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Abstract We consider sequences of compact bounded linear operators Un :
L p(0, 1) → L p(0, 1) with certain convergence properties. Several divergence theo-
rems for multiple sequences of tensor products of these operators are proved. These
theorems in particular imply that L logd−1 L is the optimal Orlicz space guaranteeing
almost everywhere summability of rectangular partial sums of multiple Fourier series
in general orthogonal systems.
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1 Introduction

It is well known that (C, 1) means of the rectangular partial sums of d-dimensional
Fourier series of the functions from the class L logd−1 L(Td) converge almost every-
where and it is the optimalOrlicz spacewith this property ([20],Ch. 17). The arguments
of [20] also imply the optimality of the same class for the convergence of (C, α)-means
with α > 0. Such properties of Fourier series are based on two fundamental theorems
in the theory of differentiation of integrals: If f ∈ L logd−1 L(Rd), then
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lim
diam (R)→0,x∈R

1

|R|
∫
R
f = f (x) a.e., (1.1)

where R denotes a d-dimensional interval with the diameter diam (R) (Jessen–
Marcinkiewicz–Zygmund [9]) and conversely, in each Orlicz space larger than
L logd−1 L(Rd) there exists a function f (x) such that (1.1) fails for any x ∈ R

d

(Saks [17]).
For two positive quantities a and b the relation a � b (or a � b) stands for a ≤ c ·b

(or a ≥ c · b), where c > 0 is either an absolute constant or a constant that depends on
the dimension d. The notation IE denotes the indicator function of a set E . Let K α

n (x)
be the kernel of (C, α)-means of the one-dimensional Fourier series. The following
estimate is well known:

nI(−1/n,1/n)(x) � K α
n (x) �

m(n)∑
i=1

αi I(−xi ,xi )(x), (1.2)

where the numbers αi > 0, 0 < x1 < · · · < xm(n) ≤ π depend on n and satisfy the
inequality

m(n)∑
i=1

xiαi ≤ 1

(see [2], Ch. 1, Theorem 4.2, and [20], Ch. 17, Theorem 2.14). The kernel of the
(C, α)-means of the rectangular partial sums of d-dimensional Fourier series has the
form

K α
n (x) = K α

n1(x1)K
α
n2(x2) . . . K α

nd (xd),

where n = (n1, n2, . . . , nd) and x = (x1, x2, . . . , xd) ∈ T
d . So for the (C, α)-means

we have the formula

σα
n (x, f ) = 1

πd

∫ π

−π

. . .

∫ π

−π

f (x − t)K α
n (t)dt1, . . . , dtd . (1.3)

The relation (1.2) is the basic argument which makes it possible to use integral dif-
ferentiation theory in the summability problems of the multiple Fourier series. More
precisely, using (1.2), one can get the estimate

M f (x) � sup
n∈Nd

|σα
n (x, f )| � M f (x) (1.4)

where M f (x) is the ordinary strong maximal function. The right inequality in (1.4)
holds for arbitrary f ∈ L1 while the left one holds for positive functions. Then
the optimality of the class L logd−1 L(Td) for a.e. convergence of σα

n (x, f ) can be
obtained from the theorems of Jessen–Marcinkiewicz–Zygmund and Saks by using
standard arguments.
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3068 G. Gát, G. Karagulyan

The right inequality in (1.2) is common for many kernels of summation, while the
left one fails for some of them. An example of such a method of summation are the
well known logarithmic means

1

ln

n−1∑
k=1

Sk( f )

k
, ln =

n−1∑
k=1

1

k
,

where Sk( f ) denotes the partial sum of the Fourier series of a function f ∈ L1(T). It
is known that the convergence of Cesàro means of a sequence implies the convergence
of the logarithmicmeans ([19], Ch. 3.9) and the kernel Kn(x) of the logarithmicmeans
of Fourier series has the estimate

0 ≤ Kn(x) � min

{
1

x log n
,

n

log n

}
, 0 < |x | < π.

One can observe that it satisfies the right inequality of (1.2) and the left estimate is not
satisfied. Thus d-dimensional logarithmic means of the functions from L logd−1 L
converge almost everywhere. The question of the optimality of L logd−1 L for this
convergence property was open. The main result of this paper solves this question
positively. Moreover, we establish general divergence theorems for some sequences
of compact bounded operators in L1(0, 1)d . These theorems imply that there is no
summation method giving a larger a.e. convergence class than L logd−1 L for the
rectangular partial sums of the multiple Fourier series in general orthogonal systems.

Let Qd = (0, 1)d be the unit d-dimensional cube. For a given increasing continuous
function

�(t) : [0,∞) → [0,∞) (1.5)

we denote by �(L)(Qd) the class of functions f (x) defined on Qd satisfying the
inequality

∫
Qd

�(| f (x)|) dx < ∞.

If

U : L1(0, 1) → L1(0, 1) (1.6)

is a bounded linear operator, then we denote by (U )k operators

(U )k : L1(Qd) → L1(Qd), 1 ≤ k ≤ d,

defined by

(U )k f (x1, . . . , xd) = U f (x1, . . . , xk−1, ·, xk+1, . . . , xd). (1.7)

In the right side of (1.7) f (x1, . . . , xk−1, ·, xk+1, . . . , xd) is considered as a function
in the variable xk (the other variables are fixed). Obviously (1.7) is defined for almost
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all x = (x1, . . . , xd) and each (U )k is a bounded linear operator on L1(Qd). For a
given sequence of bounded linear operators

Un : L1(0, 1) → L1(0, 1), n = 1, 2, . . . , (1.8)

we define the multiple sequence of operators

Un = (Un1)1 ◦ (Un2)2 ◦ · · · ◦ (Und )d , n = (n1, n2, . . . , nd), (1.9)

in L1(Qd) generated from the tensor products of (1.8).
We will consider operator sequences Un with the properties

(A) each Un is a compact linear operator,
(B) if f ∈ L∞(0, 1), then Un f (x) converges to f (x) in measure.

Recall that if U is a compact linear operator on L1(0, 1), then for any sequence of
functions gn ∈ L1(0, 1), n = 1, 2, . . ., satisfying the condition

lim
n→∞

∫ 1

0
f (x)gn(x)dx = 0

for any f ∈ L∞(0, 1), we have ‖U (gn)‖1 → 0 as n → ∞.
One of the main results of this paper is the following.

Theorem 1 LetUn be a sequence of bounded linear operators (1.8)with the properties
(A) and (B). Then for any function (1.5) satisfying

lim
t→∞

�(t)

t logd−1 t
= 0 (1.10)

there exists a function g ∈ �(L)(Qd), g(x) ≥ 0, such that

lim sup
min{nk }→∞

|Ung(x)| = ∞

at almost every point x ∈ Qd.

Let ϕ = {ϕn(x)}∞n=1 ⊂ L∞(0, 1) be an orthonormal system. Denote by Sn f (x) the
partial sums of the Fourier series of a function f ∈ L1(0, 1) in this system. Suppose
the matrix A = {ank, 1 ≤ k ≤ n, n = 1, 2, . . .} determines a regular method of
summation, that is,

lim
n→∞ ank = 0,

sup
n∈N

n∑
k=1

|ank | < ∞,

lim
n→∞

n∑
k=1

ank = 1.
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3070 G. Gát, G. Karagulyan

The sequence of operators

σϕ,A
n f (x) =

n∑
k=1

ank Sk f (x) (1.11)

defines A-means of the partial sums of Fourier series of a function f ∈ L1(0, 1)
with respect to the orthonormal system ϕ. The tensor products of the operators (1.11)
defined by

σϕ,A
n = (σϕ,A

n1 )1 ◦ (σϕ,A
n2 )2 ◦ · · · ◦ (σϕ,A

nd )d

generate A-means of multiple Fourier series with respect to system ϕ. Observe that
the sequence (1.11) satisfies the conditions (A) and (B). So the following theorem is
an immediate consequence of Theorem 1.

Theorem 2 Let A = {ank, 1 ≤ k ≤ n, n = 1, 2, . . .} be a regular method of
summation and {ϕn(x)}∞n=1 ⊂ L∞(0, 1) be a complete orthonormal system. Then
under the condition (1.10) there exists a function f ∈ �(L)(Qd), whose Fourier
series in the system {ϕn(x)} is almost everywhere A-divergent, i.e.,

lim sup
min{nk }→∞

∣∣∣σϕ,A
n f (x)

∣∣∣ = ∞ a.e.

Particular cases of this theorem for double Fourier series were considered in the
papers [10] and [5].

Theorem A (Karagulyan, 1989) If {ϕn(x)}∞n=1 ⊂ L∞(0, 1) is a complete ortho-
normal system and � satisfies the condition (1.10), then there exists a function
f ∈ �(L)(0, 1)2 with double Fourier series

∞∑
n=1

∞∑
m=1

anmϕn(x)ϕm(y) (1.12)

satisfying the relation

lim sup
min{N ,M}→∞

∣∣∣∣∣
N∑

n=1

M∑
m=1

anmϕn(x)ϕm(y)

∣∣∣∣∣ = ∞ (1.13)

almost everywhere on (0, 1)2.

Theorem B (Getsadze, 2007)Let {ϕn(x)}∞n=1 ⊂ L∞(0, 1)bea complete orthonormal
system and � satisfies the condition (1.10). Then for any Lebesgue measurable set
E ⊂ (0, 1)2 with mE > 0 there exists a function f ∈ �(L)(0, 1)2 and a set E ′ ⊂ E,
mE ′ > 0, such that the sequence of rectangular (C, 1)means of double Fourier series
are unbounded on E ′.
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Analogous problems for Walsh systems were considered before by Gàt [3], Nagy
[14], Mor̀icz et al. [13]. It is proved that L log L(0, 1)2 is the maximal Orlicz space
for a.e. (C, 1) summability of double Fourier series in Walsh–Paley [3] and Walsh–
Kaczmarz [14] systems.

In the proofs of the theorems of the present paper we essentially use the method
of Haar type systems. This method was first used by Olevskii [15,16] in his work on
divergence problems of orthogonal series.

2 Haar Type Systems

Recall the definition of Haar type systems ([12], Ch. 3.1). We say a family of sets
ε = {En : n = 1, 2, . . .} is a dyadic partition of [0, 1) if

E1 = [0, 1), En = Ei
k ⊂ [0, 1), i = 1, 2, . . . , 2k, k = 0, 1, . . . , (2.1)

where n ≥ 2 has the representation

n = 2k + i, 1 ≤ i ≤ 2k, k = 0, 1, 2, . . . , (2.2)

and we have

m(Ei
k) = 2−k, 1 ≤ i ≤ 2k,

Ei
k = E2i−1

k+1 ∪ E2i
k+1,

Ei
k ∩ E j

k = ∅ if i = j. (2.3)

Any dyadic partition uniquely defines a Haar type system ξ = {ξn(x), n =
1, 2, . . .} on [0, 1) as follows:

ξ1(x) ≡ 1,

ξn(x) =
⎧⎨
⎩
2k/2 if x ∈ E2i−1

k+1 ,

−2k/2 if x ∈ E2i
k+1,

0 if x /∈ Ei
k .

If

En = 	n =
[
i − 1

2k
,
i

2k

)
, i = 1, 2, . . . , 2k, k = 0, 1, . . . ,

then we get the ordinary Haar system, which will be denoted by χ = {χn(x)}. It is
known (see [12], Ch. 3.9) that for any Haar type system ξn(x) there exists a measure
preserving transformation u(x) : [0, 1) → [0, 1) such that

ξn(x) = χn(u(x)) a.e. (2.4)
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3072 G. Gát, G. Karagulyan

Consequences of this is the basic property that will be used in different situations
below.

Examples of dyadic partitions of [0, 1)may be given using the Rademacher system

rn(x) = (−1)[2n x], x ∈ [0, 1), n = 1, 2, . . . .

For a given integer n ≥ 2 of the form (2.2), we define

n̄ = 2k−1 +
[
i + 1

2

]
.

Take an arbitrary sequence of integers 1 ≤ p2 < p3 < · · · < pn · · · . The following
recurrence formula

E1 = E2 = [0, 1), En =
{
x ∈ En̄ : (−1)n+1rpn̄ (x) > 0

}
, n > 2, (2.5)

defines a partition of [0, 1). This family of sets uniquely determines aHaar type system
as follows:

ξn(x) = rpn (x)IEn (x)√|En| , n ≥ 2. (2.6)

We consider the tensor products of the Haar and Haar type systems

χn(x) = χn1(x1), . . . , χnd (xn),

ξn(x) = ξn1(x1), . . . , ξnd (xn),

where x = (x1, . . . , xd) ∈ Qd , n = (n1, . . . , nd) ∈ N
d . For a given function f (x) ∈

L1(Qd) let

an =
∫
Qd

f (x)χn(x)dx, n = (n1, n2, . . . , nd), (2.7)

be the Fourier–Haar coefficients of f . We denote

Sξ f (x) =
∞∑

k=1

akξk(x) =
∞∑

k1=1

. . .

∞∑
k1=1

ak1,...,kd ξk1(x1), . . . , ξkd (xd). (2.8)

This series is said to be convergent (a.e., in L p norm) if its rectangular partial sums

Sξ
n f (x) =

n∑
k=1

akξn(x) =
n1∑

k1=1

. . .

nd∑
k1=1

ak1,...,kd ξk1(x1), . . . , ξkd (xd)

converges as min{ni } → ∞. It is well known that the series (2.8) converges in L1

norm. Besides, we have Sξ f (x) = f (x) whenever ξ coincides with the ordinary Haar
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On Convergence Properties of Tensor Products of Some... 3073

system. If ξ coincides with the Haar system, then instead of Sξ
n the notation Sn will be

used. In the one-dimensional case (d = 1) the operators Sξ , Sξ
n and Sn will be denoted

by Sξ , Sξ
n and Sn respectively. Observe that

Sξ = ⊗d
k=1

(
Sξ

)
k = (

Sξ
)
1 ◦ · · · ◦ (

Sξ
)
d , (2.9)

Sξ
n = ⊗d

k=1

(
Sξ
nk

)
k

= (
Sξ
n1

)
1
◦ · · · ◦ (

Sξ
nd

)
d
. (2.10)

Recall that the strong maximal function is defined by

M f (x) = sup
R: x∈R

1

|R|
∫
R
f (t)dt,

where sup is taken over all d-dimensional intervals R = (a1, b1)×· · ·×(ad , bd) ⊂ Qd

containing the point x ∈ Qd . It is well known that

sup
n

∣∣∣∣∣
n∑

k=1

akχk(x)

∣∣∣∣∣ ≤ M f (x)

for any f ∈ L1(Qd) with the Fourier–Haar coefficients (2.7). Thus, using the weak
type inequality

m {x ∈ Qd : M f (x) > λ} ≤ cd

∫
Qd

| f |
λ

logd−1
(
1 + | f |

λ

)
, λ > 0, (2.11)

(Fava [1] or Guzman [6], Ch. 2.3) and the relation (2.4), we conclude

m

{
x ∈ Qd : sup

n

∣∣∣∣∣
n∑

k=1

akξk(x)

∣∣∣∣∣ > λ

}

= m

{
x ∈ Qd : sup

n

∣∣∣∣∣
n∑

k=1

akχk(x)

∣∣∣∣∣ > λ

}

≤ cd

∫
Qd

| f |
λ

logd−1
(
1 + | f |

λ

)
, λ ≥ 0, (2.12)

where the equality in (2.12) follows from the definition of the Haar type system.

3 Almost Everywhere Convergence Classes of Functions

The following theorem is the main result of this section.

Theorem 3 If a sequence of bounded linear operators Un : L1(0, 1) → L1(0, 1)
satisfies the conditions (A), (B) and Un is the multiple sequence of operators (1.7)

123



3074 G. Gát, G. Karagulyan

generated by Un, then there exist a Haar type system ξ = {ξn(x)} and a sequence of
integers 0 < ν(1) < ν(2) < · · · < ν(k) < · · · such that for any function

f ∈
{
L logd−2(Qd) if d ≥ 2,
L1(0, 1) if d = 1,

we have

lim
min{nk }→∞

((
Uν(n) ◦ Sξ

)
f (x) − Sξ

n f (x)
) = 0 (3.1)

at almost every x ∈ Qd.

An analogous theorem for martingale operator sequences was proved in the paper
[11]. That is, ifUn is an arbitrary sequence of martingale operators, then there exists a
sequence of sets Gn ⊂ Qd with m(Gn) → 1 as min{ni } → ∞ such that the relation

(
Uν(n) ◦ Sξ

)
f (x) = Sξ

n f (x), x ∈ Gn, n ∈ N
d ,

holds for any f ∈ L1(Qd). Some problems related to this martingale theorem were
considered before in the papers by Hare and Stokolos [8], Hagelstein [7] and Stokolos
[18].

Lemma 1 If εni > 0, n, i = 1, 2, . . ., then for any sequence of bounded linear
operators (1.8) satisfying (A) and (B), there exist a sequence of integers 0 < ν(1) <

ν(2) < · · · < ν(k) < · · · and a Haar type system ξ = {ξn(x)} such that

m
{
x ∈ (0, 1) : |Uν(n)ξi (x) − ξi (x)| > εni

}
< εni , 1 ≤ i ≤ n, (3.2)

m
{
x ∈ (0, 1) : |Uν(n)ξi (x)| > εni

}
< εni , i > n. (3.3)

Proof Weuse induction.The system ξ will be found in the form (2.6).Define ξ1(x) ≡ 1
and p1 = 1. Using the property (B) we haveUνξ1(x) → ξ1(x) in measure as ν → ∞,
and so we may take a number ν(1) satisfying (3.2) for n = 1. Then suppose we have
already chosen the numbers ν(1) < ν(2) < · · · < ν(k−1) and the first k−1 functions
of the system ξ satisfying the relations (2.6), (3.2) and (3.3) for n, i = 1, 2, . . . , k−1.
We define the set Ek satisfying (2.5), i.e.,

Ek =
{
x ∈ Ek̄ : (−1)k+1rpk̄ (x) > 0

}
.

Using the compactness of the operators Uν(n), n = 1, 2, . . . , k − 1, we have

lim
m→∞

∥∥Uν(n)

(
rm(x)IEk (x)

)∥∥
1 = 0, n = 1, 2, . . . , k − 1.

Thus we can choose a number m = pk > pk−1 such that

∥∥∥∥Uν(n)

(
rpk (x)IEk (x)√|Ek |

)∥∥∥∥
1

< (εki )
2, n = 1, 2, . . . , k − 1.
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Defining ξk = rpk IEk√|Ek | and using Chebyshev’s inequality, we get

m
{
x ∈ (0, 1) : Uν(n)ξk(x)

)
> εki

}
< εki , n = 1, 2, . . . , k − 1. (3.4)

Then, using the convergence in measure Uνξi (x) → ξi (x) as ν → ∞, for i =
1, 2, . . . , k, we may choose ν(k) > ν(k − 1) such that

m
{
x ∈ (0, 1) : |Uν(k)ξi (x) − ξi (x)| > εki

}
< εki , 1 ≤ i ≤ k. (3.5)

Combining (3.4) and (3.5) we get (3.2) and (3.3) for n, i = 1, 2, . . . , k. This completes
by induction the proof of the lemma. ��

Let the function f ∈ L logd−1 L(Qd) have Fourier–Haar coefficients ak defined
by (2.7). Suppose 1 ≤ s < d and denote

δk1,...,ks (xs+1, . . . , xd)

= sup
ns+1≥1,...,nd≥1

∣∣∣∣∣∣
ns+1∑

ks+1=1

. . .

nd∑
kd=1

ak

d∏
i=s+1

ξki (xi )

∣∣∣∣∣∣ . (3.6)

Lemma 2 If f ∈ L logd−s−1(Qd), 1 ≤ s < d, then

m
{
(x1, . . . , xd) ∈ Qd : δk1,...,ks (xs+1, . . . , xd) > λ

}

≤ cd (k1, . . . , ks)
d
∫
Qd

| f |
λ

logd−s−1
(
1 + | f |

λ

)
, (3.7)

for any λ ≥ 1.

Proof Observe that, if the integers k1, . . . , ks are fixed, then the multiple series

∞∑
ks+1=1

. . .

∞∑
kd=1

ak

d∏
i=s+1

χki (xi )

is the Fourier–Haar series of the function

g(xs+1, . . . , xd) = gk1,...,ks (xs+1, . . . , xd)

=
∫
Qs

f (t1, . . . , ts, xs+1, . . . , xd)
s∏

i=1

χki (ti )dt1 . . . dts .

Thus, using the notation (3.6) and the inequality (2.12) in the (d − s)-dimensional
case, we obtain

m
{
(xs+1, . . . , xd) ∈ Qd−s : δk1,...,ks (xs+1, . . . , xd) > λ

}

≤ cd−s

∫
Qd−s

�

( |g(xs+1, . . . , xd)|
λ

)
dxs+1, . . . , dxd , (3.8)
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3076 G. Gát, G. Karagulyan

where �(t) = t logd−s−1(1 + t) and λ > 1. Since |χn(x)| ≤ √
n, we get

|g(xs+1, . . . , xd)|

≤
s∏

i=1

√
ki

∫
Qs

| f (t1, . . . , ts, xs+1, . . . , xd)|dt1 . . . dts . (3.9)

It is easy to check that �(t) is a convex function and

�(kx) ≤ ks+1�(x), x > 0, k ≥ 1.

Thus, using (3.9) and Jensen’s inequality, we obtain

�

( |g(xs+1, . . . , xd)|
λ

)

≤ (k1, . . . , ks)
s+1
2 �

(∫
Qs

| f (t1, . . . , ts, xs+1, . . . , xd)|
λ

dt1 . . . dts

)

≤ (k1, . . . , ks)
s+1
2

∫
Qs

�

( | f (t1, . . . , ts, xs+1, . . . , xd)|
λ

)
dt1 . . . dts .

Integration with respect to variables xs+1, . . . , xd implies

∫
Qd−s

�

( |g(xs+1, . . . , xd)|
λ

)
dxs+1, . . . , dxd

≤ (k1, . . . , ks)
d
∫
Qd

�

( | f (t1, . . . , td)|
λ

)
dt1, . . . , dtd .

Combining this inequality with (3.8), we get

m{(x1, . . . , xd) ∈ Qd : δk1,...,ks (xs+1, . . . , xd) > λ}
= m

{
(xs+1, . . . , xd) ∈ Qd−s : δk1,...,ks (xs+1, . . . , xd) > λ

}

≤ cd

(
s∏

i=1

ki

)d ∫
Qd

�

( | f (t1, . . . , td)|
λ

)
dt1, . . . , dtd .

��
Proof of Theorem 3 Applying Lemma 1, we fix a Haar type system {ξn(x)} and a
sequence ν(n) satisfying the conditions (3.2), (3.3) with

εnk = 4−n−k . (3.10)

Then we denote

α
(n)
k (x) =

{
Uν(n)ξk(x) − ξk(x), if 1 ≤ k ≤ n,

Uν(n)ξk(x), if k > n.
(3.11)
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The boundedness of the operatorsUn and the L1-convergence of the series (2.8) imply

(
Uν(n) ◦ Sξ

)
f (x) =

∞∑
k=1

akUν(n1)ξk1(x1), . . . ,Uν(nd )ξkd (xd). (3.12)

Substituting

Uν(ni )ξki (xi ) =
{

α
(ni )
ki

(xi ), if ki > ni ,

ξki (xi ) + α
(ni )
ki

(xi ), if 1 ≤ ki ≤ ni ,

in (3.12), we may easily observe that

(
Uν(n) ◦ Sξ

)
f (x) =

∑
I⊂{1,...,d}

∑
k: 1≤ki≤ni , i∈I c

ak

∏
i∈I

α
(ni )
ki

(xi )
∏
i∈I c

ξki (xi ),

where the first sum is taken over all the subsets I of the set {1, . . . , d}. If I = ∅, then
we have

∑
1≤ki≤ni , i∈I c

ak

∏
i∈I

α
(ni )
ki

(xi )
∏
i∈I c

ξki (xi )

=
n∑

k=1

ak

d∏
i=1

ξki (xi ) =
n∑

k=1

akξk(x) = (
Sξ ◦ Sn

)
f (x).

Thus we get

(
Uν(n) ◦ Sξ

)
f (x) − (

Sξ ◦ Sn
)
f (x)

=
∑
I =∅

∑
k: 1≤ki≤ni , i∈I c

ak

∏
i∈I

α
(ni )
ki

(xi )
∏
i∈I c

ξki (xi ). (3.13)

Hence, in order to prove the theorem, it is enough to show

lim
min{ni }→∞

∑
k: 1≤ki≤ni , i∈I c

ak

∏
i∈I

α
(ni )
ki

(xi )
∏
i∈I c

ξki (xi ) = 0 a.e. (3.14)

whenever I = ∅. Without loss of generality we may suppose that I = {1, . . . , s},
1 ≤ s ≤ d. So we must prove

lim
min{ni }→∞

∑
k: 1≤ki≤ni , i>s

ak

s∏
i=1

α
(ni )
ki

(xi )
d∏

i=s+1

ξki (xi ) = 0 a.e., (3.15)

where in the case s = d the last product is not considered. Using (3.2), (3.3), (3.10)
and (3.11), for the set

C (n)
k =

{
x ∈ (0, 1) :

∣∣∣α(n)
k (x)

∣∣∣ < 4−(n+k)
}
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we get

m
(
C (n)
k

)
> 1 − 4−(n+k).

Denote

C (n) =
∞⋂
k=1

C (n)
k ⊂ (0, 1),

C =
⋃
m≥1

⋂
n≥m

C (n) ⊂ (0, 1),

A = {x = (x1, . . . , xd) ∈ Qd : xk ∈ C} ⊂ Qd .

We have

m
(
C (n)

)
> 1 −

∞∑
k=1

4−(n+k) > 1 − 4−n .

Thus we get m (C) = 1 and therefore m (A) = 1. Besides, for any x ∈ A there exists
n(x) = (n1(x), . . . , nd(x)) such that

∣∣∣α(n)
ki

(xi )
∣∣∣ < 4−(ni+ki ), i = 1, 2, . . . , d, k = 1, 2, . . . ,

for any n > n(x), x ∈ A. (3.16)

If s = d, then (3.15) is immediate. Indeed, we have |ak| ≤ ‖ f ‖1√k1, . . . , kd and so
for any x ∈ A and n > n(x) we get

∣∣∣∣∣
∑

k

ak

d∏
i=1

α
(ni )
ki

(xi )

∣∣∣∣∣ ≤ ‖ f ‖1
∑

k

d∏
i=1

√
ki , ·, 4−(ni+ki ) ≤ c‖ f ‖1

4n1+···+nd

which implies (3.15). At this moment the proof of the theorem in the case d = 1 is
complete and we can suppose d ≥ 2.

Now consider the case 1 ≤ s < d. Denote

Bn1,...,ns
k1,...,ks

=
{

x ∈ Qd : δk1,...,ks (xs+1, . . . , xd) < (k1, . . . , ks)
d , ·, 2n1+k1+···+ns+ks

}
,

Bn1,...,ns =
∞⋂

k1,...,ks=1

Bn1,...,ns
k1,...,ks

,

where δk1,...,ks is the function defined in (3.6). Using Lemma 2, we get

m(Bn1,...,ns
k1,...,ks

) > 1 − C f 2
−(n1+k1+···+ns+ks ),

m
(
Bn1,...,ns

)
> 1 − C f

∞∑
k1=1

. . .

∞∑
ks=1

2−(n1+k1+···+ns+ks ) = 1 − C f · 2−(n1+,··· ,+ns ),
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where

C f = cd

∫
Qd

| f | logd−s−1(1 + | f |).

Since by the hypothesis of the theorem f ∈ L logd−2 L and we have s ≥ 1, C f is
bounded. Hence for the sets

B =
⋃

mi≥1: i=1,...,s

⋂
ni≥mi : i=1,...,s

Bn1,...,ns ⊂ Qd

we have m(B) = 1. Observe that if x = (x1, . . . , xd) ∈ B, then there exists a vector
m(x) = (m1(x), . . . ,md(x)) such that for any n > m(x) we have

δk1,...,ks (xs+1, . . . , xd) < (k1 . . . ks)d · 2n1+k1+···+ns+ks , ki ∈ N,

n > m(x), x = (x1, . . . , xd) ∈ B. (3.17)

Note that the coordinates ms+1(x), . . . ,md(x) can be chosen arbitrarily. Combining
(3.16) and (3.17), for any x ∈ G = A ∩ B and n > max{n(x), m(x)} we get

∣∣∣∣∣∣
∑

k: 1≤ki≤ni , i>s

ak

s∏
i=1

α
(ni )
ki

(xi )
d∏

i=s+1

ξki (xi )

∣∣∣∣∣∣

≤
∞∑

k1=1

. . .

∞∑
ks=1

s∏
i=1

∣∣∣α(ni )
ki

(xi )
∣∣∣
∣∣∣∣∣∣

ns+1∑
ks+1=1

. . .

nd∑
kd=1

ak

d∏
i=s+1

ξki (xi )

∣∣∣∣∣∣
≤

∞∑
k1=1

. . .

∞∑
ks=1

s∏
i=1

∣∣∣α(ni )
ki

(xi )
∣∣∣ · δk1,...,ks (xs+1, . . . , xd)

≤
∞∑

k1=1

. . .

∞∑
ks=1

4−(n1+k1+···+ns+ks )(k1 . . . ks)
d · 2n1+k1+···+ns+ks

< Cd · 2−(n1+···+ns ) (3.18)

whereCd > 0 is a constant. Sincem (G) = 1, (3.18) completes the proof ofTheorem3.
��

The functions f (x), g(x) ∈ L1(Qd) are said to be equivalent ( f ∼ g), if they have
the same distribution function, that is,

m {x ∈ Qd : f (x) > λ} = m {x ∈ Qd : g(x) > λ} , λ ∈ R.

Theorem 3 immediately implies
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Theorem 4 Let Un be the operator sequence (1.8) satisfying the conditions (A) and
(B). If the Fourier–Haar series

∞∑
n=1

anχn(x) (3.19)

of a function f ∈ L1(Qd) diverges almost everywhere, then there exists a function
g ∈ L1(Qd) such that g ∼ f and

Ung(x) diverges a.e. as min{ni } → ∞. (3.20)

Proof Since the series (3.19) diverges a.e., the same also holds for the series

∞∑
n=1

anξn(x), (3.21)

where ξ = {ξn} is the Haar type system obtained by Theorem 3. On the other hand
(3.21) converges in L1 norm to a function

g = Sξ f ∈ L1(Qd).

We have g ∼ f and

Uν(n)g(x) = (Uν(n) ◦ Sξ ) f (x).

Thus, according to (3.1), we get

lim
min{ni }→0

Uν(n)g(x) − Sξ
n f (x) = 0 a.e.

and then the a.e. divergence of the partial sums Sξ
n f (x) of the series (3.21) yields the

divergence of Uν(n)g(x), which completes the proof. ��
Proof of Theorem 1 If � satisfies the condition (1.10), then there exists a function
f ∈ �(L)(Qd), f (x) ≥ 0, whose Fourier–Haar series (3.19) diverges a.e. We will
also have g ∈ �(L)(Qd), where g ∼ f is the function obtained by Theorem 4. Then
the relation (3.20) completes the proof of Theorem 1. ��
So we consider the sequence of convolution operators

Un f (x) =
∫ 1

0
Kn(x − t) f (t)dt, (3.22)

where the kernels Kn ∈ L∞[0, 1) are 1-periodic functions and form an approximation
of identity. That is
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1.
∫ 1
0 Kn(t)dt → 1 as n → ∞,

2. K ∗
n (x) = sup|x |≤|t |≤1/2 |Kn(t)| → 0 as n → ∞, 0 < |x | < 1/2,

3. supn
∫ 1
0 K ∗

n (x) < ∞.

It is well known that such an operator sequence Un satisfies the conditions (A) and
(B). Moreover, Un f (x) converges in L p for any f ∈ L p, 1 ≤ p < ∞, and the
convergence is uniform while f is a continuous 1-periodic function. Let (1.9) be the
multiple operator sequence generated from (3.22). It can be written in the form

Un f (x) =
∫
Qd

Kn1(t1), . . . , Knd (td) f (x − t)dt1, . . . , dtd . (3.23)

The following theorem determines the exact Orlicz class of functions guaranteeing
a.e. convergence for the sequence of operators (1.9). The first part of the theorem is
based on a standard argument (see, for example, [2] Theorem 4.2) and immediately
follows from the weak estimate of the strong maximal function.

Theorem 5 Let Un be the sequence of operators (1.9) generated by (3.22). Then
(1) if f ∈ L logd−1 L(Qd), then Un f (x) → f (x) a.e. as min{ni } → ∞,
(2) if the function � satisfies the condition

lim
t→∞

�(t)

t logd−1 t
= 0,

then there exists a function f ∈ �(L)(Qd), f (x) ≥ 0, such that

lim sup
min{ni }→∞

|Un f (x)| = ∞ a.e. on Qd . (3.24)

If in addition Kn(x) ≥ 0, then (3.24) holds everywhere.

Proof We may suppose that all the functions are 1-periodic in each variable. Since
K ∗
n (x) is even and decreasing on [0, 1/2], we may find a step function of the form

ϕn(x) =
m(n)∑
i=1

a(n)
i I

(−x (n)
i ,x (n)

i )
(x), a(n)

i ≥ 0, x (n)
i ≥ 0,

such that K ∗
n (x) ≤ ϕn(x) and

∫ 1

0
ϕn(x)dx =

m∑
i=1

2x (n)
i a(n)

i < 2
∫ 1

0
K ∗
n (x)dx < B.

This implies that

|Un f (x)| =
∣∣∣∣
∫
Qd

Kn1(t1), . . . , Knd (td) f (x − t)dt1, . . . , dtd

∣∣∣∣
≤

∫
Qd

K ∗
n1(t1), . . . , K

∗
nd (td)| f (x − t)|dt1, . . . , dtd

≤
∫
Qd

ϕn1(t1), . . . , ϕnd (td)| f (x − t)|dt1, . . . , dtd
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=
m(n1)∑
i=1

. . .

m(nd )∑
i=1

d∏
k=1

(2x (nk )
i a(nk )

i )

× 1

2d x (n1)
i , . . . , x (nd )

i

∫ x
(n1)

i

−x
(n1)

i

. . .

∫ x
(nd )

i

−x
(nd )

i

| f (x − t)|dt1, . . . , dtd

≤ M f (x)

m(n1)∑
i=1

2x (n1)
i a(n1)

i . . .

m(nd )∑
i=1

2x (nd )
i a(nd )

i ≤ BdM f (x). (3.25)

Hence, according to (2.11), we have

m{x ∈ Qd : sup
n

|Un f (x)| > λ} ≤ cd

∫
Qd

| f |
λ

logd−1
(
1 + | f |

λ

)
. (3.26)

Now take a function f ∈ L logd−1 L(Qd). Let λ > 0 be an arbitrary number. Observe
that for any ε > 0 we can write f in the form f = g + h where g is continuous and

∫
Qd

2|h|
λ

< ε,

∫
Qd

2|h|
λ

logd−1
(
1 + 2|h|

λ

)
< ε.

From the continuity of g we haveUng(x) uniformly converges to g(x). Thus, applying
(3.26) and Chebyshev’s inequality, we get

m

{
x ∈ Qd : lim sup

min{ni }→∞
|Un f (x) − f (x)| > λ

}

= m

{
x ∈ Qd : lim sup

min{ni }→∞
|Unh(x) − h(x)| > λ

}

≤ m

{
x ∈ Qd : sup

n
|Unh(x)| > λ/2

}
+ {x ∈ Qd : |h(x)| > λ/2}

≤ cd

∫
Qd

2|h|
λ

logd−1
(
1 + 2|h|

λ

)
+

∫
Qd

2|h|
λ

< (cd + 1)ε.

Since ε > 0 can be small enough, we obtain

m

{
x ∈ Qd : lim sup

min{ni }→∞
|Un f (x) − f (x)| > λ

}
= 0

for any λ > 0. This implies the first part of the theorem.
To prove the second part, we apply Theorem 1. Then we find a function f ∈

�(L)(Qd), f (x) ≥ 0, satisfying (3.24) almost everywhere. To get everywhere diver-
gence in the case Kn(x) ≥ 0, we modify the function f (x) as follows. Suppose
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E ⊂ Qd is the set where (3.24) doesn’t hold. We have mE = 0. Define a sequence of
open sets Gn ⊂ Qd , E ⊂ Gn ⊂ Gn−1, such that

m(Gn) < 2−n .

Then we consider the function

f̃ (x) = f (x) + g(x), g(x) =
∞∑
n=1

n · IGn (x).

It is easy to check that g and so f̃ is from �(L) and

lim
min{ni }→∞Ung(x) = +∞, x ∈ E .

The using the positivity of the operators Un, one can easily get the divergence of
Un f̃ (x) at any x ∈ Qd . ��

4 Estimates of L p-Norms

In this section we suppose p ≥ 1 is fixed and consider a sequence of operators Un

satisfying (A) and a stronger condition

(Bp) if f ∈ L p(0, 1), then ‖Un f − f ‖L p(0,1) → 0 (p ≥ 1),

instead of (B). Note that, according to the Banach–Steinhaus theorem, condition (Bp)
implies

1 ≤ M = sup
n≥1

‖Un‖L p→L p < ∞. (4.1)

The following theorem is the main result of this section.

Theorem 6 If 1 ≤ p < ∞, δn ↘ 0 and the sequence of bounded linear operators Un

in L1(0, 1) satisfies the conditions (A) and (Bp), then there exist a Haar type system
ξ = {ξn(x)} and a sequence of integers 0 < ν(1) < ν(2) < · · · < ν(k) < · · · such
that

∥∥(Uν(n) ◦ Sξ
) − Sξ

n

∥∥
p < δm, min{nk} ≥ m. (4.2)

The proof of the next lemma is similar to Lemma 1. So it will be stated briefly.

Lemma 3 Let p ≥ 1, εi ↘ 0 and the sequence of bounded linear operators (1.8)
satisfies the conditions (A) and (Bp). Then there exist a sequence of integers 0 <

ν(1) < ν(2) < · · · < ν(k) < · · · and a Haar type system ξ = {ξn(x)} such that

∥∥Uν(n)ξi (x) − ξi (x)
∥∥
p < εn, i = 1, 2, . . . , n, (4.3)

‖Uν(n)ξi (x)‖p < εi , i > n. (4.4)
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for any n = 1, 2, . . ..

Proof Wewill use induction. Define ξ1(x) ≡ 1. Using the property (Bp), we may find
a number ν(1), satisfying (4.3) for n = 1. Then suppose we have already chosen the
numbers ν(1) < ν(2) < · · · < ν(k) and the first k functions of the system ξ = {ξn(x)},
satisfying the relations (4.3) and (4.4) for n = 1, 2, . . . , k. From the compactness of
the operators follows the existence of a number pk+1 > pk such that

∥∥Uν(i)
(
rpk+1(x)IEk (x)

)∥∥
p < εk+1, i = 1, 2, . . . , k.

Defining ξk+1 = rpk+1IEk we will have (4.4) for i = k + 1 and for each 1 ≤ n ≤ k.
Then using property (Bp), we may chose ν(k + 1) satisfying (4.3) for n = k + 1 and
for each 1 ≤ i ≤ k + 1. This completes the induction and the proof of Lemma 3. ��

The following lemma was proved in [11].

Lemma 4 ([11]) If U and V are bounded linear operators on L1[0, 1), then

(V )n ◦ (U )m = (U )m ◦ (V )n, n = m, 1 ≤ n,m ≤ d.

Proof (Proof of Theorem 6) One-dimensional case To prove (4.2) in the one-
dimensional case, we must construct a Haar type system ξ and a sequence of integers
ν(n) such that

∥∥Uν(n) ◦ Sξ − Sξ
n

∥∥
p < δn, n = 1, 2, . . . . (4.5)

Using Lemma 3, we find ξ with the relations (4.3) and (4.4), where the sequence
εn ↘ 0 satisfies the inequality

εn < δn/4
n, n = 1, 2, . . . .

Take an arbitrary function

f (x) =
∞∑
n=1

anχn(x) ∈ L p.

We have

Sξ f (x) =
∞∑
k=1

akξk(x),

Sξ
n f (x) =

n∑
k=1

akξk(x),

(
Uν(n) ◦ Sξ

)
f (x) =

∞∑
k=1

akUν(n)ξk(x).
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Thus, using the bound |ak | ≤ √
k‖ f ‖p and conditions (4.3), (4.4), we get

∥∥(Uν(n) ◦ Sξ − Sξ
n

)
f (x)

∥∥
p

=
∥∥∥∥∥

n∑
k=1

ak
(
Uν(n)ξk(x) − ξk(x)

) +
∞∑

k=n+1

akUν(n)ξk(x)

∥∥∥∥∥
p

≤ εn

n∑
k=1

|ak | +
∞∑

k=n+1

|ak |εk

≤ ‖ f ‖p

(
n
√
nεn +

∞∑
k=n+1

√
kεk

)
< δn‖ f ‖p

which implies (4.5).
The general case Applying the one-dimensional case of the theorem, we may find

a Haar type system with

∥∥Uν(n) ◦ Sξ − Sξ
n

∥∥
p < γn, n = 1, 2, . . . , (4.6)

where

γn ↘ 0, γn ≤ δn/M
d ,

and M is the constant defined in (4.1). We claim that

∥∥∥⊗μ
k=1

(
Uν(nk ) ◦ Sξ

)
k − ⊗μ

k=1

(
Sξ
nk

)
k

∥∥∥
p

< γmin{n1,...,nμ} · Mμ (4.7)

The proof of (4.7) is by induction on the dimensionμ = 1, 2, . . . , d. The caseμ = 1 is
just (4.6), since by (4.1) we haveM ≥ 1.Writing (4.6) with respect to each coordinate,
we get

∥∥(Uν(n) ◦ Sξ )k − (Sξ
n )k

∥∥
p < γn . (4.8)

Suppose the case of dimension μ − 1 is already proved, that is,

∥∥∥⊗μ−1
k=1

(
Uν(nk ) ◦ Sξ

)
k − ⊗μ−1

k=1

(
Sξ
nk

)
k

∥∥∥
p

≤ γmin{n1,...,nμ−1}Mμ−1. (4.9)

Let us prove the case of dimension μ. Observe that

⊗μ
k=1

(
Uν(nk) ◦ Sξ

)
k − ⊗μ

k=1

(
Sξ
nk

)
k

=
[
⊗μ−1

k=1

(
Uν(nk) ◦ Sξ

)
k

]
◦
[(
Uν(nμ) ◦ Sξ

)
μ

−
(
Sξ
nμ

)
μ

]

+
[
⊗μ−1

k=1

(
Uν(nk ) ◦ Sξ

)
k − ⊗μ−1

k=1

(
Sξ
nk

)
k

]
◦
(
Sξ
nμ

)
μ

. (4.10)
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Besides, we have

∥∥∥∥
(
Sξ
nμ

)
μ

∥∥∥∥
p

≤ 1,

∥∥∥⊗μ−1
k=1

(
Uν(nk ) ◦ Sξ

)
k

∥∥∥
p

≤
μ−1∏
k=1

∥∥Uν(nk )
∥∥
p

∥∥(Sξ
)
k

∥∥
p

≤ Mμ−1,

and therefore, also using (4.8), (4.9) and (4.10), we get the estimate

∥∥∥⊗μ
k=1

(
Uν(nk ) ◦ Sξ

)
k − ⊗μ

k=1

(
Sξ
nk

)
k

∥∥∥
p

≤ γnμM
μ−1 + γmin{n1,...,nμ−1} · Mμ−1 ≤ γmin{n1,...,nμ}Mμ,

which completes the induction and the proof of (4.7). Then, applying Lemma 4 several
times, we obtain

Uν(n) ◦ Sξ = ⊗d
k=1

(
Uν(nk )

)
k ◦ ⊗d

k=1

(
Sξ

)
k = ⊗d

k=1

(
Uν(nk ) ◦ Sξ

)
k ,

and therefore we get

(
Uν(n) ◦ Sξ

) − Sξ
n = ⊗d

k=1

(
Uν(nk ) ◦ Sξ

)
k − ⊗d

k=1

(
Sξ
nk

)
k

whichmeans that in the caseμ = d the inequality (4.2) coincideswith (4.7). Theorem6
is proved. ��
If a � b and a � b are satisfied at the same time, then we write a ∼ b.

For the operator sequenceUn generated by (1.8) we consider the maximal operator

U∗ f (x) = sup
n

|Un f (x)| .

The norm of this operator is defined by

‖U∗‖p = sup
‖ f ‖p≤1

‖U∗ f (x)‖p.

This quantity describes the least constant c > 0 for which the inequality

∥∥U∗ f (x)
∥∥
p ≤ c‖ f ‖p

holds for any f ∈ L p(Qd). The similar operator for the partial sums of Fourier–Haar
series is denoted by

S∗ f (x) = sup
n

|Sn f (x)| .
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We will consider also the maximal operator generated by a Haar type system defined
by

(Sξ )∗ f (x) = sup
n

∣∣Sξ
n f (x)

∣∣

The following estimate is well known:

‖M f (x)‖p ∼
(

p

p − 1

)d

‖ f ‖p, 1 < p < ∞, (4.11)

(see, for example, [4]), which also implies

‖(Sξ )∗‖p = ‖S∗‖p ∼
(

p

p − 1

)d

. (4.12)

We prove the following

Theorem 7 If 1 < p < ∞ and the sequence of bounded linear operators (1.8)
satisfies conditions (A) and (Bp) and Un is generated by (1.8), then

‖U∗‖p ≥ ‖S∗‖p. (4.13)

Proof Let ε > 0 be arbitrary. Using (4.12) we may choose a function f ∈ L p(Qd)

with ‖ f ‖p = 1 such that

‖S∗ f (x)‖p > ‖S∗‖p − ε.

Obviously we can fix an integer m such that

∥∥∥∥ sup
n: ni≤m

|Sn f (x)|
∥∥∥∥
p

≥ ‖S∗‖p − 2ε. (4.14)

We take an arbitrary sequence δn ↘ 0 such that δk = ε/md , k = 1, 2, . . . ,m.
Applying Theorem 6 with this sequence, we determine a Haar type system ξ and a
sequence of integers ν(n) satisfying (4.2). Denote g(x) = Sξ f (x). We have ‖g‖p =
‖ f ‖p = 1, and from (4.2), (4.14) it follows that

‖U∗g(x)‖p ≥
∥∥∥∥sup

n

∣∣Uν(n)g(x)
∣∣
∥∥∥∥
p

=
∥∥∥∥sup

n

∣∣(Uν(n) ◦ Sξ
)
f (x)

∣∣
∥∥∥∥
p

≥
∥∥∥∥ sup

n: ni≤m

∣∣(Uν(n) ◦ Sξ
)
f (x)

∣∣
∥∥∥∥
p

≥
∥∥∥∥ sup

n: ni≤m

∣∣Sξ
n f (x)

∣∣
∥∥∥∥
p

− md · ε

md
=

∥∥∥∥ sup
n: ni≤m

|Sn f (x)|
∥∥∥∥
p

− ε

> ‖S∗‖p − 3ε.
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Since ε > 0 is arbitrary, we obtain (4.13). ��
Theorem 8 Let 1 < p < ∞ and the kernels Kn(x) form an approximation of identity.
Then the multiple operator sequence Un defined in (3.23) satisfies the relation

‖U∗‖p ∼
(

p

p − 1

)d

.

Proof The lower bound

‖U∗‖p �
(

p

p − 1

)d

immediately follows from (4.12) and Theorem 7. To prove the upper bound we use
the estimate (3.25). So we have

|U∗ f (x)| ≤ c · M f (x) (4.15)

where M f (x) is the strong maximal function. From (4.15) and (4.11) we conclude

‖U∗ f (x)‖p �
(

p

p − 1

)d

‖ f ‖p

and therefore we get ‖U∗‖p �
(

p
p−1

)d
, which completes the proof of the theorem. ��
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