
J Geom Anal (2016) 26:3098–3128
DOI 10.1007/s12220-015-9664-9

On the Subadditivity of the Entropy on the Sphere

Amit Einav1

Received: 23 November 2014 / Published online: 17 November 2015
© Mathematica Josephina, Inc. 2015

Abstract We present a refinement of a known entropic inequality on the sphere, find-
ing suitable conditions under which the uniform probability measure on the sphere
behaves asymptomatically like the Gaussian measure on R

N with respect to the
entropy. Additionally, we remark about the connection between this inequality and
the investigation of the many-body Cercignani’s conjecture.
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1 Introduction

A fundamental principle in equilibrium statistical mechanics is that of the equivalence
of ensembles. In mathematical terms, this principle states that the uniformmeasure on

S
N−1

(√
N

)
, dσ N , considered as a measure on RN supported on the sphere, is close

in behavior to the Gaussian measure

dγN (v) = e− |v|2
2

(2π)
N
2

dv

when N is very large. In this setting the uniform measure dσ N corresponds to the
micro-canonical ensemble, representing a fixed number of particles with a fixed total
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energy, while the Gaussian measure dγN corresponds to the canonical ensemble,
representing a fixed number of particles in thermal equilibrium. For simple systems,
the equivalence of ensembles principle means that for any finitely many number of
particles with velocities v1, . . . , vk , k ∈ N, and any observable function of those
particles, φ (v1, . . . , vk), the measurement of φ in the micro-canonical and canonical
settings yields almost identical results, with a difference that converges to zero as the
number of particles goes to infinity. In other words:

lim
N→∞

(∫

SN−1
(√

N
) φ (v1, . . . , vk) dσ N −

∫

RN
φ (v1, . . . , vk) dγN

)
= 0.

An acute difference between dσ N and dγN may arise when one deals with quantities
that depend on all the particles in the ensemble, such as the case of the entropy, or
more generally—the relative entropy, in non-equilibrium statistic mechanics. Such a
deviation from the equivalence of ensembles principle was observed in [3]. Before we
delve into it, we remind the reader of a few conventions and definitions, so that the
work presented here will be self contained.

In what follows, we denote by P (X) the set of Borel probability measures on a
Polish space X . Any measure in this current work will be assumed to be a Borel
measure.

Definition 1.1 Let μ, ν ∈ P
(
R
d
)
. The relative entropy of μ with respect to ν is

defined as

H (μ|ν) =
{∫

Rd h log hdν h = dμ
dν

∞ otherwise.

Note thatwehave not indicated the dimension of the underlying space in the notation
of the relative entropy. It will be implicitly evident in all our discussions to follow.

Definition 1.2 Let μ ∈ P
(
S
N−1

(√
N

))
be absolutely continuous with respect to

dσ N with a probability density function FN . We denote by

HN (FN ) = H
(
FNdσ N |dσ N

)
= H

(
μ|σ N

)
.

Of special import to our work is the concept of marginals, and in particular first
marginals.

Definition 1.3 Given μ ∈ P
(
R
d
)
we define its kth marginal in the (i1, . . . , ik)th

variables as the probability measure �
(i1,...,ik )
k (μ) on Rk satisfying

�
(i1,...,ik )
k (μ) (A1 × · · · × Ak) = μ

(
A(i1,...,ik )

)
, (1.1)

where A(i1,...,ik ) = Ã1 × · · · × ÃN with Ã j =
{
Al j = il , l = 1, . . . , k

R j �= i1, . . . , ik
.
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3100 A. Einav

It is important to note that even if a probability measure, μ, is supported on

S
N−1

(√
N

)
, its kth marginal is well defined on R

k whenever k ≤ N − 1 and is

supported in the ball of radius
√
N centered at the origin. Moreover, if μ is absolutely

continuous with respect to the uniform probability measure dσ N then its kth marginal
in the (i1, . . . , ik)th variables is absolutely continuous with respect to the Lebesgue
measure on Rk . We will denote by �

(i1,...,ik )
k (FN ) the probability density function of

�
(i1,...,ik )
k (μ).
From this point onward we will use the abusive notation of interchanging measures

and their probability densities in all of our appropriate quantities; for instance, we will
write f ∈ P (R) when f (v)dv ∈ P (R), etc.

We are now prepared to discuss the deviation from the equivalence of equilibrium
principle, previously mentioned. It is simple to show (see the Appendix) that given
μ ∈ P

(
R

N
)
such that dμ = FNdv, with FN having a finite second moment, one has

that
N∑
j=1

H
(
�

( j)
1 (FN ) |γ

)
≤ H (FN |γN ) , (1.2)

where γ = γ1. This inequality is not too surprising and can be explained in physical
terms: If one accepts that the entropy measures disorder in a given system, the right-
hand side of the inequality represents the total disorder in the system of N objects that
is described by FN . The left-hand side, on the other hand, represents the sum of the
individual disorders of the system. As by computing the latter we may have neglected
some correlation terms between the objects of the system, the left-hand side needs to
be less than the right-hand side. Moreover, equality can be attained only in the case
where there are no correlations, i.e., the objects are independent. This indeed can be
verified in the formal proof of the above.

Trying to generalize (1.2) one can define an appropriate first marginal on the sphere

whenever FN is a probability density function on SN−1
(√

N
)
by

F (N )
j (v) =

∫

SN−2
(√

N−v2
) FNdσ N−1√

N−v2
, (1.3)

where dσ k
r is the uniform probability measure on Sk−1 (r). The expectation that (1.2)

will be approximately true on the sphere was shown to be false in general. Indeed, in
[3] the authors proved that

Theorem 1.4 Let FN ∈ P
(
S
N−1

(√
N

))
. Then

N∑
i=1

∫

SN−1
(√

N
) F (N )

j log F (N )
j dσ N ≤ 2HN (FN ) , (1.4)

and the constant 2 is sharp.

123



On the Subadditivity of the Entropy on the Sphere 3101

The fact that the constant 2 is sharp shows that there is some fundamental difference
between the spherewith uniformmeasure andRN with theGaussianmeasurewhenone
deals with all the objects of the statistical problem. An interesting problem to explore
is identifying those quantities that are relevant to this deviation from the equivalence
of ensembles idea.

Surprisingly enough, inequality (1.4) has ramifications in other fields in
mathematics—in particular, kinetic theory and the study of Kac’s model. Kac’s model
is a stochastic model of an average many-particle system that undergoes binary
collisions from which a one-dimensional Boltzmann-like equation (called the Kac–
Boltzmann equation) arises as a mean field limit. In his work, Kac had hoped to
use his model, whose complexity comes from the number of particles and not any
non-linearity, to solve unknown questions for the associated Boltzmann equation. Of
particular interest to Kac was finding the rate of convergence to equilibrium. He sug-
gested using the L2 distance and the associated spectral gap of the evolution operator
to tackle this particular problem. While the spectral gap was proved to be bounded
from below uniformly in N (Kac’s conjecture), the L2 distance was shown to be a
catastrophic distance to consider under the setting of the model. A new distance, the
relative entropy on the sphere, was investigated and with it the appropriate candidate
for the rate of convergence: the entropy–entropy production ratio

�N = inf
FN

DN (FN )

HN (FN )
,

where −DN (FN ) is obtained by differentiating the entropy under Kac’s flow. For
exponential decayof the entropy, onewould hope tofind a constantC > 0, independent
of N , such that �N ≥ C . The existence of such a constant is known as the many-body
Cercignani’s conjecture. Unfortunately, in [14] Villani has proven that

�N ≥ 2

N − 1
, (1.5)

using a clever argument utilizing the heat semigroup on Kac’s sphere, and conjectured
that �N = O

( 1
N

)
, a claim that was essentially proved in [7]. Remarkably, Carlen

showed in [2] that one can get (1.5) by using (1.4) and an inductive argument. The factor
2 plays a crucial role in the proof, and one notices that if it was replaced with 1+ εN ,
with εN converging to zero in a weak way, one would be able to prove Cercignani’s
conjecture. This, as well as the investigation of the equivalence of ensembles, was the
main motivation behind the investigation of the present work, and gave a framework
from which the tools to prove our main theorems arose.

For more information about Kac’s model and the many-body Cercignani’s conjec-
ture we refer the reader to [4,8,10,11,14].

We are finally ready to state the goal of the present work: Finding sufficient condi-

tions on the probability density FN on SN−1
(√

N
)
under which (1.2) is indeed a good

approximation to the appropriate spherical analogue in the sense that the constant 2
in (1.4) can be replaced by 1 + εN , with an explicit expression for εN .
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3102 A. Einav

Before we state our main theorems, we recall some notation from the theory of
optimal transportation:

Definition 1.5 Let μ, ν ∈ P
(
R
d
)
. The relative Fisher information of μ with respect

to ν is defined as

I (μ|ν) =
{∫

Rd |∇ log h|2 hdν h = dμ
dν

∞ otherwise.
(1.6)

One can extend the definition of the relative Fisher information to S
N−1

(√
N

)
in

the case where dμ = FNdσ N and dν = dσ N .

Definition 1.6 Let FN ∈ P
(
S
N−1

(√
N

))
. The Fisher information of FN is defined

as

IN (FN ) = IN
(
FNdσ N |dσ N

)
=

∫

SN−1
(√

N
) |∇S log FN |2 FNdσ N , (1.7)

where ∇S is the gradient on the sphere.

For more information about optimal transportation, its tools and applications we
refer the reader to the excellent [12,13].

Last, but not least, for any measurable, non-negative function f on R
d we denote

by

Mk ( f ) =
∫

Rd
|v|k f (v)dv (1.8)

the kth moment of f .
The main theorems of this paper are:

Theorem 1.7 Let FN ∈ P
(
S
N−1

(√
N

))
such that there exists k > 2 with

Ak = sup
N

∑N
j=1 Mk

(
�

( j)
1 (FN )

)

N
< ∞.

Assume in addition that

AI = sup
N

∑N
i=1 I

(
�

( j)
1 (FN )

)

N
< ∞,

and that there exists CH > 0 such that

inf
N

HN (FN )

N
≥ CH .
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On the Subadditivity of the Entropy on the Sphere 3103

Then there exists an explicit εN , which goes to zero as a negative power of N and
depends on Ak,AI ,CH and k, such that

N∑
j=1

∫

SN−1
(√

N
) F (N )

J log F (N )
j dσ N ≤ (1 + εN ) HN (FN ) . (1.9)

Theorem 1.8 Let FN ∈ P
(
S
N−1

(√
N

))
such that there exists k > 2 with

Ak = sup
N

∑N
j=1 Mk

(
�

( j)
1 (FN )

)

N
< ∞.

Assume in addition that there exists 2 < q < k such that

A P
q = sup

N

∑N
j=1 P

( j)
q (FN )

N
< ∞,

where

P( j)
q (FN ) =

∫

R

�
( j)
1 (FN ) (v)

(
1 − v2

N

) q
q−2

dv,

and that there exist constants CH ,CI > 0 such that

inf
N

HN (FN )

N
≥ CH ,

sup
N

IN (FN )

N
≤ CI .

Then there exists an explicit εN , which goes to zero as a negative power of N and
depends on Ak,A P

q ,CI ,CH and k, such that

N∑
j=1

∫

SN−1
(√

N
) F (N )

J log F (N )
j dσ N ≤ (1 + εN ) HN (FN ) . (1.10)

We’d like to point out a difference between our theorems: Theorem 1.7 requires
an average bound on the Fisher information of the first marginals of FN , a property
that is not very intrinsic to the sphere. Theorem 1.8, on the other hand, relaxes this
requirement and asks for information about the appropriate Fisher information on the
sphere. However, as the gradient on the sphere of any function of one variable v j is
dampened near the poles v j = ±√

N , an additional control condition near the poles

is needed, which is where P( j)
q comes into play.

The idea of the proof of both theorems is to extend FN from the sphere toRN where
we are able to use (1.2). We shall call this extension the Euclidean extension. Once
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3104 A. Einav

that is done one investigates the connection between the marginals of the extension of
FN and FN using an appropriate distance (the Wasserstein distance) and associate the
entropies of the appropriate marginals using an HWI theorem. The final step involves
finding the connection between the entropy of the marginal and the entropy of the
marginal on the sphere.

The structure of the paper is as follows: In Sect. 2 we will describe the Euclidean
extension, and see the connections between the first marginals and their moments, with
respect to the original density. The entropic connection between the first marginals of
the extension and the original density will be investigated in Sect. 3, while the entropic
connection between the first marginals and the first marginals on the sphere will be
shown in Sect. 4. We will prove our main theorems in Sect. 5 and give a non-trivial
example for when the conditions of the theorems are satisfied in Sect. 6. We then
conclude the paper with a few final remarks in Sect. 7 and deal with a few technical
computations in the Appendix.

2 The Euclidean Extension and Marginal Relation

The first step on the path to improve (1.4) is passing from the sphere to Euclidean

space. This is done by extending a given FN ∈ P
(
S
N−1

(√
N

))
to a function on

R
N , F̃N , in a way that is compatible with the entropy.

Definition 2.1 Given FN ∈ P
(
S
N−1

(√
N

))
, its Euclidean extension F̃N is defined

as

F̃N (v) = FN

(√
N

v

|v|
)

· γN (v), (2.1)

with v ∈ R
N \ {0}.

Lemma 2.2 F̃N ∈ P
(
R

N
)
and

H
(
F̃N |γN

) = HN (FN ) .

Proof Using spherical coordinates, the fact that FN

(√
N v

|v|
)
depends only on the

angular variable and the fact that γN is radial we see that:

H
(
F̃N |γN

) =
∫

RN
FN

(√
N

v

|v|
)
log

(
FN

(√
N

v

|v|
))

γN (v)dv

=
(∫

SN−1
FN

(√
N

v

|v|
)
log

(
FN

(√
N

v

|v|
))

dσ N
1

)

(∣∣∣SN−1
∣∣∣
∫ ∞

0

r N−1

(2π)
N
2

e− r2
2 dr

)

= HN (FN ) ,
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since

1 =
∫

RN
γN (v)dv =

∣∣∣SN−1
∣∣∣
∫ ∞

0

r N−1

(2π)
N
2

e− r2
2 dr. (2.2)

Using the same argument one can easily show that F̃N is indeed a probability density.

�

Now that we have a possible extension at hand, the next step we’d like to explore
is the relation between its first marginals and those of the original function. We start
by recalling the following simple Fubini–Tonelli type theorem on the sphere (see [7],
for instance):

∫

SN−1(r)
FNdσ N

r =
∣∣SN−k−1

∣∣
∣∣SN−1

∣∣
1

r N−2

∫
∑k

i=1 v2i ≤r2

(
r2 −

k∑
i=1

v2i

) N−k−2
2

⎛
⎝

∫

SN−k−1

(√
r2−∑k

i=1 v2i

) FNdσ N−k√
r2−∑k

i=1 v2i

⎞
⎠ dv1 . . . dvk . (2.3)

Formula (2.3) allows us to write a concrete expression for the kth marginal of a prob-

ability density function FN ∈ P
(
S
N−1

(√
N

))
in its (i1, . . . , ik) variables whenever

k ≤ N − 1. Indeed, one easily sees that

�
(i1,...,ik )
k (FN ) (vi1 , . . . , vik ) =

∣∣SN−k−1
∣∣

∣∣SN−1
∣∣

1

N
k
2

(
1 −

∑k
l=1 v2il

N

) N−k−2
2

+

(∫

SN−k−1
(√

N−∑k
i=1 v2il

) FNdσ N−k√
N−∑k

i=1 v2il

)
. (2.4)

Using this, we can conclude the following:

Lemma 2.3 Let FN ∈ P
(
S
N−1

(√
N

))
. Then, the kth marginal of F̃N in the

(i1, . . . , ik) variables is given by

�
(i1,...,ik )
k

(
F̃N

)
(v1, . . . , vk)

=
∣∣∣SN−1

∣∣∣ N k
2

∫ ∞

0

r
(∑k

l=1 v2il
+ r2

) N−k−2
2

(2π)
N
2

e−
r2+∑k

l=1 v2il
2

�
(i1,...,ik )
k (FN )

⎛
⎝

√
Nvi1√∑k

l=1 v2il
+ r2

, . . . ,

√
Nvik√∑k

l=1 v2il
+ r2

⎞
⎠ dr. (2.5)
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3106 A. Einav

Proof By its definition

�
(i1,...,ik )
k

(
F̃N

)
(vi1 , . . . , vik ) =

∫

RN−k
FN

(√
N

v

|v|
)

γN (v1, . . . , vN ) d ṽi1,...,vik

where d ṽi1,...,vik
represents dv excluding dvi1 . . . dvik . For the sake of simplicity of

notation we’ll assume that il = l. We find that

�
(1,...,k)
k

(
F̃N

)
(v1, . . . , vk)

=
∫

RN−k
FN

⎛
⎝

√
Nv1√∑k

i=1 v2i + ∑N
i=k+1 v2i

, . . . ,

√
NvN√∑k

i=1 v2i + ∑N
i=k+1 v2i

⎞
⎠

e−
∑k

i=1 v2i +∑N
i=k+1 v2i

2

(2π)
N
2

dvk+1 . . . dvN

=
∣∣∣SN−k−1

∣∣∣
∫

[0,∞)

dr
r N−k−1e−

∑k
i=1 v2i +r2

2

(2π)
N
2⎛

⎜⎝
∫

SN−k−1

( √
Nr√∑k

i=1 v2i +r2

) FN

⎛
⎝

√
Nv1√∑k

i=1 v2i + r2
, . . . ,

√
Nvk√∑k

i=1 v2i + r2
, σ

⎞
⎠

dσ N−k

SN−k−1

( √
Nr√∑k

i=1 v2i +r2

)

⎞
⎟⎟⎠ .

Using (2.2) and (2.4) we find that the above equals

∣∣∣SN−1
∣∣∣ N k

2

∫

[0,∞)

dr
r N−k−1e−

∑k
i=1 v2i +r2

2

(2π)
N
2

�
(1,...,k)
k (FN )

( √
Nv1√∑k

i=1 v2i +r2
, . . . ,

√
Nvk√∑k

i=1 v2i +r2

)

(
1 −

∑k
i=1 v2i∑k

i=1 v2i +r2

) N−k−2
2

+

,

from which the result follows. 
�

Of particular interest is the case of the first marginal in the j th variable, �( j)
1

(
F̃N

)
.

Using Lemma 2.3 we obtain
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Corollary 2.4 Let FN ∈ P
(
S
N−1

(√
N

))
. Then

�
( j)
1

(
F̃N

)
(v) =

∣∣SN−1
∣∣ N N

2

(2π)
N
2

∫ sgn(v)
√
N

0
�

( j)
1 (FN ) (x)

vN−1

xN
e
− Nv2

2x2 dx . (2.6)

Proof From (2.5) we know that

�
( j)
1

(
F̃N

)
(v)=

∣∣∣SN−1
∣∣∣
√
N

∫ ∞

0
�

( j)
1 (FN )

( √
Nv√

v2 + r2

)
r
(
v2 + r2

) N−3
2

(2π)
N
2

e− r2+v2
2 dr.

Using the change of variables x =
√
Nv√

v2+r2
we find that

�
( j)
1

(
F̃N

)
(v) =

∣∣∣SN−1
∣∣∣
√
N

∫ sgn(v)
√
N

0
�

( j)
1 (FN ) (x)

(
Nv2

x2

) N−3
2 Nv2

x3 (2π)
N
2

e
− Nv2

2x2 dx

=
∣∣SN−1

∣∣ N N
2

(2π)
N
2

∫ sgn(v)
√
N

0
�

( j)
1 (FN ) (x)

vN−1

xN
e
− Nv2

2x2 dx,

completing the proof. 
�
An interesting application of Corollary 2.4 is a moment connection between

�
( j)
1 (FN ) and �

( j)
1

(
F̃N

)
.

Lemma 2.5 Let FN ∈ P
(
S
N−1

(√
N

))
. Then

∫

R

|v|m�
( j)
1

(
F̃N

)
(v)dv =

(
2

N

)m
2 �

( N+m
2

)

�
( N
2

)
∫ √

N

−√
N

|v|m�
( j)
1 (FN ) (v)dv. (2.7)

Proof Using (2.6), we have that

∫

R

|v|m�1
(
F̃N

)
(v)dv

=
∣∣SN−1

∣∣ N N
2

(2π)
N
2

( ∫ ∞

0

∫ √
N

0
�1 (FN ) (x)

vN+m−1

xN
e
− Nv2

2x2 dxdv

−
∫ 0

−∞

∫ 0

−√
N

�1 (FN ) (x)
(−1)mvN+m−1

xN
e
− Nv2

2x2 dxdv

)

=
y=

√
N
x v

∣∣SN−1
∣∣ (2π)

m
2

N
m
2

∫ √
N

−√
N

|x |m�1 (FN ) (x)

(
1

(2π)
N+m
2

∫ ∞

0
yN+m−1e− y2

2 dy

)
dx
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3108 A. Einav

=
∣∣SN−1

∣∣ (2π)
m
2

N
m
2

∣∣SN+m−1
∣∣
∫ √

N

−√
N

|x |m�1 (FN ) (x)dx,

where we have used (2.2). The result follows from the formula

∣∣∣SN−1
∣∣∣ = 2π

N
2

�
( N
2

) . (2.8)


�

Lemma 2.5 implies the following:

Corollary 2.6 For any k > 0 there exists Ck > 0, independent of N , such that

Mk

(
�

( j)
1

(
F̃N

)) ≤ CkMk

(
�

( j)
1 (FN )

)
. (2.9)

Moreover, when k = 2 there is equality in (2.9) with C2 = 1.

Proof From (2.7) we see that choosing

Ck = sup
N

(
2

N

) k
2 �

( N+k
2

)

�
( N
2

)

proves the claim. The boundedness of
( 2
N

) k
2

�
(
N+k
2

)

�
(
N
2

) is clear from the asymptotic

expansion of the Gamma function

�(z) = zz−
1
2 e−z

√
2π

(
1 + 1

12z
+ · · ·

)
. (2.10)

If k = 2l then

�

(
N + k

2

)
= �

(
N

2
+ l

)
=

(
�l−1

i=0

(
N

2
− i

))
�

(
N

2

)
.

In this case,

Mk

(
�

( j)
1

(
F̃N

)) =
(

�
k
2−1
i=0

(
1 − 2i

N

))
Mk

(
�

( j)
1 (FN )

)
≤ Mk

(
�

( j)
1 (FN )

)
,

with equality if and only if k = 2. 
�

123



On the Subadditivity of the Entropy on the Sphere 3109

3 The Entropy Relation: From Marginals to the Marginals of the
Extension

Now that we have managed to extend our probability density from S
N−1

(√
N

)
to

R
N we would like to find out how much information we may have “lost” during that

process, at least in the sense of the entropy functional. The main theoretical tool to
connect between the two will be the HWI inequality (see [6,12,13]). In this section
we will slowly investigate the quantities that will play a role in the final connection
between the entropies, namely the Wasserstein distance and the Fisher information,
and eventually quantify the “loss” in the transition followed by our extension.

We start by reminding the reader of the definition of the Wasserstein distance:

Definition 3.1 Let X be a Polish space with a metric d and letμ, ν be two probability
measures on X . For any q ≥ 1 the Wasserstein distance of order q between μ and ν

is defined as

Wq (μ, ν) =
(

inf
π∈�(μ,ν)

∫

X×X
dq (x, y) dπ(x, y)

) 1
q

, (3.1)

where �(μ, ν), the space of coupling, is the space of all probability measures on
X × X with marginals μ and ν respectively.

Our first lemma shows that the Wasserstein distance of order 1 is indeed the right
distance tomeasure the difference between themarginal of FN and that of its extension:

Lemma 3.2 Let FN ∈ P
(
S
N−1

(√
N

))
. Then for any j = 1, . . . , N

W1

(
�

( j)
1 (FN ) ,�

( j)
1

(
F̃N

)) ≤
M2

(
�

( j)
1 (FN )

) 1
2

√
2N

(1 + τN ) , (3.2)

where τN −→
N→∞ 0 as N goes to infinity, is given explicitly and independently of FN .

Proof The proof relies on the famous Kantorovich–Rubinstein formula (see [12]): For
any μ, ν ∈ P (X), where X is a Polish space,

W1 (μ, ν) = sup

(∫

X
ψ(x) (dμ − dν) (x)

)
,

where the supremum is taken over all 1-Lipschitz functions ψ .
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For any φ ∈ Cb (R) we find that

∫

R

φ(v)�
( j)
1

(
F̃N

)
dv =

∣∣SN−1
∣∣

(2π)
N
2

N
N
2

∫ ∞

0

∫ √
N

0
φ(v)�

( j)
1 (FN ) (x)

vN−1

xN
e
− Nv2

2x2 dvdx

+
∣∣SN−1

∣∣
(2π)

N
2

N
N
2

∫ 0

−∞

∫ 0

−√
N

φ(v)�
( j)
1 (FN ) (x)

(
−vN−1

xN

)
e
− Nv2

2x2 dvdx

=
y=

√
Nv
x

∣∣SN−1
∣∣

(2π)
N
2

∫ ∞

0

∫ √
N

−√
N

φ

(
yx√
N

)
�

( j)
1 (FN ) (x)yN−1e− y2

2 dydx .

Using (2.2) and the fact that �( j)
1 (FN ) is supported in [−√

N ,
√
N ] we see that

∣∣∣∣
∫

R

φ(x)�( j)
1 (FN ) (x)dx −

∫

R

φ(v)�
( j)
1

(
F̃N

)
(v)dv

∣∣∣∣

≤
∣∣SN−1

∣∣
(2π)

N
2

∫ ∞

0

∫ √
N

−√
N

∣∣∣∣φ
(

yx√
N

)
− φ(x)

∣∣∣∣�( j)
1 (FN ) (x)yN−1e− y2

2 dydx .

If in addition φ is 1-Lipschitz we have that

∣∣∣∣
∫

R

φ(x)�( j)
1 (FN ) (x)dx −

∫

R

φ(v)�
( j)
1

(
F̃N

)
(v)dv

∣∣∣∣

≤
(∫ √

N

−√
N

|x | �( j)
1 (FN ) (x)dx

) (∣∣SN−1
∣∣

(2π)
N
2

∫ ∞

0

∣∣∣∣
y√
N

− 1

∣∣∣∣ yN−1e− y2

2 dydx

)

≤ M2

(
�

( j)
1 (FN )

) 1
2

(∣∣SN−1
∣∣

(2π)
N
2

∫ ∞

0

(
y√
N

− 1

)2

yN−1e− y2

2 dy

) 1
2

.

It is easy to see that

∫ ∞

0

(
y√
N

− 1

)2

yN−1e− y2

2 dy = 2
(2π)

N
2∣∣SN−1
∣∣
(
1 −

√
2π√
N

∣∣SN−1
∣∣

∣∣SN
∣∣

)
.

The result follows from a simple asymptotic expansion of
∣∣SN−1

∣∣ using (2.8) and
(2.10). 
�

While theWasserstein distance of order 1was one that yielded the desired closeness
between the appropriate marginals, it is not one that is suited to associate with the
entropy via the so-calledHWI inequality. In order to use the aforementioned inequality
we will require higher orders of Wasserstein distances. Our next lemma, which is a
simple extension of a result proved by Hauray andMischler in [10], allows us to make
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the connection between W1 and Wq , q ≥ 1, as long as we have additional moment
control.

Lemma 3.3 Let f, g ∈ P (R) and let k > 0. Denote by

Mk = Mk ( f ) + Mk (g) =
∫

R

(
1 + |v|2

) k
2
f (v)dv +

∫

R

(
1 + |v|2

) k
2
g(v)dv.

Then, for any k > q ≥ 2 one has that

Wq ( f, g) ≤ 21+
1
q M

1
k
k W1 ( f, g)

1
q − 1

k . (3.3)

Proof Denote by d(x, y) = min (|x − y| , 1) and by W̃1 the Wasserstein distance of
order 1 associated with d. We claim that for all q ≥ 1 and R ≥ 1

|x − y|q ≤ Rqd(x, y) + 2k

Rk−q

(
|x |k + |y|k

)
, (3.4)

and leave the proof of this inequality to the Appendix. Integrating (3.4) against any
π ∈ �(μ, ν) gives us

Wq
q (μ, ν) ≤ RqW̃1 (μ, ν) + 2k

Rk−q
Mk (μ, ν) .

The choice R = 2
M

1
k
k (μ,ν)

W̃1
1
k (μ,ν)

≥ 1 yields

Wq (μ, ν) ≤ 2 (2)
1
q M

1
k
k (μ, ν) W̃1

1
q − 1

k (μ, ν) ,

from which the result follows as W̃1 ≤ W1. 
�

Corollary 3.4 Let FN ∈ P
(
S
N−1

(√
N

))
be such that Mk

(
�

( j)
1 (FN )

)
< ∞ for

some k > 2. Then for any 2 ≤ q < k

Wq

(
�

( j)
1 (FN ) ,�

( j)
1

(
F̃N

)) ≤ 2
3
2+ 1

q

(
1 + Ck

2

) 1
k

(
1 + Mk

(
�

( j)
1 (FN )

)) 1
k
M2

(
�

( j)
1 (FN )

) 1
2q − 1

2k

(2N )
1
2q − 1

2k

(
1 + O

(
1

N

))
,

(3.5)

with Ck = supN
( 2
N

) k
2

�
(
N+k
2

)

�
(
N
2

) .
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Proof Using the notation of Lemma 3.3 we have that

Mk ≤ 2
k
2−1

(
2 + Mk

(
�

( j)
1 (FN )

)
+ Mk

(
�

( j)
1

(
F̃N

)))

≤ 2
k
2

(
1 + Ck

2

) (
1 + Mk

(
�

( j)
1 (FN )

))
.

Combining this with Lemmas 3.2 and 3.3 yields the desired result. 
�
The next ingredient of the proof that we need is the Fisher information. While the

“normal” one, defined in Definition 1.5 and used in Theorem 1.7 requires no further
discussion, we will require the following lemmas to deal with the Fisher information
on the sphere.

Lemma 3.5 Let FN ∈ P
(
S
N−1

(√
N

))
. Then

�
( j)
1 (FN ) (v) =

∣∣SN−2
∣∣

∣∣SN−1
∣∣√N

(
1 − v2

N

) N−3
2

+
F (N )
j (v)

= 1√
2π

(
1 − 3

4N
+ o

(
1

N

))(
1 − v2

N

) N−3
2

+
F (N )
j (v).

(3.6)

Proof Equality (3.6) follows immediately from (2.4) with k = 1 and an asymptotic
expansion of

∣∣SN−1
∣∣. 
�

Lemma 3.6 Let FN ∈ P
(
S
N−1

(√
N

))
such that IN

(
F (N )
j

)
< ∞. Then

IN
(
F (N )
j

)
=

∫

R

(
1 − v2

N

) ∣∣∣∣
d

dv
log

(
�

( j)
1 (FN ) (v)

)∣∣∣∣
2

�
( j)
1 (FN ) (v)

− 2
N − 3

N
+

(
N − 3

N

)2 ∫

R

v2�
( j)
1 (FN ) (v)(
1 − v2

N

) dv.

(3.7)

Proof Denote by Li, j = 1√
N

(
vi∂ j − v j∂i

)
. For any F on SN−1

(√
N

)
we have that

IN (F) =
∫

SN−1
(√

N
)

|∇SF |2
F

dσ N = 1

2

∑
i �= j

∫

SN−1
(√

N
)

∣∣Li, j F
∣∣2

F
dσ N

= 1

2

∑
i �= j

∫

SN−1
(√

N
)
∣∣Li, j log F

∣∣2 Fdσ N .

If F = f j , a function depending only on v j , we find that

∑
i �=k

∣∣Li,k f j
∣∣2 = 2

N

∑
i �= j

v2i

(
d

dv j
f j

)2

= 2

(
1 − v2j

N

) (
d

dv j
f j

)2

.
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Thus, using (3.6) we find that

IN
(
F (N )
j

)
=

∫

SN−1
(√

N
)
(
1 − v2

N

)
∣∣∣∣∣∣∣∣

d

dv
log

⎛
⎜⎜⎝

�
( j)
1 (FN ) (v)

|SN−2|
|SN−1|√N

(
1 − v2

N

) N−3
2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

2

F (N )
j (v)dσ N

=
∫

R

(
1 − v2

N

) ∣∣∣∣∣∣
d

dv
log

(
�

( j)
1 (FN ) (v)

)
+ (N − 3)v

N
(
1 − v2

N

)
∣∣∣∣∣∣

2

�
( j)
1 (FN ) (v)dv

=
∫

R

(
1 − v2

N

) ∣∣∣∣
d

dv
log

(
�

( j)
1 (FN ) (v)

)∣∣∣∣
2

�
( j)
1 (FN ) (v)dv

+ 2
N − 3

N

∫

R

v
d

dv

(
�

( j)
1 (FN ) (v)

)
dv

+
(
N − 3

N

)2 ∫

R

v2�
( j)
1 (FN ) (v)

1 − v2

N

dv,

where we have used (2.3) in the second line. The result follows by a simple integration
by parts. 
�

Using our acquired knowledge until this point we can now find a quantitative
estimation in the difference of the entropies of the marginals and the marginals of
the extension.

Theorem 3.7 Let FN ∈ P
(
S
N−1

(√
N

))
such that Mk

(
�

( j)
1 (FN )

)
< ∞ for some

k > 2.
(i) If I

(
�

( j)
1 (FN )

)
< ∞ then there exists C2 > 0, independent of N and FN ,

such that

H
(
�

( j)
1 (FN ) |γ

)
≤ H

(
�

( j)
1

(
F̃N

) |γ
)

+ 4C2

(
1 + Ck

2

) 1
k (

1 + Mk

(
�

( j)
1 (FN )

)) 1
k

(
I
(
�

( j)
1 (FN )

)
+ M2

(
�

( j)
1 (FN )

)
− 2

) 1
2
M2

(
�

( j)
1 (FN )

) 1
4− 1

2k

(2N )
1
4− 1

2k

= H
(
�

( j)
1

(
F̃N

) |γ
)

+ ε
(1, j)
N ,

(3.8)

where Ck = supN
( 2
N

) k
2

�
(
N+k
2

)

�
(
N
2

) .
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(i i) If IN
(
�

( j)
1 (FN )

)
< ∞ and there exists 2 < q < k such that

P( j)
q (FN ) =

∫

R

�
( j)
1 (FN ) (v)

(
1 − v2

N

) q
q−2

dv < ∞ (3.9)

then there exists C2 > 0, independent of N and FN , such that

H
(
�

( j)
1 (FN ) |γ

)
≤ H

(
�

( j)
1

(
F̃N

) |γ
)

+ 2
3
2+ 2

q C2

(
1 + Ck

2

) 1
k

((
IN

(
F (N )
j

)
+ 2

) q
2(q−1)

(
P( j)
q

) q−2
2(q−1) + 1 + M2

(
�

( j)
1 (FN )

)) q−1
q

(
1 + Mk

(
�

( j)
1 (FN )

)) 1
k
M2

(
�

( j)
1 (FN )

) 1
2q − 1

2k

(2N )
1
2q − 1

2k

= H
(
�

( j)
1

(
F̃N

) |γ
)

+ ε
(2, j)
N ,

(3.10)

where Ck = supN
( 2
N

) k
2

�
(
N+k
2

)

�
(
N
2

) .

Proof (i) The HWI inequality states that

H( f |γ ) ≤ H(g|γ ) + √
I ( f |γ )W2 ( f, g) .

Together with the simple identity for f ∈ P (R)

I ( f |γ ) = I ( f ) +
∫

R

v2 f (v)dv − 2,

Corollary 3.4 with q = 2, and the fact that the O
( 1
N

)
term in (3.5) was independent

in FN , we conclude the result.
(i i) This part of the theorem requires a slight modification of the HWI inequal-

ity. Following the proof of the inequality (see, for instance, [6,13]), one notices that
replacing the Cauchy–Schwarz inequality with the Hölder inequality (and using the
uniqueness of the transportation map if needed) gives us that for any 1 < p < ∞

H( f |γ ) ≤ H(g|γ ) +
(∫

R

∣∣∣∣
d

dv
log

(
f (v)

γ (v)

)∣∣∣∣
p

f (v)dv

) 1
p

Wq ( f, g) ,
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where q is the Hölder conjugate of p. For 1 ≤ p < 2 we find that

∫

R

∣∣∣∣
d

dv
log

(
f (v)

γ (v)

)∣∣∣∣
p

f (v)dv

=
∫

R

∣∣∣∣
d

dv
log f (v) + v

∣∣∣∣
p

f (v)dv

≤ 2p−1
(∫

R

∣∣∣∣
d

dv
log f (v)

∣∣∣∣
p

f (v)dv +
∫

R

|v|p f (v)dv

)

≤ 2p−1
(∫

R

∣∣∣∣
d

dv
log f (v)

∣∣∣∣
p

f (v)dv + 1 + M2( f )

)
,

and if in addition f ∈ P (R) is supported in [−√
N ,

√
N ] then

∫

R

∣∣∣∣
d

dv
log f (v)

∣∣∣∣
p

f (v)dv

≤
(∫

R

(
1 − v2

N

) ∣∣∣∣
d

dv
log f (v)

∣∣∣∣
2

f (v)dv

) p
2

⎛
⎜⎝

∫

R

f (v)
(
1 − v2

N

) p
2−p

dv

⎞
⎟⎠

2−p
2

.

We conclude that for p = q
q−1 , where q is as in (3.9), one has that

H
(
�

( j)
1 (FN ) |γ

)
≤ H

(
�

( j)
1

(
F̃N

) |γ
)

+2
1
q

( (∫

R

(
1 − v2

N

) ∣∣∣∣
d

dv
log

(
�

( j)
1 (FN ) (v)

)∣∣∣∣
2

�
( j)
1 (FN ) (v)dv

) q
2(q−1)

(
P( j)
q (FN )

) q−2
2(q−1)

+1 + M2

(
�

( j)
1 (FN ) (v)

) ) q−1
q

Wq

(
�

( j)
1 (FN ) ,�

( j)
1

(
F̃N

))
.

The result follows from the inequality

∫

R

(
1 − v2

N

) ∣∣∣∣
d

dv
log

(
�

( j)
1 (FN ) (v)

)∣∣∣∣
2

�
( j)
1 (FN ) (v)dv ≤ IN

(
F (N )
j

)
+ 2

N − 3

N
,

which is a consequence of Lemma 3.6, and Corollary 3.4. 
�
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4 The Entropy Relation: From Marginals on the Sphere to Marginals on
the Line

In Sect. 3 we have seen how to relate the relative entropy of �
( j)
1 (FN ) to that of

�
( j)
1

(
F̃N

)
, gaining a quantitative estimation of the difference between the two. How-

ever, our entropic inequalities, (1.9) and (1.10), relate to the entropy of the marginal
on the sphere. In this section we will explore the connection between the entropies of
the marginals on the sphere and those of the marginals.

Lemma 4.1 Let FN ∈ P
(
S
N−1

(√
N

))
. Then

∫

SN−1
(√

N
) F (N )

j log F (N )
J dσ N = H

(
�

( j)
1 (FN ) |γ

)
− log

(
1 − 3

4N
+ o

(
1

N

))

−1

2

∫ √
N

−√
N

v2�
( j)
1 (FN ) (v)dv − N − 3

2

∫ √
N

−√
N

�
( j)
1 (FN ) (v) log

(
1 − v2

N

)
dv.

(4.1)

Proof Using (2.3) we find that

∫

SN−1
(√

N
) F (N )

j log F (N )
J dσ N

=
∣∣SN−2

∣∣
∣∣SN−1

∣∣ √N

∫ √
N

−√
N

(
1 − v2

N

) N−3
2

+
F (N )
j (v) log

(
F (N )
J (v)

)
dv

=
∫ √

N

−√
N

�
( j)
1 (FN ) (v) log

(
�

( j)
1 (FN ) (v)

)
dv

−
∫ √

N

−√
N

�
( j)
1 (FN ) (v) log

⎛
⎝

∣∣SN−2
∣∣

∣∣SN−1
∣∣√N

(
1 − v2

N

) N−3
2

⎞
⎠ dv

= H
(
�

( j)
1 (FN ) |γ

)
+ log

(
1√
2π

)

−1

2

∫ √
N

−√
N

v2�
( j)
1 (FN ) (v)dv − log

( ∣∣SN−2
∣∣

∣∣SN−1
∣∣ √N

)

−N − 3

2

∫ √
N

−√
N

�
( j)
1 (FN ) (v) log

(
1 − v2

N

)
dv,

yielding the desired result. 
�

Lemma 4.2 Let FN ∈ P
(
S
N−1

(√
N

))
such that Mk

(
�

( j)
1 (FN )

)
< ∞ for some

k > 2.
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(i) If I
(
�

( j)
1 (FN )

)
< ∞ then for any sequence 0 < εN < 1, converging to zero,

we have that

−1

2

∫ √
N

−√
N

v2�
( j)
1 (FN ) (v)dv − N − 3

2

∫ √
N

−√
N

�
( j)
1 (FN ) (v) log

(
1 − v2

N

)
dv

≤
Mk

(
�

( j)
1 (FN )

)

2N
k
2−1εN

+
I
(
�

( j)
1 (FN )

) p−1
2p

Mk

(
�

( j)
1 (FN )

) 1
p
Cp

2 (1 − εN )
k
2p N

1
2

(
k+1
p −3

) (4.2)

where 1 < p < k
2 and

Cp =
(∫

|x |<1

∣∣∣log
(
1 − x2

)∣∣∣
p

p−1
dx

) p−1
p

. (4.3)

(i i) If IN
(
F (N )
j

)
< ∞ then for any sequence 0 < εN < 1, converging to zero, we

have that

−1

2

∫ √
N

−√
N

v2�
( j)
1 (FN ) (v)dv − N − 3

2

∫ √
N

−√
N

�
( j)
1 (FN ) (v) log

(
1 − v2

N

)
dv

≤
Mk

(
�

( j)
1 (FN )

)

2N
k
2−1εN

+ N

2(N − 3)(1 − εN )
k
4+ 1

2

(4.4)

(
IN

(
F (N )
j

)
+ 2

N − 3

N

) 1
2 lN

N
k
4− 1

2

Mk

(
�

( j)
1 (FN )

) 1
2
,

where lN =
√
supx∈[0,εN ] x (log x)2

Proof Using the inequality

− log (1 − x) <
x

1 − x

for 0 < x < 1, we find that

−N − 3

2
log

(
1 − v2

N

)
− v2

2
<

N − 3

2

v2

N − v2
− v2

2
<

v4

2(N − v2)
.

For any R > 0 we have that

∫

|v|<R

(
−N − 3

2
log

(
1 − v2

N

)
− v2

2

)
�

( j)
1 (FN ) (v)dv

≤ 1

2(N − R2)

∫

|v|<R
v4�

( j)
1 (FN ) (v)dv ≤ R4−k

2(N − R2)
Mk

(
�

( j)
1 (FN )

)
.
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Picking R = √
N (1 − εN ), with 0 < εN < 1 going to zero, we find that

∫

|v|<√
N (1−εN )

(
−N − 3

2
log

(
1 − v2

N

)
− v2

2

)
�

( j)
1 (FN ) (v)dv

≤
Mk

(
�

( j)
1 (FN )

)

2N
k
2−1εN

.

(4.5)

The difference between (i) and (i i)manifests itself in the domain |v| ≥ √
N (1 − εN ).

To prove (i) we notice that

−1

2

∫

|v|≥√
N (1−εN )

v2�
( j)
1 (FN ) (v)dv

−N − 3

2

∫

|v|≥√
N (1−εN )

�
( j)
1 (FN ) (v) log

(
1 − v2

N

)
dv

≤ −1

2

∫

|v|≥√
N (1−εN )

N�
( j)
1 (FN ) (v) log

(
1 − v2

N

)
dv

≤ 1

2 (1 − εN )

∫

|v|≥√
N (1−εN )

v2�
( j)
1 (FN ) (v)

(
− log

(
1 − v2

N

))
dv

≤ 1

2 (1 − εN )

(∫

|v|≥√
N (1−εN )

|v|2p �
( j)
1 (FN ) (v)dv

) 1
p

(4.6)

(∫ √
N

−√
N

∣∣∣∣log
(
1 − v2

N

)∣∣∣∣
p

p−1

�
( j)
1 (FN ) (v)dv

) p−1
p

≤ 1

2 (1 − εN )

(
1

(N (1 − εN ))
k
2−p

∫

|v|≥√
N (1−εN )

|v|k �
( j)
1 (FN ) (v)dv

) 1
p

∥∥∥�
( j)
1 (FN )

∥∥∥
p−1
p

∞

(∫ √
N

−√
N

∣∣∣∣log
(
1 − v2

N

)∣∣∣∣
p

p−1

dv

) p−1
p

=
∥∥∥�

( j)
1 (FN )

∥∥∥
p−1
p

∞ Mk

(
�

( j)
1 (FN )

) 1
p
Cp

2 (1 − εN )
k
2p N

1
2

(
k+1
p −3

) ,

where p > 1 was chosen such that p < k
2 . The result follows from (4.5), (4.6) and the

following inequality: For any f ∈ P (R) with a finite Fisher information I ( f ) one
has that

‖ f ‖∞ ≤ (I ( f ))
1
2 .

123



On the Subadditivity of the Entropy on the Sphere 3119

In order to prove (i i) we notice that

−1

2

∫

|v|≥√
N (1−εN )

v2�
( j)
1 (FN ) (v)dv

−N − 3

2

∫

|v|≥√
N (1−εN )

�
( j)
1 (FN ) (v) log

(
1 − v2

N

)
dv

≤ 1

2(1 − εN )

∫

|v|≥√
N (1−εN )

v2�
( j)
1 (FN ) (v)

∣∣∣∣log
(
1 − v2

N

)∣∣∣∣ dv

≤ 1

2(1 − εN )

(∫

|v|≥√
N (1−εN )

v2�
( j)
1 (FN ) (v)

1 − v2

N

) 1
2

(∫

|v|≥√
N (1−εN )

v2
(
1 − v2

N

) ∣∣∣∣log
(
1 − v2

N

)∣∣∣∣
2

�
( j)
1 (FN ) (v)dv

) 1
2

≤ N

2(N − 3)(1 − εN )

(
IN

(
F (N )
j

)
+ 2

N − 3

N

) 1
2

lN

(N (1 − εN )
k
4− 1

2

Mk

(
�

( j)
1 (FN )

) 1
2
,

showing the result. 
�

Combining Lemmas 4.1 and 4.2 with the choice εN = N−β gives us

Theorem 4.3 Let FN ∈ P
(
S
N−1

(√
N

))
such that Mk

(
�

( j)
1 (FN )

)
< ∞ for some

k > 2.
(i) If I

(
�

( j)
1 (FN )

)
< ∞ then there exists C1 > 0, independent of N and FN ,

such that for any β > 0 and any 1 < p < min
( k+1

3 , k
2

)

∫

SN−1
(√

N
) F (N )

j log F (N )
j dσ N ≤ H

(
�

( j)
1 (FN ) |γ

)
+ C1

N

+
Mk

(
�

( j)
1 (FN )

)

2N
k
2−1−β

+
I
(
�

( j)
1 (FN )

) p−1
2p

Mk

(
�

( j)
1 (FN )

) 1
p
Cp

2
(
1 − 1

Nβ

) k
2p

N
1
2

(
k+1
p −3

)

= H
(
�

( j)
1 (FN ) |γ

)
+ ε̃

1, j
N ,

(4.7)

where Cp =
(∫

|x |<1

∣∣log (
1 − x2

)∣∣ p
p−1 dx

) p−1
p
.

123



3120 A. Einav

(i i) If IN
(
F (N )
j

)
< ∞ then there exists C1 > 0, independent of N and FN , such

that for any β > 0

∫

SN−1
(√

N
) F (N )

j log F (N )
j dσ N ≤ H

(
�

( j)
1 (FN ) |γ

)
+ C1

N

≤
Mk

(
�

( j)
1 (FN )

)

2N
k
2−1−β

+ N

2(N − 3)(1 − 1
Nβ )

k
4+ 1

2

(
IN

(
F (N )
j

)
+ 2

N − 3

N

) 1
2 ηN ,β

N
k
4− 1

2

Mk

(
�

( j)
1 (FN )

) 1
2

= H
(
�

( j)
1 (FN ) |γ

)
+ ε̃

1, j
N ,

(4.8)

where ηN ,β =
√
supx∈[0,N−β] x (log x)2.

We now have all the tools to prove our main theorems.

5 Proof of the Main Theorems

In the previous couple of sections we have managed to find conditions on our original
probability density, FN , such that the appropriate marginals on the sphere, marginals
on the line and the marginals of the extension give close values for the appropriate
entropy functional. Combining all these results will lead to the proof of our main
theorems, which is the subject of this section.

We begin with a simple technical lemma, whose proof is a simple application of
the Hölder inequality:

Lemma 5.1 Let
{
a j,i

}
j=1,...,m i=1,...,N be non-negative numbers. Let p1, . . . , pm be

positive numbers such that
∑m

j=1
1
p j

≤ 1. Then

N∑
i=1

(
�m

j=1a
1
p j
j,i

)
≤ �m

j=1

(∑N
i=1 a j,i

N

) 1
p j

N . (5.1)

Theorem 5.2 Let FN ∈ P
(
S
N−1

(√
N

))
such that there exists k > 2 with

A M
N ,k =

∑N
j=1 Mk

(
�

( j)
1 (FN )

)

N
< ∞.

Assume in addition that

A I
N =

∑N
i=1 I

(
�

( j)
1 (FN )

)

N
< ∞.
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Then there exists C1,C2 > 0 independent of N and FN , such that for any β > 0 and
1 < p < min

( k+1
3 , k

2

)

N∑
j=1

∫

SN−1
(√

N
) F (N )

J log F (N )
j dσ N ≤ HN (FN ) + C1

+

⎛
⎜⎜⎝
4C2

(
1 + Ck

2

) 1
k

(2N )
1
4− 1

2k

(
A I

N − 1
) 1

2
(
1 + A M

N ,k

) 1
k

⎞
⎟⎟⎠ N

+
(

A M
N ,k

2N
k
2−1−β

)
N +

⎛
⎜⎜⎝

Cp
(
A I

N

) p−1
2p

(
A M

N ,k

) 1
p

2
(
1 − 1

Nβ

) k
2p

N
1
2

(
k+1
p −3

)

⎞
⎟⎟⎠ N ,

(5.2)

where Cp =
(∫

|x |<1

∣∣log (
1 − x2

)∣∣ p
p−1

) p−1
p

and Ck = supN
( 2
N

) k
2

�
(
N+k
2

)

�
(
N
2

) .

Proof This follows immediately from Theorems 3.7, 4.3, and Lemma 5.1, the fact

that for any FN ∈ P
(
S
N−1

(√
N

))

N∑
j=1

M2

(
�

( j)
1 (FN )

)
=

N∑
j=1

∫

SN−1
(√

N
) v2j FNdσ N = N ,

and inequality (1.2) applied to F̃N together with

H
(
F̃N |γN

) = HN (FN ) ,

proven in Lemma 2.2. 
�
Theorem 5.3 Let FN ∈ P

(
S
N−1

(√
N

))
such that there exists k > 2 with

A M
N ,k =

∑N
j=1 Mk

(
�

( j)
1 (FN )

)

N
< ∞.

Assume in addition that

A IS
N =

∑N
i=1 IN

(
�

( j)
1 (FN )

)

N
< ∞,

and that there exists 2 < q < k such that

A P
N ,q =

∑N
j=1 P

( j)
q (FN )

N
< ∞,
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where

P( j)
q (FN ) =

∫
�

( j)
1 (FN ) (v)

(
1 − v2

N

) q
q−2

dv.

Then there exists C1,C2 > 0 independent of N and FN , such that for any β > 0

N∑
j=1

∫

SN−1
(√

N
) F (N )

J log F (N )
j dσ N ≤ HN (FN ) + C1

+ C22
3
2+ 2

q

(
1+Ck

2

) 1
k
((

A IS
N + 2

) q
2(q−1)

(
A P

N ,q

) q−2
2(q−1) + 2

) q
q−1

(
1 + A M

N ,k

) 1
k

(2N )
1
2q − 1

2k

N

+
(

A M
N ,k

2N
k
2−1−β

)
N + N

2(N − 3)

ηN ,β

N
k
4− 1

2

(
1 − 1

Nβ

) k
4+ 1

2

(
A IS

N + 2
) 1

2
(
A M

N ,k

) 1
2
N ,

(5.3)

where Ck = supN
( 2
N

) k
2

�
(
N+k
2

)

�
(
N
2

) and ηNβ = supx∈[0,N−β] x (log x)2.

Proof Much like the proof of Theorem 5.2, we just rely on Theorems 3.7, 4.3, Lemma
5.1, the simple second moment computation and the entropic inequality for F̃N . 
�
Proof of Theorem 1.7 This follows immediately from Theorem 5.2 and the fact that

N ≤ HN (FN )

CH
.


�
Proof of Theorem 1.8 This follows immediately from Theorem 5.3, the known
inequality

N∑
j=1

IN
(
F (N )
j

)
≤ 2IN (FN ) (5.4)

(see [1]) and, much like the proof of Theorem 1.7, the fact that N ≤ HN (FN )
CH

. 
�

6 A Non-trivial Example

As was mentioned in the Introduction of this work, there is a connection between
inequality (1.4) and the subject of entropic convergence to equilibrium in Kac’s model
(the many-body Cercignani’s conjecture). It is thus not surprising that in order to
find a family of density functions that will serve as an example to the validity of the
conditions of our main theorems, we look for natural “states” occurring in the setting
of Kac’s model. Such states, intimately connected to the concept of chaoticity and

123



On the Subadditivity of the Entropy on the Sphere 3123

entropic chaoticity, are described below (for more information, we refer the reader to
[4,5,8,10,11]).

Given f ∈ P (R), with additional conditionswewill mention shortly, we can define
the normalization function, ZN ( f, r), as

ZN ( f, r) =
∫

SN−1(r)
f ⊗Ndσ N

r .

The conditioned tensorization of f on the sphere is the probability measure on

S
N−1

(√
N

)
with density

FN = f ⊗N

ZN

(
f,

√
N

) .

The following theorem, proved in [4], is of great importance in the study of conditioned
tensorizations, and reinforces the intuition that when f has a unit second moment the

N -tensorization function of f is concentrated tightly about SN−1
(√

N
)
.

Theorem 6.1 Let f ∈ P (R) such that f ∈ L p(R) for some p > 1,
∫
R

v2 f (v)dv = 1
and

∫
R

v4 f (v)dv < ∞. Then

ZN ( f,
√
u) = 2√

N�
∣∣SN−1

∣∣ u N−2
2

⎛
⎝e

− (u−N )2

2N�2

√
2π

+ λN (u)

⎞
⎠ , (6.1)

where �2 = ∫
R

v4 f (v)dv − 1 and supu |λN (u)| −→
N→∞ 0.

We are now ready to present our non-trivial example for a family of densities on
the sphere that satisfies the conditions of our main theorems. While extensions of it
can be found, we restrict ourselves to a relatively simple case to avoid some lengthy
computations.

Theorem 6.2 Let f ∈ P (R) ∩ Cc (R), f �= γ , be such that
∫
R

v2 f (v) = 1 and
I ( f ) < ∞. Then, the conditioned tensorization of f satisfies the conditions of Theo-
rems 1.7 and 1.8.

Proof The first thing we note is that since FN is symmetric with respect to its variables
all the marginals are identical. As such, for any j ≥ 2

HN

(
�

( j)
1 (FN )

)
= HN

(
�

(1)
1 (FN )

)
= HN (�1 (FN ))

and the same holds for I, IN and Mk . In that case the appropriate averaged quantities,
A , are

Ak = sup
N

Mk (�1 (FN )) , AI = sup
N

I (�1 (FN )) , A P
q = sup

N
P(1)
q (�1 (FN )) .
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Using formula (2.4) and the definition of the normalization function we have that

�1 (FN ) (v) =
∣∣SN−2

∣∣ (1 − v2

N

) N−3
2

ZN−1

(
f,

√
N − v2

)

∣∣SN−1
∣∣ √NZN

(
f,

√
N

) f (v)

=
√

N

N − 1

e
− (1−v2)

2

2(N−1)�2 + √
2πλN−1

(
N − v2

)

1 + √
2πλN (N )

f (v),

(6.2)

due to (6.1). As such

Ak = sup
N

Mk (�1 (FN )) ≤ sup
N

1 + √
2π sup |λN−1|

1 + √
2πλN (N )

√
N

N − 1

∫

R

|v|k f (v)dv < ∞,

for any k > 0 as f ∈ Cc (R).
Let R > 0 be such that f is supported in [−R, R]. We find that for N > R

A P
q = sup

N
P(1)
q (�1 (FN )) = sup

N

∫ R

−R

�1 (FN ) (v)
(
1 − v2

N

) q
q−2

dv

≤ sup
N

1 + √
2π sup |λN−1|

1 + √
2πλN (N )

√
N

N − 1

1
(
1 − R2

N

) q
q−2

< ∞,

for any q > 2.
Using (3.7) and the fact that f is compactly supported, we see that for N > R

I (�1 (FN )) =
∫ R

−R

∣∣∣∣
d

dv
log�1 (FN ) (v)

∣∣∣∣ �1 (FN ) (v)dv

≤
IN

(
F (N )
1

)
+ 2

(
1 − R2

N

) ≤
2

(
IN (FN )

N + 1
)

(
1 − R2

N

) ,

where we have used (5.4) and the symmetry of FN . This implies that

AI = sup
N

I (�1 (FN )) ≤ sup
N

2
(
IN (FN )

N + 1
)

(
1 − R2

N

) ,

showing that if

sup
N

IN (FN )

N
< ∞
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we obtain the required Fisher information condition for Theorem 1.7, as well as The-
orem 1.8. We find that

IN (FN )

N
= 1

N

∫

SN−1
(√

N
)

|∇SFN |2
FN

dσ N ≤ 1

N

∫

SN−1
(√

N
)

|∇FN |2
FN

dσ N

=
∫

SN−1
(√

N
)
(

f ′(v1)
f (v1)

)2

FNdσ N =
∫

R

(
f ′(v)

f (v)

)2

�1 (FN ) (v)dv

≤ sup
N

1 + √
2π sup |λN−1|

1 + √
2πλN (N )

√
N

N − 1
I ( f ) = CI < ∞,

where we have used the special structure of FN and symmetry.
Last, but not least, we will deal with the rescaled entropy term.

HN (FN )

N
= 1

N

∫

SN−1
(√

N
) FN log f ⊗Ndσ N −

logZN

(
f,

√
N

)

N

=
∫

R

log f (v)�1 (FN ) (v)dv +
log

(∣∣SN−1
∣∣ N N−1

2

)

N

−
log

(
2√
2π�

(
1 + √

2πλN (N )
))

N
.

As f is supported on [−R, R] we find that �1 (FN ) converges to f uniformly on R.
Also, using the asymptotic approximation of

∣∣SN−1
∣∣ one can show that

log
(∣∣SN−1

∣∣ N N−1
2

)

N
−→
N→∞

1 + log (2π)

2
= −

∫

R

f (v) log γ (v)dv.

Thus,

lim
N→∞

HN (FN )

N
= H ( f |γ ) > 0,

and since FN �≡ 1 we know that HN (FN ) �= 0 for all N , implying that there exists
CH > 0 with

HN (FN )

N
≥ CH ,

completing our theorem. 
�

Remark 6.3 Note that in the proof of the above theorem the only quantity that wasn’t
bounded by an “explicit” constant is the rescaled entropy. However, such a constant
can be found by a more detailed computation.
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7 Final Remarks

While the main result proved in this paper gives a glimpse of tools and quantities that
are of import both to the equivalence of ensembles and the many-body Cercignani’s
conjecture, there are still many items of interest that can be explored in future research.
We present a few remarks and observations related to that:

• The condition on the pole control, P( j)
q , seems to fit the problematic behavior near

the poles that was used to show that the constant in (1.4) is sharp. However, in
relation to Kac’s model, it seems hard to show the propagation of such a property
under Kac’s flow. If one is allowed to use the exponent q = ∞, it is easy to see that

the expression given for P( j)∞ is controlled by IN
(
F (N )
j

)
—amore natural quantity

in the kinetic setting. It would be interesting to see what will need to replace, if
possible, the condition about infinite moment control (i.e., k = ∞) in order to be
able to use this.

• The moment control condition appears to be natural in Kac’s setting. Indeed,
following [7] one sees that the family of functions that was constructed to show
the validity of Villani’s conjecture satisfies

Mk (�1 (FN )) −→
N→∞ ∞,

for any k > 2.
• A very important observation that can be made following Theorems 5.2 and 5.3
is that the requirement on HN (FN )

N can be removed and one can gain a quantitative
version of the deviation of the sum of the partial entropies with respect to the total
entropy. In other words, we can find an explicit κN such that

N∑
j=1

∫

SN−1
(√

N
) F (N )

j log F (N )
j dσ N ≤ HN (FN ) + κN .

Under our setting κN may blow up, but perhaps a more delicate estimation can be
done in the future to evaluate it, or some regimes on the behavior of HN (FN )may
be explored and will allow us to improve our main inequality.

• The rescaled entropy, HN (FN )
N is very important in the study of Kac’s model and is

connected to the concept of entropic chaoticity (see more in [4,9–11]). One knows
that under Kac’s flow the entropy will decrease, so a lower bound on the rescaled
entropy can’t propagate with time. However, it may give rise to a two time scale
approach where we find a fast convergence to a state near equilibrium if we start
far from equilibrium using the ideas in our work, followed by a fast convergence
to equilibrium using different techniques.
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Appendix: Additional Proofs

In this Appendix we will provide additional proofs that we felt would hinder the flow
of the paper.

Lemma 8.1 Let FN ∈ P
(
R

N
)
be a probability density with finite second moment.

Then

N∑
j=1

H
(
�

( j)
1 (FN ) |γ

)
≤ H (FN |γN ) . (8.1)

Proof It is a simple computation to see that

N∑
j=1

∫

R

�
( j)
1 (FN ) (v j ) log γ (v j )dv j =

∫

RN
FN (v) log γN (v)dv.

Thus, we only need to prove that

N∑
j=1

H
(
�

( j)
1 (FN )

)
≤ H (FN ) .

Define GN (v) = �N
j=1�

( j)
1 (FN ) (v j ). GN ∈ P

(
R

N
)
and

0 ≤ H (FN |GN ) = H (FN ) −
∫

RN
FN (v) logGN (v)dv

= H (FN ) −
N∑
j=1

∫

RN
FN (v) log

(
�

( j)
1 (FN ) (v j )

)
dv

= H (FN ) −
N∑
j=1

H
(
�

( j)
1 (FN )

)
,

completing the proof. 
�
Lemma 8.2 Denote by d(x, y) = min (|x − y| , 1) for any x, y ∈ R. Then for any
q ≥ 1 and R ≥ 1

|x − y|q ≤ Rqd(x, y) + 2k

Rk−q

(
|x |k + |y|k

)
. (8.2)

Proof If |x − y| ≤ 1 we have that

|x − y|q ≤ |x − y| = d(x, y) ≤ Rqd(x, y) + 2k

Rk−q

(
|x |k + |y|k

)
.

When |x − y| > 1 we have that if |x | , |y| < R
2
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|x − y|q ≤ 2q−1 (|x |q + |y|q) ≤ Rq = Rqd(x, y)

≤ Rqd(x, y) + 2k

Rk−q

(
|x |k + |y|k

)
,

due to the convexity of the map f (t) = tq . If |x | < R
2 and |y| > R

2 (or vice versa)

|x − y|q ≤ 2q−1 (|x |q + |y|q) ≤ Rq

2
+ 2q−1

(
2

R

)k−q

|y|k

= Rq

2
d(x, y) + 2k−1

Rk−q
|y|k ≤ Rqd(x, y) + 2k

Rk−q

(
|x |k + |y|k

)
.

Finally, if |x | , |y| ≥ R
2 then

|x − y|q ≤ 2q−1 (|x |q + |y|q) ≤ 2q−1
(
2

R

)k−q (
|y|k + |x |k

)

≤ Rqd(x, y) + 2k

Rk−q

(
|x |k + |y|k

)
,

completing the proof. 
�
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