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Abstract In this paper, we consider a proper modification f : M̃ → M between
complex manifolds, and study when a generalized p-Kähler property goes back from
M to M̃ . When f is the blow-up at a point, every generalized p-Kähler property is
conserved, while when f is the blow-up along a submanifold, the same is true for
p = 1. For p = n − 1, we prove that the class of compact generalized balanced
manifolds is closed with respect to modifications, and we show that the fundamental
forms can be chosen in the expected cohomology class.We also get some partial results
in the non-compact case; finally, we end the paper with some examples of generalized
p-Kähler manifolds.
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1 Introduction

Let M be a complex manifold of dimension n ≥ 2, let p be an integer, 1 ≤ p ≤ n −1.
We shall consider three families of maps, namely:

πO : M̃ → M , which is the blow-up of M at a point O;
π : M̃ → M , which is the blow-up of M along a submanifold Y ;
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f : M̃ → M , which is a proper modification of M with center Y and exceptional
set E .

We will study, in this context, when a generalized p-Kähler property (indicated as
“p-Kähler” property, see Definition 2.3) goes back from M to M̃ , or what kind of
weaker properties can be obtained. So we unify and generalize analogous results on
hermitian symplectic, SKT, balanced, strongly Gauduchon manifolds.

The obvious way is to start from a “p-Kähler” form� on M , and consider the pull-
back f ∗� on M̃ , which is “closed” because f is holomorphic; for the same reason,
we get f ∗� ≥ 0, and f ∗� > 0 on M̃ − E , since f |M̃−E : M̃ − E → M − Y is
biholomorphic.

Nevertheless, strict positivity is not preserved in general; for instance, if y ∈ Y ,
and F := f −1(y) is a fiber of dimension k, and ω > 0 is the (1, 1)-form of a Kähler
metric on M , it holds that

∫
F ( f ∗ω)k = 0.

The case when M is Kähler is well known: while π (and πO ) preserve the Kähler
property, so that M̃ isKähler too, the famous example ofHironaka (a compact threefold
X which is given by a modification of P3) shows that the Kähler property is not
preserved by modifications.

Hironaka’s example X is a Moishezon manifold: this proves that it is “2-Kähler”
(i.e., 2K, 2WK, 2S, 2PL; see Sect. 2) because it is balanced [5]; X is not 1K (nor 1WK,
1S, 1PL) since it contains a curve that bounds.

But in general, when we perform a modification of a “1-Kähler” manifold M , it is
not guaranteed that M̃ is regular (in the sense of Varouchas, see Subsection 7.4, i.e., a
manifold satisfying the ∂∂-Lemma). Moreover, it is well known that if M̃ satisfies the
∂∂-Lemma, so does M (see [11]); but it is not known yet if a modification of a regular
manifold is regular too: this fact sheds further light on the context of the question we
stated above.

The first result we get (Theorem 3.1) extends the very classical statement: The
blow-up at a point of a Kähler manifold is a Kähler manifold too. We prove, with
a unified proof, that the same also holds for hermitian symplectic, pluriclosed, SKT,
balanced, strongly Gauduchon, …manifolds: in general, for “p-Kähler” manifolds.
This result allows one to construct new examples of “p-Kähler” manifolds.

Next, in Theorem 3.2, we extend another classical result, that is: If Mis a Kähler
manifold, and M̃is obtained from Mblowing up a submanifold, then M̃is Kähler too.
We give a very short proof in the general case of “1-Kähler” manifolds, which includes
also pluriclosed (i.e., SKT) and hermitian symplectic manifolds. The analogous result
cannot hold in the generic “p-Kähler” case, as we prove by a suitable example.

As for compact “(n−1)-Kähler”manifolds, we complete the study of the invariance
of the property of being “balanced” with respect to modifications, initiated in [8] in
the classical case, and due to [25] in the sG case: in Theorem 4.1, we prove that a
modification M̃ of a compact “(n − 1)-Kähler” manifold M , is “(n − 1)-Kähler”, and
in Theorem 4.3 we prove that, when M̃ is “(n−1)-Kähler”, then M is “(n−1)-Kähler”
too. Next we give a partial result in the “p-Kähler” case.

Here the compactness hypothesis is needed to use the characterization of “p-
Kähler” manifolds by means of positive currents (see Theorem 2.4). But, owing to the
use of currents, we lose the link between metrics on M and M̃ : we recapture the link
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Modifications of Generalized p-Kähler Manifolds 949

(that is, f∗ω̃n−1 is cohomologous to ωn−1) in Proposition 5.1; this result is proved in
a more general setting in Theorem 5.2.

We look also for another kind of generalization of our main result in [7], i.e.,
A proper modification M̃of a compact balanced manifold Mis balanced. Indeed, we
consider non-compactmanifolds, but suppose that the centerY is compact. In this case,
we can consider the Bott–Chern and the Aeppli cohomologies with compact supports,
and use amodified version of the characterization theorem by positive currents; we can
prove (see Theorem 6.2) that, under mild cohomological hypotheses, if M is locally
balanced with respect to Y , then M̃ is locally balanced with respect to E .

We end the paper in Sect. 7 with some examples and some remarks on the “exact-
ness” of the “p-Kähler” form.

We would like to thank the referee for his valuable suggestions.

2 Preliminaries

Let X be a complex manifold of dimension n ≥ 2, let p be an integer, 1 ≤ p ≤ n − 1;
we refer to [20] (see also [1]) as regards notation and terminology. To define positivity
for forms and currents, let us start from a complex n-dimensional (Euclidean) vector
space E , its associated (Euclidean) vector spaces of (p, q)-forms �p,q(E∗), and a
(orthonormal) basis {ϕ1, . . . , ϕn} for E∗.

Let us denote ϕI := ϕi1 ∧ · · · ∧ ϕi p , where I = (i1, . . . , i p), σp := i p22−p and
�

p,p
R

(E∗) := {ψ ∈ �p,p(E∗)/ψ = ψ}. Let p + k = n.
We obviously get that {σpϕI ∧ϕI , |I | = p} is a (orthonormal) basis for �

p,p
R

(E∗),
and

dV =
(

i

2
ϕ1 ∧ ϕ1

)

∧ · · · ∧
(

i

2
ϕn ∧ ϕn

)

= σnϕI ∧ ϕI , I = (1, . . . , n)

is a volume form.

Definition 2.1 (1) An (n, n)-form τ is called positive (strictly positive) if τ = c dV
with c ≥ 0 (c > 0). We shall write τ ≥ 0 (τ > 0).

(2) η ∈ �p,0(E∗) is called simple (or decomposable) if and only if there are
{ψ1, . . . , ψp} ∈ E∗ such that η = ψ1 ∧ · · · ∧ ψp.

(3) � ∈ �
p,p
R

(E∗) is called strongly positive (� ∈ S P p) if and only if � =
σp

∑
j η j ∧ η j , with η j simple.

(4) � ∈ �
p,p
R

(E∗) is called weakly positive (� ∈ W P p) if and only if for all
ψ j ∈ E∗, and for all I = (i1, . . . , ik) with k + p = n, � ∧ σkψI ∧ ψI is a
positive (n, n)-form. It is called transverse when it is strictly weakly positive,
i.e., when � ∧ σkψI ∧ ψI is a strictly positive (n, n)-form for σkψI ∧ ψI �= 0
(i.e., ψi1 , . . . , ψik linearly independent).

Remark a) There is also an intermediate “natural” definition of positivity, given in
terms of eigenvalues, or as follows: “� ∈ �

p,p
R

(E∗) is positive (� ∈ P p) if and
only if for every η ∈ �k,0(E∗), (k+ p = n),�∧σkη∧η is a positive (n, n)-form.”
(see [20], Theorem 1.2).
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b) Positive forms (as in (a)) are not considered either by Lelong [22] or by Demailly
[12]; both of them call positive forms (this is the “classical sense”) what we call
weakly positive forms. The strongly positive forms are called decomposable by
Lelong.

c) The sets P p, S P p, W P p and their interior parts are indeed convex cones; more-
over, there are obvious inclusions:

S P p ⊆ P p ⊆ W P p ⊆ �
p,p
R

, (S P p)int ⊆ (P p)int ⊆ (W P p)int .

d) When p = 1 or p = n − 1, the three cones coincide, since every (1, 0)-form is
simple (and hence also every (n − 1, 0)-form is simple).

e) In the intermediate cases, 1 < p < n − 1, the inclusions are strict: indeed, if
{ϕ1, . . . , ϕ4} is a basis for �1,0(C4), then it is easy to prove that ϕ1 ∧ϕ2 +ϕ3 ∧ϕ4
is not a simple (2, 0)-form; moreover, inCn , (ϕ1∧ϕ2+ϕ3∧ϕ4)∧ϕ5∧· · ·∧ϕp+2
is not a simple (p, 0)-form, for p > 2.
ByProposition1.5 in [20], this implies that (ϕ1∧ϕ2+ϕ3∧ϕ4)∧(ϕ1 ∧ ϕ2 + ϕ3 ∧ ϕ4)

is a positive (2, 2)-form which is not strongly positive.
Moreover, the authors exhibit a (p, p)-form which is in the interior of the cone
W P p, but has a negative eigenvalue, so it does not belong to the cone P p.

f) Duality. Using the volume form dV , for p + k = n we get the pairing

f : �p,p(E∗) × �k,k(E∗) → C

given by f (�,�)dV = � ∧ �. So it is not hard to prove that:

� ∈ S P p ⇐⇒ ∀ � ∈ W Pk,� ∧ � ≥ 0,

� ∈ P p ⇐⇒ ∀ � ∈ Pk,� ∧ � ≥ 0.

g) Consider �p,q(E), the space of (p, q)-vectors: as before, X ∈ �p,0(E) is called
a simple vector if X = v1 ∧ · · · ∧ vp for some v j ∈ E ; in this case, when X �= 0,
σ−1

p X ∧ X is called a strictly strongly positive (p, p)-vector.

Claim � ∈ �
p,p
R

(E∗) is transverse if and only if �(σ−1
p X ∧ X) > 0 for every

X ∈ �p,0(E), X �= 0 and simple.

Proof of the claim Using the pairing described above, we get an isomorphism g :
�p,p(E) → �k,k(E∗) given as f (�, g(A)) = �(A), i.e.,

f (�, g(A))dV = � ∧ g(A) := �(A)dV, ∀A ∈ �p,p(E),∀� ∈ �p,p(E∗).

If {e1, . . . , en} denotes the dual basis of {ϕ1, . . . , ϕn}, it is not hard to check that for
all I = (i1, . . . , i p), g(σ−1

p eI ∧ eI ) = σkϕJ ∧ ϕJ with J = {1, . . . , n} − I .

Thus the isomorphism g transforms (p, p)-vectors of the form σ−1
p X ∧ X , with X

simple (i.e., strongly positive vectors), into strongly positive (k, k)-forms (of the form
σkη j ∧ η j , with η j simple). Hence we get
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Modifications of Generalized p-Kähler Manifolds 951

�
(
σ−1

p X ∧ X
)

dV = � ∧ g
(
σ−1

p X ∧ X
)

= � ∧ σkη ∧ η

and the claim follows.

Let us go back to manifolds: we denote by D p,p(X)R the space of compactly
supported real (p, p)-forms on X and by E p,p(X)R the space of real (p, p)-forms on
X .

Their dual spaces are: D′
p,p(X)R (also denoted by D′k,k

(X)R, where p + k = n),
the space of real currents of bidimension (p, p) or bidegree (k, k), which we call
(k, k)-currents, and E ′

p,p(X)R (also denoted by E ′k,k
(X)R), the space of compactly

supported real (k, k)-currents on X .
We shall denote by [Y ] the current given by the integration on the irreducible

analytic subset Y .
We shall define weakly positive, positive, strongly positive currents (see, for

instance, [20]). For simplicity, let N be a compact n-dimensional manifold, and
1 ≤ p ≤ n − 1. ��
Definition 2.2 (1) � ∈ E p,p(N )R is called strongly positive (resp., positive, weakly

positive, transverse or strictly weakly positive) if ∀ x ∈ N , �x ∈ S P p(T ′
x N∗)

(resp., P p(T ′
x N∗), W P p(T ′

x N∗), (W P p(T ′
x N∗))int ).

These spaces of forms are denotedby S P p(N ), P p(N ),W P p(N ), (W P p(N ))int .
(2) Let T ∈ D′

p,p(N )R be a current of bidimension (p, p) on N . Then we have:
weakly positive currents: T ∈ W Pp(N ) ⇐⇒ T (�) ≥ 0 ∀ � ∈ S P p(N ).
positive currents: T ∈ Pp(N ) ⇐⇒ T (�) ≥ 0 ∀ � ∈ P p(N ).
strongly positive currents: T ∈ S Pp(N ) ⇐⇒ T (�) ≥ 0 ∀ � ∈ W P p(N ).

Notation � ≥ 0 denotes that� isweakly positive;� > 0 denotes that� is transverse;
T ≥ 0 means that T is strongly positive. Thus:

Claim � > 0 if and only if T (�) > 0 for every T ≥ 0, T �= 0.

Remark There are obvious inclusions between the previous cones of currents, that is,
S Pp(N ) ⊆ Pp(N ) ⊆ W Pp(N ). Demailly ([12], Definition III.1.13) does not consider
Pp(N ), and indicates W Pp(N ) as the cone of positive currents; there is no uniformity
of notation in the papers of Alessandrini and Bassanelli.

Moreover, let us recall that, if f is a holomorphic map, and T ≥ 0, then f∗T ≥ 0.

We shall need the De Rham cohomology, and also the Bott–Chern and the Aeppli
cohomologies (the notation is not standard, so that we recall them below): they can
be described using forms or currents of the same bidegree:

Hk,k
d R (X,R) := {ϕ ∈ Ek,k(X)R; dϕ = 0}

{dψ;ψ ∈ E2k−1(X)R} � {T ∈ D′k,k
(X)R; dT = 0}

{d S; S ∈ D′2k−1(X)R}
Hk,k

∂∂
(X,R) = �

k,k
R

(X) = Hk,k
BC (X,R) := {ϕ ∈ Ek,k(X)R; dϕ = 0}

{i∂∂ψ;ψ ∈ Ek−1,k−1(X)R} �

� {T ∈ D′k,k
(X)R; dT = 0}

{i∂∂ A; A ∈ D′k−1,k−1(X)R}
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952 L. Alessandrini

Hk,k
∂+∂

(X,R) = V k,k
R

(X) = Hk,k
A (X,R) := {ϕ ∈ Ek,k(X)R; i∂∂ϕ = 0}

{ϕ = ∂η + ∂η; η ∈ Ek,k−1(X)} �

� {T ∈ D′k,k
(X)R; i∂∂T = 0}

{∂S + ∂S; S ∈ D′k,k−1(X)} .

In general, when the class of a current vanishes in one of the previous cohomology
groups, we say that the current “bounds” or is “exact”.

We collect what we called in the Introduction “p-Kähler” properties in the fol-
lowing definition (see [1], and also the next Remarks).

Definition 2.3 Let X be a complex manifold of dimension n ≥ 2, let p be an integer,
1 ≤ p ≤ n − 1.

(1) X is a p-Kähler (pK) manifold if it has a closed transverse (p, p)-form �.
(2) X is a weakly p-Kähler (pWK) manifold if it has a transverse (p, p)-form �

with ∂� = ∂∂α for some form α.
(3) X is a p-symplectic (pS) manifold if it has a closed transverse real 2p-form �;

that is, d� = 0 and � := � p,p (the (p, p)-component of �) is transverse.
(4) X is a p-pluriclosed (pPL) manifold if it has a transverse (p, p)-form � with

∂∂� = 0.

Notice that: pK �⇒ pW K �⇒ pS �⇒ pP L; as regards examples and differ-
ences under these classes of manifolds, see [1].

When X satisfies one of these definitions, in the rest of the paper we will call it
generically a “p-Kähler” manifold; the form �, called a “p-Kähler” form, is said
to be “closed”. This may be a little bit worrying to read, but the benefit is that we do
not write a lot of similar proofs.

Remark For p = 1, a transverse form is the fundamental form of a hermitian metric,
so that we can consider 1-Kähler (i.e., Kähler), weakly 1-Kähler, 1-symplectic, 1-
pluriclosed metrics. 1-symplectic manifolds are also called hermitian symplectic [27].

In [13], pluriclosed (i.e., 1-pluriclosed) metrics are defined (see also [27]), while in
[14] a 1PL metric (manifold) is called a strong Kähler metric (manifold) with torsion
(SKT).

For p = n−1,we get a hermitianmetric too, because every transverse (n−1, n−1)-
form � is in fact given by � = ωn−1, where ω is a transverse (1, 1)-form (see, for
instance, [23], p. 279). This case was studied by Michelsohn in [23], where (n − 1)-
Kähler manifolds are called balanced manifolds.

Moreover, (n − 1)-symplectic manifolds are called strongly Gauduchon manifolds
(sG) by Popovici (compareDefinition 2.3 (3) andTheorem2.4 (3)with [24], Definition
4.1 and Propositions 4.2 and 4.3; see also [25]), while (n − 1)-pluriclosed metrics are
called standard or Gauduchon metrics. Recently, weakly (n − 1)-Kähler manifolds
have been called superstrong Gauduchon (super sG) [26].

In the case of a compact manifold N , we got the following characterization (see
[1], Theorems 2.1, 2.2, 2.3, 2.4)
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Modifications of Generalized p-Kähler Manifolds 953

Theorem 2.4 (1) Characterization of compact p-Kähler (pK) manifolds.
N has a strictly weakly positive (i.e., transverse) (p, p)-form � with ∂� = 0,
if and only if N has no strongly positive currents T �= 0, of bidimension (p, p),
such that T = ∂S + ∂S for some current S of bidimension (p, p + 1) (i.e., T
“bounds” in Hk,k

∂+∂
(N ), i.e., T is the (p, p)-component of a boundary).

(2) Characterization of compact weakly p-Kähler (pWK) manifolds.
N has a strictly weakly positive (p, p)-form � with ∂� = ∂∂α for some form α,
if and only if N has no strongly positive currents T �= 0, of bidimension (p, p),
such that T = ∂S+∂S for some current S of bidimension (p, p+1) with ∂∂S = 0
(i.e., T is closed and “bounds” in Hk,k

∂+∂
(N )).

(3) Characterization of compact p-symplectic (pS) manifolds.
N has a real 2p-form � = ∑

a+b=2p �a,b, such that d� = 0 and the (p, p)-
form � := � p,p is strictly weakly positive, if and only if N has no strongly
positive currents T �= 0, of bidimension (p, p), such that T = d S for some
current S (i.e., T is a boundary with respect to the De Rham cohomology).

(4) Characterization of compact p-pluriclosed (pPL) manifolds.
N has a strictly weakly positive (p, p)-form � with ∂∂� = 0, if and only if N has
no strongly positive currents T �= 0, of bidimension (p, p), such that T = i∂∂ A
for some current A of bidimension (p +1, p +1) (i.e., T “bounds” in Hk,k

∂∂
(N )).

Remark Every compact complex manifold supports Gauduchon metrics, that is, is
(n − 1)PL: in fact, by Theorem 2.4 (4), if T is a strongly positive (1, 1)-current, such
that T = i∂∂ A, A turns out to be a plurisubharmonic function; but N is compact, so
that A is constant, and T = 0.

Lastly, let us recall a Support Theorem,whichwe shall frequently use for p = n−1.

Theorem 2.5 (see [6],Theorem 1.5) Let X be an n-dimensional complex manifold,
E a compact analytic subset of X; call {E j } the irreducible components of E of
dimension p. Let T be a weakly positive ∂∂-closed current of bidimension (p, p) on
X such that supp T ⊆ E. Then there exist c j ≥ 0 such that S := T − ∑

j c j [E j ]
is a weakly positive ∂∂-closed current of bidimension (p, p) on X, supported on the
union of the irreducible components of E of dimension bigger than p.

3 Blow-up of Manifolds

Let M be a connected complex manifold, with n = dim M ≥ 2, let p be an integer,
1 ≤ p ≤ n − 1. As stated in the Introduction, we shall consider three kinds of proper
modifications:

πO : M̃ → M , which is the blow-up of M at a point O;
π : M̃ → M , which is the blow-up of M along a compact submanifold Y ;
and an arbitrary proper modification of M with compact center Y , f : M̃ → M .
Recall that a complex manifold M̃ together with a proper holomorphic map f :

M̃ → M is called a (smooth) proper modification of M if there is a thin set Y in M
such that f −1(Y ) is thin in M̃ , and the restricted map f from M̃ − f −1(Y ) to M − Y
is biholomorphic.
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Grauert and Remmert (see [17], pp. 214–215) proved among other things that Y
can be chosen as an analytic subset of codimension ≥ 2 such that E := f −1(Y ) is
an analytic subset of pure codimension one in M̃ , called the exceptional set of the
modification.

We will study, in this context, when a “p-Kähler” property goes back from M to
M̃ . The problem is completely solved for πO by Theorem 3.1, for which we give a
proof by direct computation, which unifies all “p-Kähler” cases, some of which are
well known when p = 1.

Theorem 3.1 Let πO : M̃ → M be the blow-up of M at a point O; for every
p, 1 ≤ p ≤ n − 1, whenever M is “p-Kähler”, M̃ is also “p-Kähler”.

Proof First of all, let us recall the classical proof for Kähler manifolds. Let us choose
coordinates {z j } around O ∈ M , such that on U2ε := {||z|| < 2ε} and Ũ2ε :=
π−1

O (U2ε), πO is nothing but the blow-up of Cn at 0, with exceptional set E :=
π−1

O (O) � Pn−1.
With obvious notation, consider a cut-off function χ ∈ C∞

0 (U2ε), χ = 1 on Uε ,
and put, for x ∈ Ũ2ε ,

θ̃x := i∂∂(χ(πO(x))log||x ||2),

where i∂∂(log||x ||2) is just the pull-back of the Fubini–Study (1, 1)-form on Pn−1
under the map j : Ũ2ε → Pn−1 which is the identity on Pn−1 and maps every
x ∈ Ũ2ε − Pn−1 to the line [x] ∈ Pn−1 that passes through x (see [18], p. 186).

The form θ̃ turns out to be a global closed real (1, 1)-form, with supp θ̃ ⊂ Ũ2ε ;
moreover, θ̃ ≥ 0 on Ũε . For x ∈ E , θ̃x (σ

−1
1 v ∧ v) > 0 only on vectors v ∈ T ′

x E : that
is, θ̃ is not strictly positive on E .

Nevertheless, starting from a Kähler form � on M , we can consider π∗
O� which

is a closed real (1, 1)-form on M̃ , with π∗
O� ≥ 0 and (π∗

O�)x (σ
−1
1 v ∧ v) > 0 when

x ∈ E and v ∈ T ′
x M̃ is orthogonal to T ′

x E .
Moreover, for x in the closure of Ũ2ε −Ũε , the values of (π∗

O�)x on strictly strongly
positive (1, 1)-vectors σ−1

1 v ∧ v have a positive lower bound. Hence there is a c > 0
such that �̃ := π∗

O� + cθ̃ is a Kähler form for M̃ .
Notice that this proof (the classical one) also works for “1-Kähler” manifolds;

indeed, the summand cθ̃ is d-closed, and hence also “closed” (see Definition 2.3).
On the contrary, in the generic “p-Kähler” case, starting from a “p-Kähler” form

� on M , �̃ := π∗
O� + cθ̃ p is not strictly weakly positive on E , because when p > 1,

in a p-vector X = v1 ∧ · · · ∧ vp it is possible to have, for instance, v1 ∈ (T ′
x E)⊥,

v2, . . . , vp ∈ T ′
x E , so that both summands vanish on the strictly strongly positive

(p, p)-vector σ−1
p X ∧ X .

When p > 1, we can argue as follows. Let us consider the standard Kähler form
on U2ε , i.e.,

ω = i∂∂||z||2 = i

2

∑

j

dz j ∧ dz j .
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Put � := π∗
Oω ∧ θ̃ p−1 + θ̃ p.

Claim The form � is a closed real (p, p)-form on M̃, with supp � ⊂ Ũ2ε; moreover,
� ≥ 0 on Ũε and � > 0 on E.

This is a local construction, based only on the geometry of the blow-up πO .
Now, let � be a “p-Kähler” form for M ; the following claim is clear.

Claim π∗
O� is a “closed” real (p, p)-form on M̃, with π∗

O� ≥ 0; moreover, for x
in the closure of Ũ2ε − Ũε , the values of (π∗

O�)x on strictly strongly positive (p, p)-
vectors have a positive lower bound.

Hence, there is a c > 0 such that �̃ := π∗
O� + c� is a “closed” transverse (p, p)-

form on M̃ , that is, a “p-Kähler” form for M̃ . ��
The case 1PL (where �̃ is simply π∗

O� + cθ̃ ) was proved in [14], 3.1. The authors
also proved, using a similar technique, the persistence of the 1PL property for a blow-
up π along a submanifold, as in the classical 1K case (3.2 ibid.). Let us give here
a simpler proof, which includes all “1-Kähler” cases, by using the fact that π is a
projective morphism.

Recall that a blow-up is a projective morphism, hence it is a Kähler morphism (in
the sense of [16], Definition 4.1; recall also [31], pp. 23–24); this means that there is
an open covering {U j } of M̃ , and, for every j , smooth functions p j : U j → C such
that:

∀y ∈ M , the restriction of p j to U j ∩ π−1(y) is strictly plurisubharmonic, and
p j − pk is pluriharmonic on U j ∩ Uk .
This gives a relative Kähler form β̃ for π , that is, β̃ := i∂∂ p j on U j gives a

globally defined real closed (1, 1)-form, strictly positive on the fibers (but notice that
the (1, 1)-form β̃ may not be ≥0 in all directions).

Theorem 3.2 Let π : M̃ → M be the blow-up of M along a compact submanifold
Y ⊂ M; if M is “1-Kähler”, then M̃ is “1-Kähler” too.

Proof Following [16], Lemma 4.4, choose a “1-Kähler” form ω for M ; since Y is
compact, there is a constant C > 0 such that ω̃ := β̃ + Cπ∗ω > 0; since β̃ is
d-closed, ω̃ turns out to be “closed”. ��
Remark Example 7.3 in Sect. 7 proves that Theorem 3.2 cannot hold for a generic
p > 1; the case p = n − 1 is discussed in the next section, for compact manifolds,
and in Sect. 6 for non-compact manifolds.

4 Modifications of Compact Manifolds

While we cannot use the previous proof in the case p > 1, nor one similar to that of
Theorem 3.1, on compact manifolds we can also solve the case p = n −1 for arbitrary
modifications, as done in [6], Theorem 2.4 in case K and in [25] in case S. In fact,
following Theorem 2.4, we will not construct “closed” transverse forms, but we will
prove that “exact” strongly positive currents must vanish.
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Theorem 4.1 Let M, M̃ be compact n-dimensional manifolds, let f : M̃ → M be a
modification with center Y (an analytic subset of codimension ≥ 2) and exceptional
set E (whose (n −1)-dimensional irreducible components are {E j }). If M is “(n −1)-
Kähler”, then M̃ is “(n − 1)-Kähler” too.

Proof Notice that every compact complex n-dimensional manifold is (n − 1)P L , as
we pointed out in Sect. 2.

Let T ≥ 0 be an “exact” (1, 1)-current on M̃ , as stated in the Characterization
Theorem 2.4. Since f∗T has the same properties on M , we get f∗T = 0, which
implies that supp T ⊆ E , because f |M̃−E is a biholomorphism. More precisely,
T = ∑

c j [E j ], c j ≥ 0, by the Support Theorem 2.5. Therefore T = 0 by the
following proposition (which is more general, since the current is not supposed to be
positive and M, M̃ are not compact). ��
Proposition 4.2 Let M, M̃ be n-dimensional manifolds, let f : M̃ → M be a proper
modification with compact center Y ⊂ M (an analytic subset of codimension ≥ 2)
and exceptional set E (whose (n − 1)-dimensional irreducible components are {E j }).
Let R = ∑

c j [E j ], c j ∈ R; R is a closed real (1, 1)-current on M̃. The following
statements are equivalent:

(1) R is the component of a boundary, i.e., its class vanishes in H1,1
∂+∂

(M̃);

(2) R is a boundary, i.e., its class vanishes in H1,1
d R (M̃,R);

(3) R is ∂∂-exact, i.e., its class vanishes in H1,1
∂∂

(M̃);
(4) c j = 0 ∀ j , i.e., R = 0.

Proof The implications (4) ⇒ (3) ⇒ (2) ⇒ (1) are obvious.
(1) ⇒ (2): see Lemma 8 in [4], where the hypothesis is: R is a closed (1, 1)-current

on M̃ such that f∗ R = 0 (notice that if R = ∑
c j [E j ], c j ∈ R, then f∗ R = 0, because

codimY ≥ 2). We recall here the proof.
Let R = ∂S + ∂S for some (1, 0)-current S; since R is closed, we get ∂∂S = 0.

Consider ∂S: it is a ∂-closed (2, 0)-current, hence it is a holomorphic 2-form on M̃ ;
the same holds for ∂( f∗S) on M .

Since ∂( f∗S) is smooth and ∂-exact, we can find a (1, 0)-form ϕ and a distribution
t = a + ib on M such that f∗S = ϕ + ∂t = ϕ + ∂a + i∂b.

The explanation is the following (see Sect. 2): consider the isomorphism j (induced
by the identity) between smooth and non-smooth (i.e., involving currents) coho-
mology: for instance, j maps the class [γ ] of a smooth ∂-closed (2, 0)-form γ in
the cohomology space H2,0

∂ (M), to the class {γ }, in the cohomology space of cur-

rents (denoted for the moment by K 2,0
∂ (M)). Call α the holomorphic 2-form ∂( f∗S)

on M . Since ∂α = 0, [α] ∈ H2,0
∂ (M); but by definition, {α} = 0 ∈ K 2,0

∂ (M),

thus 0 = [α] ∈ H2,0
∂ (M), so that α = ∂μ for some smooth 1-form μ. Therefore

∂( f∗S − μ) = 0, hence { f∗S − μ} ∈ K 1,0
∂ (M) � H1,0

∂ (M), that is, there is a
smooth form ν such that { f∗S − μ} = {ν}, i.e., there is a distribution t such that
f∗S − μ = ν + ∂t , as stated.
Now we use f∗ R = 0 as follows:

0 = f∗(∂S + ∂S) = ∂(ϕ + ∂a − i∂b) + ∂(ϕ + ∂a + i∂b) = ∂ϕ + ∂ϕ − 2i∂∂b.

123



Modifications of Generalized p-Kähler Manifolds 957

Thus ∂∂b is smooth, hence also b is smooth, and we can pull it back to M̃ .
Define s := S − f ∗(ϕ + i∂b); we get

∂s + ∂s = ∂(S − f ∗(ϕ + i∂b)) + ∂(S − f ∗(ϕ − i∂b)) =
∂S + ∂S − f ∗(∂ϕ − i∂∂b) − f ∗(∂ϕ − i∂∂b)) =
R − f ∗(∂ϕ + ∂ϕ − 2i∂∂b) = R;

moreover,

∂s = ∂S − ∂ f ∗ϕ = ∂S − f ∗(∂( f∗S));

both summands are holomorphic 2-forms on M̃ , and they coincide outside the excep-
tional set E : therefore they coincide, hence ∂s = 0. Thus R = d(s + s) is a boundary.

(2) ⇒ (3): Let R = d Q = ∂S+∂S, for a real 1-current Q = Q0,1+ Q1,0 = S+S,
where S is a ∂-closed (1, 0)-current. As before, 0 = f∗ R = d( f∗Q), so that we can
choose a smooth representative of the cohomology class of the d-closed 1-current
f∗Q on M ; that is, f∗Q = ϕ + da, where ϕ is a smooth closed 1-form and a is a
distribution on M .

Let q := Q − f ∗ϕ; it holds that

dq = d Q − f ∗dϕ = d Q = R

and, as regards the (0, 1)-part,

f∗q0,1 = f∗
(

Q0,1 − f ∗ϕ0,1
)

= f∗Q0,1 − ϕ0,1 = ∂a.

Since R is a (1, 1)-current, ∂q0,1 = 0, so it represents a class in H0,1
∂

(M̃) �
H0,1

∂
(M) (a classical result), but this class vanishes in M , because f∗q0,1 = ∂a; thus

it vanishes in M̃ , i.e., q0,1 = ∂b.
Hence

R = dq = ∂q0,1 + ∂q0,1 = ∂∂(b − b).

(3) ⇒ (4): Suppose R = i∂∂a: since f∗ R = 0, f∗a is pluriharmonic on M (there
is a smooth pluriharmonic function h such that f∗a = h a.e.). Hence f ∗h = h ◦ f is
pluriharmonic on M̃ , so that R = i∂∂(a − f ∗h), where the distribution a − f ∗h is
supported on E , because f |M̃−E is a biholomorphism.

Let x be a smooth point, x ∈ E (as a matter of fact, x ∈ Ek for some k);
choose a neighborhood U of x with coordinates {w j } such that, in U , R = ck[Ek] =
ickπ

−1∂∂log||wn||; thus in U the distribution

ickπ
−1log||wn|| − (a − f ∗h)
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is pluriharmonic, hence smooth. This implies that a − f ∗h, which is a distribution
supported on E , vanishes in U . We conclude in this manner that R = ∑

c j [E j ] =
i∂∂(a − f ∗h) = 0. ��

More than that, we can prove that the class of compact “(n − 1)-Kähler” manifolds
is closed with respect to modifications.

Theorem 4.3 Let M, M̃ be compact n-dimensional manifolds, let f : M̃ → M be a
modification. If M̃ is “(n − 1)-Kähler”, then M is “(n − 1)-Kähler” too.

Proof The case (n − 1)P L is obvious. The case (n − 1)K is proved in [8], the case
(n − 1)S is proved by Popovici in [25]; the proofs are similar, nevertheless, as the
author says in the Introduction, the arguments are considerably simplified by the fact
that one can handle the “pull-back” of d-closed positive (1, 1)-currents by their local
potentials. Let us consider here the WK-case, to complete the proof of the theorem.

Take a (1, 1)-current T ≥ 0 on M , such that dT = 0 and T = ∂S + ∂S. Consider
the following result:

Theorem 4.4 (Theorem 3 in [8]) Let M, M̃ be complex manifolds, and let f : M̃ →
M be a proper modification. Let T be a positive ∂∂-closed (1, 1)-current on M. Then
there is a unique positive ∂∂-closed (1, 1)-current T̃ on M̃ such that f∗T̃ = T and
T̃ ∈ f ∗{T } ∈ H1,1

∂+∂
(M̃,R).

Looking carefully through the details of the proof (see also Theorem 3.9 and Propo-
sition 3.10 in [7]), it is not hard to notice that, when T is d-closed, T̃ becomes d-closed
too (in the estimates, this is the “classical case”).

Thus, in our situation, T̃ is a closed positive (1, 1)-current on M̃ such that T̃ ∈
f ∗{T } = 0 ∈ H1,1

∂+∂
(M̃,R): this means that T̃ = ∂s + ∂s = 0, since M̃ is “(n − 1)-

Kähler”.
Therefore T = f∗T̃ = 0. ��
Example 7.3 shows that similar results cannot hold for a generic p, also when the

exceptional set E ⊂ M̃ is supposed to be pK as the manifold M , and the modification
is simply a blow-up. Hence, to study when a generalized p-Kähler property goes back
from M to M̃ , we must add some hypothesis on E , as in the following result.

Since we shall use only here forms and currents on a (singular) analytic subset (that
is, the exceptional set E), we refer to [10], pp. 575–577 for definitions and details;
here, for a (p, p)-form �̃ on M̃ , we indicate by i∗E �̃ > 0 the fact that, for every
strongly positive current t �= 0 on E , it holds that ((iE )∗t, �̃) > 0.

Proposition 4.5 Let M, M̃ be compact n-dimensional manifolds, let f : M̃ → M
be a modification with center Y ⊂ M and exceptional set E (call iE : E → M̃ the
inclusion); let 1 ≤ p < n −1 and suppose M is “p-Kähler”. If there is a (p, p)-form
�̃ on M̃ such that i∗E �̃ > 0 and f∗(d�̃) (or f∗(i∂∂�̃) in case PL) is a smooth form,
then M̃ is “p-Kähler” too.
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Proof LetT ≥ 0, T �= 0, be an “exact” current of bidimension (p, p)on M̃ . Since f∗T
has the same properties on M , we get f∗T = 0, which implies that supp T ⊆ E . By
Theorem 1.24 in [10], there is a strongly positive current t on E such that T = (iE )∗t ;
thus (T, �̃) = ((iE )∗t, �̃) > 0, when t �= 0.

Arguing as in Proposition 4.2, since f∗(d�̃) is smooth and exact, we have a (p, p)-
form � on M such that f∗(d�̃) = d�; moreover, f ∗(d�) = f ∗( f∗(d�̃)) = d�̃,
since they are smooth forms, which coincide on M̃ − E . Therefore, when T = d S,
we get a contradiction:

(T, �̃) = (d S, �̃) = (S, d�̃) = (S, f ∗(d�)) = (d S, f ∗�) = ( f∗T, �) = 0.

When T = ∂S+∂S, the proof is similar, since by dimensional reasons, (∂S+∂S, �̃) =
(d(S + S), �̃).

In the pPL case, we have only to replace the operator d by the operator ∂∂ . ��

5 Link Between “ p-Kähler” Forms on M and M̃

Notice that, using currents, in Theorem 4.1 we lose the connection between metrics
on M and M̃ : nevertheless, we can prove the following link:

Proposition 5.1 Let M, M̃ be compact n-dimensional manifolds, let f : M̃ → M be
a modification. For every “(n − 1)-Kähler” metric h with form ω on M, there is an
“(n − 1)-Kähler” metric h̃ with form ω̃ on M̃ such that ωn−1 and f∗ω̃n−1 are in the
same (relevant) cohomology class.

In the case K, this is Corollary 4.9 in [7]; we consider here a more general context,
namely, that of “p-Kähler” manifolds with p > dimY , not necessarily compact.

Theorem 5.2 Let f : M̃ → M be a proper modification with a compact center
Y ⊂ M and exceptional set E. Suppose M̃ and M are “p-Kähler” manifolds, with
p > dimY , having “p-Kähler” forms �̃ and �. Then there is a “p-Kähler” form �

on M̃ such that f∗� is “cohomologous” to �.

Here f∗� is “cohomologous” to � means: { f∗�} = {�} ∈ H p,p
∂∂

(M) in the case

K, { f∗�} = {�} ∈ H p,p
∂+∂

(M) in the cases WK, S, PL. The case pK , with M and M̃
compact manifolds, is proved in [7], Theorem 4.8; as regards the case (n − 1)S, see
Theorem 1.2 in [32]; we will prove here the general case.

Proof Our goal is to get, as in Theorem 3.1, a positive constant c such that � :=
f ∗� + c� is the required form, where � is null-cohomologous and is obtained by
changing f∗�̃.

Let us recall the following classical result (see, for instance, [29] p. 251):

Remark LetY be an s-dimensional compact analytic subset of M ;Y has a fundamental
system of neighborhoods {U } such that Hq

d R(U,R) = 0 for q > 2s, and, for every
coherent sheaf F , Hq(U,F) = 0 for q > s.

In [9] we studied the case of 1-convex manifolds, where the cohomology groups
Hq(U,F) are finite dimensional when q > 0. We proved there the following result:
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Theorem 5.3 ([9], Theorem 2.4) Let M be a complex manifold, and let Ok be the
sheaf of germs of holomorphic k-forms on M. Suppose dim H j (M,Ok) < ∞ ∀k ≥
0, ∀ j ≥ s. Then the cohomology groups H p,p

∂∂
(M) and H p,p

∂+∂
(M) are Hausdorff

topological vector spaces for every p ≥ s.

Adapting its proof, which is based on an accurate analysis of exact sequences
of sheaves and cohomology groups, we get in our situation (where the cohomology
groups vanish):

Claim Let Y be an s-dimensional compact analytic subset of M; Y has a fundamental
system of neighborhoods {U } such that Hq

d R(U,R) = 0 for q > 2s, and, for every
coherent sheaf F , Hq(U,F) = 0 for q > s. Thus Y has a fundamental system of
neighborhoods {U } such that H p,p

∂∂
(U ) = 0, H p,p

∂+∂
(U ) = 0 for p > s.

To give a hint of the first step (s = 0, p = 1) of the proof of this Claim, let us
consider H, the sheaf of germs of real pluriharmonic functions, with the following
well-known exact sequences of sheaves (see [9], p. 260):

0 → R
i→ O Re→ H → 0

where i(c) = ic, c ∈ R, and Ref (z) = f (z) + f (z); and

0 → H j→ E0,0
R

i∂∂→ E1,1
R

∂+∂→ (E2,1 ⊕ E1,2)R → · · ·

where j is the standard inclusion.
From the second one we can compute H1,1

∂∂
(U ), so that H1,1

∂∂
(U ) � H1(U,H).

Indeed, we get a short exact sequence

0 → H → E0,0
R

→ K er(∂ + ∂) → 0

and the associated exact sequence

0 → H0(U,H) → H0
(

U, E0,0
R

)
→ H0 (

U, K er(∂ + ∂)
) → H1(U,H) → 0.

Thus

H1(U,H) � H0(U, K er(∂ + ∂))

H0(U, I m(i∂∂))
= H1,1

∂∂
(U ).

From the first exact sequence, we get

· · · → H1(U,O) → H1(U,H) → H2(U,R) → · · · .

Thus, by the previous Remark, we get H1,1
∂∂

(U ) � H1(U,H) = 0.
Let us turn back to the proof of Theorem 5.2; choose U as in the previous Claim,

and consider f∗�̃. While in the case pK , f∗�̃ is closed, so that by H p,p
∂∂

(U ) = 0 we
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get f∗�̃ = i∂∂ R on U , in the other cases it holds that ∂∂ f∗�̃ = 0, so that thanks to
H p,p

∂+∂
(U ) = 0 we get f∗�̃ = ∂S + ∂S, for some (p, p − 1)-current S on U .

Recall that cohomology classes can be represented by currents or by forms (see
also the proof of Proposition 4.2): thus, since f∗�̃ is smooth on M − Y , we get on
U − Y :

(a) f∗�̃ = i∂∂α for some real (p − 1, p − 1)-form α on U − Y in the case pK, and
(b) f∗�̃ = ∂β + ∂β for some (p, p − 1)-form β on U − Y in the cases pWK, pS

and pPL.

Claim In the previous notation, on U − Y we get, respectively:

(a) i∂∂(R − α) = 0, thus R − α = γ + ∂C + ∂C, where γ is a real ∂∂-closed form
and C is a (p −1, p −2)-current; when p = 1, R −α = γ are smooth functions;

(b) ∂(S − β)+∂(S−β) = 0, thus S−β = γ +∂ A+∂ B, where γ is a (p, p−1)-form
such that ∂γ +∂γ = 0, A is a real (p−1, p−1)-current, B is a (p, p−2)-current.

(c) when p = 1, ∂(S − β) + ∂(S − β) = 0, thus S − β = γ + α + ∂h, where γ

is a (1, 0)-form such that ∂γ + ∂γ = 0, α is a holomorphic 1-form, h is a real
distribution.

Proof of the Claim In the case (a), γ is a smooth representative of the class {R −α} ∈
H p−1,p−1

∂+∂
(U − Y ); when p = 1, R − α itself is smooth.

In the case (b), for p > 1, the proof is more involved: we can use exact sequences
of sheaves and their cohomology groups as done in [9] (see the proof of Proposition
2.2 there). In particular, let us consider

. . . (E p,p−2 ⊕ E p−1,p−1 ⊕ E p−2,p)R
σ2p−2→ (E p,p−1 ⊕ E p−1,p)R

σ2p−1→ E p,p
R

σ2p→ E p+1,p+1
R

. . .

where the maps are, respectively,
σ2p−2(ζ, η, ζ ) = (∂ζ + ∂η, ∂η + ∂ζ ), σ2p−1(ϕ, ϕ) = (∂ϕ + ∂ϕ), σ2p = i∂∂ .

Notice that H p−1,p−1
∂+∂

(U − Y ) is given by K er(σ2p)

I m(σ2p−1)
on U − Y , but here we need

K er(σ2p−1)

I m(σ2p−2)
on U − Y .

Since ∂(S − β) + ∂(S − β) = 0, i.e., σ2p−1(S − β, S − β) = 0, it represents a

class in
K er(σ2p−1)

I m(σ2p−2)
on U − Y . Choose a smooth representative of this class: this means

precisely S − β = γ + ∂ A + ∂ B, as stated in the Claim.
In the case c), when p = 1, the exact sequence of sheaves is the following

. . .
(
O1 ⊕ E0,0 ⊕ O1

)

R

σ0→
(
E1,0 ⊕ E0,1

)

R

σ1→ E1,1
R

σ2→ E2,2
R

. . .

where the maps are, respectively,
σ0(α, h, α) = (α + ∂h, ∂h + α), σ1(ϕ, ϕ) = (∂ϕ + ∂ϕ), σ2 = i∂∂ .
Since ∂(S − β)+ ∂(S −β) = 0, i.e., σ1(S −β, S − β) = 0, it represents a class in

K er(σ1)
I m(σ0)

on U − Y . Choose a smooth representative of this class: this means precisely
S − β = γ + α + ∂h, as stated in the Claim.
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Going back to the proof of Theorem 5.2, choose a neighborhood W ⊂⊂ U of Y ,
and take a cut-off function χ ∈ C∞

0 (U ), χ = 1 on W . Define:
D := χ(α + γ ) + ∂(χC) + ∂(χC),
F := χ(β + γ ) + ∂(χ A) + ∂(χ B) when p > 1, and
F := χ(β + γ + α) + ∂(χh) when p = 1.
D and F are currents on M − Y ; moreover, it is easy to check that i∂∂ D and

∂ F +∂ F are smooth on M −Y , so that we can pull them back to M̃ − E (let us denote
by g the restriction of f to M̃ − E). Thus � := g∗(i∂∂ D) and �′ := g∗(∂ F + ∂ F)

are, respectively, (p, p)-forms on M̃ − E , which coincide with �̃ on f −1(W ) − E .
So they extend to the whole of M̃ : note that they are supported on f −1(U ) and

transverse on f −1(W ).
Thus we can pick c > 0 such that � := f ∗� + c� or �′ := f ∗� + c�′ are

transverse forms on M̃ . � and �′ are “closed” because � is “closed”, and
(a) � is i∂∂-exact on M̃ − E and coincides with �̃ (which is “closed”) near E ;
(b) �′ is (∂ + ∂)-exact on M̃ − E and coincides with �̃ (which is “closed”) near E .
Moreover, in the first case f∗� −� = i∂∂(cD), and in the other case f∗�′ −�′ =

∂(cF) + ∂(cF). ��

6 Currents in the Non-compact Case

In the non-compact case, we cannot use the classical characterization of Kähler ma-
nifolds by currents, which has been introduced by Sullivan [28] and by Harvey and
Lawson [21]; hence we have no results about a generic modification. Nevertheless,
in [9] we studied 1-convex manifolds (which are not compact but have a specific
compact “soul”) by positive currents. This technique can be used to get a partial result
on proper modifications. Thus we consider the following definition, where M is a
complex n-dimensional manifold.

Definition 6.1 Let Y be a compact analytic subset of M ; M is said to be locally “p-
Kähler”with respect to Y if every neighborhood U of Y , U ⊂⊂ M , is “p-Kähler”,
in the sense that there is a real closed (p, p)-form � on M such that � > 0 on the
compact set U .

Our aim is to prove:

Theorem 6.2 Let M, M̃ be n-dimensional manifolds, let f : M̃ → M be a proper
modification with compact center Y and exceptional set E (whose (n−1)-dimensional
irreducible components are {E j }). Suppose dim H j (M̃,Or ) < ∞ ∀r ≥ 0, ∀ j ≥ 1.
If M is locally (n − 1)K with respect to Y , then M̃ is locally (n − 1)K with respect to
E.

Let us recall the notation and some results from [9], which we shall use in the
proof. For every n-dimensional manifold X , S Pp(X)c denotes the closed convex cone
of strongly positive currents of bidimension (p, p) (or bidegree (k, k), p + k = n)
and compact support, while Bp(X)c is the space of currents of bidimension (p, p) and
compact support, which are (p, p)-components of a compactly supported boundary
current, that is, the class of the current vanishes in
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Hk,k
∂+∂

(X,R)c = {T ∈ E ′
p,p(X)R; i∂∂T = 0}

{∂S + ∂S; S ∈ E ′
p,p+1(X)} .

In the non-compact case, it is not guaranteed that the operators we need are topo-
logical homomorphisms (so that the orthogonal space to the Kernel coincides with the
Image), but to get this fact it suffices to require a mild cohomological condition, as
stated in the next result:

Proposition 6.3 (Corollary 2.5 in [9]) Let X be a complex manifold such that
dim H j (X,Or ) < ∞ ∀r ≥ 0, ∀ j ≥ 1. Then dp := d : E p,p

R
(X) →

(E p+1,p ⊕ E p,p+1)R(X) and ∂∂ p := ∂∂ : E p−1,p−1
R

(X) → E p,p
R

(X) are topological
homomorphisms for every p ≥ 1.

So we got:

Theorem 6.4 (see Theorem 3.2 in [9]) Let X be a complex manifold, dim X = n, and
K a compact subset of X; let 1 ≤ p ≤ n − 1 and suppose dp := d : E p,p

R
(X) →

(E p+1,p ⊕ E p,p+1)R(X) is a topological homomorphism. Then:
there is no current T �= 0, T ∈ S Pp(X)c ∩ Bp(X)c, suppT ⊆ K ⇐⇒ there is

a real closed (p, p)-form � on M such that � > 0 on K .

Now we can prove Theorem 6.2.

Proof Fix a neighborhood U of E in M̃ , U ⊂⊂ M̃ , and let T be a bad current, i.e.,
T ∈ S Pn−1(M̃)c ∩ Bn−1(M̃)c, supp T ⊆ K := U . Thus f∗T is a bad current on
M supported in f (K ), which is a compact neighborhood of Y : since M is locally
(n − 1)-Kähler with respect to Y , we get f∗T = 0, so that supp T ⊆ E .

By the Support Theorem 2.5, T is closed (in fact, T = ∑
c j [E j ], c j ≥ 0), and

moreover T = ∂S + ∂S for some compactly supported (1, 0)-current S, so that we
get ∂∂S = 0.
Consider ∂S: it is a ∂-closed (2, 0)-current, hence it is a holomorphic 2-form with
compact support: therefore, ∂S = 0 and T = d(S + S) is d-exact. But no (n − 1)-
dimensional component of E is null-homologous, by the structure of the homology
of M̃ : hence T = ∑

c j [E j ] = 0. ��
The other “p-Kähler” cases are not known.
Notice that when i∂∂ p+1 : E p,p

R
→ E p+1,p+1

R
is a topological homomorphism

(which is true in our hypothesis by Proposition 6.3), then we have a similar character-
ization theorem (see [9], Remark 3.4):

Proposition 6.5 Let X be a complex manifold, dim X = n, and K a compact subset
of X; let 1 ≤ p ≤ n − 1 and suppose i∂∂ p+1 : E p,p

R
→ E p+1,p+1

R
is a topological

homomorphism. Then:
there is no current T �= 0, T ∈ S Pp(X)c ∩ (I m(i∂∂ p+1))c, suppT ⊆ K ⇐⇒

there is a real (p, p)-form � on M such that i∂∂� = 0 and � > 0 on K .

But when p = n − 1, T ∈ S Pn−1(X)c ∩ (I m(i∂∂n))c means that T = i∂∂g, with
g a plurisubharmonic function with compact support: so g is a constant, and T = 0.
This means that every n-dimensional complex manifold is (n − 1)PL with respect to
its compact subsets (as expected).
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7 Examples and Remarks

7.1 Hironaka’s manifold X (see [19], p. 444 or [5]) is given by a modification
f : X → P3, where the center Y is a plane curve with a node. It is a Moishezon
manifold, containing a null-homologous curve. Thus it is not “1-Kähler”. X is a bal-
anced manifold (see [5] or [8]) so that it is “(n − 1)-Kähler”.

We can also consider a modification given as follows: take πO : P̃3 → P3, the
blow-up of P3 at a point O , and take its exceptional divisor E � P2. In this P2 ⊂ P̃3,
take a plane curve Y with a node, for instance, that given in coordinates by the equation
z22 = z21 + z31, where z3 = 0 is the local equation of P2 ⊂ P̃3.

Take the modification f : M̃ → P̃3 of center Y like that of Hironaka’s example,
i.e., in a little ball near the origin (z1 = z2 = z3 = 0) blow up first one branch of Y ,
then the other; outside the origin, just blow up Y . Then glue together, to obtain the
modification f : M̃ → P̃3. As with Hironaka’s manifold, M̃ is not Kähler.

Finally, consider πO ◦ f : M̃ → P3. It is a modification of a projective manifold,
whose center is a point: but the resulting compact threefold is not “1-Kähler”.

7.2 In [6] we build an example to show that, even in the case of modifications,
we can sometime pull-back “p-Kähler” properties for p > 1. Indeed, we consider a
smooth modification X̃ of P5, where the center Y is a surface with a singularity; the
singular fiber has two irreducible components, one of which is biholomorphic to P2
and the other is a holomorphic fiber bundle over P1 with P2 as fiber. We show that X̃
is not Kähler, because it contains a copy of Hironaka’s manifold, but it is “p-Kähler”
for every p > 1.

Recall that Hironaka’s threefold X , and also the compactmanifold X̃ just described,
are “p-Kähler” for every p > 1 and belong to Fujiki’s class C.

But this cannot be the general case: for instance, M := X ×Pn−3 ∈ C, but it cannot
be “(n − 2)-Kähler”, otherwise, using the projection pX onto the first factor, X would
be “1-Kähler”. In fact, the projection pX is a holomorphic submersion, so that the
following result applies (see, for instance, [2], Proposition 3.1):

Proposition 7.1 Let M be a compact m-dimensional manifold, and let π : M → N
be a proper holomorphic submersion with p-dimensional fibers. If M is q-Kähler for
m > q > p, then N is (q − p)-Kähler.

7.3On the contrary, we give here an example that shows that we cannot always pull-
back “p-Kähler” properties by blowing up, even in the compact case. We use the class
of manifolds we constructed in [3], namely, the compact nilmanifolds ηβ2n+1, n ≥ 1:
let us recall the definition.

Let G be the following subgroup of GL(n + 2,C):

G := {A ∈ GL(n + 2,C)/A =
⎛

⎝
1 X z
0 In Y
0 0 1

⎞

⎠ , z ∈ C, X, Y ∈ C
n},

and let � be the subgroup of G given by matrices with entries in Z[i]. � is a discrete
subgroup and the homogeneousmanifoldηβ2n+1 := G/� becomes a holomorphically
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parallelizable compact connected complex nilmanifold of dimension 2n+1 (for n = 1,
ηβ3 is nothing but the Iwasawa manifold I3). The standard basis for holomorphic 1-
forms on ηβ2n+1 is {ϕ1, . . . , ϕ2n+1}; the ϕ j are all closed, except dϕ2n+1 = −ϕ1 ∧
ϕ2 − · · · − ϕ2n−1 ∧ ϕ2n .

Recall the following results:

Theorem 7.2 (see Theorem 3.2 and Theorem 4.2 in [3])

(1) For ηβ2n+1, as for all holomorphically parallelizable manifolds, for a fixed p, all
“p-Kähler” conditions are equivalent.

(2) The manifold ηβ2n+1 is not pK for 1 ≤ p ≤ n and is pK for n + 1 ≤ p ≤ 2n.

To build our example, let us consider M = ηβ7, Y = ηβ3 = I3 as a submanifold of
M (in an obvious way; see, for instance, (4.4) in [3]). In particular, M is 4K, Y is 2K
but not Kähler. Consider π : M̃ → M , the blow-up of M along Y ; if M̃ were 4K too,
then the exceptional set E would also be 4K, but by definitionπ induces a holomorphic
submersion from E to Y with 3-dimensional fibers. Thus by Proposition 7.1, Y would
be Kähler.

7.4 Taking into account these examples, let us collect what we have got until now
for the case of a modification f : M̃ → M of a compact “1-Kähler” manifold M :

a) M̃ is obviously (n − 1)PL.
b) If M is Kähler (i.e., 1K), then it is regular (in the sense of Varouchas, that is, it

satisfies the ∂∂-Lemma; see [11,30]), so that also M̃ is regular, which implies that
it is (n − 1)WK and (n − 1)S by the following result stated in [1]: On a regular
manifold, ∀ p, pW K = pS = pP L . Thus, every regular manifold is (n −1)W K ,
since (n − 1)W K = (n − 1)P L .
As stated in Theorem 4.1, when M is 1K, M̃ is also (n − 1)K (a direct proof was
given in [6]). Nevertheless, M̃ may not be “1-Kähler”, as examples in Subsection
7.1 show, also when the center is only a point. But Example 7.2 shows that M̃ can
be “p-Kähler” for every p > 1.

c) If M is “1-Kähler”, then in case K and S, M is also “(n − 1)-Kähler”, so that M̃
is (n − 1)K or, respectively, (n − 1)S (see, for instance, [2]). We do not know in
general if, when M is 1WK, then M̃ is (n − 1)WK; this is true for a wide class
of manifolds, for instance when H2,0(M) = 0, because in this case (n − 1)WK =
(n − 1)S (see [1]).

7.5We recall here an example proposed by Yachou [33].
Take G = SL(2,C), � = SL(2,Z), and consider the holomorphic 1-forms η, α, β

on M := G/� induced by the standard basis for g∗: it holds that

dα = −2η ∧ α, dβ = 2η ∧ β, dη = α ∧ β.

The standard fundamental form, given by ω = i
2 (α ∧ α + β ∧ β + η ∧ η), satisfies

dω2 = 0, so that ω2 is a balanced form: but it is exact, since

ω2 = d

(
1

16
α ∧ dα + 1

16
β ∧ dβ + 1

4
η ∧ dη

)

.
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7.6 Let us end with a particular question, related to Example 7.5, i.e., the fact that,
on compact Kähler manifolds,

∫
M ωn = vol M > 0, so that ω is not “exact”, while

a 2K form can be exact, as seen in Subsection 7.5 (see also the Introduction of [15]).
Notice that, when M is not compact, a “p-Kähler” form can be exact: this is the case,
for instance, of p-complete manifolds (see [9], Proposition 4.4).

Suppose M, M̃ are complex manifolds and f : M̃ → M is a proper modification
with compact center Y ; suppose moreover that M̃ is “p-Kähler”: can the class of its
“p-Kähler” form �̃ vanish, in one of the following cohomology groups: H p,p

∂∂
(M̃),

H p,p
∂+∂

(M̃), H p,p
d R (M̃)?

In most cases, the answer is no: suppose dimY = s, 0 ≤ s ≤ n − 2: the cases
p = n − 1 and p = n − 1 − s are completely solved by the existence of compact
analytic subvarieties of the right dimension in M̃ , namely, the maximal irreducible
components of E and a fiber f −1(y). These are closed currents, which vanish when
applied to an “exact” form, but they must give a positive number when applied to
transverse forms, since they have positive volume. For the same reason, the answer is
the same, for every p, on blow-ups with center at a point O: they have enough compact
subvarieties on E .

In some other cases, when M and M̃ are compact, we can use the pull-back of a
suitable p-Kähler form on M : in particular, this holds when M is balanced, as follows:

Proposition 7.3 Let f : M̃ → M be a modification, M a compact balanced manifold
with form ω, M̃ a compact “1-Kähler” manifold with “1-Kähler” form ω̃. Then ω̃ is
never “exact”.

Proof The case in H p,p
∂∂

(M̃) is obvious, because ω̃ = i∂∂g > 0 implies g is constant.

In the case 1S, if ω̃ = ψ1,1 with dψ = 0, we ask for the possibility ψ = dα.
Notice that f ∗ωn−1 ≥ 0 and f ∗ωn−1 > 0 outside E ; thus we get

0<

∫

M̃
ω̃ ∧ f ∗ωn−1=

∫

M̃
ψ ∧ f ∗ωn−1=

∫

M̃
dα ∧ f ∗ωn−1=−

∫

M̃
α ∧ d( f ∗ωn−1),

which vanishes since ω is balanced.
In the cases 1WK and 1PL, starting by ∂ω̃ = ∂∂α or ∂∂ω̃ = 0, we ask for the

possibility ω̃ = ∂μ + ∂μ; this can be solved as above.
In case the 1K, starting by dω̃ = 0, we can ask if ω̃ = dβ. As above, the answer is

negative, also when M is only (n − 1)WK. ��
Claim Arguing as in the previous proposition, if M is compact Kähler and M̃ is
“p-Kähler”, its form cannot be exact.
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