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Abstract In the work of Ammann et al. it has turned out that the Yamabe invari-
ant on closed manifolds is a bordism invariant below a certain threshold constant. A
similar result holds for a spinorial analogon. These threshold constants are character-
ized through Yamabe-type equations on products of spheres with rescaled hyperbolic
spaces. We give variational characterizations of these threshold constants, and our
investigations lead to an explicit positive lower bound for the spinorial threshold con-
stants.

Keywords Dirac operator · Yamabe constant · Yamabe invariant · Conformal Hijazi
inequality

Mathematics Subject Classification 53C21 (Primary)35J60 · 53C27 · 57R65
(Secondary)

1 Introduction

The smooth Yamabe invariant, also called Schoen’s σ -constant, of a closed manifold
Mm is defined as
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σ ∗(M) := sup inf
∫
M
scalgdvolg ∈

(
− ∞, σ ∗(Sm) = m(m − 1)vol(Sm)

2
m

]
,

where the supremum runs over all conformal classes [g0] on M , and the infimum
goes over all metrics g in [g0] such that (M, g) has volume one. The smooth Yam-
abe invariant is an important geometric quantity. In particular, σ ∗(M) > 0 if and
only if M admits a metric of positive scalar curvature. However, the smooth Yamabe
invariant is quite mysterious. It is only known for very few examples, e.g., the sphere,
cp. Remark 2.4, σ ∗(Tm) = 0, [20, Corollary 2.5], σ ∗(RP

3) = 2−2/3σ ∗(S3), [17,
Corollary 2.3], σ ∗(CP2) = 12

√
2π , [26,33], and σ ∗(� \ H

3) = −6v2/3� where v� is
the volume of the compact quotient � \H

3 with respect to the hyperbolic metric, [13],
[31, Sect. II.8]. In particular, there is no known example of a manifold of dimension
m ≥ 5 with σ ∗(M) /∈ {0, σ ∗(Sm)}.

In [5] Dahl, Humbert, and the first author proved a surgery formula for the smooth
Yamabe invariant, cp. Theorem 2.5. In particular it says that if a manifold Nm is
obtained from a closed manifold Mm by a surgery of codimension m − k ≥ 3 and
σ ∗(M) is below a certain positive threshold constant�m,k , then σ ∗(N ) ≥ σ ∗(M). The
threshold constants �m,k appearing in this result are certain Yamabe-type invariants
for special noncompact model spaces M

m,k
c which are products of rescaled hyperbolic

spaces and spheres; see Sect. 2.2 for the precise definition. In particular, it follows that
the smooth Yamabe invariant is a bordism invariant in the following sense: Suppose
that M and N are connected closed smooth spin manifolds of dimension m ≥ 5
with fundamental group �, representing the same element in �

spin
m (B�), then 0 ≤

σ ∗(M) < �m := mink=2,...,m−3 �m,k implies σ ∗(M) = σ ∗(N ), [5, Sect. 1.4]. Thus,
if sufficiently many manifolds with σ ∗(M) ∈ (0,�m) exist, one obtains a rich and
interesting subgroup in the bordism group �

spin
m (B�) and similar versions hold in

oriented bordism classes.
In order to understand the structure of the subgroup, it is essential to get as much

knowledge about the surgery constants �m,k as possible.
If current conjectures about explicit lower bounds for �m,k , see [5, Sect. 1.4], turn

out to be true, then the supremum in the smooth Yamabe invariant of CP
3 is not

attained by the Fubini–Study metric.
The current article will not give an explicit positive lower bound for �m,k , but

it will provide many relations to a spinorial analogue of the problem. The smooth
Yamabe invariant σ ∗(M) has a spinorial analogue σ ∗

spin(M); cf. Sect. 2.2. For closed
manifolds the Hijazi inequality gives σ ∗

spin(M) ≥ σ ∗(M). As in the Yamabe case there

is a surgery formula for σ ∗
spin, cp. Theorem 2.6, and again a threshold constant �

spin
m,k

appears. However, in contrast to the (non-spinorial) Yamabe invariant codimension
2 is allowed as well. This has implications for the smooth Yamabe constant as well:
If M and N are arbitrary closed spin manifolds (not necessarily simply connected),
and if M is spin-bordant to N , then σ ∗

spin(M) < �
spin
m,k for k = 0, . . . ,m − 2 implies

σ ∗
spin(M) = σ ∗

spin(N ). In particular, σ ∗
spin(M) ≥ σ ∗(N ). Finding interesting manifolds

with σ ∗
spin(M) < �

spin
m,k consists of two parts. First, one has to obtain explicit positive

lower bounds for �
spin
m,k , which is the main subject of the present article, and then one

has to find examples for M , which is not covered here.
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2844 B. Ammann, N. Große

As the threshold constant are defined as (spinorial) Yamabe-type invariants of non-
compact model spaces, one expects in view of the Hijazi inequality that�spin

m,k ≥ �m,k .
This question is quite subtle because on noncompact manifolds there are several ways
to define Yamabe-type invariants which are sometimes related and sometimes unre-
lated to each other. One goal of the article is to clarify these relations.

The structure of the article is as follows: In Sect. 2 we fix notation, summarize some
preliminaries and recall existing results. In particular, we define the model spaces and
several versions of the spinorial and the non-spinorial Yamabe invariant for noncom-
pact manifolds. This allows us to summarize the results of the article in Sect. 3. These
results are proved in the remaining sections. In particular, in Sect. 4 we provide a reg-
ularity statement for the Euler–Lagrange equation of the spinorial Yamabe functional,
which is a nonlinear Dirac eigenvalue equation. For more details, we refer to the end
of Sect. 4.

2 Preliminaries

Throughout the article we assume that the reader is familiar with the basic facts
about the solution of the Yamabe problem on closed manifolds by Trudinger, Aubin,
Schoen and Yau. There are many beautifully written introductions in the literature,
e.g., [28,34].

2.1 Notation

In the article a spin manifold always means a manifold admitting a spin structure
together with a fixed choice of spin structure.

The notion of a (topological) spin structure can be defined for arbitrary oriented
manifolds. A topological spin structure is a principal bundle P for the non-trivial dou-
ble cover of GL+(n, R), together with an equivariant map ϑ : P → PGL+(n,R)M to
the GL+(n, R)-principal bundle PGL+(n,R)M of positively oriented frames. Topolog-
ical spin structures exist, as soon as an obstruction, the second Stiefel–Whitney class
w2 of its tangent bundle vanishes.

For defining the spinor bundle, we should pass to metric spin structures. By
restricting PGL+(n,R)M to (positively oriented) orthonormal frames we obtain the
SO(n)-principal bundle PSO(n)M and the Spin(n)-principal bundle PSpin(n)M :=
ϑ−1(PSO(n)M). Furthermore, ϑ restricts to an equivariant map PSpin(n)(M) →
PSO(n)M . A metric spin structure is a Spin(n)-principal bundle together with such
an equivariant map. Above we have seen how we obtain a metric spin structure from
a topological one, and this construction actually yields a bijection from the set of
equivalence classes of topological spin structures to the set of equivalence classes of
metric spin structures. Thus one can identify topological and metric spin structures,
and they are simply called spin structures. Applying the associated bundle construc-
tion for the spinor representation s : Spin(n) → GL($) we obtain the spinor bundle
SM := PSpin(n)M ×s $. In case the underlying manifold M and its metric are fixed,
we write S = SM for short.

The space of spinors, i.e., sections of S, is denoted by �(S). The space of smooth
compactly supported sections is called C∞

c (M, S). The hermitian metric on fibers of
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S is written as 〈., .〉, the corresponding norm as |.|. We write (., .)g for the L2-product
of spinors.

We denote by D : C∞
c (M, S) → C∞

c (M, S) the Dirac operator on (M, g). In case
several manifolds or metrics are involved, we sometimes specify its affiliation, i.e.,
Dg , DM or DM,g . Analogously we proceed for other operators and quantities.

The sphere S
1 carries two spin structures, one of them, the so-called bounding spin

structure, is obtained by restricting the unique spin structure on the two-dimensional
disk to its boundary. The kernel of the Dirac operator for this spin structure is trivial.
The sphere S

1 with the other spin structure represents the non-trivial spin-bordism
class in dimension 1. In the article we will always assume that S1 is equipped with the
bounding spin structure, unless stated otherwise.

A Riemannian manifold is of bounded geometry if it is complete, its injectivity
radius is bounded from below and the curvature tensor and all derivatives are bounded.

Theball around x ∈ M with radius εw.r.t. themetric g onM iswritten as BM,g
ε (x) =

Bε(x) ⊂ M .
In the article we need several Sobolev and Schauder spaces: For s ∈ [1,∞] we

write ‖.‖Ls (g) for the Ls-norm on (M, g). In case the underlying metric is clear from
the context we abbreviate by ‖.‖s for short.

Let Hs
k denote both the space of distributions on M and the one of distributional

sections in SM that have finite Hs
k norm given by

‖ϕ‖sHs
k

=
k∑

i=0

‖(∇)iϕ‖sLs .

Here ∇ denotes the covariant derivative on M and SM , respectively, depending on
whether ϕ is a distribution on M and a distributional section in SM , respectively. Hs

k,loc
means that any restriction of the distribution to a compact subset has to be in Hs

k of
that subset.

The space of i-times continuously differentiable functions on M is denoted by
Ci (M), and Ci,α denotes the corresponding Schauder space for α ∈ (0, 1].

2.2 The Model Spaces M
m,k
c

Let 0 ≤ k ≤ m − 1 and c ∈ [0, 1]. (M
m,k
c = H

k+1
c × S

m−k−1, gc = g
H

k+1
c

+
σm−k−1) where σm−k−1 denotes the standard metric on S

m−k−1 and (Hk+1
c , g

H
k+1
c

)

is the rescaled hyperbolic space with scalar curvature −c2k(k + 1) if c ∈ (0, 1] and
the Euclidean space if c = 0.

We introduce coordinates on H
k+1
c by equipping R

k+1 with the metric g
H

k+1
c

=
dr2 + f (r)2σ k where

fc(r) := sinhc(r) :=
{

1
c sinh(cr) if c �= 0

r if c = 0.
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2846 B. Ammann, N. Große

The manifold (M
m,k
1 = H

k+1 × S
m−k−1, g1 = gHk+1 + σm−k−1 = sinh2 t σ k +

dt2 + σm−k−1) is conformal to (Sm \ S
k, σm), [5, Proposition 3.1],

u : H
k+1 × S

m−k−1 → S
m \ S

k, g1 = f 2u∗σm where f = f (t) = cosh2 t.

2.3 Regularity Theory

We recall the standard estimates:

Theorem 2.1 Let (Mm, g) be a Riemannian spin manifold of bounded geometry. Let
R > 0 be smaller than the injectivity radius of M, and let r ∈ (0, R).

(i) (Inner Ls-estimate, [19, Proof of Theorem 8.8], spin version [2, Proof of Theo-
rems 3.2.1 and 3.2.3]) Let ϕ ∈ Hs

1,loc be a solution of Dϕ = ψ for ψ ∈ Hs
k,loc.

Then, there exists a constant C = C(s, r, R) such that for all x ∈ M

‖ϕ‖Hs
k+1(Br (x))

≤ C
(‖ϕ‖Ls (BR(x)) + ‖ψ‖Hs

k (BR(x))
)

(ii) (Embedding into C0,γ ) Let m < s and 0 ≤ γ ≤ 1 − m
s . By the spin version of

the proof of [19, Sect. 7.8 (Theorem 7.26)] there exists a constant C = C(s, r)
such that Hs

1 (BR(x)) is continuously embedded in C0,γ (Br (x)) for all x ∈ M.
(iii) (Schauder estimates) [2, Corollary 3.1.14] There is a constant C = C(r, R, k) >

0 such that for α > 0, ψ ∈ Ck,α with Dϕ = ψ weakly it holds for all x ∈ M

‖ϕ‖Ck+1,α(Br (x)) ≤ C
(‖ϕ‖Ck (BR(x)) + ‖ψ‖Ck,α(BR(x))

)
.

(iv) (Sobolev Embedding into L p, [19, Theorem 7.26]) Let k, 
 ∈ R, k ≥ 
 and s, t ∈
(1,∞) with k − (m/s) ≥ 
 − (m/t), then the restriction map Hs

k (BR(x), S) →
Ht


(Br (x), S) is continuous for all x ∈ M and r > 0. For fixed R > r > 0 the
operator norm of these restriction maps can be chosen uniformly in x.

2.4 Ls-Invertibility of Dirac Operators

For a complete manifold M , we define the norm ‖ϕ‖H̃ s
1

:= ‖ϕ‖s + ‖Dϕ‖s for 1 ≤
s < ∞. For 1 ≤ s < ∞, let H̃ s

1 = H̃ s
1 (M, S) be the completion of C∞

c (M, S) w.r.t.
the norm ‖ϕ‖H̃ s

1
. Then Ds : H̃ s

1 := dom Ds ⊂ Ls → Ls is a closed extension of

the Dirac operator. By [10, Lemma B.2] we have (Ds)
∗ = Ds∗ for 1 < s < ∞ and

s−1 + (s∗)−1 = 1.
Note that on manifolds of bounded geometry and 1 < s < ∞ the Hs

1 -norm and
the graph norms H̃ s

1 are equivalent, [10, Lemma A.2].
General properties of the Ls-spectrum of Dirac operators can be found in [10,

Appendix]. Here, we only cite the result on Ls-invertibility of our model spaces.

Proposition 2.2 [10, Theorem 1.1] Let 1 ≤ s ≤ ∞. TheDirac operator D : Ls → Ls

on M
m,k
c is Ls-invertible if λ1 = m−k−1

2 > ck |1/s − 1/2|.
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Table 1 Some constants in the
article for m-dimensional
manifolds

a p p∗ q q∗

4m−1
m−2

2m
m−2

2m
m+2

2m
m−1

2m
m+1

2.5 Yamabe Type Constants and Yamabe Type Invariants

Let (Mm, g) be a complete m-dimensional Riemannian spin manifold. By �g we
denote the Laplacian on (M, g) and by scalg its scalar curvature. Let Lg = a�g+scalg

be the conformal Laplacian where a = 4m−1
m−2 , see also Table 1.We recall the following

definitions:

Definition 2.3 Functionals

F(v) :=
∫
M vLgv dvolg
‖v‖2

L
2m
m−2 (g)

, F spin(ϕ) :=
‖Dgϕ‖2

L
2m
m+1 (g)

(Dgϕ, ϕ)g

For further use we define for the rest of the paper p := 2m
m−2 and q := 2m

m−1 . The
corresponding Euler–Lagrange equations for normalized solutions are the so-called
Yamabe equation [34]

Lgv = μv
m+2
m−2 , ‖v‖

L
p= 2m

m−2
= 1

and the spinorial brother [1]

Dgϕ = λ|ϕ| 2
m−1 ϕ, ‖ϕ‖

L
q= 2m

m−1
= 1.

Yamabe type constants defined by compactly supported test functions

Q∗(M, g) := inf
{
F(v)

∣∣∣ v ∈ C∞
c (M, S) \ {0}

}
,

λ
+,∗
min(M, g) := inf

{
F spin(ϕ)

∣∣∣ ϕ ∈ C∞
c (M, S), (Dgϕ, ϕ)g > 0

}

Yamabe type constants defined over solutions
Q̃(M, g) is the Yamabe invariant “defined over the solutions”, i.e.,

Q̃(M, g) := inf{μv | v ∈ �(1)(M, g)}

where �(1)(M, g) is the set of all nonnegative functions v ∈ C2(M) ∩ L∞(M) ∩
L2(M, g) satisfying Lgv = μvv

p−1 for a real number μv and with ‖v‖L p(M,g) = 1
(p = 2m

m−2 as indicated in Table 1).
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2848 B. Ammann, N. Große

Analogously, we introduce a quantity corresponding to λ
+,∗
min(M, g) defined using

the solutions of the Euler–Lagrange equation of F spin:

λ̃+
min(M, g) := inf

{
λ ∈ (0,∞) | ∃ϕ ∈ L∞ ∩ L2 ∩ C1 :

0 < ‖ϕ‖
L

2m
m−1 (M,g)

≤ 1, Dgϕ = λ|ϕ| 2
m−1 ϕ

}
. (1)

We will see in the next section why these different quantities are geometrically
relevant.
Renormalized spinorial invariants We also introduce renormalized versions of λ

+,∗
min

and λ̃+
min:

Q∗
spin(M, g) = 4

m − 1

m
λ

+,∗
min(M, g)2, Q̃spin(M, g) = 4

m − 1

m
λ̃+
min(M, g)2. (2)

This renormalization will make things simpler.
Yamabe type invariants for compact manifolds Now we define the smooth Yamabe
invariant σ ∗(M) as

σ ∗(M) := sup
g

Q∗(M, g)

where the supremum runs over all Riemannian metrics on M . Thus, σ ∗ only depends
on the diffeomorphism type of M . Note that the smooth Yamabe invariant is positive
if and only if M admits a metric of positive scalar curvature.

A similar spinorial Yamabe invariant τ+(M) was introduced in [11,12]. It is

τ+(M) :=
{
supg∈Rinv(M) λ

+,∗
min(M, g) if Rinv(M) �= ∅

0 if Rinv(M) = ∅,

where Rinv(M) is the set of Riemannian metrics on M such that Dg is invertible.
The definition of τ+ is slightly different from the original one in [11,12], but obvi-
ously equivalent. Note that for connected closed manifolds one knows from [3] that
Rinv(M) �= ∅ if and only if the index of Mm in KOm vanishes. Thus, τ+(M) is
positive if and only if this index vanishes. The invariant τ+(M) only depends on both
the diffeomorphism type of M and its spin structure.

These Yamabe type invariants will be considered in this article only in the case that
M is compact. In this case the solution of the classical Yamabe problem [34] implies
Q̃(M, g) = Q∗(M, g), and similar results in the spin case [1] imply λ̃+

min(M, g) =
λ

+,∗
min(M, g). Thus, we also see

σ ∗(M) = sup
g

Q̃(M, g), τ+(M) =
{
supg∈Rinv(M) λ̃+

min(M, g) if Rinv(M) �= ∅

0 if Rinv(M) = ∅.
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Similar to the above we also define (for M compact) a renormalized version

σ ∗
spin(M) := 4

m − 1

m
τ+(M)2.

We want to remark that σ ∗(M) was considered for non-compact manifolds in [25].

The �-invariants We define

�̃m,k := inf
c∈[0,1] Q̃(Mm,k

c ) and �∗
m,k := inf

c∈[0,1] Q
∗(Mm,k

c ).

These invariants are important because of their relation to the invariant �m,k that
contributes to the Surgery Theorem 2.5.We have�m,k = �̃m,k unlessm = k−3 ≥ 7
orm = k−2 [6, Theorem 3.1 and Proof of Corollary 3.2]. The idea behind the notation
is that the invariant with ∗ is the infimum of a functional, the invariant with ∼ is
defined using solutions of the Euler–Lagrange equation and the invariant without such
decoration is the invariant in the surgery theorem. We know from [6, Theorem 3.3]
that all these invariants are positive for 0 ≤ k ≤ m − 3.

In the spinorial case we define similarly

�̃
spin
m,k = inf

c∈[0,1] Q̃spin(M
m,k
c ) and �

spin,∗
m,k := inf

c∈[0,1] Q
∗
spin(M

m,k
c ).

It is known from [4, Theorem 1.1] that �̃
spin
m,k > 0 for all 0 ≤ k ≤ m − 2. The

invariant �spin
m,k in the Spinorial Surgery Theorem 2.6 can be chosen to be �̃

spin
m,k for all

0 ≤ k ≤ m − 2, [4, Corollary 1.4]. We introduce the notation �
spin
m,k := �̃

spin
m,k to make

the presentation analogous to the non-spin case.
One of the main goals of this article is to search for relations between these five

possibly different �-invariants.

Remark 2.4 The Q-invariants for the spheres play a special role. We collect the main
properties: For all manifolds (Mm, g) it holds Q∗(Mm, g) ≤ Q∗(Sm). If M is spin,
then Q∗

spin(M
m, g) ≤ Q∗

spin(S
m). The invariant Q∗(Sm) is attained by a constant

test function v such that ‖v‖ 2m
m−2

= 1. Thus, Lv = m(m − 1)v = Q∗(Sm)v
m+2
m−2

and Q∗(Sm) = m(m − 1)vol(Sm)
2
m . The invariant λ

+,∗
min(S

m) is attained by a Killing
spinor ϕ to the Killing constant − 1

2 . Note that the normalization in (2) is chosen such
that Q∗

spin(S
m) = Q∗(Sm). Since S

m is closed Q∗(Sm) = Q̃(Sm) and Q∗
spin(S

m) =
Q̃spin(S

m).
Moreover, for (Mm, g) not locally conformally flat and m ≥ 6, Aubin showed, see

[14, p. 292], Q∗(Mm, g) < Q∗(Sm).
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2850 B. Ammann, N. Große

2.6 Surgery-Monotonicity for Yamabe Type Invariants Below Thresholds

In order to define the constant �m,k mentioned above we set

Q(2)(M, g) := inf
{
μu | u ∈ �(2)(M, g)

}

where �(2)(M, g) is the set of all nonnegative functions u ∈ C2(M) ∩ L∞(M)

satisfying Lgu = μuu p−1 for a nonnegative real number μu , ‖u‖L p(M,g) = 1, where

p = 2m
m−2 as always, and μu‖u‖

4
m−2
L∞ ≥ (m−k−2)2(m−1)

8(m−2) . Then, we set, cf. [5, Sect. 3],
[6, Sect. 2.6],

�m,k = min

{
�̃m,k, inf

c∈[0,1] Q
(2)(Mm,k

c )

}
.

It follows from [6, Theorem 3.1 and below] that in case k = m−3 ≤ 6 or k ≤ m−4
we already have �m,k = �̃m,k .

Theorem 2.5 (Surgery-monotonicity for the Yamabe invariant, [5, Corollary 1.4])
Assume that Nm is a closed Riemannian manifold that is obtained from Mm by a
surgery of codimension m − k ≥ 3. Then

σ ∗(N ) ≥ min{σ ∗(M),�m,k}.

Note that a surgery from M to N is called spin preserving if the spin structures on
M and N extend to a spin structure on the corresponding bordism. In particular this
implies that the spin structures on M and N coincide outside the region of surgery.

Theorem 2.6 (Surgery-monotonicity for the spinorial Yamabe invariant, [4, Corol-
lary 1.4]) Assume that Nm is a closed Riemannian spin manifold that is obtained from
Mm by a spin-preserving surgery of codimension m − k ≥ 2. Then

σ ∗
spin(N ) ≥ min{σ ∗

spin(M),�
spin
m,k }.

In the case k = m−2 the sphereS
1 carries the bounding spin structure, as explained

in the Notation 2.1.

Since there is a whole zoo of different Q- and�-invariants, we summarize the logic
of our notation in Table 2.

3 Overview of the Results

Many of the inequalities established in this article are summarized in Fig. 1. For
example, �

spin,∗
m,k = �̃

spin
m,k ≥ �∗

m,k for all k ≤ m − 2. Other inequalities hold under
additional assumptions, e.g., in the case k ≤ m − 4 and in the case k ≤ m − 3 ≤ 3 we
have �∗

m,k ≥ �̃m,k . Thus, together with previously mentioned relations we obtain
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Table 2 Overview of the notation

Label Meaning

No spin label Associated with the Yamabe problem

Spin Associated with the spinorial Yamabe problem for the Dirac operator

∗ Defined as a variational problem

∼ Defined by solutions of the associated Euler–Lagrange equation (as a
nonlinear eigenvalue problem)

No ∗ and no ∼ Appears in an associated surgery result

Q For a fixed Riemannian (spin) manifold

� = infc∈[0,1] of the Q-invariants (decorated with the same labels as �) for
the model spaces Mc

σ The supremum of the Q-invariants (with the same labels) for a (spin)
manifold over all conformal classes

Fig. 1 Summary of the results for the Q-invariants of the model spaces (right) and the corresponding
�-invariants (left).
[1]: for (m − k − 1)2 > c2k(k + 1) and Q̃spin(M

m,k
c ) < Q∗

spin(S
m )

[2]: for (m − k − 1)(m − k − 2) > c2k(k + 1), c ∈ [0, 1) or for k ≤ m − 3, c = 1

Theorem 3.1 In the case k ≤ m − 4 and in the case k ≤ m − 3 ≤ 3

�
spin,∗
m,k = �̃

spin
m,k = �

spin
m,k ≥ �∗

m,k = �̃m,k = �m,k .

Thus, in most of the cases the inequality �
spin
m,k ≥ �m,k conjectured in the intro-

duction holds. Together with the explicit positive lower bounds for �m,k in [6,7], we
then obtain explicit positive lower bounds for�spin

m,k . Theorem 3.1 does not provide for
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2852 B. Ammann, N. Große

Table 3 Some explicit lower bounds for �
spin
m : the values are rounded—Q∗(Sm ) is rounded to the nearest

multiple of 1/10 and the lower bounds for �
spin
m and Q∗(HP2 × R

m−8) are always rounded down

m 5 6 7 8 9 10 11 12 13

Q∗(Sm ) 80.0 96.3 113.5 130.7 147.9 165.0 182.2 199.3 216.4

�
spin
m ≥ 45.1 50.0 65.2 78.7 91.8 104.9 118.1 131.5 145.0

Q∗(HP2 × R
m−8) ≥ – – – 121.4 138.5 97.3 135.9 158.7 178.0

Note that Q∗(HP2) = 121.4967 . . . is attained by the canonical metric on HP2, due to Obata’s theorem

�
spin
m,m−3 for m > 6. But nevertheless our techniques also allow us to obtain explicit

positive lower bounds for �
spin
m,m−3 for m > 6; see Sect. 11.

The right-hand side of Fig. 1 gives relations between the Q-invariants of the model
spaces. Some of them require additional assumptions which are given as footnotes.
The parameter c ranges in the interval [0, 1]. However, the case c = 1 is very special as
thenM

m,k
1 is conformal to a subset of S

m which allowsmuch stronger statements. This
is summarized in Sect. 7. Another special case is k = m − 1. These invariants do not
have similar geometric applications. But for the sake of completeness we summarize
in Sect. 8.

As already mentioned in the Introduction, the explicit positive lower bounds for
�

spin
m,k , k ≤ m−3 lead to bordism invariant. As we only want to give an overview here,

many proofs will be given later, i.e., in Sect. 12.
Let m ≥ 5. We set

�
spin
m := min

{
�

spin
m,2 ,�

spin
m,3 , . . . , �

spin
m,m−3

}
.

From Theorem 3.1, Sect. 11, and results in [6] and [7] we obtain explicit positive
lower bounds for �

spin
m , summarized in Table 3 for low dimensions.

Using standard techniques frombordism theory (see Sect. 12 for details) one obtains
several conclusions:

Proposition 3.2 Let M be anm-dimensional closed connected, simply connected spin
manifold, α(M) = 0. If 5 ≤ m ≤ 7, then

σ ∗
spin(M) ≥ �

spin
m .

For m ≥ 11 or m = 8 we have

σ ∗
spin(M) ≥ min

{
�

spin
m , Q∗(HP2 × R

m−8)
}

.

For m = 9, 10 we have

σ ∗
spin(M) ≥ min

{
�

spin
m,1 ,�

spin
m , Q∗(HP2 × R

m−8)
}

.
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Note that by definition α(M) �= 0 implies that there are no invertible Dirac opera-
tors, thus by definition σ ∗

spin(M) = 0.

We conjecture �
spin
m ≤ Q∗(HP2 × R

m−8) for all m ≥ 11, which would imply
σ ∗
spin(M) ≥ �

spin
m for all closed simply connected spin manifolds M with dimension

m ≥ 5, m �= 9, 10.
A similar bound also exists for non-simply connected manifolds, namely in this

case for m �= 9, 10

σ ∗
spin(M) ≥ min

{
�

spin
m ,�

spin
m,m−2, Q

∗(HP2 × R
m−8)

}
> 0,

and for m = 9, 10

σ ∗
spin(M) ≥ min

{
�

spin
m,1 ,�

spin
m ,�

spin
m,m−2, Q

∗(HP2 × R
m−8)

}
> 0.

However, this positive lower bound is not explicit as no explicit lower bound for
�

spin
m,m−2 is currently available. Numerical calculations and some further assumptions

indicate that �spin
m,m−2 < �

spin
m .

Proposition 3.3 Assume that M is an m-dimensional closed connected spin man-
ifold with m ≥ 5. We consider the bordism groups �

spin
m (B�), � := π1(M)

where the boundaries and the bordisms are spin manifolds together with maps to
B�. Let cM : M → B� be a classifying map of the universal covering of M,
i.e., the map which induces an isomorphism from π1(M) to � = π1(B�). Let
[N , f ] = [M, cM ] ∈ �

spin
m (B�), and let N be connected. Then

σ ∗
spin(N ) ≥ min

{
σ ∗
spin(M),�

spin
m ,�

spin
m,m−2

}
.

If N is connected and if f induces an isomorphism from π1(N ) to �, then

σ ∗
spin(N ) ≥ min

{
σ ∗
spin(M),�

spin
m

}
. (3)

Note that every class in �
spin
m (B�) → R can be written as (M, cM ).

By applying (3) twice, it follows from Proposition 3.3 that there is a well-defined
map sspin : �

spin
m → R such that for all connected, simply connected spin manifolds

M

sspin([M]) = min
{
σ ∗
spin(M),�

spin
m

}
.

Thus if M is a connected spin manifold, we have

σ ∗
spin(M) ≥ min

{
sspin([M]),�spin

m,m−2

}
.
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It follows from standard arguments of surgery theory that

sspin([M] + [N ]) ≥ min
{
sspin([M]), sspin([N ])

}
.

Thus,

�
spin,>t
m :=

{
[M] ∈ �

spin
m | sspin([M]) > t

}

is a subgroup of�spin
m . For example,�spin,>0

m is the kernel of the indexmapα : �
spin
m →

KOm .
Similarly as above, for an arbitrary finitely presented group � we obtain a well-

defined map sspin� : �
spin
m (B�) → R as follows: For every [M, f ] ∈ �

spin
m (B�)where

M is connected and f induces an isomorphism from π1(M) to � we have

sspin� ([M, f ]) = min
{
σ ∗
spin(M),�

spin
m,1 ,�

spin
m

}
.

In this case the minimum includes the constants �
spin
m,1 since it is required to show

that

sspin� ([M, f ] + [N , g]) ≥ min
{
sspin� ([M, f ]), sspin� ([N , g])

}
.

Then, analogously as above,

�
spin,>t
m (B�) := {[M, f ] ∈ �

spin
m (B�) | sspin� ([M, f ]) > t}

is a subgroup of �
spin
m (B�).

Assume that there is a closed simply connected spin manifold M of dimension
m ≥ 5 with σ ∗

spin(M) < �
spin
m . For such manifolds one would have: If N is a simply

connected closed spin manifold spin-bordant to M , then σ ∗
spin(N ) = σ ∗

spin(M). An
advantage of this bordism result is that we have explicit positive lower bounds for
�

spin
m , in contrast to a similar result for the classical Yamabe invariant.
As a consequence, by the Hijazi inequality we have σ ∗(N ) ≤ σ ∗

spin(M), i.e.,
σ ∗
spin(M) is an upper bound for the Yamabe invariant for all simply connected mani-

folds in [M].
This question is related to the open problem of whether there is a manifold in

dimension m ≥ 5 with Yamabe invariant different from 0 and σ ∗(Sm). If one finds
an M as above, all simply connected manifolds in the spin bordism class of M would
have a Yamabe invariant in (0, σ ∗(Sm)).

Many of the statements on the right-hand side of Fig. 1 are still valid if one replaces
the model spaces by arbitrary manifolds of bounded geometry; see Sects. 6 and 9. The
inequalities in Sect. 9 are noncompact versions of the Hijazi inequality which is of
central importance of our article. The reader should be aware that there are different
ways to generalize from the compact to the noncompact setting. We have positive
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and negative results for the generalization of the Hijazi inequality to the noncompact
setting; see Sect. 9. Our investigations also need regularity statements for the Euler–
Lagrange equationof the spinorial functional. For this purposewehave includedSect. 4
which might be of independent interest and which goes beyond the requirements of
the following sections.

4 Improvements of Regularity for the Dirac Euler–Lagrange Equation

Let (Mm, g) be a Riemannian spin manifold of bounded geometry. In this section, we
consider a spinor ϕ ∈ Lq and ϕ ∈ Ls

loc for an s > q that fulfills

Dϕ = λ|ϕ|q−2ϕ weakly, (4)

i.e., in the distributional sense, where as always q = 2m
m−1 . Note that from ϕ ∈ Ls

loc

for an s > q it follows with the methods of [2, Theorem 5.2] that ϕ is C1,α for all
α ∈ (0, 1). We omit the proof of this local statement since the proof is completely
analogous as in [2]. Furthermore, we will only use the fact that ϕ is continuous which
is part of the assumptions in the applications of this subsection.

We want to further examine the regularity of ϕ. First, we will show that ϕ ∈ L∞.
For that we need the following auxiliary lemma.

Lemma 4.1 Fix β, R, δ > 0. Let ϕ ∈ �(SM ) be continuous with ‖ϕ‖L∞ = ∞.
Then there is a sequence (xi )i∈N in M with |ϕ(xi )| ≥ i and

|ϕ(xi )|−1‖ϕ‖L∞(BR
i ) ≤ 1 + δ

where BR
i := BR |ϕ(xi )|−1/β (xi ).

Proof Let d(., .) denote the distance in (M, g), and fix R, δ > 0. We prove the claim
by contradiction: Assume that there is a constant C > 0 such that for all x ∈ M with
|ϕ(x)| ≥ C there is yx with d(x, yx ) < R |ϕ(x)|−1/β and |ϕ(yx )| > (1 + δ) |ϕ(x)|.
Then, we define a sequence xi recursively by choosing x0 ∈ M with |ϕ(x0)| ≥ C
and xi+1 = yxi for all i ≥ 0. Then, |ϕ(xi )| ≥ (1 + δ)i |ϕ(x0)| ≥ (1 + δ)iC → ∞ as
i → ∞. But,

d(xi , x0) ≤
i−1∑
j=0

d(x j+1, x j ) ≤
i−1∑
j=0

R |ϕ(x j )|−
1
β ≤ RC− 1

β

i−1∑
j=0

(1 + δ)
− j

β

≤ RC− 1
β

1 − (1 + δ)
− 1

β

< ∞

which then contradicts the continuity of ϕ. ��
Lemma 4.2 Let (Mm, g) be of bounded geometry. Let ϕ ∈ Lq∩C0 be aweak solution
of (4). Then ϕ ∈ L∞.
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Proof We assume the contrary, i.e., ‖ϕ‖∞ = ∞. We fix β := 2(q − 2), R smaller
than the injectivity radius, and some δ > 0. Then applying Lemma 4.1 there is a
sequence of points (xi )i∈N in M with |ϕ(xi )| ≥ i and ‖ϕ‖L∞(BR

i ) ≤ (1 + δ)|ϕ(xi )|.
After passing to a subsequence, every compact subset only contains a finite number of
xi . We thus assume that all BR

i are pairwise disjoint since this can always be achieved
by passing to a further subsequence. We consider the charts for BR

i given by rescaled
exponential maps

ui : Bri (0) ⊂ R
m → BR

i , v �→ expxi (δiv)

where mi := |ϕ(xi )|, δi := m
− 1

q−2
i and ri := δ−1

i R |ϕ(xi )|−
1
β = R |ϕ(xi )|

1
2(q−2) .

Note that mi = |ϕ(xi )| ≥ i → ∞ and, hence, δi → 0 and ri → ∞ as i → ∞.
The map ui induces a map on the frame bundles which lifts to the spinor bundles; for
details, see [16]. For simplicity, we denote this lift also by ui , and set ψ i := m−1

i u∗
i ϕ.

Then ψ i is a spinor on Bri (0), |ψ i (0)| = 1 and ‖ψ i‖L∞(Bri (0))
≤ 1 + δ.

Using the comparison of the Dirac operator with the one on the Euclidean space
[8, Sects. 3 and 4], we obtain from Dϕ = λ|ϕ|q−2ϕ that

DR
m
ψ i + 1

4

∑
αβγ

�̃
γ
αβeα · eβ · eγ · ψ i +

∑
αβ

(
bβ
α − δβ

α

)
eα · ∇eβ ψ i = λ|ψ i |q−2ψ i

where δ
β
α denotes the Kronecker symbol, eα is the standard orthonormal frame on R

m

and

bβ
α =δβ

α − 1

6
δ2i R

i
αλμβx

λxμ + O
(
δ3i |x |3

)
→ δβ

α

�̃
γ
αβ =∂αb

γ
β − 1

3
δi (R

i
αγλβ + Ri

αλγβ)xλ + O
(
δ2i |x |2

)
→ 0

as δi → 0, i → ∞. Here, Ri
αλμβ = gxi ([∇∂β ,∇∂μ ]∂α − ∇[∂β ,∂μ]∂α, ∂λ) is the Rie-

mannian curvature tensor of g at xi .
Let K j , j = 0, 1, 2, 3 be compact subsets of R

m with K j+1 ⊂ interior(K j ) for
j = 0, 1, 2, and let i0 be big enough such that K0 ⊂ Bri0 (0). Since ψ i is bounded
on Bri (0) for i ≥ i0, the inner Ls-estimate in Theorem 2.1 shows that for each s
the ψ i ’s are uniformly bounded in Hs

1 (K0). Thus, after passing to a subsequence
ψ i → ψ weakly in Hs

1 (K0). The restriction map Hs
1 (K0) → C0,γ (K1) is bounded

because of Theorem 2.1, hence the ψ i are uniformly bounded also in C0,γ (K1) for all
γ ∈ (0, 1). In particular, |ψ i |q−2ψ i are uniformly bounded in C0,γ (K1). Thus, by the
Schauder estimate (see Theorem 2.1) we obtain ψ ∈ C1,γ (K2) and, thus, by Arzelà–
Ascoli ψ i → ψ strongly in C1 on K3, after passing to a subsequence. We apply
this construction to K3 := Bk(0) and construct a diagonal subsequence for k → ∞.
This subsequence converges locally in C1 to a spinor ψ on R

m with |ψ(0)| = 1,
‖ψ‖L∞ ≤ 1 + δ and DR

m
ψ = λ|ψ |q−2ψ .

We write bidvolRm = u∗
i dvolg , where bi := √

det(u∗
i g) → 1 as i → ∞ in C1

on each compact subset of R
m . As the balls BR

i are disjoint, ϕ ∈ Lq implies that
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∫
BR
i

|ϕ|q dvolg → 0 as i → ∞. Thus, we get for all compact K̃ and sufficiently
large i

∫
K̃

|ψ i |q dvolRn ≤ 1.001
∫

|x |<ri
|ψ i |qbi dvolRn

= 1.001
∫
BR
i

|ϕ|q dvolg → 0 as i → ∞.

Hence, ‖ψ‖q = 0 which contradicts ψ ∈ C1 and |ψ(0)| = 1. Thus, ϕ ∈ L∞. ��
Lemma 4.3 Let (Mm, g) be of bounded geometry. Let ϕ ∈ Lq ∩ C0 fulfill
weakly (4). Then, limx→∞ |ϕ| = 0. Moreover, ϕ ∈ C1,γ for all γ ∈ (0, 1),
limx→∞ ‖ϕ‖C1,γ (Br (x)) = 0 for all r > 0, and ‖ϕ‖C1,γ < ∞. In particular, ϕ is
uniformly continuous.

Proof From Lemma 4.2 we have ϕ ∈ L∞. Fix z ∈ M and δ > 0 to be smaller than
the injectivity radius. Let d(., .) denote the distance function on (M, g). We prove the
first claim by contradiction: We assume that there is a constant V > 0 and a sequence
(xi )i∈N ⊂ M with |ϕ(xi )| ≥ V , |xi | = d(xi , z) → ∞ and d(xi , x j ) > 2δ.

Let ε ∈ (0, δ
2 ). Since ϕ ∈ L∞ and (M, g) has bounded geometry, we obtain by

inner Ls-estimates that

‖ϕ‖Hs
1 (Bε(xi )) ≤ Cδ(s)(‖ϕ‖Ls (B2ε(xi )) + ‖λ|ϕ|q−2ϕ‖Ls (B2ε(xi )))

≤ CCδ(s)vol(B2ε(xi ))
1
s ≤ C ′ (5)

where C ′ does not depend on i .
Fixing s > m and using the Sobolev embedding Hs

1 (Bε(xi )) ↪→ C0,γ (Bε(xi ))
we get that ‖ϕ‖C0,γ (Bρ(xi )) ≤ C ′′ for some γ ∈ (0, 1), ρ ∈ (0, ε), and where C ′′ is
independent on i .

With ϕ ∈ Lq we estimate

‖ϕ‖qq ≥
∑
i

‖ϕ‖qLq (Bρ(xi ))
≥ K

∑
i

inf
x∈Bρ(xi )

|ϕ(x)|

where K := inf i vol(Bρ(xi )). Note that K > 0 since (M, g) has bounded geometry.
Hence, inf x∈Bρ(xi ) |ϕ(x)| → 0 as i → ∞. But on the other hand, on each ball Bρ(xi )
we have for all x, y ∈ Bρ(xi ) that |ϕ(x) − ϕ(y)| ≤ C ′′|x − y|γ ≤ C ′′ργ . Thus

V ≤ lim sup
i→∞

|ϕ(xi )| ≤ C ′′ργ .

By choosing ρ small enough we obtain a contradiction.
Inequality (5) still holds if we replace xi by an arbitrary x ∈ M . Then, C ′ does

not depend on x . Moreover, choosing s large enough we then have for any γ ∈ (0, 1)
that ‖ϕ‖C0,γ (Bρ/2(x)) < ∞ for all x ∈ M and limx→∞ ‖ϕ‖C0,γ (Bρ/2(x)) = 0. Thus,
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ϕ ∈ C0,γ for any γ ∈ (0, 1). Then, by a further bootstrap step we obtain the same
statement for C1,γ instead of C0,γ and for ρ/3 instead of ρ/2. Thus, for sufficiently
large compact subset K̂ the norm ‖ϕ‖C1,γ (M\K̂ )

is arbitrarily close to zero. This implies
the lemma. ��
Corollary 4.4 Let (Mm, g) be of bounded geometry. Let ϕ ∈ Lq ∩ C0 be a weak

solution of Dϕ = λ|ϕ| 2
m−1 ϕ with ‖ϕ‖q = 1. Then, ϕ ∈ C2,γ for all γ ∈ (0, 2

m−1 ] if
m ≥ 4 and all γ ∈ (0, 1) otherwise.

Proof Let β := q − 2 = 2
m−1 and ψ = |ϕ|βϕ. At first we will show that

∇ψ = |ϕ|β∇ϕ + β〈∇ϕ, ϕ〉|ϕ|β−2ϕ (6)

is in Cγ for γ as above: By Lemma 4.3 ϕ ∈ C1,α for all α ∈ (0, 1). Thus, ϕ is locally
Lipschitz and, hence, |ϕ|β is inCβ . Moreover,∇ϕ ∈ Cα , thus the first summand in (6)
isCmin{α,β}. By [1, Lemma B.1] |ϕ|β−2ϕ ⊗ϕ ∈ Cβ . It follows that 〈∇ϕ, ϕ〉|ϕ|β−2ϕ is
Cγ as well. Thus, ∇ψ ∈ Cγ and ψ ∈ Cα for all α ∈ (0, 1). Now Schauder estimates,
see Theorem 2.1, imply ϕ ∈ C2,γ . The corollary then follows. ��
Example 4.5 Let us consider Euclidean R

m , m ≥ 2 with standard basis (ei )i=1,...,m
and with a parallel spinor ψ0 �= 0. We define

ϕ(x1, . . . , xm) := x1e1 · ψ0 − x2e2 · ψ0.

Then∇ϕ = dx1⊗e1 ·ψ0−dx2⊗e2 ·ψ0, and thus Dϕ = e1 ·e1 ·ψ0−e2 ·e2 ·ψ0 =
−ψ0 + ψ0 = 0. Thus this spinor satisfies (4) with λ = 0, but is not Lq and many
conclusions in this section, particularly the L∞-bound, do not hold. The example thus
shows that the Lq -condition in the above lemmas is necessary.

We know that by Lemma 4.2 ϕ is in L∞. However, the following example shows
that we cannot derive an upper bound for ‖ϕ‖L∞ which only depends on (M, g),
‖ϕ‖Lq and λ.

Example 4.6 Consider again Euclidean R
m . Take a Killing spinor ϕ on the sphere

(Sm, σm) normalized such that its Lq= 2m
m−1 -norm is one. Then on S

m we have
DS

m
ϕ = m

2 ϕ = λ
+,∗
min(S

m)|ϕ|q−2ϕ, cf. Remark 2.4. The stereographic projec-
tion h is a conformal map from the sphere with a point removed to the Euclidean
space. Now let hρ be the composition of ϕ and the scaling of R

m by ρ. Then,

gE = f 2ρ hρ∗ (σm) where fρ = ρ
1
2 f1 is the conformal factor. Using the identifi-

cation of spinor bundles of conformal metrics, cf. [29, Sect. 4], we get a spinor

ϕ̃ = f
−m−1

2
ρ ϕ fulfilling DR

m
ϕ̃ = λ

+,∗
min(S

m)|ϕ̃|q−1ϕ̃ and ‖ϕ̃‖Lq (Rm ) = 1. But

‖ϕ̃‖L∞(Rm) = ρ−m−1
4 ‖ f

−m−1
2

1 ϕ‖L∞(Rm) → ∞ as ρ → 0. We obtain an example
where L∞-norm of solutions cannot be controlled in terms of its Lq -norm, λ and
(M, g).

We close this section by some lemmas on removal of singularities for our Euler–
Lagrange equations.
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Lemma 4.7 Let (M, g) be an m-dimensional Riemannian spin manifold, and let S ⊂
M be an embedded submanifold of dimension 
 ≤ m − s∗ where s∗ is the conjugate
exponent of s. Assume that ϕ is a spinor field such that ‖ϕ‖s < ∞ for s ∈ (1,∞) and
Dϕ = λ|ϕ|s−2ϕ weakly on M \ S for λ ∈ R. Then Dϕ = λ|ϕ|s−2ϕ weakly on M.

Proof Wefollow the proof for the removal of singularities forweakly harmonic spinors
in [3, Lemma 2.4]: LetUS(ε) consist of all points of M with distance ≤ ε to S. Let ηδ

be a cut-off function with ηδ = 1 onUS(δ), ηδ = 0 on M \US(2δ) and |∇ηδ| ≤ 2δ−1.
Then, we obtain for a smooth and compactly supported spinor ψ on M

∫
M

〈ϕ, Dψ〉 − λ

∫
M

〈
|ϕ|s−2ϕ,ψ

〉

=
∫
M

〈ϕ, D(1 − ηδ)ψ〉 − λ

∫
M

〈
|ϕ|s−2ϕ, (1 − ηδ)ψ

〉

+
∫
M

〈ϕ, ηδDψ〉 +
∫
M

〈ϕ,∇ηδ · ψ〉 − λ

∫
M

〈
|ϕ|s−2ϕ, ηδψ

〉
.

The sum of the first two summands on the right side vanishes since Dϕ = λ|ϕ|s−2ϕ

weakly on M \ S. Moreover,
∣∣∫

M 〈ϕ, ηδDψ〉∣∣ ≤ ‖ϕ‖s‖Dψ‖Ls∗ (US(2δ))
→ 0 and∣∣∫

M

〈|ϕ|s−2ϕ, ηδψ
〉∣∣ ≤ ‖ϕ‖s/s∗s ‖ψ‖Ls (US(2δ)) → 0 as δ → 0. The remaining term can

be estimated by

∣∣∣∣
∫
M

〈ϕ,∇ηδ · ψ〉
∣∣∣∣ ≤ 2

δ
‖ϕ‖Ls (US(2δ))‖ψ‖Ls∗ (US(2δ))

≤ C

δ
‖ϕ‖Ls (US(2δ))vol(US(2δ) ∩ suppψ)

1
s∗

≤ C ′ ‖ϕ‖Ls (US(2δ))︸ ︷︷ ︸
→0

δ
m−

s∗ −1 → 0.

��
Lemma 4.8 Let (M, g) be an m-dimensional Riemannian spin manifold, and let S ⊂
M be an embedded submanifold of dimension 
 ≤ m − 2s∗ where s∗ is the conjugate
exponent of s. Assume that v is a nonnegative function such that ‖v‖s < ∞ for
s ∈ (1,∞) and Lv = μvs−1 weakly on M \ S for μ ∈ R. Then Lv = μvs−1 weakly
on M.

Proof The proof is similar to the one of Lemma 4.7, and we use the notation therein.
The cut-off function ηδ is chosen such it fulfills additionally |�ηδ| ≤ 4δ−2. Then, the
estimates are done analogously. ��

5 Gromov–Hausdorff Convergences

Let (Mi , gi , xi ), i ∈ N, and (M∞, g∞, x∞) be pointed complete connected Rie-
mannian manifolds. We say that (Mi , gi , xi ) converges to (M∞, g∞, x∞) in the
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Ck-topology of pointed Riemannian manifolds if for every R > 0 and every i ≥ i0(R)

there is an injective immersion ϕR
i : BM∞,g∞

R+1 (x∞) → BMi ,gi
R+1 (xi ) such that (ϕR

i )∗gi
converges to g∞ on BM∞,g∞

R (x∞) in theCk-topology. If all manifolds above carry spin
structures, then we say that they converge in the Ck-topology of pointed Riemannian
spin manifolds if additionally the maps ϕR

i preserve the chosen spin structures.

Lemma 5.1 If (Mi , gi , xi ) converges to (M∞, g∞, x∞) in the C2-topology of pointed
Riemannian manifolds, then

lim sup
i→∞

Q∗(Mi , gi ) ≤ Q∗(M∞, g∞).

If (Mi , gi , xi ) converges to (M∞, g∞, x∞) in the C1-topology of pointed Rie-
mannian spin manifolds, then

lim sup
i→∞

Q∗
spin(Mi , gi ) ≤ Q∗

spin(M∞, g∞).

Proof For a given ε > 0 we take v ∈ C∞
c (M∞) with F g∞(v) < Q∗(M∞, g∞) + ε.

Choose R > 0 such that the support of v is contained in BM∞,g∞
R (x∞). For sufficiently

large i we then have

Q∗(Mi , gi ) ≤ F gi (v ◦ (ϕR
i )−1) = F (ϕR

i )∗gi (v) ≤ F g∞(v) + ε < Q∗(M∞, g∞) + 2ε

where the second inequality uses that F g depends only on derivatives of g up to order
2. The first part of the lemma follows in the limit ε → 0.

The spinorial statement is proven completely analogously. Here, convergence in
C1 is enough since the Dirac operator is of first order. ��

In the articles [4] and [5] the following situation was considered. Assume that Nm

is obtained fromMm by a surgery of dimension k. Then for anymetric g onM a family
of special metrics gϑ , ϑ > 0, was constructed. It was proved in [5] in combination
with estimates given in [6] that for all k ≤ m − 4 and all k = m − 3 ≤ 3 we have

lim
ϑ→0

Q∗(N , gϑ) ≥ min
{
Q∗(M, g), �̃m,k

}
.

Similarly it was proven in [4] for k ≤ m − 2 that

lim
ϑ→0

Q∗
spin(N , gϑ) ≥ min

{
Q∗

spin(M, g), �̃spin
m,k

}
.

We apply this construction to M = S
m equipped with the standard metric g = σm .

Then N = Sk+1 × Sm−k−1. Thus we obtain a family of metrics gϑ on N = Sk+1 ×
Sm−k−1 with

lim
ϑ→0

Q∗ (Sk+1 × Sm−k−1, gϑ

)
≥ �̃m,k if k ≤ m − 4 or if k = m − 3 ≤ 3,
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and

lim
ϑ→0

Q∗
spin

(
Sk+1 × Sm−k−1, gϑ

)
≥ �̃

spin
m,k if k ≤ m − 2.

The following lemma is proven with exactly the same methods as in Sect. 6.3 of
[5].

Lemma 5.2 For any c ∈ [0, 1], there are points xϑ ∈ Sk+1×Sm−k−1,ϑ ∈ (0, 1), such
that (Sk+1 × Sm−k−1, gϑ , xϑ) converges in the C∞-topology of pointed Riemannian
manifolds to (M

m,k
c , x0) where x0 is an arbitrary base point.

Lemmas 5.1 and 5.2 imply

lim
ϑ→0

Q∗ (Sk+1 × Sm−k−1, gϑ

)
≤ Q∗(Mm,k

c )

and

lim
ϑ→0

Q∗
spin

(
Sk+1 × Sm−k−1, gϑ

)
≤ Q∗

spin(M
m,k
c )

for all c ∈ [0, 1] with the same restrictions on k as above. Hence, we immediately
obtain

Proposition 5.3

�̃m,k ≤ �∗
m,k for k ≤ m − 4 and for k = m − 3 ≤ 3,

�̃
spin
m,k ≤ �

spin,∗
m,k for k ≤ m − 2.

Note that in this proposition we do not get any statement about the invariants for
M

m,k
c for a fixed c; compare to Corollary 10.6.

6 Cut-Off Arguments

In this section we use cut-off functions to compare the ∗-invariants (which are defined
as the infimum of a functional) with their ∼-counterparts (which are defined as the
infimum of nonlinear eigenvalues).

Lemma 6.1 Let (Mm, g) be a complete connected m-dimensional Riemannian man-
ifold. Then, Q∗(M, g) ≤ Q̃(M, g).

Proof (cp. [5, Lemma 3.5]) Let v ∈ C2(M) ∩ L∞(M) ∩ L2(M), v ≥ 0, satisfying
Lgv = μvv

p−1 with μv ∈ R≥0 and ‖v‖L p = 1 where p = 2m
m−2 . We fix z ∈ M . Let

ηr be a smooth cut-off function with values in [0, 1], ηr = 0 on M \ B2r (z), ηr = 1
on Br (z), and |dηr | ≤ 2r−1. Then,

123



2862 B. Ammann, N. Große

Q∗(M, g) ≤
∫
M ηrvLg(ηrv)dvolg

‖ηrv‖2L p(g)

=
∫
M η2r vL

gv + a|dηr |2v2dvolg
‖ηrv‖2L p(g)

≤
∫
M μvη

2
r v

p + a4r−2v2dvolg
‖ηrv‖2L p(g)

→ μv as r → ∞.

��
Corollary 6.2 Q∗(Mm,k

c ) ≤ Q̃(M
m,k
c ) and �∗

m,k ≤ �̃m,k for all m, k.

Lemma 6.3 Let (Mm, g) be a complete connected m-dimensional Riemannian spin

manifold. Assume that D is Lq∗= 2m
m+1 -invertible. Then Q∗

spin(M, g) ≤ Q̃spin(M, g).

Proof Let λ = λ̃+
min(M, g). By the definition of λ̃+

min, cf. (1), there is a ϕ ∈ L2∩ L∞ ∩
C1 with Dϕ = λ|ϕ|q−2ϕ and ‖ϕ‖q = 1 where q = 2m

m−1 . Then, Dϕ ∈ Lq∗
, and by

the Lq∗
-invertibility of D we get that ϕ ∈ Lq∗

. Hence, λ > 0 since otherwise ϕ would
be a nonzero Lq∗

-harmonic spinor which contradicts the Lq∗
-invertibility.

We fix z ∈ M . Let ηr be a smooth cut-off function with values in [0, 1], ηr = 0 on
M \ B2r (z), ηr = 1 on Br (z), and |dηr | ≤ 2r−1. Then

(D(ηrϕ), ηrϕ)︸ ︷︷ ︸
∈R

= (dηr · ϕ, ϕ) + (η2r Dϕ, ϕ)︸ ︷︷ ︸
∈R

= λ

∫
M

η2r |ϕ|qdvolg > 0

where we used that the summand including dηr vanishes due to 〈dηr · ϕ, ϕ〉x ∈ iR.
Thus,

λ
+,∗
min(M, g, χ) ≤ ‖D(ηrϕ)‖2q∗

(D(ηrϕ), ηrϕ)
≤
(‖dηr · ϕ‖q∗ + ‖ηr Dϕ‖q∗

)2
λ
∫
M η2r |ϕ|qdvolg

≤

(
2
r ‖ϕ‖q∗ + λ

(∫
M η

q∗
r |ϕ|qdvolg

)1/q∗)2

λ
∫
M η2r |ϕ|qdvolg

→ λ ‖ϕ‖q(2−q∗)/q∗
q = λ ‖ϕ‖

2
m−1
q = λ

as r → ∞. Note that the summand 1
r ‖ϕ‖q∗ → 0 since ϕ ∈ Lq∗

as shown above.
Hence, Q∗

spin ≤ Q̃spin. ��

Corollary 6.4 For all c ∈ [0, 1] and k ≤ m − 1, we have Q∗
spin(M

m,k
c , gc) ≤

Q̃spin(M
m,k
c , gc). In particular, �

spin,∗
m,k ≤ �̃

spin
m,k .

Proof Westart with k ≤ m−2. Lemma6.3 and Proposition 2.2 imply Q∗
spin(M

m,k
c , gc)

≤ Q̃spin(M
m,k
c , gc) for all m−k−1

2 > ck(m+1
2m − 1

2 ) = ck
2m , i.e., for all k ≤ m − 2 and

c ∈ [0, 1].
The remaining case k = m − 1 follows directly from Lemma 7.4. ��
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7 The Model Space M
m,k
1

For c = 1 the model spaces M
m,k
c are very special: The manifold

(
M

m,k
1 = H

k+1 × S
m−k−1, g1 = gHk+1 + σm−k−1 = sinh2 t σ k + dt2 + σm−k−1

)

is conformal to (Sm \ S
k, σm), [5, Proposition 3.1],

u : H
k+1 × S

m−k−1 → S
m \ S

k, g1 = f 2u∗σm where f = f (t) = cosh t (7)

where cosh t = (sin r)−1 with r = dist(., S
k).

Using this conformal map, we will immediately obtain some of the Q-invariants
of M

m,k
1 .

Lemma 7.1 Q∗(Mm,k
1 ) = Q∗(Sm) = Q∗

spin(M
m,k
1 ).

Proof By conformal invariance Q∗(Mm,k
1 , g1) = Q∗(Sm \ S

k, σm). Since Q∗ is
definedover test functions,wehaveQ∗(Sm\S

k) ≥ Q∗(Sm).On the other handQ∗(Sm)

is the highest possible value for Q∗, see Remark 2.4, and thus Q∗(Mm,k
1 ) = Q∗(Sm).

With analogous arguments one gets Q∗
spin(M

m,k
1 ) = Q∗

spin(S
m). Together with

Q∗(Sm) = Q∗
spin(S

m) the lemma follows. ��
In order to examine Q̃(M

m,k
1 ) and Q̃spin(M

m,k
1 ) we will need modifications of the

removal of singularities results in Lemmas 4.7 and 4.8.

Lemma 7.2 Let (M, g) be an m-dimensional Riemannian spin manifold, and let S ⊂
M bean embedded submanifold of dimension 
 ≤ m−1. Assume thatϕ is a spinor field
such that

∫
Uε(S)

1
ρ
|ϕ|2 < ∞ where Uε(S) consists of all points of M with distance

ρ ≤ ε to S. Moreover, let Dϕ = λ|ϕ|q−2ϕ weakly on M \ S for λ > 0. Then
Dϕ = λ|ϕ|q−2ϕ weakly on M.

Proof We adapt the proof of Lemma 4.7: Let η̃δ be the function on M defined by

η̃δ(x) =
⎧⎨
⎩

0 for ρ := dist(x, S) ≥ ρ0 := δ

δ log(ρ0/ρ) for ρ0 ≥ ρ ≥ ρ1 := ρ0e−1/δ

1 for ρ1 ≥ ρ.

We smooth out η̃δ in such a way that the resulting function ηδ still fulfills ηδ(x) = 1
for ρ ≥ ρ0, ηδ(x) = 0 for ρ ≤ ρ1, and |∇ηδ| ≤ 2δ

ρ
.

Then, for a smooth and compactly supported spinor ψ on M we obtain

∫
M

〈ϕ, Dψ〉 − λ

∫
M

〈
|ϕ|q−2ϕ,ψ

〉

=
∫
M

〈ϕ, D(1 − ηδ)ψ〉 − λ

∫
M

〈
|ϕ|q−2ϕ, (1 − ηδ)ψ

〉

+
∫
M

〈ϕ, ηδDψ〉 +
∫
M

〈ϕ,∇ηδ · ψ〉 − λ

∫
M

〈
|ϕ|q−2ϕ, ηδψ

〉
.
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The sum of the first two summands on the right side vanishes because the equation
holds on M \ S. The terms

∫
M 〈ϕ, ηδDψ〉 and ∫M

〈|ϕ|q−2ϕ, ηδψ
〉
vanish for the same

reason as in the proof of Lemma 4.7. The remaining term is now estimated by

∣∣∣∣
∫
M

〈ϕ,∇ηδ · ψ〉
∣∣∣∣ ≤ Cδ

∫
Uδ(S)∩suppψ

1

ρ
|ϕ| ≤ Cδ

(∫
Uδ(S)

1

ρ
|ϕ|2

) 1
2
(∫

Uδ(S)∩suppψ
1

ρ

) 1
2

≤ C ′δ
(∫

Uδ(S)

1

ρ
|ϕ|2

) 1
2

︸ ︷︷ ︸
→0 as δ→0

(∫ δ

δe−1/δ

1

ρ
ρm−
−1 dρ

) 1
2

︸ ︷︷ ︸
is δ−1/2 for m=
+1 and ≤Ĉδ(m−
−1)/2 else

→ 0

as δ → 0 which concludes the proof. ��
Lemma 7.3 Let (M, g) be an m-dimensional Riemannian spin manifold, and let
S ⊂ M be an embedded submanifold of dimension 
 ≤ m − 2. Assume that v be
a nonnegative function such that

∫
Uε(S)

1
ρ2 v

2 < ∞ where Uε(S) consists of all points

of M with distance ρ ≤ ε to S. Moreover, let Lv = μv p−1 weakly on M \ S. Then
Lv = μv p−1 weakly on M.

Proof We use an analogous argumentation as in the proof above. Now, we smooth
out η̃δ in such a way that the resulting ηδ fulfills additionally |�ηδ| ≤ 4δ

ρ2 . Then, for

h ∈ C∞
c (M) we estimate

∫
M vLh − ∫M v p−1h in a similar way—only �ηδ gives rise

to a new term:

∣∣∣∣
∫
M

vh�ηδ

∣∣∣∣ ≤ Cδ

∫
Uδ(S)\U

δe−1/δ (S)∩supph
1

ρ2 v

≤ Cδ

(∫
Uδ(S)

1

ρ2 v2
) 1

2
(∫

Uδ(S)\U
δe−1/δ (S)∩supph

1

ρ2

) 1
2

≤ C ′δ
(∫

Uδ(S)

1

ρ2 v2
) 1

2

︸ ︷︷ ︸
→0 as δ→0

(∫ δ

δe−1/δ

1

ρ2 ρm−
−1 dρ

) 1
2

︸ ︷︷ ︸
is δ−1/2 for m=
+2 and ≤Ĉδ(m−
−1)/2 else

→ 0 as δ → 0.

��
Lemma 7.4 For m ≥ 2

Q̃spin(M
m,k
1 ) =

{
Q∗(Sm) for k ≤ m − 2

Q̃spin(H
m) = ∞ for k = m − 1.

Proof Let ϕ ∈ L∞ ∩ L2 ∩ C1 be a solution of Dϕ = λ|ϕ|q−2ϕ on M
m,k
1 with

0 < ‖ϕ‖Lq ≤ 1. Using the conformal map u in (7) we obtain a C1-solution ϕ̃ =
f

m−1
2 ϕ of Dσm

ϕ̃ = λ|ϕ̃|q−2ϕ̃ on S
m \ S

k with 0 < ‖ϕ̃‖Lq ≤ 1. Moreover, since ϕ

is L2 we get ∞ > ‖ϕ‖2
L2 = ∫

Sm\Sk f |ϕ̃|2 dvolσm = ∫
Sm\Sk (sin ρ)−1|ϕ̃|2 dvolσm .
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In particular, ϕ̃ ∈ L2. Moreover, 1
ρ

− 1
sin ρ

is bounded by O(ε) for ρ ∈ (0, ε).

Thus,
∫
Uε(Sk )

1
ρ
|ϕ̃|2 dvolσm < ∞ as well. Because of Lemma 7.2 ϕ̃ solves Dσm

ϕ̃ =
λ|ϕ̃|q−2ϕ̃ weakly on all of S

m . By regularity theory on compact manifolds ϕ̃ ∈ Lq

implies ϕ̃ ∈ Hq
1 ⊂ Hq∗

1 . Hence, ϕ̃ can serve as a test function for F spin on S
m which

implies λ ≥ Q̃spin(S
m) = Q∗(Sm). Thus, Q̃spin(M

m,k
1 ) ≥ Q∗(Sm).

Now let ϕ̃ be a Killing spinor on S
m with Killing constant − 1

2 and ‖ϕ̃‖Lq (Sm) = 1.

Then Dϕ̃ = Q∗
spin(S

m)|ϕ̃| 4
m−1 ϕ̃. Then using the identification of spinor bundles to

conformal metrics as in Example 4.6 the spinor ϕ = f −m−1
2 ϕ̃ fulfills the Euler–

Lagrange equation for D on M
m,k
1 and is in L∞ ∩ Lq . Moreover, if m − k ≥ 2,

then

‖ϕ‖2L2 = C2

∫ ∞

0
cosh1−m t sinhk t dt ≤ C3 + C4

∫ ∞

1
e(1−m+k)t dt < ∞.

Thus, for k ≤ m − 2 we obtained Q̃spin(M
m,k
1 ) = Q∗(Sm).

Now let k = m − 1. Then, M
m,m−1
1 corresponds to two copies of the hyperbolic

space. Thus, Q̃spin(M
m,m−1
1 ) = Q̃spin(H

m). Now let ϕ be a solution as above on H
m .

By a conformal map we get as above a solution ϕ̃ on the lower hemisphere of S
m .

Extending ϕ̃ by zero to all of S
m , we obtain a weak solution to our nonlinear Dirac

eigenvalue equation on S
m \ S

m−1. Again using Lemma 7.2 we see that ϕ̃ is already
a nontrivial weak solution on all of S

m . But since ϕ̃ vanishes on an open subset, this
contradicts the unique continuation principle, [15]. Thus, such a solution ϕ we started
with cannot exist. Hence, Q̃spin(H

m) = Q̃spin(M
m,m−1
1 ) = ∞. ��

Lemma 7.5 For m ≥ 3

Q̃(M
m,k
1 ) =

⎧⎨
⎩

Q∗(Sm) for k ≤ m − 3
∞ for k = m − 2

Q̃(Hm) = ∞ for k = m − 1.

Proof We start analogously as in the spin case from above with a nonnegative solution
v ∈ L∞∩L2∩C2 of Lv = μv p−1 onM

m,k
1 anduse the conformalmapu in (7) to obtain

ṽ onS
m\S

k .Analogous as in the proof ofLemma7.4we see that
∫
Uε(Sk )

1
ρ2 ṽ

2 dvolσm <

∞ which allows us to use Lemma 7.3 for k ≤ m − 2. Thus, we get as in the last
lemma that Q̃(M

m,k
1 ) ≥ Q∗(Sm) for k ≤ m − 2. On the other hand, ṽ = const such

that ‖ṽ‖L p(Sm ) = 1 is a solution of the Euler–Lagrange equation on S
m . Set v =

f −m−2
2 u∗ṽ = C cosh−m−2

2 t where C is an appropriate constant. Then by conformal
invariance, v fulfills the Euler–Lagrange equation on M

m,k
1 and is in L p. Moreover,

if m − k ≥ 3, v ∈ L2 as can be seen by ‖v‖2
L2 = C

∫∞
0 cosh2−m t sinhk t dt ≤

C1 +C2
∫∞
1 e(2−m+k)t dt < ∞. Hence, for k ≤ m − 3 we have Q̃(M

m,k
1 ) = Q∗(Sm).

For m − k ≤ 2 we obtained up to now that each nonnegative solution v on M
m,k
1

gives rise to a nonnegative solution ṽ on S
m . By [35, Theorem 5] ṽ is continuous and
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everywhere positive. For m − k = 2 and using that ṽ is continuous and positive we
can estimate

∫
Uε(Sm−2)

1

ρ2 ṽ2dvolσm ≥ C
∫ ε

0

1

ρ2 ρ dρ.

Thus, the left integral is not finite which gives a contradiction. Thus, Q̃(M
m,m−2
1 ) =

∞.
For k = m − 1 let v ∈ L∞ ∩ L2 ∩ C2 be a positive solution of Lv = μv p−1 on

M
m,m−1
1 . Thus, we have two solutions of the same equation on the hyperbolic space.

We will show that a nontrivial solution of Lv = μ|v|p−2v on the hyperbolic space
cannot exist in L2. From a solution on the hyperbolic space we can use the conformal
map u to obtain a solution ṽ on the lower hemisphere S

m . We extend ṽ to the upper
hemisphere by reflection and changing its sign on the upper hemisphere. Thus, ṽ solves
L ṽ = μ|ṽ|p−2ṽ on S

m \ S
m−1. Next we show that ṽ solves this equation weakly on

all of S
m . Since ṽ is an odd function with respect to reflection at the equator, it suffices

to test with odd functions h ∈ C∞(Sm). Thus, there is a constant C > 0 such that
|h(x)| ≤ Cdist(x, S

m−1) = Cρ. Following the arguments in Lemma 7.3 the estimates
are done analogously, and it remains to estimate

∣∣∣∣
∫
M

vh�ηδ

∣∣∣∣ ≤ Cδ

∫
Uδ(Sm−1)\U

δe−1/δ (Sm−1)∩supph
1

ρ2 vh

≤ C ′δ
∫
Uδ(Sm−1)\U

δe−1/δ (Sm−1)∩supph
1

ρ

≤ C ′′δ
(∫ δ

δe−1/δ

1

ρ
dρ

) 1
2

︸ ︷︷ ︸
=δ−1/2

→ 0 as δ → 0.

Thus, ṽ solves L ṽ = μ|ṽ|p−2ṽ weakly on S
m . Then, regularity theory implies

that ṽ ∈ C2 and thus ṽ|Sm−1 = 0. Using a conformal transformation from the lower
hemisphere to the disk D in R

m , we obtain a solution v̂ of L v̂ = μ|v̂|p−2ṽ on D
which is somewhere nonzero in the interior of D and zero on the boundary. This is a
contradiction to [36], [39, Theorem III.1.3]. Thus the solution we started with cannot
exist, and hence Q̃(Hm) = ∞. ��

8 The Invariants for k = m − 1

The constants �∗
m,m−1 and �

spin,∗
m,m−1 are easy to determine.

Lemma 8.1 We have �
spin,∗
m,m−1 = Q∗(Sm) for all m ≥ 3 and �∗

m,m−1 = Q∗(Sm) for
all m ≥ 2.

Proof We show

Q∗
spin(M

m,m−1
c ) = Q∗(Mm,m−1

c ) = Q∗(Sm).
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For c �= 0, our model space M
m,m−1
c is isometric to two copies of the rescaled

hyperbolic space H
m
c , and for c = 0 it is isometric to two copies of the Euclidean R

m .
Thus, Q∗(Mm,m−1

c ) = Q∗(Hm
c ) = Q∗(Hm) = Q∗(Rm) = Q∗(Sm), cf. Remark 2.4,

and the first equality follows from [32, Lemma 1.10]. Using [21, Lemma 2.0.5] the
analogous equations hold for Q∗

spin which finishes the proof. ��

For the Q̃-invariants we have by scaling and Lemma 7.4 that Q̃spin(H
m
c ) =

Q̃spin(H
m) = ∞ for c ∈ (0, 1] and m ≥ 2, and Q̃(Hm

c ) = Q̃(Hm) = ∞ for
c ∈ (0, 1] and m ≥ 3. It remains to consider the Euclidean space.

Lemma 8.2 We have Q̃(Rm) = ∞ for m = 3, 4, Q̃(Rm) = Q∗(Sm) for all m ≥ 5,
Q̃spin(R

m) = Q∗(Sm) for all m ≥ 3 and Q̃spin(R
2) ≥ Q∗(S2).

Proof We start examining Q̃spin(R
m). Let ϕ ∈ L2 ∩ L∞ ∩ C1 be a solution on

R
m of Dϕ = λ|ϕ|q−2ϕ with 0 < ‖ϕ‖Lq ≤ 1 for some λ > 0. By stereographic

projection, we have σm = 4
(1+r2)2

gE where r is the radial function in R
m . Using

the conformal invariance of the nonlinear Dirac eigenvalue equation above, we get

for ϕ̃ =
(
1+r2
2

)(m−1)/2
ϕ that Dσm

ϕ̃ = λ|ϕ̃|q−2ϕ̃ and 0 ≤ ‖ϕ̃‖Lq ≤ 1 on S
m \ {N }.

Moreover,
∫
Sm\{N }

1+r2
2 |ϕ̃|2 dvolσm = ∫

Rm |ϕ|2 dvolE < ∞ and 1+r2 = 2
sin2 ρ

where

ρ is the distance to the north pole N . In particular, it now follows similarly to the proof
of Lemma 7.4 that

∫
Uε(N )

1
ρ2 |ϕ̃|2 dvolσm is finite. In particular,

∫
Uε(N )

1
ρ
|ϕ̃|2 dvolσm is

finite as well. Thus, we can apply Lemma 7.2 and see the nonlinear Dirac eigenvalue
equation from above is valid on all of S

m . Thus, we can conclude as in the proof
of Lemma 7.4 that Q̃spin(R

m) ≥ Q∗(Sm). Let ϕ̃ be a Killing spinor to the Killing
constant − 1

2 normalized such that ‖ϕ̃‖Lq = 1. Then, Dϕ̃ = λ
+,∗
min(S

m)|ϕ̃|q−2ϕ̃. Using

stereographic projection we obtain a smooth spinor ϕ =
(
1+r2
2

)−m+1
2

ϕ̃ on R
m with

Lq -norm one and which satisfies Dϕ = λ
+,∗
min(S

m)|ϕ|q−2ϕ. Moreover,

∫
Rm

|ϕ|2 dvolE = C
∫
Rm

(
1 + r2

2

)−m+1

|ϕ̃|2 dvolE

≤ C ′
∫ ∞

0

(
1 + r2

2

)−m+1

rm−1 dr.

Thus, ϕ ∈ L2(Rm) for m ≥ 3. Hence, Q̃spin(R
m) = Q∗(Sm) for m ≥ 3.

An analogous argumentation for nonnegative solution v ∈ C2 ∩ L∞ ∩ L2 on
R
m satisfying Lv = μv p−1 and ‖v‖L p = 1 for a μ > 0 gives a nonnegative

solution ṽ of the corresponding nonlinear eigenvalue equation on the sphere with∫
Uε(N )

1
ρ2 ṽ

2 dvolσm < ∞. By regularity ṽ ∈ L p ∩ H p∗
2 with p∗ = 2m

m+2 . Thus, by

the Sobolev embedding theorem ṽ ∈ H2
1 . Thus, similar as in Lemma 7.4 we see that

Q̃(Rm) ≥ Q∗(Sm). Moreover, by [35, Theorem 5] ṽ is continuous and everywhere
positive. Hence, we can estimate
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∫
Rm

v2 dvolE =
∫
Rm

(
1 + r2

2

)−m+2

ṽ2 dvolE ≥ C
∫ ∞

0

(
1 + r2

2

)−m+2

rm−1 dr

≥C
∫ ∞

1
r−m+3 dr + C ′.

Thus, for m = 3, 4 the solution v was not in L2 which contradicts the assumption.
Hence, Q̃(Rm) = ∞ for m = 3, 4. For m ≥ 5, we see with an analogous calculation
that taking the constant solution v of Lv = Q∗(Sm)v p−1, ‖v‖L p = 1 on the sphere,
we obtain via stereographic projection a solution ṽ on R

m which is even in L2(Rm).
Thus, Q̃(Rm) = Q∗(Sm) for m ≥ 5. ��
Example 8.3 Let ϕ be a Killing spinor on S

2 with Lq=4-norm one. Then, Dϕ =
Q∗(S2)|ϕ|2ϕ. We consider the three-branched covering h : S

2 → S
2, z �→ z3. This

map preserves the spin structure. Thus, we can pullback ϕ via h and obtain a spinor
ϕ̃ on S

2, cp. [1, Sect. 4] fulfilling Dϕ̃ = Q∗(S2)|ϕ̃|2ϕ̃ and ‖ϕ̃‖4
L4 = 3. In particular,

ϕ̃ has zeros on the north and the south pole of S
2. Setting ϕ̂ = ( 1

3

)1/4
ϕ̃ we obtain

Dϕ̂ = 31/2Q∗(S2)|ϕ̂|2ϕ̂ and ‖ϕ̂‖L4 = 1. Using stereographic projection we obtain
a spinor ψ = ( 2

1+r2
)1/2ϕ̂ on R

2 (r being the radial coordinate in R
2) with Dψ =

31/2Q∗(S2)|ψ |2ψ and ‖ψ‖L4 = 1. Moreover, since ϕ̂ vanishes at the north pole N ,
|ϕ̂(x)| ≤ Cρ on Uε(N ) where ρ = dist(., N ). by the estimate

∫
R2\Br (0)

|ψ |2dvolE =
∫
Uε(r)(N )

1 + r2

2
|ϕ̂|2dvolσ 2

≤ C ′
∫ ε

0
ρ2 1 + r2

2
ρ dρ = C ′

∫ ε

0

ρ3

sin2 ρ
dρ.

Thus, ψ ∈ L2(R2) and Q̃spin(R
2) ≤ 31/2Q∗(S2).

Summarizing we obtained for the spinorial invariants

Corollary 8.4 We have

�̃
spin
m,m−1 = �

spin
m,m−1 = Q∗(Sm) for all m ≥ 3

and 31/2Q∗(S2) ≥ �̃
spin
2,1 = Q̃spin(R

2) ≥ Q∗(S2) = �
spin
2,1 . Moreover,

�̃m,m−1 =�m,m−1 = Q∗(Sm) for all m ≥ 5,

∞ =�̃m,m−1 > �m,m−1 = Q∗(Sm) for m = 3, 4.

9 Hijazi Inequalities

On a closed spinmanifold (Mm, g), theHijazi inequality provides a lower bound of the
lowest eigenvalue λ20(g) of the square of the Dirac operator by the lowest eigenvalue
of the conformal Laplacian μ(g), [29, Theorem A],
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λ20(g) ≥ m

4(m − 1)
μ(g). (8)

Taking the infimum over all metrics conformal to g with constant volume, one
obtains the conformal Hijazi inequality [22]

Q∗
spin(M) ≥ Q∗(M). (9)

We call (8) the metric Hijazi inequality and (9) the conformal Hijazi inequality. In
this section, we want to discuss whether similar inequalities also hold on noncompact
manifolds. In this context one should replace the lowest eigenvalues in (8) by the
infimum of the corresponding spectra whereas (9) remains unchanged.

In [22, Theorems 1.1 and 1.2] the metric Hijazi inequality was shown by the second
author for complete spin manifold of finite volume fulfilling one of the following
conditions:

(1) The infimum of the spectrum of the squared Dirac operator is an eigenvalue.
(2) The infimum of the spectrum of the squared Dirac operator is in the essential

spectrum, m ≥ 5 and the scalar curvature is bounded from below.

In particular, this already implies the conformal Hijazi inequality for manifolds
which admit a conformal metric ḡ that is complete and of finite volume and where
zero is not in the essential spectrum of the Dirac operator for ḡ or where the second
condition from above is fulfilled, cf. [22, Theorem 1.3].

There are also examples of manifolds of bounded geometry where the metric Hijazi
inequality does not hold. The simplest example is the hyperbolic space H

m where 0
is in the spectrum of the Dirac operator and the spectrum of the conformal Laplacian

is [μ,∞) with μ = 4m−1
m−2

(m−1)2

4 − m(m − 1) = m−1
m−2 > 0.

On the other hand, the hyperbolic space is conformal to a subset of the standard
sphere. Thus, Q∗

spin(H
m) = Q∗

spin(H
m) = Q∗

spin(S
m) = Q∗(Sm); see Lemma 7.1 for

details. Unfortunately it is still unclear whether the conformal Hijazi inequality (9)
holds for all complete Riemannian spin manifolds.

In this section we prove slightly modified conformal Hijazi inequalities. Some
inequalities are proven only for the model spaces, some on more general manifolds,
e.g., for manifolds of bounded geometry with uniformly positive scalar curvature.

Proposition 9.1 Let (Mm, g) be of bounded geometry with m ≥ 3. Let ϕ ∈ Lq ∩ C0

and λ ∈ R with Dϕ = λ|ϕ| 2
m−1 ϕ weakly and ‖ϕ‖q = 1 where q = 2m

m−1 . Then

u := |ϕ|m−2
m−1 satisfies

Lu ≤ 4
m − 1

m
λ2u

m+2
m−2 (10)

in the sense of distributions. Moreover, the equation holds classically outside the
zero-set of u.

Proof By Corollary 4.4 and Lemma 4.2 ϕ ∈ L∞ ∩ C2. We use the idea of Christian
Bär and Andrei Moroianu written down in [18, Proposition 3.4]. Let α := m−2

m−1 and
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f := λ|ϕ|q−2. We define the Friedrich connection ∇ f as ∇ f
Xψ = ∇Xψ + f

m X · ψ .
Then for all points where ϕ �= 0 we estimate

d∗d|ϕ|α = α

2
|ϕ|α−2d∗d|ϕ|2 − α(α − 2)|ϕ|α−2|d|ϕ||2

= α|ϕ|α−2
(
〈�ϕ, ϕ〉 − |∇ϕ|2 − (α − 2)|d|ϕ||2

)

= α|ϕ|α−2
(

〈�ϕ, ϕ〉 − |∇ f ϕ|2 − 2
f

m
〈Dϕ, ϕ〉 + f 2

m
|ϕ|2 − (α − 2)|d|ϕ||2

)

= α|ϕ|α−2
(

〈D2ϕ, ϕ〉 − scalM
4

|ϕ|2 − |∇ f ϕ|2 − 2
f

m
〈Dϕ, ϕ〉

+ f 2

m
|ϕ|2 − (α − 2)|d|ϕ||2

)

= α|ϕ|α−2
(

〈(D − f )2ϕ, ϕ〉 − scalM
4

|ϕ|2 − |∇ f ϕ|2

+ 2
m − 1

m
f 〈(D − f )ϕ, ϕ〉 + m − 1

m
f 2|ϕ|2 + m

m − 1
|d|ϕ||2

)

where we used in the last step that 〈[D, f ]ϕ, ϕ〉 = 〈d f · ϕ, ϕ〉 has to vanish since
〈d f · ϕ, ϕ〉x ∈ iR but all the other terms are real. By Corollary 4.4, ϕ is in C2 and
all equations above hold in the classical sense. In particular (D − f )ϕ = 0. As the
spinor ϕ is in the kernel of the operator D − f we can use the refined Kato inequality
|∇ f ϕ|2 ≥ m

m−1 |d|ϕ||2; see [18, (3.9)]. Thus, we get for the u defined in the proposition

d∗du ≤ −α
scalM
4

u + α
m − 1

m
f 2u.

Thus, using a = 4
α
this means that

Lu = a�u + scalMu ≤ 4
m − 1

m
f 2u = 4

m − 1

m
λ2u

m+2
m−2 .

As remarked above this all holds outside of the zero set of u = |ϕ|m−2
m−1 . From

Corollary 12.2we see that inequality (10) holds distributionally sinceu is a nonnegative
function. ��
Proposition 9.2 Weassume the conditions of Proposition 9.1. Additionally we assume

that scalM ≥ s0 > 0 or ϕ ∈ L2m−2
m−1 , then

Q∗(M, g) ≤ 4
m − 1

m
λ2. (11)

Proof Let u be defined as in the previous proposition. For any regular value ε > 0 of
u, we consider Vε := {u ≥ ε}. Note that by Lemma 4.3 limx→∞ u(x) = 0, and hence
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(Vε)ε exhausts M as ε → 0. Let ν be the exterior unit normal field of the boundary of
Vε. Then, ∂νu ≤ 0. Thus, integration over Vε of Inequality (10) multiplied by u gives

4
m − 1

m
λ2
∫
Vε

u
2m
m−2 dvolg

︸ ︷︷ ︸
→1 as ε→0

≥
∫
Vε

(
au d∗du + scalMu2

)
dvolg

=
∫
Vε

(
a|du|2 + scalMu2

)
dvolg −

∫
∂Vε

au∂νu dvolg

≥
∫
Vε

(
a|du|2 + scalMu2

)
dvolg. (12)

In the case that scalM ≥ s0 > 0 this implies u ∈ H2
1 (M).

For the remaining case that ϕ ∈ L2m−2
m−1 we have u ∈ L2. Thus, we obtain

lim
ε→0

∫
Vε

|du|2dvolg ≤ 4
m − 1

ma
λ2 + supM |scalM |

a
‖u‖2L2 ,

and this as well implies u ∈ H2
1 .

Sard’s theorem tells us that the set of regular ε is dense. In the limit ε → 0 we then
get (11) from (12). ��
Example 9.3 (Spherical cap solution on hyperbolic space) Let Br ⊂ S

m be a ball in
the standard sphere of radius r . Let ϕ be a Killing spinor on the sphere with Killing

constant − 1
2 normalized as |ϕ| = vol(Br )

− 1
q for q = 2m

m−1 . Then ‖ϕ‖L p(Br ) = 1

and DS
m
ϕ = m

2 ϕ = m
2 vol(Br )

q−2
q |ϕ|q−2ϕ. Let u : H

m → Br be a conformal map
from the hyperbolic space to the spherical cap such that gHm = f 2u∗σm . Then, using

identification of the spinor bundles, as in Example 4.6 and setting ϕ̃ := f −m−1
2 ϕ we

get by conformal invariance that

DH
m
ϕ̃ = m

2
vol(Br )

q−2
q

︸ ︷︷ ︸
=:λr

|ϕ̃|q−2ϕ̃ and ‖ϕ̃‖Lq (Hm ) = 1 and ‖ϕ̃‖L∞(Hm ) < ∞.

Then λr → 0 as r → 0. Nevertheless, Q∗(Hm) = Q∗(Sm). Thus, Proposi-

tion 9.2 does not hold without the assumption scalM ≥ s0 > 0 or ϕ ∈ L2m−2
m−1 .

Hence, the conformal Hijazi inequality Q̃spin(H
m) ≥ Q∗(Hm)which trivially follows

from Lemma 7.4 is no longer true if we remove the L2-condition in the definition of
Q̃spin.

We now want to use these inequalities to prove Hijazi inequalities for the model
spaces M

m,k
c . In this goal we will examine whether for certain m and k there is a

spinor ϕ ∈ L2m−2
m−1 satisfying the assumptions of Proposition 9.1.
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Proposition 9.4 Let m ≥ 3. Let 0 ≤ k < m − 2, c ∈ [0, 1] or k = m − 2 and
c ∈ [0, 1). On the manifold M

m,k
c , we consider a spinor field ϕ ∈ Lq ∩ C0 solving

Dϕ = λ|ϕ| 2
m−1 ϕ, ‖ϕ‖q = 1

for λ ∈ R and q = 2m
m−1 . Then, ϕ ∈ L2m−2

m−1 .

We also know that ϕ ∈ L∞ by Lemma 4.2.

Lemma 9.5 Under the assumptions of the proposition we have (m−2)(m−k−1) >

ck, unless k = m − 2 and c = 1.

Proof of the lemma The condition (m − 2)(m − k − 1) > ck is equivalent to
(m − 1)(m − k − 2) > −(1 − c)k.

Proof of Proposition 9.4 By Proposition 2.2 D is Lr -invertible if

m − k − 1

2
> ck

∣∣∣∣1r − 1

2

∣∣∣∣ . (13)

By assumption we have Dϕ = λ|ϕ|2/(m−1)ϕ ∈ L
2m
m+1 . The condition (13) for

r := 2m/(m+1) is equivalent tom(m−k−1) > ck which is fulfilled by assumption.

Thus, we obtain ϕ ∈ L
2m
m+1 . Hence,

Dϕ = λ|ϕ|q−2ϕ ∈ L
2m

(m+1)(q−1) = 2m(m−1)
(m+1)2 .

Note that for m ≥ 3 we have 2m(m−1)
(m+1)2

≤ 2m−2
m−1 =: s. Hence, using ϕ in L∞ we

get Dϕ ∈ Ls . Moreover, D is Ls-invertible as condition (13) for r := s is equivalent
to (m − 2)(m − k − 1) > ck which is provided by assumption and Lemma 9.5. Thus
ϕ ∈ Ls .

Example 9.6 In the exceptional case k = m − 2 and c = 1 the conclusion of Proposi-
tion 9.4 is not correct. To see this, we construct the following example. We consider a
Killing spinor on S

m and transport it conformally to M
m,m−2
1 , similar to the proof of

Lemma 7.4. The spinor falls off as e−(m−1)r/2 where r is the distance to a fixed point

on H
m−1 as introduced in Sect. 2.2. Then the L2m−2

m−1 -norm of ϕ is infinite. A similar
example is provided by Example 9.3 in the case k = m − 1 and c > 0.

Corollary 9.7 ConsiderM
m,k
c withm ≥ 3. Let 0 ≤ k < m−2, c ∈ [0, 1] or k = m−2

and c ∈ [0, 1). Let ϕ ∈ Lq ∩C0 be a solution of Dϕ = λ|ϕ| 2
m−1 ϕ on M

m,k
c with λ ∈ R

and ‖ϕ‖q = 1 where q = 2m
m−1 . Then,

λ2 ≥ m

4(m − 1)
Q∗(Mm,k

c ).
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Proof We set u = |ϕ|m−2
m−1 . By Proposition 9.4 u ∈ L2. Then, Proposition 9.2 gives

the corollary. ��
Corollary 9.8 (Conformal Hijazi inequality for the model spaces) For 0 ≤ k ≤ m−2
and c ∈ [0, 1] we have

Q̃spin(M
m,k
c ) ≥ Q∗(Mm,k

c ).

In particular, �̃spin
m,k ≥ �∗

m,k for 0 ≤ k ≤ m − 2.

Proof For k < m − 2 or k ≤ m − 2 and c < 1 this follows immediately from
Corollary 9.7 and the definition of Q̃spin. The remaining case, k = m − 2 and c = 1,
was treated in Lemma 7.4. ��
Remark 9.9 In the case k = m − 2 we obtain together with [5, Lemma 3.8] that

Q̃spin(M
m,m−2
c ) ≥ Q∗(Mm,m−2

c ) ≥ c
2
m Q∗(Sm). For a test function v ∈ C∞(M

m,m−2
c )

that is constant along S1 one can calculate (since the scalar curvature of S1 is zero)
that

FM
m,m−2
c (v) = c

2
m FM

m,m−2
1 (v).

Since Q∗(Mm,m−2
1 ) = Q∗(Sm) is minimized by a v that is constant along S1, we

have Q∗(Mm,m−2
c ) = c

2
m Q∗(Sm). Thus, together we obtain

Q̃spin(M
m,m−2
c ) ≥ Q∗(Mm,m−2

c ) = c
2
m Q∗(Sm).

In particular, �∗
m,m−2 = 0.

10 Minimizer of the Variational Problems

The Euler–Lagrange equations of the constants Q∗ and λ
+,∗
min defined via functionals

read as

Lu = Q∗u p−1 with ‖u‖p= 2m
m−2

= 1

and

Dϕ = λ
+,∗
min |ϕ|q−2ϕ with ‖ϕ‖q= 2m

m−1
= 1.

Now assume such minimizing solutions u ∈ H2
1 ∩ L∞ and ϕ ∈ H

2m
m+1
1 ∩ L∞ exist.

Then, we also have u ∈ C2 and ϕ ∈ C1. Then, Q̃ ≤ Q∗. Moreover, by interpolation
ϕ ∈ L2 and, thus, Q̃spin ≤ Q∗

spin.
We now recall some theorems for the existence of such solutions on almost homoge-

neous manifolds (M, g), i.e., on Riemannian manifolds on which there is a relatively
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compact set U ⊂⊂ M such that for all x ∈ M there is an isometry f : M → M
with f (x) ∈ U . Note that a manifold is almost homogeneous if and only if the isom-
etry group G = Isom(M, g) acts cocompactly on M . This follows since the distance
between the orbits on M defines a metric on M/G, and the induced topology is the
quotient topology of π : M → M/G.

Theorem 10.1 [24, Theorem 13] Let (Mm, g) be a Riemannian manifold of bounded
geometry with scalM ≥ const > 0 for a constant c and Q∗(M, g) < Q∗(Sm).
Let (M, g) be almost homogeneous. Then, there is a positive smooth solution u ∈
H2
1 ∩ L∞ ∩C2 of the Euler–Lagrange equation Lu = Q∗(M)u

m+2
m−2 and ‖u‖ 2m

m−2
= 1.

In the reference, u ∈ C2 was not explicitly stated, but follows from standard elliptic
regularity theory.

Corollary 10.2 Let (m−k−1)(m−k−2) > c2(k+1)k, 0 ≤ c < 1 or let k ≤ m−3
and c = 1. Then,

Q̃(Mm,k
c ) ≤ Q∗(Mm,k

c ).

Proof For, k ≤ m − 3 and c = 1 we even have equality by Lemmas 7.1 and 7.5. For
k = 0, M

m,0
c is diffeomorphic to M

m,0
1 . Thus, by Lemma 7.5 we even have equality.

Now let k > 0. Then the condition c < 1 implies that M
m,k
c is not conformally

flat. In the case m ≥ 6 Aubin’s inequality, cp. Remark 2.4, provides Q∗(Mm,k
c ) <

Q∗(Sm). For m < 6 we have Q∗(Mm,k
c ) < Q∗(Sm) by the following theorem. Thus

Theorem 10.1 implies the existence of a solution u as above, which directly implies
the corollary. ��
Theorem 10.3 [9, Corollary 1] Let m = n + k + 1, m ≥ 3, k > 0, and c ∈ [0, 1).
Then

Q∗(Sn × H
k+1
c , σ n + gc) < Q∗(Sm, σm).

Theorem 10.4 [23, Theorem 16] Let (Mm, g) be a Riemannian spin manifold of
bounded geometrywith scalM ≥ C > 0 for a constantC andλ

+,∗
min(M, g) < λ

+,∗
min(S

m).
Let (M, g) be almost homogeneous.Moreover, assume that theDirac operator D on M
is invertible as an operator from Ls to Ls for s = 2m

m+1 . Then, there is a positive smooth

solution ϕ ∈ H
2m
m+1
1 ∩ L∞ ∩ C1 of the Euler–Lagrange equation Dϕ = λ

+,∗
min |ϕ| 2

m−1 ϕ

and ‖ϕ‖ 2m
m−1

= 1.

In the reference, ϕ ∈ L∞ was not stated explicitly, but can be seen directly from
the proof in [23] or alternatively by Lemma 4.2. Moreover, in the original version of
Theorem 10.4 it was requested that D is invertible for all s ∈ [ 2m

m+1 ,
2m
m+1 +ε] for some

ε > 0. But if D is invertible for s = 2m
m+1 , then it is also invertible for the conjugate

exponent 2m
m−1 and by interpolation for all s in between, cp. [10, Appendix].

For the special case of manifolds that are product spacesM = N1×N2 of an almost
homogeneous manifold N1 and a closed manifold N2 one can relax the assumption
on the positive scalar curvature in Theorem 10.4:
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Theorem 10.5 Let (Mm = N1 × N2, g) be a Riemannian spin manifold that is a
product manifold of an almost homogeneous manifold N1 and a closed manifold N2.
Let λ2N2

be the lowest eigenvalue of the square (DN2)2 of the Dirac operator on N2,

and let λ2N2
+ 1

4 inf scalN1 =: c > 0. Moreover, let λ
+,∗
min(M, g) < λ

+,∗
min(S

m), and

assume that the Dirac operator D on M is invertible as an operator from Lq∗
to Lq∗

for q∗ = 2m
m+1 . Then, there is a positive smooth solution ϕ ∈ H

2m
m+1
1 ∩ L∞ ∩C1 of the

Euler–Lagrange equation Dϕ = λ
+,∗
min |ϕ| 4

m−1 and ‖ϕ‖ 2m
m−1

= 1.

Proof We start as in the proof of the general result in [23]—here we briefly recall
the steps that remain the same: For that let ρ be a radial admissible weight, see [23,
Sect. A.1], ρ ≤ 1. Then, by [23, Lemma 13] we obtain for each s ∈ [2, q = 2m

m−1 ) a

sequence ϕs ∈ Hs∗
1 ∩C1 with Dϕs = λα

s ραs |ϕs |s−2ϕs and ‖ραϕs‖Ls = 1 where s and
s∗ are conjugate, α = α(s) → 0 as s → q and μ := lim sups→q λα

s ≤ λ
+,∗
min . Then by

[23, Lemmas 14 and 15] a subsequence ϕs = ϕα(s),s converges to a function ϕ ∈ Hs∗
1

in C1-topology on each compact subset, and we have Dϕ = μ|ϕ|q−2ϕ. It remains to
show that ‖ϕ‖Lq = 1, i.e., in particular that ϕ is nonzero. Then the arguments that ϕ

is a solution as desired just follow again the lines of [23, Lemma 15].
We prove the remaining point by contradiction, i.e., we assume that ϕ = 0: Note

that by [23, Lemma 33] for each s we have lim|x |→∞ |ϕs | = 0. Thus, we can fix
xs ∈ N1 such that

∫
{xs }×N2

|ϕs |2 attains its maximum. By the almost-homogeneity of
N1 we can assume that all xs are contained in a compact subset K of M . Moreover,
then

0 ≤ �N1

∫
{xs }×N2

|ϕs |2 =
∫

{xs }×N2

�N1 |ϕs |2

= 2Re
∫

{xs }×N2

〈∇∗
N1

∇N1ϕs, ϕs〉 − 2
∫

{xs }×N2

|∇N1ϕs |2

≤ 2Re
∫

{xs }×N2

〈∇∗
N1

∇N1ϕs, ϕs〉.

Using ρ ≤ 1, Dϕs = λα
s ραs |ϕs |s−2ϕs and 〈d(function) · ψ,ψ〉x ∈ iR we get

Re
∫

{xs }×N2

〈D2ϕs, ϕs〉 ≤ (λα
s )2
∫

{xs }×N2

|ϕs |2(s−1).

The square of the Dirac operator decomposes as D2 = (DN1)2 + (D̃N2)2 where
D̃N2 = diag(DN2 ,−DN2) in case that bothmanifolds are odd dimensional and D̃N2 =
DN2 otherwise; see e.g., [10, Sect. 2.5]. The operators (D̃N2)2 and (DN2)2 have the
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same spectrum. Then, together with the Schrödinger–Lichnerowicz formula we obtain

∫
{xs }×N2

|D̃N2ϕs |2 + Re
∫

{xs }×N2

〈∇∗
N1

∇N1ϕs, ϕs〉 + scalN1

4

∫
{xs }×N2

|ϕs |2

≤ (λα
s )2
∫

{xs }×N2

|ϕs |2(s−1)

and, thus,

(
λ2N2

+ scalN1

4

)∫
{xs }×N2

|ϕs |2 ≤ (λα
s )2 max{xs }×N2

|ϕs |2(s−2)
∫

{xs }×N2

|ϕs |2.

Hence,

(
λ2N2

+ scalN1

4

)
(λα

s )−2 ≤ max{xs }×N2
|ϕs |2(s−2)

c(λ+,∗
min)

−2 ≤ lim inf
s→q

(
λ2N2

+ scalN1

4

)
(λα

s )−2 ≤ lim inf
s→q

max{xs }×N2
|ϕs |2(s−2).

Note that all xs are contained in a compact set. Thus, a subsequence of xs converges
to some x ∈ M . But, ϕ = 0 means that then the right-hand side is zero which gives
the desired contradiction. ��
Corollary 10.6 Let (m−k−1)2 > c2(k+1)k and Q∗

spin(M
m,k
c ) < Q∗

spin(S
m). Then,

Q̃spin(M
m,k
c ) ≤ Q∗

spin(M
m,k
c ).

Proof This corollary follows from Theorem 10.5. Set N1 = H
k+1
c and N2 = S

m−k−1.

Then λ2N2
= (m−k−1)2

4 and scalN1 = −c2k(k + 1). ��
Remark 10.7 Note that using Theorem 10.4 would lead to the condition (m − k −
1)(m − k − 2) > c2k(k + 1). Thus, here Theorem 10.5 gives a better result.

11 �-Invariants for k = m − 3

For applying the surgery monotonicity formulas, cf. Theorems 2.5 and 2.6, one needs
explicit positive lower bounds for �m,k in dimension k ≤ m − 3 and for �

spin
m,k in

dimension k ≤ m − 2. In the case k ≤ m − 4 and in the case k + 3 = m ≤ 6
explicit positive lower bounds for �m,k were provided in [7]. Using �

spin
m,k ≥ �m,k ,

cp. Corollary 6.4, Proposition 5.3 and [6, Theorem 3.1 and Corollary 3.2], this yields
explicit positive lower bounds for �

spin
m,k in these cases. However, the techniques we

have developed in the previous sections also provide explicit positive lower bounds
for �∗

m,m−3 for any m > 6 which is the subject of the present section.

Note that by Corollaries 9.8 and 6.4 and by Proposition 6.2 we have �̃
spin
m,m−3 =

�
spin,∗
m,m−3 ≥ �∗

m,m−3 and �̃m,m−3 ≥ �∗
m,m−3. Thus, any lower bound for �∗

m,m−3
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Table 4 Some explicit values for Lm,m−3 := infc∈[0,1] Lm (c2)—a lower bound for �∗
m,m−3, �̃m,m−3

and �
spin
m,m−3

m 7 8 9 10 11 12 13 14 15

Q∗(Sm ) 113.5 130.7 147.88 165.0 182.2 199.3 216.4 233.5 250.6

Lm,m−3 65.2 78.7 91.8 104.9 118.1 131.5 145.0 158.6 172.4

The values are rounded—Q∗(Sm ) is rounded to the nearest multiple of 1/10 and Lm,m−3 is always rounded
down

is also a lower bound for the other three invariants. In Sect. 2.6 we pointed out that
�

spin
m,m−3 = �

spin,∗
m,m−3.

As a first step we estimate Qc: It was derived in [7, Theorem 4.1] for all c ∈ (0, 1)
that

Qc≥
(
Q0

Q1
− c2(k + 1)k

(1 − c2)(m − k − 1)(m − k − 2) + c2(k + 1)k

(
Q0

Q1
−c

2(m−k−1)
m

))
Q1

(14)

where we defined Qc := Q∗(Mm,k
c ). On the other hand it follows for m ≥ 6 and

k = m − 3 from [7, Sect. 4.1 (iv)] that

Q0 ≥ ma

24
3
m ((m − 3)am−3)

m−3
m

Q∗(Sm−3)
m−3
m Q∗(S3)

3
m =: Q̂0.

Inequality (14) reads for k = m − 3 ≥ 3 as

Qc ≥
(
Q0

Q1
− c2(m − 2)(m − 3)

(1 − c2)2 + c2(m − 2)(m − 3)

(
Q0

Q1
− c4/m

))
Q1

≥ (1 − c2)2Q̂0 + c2+4/m(m − 2)(m − 3)Q1

(1 − c2)2 + c2(m − 2)(m − 3)
=: Lm(c2).

Since Q̂0 and Q1 = Q∗(Sm) are known explicitly one can compute the infimum
of Lm(c2) numerically for fixed m; see Table 4 for some explicit values.

For general m we can still estimate the infimum of Lm(c2):

d

ds
Lm(s) = −2Q̂0 + (1 + 2/m)s2/m(m − 2)(m − 3)Q1

2 + s((m − 2)(m − 3) − 2)

− ((1 − s)2Q̂0 + s1+2/m(m − 2)(m − 3)Q1) [(m − 2)(m − 3) − 2]

(2 + s((m − 2)(m − 3) − 2))2
.
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The condition d
ds L(s) = 0 is equivalent to

f (s) := (2 + s((m − 2)(m − 3) − 2))2

(m − 2)(m − 3)

d

ds
L(s) = s

2
m +1A0 + s

2
m A1 + A2 = 0

where A0 = 2
m Q1((m − 2)(m − 3)− 2), A1 = 2( 2

m + 1)Q1, and A2 = −2Q̂0. There
is at least one zero in the interval (0, 1) since f (0) < 0 and f (1) > 0 (since A0 > 0
and Q1 ≥ Q̂0). Let F(u) = f (um) = um+2A0 + u2A1 + A2, and let u0 ∈ (0, 1) be
a zero of F . Then

F(u)

u − u0
= um+1A0 + um A0u0 + · · · + uA0u

m
0 + uA1 + A0u

m+1
0 + A1u0.

But for positive u the last polynomial is always positive. Thus, there is only one
zero of f in the interval (0, 1).

Moreover, f (s) > s
2
m A1 + A2. Thus, f (c22) > 0 where c2 :=

(−A2
A1

)m
2 =(

mQ̂0
(m+2)Q1

)m
2
. Hence,

�∗
m,m−3 = inf

c∈[0,1] Qc ≥ inf
c∈[0,c2]

Lm(c2)

≥ inf
c∈[0,c2]

(1 − c2)2Q̂0 + c4/m+2(m − 2)(m − 3)Q1

2 + c22((m − 2)(m − 3) − 2)
.

Since (1 − c2)2Q̂0 + c4/m+2(m − 2)(m − 3)Q1 attains its minimum for c
4
m
3 =

2mQ̂0
(m+2)(m−2)(m−3)Q1

we obtain

�∗
m,m−3 ≥ (1 − c23)2Q̂0 + c4/m+2

3 (m − 2)(m − 3)Q1

2 + c22((m − 2)(m − 3) − 2)
.

Together with the explicit positive lower bounds �∗
3,0 = Q∗(S3) = 6 · 22/3π4/3 =

43.823233 . . ., �∗
4,1 > 38.9 [6, Example 4.7], and �∗

5,2 > 45.1 [6, Example 4.10] we
obtain explicit positive lower bounds for all �∗

m,m−3.
These methods obviously also yield explicit positive lower bounds for all

Q̃spin(H
m−2 × cS2).

12 Bordism Arguments

Proof of Proposition 3.2 By a theorem of Stolz, [37, Theorem B], M is spin-bordant
to the total space M0 of an HP2-bundle over a base Q for which the structure group
is PSp(3). In particular, in dimension m = 5, 6, 7 this implies that Q = ∅. Each
manifold M in dimension m = 5, 6, 7 is a spin boundary.
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Moreover, by the extended Stolz theorem [6, Proposition 6.5] we can assume that
Q is connected ifm ≥ 9 and that Q is simply connected ifm ≥ 11. Thus, in dimension
m ≥ 11 also M0 can be chosen to be connected and simply connected. In case that
Q = ∅, set M1 := S

m otherwise M1 := M0.
First, letm = 5, 6, 7 orm ≥ 11.AsM1 is simply connectedM can be obtained from

M1 by a sequence of surgeries of dimensions 
 where 2 ≤ 
 ≤ m − 3; see [7, Propo-
sition 5.1]. Using Theorem 2.5 this implies that σ ∗

spin(M) ≥ min{σ ∗
spin(M1),�

spin
m }.

In the casem = 5, 6, 7 and in the casem ≥ 8 and Q = ∅we use�
spin
m,k = �

spin,∗
m,k ≤

σ ∗
spin(S

m) for k ≤ m − 2, see Theorem 3.1, and obtain σ ∗
spin(M) ≥ �

spin
m . For m ≥ 11

and Q �= ∅, i.e., M0 = M1, we use the conformal Hijazi inequality for M1 and
σ ∗(M1) ≥ Q∗(HP2 × R

m−8) for m ≥ 8, see [38], where HP2 × R
m−8 carries the

product metric of the standard metrics of both factors. Then we obtain

σ ∗
spin(M) ≥ min

{
�

spin
m , Q∗(HP2 × R

m−8)
}

.

In dimension m = 8 and Q �= ∅, M1 is a disjoint sum of copies of HP2, possibly
with reversed orientation. Using 0-dimensional surgeries M1 is spin bordant to the
connected and simply connected manifold M2 := HP2# . . . #HP2, possibly with
reversed orientation. Thus, σ ∗

spin(M2) ≥ σ ∗
spin(M1) = σ ∗

spin(HP2) ≥ Q∗(HP2). As
above M can then be obtained from M2 by surgeries of dimensions 
 where 2 ≤ 
 ≤
m−3.Again using Theorem2.5 this implies that σ ∗

spin(M) ≥ min{�spin
m , σ ∗

spin(M2)} ≥
min{�spin

m , Q∗(HP2)}.
Now let m = 9, 10 and Q �= ∅. Then, M can be obtained from M1 by surgeries of

dimensions 
 where 1 ≤ 
 ≤ m − 3. Using Theorem 2.5 this implies that σ ∗
spin(M) ≥

min{�spin
m,1 ,�

spin
m , σ ∗

spin(M1)}. Similar to above we get

σ ∗
spin(M) ≥ min

{
�

spin
m,1 ,�

spin
m , Q∗(HP2 × R

m−8)
}

.

The analogous statement for non-simply connected manifolds mentioned after
Proposition 3.2 is proven analogously.

Proof of Proposition 3.3 Let (W, F) be the spin bordism from (M, cM ) to (N , f ).
First, we use 0-dimensional surgery in order to make W connected. We will abuse
the notation and also denote the bordism after surgery (W, F). Note that � is always
finitely presented. Then, again by 0-dimensional surgery, we change W and F such
that F induces a surjection on π1. Next, we use 1-dimensional surgery such that the
resulting F induces an injection on π1.

As a consequence, the resulting map F induces a bijection on π1. Next, we use
2-dimensional surgeries to kill π2(W, M), cp. [27, Proof of Proposition 2.1.1]. This
can always be achieved as every element of π2(W, M) then comes from an element
in π2(W ) and thus can be represented by an embedded S2. The condition that W is
spin implies that this embedded S2 has trivial normal bundle. Then, the embedding
M ↪→ W is 2-connected and N ↪→ W is 1-connected. Thus, we can obtain N from M

123



2880 B. Ammann, N. Große

by attaching handles of dimensions 
with 2 ≤ 
 ≤ m−2. Together with Theorem 2.5
we then obtain the claim.

Appendix: Weak Partial Differential Inequalities

In this Appendix, we recall the connection between viscosity solutions and distribu-
tional solutions of weak partial differential inequalities. All functions in this Appendix
are real-valued.

Let � = d∗d be the geometric Laplacian on functions on a Riemannian manifold
(M, g). Assume that P is an operator of the form P = a� + V where a is a positive
smooth function and V is a continuous function. Let f be a continuous function.

We say that

Pu ≤ f

holds in the distributional sense if for all compactly supported smooth nonnegative
functions v on M

∫
M
uPv dvolg ≤

∫
M

f v dvolg.

We say that

Pu ≤ f

holds in the viscosity sense if u is continuous and for every p ∈ M and ε > 0 there is a
neighborhoodUε of p and a C2-function hε : Uε → R such that hε(p) = u(p), hε ≤
u in Uε and Phε(p) ≤ f (p).

Theorem 12.1 [30, Theorems 1 and 2] A continuous function u fulfills Pu ≤ f in the
distributional sense if and only if it also fulfills the inequality in the viscosity sense.

Actually, in the reference [30, Theorems 1 and 2] the statement is proven for a wide
class of second-order operators on R

n . But since this class includes the representation
of a�M in a chart of geodesic coordinates the above theorem follows.

Corollary 12.2 Let f be a nonnegative continuous function. Let u ≥ 0 be a continu-
ous function such that Pu ≤ f in the classical sense whenever u is positive. Then, u
fulfills Pu ≤ f in the distributional sense.

Proof We see that Pu ≤ f in the viscosity sense by taking hε = u whenever u is
positive and hε = 0 otherwise. Then, Theorem 12.1 implies the corollary. ��
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