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Abstract In this paper, we discuss Calabi’s equation of the Kähler–Ricci soliton type
on a compact Kähler manifold. This equation was introduced by Zhu as a general-
ization of Calabi’s conjecture. We give necessary and sufficient conditions for the
unique existence of a solution for this equation on a compact Kähler manifold with
a holomorphic vector field which has a zero point. We also consider the case of a
nowhere vanishing holomorphic vector field, and give sufficient conditions for the
unique existence of a solution for this equation.
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1 Introduction

Let (M, ω) be an m-dimensional compact Kähler manifold. In Kähler geometry, the
following theorem is widely known as Calabi’s conjecture:

Theorem 1.1 Let � ∈ 2πc1(M) be a real (1, 1)-form. Then there exists a unique
Kähler form ω′ in the Kähler class [ω] such that Ric(ω) = �.

Yau [8] proved this theorem by the continuity method and Cao [1] also proved it by
using some geometric flow. This theorem is deeply related to Kähler–Einstein metrics.
For instance, as an immediate corollary, we have
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3326 K. Tottori

Corollary 1.2 If c1(M) = 0, then there exists a unique Ricci-flat Kähler form ω′ in
Kähler class [ω].

As a generalization of Calabi’s conjecture, Zhu [9] considered the following prob-
lem:

Problem 1.3 (Calabi’s conjecture of the Kähler–Ricci soliton type). Let � ∈
2πc1(M) be a real (1, 1)-form and X be a holomorphic vector field on M. Then,
does there exist a Kähler form ω′ in the Kähler class [ω] such that

Ric(ω′) − � = LXω′? (1.1)

Here LX denotes the Lie derivative along X . We call (1.1) Calabi’s equation of the
Kähler–Ricci soliton type. One of the motivations for which he introduced Eq. (1.1)
was to study Kähler–Ricci solitons. A Kähler form ω′ is called a Kähler–Ricci soliton
if it satisfies

Ric(ω′) − ω′ = LXω′ (1.2)

for some holomorphic vector field X . In particular, if X = 0, then a Kähler–Ricci
soliton is nothing but a Kähler–Einstein metric. Clearly, a Kähler–Ricci soliton ω′ is a
solution for (1.1) when � = ω′. In his paper, Zhu [9] showed the following theorem:

Theorem 1.4 [9] Let (M, ω) be a compact Kähler manifold with c1(M) > 0. Let
� ∈ 2πc1(M) be a positive definite (1, 1)-form on M and X be a holomorphic vector
field on M. Then Eq. (1.1) has a unique solution ω′ in the Kähler class [ω] if and only
if

(i) There exists a maximal compact subgroup K of Aut0(M) such that it contains
the one-parameter family {exp(t Im X)}t∈R,

(ii) LX� is a real (1, 1)-form on M.

Here Aut0(M) is the identity component of the group Aut(M) of holomorphic
automorphisms of M.

One of themain purposes of this paper is to remove the assumption that� is positive
definite and give a partial answer to Problem 1.3. Our first main result is as follows:

Theorem 1.5 Let (M, ω) be a compact Kähler manifold and � ∈ 2πc1(M) be a real
(1, 1)-form on M. Suppose that a holomorphic vector field X has a zero point. Then
Eq. (1.1) has a unique solution ω′ in the Kähler class [ω] if and only if

(i) There exists a maximal compact subgroup K of Aut0(M) such that it contains
the one-parameter family {exp(t Im X)}t∈R,

(ii) LX� is a real (1, 1)-form on M.

As a corollary of Theorem 1.5, we have

Corollary 1.6 Let (M, ω) be a compact Kähler manifold. Let � ∈ 2πc1(M) be a real
(1, 1)-form on M and X be a holomorphic vector field on M. Suppose H1(M;R) = 0.
Then Eq. (1.1) has a unique solution ω′ in the Kähler class [ω] if and only if
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(i) There exists a maximal compact subgroup K of Aut0(M) such that it contains
the one-parameter family {exp(t Im X)}t∈R,

(ii) LX� is a real (1, 1)-form on M.

In particular, if M is a Fanomanifold, i.e., c1(M) > 0, then M satisfies the condition
H1(M;R) = 0. Zhu used the continuity method in the proof of his theorem, but we
show Theorem 1.5 by using a geometric flow.

We also consider the case of a nowhere vanishing holomorphic vector field X . This
case is more complicated because the harmonic part of iXω does not vanish. Under
the condition that X has no zero point, we show the following theorem:

Theorem 1.7 Let (M, ω) be a compact Kähler manifold and � ∈ 2πc1(M) be a real
(1, 1)-form on M. Let X be a holomorphic vector field which has no zero point. Assume
that both {exp(t Re X)}t∈R and {exp(t Im X)}t∈R are periodic. Moreover, suppose that
LX� is a real (1, 1)-form on M. Then Eq. (1.1) has a unique solution ω′ in the Kähler
class [ω].

We organize this paper as follows. In Sect. 2, we review some basic facts in Kähler
geometry. In Sect. 3, we show the necessity part of Theorem 1.5 (cf. [9]). In Sects. 4,
5 and 6, we introduce a geometric flow, and prove the long time existence and the
convergence of the flow (cf. [1,7]). In Sect. 7, we consider the case of a nowhere
vanishing holomorphic vector field.

2 Preliminaries

Let M be an m-dimensional compact Kähler manifold and ω be a Kähler form on M .
In local coordinates (z1, . . . , zm), ω has an expression

ω = √−1
m∑

i, j=1

gi j̄ dzi ∧ dz̄ j ,

where (gi j̄ ) is a positive definite Hermitian matrix. Recall that gi j̄ satisfy the Kähler
identities

∂k gi j̄ = ∂i gk j̄ , (2.1)

where ∂i = ∂/∂zi and ∂ j̄ = ∂/∂ z̄ j . For arbitrary Kähler form ω′ in the Kähler class
[ω], there exists a smooth real function ϕ on M such that

ω′ = ω + √−1∂∂̄ϕ.

The Ricci form Ric(ω) of ω is given by

Ric(ω) = √−1
m∑

i, j=1

Ri j̄ dzi ∧ dz̄ j = −√−1∂∂̄ log det(gi j̄ )

and it represents 2πc1(M).
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Let η(M) be the space of holomorphic vector fields on M . For each holomorphic
vector field X , there exists a unique function θX (ω) such that

{
LXω = √−1∂∂̄θX (ω),∫

M θX (ω) ωm

m! = 0.
(2.2)

Put αX := iXω − √−1∂̄θX (ω). Then αX is a harmonic (0, 1)-form with respect to
ω. The following propositions are widely known, but we give proofs for the reader’s
convenience.

Proposition 2.1 Let ωϕ = ω + √−1∂∂̄ϕ be a Kähler form on M in the Kähler class
[ω]. Then

θX (ωϕ) = θX (ω) + X (ϕ). (2.3)

Proof Let ωs = ω + s
√−1∂∂̄ϕ. From the definition of θX , we have

√−1∂∂̄θX (ωs) = √−1∂∂̄θX (ω) + s
√−1∂∂̄ X (ϕ) (2.4)

and hence
θX (ωs) = θX (ω) + s X (ϕ) + cs (2.5)

for some constants cs . Clearly, c0 = 0.
We now compute

0 ≡ d

ds

∫

M
(θX (ω) + s X (ϕ) + cs)

ωm
s

m!
=

∫

M

(
X (ϕ) + dcs

ds
+ (θX (ω) + s X (ϕ) + cs) �ωs ϕ

)
ωm

s

m!
=

∫

M
X (ϕ)

ωm
s

m! +
∫

M
ϕLX

(
ωm

s

m!
)

+ dcs

ds

∫

M

ωm
s

m!
= dcs

ds

∫

M

ωm
s

m! , (2.6)

where �ωs = gi j̄
s ∂i∂ j̄ denotes the complex Laplacian with respect to ωs . Thus we

conclude cs ≡ 0. �	
Proposition 2.2 αX is independent of the choice of ω′ in the Kähler class [ω].
Proof From Proposition 2.1, it follows that

iXωϕ − √−1∂̄θX (ωϕ) = iXω − √−1∂̄θX (ω) + √−1
(
iX∂∂̄ϕ − ∂̄(X (ϕ))

)
. (2.7)

Since X is holomorphic, we have iX∂∂̄ϕ − ∂̄(X (ϕ)) = 0. �	
Proposition 2.3 [4] αX ≡ 0 if and only if X has a zero point.
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Proof Suppose αX ≡ 0. Let p ∈ M be a point at which θX (ω) attains its maximum.
Then X vanishes at p. Conversely, suppose X vanishes atq ∈ M . SinceαX is harmonic,
∂̄∗αX = 0 and ∂αX = 0. Thus we have

0 ≤
∫

M
|αX |2ω

ωm

m! =
∫

M
(iXω − √−1∂̄θX (ω), αX )ω

ωm

m!
=

∫

M
(iXω, αX )ω

ωm

m!
=

∫

M
ᾱX (X)

ωm

m! . (2.8)

Furthermore, ᾱX (X) is a holomorphic function on M . Since M is compact and
Xq = 0, it follows that ᾱX (X) ≡ 0. Therefore, αX ≡ 0. �	

As a corollary of Proposition 2.3, we have

Corollary 2.4 Suppose H1(M;R) = 0. Then, for arbitrary holomorphic vector field
X, αX ≡ 0.

3 Calabi’s Equation of the Kähler–Ricci Soliton Type

Let � ∈ 2πc1(M) be a real (1, 1)-form on M and X be a holomorphic vector field on
M . In this section, we assume a Kähler form ω is a solution for Calabi’s equation of
the Kähler–Ricci soliton type:

Ric(ω) − � = LXω. (3.1)

The aim of this section is to derive the necessary conditions for the existence of the
solution ω, which was obtained by Zhu ([9]).

Since Ric(ω) and � are real (1, 1)-forms on M , we can see LXω is a real (1, 1)-
form. Therefore, Im X is a Killing vector field, that is, Im X generates a one-parameter
group of isometries of (M, ω). Thus, there exists a maximal compact subgroup K of
Aut0(M) such that it contains the one-parameter group {exp(t Im X)}t∈R.

Moreover, we can see the following:

Proposition 3.1 [9] Assume that there exists a solution ω for (3.1). Then LX� is a
real (1, 1)-form on M.

Proof First note that θX (ω) is a real-valued function. We have

LRe X Ric(ω) = d

dt

∣∣∣
t=0

(exp(t Re X))∗ Ric(ω)

= −√−1∂∂̄�ωθX (ω), (3.2)

and
LIm X Ric(ω) = 0. (3.3)
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Hence LX Ric(ω) is a real (1, 1)-form.
Furthermore, we have

X (θX (ω)) = gi j̄ X i X j − √−1αX (X). (3.4)

Since X is holomorphic and ∂αX = 0, it follows that ∂̄ (ᾱX (X)) = 0. Thus we
obtain √−1∂∂̄ X (θX (ω)) = √−1∂∂̄(gi j̄ X i X j ). (3.5)

HenceLX (LXω) = √−1∂∂̄ X (θX (ω)) is a real (1, 1)-form, and we concludeLX�

is a real (1, 1)-form. �	
Consequently, we complete the proof of the necessity part of Theorem 1.5.

4 A Geometric Flow of the Kähler–Ricci Soliton Type

In order to show that Calabi’s equation of the Kähler–Ricci soliton type has a solution,
in this section, we introduce a geometric flow. We also show the short-time existence
of the flow.

Let X be a holomorphic vector field on M . We assume that there exists a maximal
compact subgroup K ⊂ Aut0(M) such that {exp(t Im X)}t∈R ⊂ K . By changing ω

if necessary, we may assume that ω is a K -invariant Kähler form. Let � ∈ 2πc1(M)

be a real (1, 1)-form such that LX� is a real (1, 1)-form. Since � ∈ 2πc1(M), there
exists a real-valued function f on M such that

{
Ric(ω) − � = √−1∂∂̄ f,∫

M e f ωm

m! = ∫
M

ωm

m! .
(4.1)

Now we consider the following flow:

{
d
dt ωt = −Ric(ωt ) + � + LXωt ,

ω0 = ω.
(4.2)

By the definition of this flow, we can see the following lemma:

Lemma 4.1 The flow (4.2) preserves its de Rham cohomology class.

Therefore, the flow (4.2) is equivalent to the following parabolic complex Monge–
Ampère equation:

{
ϕ̇t = log ωm

t
ωm − f + θX (ω) + X (ϕt ),

ϕ0 = 0.
(4.3)

First we consider the short-time existence.
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Theorem 4.2 There exists a positive constant T > 0 such that a unique solution ϕt

for (4.3) exists for 0 ≤ t < T .

Proof Let �t = (exp(−t Re X))∗ �. We consider the following flow:

{
d
dt ω̃t = −Ric(ω̃t ) + �t ,

ω̃0 = ω.
(4.4)

Equation (4.4) has a unique short-time solution.We nowfix s ∈ R. SinceLIm X� =
0 and [Re X, Im X ] = 0, it follows that

(exp(s Im X))∗ (exp(−t Re X))∗ � = (exp(−t Re X))∗ (exp(s Im X))∗ �

= (exp(−t Re X))∗ �. (4.5)

Moreover, since LIm Xω = 0, we have

(exp(s Im X))∗ ω̃0 = ω. (4.6)

Therefore, the uniqueness of the solution for (4.4) implies

(exp(s Im X))∗ ω̃t = ω̃t , (4.7)

and hence, LIm X ω̃t = 0.
Thus

ωt = (exp(t Re X))∗ω̃t (4.8)

is the unique short-time solution for (4.2). �	

5 A Priori Estimates

In this section, let us assume that X has a zero point. Then, from Proposition 2.3,
αX ≡ 0. First, we need the following lemma:

Lemma 5.1 (see [2,9]) Let (M, ω) be a compact Kähler manifold. Let ωϕ = ω +√−1∂∂̄ϕ be a Kähler form. Suppose that LXω and LXωϕ are real (1, 1)-forms. Then
‖θX (ω)‖C0 = ‖θX (ωϕ)‖C0 .

Proof First note that θX (ωϕ) and θX (ω) are real functions. Suppose θX (ωϕ) and θX (ω)

attain their maximum at p and q, respectively. Since iXω = √−1∂̄θX (ω) and iXωϕ =√−1∂̄θX (ωϕ), X vanishes at p and q. Thus, from Proposition 2.1, we can see that

θX (ωϕ)(p) = θX (ω)(p) ≤ θX (ω)(q), (5.1)

θX (ω)(q) = θX (ωϕ)(q) ≤ θX (ωϕ)(p). (5.2)

Hence max θX (ω) = max θX (ωϕ). Similarly, we see min θX (ω) = min θX (ωϕ). �	
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5.1 Volume Ratio Estimate

Let ϕt be the solution for (4.3). Now we shall prove some estimates for ϕt . Differen-
tiating (4.3), we obtain

(∂t − �t − X)ϕ̇t = 0. (5.3)

Then the maximum principle implies the following:

Proposition 5.2 There exists a positive constant C1 depending only on f and θX (ω)

such that
|ϕ̇t | ≤ C1 (5.4)

for all t ≥ 0.

Moreover, by (4.3), Lemma 5.1 and Proposition 5.2, we obtain the following esti-
mate:

Proposition 5.3 There exists a positive constant C2 depending only on f and θX (ω)

such that ∣∣∣ log
ωm

ϕt

ωm

∣∣∣ ≤ C2. (5.5)

5.2 C2 Estimate

Next let Yt := gi j̄ gt,i j̄ = m + �ωϕt . We shall show an estimate for Yt .

Proposition 5.4
Yt ≤ C3 (5.6)

for some positive constant C3 independent of t .

Proof Let

ψt := ϕt − 1

Vol(M)

∫

M
ϕt

ωm

m! , (5.7)

where Vol(M) = ∫
M ωm/m!. Since ωϕt = ωψt , we consider ψt instead of ϕt .

Now we compute in normal coordinates with respect to ω at p ∈ M , i.e., gi j̄ (p) =
δi j and ∂k gi j̄ (p) = ∂k̄ gi j̄ (p) = 0. Furthermore, we may assume that gt,i j̄ (p) = λiδi j

and then Yt (p) = ∑
λα . First we show the following inequality:

Lemma 5.5 We have

(∂t − �t − X) log Yt (p) ≤ 1

Yt

(
−Riīkk̄(p)

λi

λk
+ �i ī (p) + λi∂i X i (p)

)
, (5.8)

where Ri j̄kl̄ is the curvature tensor for ω.

Proof of Lemma 5.5 Using (4.3), we have

Yt∂t log Yt = −Rt,i ī + �i ī + ∂i∂ī (θX (ω) + X (ψt )). (5.9)
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A straightforward computation gives

�t Yt (p) = Riīkk̄(p)
λi

λk
− Rt,i ī (p) + 1

λiλk
∂i gt,k j̄ (p)∂ī gt, j k̄(p). (5.10)

Furthermore, we have

|∂Yt |2ωt
(p) =

∑ 1

λi
∂i gt, j j̄∂ī gt,kk̄

≤
∑

j,l

(
∑

i

1

λi
|∂i gt, j j̄ |2

) 1
2
(

∑

k

1

λk
|∂k gt,ll̄ |2

) 1
2

=
⎛

⎝
∑

j

λ
1
2
j

(
∑

i

1

λ jλi
|∂i gt, j j̄ |2

) 1
2
⎞

⎠
2

≤
(

∑

k

λk

) ⎛

⎝
∑

i, j

1

λ jλi
|∂i gt, j j̄ |2

⎞

⎠ ≤ Yt

⎛

⎝
∑

i, j,l

1

λ jλi
|∂i gt, j l̄ |2

⎞

⎠ .

(5.11)

Here the first and second inequalities follow from the Cauchy–Schwarz inequality.
Combining (5.10) and (5.11), we obtain

−Yt�t log Yt (p) = −�t Yt (p) + 1

Yt
|∂Yt |2ωt

(p)

≤ −Riīkk̄(p)
λi

λk
+ Rt,i ī (p). (5.12)

We also have

∂i∂ī (θX (ω) + X (ψt )) = ∂i (gt,kī Xk)

= Xk∂k gi ī + gt,kī∂i Xk

= X (Yt ) + λi∂i X i . (5.13)

Here we used the Kähler identities (2.1). Combining (5.9), (5.12) and (5.13), we
complete the proof of Lemma 5.5. �	
From Lemma 5.5 and λi ≤ Yt , it follows that

(∂t − �t − X) log Yt ≤ C
∑

i

1

λi
+ C ′, (5.14)

where a positive constant C depends only on � and a lower bound of the bisectional
curvature for ω, and C ′ = ‖∇ω X‖C0(M,ω). Moreover, from (4.3), Proposition 5.2 and
Proposition 5.3, it follows that
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(∂t − �t − X)ψt = log
ωm

t

ωm
− f + θX (ω) − �tψt + 1

Vol(M)

∫

M
ϕ̇t

ωm

m!
≥

∑ 1

λi
− C ′′, (5.15)

where C ′′ > 0 depends on f , θX (ω) and m. Let wt := log Yt − (C + 1)ψt . Then, by
(5.14) and (5.15), we obtain

(∂t − �t − X)wt ≤ C
∑

i

1

λi
+ C ′ − (C + 1)

(∑ 1

λi
− C ′′

)

= −
∑

i

1

λi
+ C4, (5.16)

where C4 = C ′ + C ′′(C + 1).
Now we compute

∑
i λ

−1
i . We have

Yt e
− log

ωm
t

ωm =
∑

i

λi

∏

k

1

λk

=
∑

i

∏

k �=i

1

λk

≤
(∑ 1

λi

)m−1

. (5.17)

By using Proposition 5.3, we obtain

Yt ≤ eC2
( ∑ 1

λi

)m−1
. (5.18)

We now need the following lemma (see [6]).

Lemma 5.6 Let f be a positive function on (M, ω). Suppose ϕ satisfies

ωm
ϕ

ωm
= f. (5.19)

Then we have
osc
M

ϕ := sup
M

ϕ − inf
M

ϕ ≤ C (5.20)

for some positive constant depending only on (M, ω) and ‖ f ‖C0 .

From Proposition 5.3, Lemma 5.6 and (5.18), we see that

ewt = e−(C+1)ψt Yt < C5

(∑ 1

λi

)m−1

(5.21)
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for some positive constantC5 independent of t . Thus, from (5.16) and (5.21), it follows
that

(∂t − �t − X)wt < − 1

C5
e

wt
m−1 + C4. (5.22)

Note that we can choose positive constants C4 and C5 such that

w0 ≡ logm < (m − 1) logC4C5. (5.23)

Now we prove
wt < (m − 1) logC4C5 (5.24)

for all t > 0 by contradiction. We assume that

maxwt0 = wt0(p0) = (m − 1) logC4C5, (5.25)

wt < (m − 1) logC4C5 (t < t0) (5.26)

for some t0 > 0. From (5.22), (5.25) and (5.26), we have

0 ≤ d

dt
wt0(p0) < 0, (5.27)

a contradiction. Thus we obtain

wt < (m − 1) logC4C5 (5.28)

and hence we complete the proof. �	
Propositions 5.3 and 5.4 immediately imply the following proposition:

Proposition 5.7
C−1
6 ω ≤ ωt ≤ C6ω (5.29)

for some positive constant C6 independent of t .

Proof We have λi < Yt ≤ C3 from Proposition 5.4. On the other hand, from Propo-
sitions 5.3 and 5.4, it follows immediately that

1

λi
<

∑

i

1

λi
≤

∏

k

1

λk

(∑
λi

)m−1 ≤ C (5.30)

for some positive constant C independent of t . �	

5.3 C3 Estimate

In this subsection, we shall show the following proposition:
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Proposition 5.8 There exists a positive constant C7 independent of t such that

∣∣∇0gt
∣∣2
ωt

≤ C7, (5.31)

where ∇0 is the Levi-Civita connection for ω0.

Our proof is a slight modification of the argument in [5] (see also [7]). Let σt :=
exp(−t Re X). We prove Proposition 5.8 by computing pullbacks under σt . More
precisely, we put

ω̃t := σ ∗
t ωt , (5.32)

ω̂t := σ ∗
t ω0, (5.33)

and let ∇̃, ∇̂ be the Levi-Civita connections for ω̃t , ω̂t , respectively. Then

S := ∣∣∇̂ g̃t
∣∣2
ω̃t

= σ ∗
t

∣∣∇0gt
∣∣2
ωt

. (5.34)

Therefore we show the uniform boundedness of S instead of |∇0gt |2ωt
. We define a

tensor k
i,p by

 := ∇̃ − ∇̂. (5.35)

Then we can express  as

k
ip = g̃kl̄∂i g̃pl̄ − ĝkl̄∂i ĝpl̄ (5.36)

and S as
S = ||2ω̃t

= g̃i j̄ g̃kl̄ g̃pq̄k
ip

l
jq . (5.37)

Now let us prove Proposition 5.8.

Proof of Proposition 5.8 We compute in normal coordinates with respect to ω̃t at
p ∈ M . First, a straightforward computation gives

�̃S = R̃ j ī
k
ip

k
jp + R̃q p̄

k
ip

k
iq − R̃kl̄

k
ip

l
i p

+ 2Re
(
∇̃α∇̃ᾱk

ip
k
ip

)
+ ∣∣∇̃

∣∣2
ω̃t

+ ∣∣∇̃
∣∣2
ω̃t

, (5.38)

where �̃ is the Laplacian with respect to ω̃t and R̃i j̄ is the Ricci tensor of ω̃t .
Recall that ω̃t satisfies (4.4). Moreover, we have

d

dt
ω̂t = LX ω̂t = √−1∂∂̄σ ∗

t θX (ω0) =: √−1∂∂̄θ̂t . (5.39)
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By using (4.4), (5.36) and (5.39), we obtain

∂t S =
(

R̃ j ī − �t, j ī

)
k

ipk
jp +

(
R̃q p̄ − �t,q p̄

)
k

ipk
iq −

(
R̃kl̄ − �t,kl̄

)
k

ipl
i p

+ ∂t
k
ipk

ip + k
ip∂t

k
ip

=
(

R̃ j ī − �t, j ī

)
k

ipk
jp +

(
R̃q p̄ − �t,q p̄

)
k

ipk
iq −

(
R̃kl̄ − �t,kl̄

)
k

ipl
i p

+ 2Re
((

−∇̃i Rpk̄ + ∇̃i �t,pk̄ + ĝkδ̄ ĝγ l̄ ∇̃i ĝpl̄∂p∂q̄ θ̂t + √−1ĝkl̄ ∇̃i (LX ω̂t )pl̄

)
k

ip

)
.

(5.40)

From (5.38) and (5.40), we obtain

(
∂t − �̃

)
S ≤ C S − 2Re

(
∇̃α∇̃ᾱk

ip
k
ip

)

+ 2Re
((

−∇̃i Rpk̄ +∇̃i�t,pk̄ + ĝkδ̄ ĝγ l̄∇̃i ĝpl̄∂p∂q̄ θ̂t + √−1ĝkl̄∇̃i (LX ω̂t )pl̄

)
k

ip

)

(5.41)

for some positive constant C independent of t .
From (5.36), we have

∂ᾱk
ip = −R̃k

ji ᾱ + R̂k
ji ᾱ, (5.42)

∇̃α∇̃ᾱk
ip = −∇̃α R̃k

ji ᾱ + ∇̃α R̂k
ji ᾱ

= −∇̃i R̃ pk̄ + ∇̃α R̂k
ji ᾱ . (5.43)

Here we used the Bianchi identities ∇̃α R̃k
ji β̄

= ∇̃i R̃k
jαβ̄

. Combining Proposition

5.7, (5.41) and (5.42), we obtain

(∂t − �̃)S ≤ C S + 2Re
((

−∇̃α R̂k
ji ᾱ + ∇̃i�t,pk̄

+ ĝkδ̄ ĝγ l̄∇̃i ĝpl̄∂p∂q̄ θ̂t + √−1ĝkl̄∇̃i (LX ω̂t )pl̄

)
k

ip

)

≤ C ′ (S + √
S
)

≤ 2C ′(S + 1) (5.44)

for some positive constant C ′ independent of t .
Furthermore, put Ỹt := ĝi j̄ g̃i j̄ = σ ∗

t Yt . Then, from Proposition 5.7, (5.9), (5.10)
and (5.13), we have (

∂t − �̃
)

Ỹt ≤ C ′′ − 1

C ′′ S (5.45)

for some positive constants C ′′ independent of t .
Let Q := S + C ′′(2C ′ + 1)Ỹt . Then, by (5.44) and (5.45), we obtain

(
∂t − �̃

)
Q ≤ −S + C7 (5.46)
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for some positive constant C7 independent of t . Note that we can choose the positive
constant C7 such that

mC ′′(2C ′ + 1) < C7. (5.47)

Then the same argument in Sect. 5.2 implies

S ≤ C7, (5.48)

and hence, we complete the proof. �	
Combining the above estimates and standard Schauder theory, we conclude that a

solution for (4.3) exists for a long time.

Theorem 5.9 A solution ϕt for (4.3) exists for all time t ∈ [0,∞).

Proof Let T be the maximal time. Assume T < ∞. From the estimates which we
show in this section and standard Schauder theory (see [3]), there exists a positive
constant C independent of t ∈ [0, T ) such that ‖ϕt‖C2,ε ≤ C . Now let (z1, . . . , zm)

be local coordinates of M and zi = xi +√−1xm+i . Differentiating (4.3) with respect
to xl , we obtain

(∂t − �t − v)
∂ϕt

∂xl
= gi j̄

t

∂gi j̄

∂xl
− gi j̄

∂gi j̄

∂xl
− ∂ f

∂xl
+ ∂θ(ω)

∂xl
+ ∂vi

∂xl

∂ϕt

∂xi
, (5.49)

where v = vi∂xi = Re X . We have a uniform C0,ε estimate for the right-hand side.
Therefore, standard Schauder theory implies that for arbitrary k, there exists a positive
constant Ck independent of t ∈ [0, T ) such that ‖ϕt‖Ck ≤ Ck . Then there exists a
smooth functionϕT and a time sequence {tn}which converges to T such thatϕtn → ϕT

in Ck . This is a contradiction, and hence ϕt exists for all time t ∈ [0,∞). �	

6 Convergence of the Flow

In this section, we show the convergence of the flow (4.2). Let ψt be the function
defined as in (5.7). First note that from the estimates in the previous section, we have
uniform Ck estimates for ψt (k = 0, 1, . . .). Hence there is a sequence {tn} such that

ψtn → ψ∞ (6.1)

in C∞ for some smooth function ψ∞ on M .
Now, we prove the following lemma in order to show the convergence of the flow:

Lemma 6.1 Let M be a compact Riemannian manifold and gt be Riemannian metrics
such that for any nonnegative integers k, l |∂k

t ∇l gt | is uniformly bounded. Here ∇ is
the Levi-Civita connection for g0 and | · | is the norm with respect to g0. For a smooth
vector field v on M, we consider the following equation:

(∂t − �t − v) ft = 0. (6.2)
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Then there exists a positive constant 0 < γ < 1 independent of t such that

osc ft2 ≤ γ osc ft1 (t1 + 1 ≤ t2) (6.3)

for arbitrary solution ft for (6.2).

Proof First note that the maximum principle implies that, for arbitrary solution ft for
(6.2), supM ft is monotonically decreasing and infM ft is monotonically increasing,
and hence, osc ft is monotonically decreasing. Therefore, we have only to consider the
case t2 = t1 +1. We prove this lemma by contradiction. We assume that the statement
is not true. Then for arbitrary positive integer n, there exists a solution f (n)

t for (6.2)
and t (n)

1 such that

osc
M

f (n)

t (n)
1 +1

>

(
1 − 1

n

)
osc
M

f (n)

t (n)
1

. (6.4)

We may assume that

sup
M

f (n)

t (n)
1

= 1, inf
M

f (n)

t (n)
1

= 0. (6.5)

(6.4) implies

inf
M

f (n)

t (n)
1 +1

<
1

n
or sup

M
f (n)

t (n)
1 +1

> 1 − 1

n
. (6.6)

Replacing f (n) by 1 − f (n), if necessary, we may assume that

inf
M

f (n)

t (n)
1 +1

<
1

n
. (6.7)

Put h(n)
s := f (n)

t (n)
1 + 1

2+s
. Then we have

0 ≤ h(n)
s ≤ 1, osc

M
h(n)

1
2

> 1 − 1

n
, inf

M
h(n)

1
2

<
1

n
. (6.8)

Moreover, h(n)
s satisfies

(
∂s − �

t (n)
1 + 1

2+s
− v

)
h(n)

s = 0. (6.9)

Since we have uniform Ck estimates (k = 0, 1, . . . ) for gt , sequences {g(n)
s :=

g
t (n)
1 + 1

2+s
} and {h(n)

s } have convergent subsequenceswith limits ĝs and ĥs , respectively.

Note that ĝs are smooth Riemannian metrics and ĥs are functions that are smooth as
functions on M and of class C1 as functions of s ∈ [0,∞) such that

(∂s − �ĝs − v)ĥs = 0, (6.10)

0 ≤ ĥs ≤ 1, osc
M

ĥ 1
2

≥ 1, inf
M

ĥ 1
2

= 0. (6.11)
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By the maximum principle, we can see that ĥs ≡ 0. This is a contradiction. �	
Since ϕ̇t satisfies (5.3), Lemma 6.1 implies

osc ϕ̇t2 ≤ e−a osc ϕ̇t1 (t1 + 1 ≤ t2) (6.12)

for some positive constant a independent of t . From the definition of ψt , we see that
osc ϕ̇t = osc ψ̇t . Thus we have

sup ψ̇t ≤ osc ψ̇t ≤ Ce−at (6.13)

for somepositive constantC independent of t . Hence,weobtain the following theorem:

Theorem 6.2 ψt converges in C∞ to ψ∞ and ϕ̇t converges in C∞ to a constant.

Next, we prove the uniqueness of the solution for (3.1). Let ω0, ω1 be solutions for
(3.1) and ωs := (1 − s)ω0 + sω1. Then, we have a solution ωs

t for

{
d
dt ω

s
t = −Ric(ωs

t ) + � + LXωs
t ,

ωs
0 = ωs .

(6.14)

Note that ω0
t ≡ ω0 and ω1

t ≡ ω1. From Theorem 6.2, ωs
t converges to some Kähler

metric ωs∞ = ω + √−1∂∂̄ψ s∞ and ωs∞ satisfies

0 = −Ric(ωs∞) + � = LXωs∞. (6.15)

Differentiating (6.15) with respect to s, we obtain

√−1∂∂̄

(
(�ωs∞ + X)

d

ds
ψ s∞

)
= 0. (6.16)

Therefore, the maximum principle implies ωs∞ = ω0 = ω1.
Consequently, we complete the proof of the sufficiency part of Theorem 1.5.

7 More General Cases

In this section, we consider the case of a nowhere vanishing holomorphic vector field
X . First, note that in Sect. 5 we use the assumption that X has a zero point only in the
proof of Lemma 5.1. Hence, if we show Lemma 5.1 under the condition that X has a
zero point, then, by using the argument in Sect. 5, we can show the existence of the
solution for (1.3).

The goal of this section is to show the following lemma:

Lemma 7.1 Let (M, ω) be a compact Kähler manifold and ωϕ = ω + √−1∂∂̄ϕ

be a Kähler form. Let X be a nowhere vanishing holomorphic vector field. Sup-
pose that LXω and LXωϕ are real (1, 1)-forms. Assume both {exp(t Re X)}t∈R and
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{exp(t Im X)}t∈R are periodic. Then there exists a constant C independent of ϕ such
that

|X (ϕ)| ≤ C. (7.1)

7.1 The Case m = 1

Let us prove Lemma 7.1 when m = 1. Hence, we consider the case where M is a
1-complex torus. When M is a 1-complex torus, we can remove the assumption that
{exp(t Re X)}t∈R and {exp(t Im X)}t∈R are periodic.Nowweshall show the following:

Lemma 7.2 Let M be a 1-complex torus and ωϕ = ω + √−1∂∂̄ϕ be a Kähler form.
Let X be a holomorphic vector field. Suppose that LXω and LXωϕ are real (1, 1)-
forms. Then

|X (ϕ)| ≤ C (7.2)

for some constant C depending only on M, X and ω.

Proof We may assume that

M = C/(ξ1Z + ξ2Z) (ξ1, ξ2 ∈ C, Re ξ1 �= 0) (7.3)

and X = ∂/∂z. Note that for any Kähler form ω on M ,

k
√−1dz ∧ dz̄ ∈ [ω], (7.4)

where k = ∫
M [ω]/ ∫

M

√−1dz ∧ dz̄. Therefore, we may assume ω = k
√−1dz ∧ dz̄.

Put z = x + √−1y. Suppose ωϕ = ω + √−1∂∂̄ϕ is a Kähler form and X (ϕ) is a
real function. Using the natural projection π : C −→ C/(ξ1Z + ξ2Z), we identify ϕ

and ω with their pullbacks. Since ωϕ is a Kähler form, ϕ satisfies

k + 1

4

(
∂2

∂x2
+ ∂2

∂y2

)
ϕ > 0. (7.5)

From 0 = 2 Im X (ϕ) = ∂yϕ, we see that

ϕ(x, y) = ϕ(x). (7.6)

Hence, from (7.5), we have

k + 1

4

∂2

∂x2
ϕ > 0. (7.7)

Moreover,
ϕ(x + Re ξ1) = ϕ(x + Re ξ1, Im ξ1) = ϕ(x), (7.8)
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i.e., ϕ is |Re ξ1|-periodic. Note that ∂xϕ and ∂2x ϕ are also |Re ξ1|-periodic.
Let x0 ∈ R be a minimizer of ϕ. For arbitrary ζ ∈ [0, |Re ξ1|], we have

∂ϕ

∂x
(ζ + x0) =

∫ ζ+x0

x0

∂2ϕ

∂x2
dx

> −4k
∫ ζ+x0

x0
dx > −4k|Re ξ1|. (7.9)

Hence we obtain 2 Re X (ϕ) > −4k|Re ξ1|.
On the other hand, let x1 ∈ R be a maximizer of ∂xϕ. Wemay assume ∂xϕ(x1) > 0.

Then there exists ζ ′ ∈ (0, |Re ξ1|) such that ζ ′ + x1 is a minimizer of ϕ. Thus we have

−∂ϕ

∂x
(x1) =

∫ ζ ′+x1

x1

∂2ϕ

∂x2
dx

> −4k
∫ ζ ′+x1

x1
du > −4k|Re ξ1|. (7.10)

Hence we conclude

|X (ϕ)| = |Re X (ϕ)| ≤ 2k|Re ξ1|. (7.11)

�	

7.2 The Case m ≥ 2

Now we prove Lemma 7.1 when m ≥ 2.

Proof of Lemma 7.1 The proof is similar to the proof of Corollary 5.3 in [9]. Since
[Re X, Im X ] = 0, {Re X, Im X} defines a holomorphic foliation FX on M . From
the assumption that both {exp(t Re X)}t∈R and {exp(t Im X)}t∈R are periodic, we see
that every leaf of FX is a compact Riemann surface and the leaf space M/FX is
compact. The condition X p �= 0 for arbitrary p ∈ M implies that every leaf of FX is
a 1-complex torus. Therefore, applying Lemma 7.2 to each leaf of FX , we obtain the
desired uniform estimate. �	
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