d2) for points p near p0 in D1, with (a1(p), b1(p)) and

(a2(p), b2(p)) being linearly independent as two-dimensional vectors; if not, D1
p and

D2
p will not span Tp�.
By considering X1 := α1v1 + β1v2 and X2 := α2v1 + β2v2 for smooth func-

tions αi , βi , we have smooth vector fields X1, X2 ∈ D1, of the form X1(p) =
(1, 0, a1(p), a2(p)) and X2 = (0, 1, b1(p), b2(p)) for p near p0 with smooth func-
tions ai , bi , i = 1, 2.

Consider the one-parameter subgroup φt of X1 and ψs of X2: d
dt φt (p) =

(1, 0, a1(φt (p)), a2(φt (p)))φt (p) and
d
dsψs(p) = (0, 1, b1(ψs(p)), b2(ψs(p))).

Define a map � on a neighborhood of the origin in R
4 = {(x1, x2, x3, x4)} into

R
4 = {(x, y, z, w)} by �(x1, x2, x3, x4) := φx1ψx2(0, 0, x3, x4). This � gives a

local coordinate system near p0. From d
dsψs(p) = (0, 1, b1(ψs(p)), b2(ψs(p))),

we get ψx2(0, 0, x3, x4) = (0, x2, ∗, ∗) and similarly φx1ψx2(0, 0, x3, x4) =
φx1(0, x2, ∗, ∗) = (x1, x2, ∗, ∗).

So, �(x1, x2, x3, x4) = (x1, x2, ∗, ∗). Then we get �∗( ∂
∂x3

),�∗( ∂
∂x4

) ∈ span

( ∂
∂z ,

∂
∂w

) = D2. So, D2 is spanned by �∗( ∂
∂x3

) and �∗( ∂
∂x4

).

As D1 is integrable, in a neighborhood of each point q0 := (0, 0, c, d) near the
origin, there is a unique surface Sq0 containing q0 which is tangent to the distribution
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D1 at each point of Sq0 . As X1 and X2 are vector fields on Sq0 , at each point q ∈
Sq0 we have {ψx2(q) | x2 ∈ (−ε, ε)} ⊂ Sq0 and {φx1(q) | x1 ∈ (−ε, ε)} ⊂ Sq0
for small ε. Therefore, the set {φx1ψx2(0, 0, c, d) | x1, x2 ∈ (−ε, ε)}, for small ε,
coincides with Sq0 near q0. So, we get �∗( ∂

∂x1
),�∗( ∂

∂x2
) ∈ D1, and D1 is spanned by

�∗( ∂
∂x1

),�∗( ∂
∂x2

). Now we have obtained a new coordinate system �−1 ◦ x with the
desired property. This proves the lemma. ��

Using Lemma 4.1 and Lemma 4.2, we can express the metric g in the following
lemma.

Lemma 4.3 Let (M, g, f )bea four-dimensional gradientRicci solitonwith harmonic
Weyl curvature. Suppose that λ2 �= λ3 = λ4 for an adapted frame field E j , j =
1, 2, 3, 4, on an open subset U of MA ∩ {∇ f �= 0}.

Then for each point p0 in U, there exists a neighborhood V of p0 in U with
coordinates (s, t, x3, x4) such that ∇s = ∇ f

|∇ f | and g can be written on V as

g = ds2 + p(s)2dt2 + h(s)2 g̃, (12)

where p := p(s) and h := h(s) are smooth functions and g̃ is (a pull-back of) a
Riemannian metric on a 2-dimensional domain with x3, x4 coordinates.

We get E1 = ∂
∂s and E2 = 1

p
∂
∂t .

Proof Let D1 be the 2-dimensional distribution spanned by E1 = ∇s and E2. Also
let D2 be the one spanned by E3 and E4. Then D1 and D2 are both integrable by
Lemma 4.1. We may consider the coordinates (x1, x2, x3, x4) from Lemma 4.2, so
that D1 is tangent to the 2-dimensional level sets {(x1, x2, x3, x4)| x3, x4 constants}
and D2 is tangent to the level sets {(x1, x2, x3, x4)| x1, x2 constants}. As D1 and D2

are g-orthogonal, we can get the metric description for g as follows:
g = g11dx21 + g12dx1 � dx2 + g22dx22 + g33dx23 + g34dx3 � dx4 + g44dx24 , where� is the symmetric tensor product and gi j are functions of (x1, x2, x3, x4).
As E1 = ∇s ∈ D1, we have ds = g(E1, ·). We define a 1-form ω2(·) := g(E2, ·).

One can readily see that ds2 + ω2
2 = g11dx21 + g12dx1 � dx2 + g22dx22 . In fact, one

may feed (Ei , E j ) to both sides and use the fact that each of E1 and E2 is of the form
a∂1+b∂2 as they are tangent to the sets {(x1, x2, x3, x4)| x3, x4 constants}, while each
of E3 and E4 is of the form c∂3 +d∂4 for a similar reason; here we have set ∂i := ∂

∂xi
.

Recalling [E1, E2] = −ζ2(s)E2, we define a function p(s) = e
∫ s
s0

ζ2(u)du for
a constant s0 so that ζ2 = p′

p . Then, the 2-form d(ω2
p ) satisfies d(ω2

p )(E1, E2) =
− dp∧ω2

p2
(E1, E2)+ 1

p dω2(E1, E2) = − p′
p2

+ p′
p2

= 0.And for i ∈ {3, 4} and for any j ∈
{1, 2, 3, 4}, d(ω2

p )(Ei , E j ) = − dp∧ω2
p2

(Ei , E j )+ 1
p dω2(Ei , E j ) = 1

p dω2(Ei , E j ) =
− 1

pω2([Ei , E j ]) = 0 by Lemma 4.1.
So, d(ω2

p ) = 0 and ω2
p = dt for some function t modulo a constant in a neighbor-

hood of p0. The metric g can now be written as

g = ds2 + p(s)2dt2 + g33dx
2
3 + g34dx3 � dx4 + g44dx

2
4 , (13)
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where gi j are functions of (x1, x2, x3, x4). In the coordinate system (s, t, x3, x4), one
easily gets E1 = ∂

∂s and E2 = 1
p

∂
∂t .

Now we use new coordinates (s, t, x3, x4) in computations below, so that ∂1 = ∂
∂s

and ∂2 = ∂
∂t , etc. From Lemma 4.1, we have 〈∇Ei E j , E2〉 = 0 for i, j ∈ {3, 4}. As ∂3

and ∂4 are both of the form γ E3 + δE4, we have that 〈∇∂i ∂ j , ∂2〉 = 0 for i, j ∈ {3, 4}.
We set gi j = g(∂i , ∂ j ). Due to (13), for i, j ∈ {3, 4}:

0 =〈∇∂i ∂ j , ∂2〉 =
4∑

k=1

〈�k
i j∂k, ∂2〉

=
4∑

k,l=1

〈1
2
gkl(∂i gl j + ∂ j gli − ∂l gi j )∂k, ∂2〉

= −
4∑

k,l=1

1

2
gkl∂l gi j 〈∂k, ∂2〉 = −1

2
∂2gi j .

(14)

We have shown:
∂g33
∂t

= ∂g34
∂t

= ∂g44
∂t

= 0. (15)

We consider the second fundamental form of a leaf for D2 with respect to E1:
HE1(u, u) = −〈∇uu, E1〉. As D2 is totally umbilic by Lemma 2.4 (ii), HE1(u, u) =
ζ · g(u, u) for some function ζ and any u tangent to D2. Then, HE1(E3, E3) =
−〈∇E3E3, E1〉 = ζ3 So, ζ = ζ3, which is a function of s only by Lemma 2.7.

For i, j ∈ {3, 4}, we compute similarly as in (14),

ζ3gi j = HE1(∂i , ∂ j ) = −
〈

∇∂i ∂ j ,
∂

∂s

〉

= −
〈
∑

k

�k
i j∂k,

∂

∂s

〉

= −
∑

k

〈
1

2
gkl(∂i gl j + ∂ j gli − ∂l gi j )∂k,

∂

∂s

〉

= 1

2

∂

∂s
gi j .

So, 1
2

∂
∂s gi j = ζ3gi j . Integrating it, for i, j ∈ {3, 4}, we get gi j = eCi j h(s)2. Here the

function h(s) > 0 is independent of i, j , and each functionCi j depends only on x3, x4
by (15).

Now g can be written as g = ds2 + p(s)2dt2 + h(s)2g̃, where g̃ can be viewed as
a Riemannian metric in a domain of the (x3, x4)-plane. ��

5 Analysis of the Metric When λ2 �= λ3 = λ4

We shall study more about the metric g = ds2 + p(s)2dt2 + h(s)2g̃ of (12) obtained
in Lemma 4.3.

Lemma 5.1 Let (M, g, f )bea four-dimensional gradientRicci solitonwith harmonic
Weyl curvature which satisfies the hypothesis of Lemma 4.3. For the metric g =
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ds2+ p(s)2dt2+h(s)2 g̃ of (12), the two-dimensional metric g̃ has constant curvature,
say k.

Proof In local coordinates (x1 := s, x2 := t, x3, x4) of Lemma 4.3, we write some
Christoffel symbols �k

i j and Ricci curvature of g. In this proof, for any (0, 2)-tensor

P , P( ∂
∂xi

, ∂
∂x j

) shall be denoted by Pi j . We let ∇̃, �̃k
i j and Rg̃

i j be the Levi-Civita

connection, Christoffel symbols and Ricci curvature of g̃, respectively. For i, j, k ∈
{3, 4}, we get:

�k
i j = �̃k

i j

Ri j = −g̃i j {hh′′ + p′

p
hh′ + h′2} + Rg̃

i j . (16)

From (16), for i, j, k ∈ {3, 4}, we have ∇k g̃i j = ∇̃k g̃i j = 0 and ∇k R
g̃
i j = ∇̃k R

g̃
i j so

that∇k Ri j = ∇̃k R
g̃
i j . The condition δW = 0 gives∇k Ri j −∇ j Rik = − R j

6 gki + Rk
6 gi j .

For i, j, k ∈ {3, 4}, R j = Rk = 0, so ∇k Ri j = ∇ j Rik .

Then, we get ∇̃k R
g̃
i j = ∇̃ j R

g̃
ik . By the contracted second Bianchi identity the 2-

dimensional metric g̃ then has constant curvature. ��
The metric g̃ of Lemma 5.1 is locally isometric to the Riemannian metric g0 =

dr2 + u(r)2dθ2 on a domain in R
2 with polar coordinates (r, θ), where u(r) = r

when k = 0, u(r) = sin(
√
k · r) when k > 0 or u(r) = sinh(

√−k · r) when k < 0.
We may identify g̃ with g0 locally and set e3 = ∂

∂r and e4 = 1
u(r)

∂
∂θ
, which then form

an orthonormal basis of g̃.

Lemma 5.2 For the local soliton metric g = ds2 + p(s)2dt2 + h(s)2 g̃ of (12)
obtained in Lemma 4.3 with the metric g̃ of constant curvature k, if we set E1 = ∂

∂s ,

E2 = 1
p(s)

∂
∂t , E3 = 1

h(s)e3 and E4 = 1
h(s)e4, where e3 and e4 are as in the above

paragraph, then the connection form, Ricci and scalar curvature of g are as below.
Here Ri j = R(Ei , E j ) and Ri jkl = R(Ei , E j , Ek, El).

∇E1Ei = 0, for i = 1, 2, 3, 4.

∇Ei E1 = ζi Ei , for i = 2, 3, 4 with ζ2 = p′
p , ζ3 = ζ4 = h′

h .∇E2E2 = −ζ2E1, ∇E3E3 = −ζ3E1, ∇E4E4 = −ζ4E1 + β4E3.
∇E2E3 = ∇E3E2 = ∇E4E2 = ∇E2E4 = 0.

∇E3E4 = 0, ∇E4E3 = −β4E4, where β4 = u′(r)
h(s)u(r) .

R1221 = − p′′

p
= −ζ ′

2 − ζ 2
2 = R1i i1 = −ζ ′

i − ζ 2
i = −h′′

h
, for i ≥ 3.

R11 = −3ζ ′
2 − 3ζ 2

2 = −3
h′′

h
.

R22 = −ζ ′
2 − ζ 2

2 − 2ζ2ζ3 = −h′′

h
− 2

p′

p

h′

h
.

R33 = R44 = −ζ ′
3 − ζ 2

3 − ζ3ζ2 − (ζ3)
2 + k

h2
= −h′′

h
− p′

p

h′

h
− (h′)2

h2
+ k

h2
.
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Ri j = 0, if i �= j.

R = −6ζ ′
3 − 6ζ 2

3 − 4ζ3ζ2 − 2(ζ3)
2 + 2

k

h2
= −6

h′′

h
− 4

p′

p

h′

h
− 2

(h′)2

h2
+ 2

k

h2
.

Proof One may verify all the formulas by direct computation. In particular, ζ2 = p′
p

and ζ3 = ζ4 = h′
h . We get p′′

p = h′′
h from (2). ��

What emerges from the above discussions can be highlighted as the following
soliton on an open set, which results from Lemmas 4.3 and 5.1:

A four-dimensional gradient Ricci soliton (M, g, f )with harmonicWeyl curvature
has a connected coordinate neighborhood (V, (s, t, x3, x4)) ⊂ MA ∩ {∇ f �= 0}, in
which

g = ds2 + p(s)2dt2 + h(s)2g̃ on V, (17)

where g̃ is a 2-dimensional Riemannian metric of constant curvature k on an (x3, x4)-
domain. We have the adapted frame field

E1 = ∇ f

|∇ f | = ∂

∂s
, E2 = 1

p

∂

∂t
, E3 = 1

h
e3, E4 = 1

h
e4 on V,

and λ2 �= λ3 = λ4, (18)

where e3 and e4 are an orthonormal frame field of g̃ as in Lemma 5.2.

Remark 5.3 As mentioned in Sect. 2, g and f are real analytic (in harmonic coor-
dinates), so is |∇ f | where ∇ f �= 0. The Ricci eigenvalues λi are real analytic in
MA ∩ {∇ f �= 0}. So are ζi (s) = 1

|∇ f | (λ − λi ).

Also R′ = dR(E1) is real analytic since it equals dR(
∇ f
|∇ f | ). From (2)

R(E1, E2, E2, E1) is real analytic. As −ζ ′
2 − ζ 2

2 = −ζ ′
3 − ζ 2

3 = R(E1, E2, E2, E1),
ζ ′
2 as well as ζ ′

3 are real analytic.
To exploit the real analyticity, we shall use the following simple fact: if P ·Q equals

zero (identically) on an open connected set W for two real analytic functions P and
Q, then either P equals zero on W or Q equals zero on W .

For the rest of this section we denote a := ζ2 and b := ζ3 for convenience.
In the adapted frame field {Ei } of (18), we can write components of the soliton

equation ∇d f (Ei , Ei ) = −(Rc − λg)(Ei , Ei ), i = 1, 2, 3 as follows:

f ′′ = 3a′ + 3a2 + λ. (19)

f ′a = a′ + a2 + 2ba + λ. (20)

f ′b = b′ + b2 + ba + b2 − k

h2
+ λ. (21)

In the next section we are going to deduce several linear or quadratic equations in a
and b from (19)–(21) and δW = 0. But before we get to it, in the next three lemmas we
shall understand three linear cases (when a = 0, b = 0 and a + b = 0 on a domain).
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Lemma 5.4 For the soliton metric g of (17) with harmonic Weyl curvature and with
the adapted frame field (18), the function a cannot vanish on V .

Proof If a = 0, then b′ + b2 = a′ + a2 = 0. Integrate for b = h′
h to get h′

h = 1
s−c

for a constant c, as b �= a = 0. So, h = ch(s − c), for a constant ch �= 0. From (20),
λ = 0. From (19), f ′′ = 0 and f ′ is constant. From (21) we get f ′ = 1

s−c (1 − k
c2h

).

Then, c2h = k > 0 and f ′ = 0. So, g is Einstein, a contradiction to the hypothesis
λ2 �= λ3. ��
Lemma 5.5 For the soliton metric g of (17) with harmonic Weyl curvature and with
the adapted frame field (18), assume that b = 0 on V . Then g is locally isometric to
a domain in R2 × (N , g̃) with g = ds2 + s2dt2 + g̃, where g̃ is a Riemannian metric
of constant curvature λ �= 0 on a two-dimensional manifold N. And f = λ

2 s
2 + C1,

for a nonzero constant C1.

Proof If b = 0, then a′ +a2 = 0. Integrate for a = p′
p to get p′

p = 1
s−c1

for a constant
c1, as a �= b = 0. So, p = cp(s − c1), for a constant cp �= 0. As h is constant, we set
h = h0 > 0.

From (20), f ′ = λ(s − c1). We get f (s) = 1
2λ(s − c1)2 + C1. If λ = 0, then f is

constant and g is Einstein, which violates the λ2 �= λ3 hypothesis. So, λ �= 0. From
(21), we have k

h20
= λ. And by absorbing a constant to the variable t , we can write the

metric g = ds2 + (s − c1)2dt2 + h20 g̃, where h
2
0 g̃ is a Riemannian metric of constant

curvature k
h20

= λ. The metric g is isometric to ds2 + s2dt2 + h20 g̃. This proves the

lemma. ��
Lemma 5.6 For the soliton metric g of (17) with harmonic Weyl curvature and with
the adapted frame field (18), the function a + b cannot vanish on V .

Proof Suppose a + b = 0 on V . Then a′ − b′ = b2 − a2 = 0. So, a − b = C , a

constant. Then a = p′
p = C

2 , b = h′
h = −C

2 . As a �= b, C �= 0. Then h = che−C
2 s

for a constant ch > 0. Put it into (20) and (21), and we have k = λ = 0 and f ′ is a
constant. Then (19) gives C2 = 0, which is a contradiction. ��

6 Characterization of the Metric When λ2 �= λ3 = λ4

In this section we shall characterize the soliton metric g of (17) with harmonic Weyl
curvature and with the adapted frame field (18).

From (20) and (21),

(a − b) f ′ = b(a − b) + k

h2
. (22)

Differentiating, (a − b)′ f ′ + (a − b) f ′′ = b′(a − b) + b(a − b)′ − 2 kh′
h3

.

Meanwhile, from (19), (22) and a′ − b′ = −a2 + b2,

(a − b)′ f ′ + (a − b) f ′′ = −(a2 − b2) f ′ + (a − b)(−λ1 + λ)

= (a + b)
{

− b(a − b) − k

h2

}
+ (a − b)(−λ1 + λ).
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So, we get b′(a−b)+b(b2−a2)−2 kh′
h3

= (a+b){−b(a−b)− k
h2

}+(a−b)(−λ1+λ).

Then, as b = h′
h ,

b′(a − b) = (a + b)
{

− k

h2

}
+ 2

kh′

h3
+ (a − b)(−λ1 + λ)

= (a − b)
{

− k

h2

}
+ (a − b)(−λ1 + λ).

As λ2 �= λ3, we have a − b �= 0. We then have:

2(b′ + b2) + b2 − k

h2
+ λ = 0. (23)

From (20), (21) and b′ = a′ + a2 − b2, we have

b(a′ + a2 + 2ba + λ) = a
(
b′ + b2 + ba + b2 − k

h2
+ λ

)
,

and so

− (a − b)a′ − a3 + ab2 + λ(b − a) = −a
k

h2
. (24)

Next, we shall exploit the harmonic Weyl curvature condition. In {Ei }, we have
∇k Ri j − ∇ j Rik = − R j

6 gki + Rk
6 gi j . Then as ∇E1E2 = ∇E1E3 = 0,

0 = ∇1R22 − ∇2R12 − R′

6

= ∇1(R22) + R(∇E2E1, E2) + R(∇E2E2, E1) − R′

6
(25)

= (R22)
′ + aR22 − aR11 − R′

6
.

0 = ∇1R33 − ∇3R13 − R′

6

= ∇1(R33) + R(∇E3E1, E3) + R(∇E3E3, E1) − R′

6
(26)

= (R33)
′ + bR33 − bR11 − R′

6
.

Subtracting (26) from (25), with Lemma 5.2 we get (−ab+b2 − k
h2

)′ +a(−a′ −a2 −
2ab) − (a − b)(−3a′ − 3a2) − b(−b′ − b2 − ba − b2 + k

h2
) = 0, from which we

obtain

− (a − b)a′ − a3 + b3 + 2a2b − 2ab2 = b
k

h2
. (27)

Subtracting (24) from (27),

(a − b)(2ab − b2 + λ) = (a + b)
k

h2
. (28)
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Lemma 6.1 For the soliton metric g of (17) with harmonic Weyl curvature and with
the adapted frame field (18), assume that k �= 0. Then the following holds:

b(λ + 3ab)(λ − 2a2 + ab) = 0. (29)

Proof We start from (28). Our hypothesis k �= 0 and Lemma 5.6 implies that 2ab −
b2 + λ does not vanish. So, we may take the natural log of (28) and differentiate it:

−a − b + 2a′b + 2ab′ − 2bb′

2ab − b2 + λ
= a′ + b′

a + b
− 2b.

Then put b′ = a′ + a2 − b2 into it:

aa′ + (a − b)(a2 − b2)

2ab − b2 + λ
= a′ + a2 − b2

a + b
.

Arranging terms, we obtain:

− a′(a2 + b2 − ab − λ) = (a2 − b2)(a2 − 2ab − λ). (30)

Meanwhile, using that a − b �= 0, from b × (24) + a × (27) = 0 we have

− (a + b)a′ = a3 + 2ab2 + λb. (31)

Removing a′ in (30) and (31) and simplifying, we can get:

b(λ + 3ab)(λ − 2a2 + ab) = 0.

��
We need to characterize the two equalities appearing in (29): λ + 3ab = 0 and

λ − 2a2 + ab = 0.

Lemma 6.2 For the soliton metric g of (17) with harmonic Weyl curvature and with
the adapted frame field (18), assume that k �= 0 and that h is not constant. Then
λ + 3ab does not vanish on V .

Proof If λ + 3ab = 0 vanishes, we have 0 = a′b + ab′ = (b′ + b2 − a2)b + ab′ =
(a + b)(b′ + b2 − ab). By Lemma 5.6, we have b′ + b2 = ab = −λ

3 . Due to (23),
b2 − k

h2
= −λ

3 . From (21), f ′b = −λ
3 − λ

3 − λ
3 + λ = 0. As h is not constant, we

have f ′ = 0, a contradiction. ��
We study the equation λ − 2a2 + ab = 0:

Lemma 6.3 For the soliton metric g of (17) with harmonic Weyl curvature and with
the adapted frame field (18), assume that k �= 0 and that h is not constant. Then
λ − 2a2 + ab does not vanish on V .
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Proof If λ − 2a2 + ab = 0 on V , put λ = 2a2 − ab into (31) to get: −a′ =
a3+2a2b+ab2

a+b = a(a + b). So, a′ + a2 + ab = 0, i.e., p′′h + p′h′ = 0. Integrating

this, we get p′h = c1 for a constant c1. As h′′
h = p′′

p , we have h
′′ p + p′h′ = 0, which

integrates to h′ p = c2 for a constant c2. As a does not vanish by Lemma 5.5 and
b �= 0 from the hypothesis, c1c2 is not zero. So h′

h = c2
c1

p′
p , i.e., b = ca, for c �= 0. So,

0 = λ − 2a2 + ab = λ + (c − 2)a2.
If c �= 2, then a is a nonzero constant. a′ + a2 + ab = 0 yields a + b = 0, which

is not possible by Lemma 5.6.
If c = 2, then λ = 0 and 2a = b. Put these and a′ + a2 + ab = 0 into (20) to get

f ′ = 2a. Then from (21), we get k = 0, a contradiction. ��

Lemma 6.4 For the soliton metric g of (17) with harmonic Weyl curvature and with
the adapted frame field (18), assume that k = 0.

Then g is locally isometric to the metric ds2 + s
2
3 dt2 + s

4
3 g̃ on a domain of R4,

where g̃ is flat. Also, λ = 0 and f = 2
3 ln s + C2, for a constant C2.

Furthermore, the Ricci curvature components and scalar curvature of g are as
follows: R11 = 2

3s2
, R22 = − 2

9s2
, R33 = R44 = − 4

9s2
, Ri j = 0, i �= j , and

R = − 4
9s2

. And the Weyl curvature of g is not zero.

Proof As k = 0 and a �= b, 2ab − b2 + λ = 0 from (28). From the computation in
Lemma 5.2, we get R = −6(a′ + a2) − 8ab − 2λ. (25) becomes:

0 = −{a′ + a2 + 2ab}′ − a{a′ + a2 + 2ab} + 3a(a′ + a2)

−1

6
{−6(a′ + a2) − 8ab − 2λ}′

= −2

3
(ab)′ + 2a(a′ + a2 − ab)

= −2

3
{a′b + a(a′ + a2 − b2)} + 2a(a′ + a2 − ab)

= −2

3
a′b + 4

3
aa′ + 4

3
a3 + 2

3
ab2 − 2a2b.

We get:

(2a − b)(a′ + a2 − ab) = 0.

If a′+a2−ab = 0,we get p′′ = p′h′
h . Then p′

h = c1, a constant. From h′′
h = p′′

p = p′h′
ph ,

we also get h′
p = c2, a constant. So, ab = p′h′

ph = c1c2. And 2ab − b2 + λ = 0 tells
that b is a constant. If b = 0, then λ = k = 0 and from (20) f ′a = 0. So, f ′ = 0 and
g is Einstein, a contradiction to the hypothesis. Now b is a nonzero constant. Then
b′ + b2 = a′ + a2 = ab gives a = b, a contradiction to the hypothesis.

If 2a = b, then 0 = 2ab − b2 + λ = λ. From a′ + a2 = b′ + b2 = 2a′ + 4a2, we
get a′ + 3a2 = 0. Integrating it to get a = p′

p = 1
3s−c2

for a constant c2. (20) gives
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f ′a = 2a2, so that f ′ = 2a = 2
3s−c2

. As 2 p′
p = h′

h , we have p2 = ech for a constant

c. We get p = ec3(3s − c2)
1
3 and h = ec4(3s − c2)

2
3 .

So, g is locally isometric to the metric ds2 + s
2
3 dt2 + s

4
3 g̃ on a domain of R4,

where g̃ is flat. And f = 2
3 ln s + C2, for a constant C2.

One can check that the above (g, f ) satisfy the soliton equation including (19),
(20), (21) and the harmonicity of the Weyl curvature, and so is a steady Ricci soliton.
One can easily compute the curvature components of g. ��

Based on the real analyticity of a, b, a′ and b′ from Remark 5.3, we combine the
previous lemmas to obtain the next proposition.

Proposition 6.5 Let (M, g, f ) be a four-dimensional gradient Ricci soliton with har-
monic Weyl curvature. Suppose that λ2 �= λ3 = λ4 for an adapted frame field E j ,
j = 1, 2, 3, 4, in an open subset U of MA ∩ {∇ f �= 0}.
Then for each point p0 in U, there exists a neighborhood V of p0 in U with

coordinates (s, t, x3, x4) in which (V, g, f ) can be one of the following:

(i) (V, g) is isometric to a domain inR2×N with g = ds2+s2dt2+ g̃, where (N , g̃)
is a Riemannian manifold of constant curvature λ �= 0. And f = λ

2 s
2 + C1, for

a constant C1.
(ii) (V, g) is isometric to a domain inR4 with the Riemannian metric ds2+ s

2
3 dt2+

s
4
3 g̃, where g̃ is flat. Also, λ = 0 and f = 2

3 ln s + C2, for a constant C2. The
metric g is not locally conformally flat.

Proof We exploit the real analyticity. Lemma 6.4 settles the k = 0 case. Lemma 6.1
divides the k �= 0 case into three subcases b = 0, λ + 3ab = 0 and λ − 2a2 + ab = 0
which are treated in Lemmas 5.5, 6.2 and 6.3, respectively. ��

7 4-Dimensional Soliton with λ2 = λ3 = λ4.

In this section we treat the remaining case of λ2 = λ3 = λ4 for an adapted frame field.

Proposition 7.1 Suppose that (M, g, f ) is a four-dimensional gradient Ricci soliton
with harmonic Weyl curvature and non-constant f and that λ2 = λ3 = λ4 �= λ1 for
an adapted frame field in an open subset U of MA ∩ {∇ f �= 0}.

Then for each point p0 in U, there exists a neighborhood V of p0 in U where g is
a warped product:

g = ds2 + h(s)2g̃, (32)

for a positive function h, where the Riemannian metric g̃ has constant curvature, say
k. In particular, g is locally conformally flat.

Proof Near p0 in U , we use a local coordinate system (x1 := s, x2, x3, x4) from
Lemma 2.3 (v) in which the metric g = ds2 + ∑4

i, j≥2 gi j dxi dx j with gi j =
gi j (x1, . . . , x4).

By Lemma 2.7, near p0, each λi , i = 1, 2, 3, 4 is a function of s only. We consider
the second fundamental form of the level hypersurfaces �c of f with respect to E1:
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HE1(u, u) = −〈∇uu, E1〉. As �c is totally umbilic by Lemma 2.4 (ii), HE1(u, u) =
G · g(u, u) for any u tangent to �c and some function G. Then, by Lemma 2.4 (i)

〈∇E2E2, E1〉 = λ′
2− 1

6 R
′

λ2−λ1
So, G = −λ′

2− 1
6 R

′
λ2−λ1

is a function of s only.

For i, j ∈ {2, 3, 4}, setting ∂i := ∂
∂xi

, we compute,

G(s) · gi j = HE1(∂i , ∂ j ) = −
〈

∇∂i ∂ j ,
∂

∂s

〉

= −
〈

4∑

k=1

�k
i j∂k,

∂

∂s

〉

= −
∑

k

〈
1

2
gkl(∂i gl j + ∂ j gli − ∂l gi j )∂k,

∂

∂s

〉

= 1

2

∂

∂s
gi j .

So, 1
2

∂
∂s gi j = G(s)gi j . Integrating it, we get gi j = eCi j w(s). Here the function w(s)

is independent of i, j and each Ci j depends only on x2, x3, x4.
Now g can be written as g = ds2+h(s)2 g̃, where g̃ can be viewed as a Riemannian

metric in a domain of the (x2, x3, x4)-plane.
To prove that g̃ has constant curvature, wemodify the proof of Derdziński’s Lemma

4 in [17], which is stated for the harmonic curvature case.
For i, j ∈ {2, 3, 4}, we compute the Christoffel symbols and Ricci curvature of g:

�1
i j = −hh′g̃i j , �i

1 j = h′

h
δi j ,

R1i = 0, R11 = −3
h′′

h
, Ri j = −g̃i j (hh

′′ + 2h′2) + Rg̃
i j . (33)

The condition δW = 0 gives ∇k Ri j − ∇ j Rik = − R j
6 gki + Rk

6 gi j . In particular, for

i, j ∈ {2, 3, 4}, ∇1Ri j − ∇ j Ri1 = R1
6 gi j . From (33),

∂1R

6
h2g̃i j = ∂1R

6
gi j = ∇1Ri j − ∇i R1 j

= ∂1Ri j − R(∇∂1∂ j , ∂i ) + R(∇∂i ∂ j , ∂1)

= ∂1Ri j − h′

h
R(∂ j , ∂i ) − hh′R(∂1, ∂1)g̃(∂i , ∂ j )

= −g̃i j∂1(h
′′h + 2h′2) − h′

h

[
−g̃i j

(
hh′′ + 2h′2) + Rg̃

i j

]
− hh′R11g̃i j .

As R depends only on s, so does ∂1R = ∂R
∂s . Therefore, we get R

g̃
i j = H(s) · g̃i j

for a function H(s) of s only. So, g̃ is a 3-dimensional Einstein metric. ��
For the metric in (32), h and f satisfy the following equations from ∇∇ f + Rc =

λg:

f ′′ − 3
h′′

h
= λ, (34)

h′

h
f ′ + 2k

h2
− h′′

h
− 2

(h′)2

h2
= λ. (35)

123



4-d Gradient Ricci Solitons with Harmonic Weyl Curvature... 1009

Remark 7.2 If all λi ’s, i = 1, . . . , 4, are equal, then the metric is Einstein. And if f
is not constant, then the conclusion of Proposition 7.1 still holds. In fact, from Sect. 1
of [11], the Einstein metric g becomes locally of the form g = ds2 + ( f ′(s))2g̃ where
g̃ has constant curvature. Then, the soliton can be seen to be either Gaussian or a flat
metric with ∇d f = 0; see also Proposition 2 of [28].

8 Classification of Gradient Ricci Solitons with Harmonic Weyl
Curvature

We are going to combine Propositions 3.4, 6.5 and 7.1 to prove Theorem 1.1 after we
settle the next lemma:

Lemma 8.1 No two of the local four types of solitons (i)–(iv) in the statement of
Theorem 1.1 can exist on a connected soliton.

Proof When the real analytic function f is constant in an open subset, then it is
constant on M as M is connected. So, if a soliton is the type (i) in an open subset, it
will be so on M .

If g is a locally conformally flat metric on an open subset U with non-constant f ,
then |W |2 = 0 on U and the real analytic function |W |2 = 0 everywhere on M . So, g
is locally conformally flat on M and f is nowhere constant on M . The types (ii) and
(iii) do not satisfy |W |2 = 0.

If g is isometric, on an open subset V , to a domain in R2 × Nλ, then R = 2λ on V
and by real analyticity R = 2λ on M . But if g is isometric, on another open subsetW ,

to the metric ds2 + s
2
3 dt2 + s

4
3 g̃, then the scalar curvature R = − 4

9s2
is not locally

constant. This proves the lemma. ��
Proof of Theorem 1.1 Due to Lemma 8.1 wemay consider only one type on M . When
f is constant, it corresponds to the type (i).
So, suppose that f is not constant. Note that the statement (iv) holds by Proposition

7.1 and Remark 7.2. We denote the open dense subset MA ∩ {∇ f �= 0} by K . If
K = M , then the statements for (ii) and (iii) also hold from Proposition 6.5..

For the rest of proof we assume that there is a point p0 ∈ M\K .
When (K , g) is of the type (ii), (K , g) is locally isometric to R

2 × Nλ, where
the Ricci tensor is parallel. As K is dense in M , the Ricci tensor is parallel near p0
with eigenvalues λ and 0 of both multiplicity two by continuity. We can decompose
the tangent bundle over a neighborhood of p0: T M = η1 ⊕ η2, where η1, η2 are 2-
dimensional parallel distributions with Rc|η1 = λ ·Id and Rc|η2 = 0 ·Id. By de Rham’s
decomposition theorem [27, Sect. 8.3.1], p0 has an open ball B ⊂ M with p0 as the
center, where B is isometric to (to be identified with) a ball in R

2 × Nλ. Now we
can just solve for f from the gradient soliton equation ∇d f = −Rc + λg to get:
f = λs2

2 + C where s(·) := dR2(p0, ·) is the Euclidean distance function from p0.
So, a neighborhood of p0 is of type (ii).

Suppose that (K , g) is of the type (iii). Let γ1 : [0, 1] → M be a smooth path with
γ1(0) = p0 and γ1(1) ∈ K . Let c ∈ [0, 1) be the largest element in {t ∈ [0, 1) | γ1(t) ∈
M\K }. Define γ to be the restriction of γ1 on [c, 1]. Set p := γ (c) which is in M\K .
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Then γ ((c, 1]) ⊂ K . Near any point q ∈ γ ((c, 1]), by Proposition 6.5 we have local
coordinates neighborhood Bq ⊂ K with (sq , t, x3, x4) in which f = 2

3 ln(sq) + Cq

with the function sq and constant Cq depending on q. In a neighborhood Br ⊂ K of
another point r ∈ γ ((c, 1]), we have a similar expression of f = 2

3 ln(sr ) +Cr . On a
possible overlap region Bq ∩Br , 23 ln(sq)+Cq = 2

3 ln(sr )+Cr . By taking its gradient,

we have ∇sq
sq

= ∇sr
sr

. As ∇sq = ∇ f
|∇ f | = ∇sr , we get sq = sr and then Cq = Cr .

We may set s := sq and C := Cq which are independent of q and f = 2
3 ln(s)+C

near γ ((c, 1]). As |∇s| ≡ 1, the oscillation of s along γ is less than or equal to the
length of γ , which is finite. So, |∇ f | = 2

3s cannot be zero at p. From Lemma 6.3,
the Ricci-eigenfunctions of g are λ1 = 2

3s2
, λ2 = − 2

9s2
, λ3 = λ4 = − 4

9s2
. So, p shall

stay in MA by definition. Then p ∈ K . This contradiction implies that M\K is an
empty set.

Proposition 3.4 shows that there are no other types than (i)–(iv). This proves the
theorem. ��

We remark that the incomplete steady gradient soliton in Theorem 1.1 (iii) has
negative scalar curvature, in contrast to the fact that complete steady gradient solitons
should have nonnegative scalar curvature.

As a Corollary to Theorem 1.1, we state a classification of 4-dimensional complete
gradient Ricci solitons with harmonic Weyl curvature. The case Theorem 1.1 (iii) can
only yield an incomplete soliton. And for case (ii), when g is complete and locally
isometric to R

2 × Nλ, its universal cover is isometric to R
2 × Nλ.

Theorem 8.2 Let (M, g, f ) be a complete four-dimensional gradient Ricci soliton
∇d f = −Rc + λg with harmonic Weyl curvature. Then it is one of the following:

(i) g is an Einstein metric with f a constant function.
(ii) g is isometric to a finite quotient of R2 × Nλ where R2 has the Euclidean metric

and Nλ is a 2-dimensional Riemannian manifold of constant curvature λ �= 0.
And f = λ

2 |x |2 modulo a constant on the Euclidean factor.
(iii) g is locally conformally flat.

Complete locally conformally flat steady gradient Ricci solitons are classified to
be either flat or isometric to the Bryant soliton, in [6,10]. This result and Theorem
8.2 yield Theorem 1.2. We also understand better complete expanding gradient Ricci
solitons with harmonic Weyl curvature as in Theorem 1.3.

As mentioned in the Introduction, we can show the local classification of gradient
Ricci soliton with harmonic curvature as a corollary of Theorem 1.1.

Corollary 8.3 Let (M, g, f ) be a (not necessarily complete) four-dimensional gra-
dient Ricci soliton satisfying ∇d f = −Rc + λg with harmonic curvature. Then it is
locally one of the three types (i)–(iii) below; for each point p, there exists a neighbor-
hood V of p such that (V, g, f ) can be one of the following:

(i) g is an Einstein metric and f is constant.
(ii) g is isometric to a domain in R

2 × Nλ where R2 has the Euclidean metric and
Nλ is a 2-dimensional Riemannian manifold of constant curvature λ �= 0. And
f = λ

2 |x |2 modulo a constant on the Euclidean factor.
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(iii) g is isometric either to a domain in theGaussian soliton or to a domain inR×Mλ

with the product metric, where Mλ is a 3-dimensional Riemannian manifold of
constant curvature λ

2 �= 0, and f = λ
2 |x |2 modulo a constant on the Euclidean

factor.

Proof In this proof we do not rely on Theorem 1.2 of [28] as it works for a complete
soliton.

The soliton metric ds2 + s
2
3 dt2 + s

4
3 g̃ in Theorem 1.1 (iii) does not have constant

scalar curvature, so does not have harmonic curvature.
Note that the above (iii) should come from Theorem 1.1 (iv), in which the metric

is of the form g = ds2 + h(s)2g̃, where g̃ has constant curvature. Lemma 2.1 (ii)
gives R + |∇ f |2 − 2λ f = constant. We differentiate with the local variable s where
|∇ f | �= 0, and get 2 f ′ f ′′ = 2λ f ′ since R is constant. So, f ′′ = λ. From (34), h′′ = 0.
Either h = a or h = bs for constants a, b �= 0 after shifting s by a constant.

When h = a, from (35) we get k
a2

= λ
2 . We have g = ds2 + g̃ where g̃ has constant

curvature λ
2 . And we may set f = λ

2 s
2 +C by shifting s. As f is not constant, λ �= 0.

When h = bs, using (35) and f ′′ = λ we obtain that f ′ = λs and k = b2. We get
f = 1

2λs
2 + C so that λ �= 0. And g = ds2 + s2 g̃, where g̃ has constant curvature

+1. This yields the Gaussian soliton.
(As an alternative to settle (iii), Sect. 2.2 of [10] may be cited. But that section is

based on the existence of a self-similar solution, which exists if the soliton metric is
complete [33]. Here the metric may be incomplete.) ��
Remark 8.4 In Theorem 1.1 (iii) we got a four-dimensional incomplete soliton. One
may ask if there exist complete non-conformally flat gradient Ricci solitons of dimen-
sion ≥5 with harmonic Weyl curvature and λ ≤ 0.

There are a number of objects to study by extending our method; it would be inter-
esting to characterize the higher-dimensional gradient Ricci solitons with harmonic
Weyl curvature as well as other Ricci solitons. Of course, other geometric structures
than solitons can also be approached by the method here.

Remark 8.5 There is much literature on orbifolds in the theory of Ricci flow, for
instance, [16,23]. As our result is a local description, it is possible to state an orbifold
version of Theorem 8.2.

Remark 8.6 B.L. Chen proved a local version of a Hamilton–Ivey type estimate for
three dimensions in [12], which has been extended to the W = 0 case by Zhang [32].
From Theorem 1.1, one may ask if such a local version still holds when δW = 0.
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