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Abstract We consider sequences of compact bounded linear operators U,
LP(0,1) — LP(0, 1) with certain convergence properties. Several divergence theo-
rems for multiple sequences of tensor products of these operators are proved. These
theorems in particular imply that L log? ! L is the optimal Orlicz space guaranteeing
almost everywhere summability of rectangular partial sums of multiple Fourier series
in general orthogonal systems.
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1 Introduction

It is well known that (C, 1) means of the rectangular partial sums of d-dimensional
Fourier series of the functions from the class L log?~! L(T?) converge almost every-
where and it is the optimal Orlicz space with this property ([20], Ch. 17). The arguments
of [20] also imply the optimality of the same class for the convergence of (C, «)-means
with o« > 0. Such properties of Fourier series are based on two fundamental theorems
in the theory of differentiation of integrals: If f € Llog?~! L(R?), then
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1
li — = .e., 1.1
diam (R;IEO,xeR |R| /R f=rxae (1.1

where R denotes a d-dimensional interval with the diameter diam (R) (Jessen—
Marcinkiewicz—Zygmund [9]) and conversely, in each Orlicz space larger than
Llogd_l L(RY) there exists a function f(x) such that (1.1) fails for any x € R4
(Saks [17]).

For two positive quantities a and b the relationa < b (ora 2 b) stands fora < c-b
(ora > c¢-b), where ¢ > 0 is either an absolute constant or a constant that depends on
the dimension d. The notation Iz denotes the indicator function of a set E. Let K (x)
be the kernel of (C, «)-means of the one-dimensional Fourier series. The following
estimate is well known:

m(n)

1m0 S KEG) S D el (1), (12)

i=1

where the numbers o; > 0,0 < x; < -+ < Xj() < 7 depend on n and satisfy the
inequality

m(n)

Z xiop < 1
i=1

(see [2], Ch. 1, Theorem 4.2, and [20], Ch. 17, Theorem 2.14). The kernel of the
(C, @)-means of the rectangular partial sums of d-dimensional Fourier series has the
form

Kp(x) = Ky (x) K, (x2) ... K} (xa),

wheren = (n, na, ..., ng) and x = (x1, x2, . .., xg) € T¢. So for the (C, «)-means
we have the formula

/g T

1
ol(x, f) = F/ | fx—OKX(bdr, ... di. (1.3)

—TT -7

The relation (1.2) is the basic argument which makes it possible to use integral dif-
ferentiation theory in the summability problems of the multiple Fourier series. More
precisely, using (1.2), one can get the estimate

Mf(x) S sup log (%, f)l S Mf(x) (1.4)

neNd

where M f(x) is the ordinary strong maximal function. The right inequality in (1.4)
holds for arbitrary f € L' while the left one holds for positive functions. Then
the optimality of the class L logd “LL(T9) for a.e. convergence of 0% (x, f) can be
obtained from the theorems of Jessen—Marcinkiewicz—Zygmund and Saks by using
standard arguments.
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3068 G. Gét, G. Karagulyan

The right inequality in (1.2) is common for many kernels of summation, while the
left one fails for some of them. An example of such a method of summation are the
well known logarithmic means

1 n—1 Sk(f) n—1 1
—_ R -,
I, g k " Zk

k=1

where Si(f) denotes the partial sum of the Fourier series of a function f € L'(T). It
is known that the convergence of Cesaro means of a sequence implies the convergence
of the logarithmic means ([19], Ch. 3.9) and the kernel K, (x) of the logarithmic means
of Fourier series has the estimate

n

OSKn(x)Smin[ ], 0<|x| <m.

xlogn’ logn
One can observe that it satisfies the right inequality of (1.2) and the left estimate is not
satisfied. Thus d-dimensional logarithmic means of the functions from L log?~! L
converge almost everywhere. The question of the optimality of L log?~! L for this
convergence property was open. The main result of this paper solves this question
positively. Moreover, we establish general divergence theorems for some sequences
of compact bounded operators in L' (0, 1)¢. These theorems imply that there is no
summation method giving a larger a.e. convergence class than Llog?~! L for the
rectangular partial sums of the multiple Fourier series in general orthogonal systems.

Let Qg = (0, 1) be the unit d-dimensional cube. For a given increasing continuous
function

®(1) : [0, 00) — [0, 00) (1.5)

we denote by ®(L)(Qy) the class of functions f(x) defined on Qy satisfying the
inequality

/ @ (|f(x)]) dx < oo.
Qd

If
U:L'©0, 1) — L0 1 (1.6)
is a bounded linear operator, then we denote by (U); operators
U L'(Qa) » L'(Qa). 1=k =d.
defined by
O fxny ooy xd) =UfF (X1, 000y Xk—1s 5 Xkt1s - - -5 Xd)- .7

In the right side of (1.7) f(x1, ..., Xk—1, s Xk+1, - - - » X4) 1S considered as a function
in the variable x; (the other variables are fixed). Obviously (1.7) is defined for almost
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all x = (x1,...,x4) and each (U)y is a bounded linear operator on Ll(Qd). For a
given sequence of bounded linear operators

U, :L'0,1)—> L'©O, 1, n=1,2,..., (1.8)
we define the multiple sequence of operators
Un = Un)D10WUny)a0-0Wp)a, m=(n1,na,...,0nq), (1.9)
in L'(Qy) generated from the tensor products of (1.8).

We will consider operator sequences U,, with the properties

(A) each U, is a compact linear operator,
(B) if f € L*°(0, 1), then U, f (x) converges to f(x) in measure.

Recall that if U is a compact linear operator on L' (0, 1), then for any sequence of
functions g, € Ll(O, 1),n=1,2,...,satisfying the condition

1
1im/ fx)gn(x)dx =0
n—0oo 0

for any f € L°°(0, 1), we have ||U(g,)|l1 — Oasn — oc.
One of the main results of this paper is the following.

Theorem 1 Let U, be a sequence of bounded linear operators (1.8) with the properties
(A) and (B). Then for any function (1.5) satisfying

D(1
lim —g)l =0 (1.10)
1= tlogt ™' ¢t

there exists a function g € ®(L)(Qq), g(x) > 0, such that

limsup |Upg(x)| = o0

min{ny}— 00

at almost every pointx € Qg .

Let ¢ = {@u(x)}72; C L°°(0, 1) be an orthonormal system. Denote by S, f(x) the
partial sums of the Fourier series of a function f € L'(0, 1) in this system. Suppose
the matrix A = {auk, 1| < k < n,n = 1,2,...} determines a regular method of
summation, that is,

lim apk = 0,

n—oo

n
supz |ank| < 00,
neN k=1

n

lim > an = 1.
n—oo

k=1
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3070 G. Gét, G. Karagulyan

The sequence of operators

o A f(x) = ankSif(x) (1.11)

k=1

defines A-means of the partial sums of Fourier series of a function f € L'(0, 1)
with respect to the orthonormal system ¢. The tensor products of the operators (1.11)
defined by

A A A A
ol = (@i (oMo (0f M
generate A-means of multiple Fourier series with respect to system ¢. Observe that
the sequence (1.11) satisfies the conditions (A) and (B). So the following theorem is
an immediate consequence of Theorem 1.

Theorem 2 Let A = {ay, | < k < n,n = 1,2,...} be a regular method of
summation and {@,(x)};2, C L*(0, 1) be a complete orthonormal system. Then
under the condition (1.10) there exists a function f € ®(L)(Qgq), whose Fourier
series in the system {¢, (x)} is almost everywhere A-divergent, i.e.,

lim sup ‘cr,‘f'Af(x)‘ =ooa.e.
min{ny}— 00

Particular cases of this theorem for double Fourier series were considered in the
papers [10] and [5].

Theorem A (Karagulyan, 1989) If {¢,(x)};2, C L*(0, 1) is a complete ortho-
normal system and ® satisfies the condition (1.10), then there exists a function
f € ®(L)(0, 1)* with double Fourier series

o0 o
DD () pn (y) (1.12)
n=1m=1
satisfying the relation
N M
lim sup Zzanm(pn(x)(pm(y) =0 (1.13)

min{N,M}— oo =1 m=1

almost everywhere on (0, 1)2.

Theorem B (Getsadze, 2007) Let {¢, (x)}32 | C L*°(0, 1) be acomplete orthonormal
system and ® satisfies the condition (1.10). Then for any Lebesgue measurable set
E C (0, D2 withmE > O there exists a function f € ®(L)(0, D2 andaset E' C E,
mE' > 0, such that the sequence of rectangular (C, 1) means of double Fourier series
are unbounded on E'.
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Analogous problems for Walsh systems were considered before by Gat [3], Nagy
[14], Moticz et al. [13]. It is proved that L log L(0, 1)? is the maximal Orlicz space
for a.e. (C, 1) summability of double Fourier series in Walsh—Paley [3] and Walsh—
Kaczmarz [14] systems.

In the proofs of the theorems of the present paper we essentially use the method
of Haar type systems. This method was first used by Olevskii [15,16] in his work on
divergence problems of orthogonal series.

2 Haar Type Systems

Recall the definition of Haar type systems ([12], Ch. 3.1). We say a family of sets
e ={E,: n=1,2,...}is adyadic partition of [0, 1) if

Ei=[0,1), E,=ELc[0,1), i=12,...,25 k=0,1,..., (2.1
where n > 2 has the representation
n=2+i 1<i<2Kk=012..., (2.2)
and we have
m(EH) =27% 1 <i <2k,
. i
Ep = Eiy VEL,,
EiNEl =2 if i#]. (2.3)

Any dyadic partition uniquely defines a Haar type system & = {§,(x), n =
1,2,...}on [0, 1) as follows:

sir) =1,
22 if x e XY
£.(x) =1 —2M% if x e B,
0 if x¢E..

If

N
E,=A,=|— L), i=12 .25 k=01....,
2k 7 2k

then we get the ordinary Haar system, which will be denoted by x = {x,(x)}. Itis
known (see [12], Ch. 3.9) that for any Haar type system &, (x) there exists a measure
preserving transformation u(x) : [0, 1) — [0, 1) such that

£n(x) = Xn(u(x)) ae. 2.4
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3072 G. Gét, G. Karagulyan

Consequences of this is the basic property that will be used in different situations
below.
Examples of dyadic partitions of [0, 1) may be given using the Rademacher system

@) = (=D xe[0,1), n=1,2,....

For a given integer n > 2 of the form (2.2), we define

i+ 1
7 — k-1 ! '
n +|: 2i|

Take an arbitrary sequence of integers 1 < p» < p3 < -+ < p; - --. The following
recurrence formula

E|=E,=1[0.1), E, = {x € Bt (=)™, (x) > 0] n>2, (25
defines a partition of [0, 1). This family of sets uniquely determines a Haar type system

as follows:

rp, (I, (x)

VIEn|

We consider the tensor products of the Haar and Haar type systems

En(x) = , n>2. (2.6)

xn(X) = xn, (X1), -+ -5 Xng (Xn),
EII(X) = snl(-xl)a R énd(xn)v

where X = (x1,...,x3) € Qa,n= (ny,...,nq) € N°. For a given function f(x) €
L'(Qy) let

ap = /Q fX)m(X)dx, n = (ny1,n2,...,ng), 2.7
d

be the Fourier—Haar coefficients of . We denote
$5F(x) = Zakskoo Z Zakl ,,,,, ki (01), o By (Ra). (2.8)
ki=1 ki=1

This series is said to be convergent (a.e., in L? norm) if its rectangular partial sums

ni

ngq
f(x) = zakén(x) DD ke kg (K1), -y (Xa)

ki=1 ki=1

converges as min{n;} — oo. It is well known that the series (2.8) converges in L'
norm. Besides, we have 8% f(x) = f(x) whenever & coincides with the ordinary Haar
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system. If & coincides with the Haar system, then instead of Sf, the notation 8y, will be
used. In the one-dimensional case (d = 1) the operators 8¢, Sfl and 8, will be denoted
by S¢, Sf; and S, respectively. Observe that

8§ — ®k 1(55) (55)1 0---0 (Sg)d’ 2.9)
Sa =& (S5), = (S5) 00 (S5,),- (2.10)

Recall that the strong maximal function is defined by

Mf(x) = sup —/ f(bdt,

R:xeR | R|

where sup is taken over all d-dimensional intervals R = (ay, b1) X+ - - X (aq, bg) C Qg
containing the point x € Q. It is well known that

Z ak Xk (%)

k_

sup =Mf(x)

for any f € L'(Qg4) with the Fourier—Haar coefficients (2.7). Thus, using the weak
type inequality

m{erd:Mf(x)>k}§cd/ %log ( |f|) A>0, (211
Q4

(Fava [1] or Guzman [6], Ch. 2.3) and the relation (2.4), we conclude

|

Z ak xk (X)| > k]

k=1

SCd/ |f| d1<1+M)7k20’ (2.12)
Qa A

where the equality in (2.12) follows from the definition of the Haar type system.

Z axék (%)

m[xe Qg :sup
n

Ix € Qq: sup

3 Almost Everywhere Convergence Classes of Functions

The following theorem is the main result of this section.

Theorem 3 If a sequence of bounded linear operators U, : L'(0,1) — L'(0, 1)
satisfies the conditions (A), (B) and U, is the multiple sequence of operators (1.7)
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3074 G. Gét, G. Karagulyan

generated by Uy, then there exist a Haar type system & = {§,(x)} and a sequence of
integers 0 < v(1) < v(2) < --- < v(k) < --- such that for any function

Llog!™%(Qq) if d =2,
U DATORD if d=1,

we have

lim  ((Upm) 0 8%) f(x) =8 f(x)) =0 3.1

min{ng}— o0

at almost everyx € Qg.

An analogous theorem for martingale operator sequences was proved in the paper
[11]. That s, if U, is an arbitrary sequence of martingale operators, then there exists a
sequence of sets G, C Qg with m(Gy) — 1 as min{n;} — oo such that the relation

(Wpmy 0 8%) f(x) = 85/ (x), x €Gn, meN,

holds for any f € L'(Qy). Some problems related to this martingale theorem were
considered before in the papers by Hare and Stokolos [8], Hagelstein [7] and Stokolos
[18].

Lemmal Ife,;; > 0, n,i = 1,2,..., then for any sequence of bounded linear
operators (1.8) satisfying (A) and (B), there exist a sequence of integers 0 < v(1) <
v(2) < --- <v(k) < --- and a Haar type system & = {&,,(x)} such that

m{x € (0, 1) : Uy (x) =& ()| > eni} <eniy 1 <i<n, (32
m {x €0, D) : |[Uymé&x)| > Em'} < Epi, I >n. (3.3)
Proof Weuseinduction. The system & will be found in the form (2.6). Define §1(x) = 1
and p; = 1. Using the property (B) we have U,&;(x) — & (x) in measure as v — 00,
and so we may take a number v(1) satisfying (3.2) for n = 1. Then suppose we have
already chosen the numbers v(1) < v(2) < --- < v(k—1) and the first k — 1 functions

of the system & satisfying the relations (2.6), (3.2) and (3.3) forn,i = 1,2, ..., k—1.
We define the set Ej satisfying (2.5), i.e.,

Ep = {x € Ep: (=1, (0 > 0} .
Using the compactness of the operators U, ,y, n = 1,2, ...,k — 1, we have
Jim Uy (rm DI ) [, =0, n=1.2,... k-1

Thus we can choose a number m = p; > pi—1 such that

‘ Uu(n) (Vpk(X)HEk(x))

< ()’ n=1,2,... k—1.
VIEK] l

1
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7 LEy,

N
m{xe©1): Um&®) >en} <ew, n=12,....k—1. (34

Defining & = and using Chebyshev’s inequality, we get

Then, using the convergence in measure U,§&;(x) — &(x) as v — oo, fori =
1,2, ..., k, we may choose v(k) > v(k — 1) such that

m{x e 0,1): |Uyp&x) —&@)| > e} < e, 1 <i <k. (3.5)

Combining (3.4) and (3.5) we get (3.2) and (3.3) forn, i = 1,2, ..., k. This completes
by induction the proof of the lemma. O

Let the function f € L logd -1 L(Qg) have Fourier-Haar coefficients ax defined
by (2.7). Suppose 1 < s < d and denote

81{1 ..... ka- (XS+11 e ,Xd)
Ns41 nq d
- sup DD a [ g (3.6)
ns1zLngz1 ks41=1 kg=1 i=s+1

Lemma2 If f € Llog? " 1(Qy), 1 <s < d, then

m {(xl, coosXd) € Qa v Skyky (Xs 1, ooy Xg) > A}
<cgki, ... ko)? /Qd uﬂlogd*‘“l (1 + 'Tf') , (3.7)
forany A > 1.
Proof Observe that, if the integers k1, . .., kg are fixed, then the multiple series

o) 00 d
> a [T G

k=1 kg=1  i=s+1

is the Fourier—Haar series of the function
8(Xsq1s vy Xd) = &hy,oky K515 - -5 Xd)

N
:/ ftr, ... tg, Xst 1, - .,xd)Hin(ti)dtl ..odg.
QOs i=1

Thus, using the notation (3.6) and the inequality (2.12) in the (d — s)-dimensional
case, we obtain

< cas / @ (M) dxgs1, ... dxq, (3.8)
Qdfs )\
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3076 G. Gét, G. Karagulyan

where ® (1) = r1og?™*~1(1 4 ) and A > 1. Since | x, (x)| < /2, we get

18 (g1, -y Xa)

s
< H\//?/ LF(t1 oo by Xogds - oo X)|dt .. dts. (3.9)
i=1 s

It is easy to check that ® () is a convex function and
Dkx) < kD), x>0, k> 1.

Thus, using (3.9) and Jensen’s inequality, we obtain

cb(lg(xsﬂ,..-,xd)l)
A

s ..., L, X S
S(kl,...,ks)é‘cp(/ AY! $» X5+ xd)'dtl...dts)

A
s+l f1y...,tg, X sy X,
§(k1,...,ks)7/ cI>(|f(l S)LS“ d)l)dtl...dts.
Integration with respect to variables x4 1, ..., x4 implies

/ <I>(lg(xSH’""xd)|)dxs+1,...,dxd
Qd—s )\

Iy.ooyt,
§(k1,...,ks)d/ <1>(|f(‘k—d)|)dr1,...,dtd.
[oF]

Combining this inequality with (3.8), we get

m{(x1,...,%q) € Qa : Sky....kyXs41, ..., Xq) > A}

=m{(Xs41, ... %a) € Qi—s * Skyky K1 -2 Xa) > A}

s d
f,...,1
fcd(l |k,) / @(ml)\’—d)')dl‘l,...,dtd.
i=1 Qa

Proof of Theorem 3 Applying Lemma 1, we fix a Haar type system {£,(x)} and a
sequence v(n) satisfying the conditions (3.2), (3.3) with

m}

ek = 477K, (3.10)
Then we denote
@, _ | Umée(x) —&(x), if 1 <k =<n,
o (x) = [Uu(n)ék(x), it k>n (.10
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The boundedness of the operators Uy and the L '-convergence of the series (2.8) imply

(Uvmy 0 8%) f(x) = ZakUu(n.)&q(m) s Uvng)8kg (Xa)- (3.12)
k=1

Substituting

" (), it ko> ng

U . AX;) = X
S8 (30 [sk,.<xl>+a,£7”<xi>, it 1<k <n,

in (3.12), we may easily observe that

(Um0 8) f0) = > > el e I .

I1c(l,...d} k:1<k;<n;,iel¢ i€l iel®
where the first sum is taken over all the subsets I of the set {1, ...,d}. If I = &, then
we have

> a] e e [ @)
1<ki<n;,iel¢ iel iel¢
n d n
= > a [ [& () =D k() = (85 0 Sn) F(x).
k=1 i=I k=1
Thus we get

(Upmy 0 8%) f(x) — (85 0 8n) f(%)

=> > a]e e [] &6, (3.13)

[#£D Kk 1<kj<n; iel¢ iel ielc

Hence, in order to prove the theorem, it is enough to show

: (n;)
| i (xi) =0ae. .14
i > o [T i H &, (xi) =0ae (3.14)
k:1<k;<n;,iel¢ iel iel¢
whenever I # . Without loss of generality we may suppose that I = {1, ..., s},

1 <s <d. So we must prove

d
lim > akHa("’)(x,-) [] &G =0ae. (3.15)

min{n; }— oo . .
k: 1<k;<n;j,i>s i=1 i=s+1

where in the case s = d the last product is not considered. Using (3.2), (3.3), (3.10)
and (3.11), for the set

o’ ={re @1 |of’ (0| <40 d]
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3078 G. Gét, G. Karagulyan

we get
m () > 1— 470,

Denote

c™ = ﬂ c” c0,1),

C= U ﬂc“’)c(o 1,

m>1n=m
={xX=(x1,...,%3) € Q4 : x € C} C Qq.

We have

o0
m (c('”) > 1= 470 S g,

k=1

Thus we get m (C) = 1 and therefore m (A) = 1. Besides, for any x € A there exists
n(x) = (n1(x), ..., ng(x)) such that

’ Doy <40 =12 d k=1,2,. ..,

for any n > n(x), xe€ A. (3.16)

If s = d, then (3.15) is immediate. Indeed, we have |ax| < || f|l1v/k1, ..., kg and so
for any x € A and n > n(x) we get

o (i)

d
ik _ €IS
< I 2] Vhi a7 < S

k i=1

which implies (3.15). At this moment the proof of the theorem in the case d = 1 is
complete and we can suppose d > 2.
Now consider the case 1 < s < d. Denote

Nlyenny ng . d ki k
Bkll,..-,k: = {X € Qd . (Sklm..,k.v(xSﬁ'lv-"axd) < (kla""ks) ) .’2}’ll+ e S} )
o0
ni ng __ Nlyeeny ng
Bt = () B
ki,..., ky=1
where &, ...k, is the function defined in (3.6). Using Lemma 2, we get

NN, —(ny4ky+-+ng+k
m(Bkl,...,k;) -1—= sz (n1+k ng s)’

o o
m (B”l ..... nx) > 1— Cf Z Z 27(n1+k1+~~+ns+ks) —1— Cf . 27(n1+,'~,+ns)’
ki=1 ky=1
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where
Cr = cd/Q | f 1 log?=> (1 + | £]).
d

Since by the hypothesis of the theorem f € L1log?~? L and we have s > 1, Cyis
bounded. Hence for the sets

B = U m BIMelts Qd

we have m(B) = 1. Observe that if x = (x1, ..., x4) € B, then there exists a vector
m(x) = (m(x), ..., mg(x)) such that for any n > m(x) we have

Sk st 1y -y Xa) < (ky o k)@ - 2mFkibtnsths D e N,

n>m(x), x=(xy,...,xq) € B. (3.17)

Note that the coordinates mgy1(x), ..., mg(x) can be chosen arbitrarily. Combining
(3.16) and (3.17), forany x € G = AN B and n > max{n(x), m(x)} we get

K d
> a]een [ &

k:1<k;<nj,i>s i=1 i=s+1
Ns+1
=S ST w] 3 S a [T aw
k=1 ky=1i=1 ks+1=1 kqg=1 i=s+1
')
S Z zH‘ak )(xl 8/{1 ,,,,, ks(xS-Fl""v )
ki=1 ky=1i=1
[e's) 00
< Z o Z 4—(n1+k1+~~+n5+ks)(kl o ks)d . 2n1+k1+~“+ns+k5
k=1 ky=1
< Cg - 27t (3.18)

where Cy > Oisaconstant. Sincem (G) = 1,(3.18) completes the proof of Theorem 3.
O

The functions f(x), g(x) € L'(Qy) are said to be equivalent (f ~ g), if they have
the same distribution function, that is,

m{xeQi: fX)>Al=m{xeQq: gx)>1}, reR.

Theorem 3 immediately implies
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Theorem 4 Let U, be the operator sequence (1.8) satisfying the conditions (A) and
(B). If the Fourier—Haar series

> anxn(x) (3.19)
n=1

of a function f € L'(Qy) diverges almost everywhere, then there exists a function
g € LY(Qy) such that g ~ f and

U, g(x) diverges a.e. as min{n;} — oo. (3.20)

Proof Since the series (3.19) diverges a.e., the same also holds for the series

> anéa(), (3.21)
n=1

where & = {§,} is the Haar type system obtained by Theorem 3. On the other hand
(3.21) converges in L! norm to a function

g=8feL Q.
We have g ~ f and

Us g ®) = Unqmy © 8°) f(X).
Thus, according to (3.1), we get

lim U g(x) = 8¢ f(x) =0ae.

min{n; }—

and then the a.e. divergence of the partial sums Si f(x) of the series (3.21) yields the
divergence of U, n)g(x), which completes the proof. O

Proof of Theorem 1 If ® satisfies the condition (1.10), then there exists a function
f e ®(L)(Qq), f(x) = 0, whose Fourier—Haar series (3.19) diverges a.e. We will
also have g € ®(L)(Qy), where g ~ f is the function obtained by Theorem 4. Then
the relation (3.20) completes the proof of Theorem 1. O

So we consider the sequence of convolution operators

1
U, f(x) :/ K,(x —1t) f(t)dt, (3.22)
0

where the kernels K, € L*°[0, 1) are 1-periodic functions and form an approximation
of identity. That is
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1. Ji Kn(t)dt — 1asn — oo,

2. K (x) = supy<js<i2 |[Kn(@®)] = Oasn — 00,0 < |x| < 1/2,

3. sup, fol K (x) < oo.

It is well known that such an operator sequence U, satisfies the conditions (A) and
(B). Moreover, U, f(x) converges in L? forany f € L?, 1 < p < o0, and the

convergence is uniform while f is a continuous 1-periodic function. Let (1.9) be the
multiple operator sequence generated from (3.22). It can be written in the form

u,,f(x):/Q Ky (t1), ..., Kn,(tg) f(x = t)dty, ..., d1. (3.23)
d

The following theorem determines the exact Orlicz class of functions guaranteeing
a.e. convergence for the sequence of operators (1.9). The first part of the theorem is
based on a standard argument (see, for example, [2] Theorem 4.2) and immediately
follows from the weak estimate of the strong maximal function.

Theorem 5 Let Uy, be the sequence of operators (1.9) generated by (3.22). Then
(D) if f € Llog?=' L(Qu), then Uy, f (x) — f(x) a.e. as min{n;} — 00,
(2) if the function ® satisfies the condition
D(r
lim L =0,
=00 tlogd =1t
then there exists a function f € ®(L)(Qg4), f(x) > 0, such that
limsup |U,f(x)] =o00ae on Qg. (3.24)

min{n; }— 0o

If in addition K, (x) > 0, then (3.24) holds everywhere.

Proof We may suppose that all the functions are 1-periodic in each variable. Since
K ¥(x) is even and decreasing on [0, 1/2], we may find a step function of the form

m(n)
on(x) =D al'(n)]l(—xi("),xi(”))(x)’ a” >0, x" >0,
i=1

such that K;¥(x) < ¢,(x) and

1 m 1
/ on(x)dx = Z2xl.(")ai(") < 2/ K} (x)dx < B.
0 i=1 0

This implies that

Unf(x)| = ‘/Q K (1), ... Ky, (ta) f(X = Od11, ..., dlg
d

dty

< / K;‘l(tl),...,K:d(td)|f(x—t)|dt1,...
Qa

< / i (1) -+ ny () f (< — Dd1r. ... dig
Qa
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m(ny) m(ng) d
3 ey
i=1 i=1 k=1
x.(nl) x.(nd)

1 i 1

X |f(x—t)|dty,...,dtg
d..(n1) (nq) (1) (ng)
24x7, X —x;1 —x;

m(ny) m(ng)

Mf) D 2x"a™ > 2x"a" < BIMf(x).  (3.25)

i
i=1 i=1

IA

Hence, according to (2.11), we have

m{x € Qg : sup [Un f(X)| > A} < Cd/

Qd

1 gt (14 11
— log (Hx)' (3.26)

Now take a function f € L log”l_l L(Qg4).Let X > 0be an arbitrary number. Observe
that for any ¢ > 0 we can write f in the form f = g + h where g is continuous and

2|h 2|h 2|h
/ L <e, / Llogd*1 (1+L) <e¢
(o] A Qq A A

From the continuity of g we have Uy g (x) uniformly converges to g(x). Thus, applying
(3.26) and Chebyshev’s inequality, we get

m[erd: lim sup |unf(x)—f(x)|>A]

min{n; }— 0o

=m {x € Qg limsup |Uph(x) — h(x)| > k]

min{n; }— oo

<m [x € Qg :sup|Uph(x)| > k/2] +{xe Q4:|h®)|>1r/2}

2lhl L g 2|h| 2|h|
SCd Tlog 1+T + T<(Cd+1)€.
Qa Qa

Since ¢ > 0 can be small enough, we obtain

m[xe Qg : limsup |Upf(x) — f(x)] >k} =0

min{n; }—o00

for any A > 0. This implies the first part of the theorem.

To prove the second part, we apply Theorem 1. Then we find a function f €
®(L)(Qq), f(x) > 0, satisfying (3.24) almost everywhere. To get everywhere diver-
gence in the case K,(x) > 0, we modify the function f(x) as follows. Suppose
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E C Qg is the set where (3.24) doesn’t hold. We have m E = 0. Define a sequence of
opensets G, C Qq4, E C G, C G,,_1, such that

m(G,) <27

Then we consider the function

fO=f®+ex, gx) =D n-lg, K.

n=1
It is easy to check that g and so f is from ® (L) and

lim Upg(x) =400, xe€E.

min{n; }— o0

The using the positivity of the operators Uy, one can easily get the divergence of
Unf(x)atany x € Qy. O

4 Estimates of L?”-Norms

In this section we suppose p > 1 is fixed and consider a sequence of operators U,
satisfying (A) and a stronger condition

(Bp) if f € LP(0,1), then Uy f — fllLro,y — 0 (p = 1),

instead of (B). Note that, according to the Banach—Steinhaus theorem, condition (B )

implies

1 <M =sup||UyllLr—rr < 00. 4.1

n>1

The following theorem is the main result of this section.

Theorem 6 If1 < p < 00, §, \\ 0 and the sequence of bounded linear operators Uy,
in LY(0, 1) satisfies the conditions (A) and (B p), then there exist a Haar type system
& = {&,(x)} and a sequence of integers 0 < v(1) < v(2) < --- < v(k) < --- such
that

| (Womy ©8%) =85, < 8w, min{ne} = m. 4.2)

The proof of the next lemma is similar to Lemma 1. So it will be stated briefly.

Lemma3 Let p > 1, ¢; N\ 0 and the sequence of bounded linear operators (1.8)
satisfies the conditions (A) and (B)). Then there exist a sequence of integers 0 <
v(l) <v(2) <--- <v(k) <--- and a Haar type system & = {&,(x)} such that

||UU(n)§l('x)_El('x)||p < é&n, l = 1723"'7’7’7 (43)
1Uvm)&i ) Nlp < &y i > n. 4.4)
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foranyn=1,2,...

Proof We will use induction. Define & (x) = 1. Using the property (B ), we may find
a number v (1), satisfying (4.3) for n = 1. Then suppose we have already chosen the
numbers v(1) < v(2) < --- < v(k) and the first k functions of the system & = {&,,(x)},
satisfying the relations (4.3) and (4.4) forn = 1,2, ..., k. From the compactness of
the operators follows the existence of a number px41 > pi such that

|| Uv(i)(rpk+, x)IEg, (x)) Hp < é&k+1, =1,2,... k.
Defining &1 = rp,,,1g, we will have (4.4) fori = k + 1 and foreach1 <n < k.

Then using property (B, ), we may chose v(k + 1) satisfying (4.3) forn = k + 1 and
foreach 1 <i < k 4 1. This completes the induction and the proof of Lemma 3. O

The following lemma was proved in [11].
Lemma4 ([11]) If U and V are bounded linear operators on L0, 1), then
MnoWm=U)mo V), n#m, 1<n,m=d.
Proof (Proof of Theorem 6) One-dimensional case To prove (4.2) in the one-
dimensional case, we must construct a Haar type system & and a sequence of integers
v(n) such that

[Uviy 085 = Sill, <60 m=1.2,.... 4.5)

Using Lemma 3, we find £ with the relations (4.3) and (4.4), where the sequence
en \¢ O satisfies the inequality

en <8, /4%, n=1,2,....

Take an arbitrary function

fO) =D anxax) € L.
n=1

We have

SEf(x) = Zakskm,
S fx) = Zakskm

(Usiy 0 ) f(x) = ZakUu<n>sk<x>

k=1
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Thus, using the bound |a;| < \/Izllfllp and conditions (4.3), (4.4), we get
| (Uvany 0 85 = $7) r@)],

Zak Uy (x) — &(x)) + Z Uy €k (x)

k=1 k=n+1 p
<8nZ|ak|+ Z lax|ex
k=n+1
< ||f||p(nﬁsn+ > Jl?sk)<an||.f||p
k=n-+1

which implies (4.5).
The general case Applying the one-dimensional case of the theorem, we may find
a Haar type system with

[Usiy 0 8° = Sill, <vu n=1.2,..., (4.6)
where

Yo 0, ¥ < ‘Sn/Mda

and M is the constant defined in (4.1). We claim that
H®;{L:1 (Uv(nk) o Sg)k - ®Z:1 (Ssk)ka < Ymin{ni,...,n.} M* 4.7)
The proof of (4.7) is by induction on the dimension © = 1,2, ..., d. Thecase u = 11is

just (4.6), since by (4.1) we have M > 1. Writing (4.6) with respect to each coordinate,
we get

| Wiy 0 S5k = Sk, < - 4.8)
Suppose the case of dimension p — 1 is already proved, that is,
H®;::_ll (Uv(ﬂk) ° Ss)k - ®k (S,%k) Hp = Ymin{ny,...,ny,— |}MM L 4.9)
Let us prove the case of dimension p. Observe that
®f=1 (Uv(nk) o Sé)k - ®;:=1 (Sﬁk)k
= [®ll::_ll (U@ © Ss)k:l © |:(UV(nu) ° Ss) (SE,I)J

+ [@,@‘:—11 (Usinpy © S5, — @2 l(ssk)] (SEM)M. (4.10)
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Besides, we have

n—1
=1 -1
&= W 0 5),] = TT 10wl 151, < a2,
k=1
and therefore, also using (4.8), (4.9) and (4.10), we get the estimate
3
H‘X’f:l (UU("k) o Sé)k - ®;::1 (S”k)ka
= VnuMﬂ_l + Yminfny,...n—1} mr1 =< Vmin{m,...,nu}MM,

which completes the induction and the proof of (4.7). Then, applying Lemma 4 several
times, we obtain

U 0 8° = &y (Vv © @iz (5°), = ®f=y (Vv © 5%,
and therefore we get
(Unemy © 8°) = 85 = &=y (Uuiwo 0 5°), — ®_; (S5, ),

which means thatin the case © = d the inequality (4.2) coincides with (4.7). Theorem 6
is proved. O

If a < b and a 2 b are satisfied at the same time, then we write a ~ b.
For the operator sequence U, generated by (1.8) we consider the maximal operator

W f(x) = sup [Un f(X)] .
n
The norm of this operator is defined by

Wl = sup U F )l
Iflp=1

This quantity describes the least constant ¢ > 0 for which the inequality
lw s, < clfily

holds for any f € L?(Qg). The similar operator for the partial sums of Fourier—Haar
series is denoted by

8* f(x) = sup [Spf(X)].
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We will consider also the maximal operator generated by a Haar type system defined
by

85" f(x) = sup 83 £ (®)|
n
The following estimate is well known:

d
IMf&)p ~ (%) Ifllp, 1 <p<oo, (4.11)

(see, for example, [4]), which also implies

d
1S5 I, = 18*11, ~ (pT) : (4.12)

We prove the following

Theorem 7 If | < p < oo and the sequence of bounded linear operators (1.8)
satisfies conditions (A) and (B)) and Uy, is generated by (1.8), then

U, = 18- (4.13)

Proof Let ¢ > 0 be arbitrary. Using (4.12) we may choose a function f € LP(Qy)
with || f]l , = 1 such that

IS* Ol > I8%11p — &

Obviously we can fix an integer m such that

sup [Sn f ()]

n:n;<m

> 18*1, — 2e. (4.14)
p

We take an arbitrary sequence &, N\, O such that §; = £/md, k=1,2,...,m.
Applying Theorem 6 with this sequence, we determine a Haar type system & and a
sequence of integers v(n) satisfying (4.2). Denote g(x) = 53 f(x). We have |gll, =
| fllp, =1, and from (4.2), (4.14) it follows that

W@l = |sup [Unmg®]| = |sup |(Unm) 0 8°) f )]
n p n p
> | sup Wy 0 8°) f0)
n.n;<m p
> | sup [S5700|| —m? = | sup ISaf | —s
n:n;<m p m n:n;<m »
> I8, — 3e.
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Since ¢ > 0 is arbitrary, we obtain (4.13). O

Theorem 8 Let1 < p < oo and the kernels K, (x) form an approximation of identity.
Then the multiple operator sequence Uy, defined in (3.23) satisfies the relation

p d
U, ~{——1) .
I, (p_)
d
p
IIU*IIpZ(—)
p—1

immediately follows from (4.12) and Theorem 7. To prove the upper bound we use
the estimate (3.25). So we have

Proof The lower bound

U fX®)] < c- Mf(x) (4.15)

where M f (x) is the strong maximal function. From (4.15) and (4.11) we conclude

d
nwvwms(;?ﬁ|vh

d
and therefore we get | U*|, < (%) , which completes the proof of the theorem. O
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