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Abstract We study generalized complex cohomologies of generalized complex struc-
tures constructed from certain symplectic fiber bundles over complex manifolds. We
apply our results in the case of left-invariant generalized complex structures on nil-
manifolds and to their space of small deformations.
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Introduction

Generalized complex geometry, in the sense of Hitchin, Gualtieri, and Cavalcanti,
[5,10,12], unifies symplectic and complex geometries in a unitary framework. In such
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Cohomologies of Generalized Complex Manifolds 143

a way, it clarifies the parallelism between results for (non-Kähler) complex manifolds
and for (non-Kähler) symplectic manifolds.

We recall that a generalized complex structure on a differentiable manifold M is
an endomorphism J ∈ End(T M ⊕ T ∗M) such that J 2 = −1 and the i-eigenbundle
L ⊂ (T M ⊕ T ∗M) ⊗ C is involutive with respect to the Courant bracket (1). If
ω ∈ ∧2M (viewed as an isomorphism T M → T ∗M) is a symplectic structure,
respectively J ∈ End(T M) is a complex structure on M , then

Jω :=
(
0 −ω−1

ω 0

)
, respectively JJ :=

(−J 0
0 J ∗

)

are generalized complex structures on M . In view of the generalized Darboux theorem
[10, Theorem 3.6] proved by Gualtieri, these examples constitute the basic models of
generalized complex structures near regular points.

A generalized complex structure J on M of dimension 2n yields a decomposition
of complex differential forms ∧•T ∗M ⊗ C = ⊕n

j=−n U
j , whence the bi-differential

Z-graded complex

(U•, ∂, ∂
)
.

In this note, we are interested in the generalized Dolbeault cohomologies

GH•
∂ (M) := ker ∂

im ∂
and GH•

∂
(M) := ker ∂

im ∂
,

and in the generalized Bott–Chern and Aeppli cohomologies

GH•
BC (M) := ker ∂ ∩ ker ∂

im ∂∂
and GH•

A(M) := ker ∂∂

im ∂ + im ∂
.

(Note that, in the complex case, the generalized ∂ and ∂ operators coincide with the
complex operators, and so, up to a change of graduation, the above cohomologies are
exactly the Dolbeault and the Bott–Chern cohomologies. In the symplectic case, the
generalized Dolbeault cohomology is isomorphic to the de Rham cohomology, and the
generalizedBott–Chern cohomology has been studied byTseng andYau; see [18–21].)

More precisely, look at the i-eigenbundle L ⊂ (T M ⊕ T ∗M) ⊗ C of J ∈
End((T M⊕T ∗M)⊗C)with the Lie algebroid structure given by the Courant bracket
and the projection π : L → T M ⊗C. Take a generalized holomorphic bundle, that is,
a complex vector bundle E with a Lie algebroid connection

∂ : C∞(∧k L∗ ⊗ E) → C∞(∧k+1L∗ ⊗ E)

satisfying ∂ ◦ ∂ = 0. Consider

GHn−•
∂

(M, E) := H•(L , E) := ker
(
∂ : C∞(∧•L∗ ⊗ E) → C∞(∧•+1L∗ ⊗ E)

)
im

(
∂ : C∞(∧•−1L∗ ⊗ E) → C∞(∧•L∗ ⊗ E)

) .
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144 D. Angella et al.

One way to construct generalized complex structures onmanifolds is the following.
Let p : X → B be a symplectic fiber bundle with a generic fiber (F, σ ). Assume that
the base B is a compact complex manifold and that there is a closed form ω on the
total space X which restricts to the symplectic form σ on the generic F . Then we can
construct a non-degenerate pure form, and then a generalized complex structure on X .

We construct the following Leray spectral sequence for computing the generalized
cohomology of such an X .

Corollary 2.2 Let p : X → B be a symplectic fiber bundle with a generic fiber (F, σ )

of dimension 2� such that:

• B is a compact complex manifold of complex dimension k;
• we have a closed form ω on the total space X which restricts to the symplectic
form σ on the generic F.

Consider the generalized complex structure J on X defined by ω and the complex
structure of B and the i-eigenbundle L ofJ . Let W be a complex vector bundle over X
such that W = p∗W ′ for a holomorphic vector bundle W ′ over the complex manifold
B. We regard W as a generalized holomorphic bundle. Consider the flat vector bundle
H(F) = ⋃

x∈B H•(Fb) over B.
Then there exists a spectral sequence

{
E•,•
r

}
r which converges to GHk+�−•

∂
(X)

such that

E p,q
2

∼= GHk−p
∂

(B,H�−q(F)).

As an application of the above results, we investigate generalized cohomologies of
nilmanifolds M = �\G, that is, compact quotients of connected simply connected
nilpotent Lie groups G. We consider left-invariant generalized complex structures
on M , equivalently, linear generalized complex structures on the Lie algebra g of G.
Note that left-invariant generalized complex structures on nilmanifolds are generalized
Calabi–Yau, that is, the canonical line bundle K is trivial; whence GHn−•

∂
(M) =

H•(L).
In this context, we have a generalized complex decomposition also at the level of

the Lie algebra, namely, ∧•g∗ = ⊕
j U

j , and a (finite dimensional) bi-differential
Z-graded sub-complex

(
U•, ∂, ∂

) → (U•, ∂, ∂
)
.

It induces the map GH•
∂
(g) → GH•

∂
(M) in cohomology, which is in fact always

injective.

Corollary 5.4 Let G be a connected simply connected nilpotent Lie group and g the
Lie algebra of G. We suppose that G admits a lattice � and consider the Q-structure
gQ ⊂ g induced by �. We assume that there exists an ideal h ⊂ g so that:

(i) gQ ∩ h is a Q-structure of h;
(ii) g/h admits a complex structure J ;
(iii) we have a closed 2-form ω ∈ ∧2g∗ yielding ω ∈ ∧2h∗ non-degenerate form on

h;
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Cohomologies of Generalized Complex Manifolds 145

(iv) ι : ∧•,• (g/h)∗ ⊗ C → ∧•,•�H\G induces an isomorphism on the Dolbeault
cohomology.

Then the inclusion ι : (U•, ∂, ∂) → (U•, ∂, ∂) induces isomorphisms GH∂ (g)
∼=

GH∂ (�\G), and GH∂ (g) ∼= GH∂ (�\G), and GHBC (g) ∼= GHBC (�\G).

As regards the fourth assumption, we note that it holds, e.g., when J is either bi-
invariant, or holomorphically parallelizable, or Abelian, or rational, or nilpotent; see
[9] and the references therein.

As an explicit example, we study a generalized complex structure on the Kodaira–
Thurston manifold in Sect. 7. Another application of the previous result can be found
in Angella et al. [2].

The above invariance result for generalized cohomologies is stable under small
deformations.

Theorem 6.1 Let �\G be a nilmanifold with a left-invariant generalized complex
structure J ; denote by g the Lie algebra of G. If the isomorphism GH∂ (g)

∼=
GH∂ (�\G) holds on the original generalized complex structureJ , then the same iso-
morphism holds on the deformed generalized complex structure Jε(t) for sufficiently
small t .

For complex case, theorems of this type are found in [1,3,8].
Finally,we apply the above result on nilmanifolds to study their space of small defor-

mations. In particular, we prove that any small deformation of a generalized complex
structure on a nilmanifold with invariant generalized cohomology is (equivalent to) a
left-invariant structure.

Theorem 6.2 Let �\G be a nilmanifold with a left-invariant generalized complex
structure J ; denote by g the Lie algebra of G. If the isomorphism GH∂ (g)

∼=
GH∂ (�\G) holds on the original generalized complex structure J , then any suf-
ficiently small deformation of generalized complex structure is equivalent to a
left-invariant generalized complex structureJε with ε ∈ ∧2L∗ satisfying the Maurer–
Cartan equation.

This result is a generalization of [17, Theorem 2.6].

1 Generalized Complex Structures

Let M be a compact differentiable manifold of dimension 2n. Consider the vector
bundle T M ⊕ T ∗M , endowed with the natural symmetric pairing

〈
X + ξ

∣∣ Y + η
〉 := 1

2
(ξ(Y ) + η(X)).

We define the action of T M ⊕ T ∗M on ∧•T ∗M so that

(X + ξ) · ρ = iXρ + ξ ∧ ρ
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146 D. Angella et al.

We define the Courant bracket on the space C∞ (T X ⊕ T ∗X) such that

[X + ξ, Y + η] := [X, Y ] + LXη − LY ξ − 1

2
d (ιXη − ιY ξ) . (1)

A generalized complex structure on M is an endomorphism J ∈ End(T M ⊕ T ∗M)

such that J 2 = −1 and the i-eigenbundle L ⊂ (T M ⊕ T ∗M) ⊗ C involutive with
respect to the Courant bracket.

A form ρ in ∧•T ∗M ⊗ C is called pure if it can be written as

ρ = eB+iω


where B, ω ∈ ∧2T ∗M and 
 = θ1 ∧ · · · ∧ θk with θ1, . . . , θk ∈ T ∗M ⊗ C. A pure
form ρ ∈ ∧•T ∗M ⊗ C is non-degenerate if

ωn−k ∧ 
 ∧ 
 �= 0.

For a generalized complex structureJ with the i-eigenbundle L , we have the canonical
line bundle K ⊂ ∧•T ∗M ⊗ C such that

L = Ann(K ) = {
v ∈ (T M ⊕ T ∗M) ⊗ C

∣∣ v · K = 0
}
.

Any ρ ∈ K is a non-degenerate pure form and any φ ∈ C∞(K ) is integrable, i.e.,
there exists v ∈ C∞ (T X ⊕ T ∗X) satisfying

dφ = v · φ.

Conversely, if we have a line bundle K ⊂ ∧•T ∗M ⊗ C so that any ρ ∈ K is a non-
degenerate pure form and any φ ∈ C∞(K ) is integrable, then we have a generalized
complex structure whose i-eigenbundle is L = Ann(K ).

For a generalized complex manifold (M,J ) with the i-eigenbundle L ⊂ (T M ⊕
T ∗M) ⊗ C and the canonical line bundle K ⊂ ∧•T ∗M ⊗ C, for j ∈ Z, we define

U j := ∧n− j L̄ · K ⊆ ∧•X ⊗ C.

Then we have

∧•T ∗M ⊗ C =
n⊕

j=−n

U j .

Denote U j = C∞(U j ). Then, by the integrability, we have dU j ⊂ U j−1 ⊕U j+1. We
consider the decomposition d = ∂ + ∂ such that

∂ : U j → U j+1 and ∂ : U j → U j−1.

Hence we have the bi-differential Z-graded complexes (U•, ∂, ∂).
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Cohomologies of Generalized Complex Manifolds 147

We define the generalized Dolbeault cohomologies

GH•
∂ (M) := ker

(
∂ : U• → U•+1

)
im

(
∂ : U•−1 → U•) ,

GH•
∂
(M) := ker

(
∂ : U• → U•−1

)
im

(
∂ : U•+1 → U•).

Define also the generalized Bott–Chern and Aeppli cohomologies

GH•
BC (M) := ker

(
∂ : U• → U•+1

) ∩ ker
(
∂ : U• → U•−1

)
im

(
∂∂ : U• → U•) ,

GH•
A(M) := ker

(
∂∂ : U• → U•)

im
(
∂ : U•−1 → U•) + im

(
∂ : U•+1 → U•) .

A generalized Hermitian metric on a generalized complex manifold (M,J ) is a
self-adjoint orthogonal transformation G ∈ End(T M ⊕ T M∗) such that 〈Gv, v〉 > 0
for v �= 0 and JG = GJ . For a generalized Hermitian metric G, we can define the
generalized Hodge star operator � : U• → U• (see [6, Section 3]) and its conjugation
�̄. Define ∂

∗ = −�̄∂�̄ and �∂ = ∂∂
∗ + ∂

∗
∂ . Then �∂ is an elliptic operator and every

cohomology class α ∈ GH•
∂
(M) admits a unique representative a ∈ ker�∂ .

It is known that the vector bundle L with the Courant bracket and the projection
π : L → T M ⊗ C is a Lie algebroid. By this, we have the differential graded algebra
structure on C∞(∧•L∗) with the differential dL : C∞(∧k L∗) → C∞(∧k+1L∗) such
that

dLω(v1, . . . , vk+1) =
∑
i< j

(−1)i+ j−1ω([vi , v j ], v1, . . . , v̂i , . . . , v̂ j , . . . , vk+1)

+
k+1∑
i=1

(−1)iπ(vi )
(
ω(v1, . . . , v̂i , . . . , vk+1)

)
.

It is known that (C∞(∧•L∗), dL) is an elliptic complex (see [10, Proposition 3.12]).
A generalized holomorphic bundle is a complex vector bundle E with a Lie algebroid
connection

∂ : C∞(∧k L∗ ⊗ E) → C∞(∧k+1L∗ ⊗ E)

satisfying ∂ ◦ ∂ = 0. For a generalized holomorphic bundle (E, ∂), we define the Lie
algebroid cohomology

H•(L , E) = ker
(
∂ : C∞(∧•L∗ ⊗ E) → C∞(∧•+1L∗ ⊗ E)

)
im

(
∂ : C∞(∧•−1L∗ ⊗ E) → C∞(∧•L∗ ⊗ E)

) .
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148 D. Angella et al.

Identifying L∗ = L by the pairing, ∂ : Un−k → Un−k−1 can be viewed as a Lie
algebroid connection

∂ : C∞(∧k L∗ ⊗ K ) → C∞(∧k+1L∗ ⊗ K )

such that

∂(ω ⊗ s) = dLω ⊗ s + (−1)kω ⊗ ds.

Hence the canonical line bundle K is generalized holomorphic and we have
GHn−•

∂
(M) = H•(L , K ). For a generalized holomorphic bundle (E, ∂), we denote

GHn−•
∂

(M, E) = H•(L , K ⊗ E).
If there exists a nowhere-vanishing closed section ρ ∈ C∞(K ), we call J a gener-

alized Calabi–Yau structure. In this case, we have GHn−•
∂

(M) = H•(L).

By the identification L∗ = L , we can define the Schouten bracket [-, � ] on
C∞(∧•L∗). For sufficiently small ε ∈ C∞(∧2L∗), we obtain the small deformation
of the isotropic subspace

Lε = (1 + ε)L ⊂ (T M ⊕ T ∗M) ⊗ C.

Consider the endomorphism Jε ∈ End(T M ⊕ T ∗M) whose i-eigenbundle and −i-
eigenbundle are Lε and Lε respectively. Then Jε is a generalized complex structure
if and only if ε satisfies the Maurer–Cartan equation:

dLε + 1

2
[ε, ε] = 0.

As similar to Complex Geometry, we can apply the Kuranishi theory. Choose a Her-
mitian metric on L . Consider the adjoint operator d∗

L , the Laplacian operator �L =
dLd∗

L+d∗
LdL , the projection H : C∞(∧•L∗) → ker�L and theGreen operatorG (i.e.,

the operator on C∞(∧•L∗) so that G�L + H = id). Let ε1 ∈ ker�L ∩C2(∧•L∗). We
consider the formal power series ε(ε1)with values in C∞(∧•L∗) given inductively by

εr (ε1) = 1

2

r−1∑
s=1

d∗
LG[εs(ε1), εr−s(ε1)].

Then, for sufficiently small ε1, the formal power series ε(ε1) converges.

Theorem 1.1 ([10, Theorem 5.5]) Any sufficiently small deformation of the general-
ized complex structure J is equivalent to a generalized complex structure Jε(ε1) for
some ε1 ∈ ker�L ∩ C2(∧•L∗) such that ε(ε1) satisfies the Maurer–Cartan equation.

Example 1.2 Let M be a compact 2n-dimensional manifold endowed with a symplec-
tic structure ω ∈ ∧2M . Consider the induced isomorphism ω : T M → T ∗M . The
symplectic structure gives rise to the generalized complex structure
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Cohomologies of Generalized Complex Manifolds 149

Jω :=
(
0 −ω−1

ω 0

)
.

In this case, we obtain the i-eigenbundle

L = {X − iω(X) : X ∈ T M ⊗ C},

the canonical line bundle K = 〈eiω〉 and

Un−• = �
(∧•X ⊗ C

)
,

where

�(α) := exp (iω)

(
exp

(
�

2 i

)
α

)
,

and� := −ιω−1 . In particular, we have the Lie algebroid isomorphism T M ⊗C ∼= L ,
J is generalized Calabi–Yau and hence we have an isomorphism H∗(M) ∼= H∗(L) ∼=
GHn−•

∂
(M). Moreover, we have [6, Corollary 1],

� d = ∂� and � d� = 2 i ∂�,

where d� := [d,�] and this implies that GHk
BC (X) and GHk

A (X) are isomorphic
to the symplectic Bott–Chern and Aeppli cohomologies introduced and studied by
Tseng and Yau; see [18–21].

Example 1.3 Let M be a compact 2n-dimensional manifold endowed with a complex
structure J ∈ End(T M). The complex structure induces the generalized complex
structure

JJ :=
(−J 0

0 J ∗
)

,

where J ∗ ∈ End(T ∗M) denotes the dual endomorphism of J ∈ End(T X). In this
case, we obtain the i-eigenbundle L = T 0,1M ⊕ T ∗1,0M , the canonical line bundle
K = ∧nT ∗1,0M and

U• =
⊕

p−q=•
∧p,q X,

with the differentials

∂ = ∂J and ∂ = ∂ J ,

where ∂J and ∂ J are the usual Dolbeault operators on a complex manifold. The Lie
algebroid complex C∞(∧•L∗) is C∞(∧•(T 1,0M ⊕ T ∗0,1M)) with the differential dL
which is the usual Dolbeault operator.
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150 D. Angella et al.

2 Fibrations and Spectral Sequences

A symplectic fiber bundle is a smooth fiber bundle p : X → B so that the fiber F is a
compact symplectic manifold and the structural group is the group of symplectomor-
phisms. Let p : X → B be a symplectic fiber bundle with a generic fiber (F, σ ) such
that:

• B is a compact complex manifold of complex dimension k;
• we have a closed form ω on the total space X which restricts to the symplectic
form σ on the generic F .

Taking a local trivialization U × F ⊂ X , for a local holomorphic coordinates set
(z1, . . . , zk) in U we obtain a non-degenerate pure form

ρ = eiωdz1 ∧ · · · ∧ dzk

and it gives a generalized complex structure on X whose i-eigenbundle L is given by

L |U = T 0,1U ⊕ T ∗1,0U ⊕ {X − iω(X) : X ∈ T F ⊗ C}.

We consider the sub-bundle S so that S|U = {X − iω(X) : X ∈ T F ⊗ C} ⊂ L |U .
Then, S is involutive with respect to the Courant bracket.

For b ∈ B and Fb = p−1(b), denoting by H•(Fb) the C-valued de Rham coho-
mology of Fb, we consider the vector bundle H(F) = ⋃

x∈B H•(Fb). Then H(F) is
a flat vector bundle over B. Hence, in this case,H(F) is a holomorphic vector bundle
over the complex manifold B.

Consider the bundle F = T Fb ⊗ C of the vectors tangent to the fibers. Then F
is a Lie algebroid. Consider the Lie algebroid cohomology H∗(F); then we have an
isomorphism

H∗(F) ∼= C∞(H(F));

see [11, Chapter I. 2.4].
Let (W, ∂) be a generalized holomorphic bundle over X . Define the subspace

F pC∞(∧•L∗ ⊗ W ) ⊂ C∞(∧•L∗ ⊗ W ) so that

F pC∞(∧p+q L∗ ⊗ W )

= {
φ ∈ C∞(∧p+q L∗ ⊗ W )

∣∣ φ(X1, . . . , X p+q) = 0 for X�1 , . . . , X�q+1 ∈ S
}
.

Then F pC∞(∧•L∗ ⊗ W ) is a decreasing bounded filtration of (C∞(∧•L∗ ⊗ W ), ∂).
Hence we obtain the spectral sequence

{
E•,•
r

}
r for this filtration.

We suppose thatW = p∗W ′ for a holomorphic vector bundleW ′ over the complex
manifold B. For a local holomorphic coordinates set (z1, . . . , zk) of B, locally we
have

E p,q
0

∼= ∧p
〈
dz̄1, . . . , dz̄k,

∂

∂z1
, . . . ,

∂

∂zk

〉
⊗C∞(B) W

′ ⊗C∞(B) C∞(∧q S∗)
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Cohomologies of Generalized Complex Manifolds 151

with the differential

d0 = id ⊗ dS

where dS is the differential on the Lie algebroid complex C∞(∧q S∗). By using the ω,
we have a Lie algebroid isomorphism F � X �→ X − iω(X) ∈ S. Hence we obtain

E p,q
1

∼= ∧p
〈
dz̄1, . . . , dz̄k,

∂

∂z1
, . . . ,

∂

∂zk

〉
⊗C∞(B) W

′ ⊗C∞(B) H
•(F)

with the differential

d1 = ∂B

where ∂B is the usual Dolbeault operator on the complex manifold B. Thus, globally,
we obtain

E p,q
1

∼= C∞(∧pL∗
B ⊗ W ′ ⊗ Hq(F))

with the differential d1 = ∂ which is the Lie algebroid connection on the holomorphic
bundle W ′ ⊗ H(F) where LB = T 0,1B ⊕ T ∗1,0B. Hence we have

E p,q
2

∼= H p(LB,W ′ ⊗ Hq(F)).

We have shown the following result.

Theorem 2.1 Let p : X → B be a symplectic fiber bundle with a generic fiber (F, σ )

such that:

• B is a compact complex manifold of complex dimension k;
• we have a closed form ω on the total space X which restricts to the symplectic
form σ on the generic F.

Consider the generalized complex structure J on X defined by ω and the complex
structure of B and the i-eigenbundle L ofJ . Let W be a complex vector bundle over X
such that W = p∗W ′ for a holomorphic vector bundle W ′ over the complex manifold
B. We regard W as a generalized holomorphic bundle.

Then there exists a spectral sequence
{
E•,•
r

}
r which converges to H•(L ,W ) such

that

E p,q
2

∼= H p(LB,W ′ ⊗ Hq(F)).

Set W = K which is the canonical line bundle of (X,J ). Then as a bundle, we
have p∗KB ∼= K where KB is the canonical line bundle of the complex manifold B.
Hence we have:
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152 D. Angella et al.

Corollary 2.2 Consider the same setting in Theorem 2.1. Suppose dim B = 2k,
dim F = 2�.

Then there exists a spectral sequence
{
E•,•
r

}
r which converges to GHk+�−•

∂
(X)

such that

E p,q
2

∼= GHk−p
∂

(B,H�−q(F)).

3 Generalized Complex Structures on Lie Algebras

Let g be a 2n-dimensional Lie algebra. We consider the Lie algebra Dg = g⊕g∗ with
the bracket

[X + ζ,Y + η] = [X,Y ] + LXη − LY ζ

for X,Y ∈ g and ζ, η ∈ g∗. A generalized complex structure on g is a complex
structure on Dg which is orthogonal with respect to the pairing

〈X + ζ,Y + η〉 = 1

2
(ζ(Y ) + η(X)).

Consider the complex ∧•g∗
C
of the Lie algebra gC := g ⊗R C. A form ρ ∈ ∧•g∗

C
is a pure form of type k if it can be written as

ρ = eB+iω


where B, ω ∈ ∧2g∗ and 
 = θ1 ∧ · · · ∧ θk with θ1, . . . , θk ∈ ∧1g∗
C
. A pure form

ρ ∈ ∧•g∗
C
of type k is non-degenerate if

ωn−k ∧ 
 ∧ 
 �= 0.

A pure form ρ ∈ ∧•g∗
C
of type k is integrable if there exists X + ζ ∈ Dg such that

dρ = (X + ζ ) · ρ.

Theorem 3.1 ([7]) If g is nilpotent, then any non-degenerate integrable pure form is
closed.

For a non-degenerate integrable pure form ρ ∈ ∧•g∗
C
of type k, we have the sub Lie

algebra L ⊂ DgC such that

L = Ann(ρ) = {X + ζ ∈ DgC|(X + ζ ) · ρ = 0}.

We have the decomposition DgC = L ⊕ L and this gives a generalized complex
structure on g.

Define U• ⊂ ∧•g∗
C

such that Un = 〈ρ〉 and Un−r = ∧rL · Un . Then, by the
integrability, we have dU j ⊂ U j−1⊕U j+1. We consider the decomposition d = ∂ +∂
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Cohomologies of Generalized Complex Manifolds 153

such that ∂ : U j → U j+1 and ∂ : U j → U j−1. Hence we have the bi-differential Z-
graded complex (U•, ∂, ∂). We define

GH•
∂ (g) := ker

(
∂ : U• → U•+1

)
im

(
∂ : U•−1 → U•) ,

GH•
∂
(g) := ker

(
∂ : U• → U•−1

)
im

(
∂ : U•+1 → U•) ,

GH•
BC (g) := ker

(
∂ : U• → U•+1

) ∩ ker
(
∂ : U• → U•−1

)
im

(
∂∂ : U• → U•) ,

GH•
A(g) := ker

(
∂∂ : U• → U•)

im
(
∂ : U•−1 → U•) + im

(
∂ : U•+1 → U•) .

By the integrability dρ = (X + ζ )ρ and from the identification of L∗ = L by
the pairing, we can consider 〈ρ〉 as an L-module and we can identify (Un−•, ∂) with
∧•L∗ ⊗ 〈ρ〉 as a cochain complex of the Lie algebra L with values in the module 〈ρ〉
(cf. [10, p. 98]). In particular, if dρ = 0, then we have Un−• ∼= ∧•L∗.

We consider the following special case for using techniques of spectral sequences.

Example 3.2 Let g be a Lie algebra and h ⊂ g an ideal of g. Consider the differential
graded algebra extension

∧•g∗ = ∧• (g/h)∗ ⊗ ∧•h∗

dualizing the Lie algebra extension

0 h g g/h 0.

We assume that:

• g/h admits a complex structure J ;
• we have a closed 2-form ω ∈ ∧2g∗ yielding ω ∈ ∧2h∗ non-degenerate form on h.

Consider the ±i-eigenspace decomposition

(g/h) ⊗ C = (g/h)1,0 ⊕ (g/h)0,1 .

Take a basis Z1, . . . , Zk of (g/h)1,0 and the dual basis θ1, . . . , θk of (g/h)∗1,0. Then
we have the non-degenerate integrable pure form

ρ = eiωθ1 ∧ · · · ∧ θk .

We have

L = 〈θ1, . . . , θk, Z1, . . . , Zk〉 ⊕ {X − iω(X) : X ∈ h ⊗ C}
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and consider the subspace S = {X − iω(X) | X ∈ h ⊗ C}. By dω = 0 in ∧•g∗ and
ω ∈ ∧2h∗, S is an ideal of L. We have L/S ∼= LJ = (g/h)0,1 ⊕ (g/h)∗1,0. We have
the isomorphism h ⊗ C � X �→ X − iω(X) ∈ S.

By the Hochschild–Serre spectral sequence, we have the spectral sequence
{
E•,•
r

}
r

which converges to H•(L) such that

E p,q
2 = H p(L/S, Hq(S)).

4 De Rham and Dolbeault Cohomology of Nilmanifolds

Let G be a connected simply connected nilpotent Lie group and g the Lie algebra of
G. A Q-structure of g is a Q-subalgebra gQ ⊂ g such that gQ ⊗ R = g. It is known
that g admits a Q-structure if and only if G admits a lattice (namely, a cocompact
discrete subgroup); see, e.g., [16]. More precisely, considering the exponential map
exp : g → G which is an diffeomorphism, we can say that:

• for a Q-structure gQ ⊂ g, taking a basis X1, . . . , Xn of gQ, the group generated
by exp(Z〈X1, . . . , Xn〉) is a lattice in G;

• for a lattice � ⊂ G, the Q-span of exp−1(�) is a Q-structure of g.

If G admits a lattice �, we call �\G a nilmanifold.
We suppose that G admits a lattice � and consider the Q-structure gQ ⊂ g induced

by � as above. Let h ⊂ g be a subalgebra and H = exp(h). We suppose that gQ ∩ h
is a Q-structure of h. Then H ∩ � is a lattice of H ; see [16, Remark 2.16]. If h is an
ideal, then H is normal and we obtain the fiber bundle �\G → �H\G with the fiber
� ∩ H\H .

For a nilmanifold �\G, regarding the cochain complex ∧•g∗ as the space of left-
invariant differential forms on �\G, we have the inclusion

ι : ∧•g∗ → ∧•�\G.

Theorem 4.1 ([15]) The inclusion ι : ∧• g∗ → ∧•�\G induces a cohomology iso-
morphism

H•(g) ∼= H•(�\G).

Suppose that g admits a complex structure J . Then we can define the Dolbeault
complex ∧•,•g∗ ⊗ C of (g, J ). Consider the left-invariant complex structure on the
nilmanifold �\G induced by J and the Dolbeault complex ∧•,•�\G. Then we have
the inclusion ι : ∧•,• g∗ ⊗ C → ∧•,•�\G.

Let LJ = g0,1 ⊕ g∗1,0. We consider the Lie algebroid L�\G = T 0,1�\G ⊕
T ∗1,0�\G for the generalized complex structure associated with the complex struc-
ture on �\G. Then we have C∞(∧•L∗

�\G) = C∞(�\G) ⊗ ∧•L∗
J and we have the

inclusion

κ : ∧• L∗
J → C∞(∧•L∗

�\G).
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Proposition 4.2 ([13]) If the inclusion ι : ∧•,•g∗⊗C → ∧•,•�\G induces an isomor-
phism on the Dolbeault cohomology, then the inclusion κ : ∧• L∗

J → C∞(∧•L∗
�\G)

induces a cohomology isomorphism.

LetW be a complex-valued g-module.We regardW as a g0,1-module and so anLJ -
module. We consider the cochain complex ∧•L∗

J ⊗ W of the Lie algebra with values
in the module W . Consider the flat complex vector bundle W over �\G given by W .
We regard W as a holomorphic bundle over �\G and so a generalized holomorphic
bundle on �\G. We have C∞(∧•L∗

�\G ⊗W) = C∞(�\G)⊗∧•L∗
J ⊗W and we have

the inclusion

κ : ∧•L∗
J ⊗ W → C∞(∧•L∗

�\G ⊗ W).

Proposition 4.3 We suppose that the inclusion ι : ∧•,•g∗ ⊗ C → ∧•,•�\G induces
an isomorphism on the Dolbeault cohomology and W is a nilpotent g-module. Then
the inclusion

κ : ∧•L∗
J ⊗ W → C∞(∧•L∗

�\G ⊗ W)

induces a cohomology isomorphism.

Proof The proof is by induction on the dimension of W .
Suppose first dimW = 1. Then W is the trivial g-module and hence the statement

follows from Proposition 4.2.
In case dimW = n > 1, by Engel’s theorem, we have an (n − 1)-dimensional

g-submodule W̃ ⊂ W such that the quotientW/W̃ is the trivial submodule. The exact
sequence

0 W̃ W W/W̃ 0

gives the commutative diagram

0 ∧•L∗
J ⊗ W̃ ∧•L∗

J ⊗ W ∧•L∗
J ⊗ W/W̃ 0

0 C∞(∧•L∗
�\G ⊗ W̃) C∞(∧•L∗

�\G ⊗ W) C∞(∧•L∗
�\G ⊗ W/W̃) 0

such that the horizontal sequences are exact. Considering the long exact sequence
of cohomologies, by the Five Lemma (see, e.g., [14]), the proposition follows
inductively. ��

5 Left-Invariant Generalized Complex Structures on Nilmanifolds

Let G be a connected simply connected nilpotent Lie group and g the Lie algebra of
G. We assume that G admits a lattice �. We consider the nilmanifold �\G.
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We assume that g admits a generalized complex structure associated with a non-
degenerate integrable pure form ρ ∈ ∧•g∗

C
of type k. Then we have the left-invariant

generalized complex structure J of type k on the nilmanifold �\G.
Consider the bi-differential Z-graded complexes (U•, ∂, ∂) associated with (g, ρ)

and (U•, ∂, ∂) associated with (�\G,J ). Then the inclusion ι : ∧•g∗
C

→ ∧•�\G⊗C

can be considered as a homomorphism (U•, ∂, ∂) → (U•, ∂, ∂) of bi-differential Z-
graded complexes.

Proposition 5.1 There exists a homomorphism μ : (U•, ∂, ∂) → (U•, ∂, ∂) such that
μ ◦ ι = id. Hence the induced map ι : GH∂ (g) → GH∂ (�\G) is injective.

Proof Let dν be a bi-invariant volume form such that
∫
�\G dν = 1. We define the

map μ : ∧• �\G → ∧•g∗
C
as follows: for α ∈ ∧•�\G, the left-invariant form μ(α)

is defined by

μ(α)(X1, . . . , X p) =
∫

�\G
α(X̃1, . . . , X̃ p)dν,

where X̃1, . . . , X̃ p are vector fields on �\G induced by X1, . . . , X p ∈ g. Then we
have d ◦ μ = μ ◦ d and μ ◦ ι = id. We have μ(U•) ⊂ U•. We consider J as an
operator on U• such that

J (α) = i pα

for α ∈ U p. Then we have dJ −J d = −i(∂ − ∂); see [5,6]. By μ ◦J = J ◦ μ, we
have μ ◦ ∂ = ∂ ◦ μ and μ ◦ ∂ = ∂ ◦ μ. Hence the proposition follows.

Corollary 5.2 If the induced map ι : GH∂ (g) → GH∂ (�\G) is an isomorphism, then
the induced maps ι : GH∂ (g) → GH∂ (�\G) and ι : GHBC (g) → GHBC (�\G) are
also isomorphisms.

Proof By using the complex conjugation, we can easily prove that ι : GH∂ (g) →
GH∂ (�\G) is an isomorphism if ι : GH∂ (g) → GH∂ (�\G) is an isomorphism.

Now, [4,Corollary 1.2] implies that if ι : GH∂ (g) → GH∂ (�\G) and ι : GH∂ (g) →
GH∂ (�\G) are isomorphisms; then ι : GHBC (g) → GHBC (�\G) is an isomorphism.

By Theorem 3.1, in our settings, we have isomorphisms GHn−•
∂

(g) ∼= H•(L)

and GHn−•
∂

(�\G) ∼= H•(L). Thus, H•(L) ∼= H•(L) if and only if GHn−•
∂

(g) ∼=
GHn−•

∂
(�\G).

LetG be a connected simply connected nilpotent Lie group and g the Lie algebra of
G. We suppose that G admits a lattice � and consider the Q-structure gQ ⊂ g induced
by �. We assume that there exists an ideal h ⊂ g so that:

(i) gQ ∩ h is a Q-structure of h;
(ii) g/h admits a complex structure J ;
(iii) we have a closed 2-form ω ∈ ∧2g∗ yielding ω ∈ ∧2h∗ non-degenerate form on

h.
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Then, as in Example 3.2, we obtain the non-degenerate integrable pure form ρ ∈ ∧•g∗
C

and the Lie algebra L and its idealS. We obtain the symplectic fiber bundle �\G →
�H\G over the complex base�H\G with the symplectic fiber�∩H\H as in Sect. 2.
The left-invariant generalized complex structure given by ρ is the generalized complex
structure constructed in Sect. 2. Consider the Lie algebroids L and S as in Sect. 2.
Then L and S give the global frame of L and S respectively.

Consider the cochain complex ∧•L∗ and C∞(∧•L∗). Then we have C∞(∧•L∗) =
C∞(�\G) ⊗ ∧•L∗ and we have the inclusion

∧•L∗ → C∞(∧•L∗).

For the ideal S, we consider the filtration

F p ∧p+q L∗ = {
φ ∈ ∧p+qL∗ ∣∣ ω(X1, . . . , X p+q) = 0 for X�1 , . . . , X�q+1 ∈ S

}
.

This filtration gives the spectral sequence
{ ′E•,•

r
}
r which converges to H•(L) such

that

′E p,q
2 = H p(L/S, Hq(S)).

By the identifications L/S ∼= LJ and S = h ⊗ C, we have

′E p,q
2 = H p(LJ , H

q(h ⊗ C)).

The filtration F p ∧• L∗ can be extended to the filtration of C∞(∧•L∗) constructed in
Sect. 2. Hence the inclusion∧•L∗ → C∞(∧•L∗) induces the spectral sequence homo-
morphism ′E•,•• → E•,•• such that the homomorphism ′E•,•

2 → E•,•
2 is identified

with the map

H p(LJ , H
q(h ⊗ C)) → H p(L�H\G,Hq(� ∩ H\H)).

By Theorem 4.1, the flat bundle Hq(� ∩ H\H) over �H\G is derived from the
g/h-module Hq(h ⊗ C). The g/h-module Hq(h ⊗ C) being induced by the adjoint
representation on the nilpotent Lie algebra g, it is a nilpotent g/h-module. If ι :
∧•,•(g/h)∗⊗C → ∧•,•�H\G induces an isomorphismon theDolbeault cohomology,
then the homomorphism ′E•,•

2 → E•,•
2 is an isomorphism.

Hence, by Proposition 4.3, we obtain the following result.

Theorem 5.3 Let G be a connected simply connected nilpotent Lie group and g the
Lie algebra of G. We suppose that G admits a lattice � and consider the Q-structure
gQ ⊂ g induced by �. We assume that there exists an ideal h ⊂ g so that:

(i) gQ ∩ h is a Q-structure of h;
(ii) g/h admits a complex structure J ;
(iii) we have a closed 2-form ω ∈ ∧2g∗ yielding ω ∈ ∧2h∗ non-degenerate form on

h;
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(iv) ι : ∧•,• (g/h)∗ ⊗ C → ∧•,•�H\G induces an isomorphism on the Dolbeault
cohomology (e.g., J is bi-invariant, Abelian, or rational, i.e., J (gQ/h ∩ gQ) ⊂
gQ/h ∩ gQ).

Then the inclusion

∧•L∗ → C∞(∧•L∗)

induces a cohomology isomorphism.

Corollary 5.4 In the same assumptions of Theorem 5.3, the inclusion ι : (U•, ∂, ∂) →
(U•, ∂, ∂) induces isomorphismsGH∂ (g)

∼= GH∂ (�\G), andGH∂ (g) ∼= GH∂ (�\G),
and GHBC (g) ∼= GHBC (�\G).

6 Deformation and Cohomology

We consider a nilmanifold �\G with a left-invariant generalized complex structure
J . We consider the Lie algebra L ⊂ (g⊕g∗)⊗C and the cochain complex ∧•L∗. By
the identification L = L∗, we have the bracket on L∗. Consider the Schouten bracket
on ∧•L∗. Then, for the inclusion ∧•L∗ ⊂ C∞(∧•L∗), the Schouten bracket on ∧•L∗
can be extended to the Schouten bracket on C∞(∧•L∗).

We assume that we have a smooth family ε(t) ∈ ∧2L∗ which satisfies the Maurer–
Cartan equation

dLε + 1

2
[ε, ε] = 0

such that ε(0) = 0. Then we have deformations Jε(t) of J .

Theorem 6.1 Let �\G be a nilmanifold with a left-invariant generalized complex
structure J ; denote by g the Lie algebra of G. If the isomorphism GH∂ (g)

∼=
GH∂ (�\G) holds on the original generalized complex structureJ , then the same iso-
morphism holds on the deformed generalized complex structure Jε(t) for sufficiently
small t .

Proof Take a smooth family of generalized Hermitian metrics for the generalized
complex structures Jε(t). We obtain the smooth family �∂̄(t) of elliptic operators on∧•�\G ⊗ C such that �∂̄(t)(∧•g∗ ⊗ C) ⊂ ∧•g∗ ⊗ C.

Take a Hermitian metric on g ⊗ C and extend it to T�\G ⊗ C. Consider the
completion W 0(∧•�\G ⊗ C) with respect to the L2-norm. Consider the orthogonal
complement (ker�∂̄(t))

⊥ inW 0(∧•�\G ⊗ C). It is known that for sufficiently small
t , we have (ker�∂̄(0))

⊥ ∩ ker�∂̄(t) = 0.
We can easily show that any cohomology class in GH∂ (g) admits a unique rep-

resentative in ker�∂̄(0). Hence, by the isomorphism GH∂ (g)
∼= GH∂ (�\G), we

have ker�∂̄(0) ⊂ ∧•g∗ ⊗ C. This implies that (∧•g∗ ⊗ C)⊥ ⊂ (ker�∂̄(0))
⊥. By

(ker�∂̄(0))
⊥ ∩ ker�∂̄(t) = 0, we have ker�∂̄(t) ⊂ ∧•g∗ ⊗ C. Hence, on the

deformed generalized complex structure Jε(t), any cohomology class in GH∂ (�\G)

admits a representative in ∧•g∗ ⊗ C and the theorem follows. ��
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Theorem 6.2 Let �\G be a nilmanifold with a left-invariant generalized complex
structure J ; denote by g the Lie algebra of G. If the isomorphism GH∂ (g)

∼=
GH∂ (�\G) holds on the original generalized complex structure J , then any suf-
ficiently small deformation of generalized complex structure is equivalent to a
left-invariant generalized complex structureJε with ε ∈ ∧2L∗ satisfying the Maurer–
Cartan equation.

Proof By the isomorphism GH∂ (g)
∼= GH∂ (�\G), we have the isomorphism

H∗(L) ∼= H∗(L).
Take a Hermitian metric on L. Since L gives the global frame of L , it gives a

Hermitian metric on L . Consider the adjoint operator d∗
L , the Laplacian operator

�L = dLd∗
L + d∗

LdL , the projection H : C∞(∧•L∗) → ker�L and the Green
operator G. Obviously, these operators can be extended to ∧•L∗. Since ∧•L∗ is finite
dimensional, we can easily prove that any cohomology class in H∗(L) admits a unique
representative in ker�L . Hence, combiningwith theHodge theory on the elliptic com-
plex (C∞(∧•L∗), dL), we have ker�L ⊂ ∧•L∗. Hence, for ε1 ∈ ker�L , the formal
power series ε(ε1) as in Theorem 1.1 is valued in ∧•L∗. Thus the theorem follows
from Theorem 1.1.

7 Example: The Kodaira–Thurston Manifold

We consider the real Heisenberg group H3(R) which is the group of matrices of the
form

⎛
⎝ 1 x z
0 1 y
0 0 1

⎞
⎠

where x, y, z ∈ R. Then H3(R) admits the lattice H3(Z) = GL3(Z) ∩ H3(R). We
consider the Lie group H3(R) × R with the lattice H3(Z) × Z.

Let g = 〈X1, X2, X3, X4〉 such that [X1, X2] = X3 and other brackets are 0. Then
g is the Lie algebra of H3(R) × R and the basis X1, X2, X3, X4 gives the Q-structure
associated with the lattice H3(Z) × Z. Consider the ideal h = 〈X2, X3〉. In this case,
the assumptions in Theorem 5.3 hold.

Take the dual basis {x1, x2, x3, x4} of {X1, X2, X3, X4} and consider ∧•g∗
C

=
∧•〈x1, x2, x3, x4〉. Consider the non-degenerate integrable pure form

ρ = eix2∧x3 ∧ (x1 + i x4)

of type 1. We have

L = 〈X1 + i X4, x1 + i x4, X2 − i x3, X3 + i x2〉.

In this case, we have S = 〈X2 − i x3, X3 + i x2〉 and S is an ideal. We obtain

U2 = 〈ρ〉
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U1 = 〈eix2∧x3 , eix2∧x3 ∧ (x1 + i x4) ∧ (x1 − i x4), (x1 + i x4) ∧ x3,

(x1 + i x4) ∧ x2〉
U0 = 〈eix2∧x3 ∧ (x1 − i x4), x3, x2, x3 ∧ (x1 + i x4) ∧ (x1 − i x4),

x2 ∧ (x1 + i x4) ∧ (x1 − i x4), e−i x2∧x3 ∧ (x1 + i x4)〉
U−1 = 〈e−i x2∧x3, e−i x2∧x3 ∧ (x1 + i x4) ∧ (x1 − i x4), (x1 − i x4) ∧ x3,

(x1 − i x4) ∧ x2〉
U−2 = 〈ρ̄〉.

We have that the only non-trivial differentials are

d ((x1 + i x4) ∧ x3) = ∂ ((x1 + i x4) ∧ x3) = i x1 ∧ x2 ∧ x4,

d (x3) = −1

2
(x1 + i x4) ∧ x2 − 1

2
(x1 − i x4) ∧ x2,

d ((x1 − i x4) ∧ x3) = ∂ ((x1 + i x4) ∧ x3) = i x1 ∧ x2 ∧ x4.

Define the Kodaira–Thurston manifold as the compact quotient

M := (H3(Z) × Z)
∖

(H3(R) × R) .

By Corollary 5.4, we get:

GH2
∂
(M) = 〈[ρ]〉

GH1
∂
(M) = 〈[eix2∧x3], [eix2∧x3 ∧ (x1 + i x4) ∧ (x1 − i x4)]〉

GH0
∂
(M) = 〈[eix2∧x3 ∧ (x1 − i x4)], [x2], [x3 ∧ (x1 + i x4) ∧ (x1 − i x4)],

[e−i x2∧x3 ∧ (x1 + i x4)]〉
GH−1

∂
(M) = 〈[e−i x2∧x3], [e−i x2∧x3 ∧ (x1 + i x4) ∧ (x1 − i x4)]〉

GH−2
∂

(M) = 〈[ρ̄]〉,

and

GH2
BC (M) = 〈[ρ]〉

GH1
BC (M) = 〈[eix2∧x3 ], [eix2∧x3 ∧ (x1 + i x4) ∧ (x1 − i x4)],

[(x1 + i x4) ∧ x2]〉
GH0

BC (M) = 〈[eix2∧x3 ∧ (x1 − i x4)], [x2], [x3 ∧ (x1 + i x4) ∧ (x1 − i x4)],
[x2 ∧ (x1 + i x4) ∧ (x1 − i x4)], [e−i x2∧x3 ∧ (x1 + i x4)]〉

GH−1
BC (M) = 〈[e−i x2∧x3 ], [e−i x2∧x3 ∧ (x1 + i x4) ∧ (x1 − i x4)],

[(x1 − i x4) ∧ x2]〉
GH−2

BC (M) = 〈[ρ̄]〉.
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