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Abstract We construct an explicit homotopy formula for the d-complex on a reduced
complete intersection subvariety V. C CP". This formula can be interpreted as an
explicit Hodge-type decomposition for residual currents on V. As a first application
of this formula we obtained the explicit Hodge decomposition on arbitrary Riemann
surfaces.
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1 Introduction

The goal of the present article is to construct an explicit Hodge-type decomposition
for the d-operator on complete intersection subvarieties of CPP" and to obtain for those
varieties a constructive version of the classical theorem of Hodge [26,27,42]:
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Explicit Hodge-Type Decomposition 673

Hodge Theorem Let V C CP" be an algebraic manifold. Let Z (P2 (V) be the space
of smooth d-closed (p, q)-forms on V, and BP9 (V)—the space of smooth d-exact
(p, q)- forms on V. Then

(i) there exist a finite-dimensional projection operator L : ZPD vy > HP-D (V)
into the subspace of real analytic d-closed forms on V and for ¢ > 0 a linear
operator I : ZWP-D (V) — CP4=V(V) such that for an arbitrary ¢ € ZP-9 (V)
the following equality is satisfied

¢ =al[¢]+ Lig], (1.1)
(i) aform ¢ € ZPD(V) is d-exact iff L[¢] = 0.

Theorems of this type have many applications, especially in algebraic geometry.
However, for some important applications there are at least two difficulties. The first
difficulty is caused by the non-constructiveness of the following remarkable Hodge’s
statement: V has to be equipped with an hermitian metric, and then projection operator
L can be chosen to be orthogonal onto the subspace of harmonic d-closed forms on
V (see [8,15,26]). The second difficulty is caused by too abstract formulations of
necessary results for applications to varieties with singularities (see [11,16,17,38]).

The first difficulty has been overcome (rather recently) only for special cases (CP”
and some flag manifolds) in [7,13,14,21,40]. An analytic technique for overcoming
the second difficulty was initiated in [22] using an important theory of residual currents
of Coleff and Herrera [ 10], based on resolution of singularities of Hironaka [25]. In the
present article we further develop our homotopy formulas for the 8-operator from [21]
and combine them with the theory of residual currents to obtain a constructive version
of a Hodge-type decomposition for residual d-cohomologies on complete intersection
subvarieties of CP".

The main result of the article is formulated in Theorem 1 below. We notice that the
decomposition obtained in this theorem, which explicitly depends only on polynomials
defining V, is new even in the case of a nonsingular curve in CP2.

Before formulating this result we have to recap some of the definitions from [23].
Let V be a complete intersection subvariety

V={zeCP": Pi(z) == Py(z) =0} (1.2)

of dimension n — m in CP" defined by a collection { P¢};"_; of homogeneous polyno-
mials. Let

{Ua = {z eCP": z4 # O}}ZZO

be the standard covering of CPP", and let

deg P;
F(2) Pi(2)/ze "

d P"l
FY ) Pu(2)/25°
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674 G. M. Henkin, P. L. Polyakov

be collections of nonhomogeneous polynomials satisfying

(Z'B/Za)degpl - 0
F(2) = Agp(2) - FP(2) = : : FO ()
0 o (Zﬁ/za)deg Py

on Uyg = Uy N Ug.
Following [16] and [17] we consider a line bundle £ on V with transition functions

)Z}T] deg Py

Z
aﬂ(Z) = det Aaﬁ = (Zﬂ
o

on Uyg and the dualizing bundle on a complete intersection subvariety V
wy = ocpr @ L, (1.3)

where wcpn is the canonical bundle on CP”.

Forg = 1,...,n —m we denote by EM"=m=0) (v, L) = £0n=m=0) (V o3, the
space of C* differential forms of bidegree (n, n — m — g) with coefficients in L, i.e.,
the space of collections of forms

[re e gm0 W)’

satisfying

Va = lup - yﬁ+2F” P on Uy N Up. (1.4)
k=1

Then following [10,23,35] we define residual currents and 9-closed residual currents
on V. By a residual current of homogeneity zero ¢ € C;O’q) (V) we call a collection

n
{q)éo’q)} of C™ differential forms satisfying equalities
a=

m
O = 0p+ > F - on Uy N Up. (1.5)
k=1

acting on y € EM""=9) (V, L) by the formula

m
= def Ya N Do
(@.7) Z/ YaYe N Pa /\ 9 ,_)02/5([) o Zl= F(a)’ (1.6)

()
k=1 Fa

where {94} _ o 1s a partition of unity subordinate to the covering {Uy o> and the
limit in the right-hand side of (1.6) is taken along an admissible path in the sense of
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Explicit Hodge-Type Decomposition 675

Coleff-Herrera [10], i.e., an analytic map € : [0, 1] — R satisfying conditions

lim,0€,(t) =0,

i(t
lim 16]() =0, forany/eNand j=1,...,m—1, (.7
t—0 €j+1(t
and
TEW = {z €Uy : ‘Fk(a)(z)) = e (1) fork=1,. m} (1.8)

Condition (1.7), though looking technical, is essential for the existence of the limit in
the right-hand side of (1.6), and cannot be replaced by a simpler condition € (t) — 0,
t - 0,j=1,...,m,as was shown by Passare and Tsikh in [34].

A residual current ¢ we call d-closed (denoted ¢ € Z;g’q)(V)), if there exists a

n

representation {@éo‘q)} 0 of this current satisfying the following condition
o=

by = > FY - on U,. (1.9)

M=

=~
Il

1

It is easy to see that because of the classical Grothendieck—Dolbeault lemma the
definition above coincides with the standard definition of smooth d-closed differential
forms on complex manifolds.

In Theorem 1 below we prove the existence of an explicit Hodge-type representation
formula for d-closed residual currents and its main properties. For simplification of
formulation and of the exposition below we assume existence of holomorphic functions
8o € H(Uy) for @ € (0, ..., n) satisfying

(@) V)= {z €Uy : FP2) = =F" ) = gu(z) = o}
is a complete intersection in Uy, (1.10)
(b) (VN Uy)\ VY is a submanifold in Uy.

Existence of such functions is a corollary of the local description of analytic sets (see
[39D).

Theorem 1 Let V C CP" be a reduced complete intersection subvariety as in (1.2).
Then

(i) there exist an explicit finite-dimensional projection operator (see formula (3.24)
below)

Ly : Z9"™ (V) = 207 (v)

into the subspace of real analytic 3-closed residual currents and explicit linear
operators (see formula (4.22) below)

I : 299 (V) - c©a=D (v)
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676 G. M. Henkin, P. L. Polyakov

into the spaces of currents on 'V for g = 1,...,n — m, so that the following
equality is satisfied for an arbitrary ¢ € Z;?’q) V):

¢ = dl,[p] + L[], (1.11)

(i) forq = 1,...,n —m — 1 we have L; = 0, and therefore 14(¢] is a current-
solution of equation 3\ = ¢, which is a residual current on V \ |, V,, defined
by the forms in C*° (Uq \ V),

(iil) a 9-closed residual current ¢ € Z%(),n—m) (V) of homogeneity zero is 9-exact,
i.e., there exists a current Y € C O~V (V) such that ¢ = 3, iff

Lp—ml¢]=0. (1.12)

Remark 1 We interpret formula (1.11) as equality of currents, which are principal
values of the residues of Coleff and Herrera taken along admissible paths. Precise
definitions and explanations are given in the end of Sect. 2 and in Sect. 5. Such
interpretation with application to explicit solvability of d-equation on Stein reduced
complete intersections in pseudoconvex domains was introduced in [22], motivated
by the works of Coleff, Herrera, and Lieberman [10,20]. In [1,2] such interpretation
was used to obtain similar solvability of d-equation on reduced pure-dimensional Stein
spaces. In the present article we use this interpretation in the problem of constructing an
explicit Hodge-type decomposition of 3-closed residual currents on reduced, compact,
complete intersection subvarieties in CP" with nontrivial 3-cohomologies of highest
degree. An important feature of the obtained decomposition is condition (1.12), which
is similar to condition (ii) in the Hodge Theorem, but with explicit integral operator
L, . Another important feature of decomposition (1.11) is the real analyticity of
the form L, _,,[¢] in some neighborhood of V even for the case of singular reduced
complete intersections.

Remark 2 Works of Passare [35,36], and of Berenstein et al. [4], based on fundamental
results of Atiyah [3], Bernstein and Gelfand [5], and Bernstein [6] lead to the following
simplified version of the original Coleff—Herrera—Lieberman residue formula

211 2hm

Ya A ’Fl(a)

/\-~-/\5)F,£,a)

o

(P, y)= lim Uy
Aoevosdm =0 ; [, 7
Rer; >0, j=1,...,m

It was used in [4] for the following division and interpolation problem:
for given holomorphic functions fi, ..., f, and an arbitrary holomorphic function
f on a Stein variety V find an explicit representation

f:f1g1++fpgp+h

with g ; being holomorphic on V, so that the remainder h vanishes on 'V iff f belongs
to the ideal generated by fi, ..., fp.
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Explicit Hodge-Type Decomposition 677

Remark 3 In the original version of this article at http://arxiv.org/abs/1405.7411 we
mentioned two interrelated simple applications of Theorem 1 that we were working
on.

(1) The first of those applications was the construction of an explicit Hodge decomposi-
tion on complex curves in CP3. We have completed the above mentioned construction
in “archived” article http://arxiv.org/abs/1507.03272, where we proved the following:
Explicit Formula in Hodge decomposition Let X be a smooth algebraic curve, and let

X 2 CP? be an immersion of X into CP?, such that C = o(X) is an algebraic curve

with 7 nodal points. Let points p\”, p{” € X be such that o(p\") = o(pY) = p@ €

C. Let {y;};_, in X be a collection of paths such that y; (0) = pii) and y; (1) = pg),

and { f;}/_, € £ (X) be a collection of functions with supports in some neighborhoods
U; D y; such that

fitph =0, i(pP) =1,

] (1.13)
afi =0in V; € U;.

Let L and [ be the operators from Theorem 1 for the complete intersection curve
C. We define operators £ and 7 as follows

LIg] = (LIpD* = D ailgILIGf) D", (1.14)
i=1

and

[¢] = (1 [4)* - Zaiw](éﬁ)*]) +> ailglfi. (115)

i=1 i=1

where , and * denote respectively direct and inverse images under the immersion o
and

ailp] = / ¢ A (LID f)sD)* forgp e EOD (x). (1.16)
X

Let {o j}§'=1 be an orthonormal basis of holomorphic (1, 0)-forms on X, i.e.,

/Xa)j/\J)kZ(Sjk, Jk=1,...,¢g.

Then Hodge operators H; and R in decomposition (1.1) admit the following repre-

sentations .
H[¢] = Z(/cwwj) ®j,
j=1

Ri[¢] =Z[¢ + (L — Hy) [¢]] + const.

(i1) The second application is the construction of an explicit Green’s function for
solutions of inverse conductivity problem on bordered surfaces in R, In this direction
we have the following result:

(1.17)
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Let V be a smooth algebraic curve in CP3 with homogeneous coordinates
wo, wi, wa, w3, and let CPZ, = {w € CP3 : wy = 0}. Then C* = CP? \ CPZ is
a complex affine space with coordinates {z; = wy/wo, k =1, 2, 3}.

LetV =V \ (VN (CIP%O) be a connected algebraic curve in C3. We denote by

Lf | 1)(V) — the space of differential forms of type (1, 1) on Vwith coefficients
in LP(V),
and by

~ | _ _
Wi vy = {f € LY o)(V): af € Lf) (V). suppdf € Vy C V} for p > 2.
Using operators R and H from (1.17) we define

Rol¢] = R ((dz1 + 0dz2) 1 ¢) A (dz1 + 0dz2),
Riolfl=e_roR[erof] wheree g(z) = M) —AEH0%) g1 5 g € C,

Hyolfl=es0H [erof]

Explicit Faddeev Type Green Function The kernel g; 9(¢,z)onV x V with A, 0 € C
of the integral operator R; g o Ry is called the Faddeev type Green function for the
operator d (0 + Adz) and the explicit Hodge formula from (1.17) implies the following
explicit version of the Hodge type result presented already in [19]:
Ifo e Li’f’ 1y then the function u = R,y o Ry[¢] satisfies the following equation
39+ Adzy +0dz2)) u = ¢ + A(dZ1 + 0dZ) A (Hy g 0 Rolp))

onV.

Function g; ¢(¢, z) is the main tool in the construction of an explicit solution of the
Inverse Conductivity Problem on bordered Riemann surfaces, which we are currently
working on.

Remark 4 In the future we still plan to extend the result of Theorem 1 to the case
of locally complete intersections in CP” with n > 3, which might be considered as
a natural level of generality for explicit formulas, as implied by Hartshorne [17]. In
http://arxiv.org/abs/1507.03272 we made a progress in this direction by constructing
explicit Hodge decomposition on arbitrary Riemann surfaces, which are embeddable
into CIP? (see [15,17]), but not necessarily embeddable into CP? as complete inter-
sections.

2 Integral Formulas on Domains in Projective Spaces

In this section we construct a Cauchy—Weil-Leray type integral formula for differen-
tial forms on a domain U in CP". We start with the Koppelman-type formula from
[21] (Proposition 1.2) and [18] (Theorem 3.2) going back to Moisil [32], Fueter [12],
Bochner [9], Martinelli [31]. This formula is a modification for the case of CP"
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of the original Koppelman formula announced by Koppelman in [28] (1967). The
first complete proof of Koppelman’s formula was given in the Polyakov’s paper [37]
(06.1970), where it was used to obtain a Weil-type integral formula [41] for dif-
ferential forms on analytic polyhedra, while in the papers of Lieb [30] (07.1970)
and Qvrelid [33] (11.1970) Koppelman’s formula was used to obtain an integral for-
mula of Leray-type [29] for differential forms on strongly pseudoconvex domains.
In the present article we use formulas of both types: Weil-type formula for a tubu-
lar neighborhood of a subvariety in CP" and Leray-type formula for the unit sphere
SZn—H(l) C (Cn—i-l_

In [21] we identified the forms on CP" with their lifts to S 1 (1) satisfying appro-
priate homogeneity conditions and constructed integral formulas for the lifted forms.
The proposition below is a reformulation of Proposition 1.2 from [21].

Proposition 2.1 Let { Py}' be homogeneous polynomials defining the variety V as
in (1.2), let € = (€1, ..., €n), and let 9 be a form of homogeneity zero on the

domain
Ue = {z e Sy : |Pu(2)] < e fork = 1m} .1)

Then the following equality is satisfied for z € U€

OV (2) = 0.5 [®] () + IS4, [09] (2) + K [@] (2). (2.2)
with
JEW1 () = —”—'1/ W)
1 Qri)y"t Jyexon
Z ¢
1 —
o (( Vo B z)) he):
and
|
KW () = —"—1/ v (@)
Qi)™ Jpyexion
, Z z
Ao (<1 Ve “B(;,z)) o).
where

B*(C,Z) ZZJ _Zj B({,Z) ZCJ _Zj

o) =dondi A AdE, o () = Z( D e\ dnj
J#k

and wj is the (0, q)-component with respect to z of the form o',
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680 G. M. Henkin, P. L. Polyakov

We will transform the right-hand side of equality (2.2) into a Cauchy—Weil-Leray
type formula. For this transformation we need the following Weil-type lemma.

Lemma 2.2 Let P(¢) be a homogeneous polynomial of variables §o, . . .., £, of degree
d. Then there exist polynomials {Q’ ¢, z)}:.l:O satisfying:

P(6) = P@) =31 0(5,2) (& —z). 2.3)
Qi (ae, Az) = 2471 Qi(¢, 2) for » € C. :

Proof We notice that it suffices to prove the lemma for homogeneous monomials.
We prove the lemma for homogeneous monomials by induction with respect to the
number of variables. Using the one-variable equality

d—1
- = [ D (2.4)

we obtain the statement of the lemma for an arbitrary monomial depending only on
one variable.
To prove the step of induction we consider a monomial ;“610 e ;“,f ¥ with k > 1 and

Z];:O d; = d. Then we obtain the following equality

dp dy dp do dp di di d di
& b =2 'Zk=(§0 _Zo)'§1 R AR (51 el T Zk)

Using equality (2.4) for the first term of the right-hand side of equality above we
obtain

do—1

.= D ¢ ") g

Using then the inductive assumption for the polynomial

dy dy dy
S fk L%

we obtain the existence of polynomials {¢'(¢,2)}_, satisfying conditions (2.3).
Therefore, defining fori = 1,...,n

Q') =15 4.2
we obtain the necessary coefficients for a monomial in k + 1 variables. O

The integrals in the sought formula will be taken over a special chain

= > I xAy. (2.5)

[J1=1
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Explicit Hodge-Type Decomposition 681

where J = (ji, ..., jp) is a multiindex with |J| = p < m,
r5 = {e €7 ) P = ¢ for j € J, PO < e fork ¢ T}

P
AJ:{)\,/LJI,...,MLIGRP_HZ )\+Z/Lji 51}

i=1
The boundary of chain C¢ is the chain
m
B == Tix A+ > ((DVITS x AL +T5 x Ay),
j=1 /=1

where

A =[0,1],

P
A’le,ujl,...,,ujp e RP: Z/“Lji 51],

i=1

p
AJ:{)\,,MjI,...,[LjPGRp_Fl: )\.+ZI,LJL=1}

i=1

In the following proposition we construct a Cauchy—Weil-Leray type formula on
e-neighborhoods of complete intersection subvarieties in CP".

Proposition 2.3 Let
V={zeCP": Pi(x) = = Py(z) =0}

be a complete intersection subvariety in CP" of dimension n — m, and let ®9 be a
differential form on an open neighborhood U D V.
Then for U€ as in (2.1) and arbitrary z € U€ the following equality holds

®(z) = 0.1 [P](2) + IS4, [09] (2) + L [@] (2), (2.6)

where

n'

I, [®](2) = —W/Uex[o,l] o

, z 3
1—X A
M- (( T B(z;,z))m@
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682 G. M. Henkin, P. L. Polyakov

- z
® o la=a- _
(2711)”4rl Z /r <Ay © /\wq_l(( * ];'uk)B*(Z,Z)

1J|>1
0u(s.2)
22 , 2.7
“FeD kz Pk@)—Pk(z))“”(“ @0
and
|
LS (D] (2) = (—1)"'—1'.’—',,/ ()
1 Jgn“_q Qi)™ Jrexa,
, c Z < Qk(£, 2)
]_ o~ N < 9
Ny (( ;Mk)B*@.’Z) +gﬂk o) = Pk(z))“"@)
(2.8)

with coefficients {Q k} =0 n Satisfying conditions (2.3) from Lemma 2.2.
The forms defined by (2.7) and (2.8) on U€ admit the descent onto a neighborhood
of V in CP".

Proof Applying Stokes’s formula to the form

/ m z z - 0x(¢, 2)
o 1—x— A Pu(C) — Pi(z)
)Ny (( ,Z‘“")B*(é,z) T B * 2 Fi(©) = Pk(Z))Aw(g)

k=1

we obtain equality

z ¢
) 1— A
./hueX[o,u ©)n o (( Merco b B(c,z))w@)

m , z C
= 1—
gl./;m 2 ra (1 =0y g5 ) ho©
= > Vi 1/ ()
A/

|71=1 7X2

s z D)
A%(( gmm@’) Zl P - P | 1@

> .

|]|>] F XAJ

- P 1—A—
Z/F;W ©) A (( ZMk)B*(;_ 5

|[J]>1 k=1

k(4. 2)
O () Ao ((1_21%)3(( 5 Zl Pk(o—Pk(z))“"(“

St ~ P — P
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(=D Z/

‘]|>1 re XAJ

¢ Qi (&, 2)
+ 1 + ks .
B2 ,;’“‘ Pe(@) - Pk(Z)) het©

m Z
() Adg gy A =2 =D ) ——
= B*(¢, 2)

Then using equality
dejpo,M A@) + 0.1 Aw@)=0  (r=1,...,n) (2.9)

for

o oz |
[n] 1—xr- ZMk)B*(C) B(Z 2 Z kpk(g)—Pk(z)] 0

we transform the equality above for n > 2 into

, Z 3
b 1—X A
/fo[on (O " @ (( "B B(;,z))wm

= > (- ‘/ ®(2)
€ A/

1J1=1 X8y

0:(¢.2)
no ((l_z“")B*@ ) Z Pk@)—Pk(z))“”@)

=1
+> / ®(¢)

[J>1 F XAy
0k (8, 2)
1— _ =R
ne (( Z“")B(z B kZ k@)—Pk(z))“”“)
_ “ z
— o ! 1—A—
b X =

¢ S 01(¢,2)
A _ =RSe )
a2 B Pk(z>)“"“)
+ Z/

|J|>] re XA]

+Z 282 )Aw(o, (2.10)

D) A By 1((1—A ZWB*@ 5

+

B(é“ 2) Pr(§) = Pi(2)
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684 G. M. Henkin, P. L. Polyakov

and finally obtain from (2.2) equality (2.6) with

e 11— 1”_!/ (-3 :
LE[®1() = > (=1) iy A,j‘b(f)“%((l g“k)B*(;,z)

/=1
+§Mk%)m@

Then we notice that because of the holomorphic dependence on z we have forg > 1
the equality

: S ¢ S k(4. 2)
1— 1SRN
“ (( 2210 5 2 Pk(Z))

Since the dimension of I'§ is equal to 2n+ 1 —|J| and the form ® has ¢ differentials
of the form d¢, we conclude that the only terms in the first sum of the right-hand side
of the formula for L; [@] that have a nonzero contribution are the terms with

|J|=n—gq.
From the last two observations we obtain formula (2.8) for Lfl [®].
The fact that the forms Lf] [®] and [ ; [®] have homogeneity zero, as the form @,

follows from the homogeneity properties of the functions B(¢, z) and B*(¢, z) and
from the homogeneity property (2.3) of the coefficients Q' (¢, z). ]

We interpret formula (2.6) as a formula for residual currents
(@, 7) =% (g 01,3y} + (1., 98] v) + (Lo 10).y). @11

where all terms in the right-hand side are understood as residual currents, i.e., for
example for an arbitrary y € 55”’"417@ (V, L) with support in U, we mean

Ly 191 )
L¢ ,y)=1i _— 2.12
(15061.7) = tim [ 0 TON T 2.12)

where we denote by L; [¢] (z) the descent of this form onto CP".
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Explicit Hodge-Type Decomposition 685

Formula (2.11) is a preliminary form of the Hodge-type decomposition formula
for 9-closed residual currents on V. In what follows we will consider the limits of
the terms in the right-hand side of (2.6) as € — 0, and interpret the limit of operator
17 [®] as a solution operator on V and the limit of Lg [®] as a Hodge-type projection
operator.

3 Hodge-Type Projection

In this section we transform formula (2.8) into a residual form by considering the limit
of Ly as € — 0. We perform this transformation in several steps. First we observe
that the only nonzero terms in this formula are those that have ¢ = n — |J|. But for
subvariety V we have |J| < m, and therefore operator Lfl contains nonzero integrals
only forg > n—m. On the other hand, since we are considering only the cohomologies
of degree less or equal to n — m, where n — m is the dimension of V, in formula (2.8)
we have the exact equalities ¢ = n — m, |J| = m, and therefore J = (1, ..., m).

First we transform formula (2.8) for L; [®] (z) with z € U€ by integrating with
respect to variables u; € A’;, and obtain

P _(_ n—q—lni!/
Lq [P](2) (=D (27.”')11+1 XA, *©)

, 0:¢.2)
1 =
" (( WD kZ GE Pk<z>)”“)

m g=n—m

- e
Z k¢, 2 Z
=C(n,m,d o d .
o )/r§ O s RO -k B |0

3.1

Then, using expression

B .0 =>2j(cj—z)=—1+ D % ¢
j=0 j=0

and its corollary

—g—1

(B*(f, Z))_q_l — (_1)q+1 1— ZZJ . é—j

j=0

in the integral from the right-hand side of (3.1) we obtain
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686 G. M. Henkin, P. L. Polyakov

m q

_ e e T
/ () Adet | — 0k, 2) <
re B*(¢,2) Px(§) — P(z) B*(¢,2)

J

w(¢)

—g—1
n
= (=14 lim 1—nzij~§j
=iz l=1{ P (@) =€ )i, } =0

n<l

m

—
- (& 2)

00 ndet |2 Q€D 72
xX®(Z) A det ZPk(C)—Pk(Z) 7 | Aw(Q)

= (—1?*'lim crn’-/ Z-¢)
it ; {lEI=10 PO 1=erli, }
— —
x ®()Adet |z M dz | ANw(0), 3.2)

Pr(¢) — P(2)

where we denoted (Z - ¢) = 27 _(Z;¢;-
For ¢,z € S?*"T1(1) such that {| Py (¢)| = e }j; and {|Pc(2)| < €}y, we use in
the differential form

m

——

det | 7 0k, z)  —o

et|z ——>21>
Pr(&) — Pr(2)

the following representation with absolutely converging series

Q1.2  _ Q.3 (1 _ Pk(z))‘1 _0ita) Hi(f’k(z))’
Pr(8) — Pr(2) Pr(5) Pr(%) Pi(¢) Pr(5)

and obtain the equality
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m

0k, 2)
(Z-0) D) x det | 7 —K Y
/{;|=1.{|Pk<;>=ek}z;1} Pr(§) — Pr(2)

n—m

—_—
dz | Aw(¢)

D(¢) PA(2)
= C(A)/ Z-¢) — .
Z {|c\:1,{|Pk(;>|:ek};"=l}Z ‘ [Ti=; Pe(@)  PA)

[A|=0
n—gq n—m
_—
Adet |z Or(¢,2) dZ | Aw(Q), (3.4)
where A = (ay, ..., ay) is a multiindex,

PA@) = P (¢) -+ Pim(2),

and |[A| =a; + -+ ap.

Using Theorem 1.7.6(2) from [10] (see also [23] Prop. 2.3) we obtain that the
residual currents defined by the terms in the right-hand side of (3.4) with |A| > 1
are zero-currents from the point of view of (2.12), and therefore we can simplify the
expression for Lfl [@] as follows

LE [®](z) = C(n,m,d)lim c,n’-/ (z-0)
! ;;;; {leI=10 Pe)=aly }
—~eo L
x®(Z) Adet |z _ %0 dz | Aw(§)

Pr(¢) — Px(z)

- _ @ ()
=C(n,m,d)lim / e (7)) =
Kt Z; {IZI=141Pe@)=er i, } [T Pe(©)
n—q q
—_———
N det |2 0uc.2) dZ | Aw(). (3.5)

Before continuing with further transformation of (3.5) we prove a lemma, in which
we slightly modify the result of Coleff and Herrera from [10] to obtain the existence
of residual limits over deformed admissible tubes for reduced complete intersections.

Lemma 3.1 Let {Fy, ..., F,} be polynomials on C", let
V={ceC":F@) == Fuy) =0} (3.6)

be a reduced complete intersection subvariety, and let g be a holomorphic function g
satisfying:
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688 G. M. Henkin, P. L. Polyakov

1) Vi={¢:Fi(¢)="--= Fyu(¢) = g(¢) = 0} is a complete intersection,
(ii) for any z € V \ V' there exists a neighborhood W, such that (V N W)\ V' isa
submanifold in W,.

Then for an arbitrary differential form ®({,u) € Ec(n’n_m) (C") real analytic
with respect to parameters ui, ..., us, and a collection of real-valued functions
(O, € E(CM), such that x;(¢) > 1 for |¢| < 1, the limit along an admissible
path {ex(1)};_, defined in (1.7)

i D, u)
m R
=0 Sy o)l @=ayr, [zt Fi©)
def .. .. D, u)
= lim lim _—
1=01=0 J{g@)|>n. (1Fc@) - @=ex 0y, } [Te=1 Fi (&)
(¢, u)

= lim lim v (3.7)
=010 J{|g(0) =, 1R l=ecr_,} [Tiz1 Fi(@)

exists and is real analytic with respect to parameters uy, . . ., Us.

Proof We assume that the analytic set V is a subset of a polydisk P" =
{I¢il < 1, i =1, ..., n}, such that the restriction of the projection

7 P> P,
defined by the formula 7 (&1, ..., &) = Cm+1, -+, &n), to V. NP is a finite proper
covering, and the holomorphic function g on P" is such that dim {V N {g(¢) = 0}} =
n—m—1.

For a point z € V, such that |g(z)| > 1 we consider the nonholomorphic complex
coordinates

w1(§) = F1(&) - x1(8), s wm(§) = Fn (&) - xm(E)s Smt1s - En
in a small enough neighborhood of the point z. Then for the (m, 0)-form

n

O, 2= zu) \dg=( N\ dg N\ dg| 2 @@ w
j=l

j=m+1 j=m+1 {{jzgj(z)}?=ln+l
we have
lim (¢, z,u)
=0 Bl ©=ec O 57=6 Y1y izt FE(E)
) W(¢, z,u)
= lim

=0 (@) =e ) {6=6;@Y, 0y TTi=1 wa(©)
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where

V(@ ) =9z u) \dg =@ 2w - [ ] a@.

j=1 k=1

Using equalities

(¢, z,u)

{ti=@Y L

= ¢(§7 Z, M) ° H Xk(;) : det71 [a_kj| /\ dFkv
k=1 Gl

)

g

{Fe@)=01 {8=¢ @Y

3
=3—Q[FJ'XJ(§)]

{Fe@=00_ {¢5=¢ @},

IF;
= 8_@) <X ()
& F =01 {8=¢ @Y

and the corollary of the second one

[Tx@ A\ aFc@
k=1 k=1

{Fe@=00, {¢5=, @Yy

)

{F@©)=011{6=¢ D)y

= N\ dw(0)
k=1

we obtain for z with |g(z)| > § the equality

lim v¢.z.u)
=0 J{u ) l=a ) {6=6 @Y1y izt wa(©)

= lim ¢, 2w - [ ] @
k=1

120 Sl @)l =ex 0N {8=¢ @Yo

aert [ 2] Ny dF©)
3¢ | TTi=y wk(@)
120 Sl @)l=ex 0N {8=¢ @Yo

det—! [8&} Ni=1 dwi (§)
8;1 H;anI U)k(é‘)

forj=1,...
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690 G. M. Henkin, P. L. Polyakov

ok _1| 0Fk
= (277.’1) (f)({(Z), Z,M) - det |:a—é_li| ({(Z))
. TR Njey dFe(@)
= llm q)(é'v 2, M) - det ! [_j| M oo
=0 P l=a R {6=8 (DY |y 0 1 Tz Fie(©)

From the last equality we obtain the equality

) D, z,u)
hm —_

=res(p, 7} (P, 2),
=00 F @@= {=6 @Y Ti=1 Fi(0)

which in combination with equality

P (¢,
lim # = 1m/ resip,z} (P, 2), 3.8)
=0 Jyr @ =econr, izt Fe@) =0 vaqg@i=n)

from Theorem 1.8.3 in [10] (see also [24] Prop. 2.2) and existence of the limit in the
left-hand side of (3.8), following from Theorem 1.7.2 in [10], implies the existence
of the limit in the right-hand side of (3.7).

To prove the real analyticity of the limit in the right-hand side of (3.7) with respect
toreal variables uy, . .., us we represent those variables in terms of complex variables

uy = 1/2 (wy + y) .

Then the resulting form can be considered as a restriction of a form analytically

depending on 2s complex variables {wy, ..., ws, v1, ..., vs} obtained after substitu-
tion v, = w,. Then from Lemma 2.4 in [24] we obtain an analytic dependence of
the residual integral on {wy, ..., wy, vy, ..., U}, and, as a corollary, its real analytic
dependence on the original parameters u, ..., us. O

In the next lemma using Lemma 3.1 we prove the existence of residual limits for
the integrals on a sphere in C"*!, which are present in formula (3.5).

Lemma 3.2 Let V C CP" be a reduced complete intersection subvariety as in (1.2)
satisfying (1.10), let U D V be an open neighborhood of V in CP", and let ® €
EC(O’"_m)(U N Uy) be a differential form of homogeneity zero on U N Uy for some
ae0,...,n).

Then formula

. e ——
lim Z-0) == Adet|Z 0(,2) dz | Aw(),
=0 J{jg 1=t 1 P (@)= O} } [Tz Pe(©)

3.9
where {€, (1)}, is an admissible path, defines a differential form of homogeneity zero
on U, real analytic with respect to z.

FoE) =30, F0Ou @) with Q4 € EX" ™ (U N Uy), then the limit above
is equal to zero.
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Proof Without loss of generality we may assume that « = 0 in (3.9). We transform
the integral in this formula as follows

{l I s{l k( )l— k( )}kfl} Hk_—] k( )

m n—m

€07 O el 000 B

/{|;|=r,{Pk<;)|:ek<t)};"=]} T2 [Tizi Pe(©)

A(Z Eid;,-) A (D),

i=0

where o'(£) = Y I_o(— D GdgoA -~ Ay
Then, using the nonhomogeneous coordinates

S0, w1 =&1/80s -+ Wy = En/ 80 (3.10)

and equality
n 2
T
1+ w; - w; = = (3.11)
; S w0k

on the sphere S?*1(7) of radius 7 in C"*! we represent the form >0 ¢ide; in

Oo(r) = fc eC™': 51 = 7.5 # 0}

as
n B B n B _ n
> Gide = Goddo + D Zo - ;i (Godw; + widgo) = Zo (1 + ;- wi)déo
i=0 i=1 i=1
n 1_2 n
+20 - %o (Z widwi) = dot b (Z w,»dw,»). (3.12)
i=1 i=1
For the form «'(¢) using equalities d¢; = odw; + w;do fori = 1,...,n we
obtain

&'(@) = D (=DiGdgon - Ady = o \ (Sodw; + wjdEo)
i=0 j=1
— Sow1d o A (Godwr + wadlo) A -+ - A (Sodwy, + wpdlo)
2
+ Cowad o A (Codwy + widZo) A -+ A (Lodwy + wadZo)
+ P
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692 G. M. Henkin, P. L. Polyakov

+ (=D"gowndlo A (Godwy + wido) A -+ A (godwnfl + wnfldé‘())

n

to \ (odw; +wjdgo) + ¢ D (- l)fw]dg“o/\dww\ - Adwy,
Jj=1 j=1

=g dwi A A dwy. (3.13)

Using formulas (3.12) and (3.13), we obtain the equality

/ 0" e
(ltl=e e Ol=acor ) T2 Tlizr Pe(©)

Adet |z Q(¢,z2) dz /\(Zfid{i)/\w/(C)

i=0

Z-0) D) —— 2
= - — Adet |z Q(,z) dz
/{|z|=n{|Pk<c>|=ek<z>};:‘l 2 I Pe©) [ }

(§_ng +¢0- o (Zw dw,)) A §0+1 /\ dw;

i=1

r

n
- - @(¢)

= 2o+ ) Zjwi| =

/{|¢|—r,{|Pk(c)|—ek<r>}f1} JZ_; s [Ti= Pe(2)
m n—m
—_—— =

Adet |2 Q(2,2) dz | A (g1 deo) /\de
j=1

Then, using the nonhomogeneous polynomials

deg Py

Frw) = FQ (w) = P(¢) /2 (3.14)

1
and denoting x (w) = (1+ >/, wiw;) 2, and xx(w) = x (w)%& %, so that

[P = [Fr(w)] - 18] ™ = | Fuw)| - i.(w) on 87" (1)

we obtain the equality

r

n
- - @(¢)
z0 + Zjowi | s
/{|z|=r,{|Pk(¢>|=ek(z>}$1} ,Z:; r [Tz Pe(2)
m n—m n
Adet |2 Q¢ 2) dz | A (507 dgo) J\ dw;
j=1
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r

n
_ _ > deg P,
=/ 20+ E Zj-wj (45’” 2o dee kd(o)
{I¢I=2, (1 Fe ) |- (w)=ex (O} j=1

m n—m

26 ei|z 0G0 dE | N duw;
j=1

) HZl:l Fie(w)

r

n
_ _ —S deg P,
zo+ZZj'wj (C(;Hrr -1 98 deo)
=1

/{|§|=r,{Fk(w) Xk (w)=e (D}
m n—m

®W) L det|z 062 4z

T, Few) "

~.

1

J

2
= / ei (VH*V*ZZ’ZI deg Pk+1)¢0d¢()
0

n
zo+zzj-wj
j=1

r

/{wer,{le(w)I-Xk(w)=ek(t)}Z’1}

_sm D (w)
Xp()(u})n+r DheydegP+1 AW
H?:l Fi(w)
m n—m
—_— —_—— n
Adet|Z Q™ w.2) dz | ) dw;. (3.15)
j=1

where we used the notation ¢y = po(w) - €% with

T
po(w) = —————e
1/ 1 + z;‘/lzl |w,|2

depending on {w;, w;}7_, on the sphere St (1) according to formula (3.11).
Applying Lemma 3.1 to the interior integral in the right-hand side of (3.15) we
obtain the existence of the limitin (3.9) and its real analytic dependence on z. Applying
Theorem 1.7.6(2) from [10] (see also [23] Prop. 2.3) to the interior integral in the
right-hand side of (3.15) we obtain that the limit in (3.9) is equal to zero if ®(¢) =
S F@Ou (@) with @ € EX" WU N U). O

We further simplify the right-hand side of (3.5) using the following lemma.
Lemma 3.3 Let ¢ be a d-closed residual current defined by a collection of forms

n
{CD((XO’"_’")} 0 of homogeneity zero on a neighborhood U of the reduced subvariety

v={cecr: P@©) == Pue) =0}
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694 G. M. Henkin, P. L. Polyakov

satisfying (1.5) and (1.9), and let ®(¢) = ZZ:O Vo (£)DPy (2) be a differential form
of homogeneity zero on U.
Then for an arbitrary y € SC("’O) (V, L) the equality

) v (2) ) _ ®(2)
hm/ AN——— lim (Z.§>’.m—
=0/ T, FP ) /\(HO {E1=L P = ), } [T, Pe(©)

R
Adet |z Q,2) dZ |Aw(@)] =0 (3.16)
holds unless
m
rSZdeng—n—l. (3.17)
k=1
Proof We notice that for all values of @ > 0 and € = (eq, ..., €) the sets

S(a) = {C c SZ"'H(a) . [|Pk(§)| = ¢ ,adeng]::l]

are real analytic subvarieties of S?**!(a) of real dimension 21 + 1 — m satisfying

c-a®" =™ Volume (S(1)) < Volumezyt1—m (S(a)) < C-a*" =™ Volume (S(1)).

(3.18)
We denote
(3 a2
Dy(6,2) =(z2-¢) 'Wdet z 0, 2) dz | Aw(§),
k=1

and apply Stokes’s formula to the differential form

m n—m

r Jel®) o |2 00 2 |0

N N
2= Pa@)Pa. =D (Z¢) =
P D=2 Pua(O)ul. )= 2L E0) a5

a=1 a=1
(3.19)
on the variety

[cec{in@l=a-leren)” a<il<1)

with the boundary

[ericr=a {IPc@r=ec-aten” HJ{etier=1 1Pl =aly }.
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Then using equality (1.9) we obtain the equality

/ pea - | B
{leI=1 41 Pe@)l=ec )y} [ig1=a. 1P 1=aa®e i}

N m 1
= Z/ df/ F%) - (. 2)
dee P\ J J
ot/ {i1=r{iPc@I=ec o ree P |

N 1
4 d / 394(0) A (dIE] ) Dy,
> / i T © A (1210 @¢,2))

(3.20)
for arbitrary f and 0 < a < 1.
Using estimate (3.18) and the homogeneity property
Dp(r-¢) =1 Dp(2) (3.21)
of the coefficients of ®©-"=™ from Proposition 1.1 in [21] we obtain that if
m
rn+1—> deghP >0, (3.22)
k=1
then
/ . 1 B2
[ic1=a. {IPcO)I=ex-a P |
< C'(e) .ar+2n+lfm7(n7m)fz,","=1deg Pe 0
ast is fixedand a — 0.
For the first sum of integrals in the right-hand side of (3.20) we have
' () ()
/ dr/ LY@ B2
a {ig1=r. {IPc@I=eco e By |
1
< C/ dr - _L,r+2n+]7m7(n7m)fz}("=1 deg Py
a
<, L@ (g0 @)
[ic1=r. {IPc@ 1= -roee Py | :
(1 _ ar+n+2—22”:1 deg Pk)
< C'(e) (3.23)

r+n+2-37" deg P

ast — 0, since a < 1, condition (3.22) is satisfied, and C’(¢) — 0 ast — 0 by
Lemma 3.2.
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696 G. M. Henkin, P. L. Polyakov

For the second sum of integrals in the right-hand side of (3.20) using equality
D 99, =0, equality (1.5) for residual currents of homogeneity zero, and Lemma 3.2
we obtain as in (3.23) that the limit of this sum is also zero as t — 0.

This completes the proof of the lemma. O

Combining the results of Lemmas 3.2 and 3.3 with formula (3.1) we obtain the
following

Proposition 3.4 Let V. C CP" be a reduced complete intersection subvariety as in
(1.2) satisfying conditions (1.10), let ¢ be a d-closed residual current defined by a

n
collection of forms {@&O’nfm)} 0 of homogeneity zero on a neighborhood U of V,
o=
and let ®(¢) = 3 -0 P (£) Pa (2).
)

Then for an admissible path €(t) and operator L;(_tm the following equality is
satisfied

lim L"), [®] (2) = Z C(n,m,d,r) lim G-y
0 0<r<d—n-—1 =0 J{1¢1=1, (|1Pc(O)|=er (O},

m n—m

det|z Q(¢,2) dz | Aw(?)

I, Pe(©)

n 2
= > C(n,m,d,r)(zn)mi'"“Z/ de
oz:()0

0<r<d—n-—1

m n—m

r —_—— = | 7
xResy <z w(a)> Oy (2) Adet | Z Q(e"/’“,w(“),z) dz /\dw;a) ,
j=1
(3.24)

where d = Y ), deg Py, (Z - w @) =70+ Z?:] Zj u)j‘, and Resy is the residue of
Coleff-Herrera [10].

4 Estimates for the Solution Operator

In this section we analyze the solution operators /7, specifically estimates for limits
of those operators as € — 0. In the estimates below we slightly abuse the notation by
using the same letter C in all estimates for constants that do not depend on €, T and 7.

In the next lemma we simplify expression (2.7) for I (; by eliminating the first
integral in its right-hand side.

Lemma 4.1 Let V. C CP" be a reduced subvariety as in (1.2), and let g, be an
analytic function on Uy C CP" as in Theorem 1.
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Then for a fixed n > 0 and an arbitrary 7 € Uy, such that |g4(2)| > 1, we have
the following equality

: , z ¢

1 D () 1—A =0, (4.1

2 Sy VPN (( Feo T, z>)““(§) @D
where €(t) is an admissible path, and B € (0, ..., n).

Proof For a fixed z with |g4(z)| > n we choose 7 > 0 so that for [ — z| < T we have
|go(¢)] > n/2. Then we represent the integral in (4.1) as

z 3
4 () 1—X A
/Uw[o,u PO Ay (( et B(C,z))Aw(o

ﬁﬁ(C)CD(é“)M";(( )‘)B*(; 2) )LB(E 2)

/ ) A o)
Wenfle—zl<t})x[0,1]

+/ Dp()P(Z)
WUen{ig—zl>Thx[0.1]

B 3
((1 )B*(; ) AB(;,z))m@' “2

To estimate the first integral in the right-hand side of (4.2) we introduce the coor-
dinates

{ t =ImB(¢, z) = ImB*(¢, 2), 43)

ok = |Pr(0)] fork=1...,m,

and obtain the following estimate

Z ¢
19(4“)(19(4“)/\60 ((1—)») + A )/\w(C)‘
‘/Uem; d<ehxion) | -l B*(,2) B 2)
T r2(n—m)dr
<C/dt/ pidpr - /pmdpm/ 2 i
0 0 (1420 0p+1?)
<C/dt/ d / d / dr
<cC. prdpr -+ | pmdp
0 0 o M o (t—i—ZZLl,o,%—Hz)erl
€ T T dr
c./ ,old,ol/ dt/ o
(t+ 0} +r?)°
/ / pdr /d,o]/ Lo<Ces0 (44
p1+r2 +u

IA

| /\

ase — 0.
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For the second integral in the right-hand side of (4.2) we have

/ ¢
V(L) PN I—x A 0
‘/(Ufﬂ{{z|>r})><[0,l] pOISONy (( )B*(§ 2) B(K,z)) w(()‘—>

4.5)
as € — 0 because the integrand in (4.5) is uniformly bounded for {¢ : |¢ — z| > 7},
and the volume of U€ goes to zero as € — 0.

Combining estimates (4.4) and (4.5) we obtain the statement of the lemma

m}

To estimate the rest of the integrals in (2.7) we transform those integrals by inte-
grating the kernels with respect to variables A, 1; € Ay for j € J and obtain

Z/F ®(¢)

/=1 XAy

, m z 0;(t,2)
Ay <(]_A_Z”k)3*(;,z) o Z RG] )Aw@)

@)= Pj(2)
= > Cn,q, |J|>/ ®(Z)

[J]>1
1] g—1 n—|J|—q
_ _ f_/—f—/:q’-/__\
Ndet| ——— £ Q€D & & 1, 4.6)
B*(¢,z) B(¢,z2) Pj(¢)— Pj(z) B*(,z) B(,2)

Then we further transform the integrals in the right-hand side of (4.6) using series
representation (3.3) and obtain

|7 g—1 n—|J|—q

_ _ /—/—\TT
/ ®(Z) A det £ 9,¢.2) < ¢ Aa(l)
re B*(C z) B(,z2) Pj(¢)— Pj(z) B*(,2) B(,2)

/ %) P
|A[=0 [Tjes Pi©) PAQ)

_ E [J] r—d’_— ’-d/?
—_— z
A det A , 4.7
| 5 5eo V%9 Feo Beo | O® @D
where we assume that J = (ji,..., jp), denote by A = (ay, ..
by

., ap) a multiindex,
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a,)

PA&) = Pil(6) - P (©),
and by |[A| =a; +--- +ap.

As before in (3.4), using Theorem 1.7.6(2) from [10] (see also [23] Prop. 2.3) we
obtain that the residual currents defined by the terms in the right-hand side of (4.7)
with |A| > 1 are zero-currents from the point of view of (2.12), and therefore we can
simplify formula (2.7) for I; ® [®] as follows

D(¢)
IO [®] (2) = C( IJI)/ T p
) IJZ>:1 e 5 Hjes Pi(O)

q—1 n—|J]—q
11 —_—

. 4.,
N\ det B*@ 5 B 29 B Bao | NG @Y

In the next lemma we further simplify formula (4.8) for I; @

Lemma 4.2 Let V. C CP" be a reduced subvariety as in (1.2), and let g, be an
analytic function on Uy, C CP" as in Theorem 1.

Then for a fixed n > 0, an arbitrary 7 € Uy, such that |g4(2)| > n, and J, such
that |J| = p < m we have

D) P(L)

1m —_

=0 I‘j(') Hje] P;i(¢)
q—1 n—|J|—q

|71 —_——
z — " 4z dt
/\ det Q. 2) ANw()=0, 4.9)

B*(;“ 2) B(g“ 2) B*(¢,z) B(¢,2)

for an admissible path €(t), and B € (0, ..., n).

Proof For a fixed z with |g4(z)| > n we choose T > 0 as in Lemma 4.1, so that for
| —z| < T we have |g4(¢)]| > n/2. Then we represent the integral in (4.9) as

V()P (L)
ré® Hje] P;i(¢)

q—1 n—|J|—q

_ VUl — ——
/\ det 0;(¢,2) A (&)

B*(C 2) B(C 2)

=/ UpOPE)
rsOntiz—zl<t) [jes Pi(©)

B*(¢,z) B(£,2)
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qg—1 n—|J|—q
/1 —_——

/\det : 0i(¢,2) dz d¢ A (L)
B*(c 2) B(; 2 B*({,z) B(¢,2)

N / D)D)
rsOngic—zi>7) [1jes Pi2)

q—1 n—|J1—q
[J1 —_——

0 £ il
B*(c 2) B(; 2) “ B*¢.2) B(E.2)

/\ det

Aw(C). (4.10)

For the first integral in the right-hand side of (4.10) using the coordinates from (4.3)
and estimate

lzag|<C 1t -2

we obtain
/ D)D)
rOngc—zi<e) [1jes Pi(©)
qg—1 n—|J|—q
_ - [J] z—/\_q’—/_‘
/\det 0i(¢,z2) dz il Aw(l)
B*(: 2) B(; 2 B*(¢,2) B(¢.2)
2 2
<c. / ar [ agy o [ as, / prdpr - /O PPy

2(n m)d}’

/0 (t+zkm 1pp,§+r )n p+1
T T dr
fc'/ dt/ p]dpl"’/ mepdpmfp/ m—pt1
0 0 0 0 (t+ZZ’1pp2+r)
T € T
_c./ ot
(t+pf+1?)

d

/m m/ p +r2 < /m m/ pox +(r/p1)2)

§C~/ dm/
0 0

ase — 0.

A

2§C-e—>0, @.11)
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Explicit Hodge-Type Decomposition 701

For the second integral in (4.10) we may assume without loss of generality that
B = 0 and @ is a smooth differential form with support in {|{ — z| > 7}, and rewrite
this integral using polynomials {F}}]" from (3.14) as

/ Vp(5)P(£)
rsOn(ic—zi>7) [Tjes Pi2)

/\det : L 0, 2) dz dE ANw(L)
B*(¢,2) B(¢,2) B*(¢,z) B(,2)

q—1 n—|J|—q
I/ —_——

= lim _Ye.o
=150 |F,<;>|~x,~(;)=e,-(z>forjeJ,] —Fi(0)
Ile<;>|~Xk(z><ek(r>fork¢f [jes Fi¢

with a smooth form W (¢, z) analytically depending on (z, ) forz € {Uy : |g«(2)| > 1}
and compact support in {|¢ — z| > T}.
Then as in Lemma 3.1 we obtain equality

T v(¢, 2)
im

A E Ol xj @) =ejforjed, | TT. F,
IF ()] xx () < ex(t) fork ¢ J [jes Fi®)

(¢,
— lim lim ¢ 2)

P FjO1 2@ =0 forj € 1) e, F
00 i@ O S S Lo g 1| ies B

reducing the proof of (4.9) to the proof of equality

lirr(1) |Fi(0)]-xi@)=¢€;(t)forjeJ l—[qj(;}:z)()zo' (4.12)
” {lgﬁ(g)b"’ |FIJ<(§)|'X2(C)<61i(t)f0rk§é]] jes Fi€

In the proof of (4.12) we use the method used in Lemma 2.3 in [24]. Namely,
localizing the problem we assume that the set V N {| g > n} is a submanifold in
a polydisk P”" of the form

S={ue73”: u1=-~=um=0},

and the integral in (4.12) can be represented as

lim fwa
t—0 J[ lujl-xj) =¢€;@) forjeJ, e, =Y.
lugl - xp(u) < e () fork ¢ J jeJ =i

m}

In the next lemma we obtain an explicit form of a solution operator for 8-equation
on residual currents.

@ Springer



702 G. M. Henkin, P. L. Polyakov

Lemma 4.3 Let V. C CP" be a reduced subvariety as in (1.2), and let g, be an
analytic function on Uy C CP" as in Theorem 1.

Thenforafixedn > 0,J = (1, ..., m), anadmissible pathe(t),and B € (0, ..., n)
we have:

(i) the limits of integrals

. V() P(L)
im T
=0 Fj‘” Hk:l Pr(¢)

_ m f—/\—q_l ,_'"_m‘;q
det s
N 525 329 299 D B

Aw() (4.13)

are well-defined continuous functions on {Uy, : g4 (2)| > n},

i if
2©|, =2 KO-, (4.14)
k=1

m
where {Fk(ﬂ) }1 are the polynomials from (3.14), then the limit in (4.13) is equal
to zero.

Proof For a fixed z with g4 (z)| > n we choose T > 0 so that for |¢ — z| < T we have
|go (&) > n/2. Then for € < T we represent the integral in (4.13) as

Vg (L) P({)
rs =1 Pe(©)
q—1 n—m—q
_ m ——
/\ det < 0;(¢,2) dz at Ao(&)
B*(C 2) B(C 2) B*(¢,z) B(¢,2)
-/ Pp(O)P(Q)
ren{ic—zl<ve} [Temt Pe(@)
q—1 n—m—q
_ m —_——
z P— ey d‘ d{
/\ det 0, 2) —— Ao(&)

B*(C 2) B(C 2) B*(¢,z) B(,2)
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+/ P50 P(L)
rsn{ic—zl>ve} [lr=1 Pc(©)
g—1 n—m—q
_ m —_————
. (4.15
Nt 55 300 9€9 Teo Beg | 200 @19
For the first integral in the right-hand side of (4.15) we have
/ (L) P(S)
ren{ie—zl<ve} iz Pe(@)
g—1 n—m—q
_ m ,_/‘ —_——
A det | — (O . Sy PAPGS
B*(;“ ) B(é“ ) B*(¢,z) B(¢,2)
2 2 2(n m)dr
/ dt/ dor - / d¢m/ n L on—m+1
Ve dr Ve dr [ du
_C~/0 dt/0 t+r2§c'/0 Eo 1+u2_C e — 0, (4.16)

ase — 0.

For the second integral in (4.15) we denote

Vg (5)P({)
K P77
@ ) Hk 1Pk(§)

g—1 n—m—q
_ _ m —_————

dz dt
B¢.o Beo | “®

/\ det

B*(z 2 B(; o 26

and consider z(1, z(® such that |z(" — z?| < /4.
Then using relations

¢ —zl > /e = |B(£, 2)| > €/2,
12D — 2@ < €/4, |B¢,zV)| > /2= |B(t.z2?)| > €/4,
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704 G. M. Henkin, P. L. Polyakov

we obtain

/ (k@2 -k, z%)‘
(1201 e}

<

B /Fe $N{|B(,z1)]|>€/2}

2 2 2(n m)dr
< Ce- / dt/ do; - - / dqb/
€+l‘+}’ nm+2
d
<C /dt/ <Ce / —rz
e+t+r2 0 (E+r)

dr
< Ce. /O W<CI/ Sl sove @

From estimates (4.16) and (4.17) we obtain claim (i) of the lemma.

Claim (ii) of the lemma for the first integral in (4.15) follows from estimate (4.16),
and for the second integral in (4.15) it follows from Lemma 3.1 with additional appli-
cation of Theorem 1.7.6(2) from [10] (see also [23] Prop. 2.3). O

(k@2 - K@.z?)

In the proposition below we prove smoothness of limits of integrals in (4.13) under
assumption of smoothness of the forms defining current ¢.

Proposition 4.4 Let V. C CP" be a reduced subvariety as in (1.2), let g4 be an
analytic function on U, C CP" as in Theorem 1, and let the d-closed current ¢ be
defined by a C* form ®.

Then for a fixed n > 0, J = (1,...,m), an admissible path €(t), the limits of
integrals in (4.13) represent C* forms on {Uy : g4 (2)| > n}.

Proof For a fixed z with |g4(z)| > n we choose T > 0 as in Lemma 4.1, so that for
¢ —z| < T wehave |gy(¢)| > n/2. Then, as in Lemma 4.2, we represent the integral
in (4.9) as

g—1 n—m-—q
—_——

P50 P(%) A det Z dz dt

r0 [Ty Pr(@) B*({,2) B(g 2) ) B*(¢,2) B((.2)

w(¢)

-/ P5 (OB ()
r0n(c—zi<c} [Tz Pe(¢)

q—1 n—m-—q
m ——

A det ST AL POH?S
B*(C 2) B(;“ 2) B*(¢,z) B(¢,2)

@ Springer



Explicit Hodge-Type Decomposition 705

[ OPE)
r$Ongic—zi>7) [Te=1 Pe(©)
g—1 n—m—q
- m —_——

di , . 4.18
/\ det B0 Be.o 2%Y Bio Be.o | NOW (*-18)

From Theorem 1.7.2 in [10] (see also [24] Prop. 2.2) we obtain that the second
integral in the right-hand side of (4.18) represents a C°° form with respect to z, since
the functions |B(¢, 2)|, |B*(¢, z)| are separated from zero uniformly with respect to
zfor|¢ —z| > .

To prove the statement of the proposition for the first integral in the right-hand side
of (4.18) we use the following lemma.

Lemma 4.5 Let V. C CP" be a reduced subvariety as in (1.2), let z € V be a
nonsingular point, and let ® be a C'*' form with compact support in a neighborhood
U, > z, such that U, N singV = 0.

Then for J = (1, ..., m) and an admissible path €(t) the limit

] : ,» < dz A\
_>. FE nNuU | | 1 P :- 1 é 3 4.19

defines a C'-form on some neighborhood of V.

Proof Using equalities

i[ 1 }_i 1 _ [ Gk ]
N B e B L G

0 1 0 1
e |:—:| e =0, (4.20)
dZk

BeL ] (1- 2 b)
we obtain
n g—1 n-m—q
— —_
8_1/ )04, 2) dz A dt oo
8Z§< rj(% % H?:l P () (B*(¢, 2))? (B(¢, Z))n—m—q+l
o qg—1 n—m—q

®@)-0(,z7) @
=/r = (¢)

—_— =
_[ 1 ] dz A dt_
v o P@) 0z, LB @27 ] " (B oyt
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m

—_——
=(_1)ZQ"'(Q+I—1)/ D)0, 2)
ronu [Tie) Pe(©)

g—1 n—m—q
—_
¢l dz A odg

NE G o B oyt 0

To estimate the right-hand side of the equality above we assume without loss of
generality that for some i € (0, ..., n) we have z; # 0 in U;. Then using equalities

i|: 1 :| K2 1 . [ Zk :|
R G T e B I AR

9 [;} -0 ! =0 (4.21)
LB ] (o ge) | '

we obtain for g > 1

m

—_—~—
Q) - 0. 2)

Dl +1—1‘I-“/ T
(—D'q---(q )Z; rony Tl Pr@)

qg—1 n—m—q
—_
¢l dz A d¢

B ) (B, oyt N

m

—_——~—
__ ! () - 0(.2) 8”1[ ! }
g —1Jrony TIS Pe@) o™ L(B*(5,2)77!

g—1 n—m—gq
, —=~ o
/\{k- dz N dt

B oy e O

m

—_—~—
_ / I | @) - 0. 2)
g —1Jrs"ny aiiZH [Tez: Pe(©)

g—1 n—-m—q
—~ = —=
dz N dg

N B G T B,y N0

where in the last equality we used integration by parts.
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Estimate similar to (4.16) produces the following estimate of the integral in the
right-hand side of equality above

I+1 [ ’ - \ f:; ”—’"_—‘i
/ L 5 ®@(0) - 0(¢8,2) . dz N d¢ A o(@)
ronu ag | TS Pe@) | (B, )T (B(E, 2 ]

21 2 2(n m)—1
<cC. |d>||cl+1/ dt/ do -- / d¢m/ —dr
t+r
SC'HCDHCM/ dt/
0 0

We notice that the same estimate is valid for ¢ = 1 if we use the fact that the
functions

S <C[| @i

n n
log —1+ij§j , log I—ZEij

Jj=0 j=

are well defined on S(1) x S(1), and satisfy equations similar to the ones used above.
81
We obtain similar estimates for mixed derivatives 575927 using together with
780z
equalities (4.20) and (4.21) the equalities

i[;]_i ! _0
v [ eor) "5 | gy |

i[ 1 ]_i 1 _ [ G ]
v LB ] "0 | (1DxLgn) | Lee oyt

and

5 I !
_—_— | = — = 0’
Ak [(B*(C,Z))p:| 0Lk (—1 + 27:0 Zjg/')p

i[ 1 }_i 1 _ [ 2k }
o6 LG o7 1706 | (1= xy,57) | LBG ]

Combining formula (4.18) with the statement of Lemma 4.5 we obtain the statement
of Proposition 4.4. O
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Summarizing the results of Lemmas 4.1-4.3 and of Proposition 4.4 we obtain:

Proposition 4.6 Let V. C CP" be a reduced subvariety as in (1.2), and let g4 be
an analytic function on Uy C CP" as in Theorem 1. Let ¢ = >, Do ®OD be a
d-closed residual current of homogeneity zero on V.

Then for a fixed n > 0 and an arbitrary 7 € Uy, such that |gy(z)| > n, we have
the following equality

(L) P(L)
€ Hk 1 Pe(2)

g—1 n—m-—q
m —_——

lim IO [9p®] (z) = C(n. q.m) lim /

/\ det 000 2 Y| o), 422
B*(;‘ 2) B(C 2) B*(,2) B(¢,2) T
where J = (1, ..., m), and €(t) is an admissible path.

The limit in (4.22) is well defined and represents a continuous function on
{Uy : 1ga(2)| > n}, which is identically zero if condition (4.14) is satisfied. If ¢
is defined by a C* form, then the limit of the integral in (4.22) is a C* form on
{Ua : 18a(2)| > n} for any fixed .

Proof We obtain expression (4.22) from Lemmas 4.1 and 4.2, and the rest of the
statement from Lemma 4.3 and Proposition 4.4. O
5 Proof of Theorem 1

As the first step in obtaining formula (1.11) for d-closed residual currents we use
Propositions 3.4 and 4.6 to obtain the residual limit of formula (2.11).

Interpreting both sides of (2.11) as residual currents we obtain for a fixed ¢ the
equality

. (@) AD(2)
) =1 N A A
=i o O

= lim Z/ ﬁa(z)ay(z) ZI;(I) [9s®] (@)
B

=0 5(7) H F(a) (2)

+ lim Z/ ﬂa(Z)V(Z) ZI;EQ l?ﬁ(b ](Z)

=0 (1) 1—[ 1F(a)(z)

+limz / Da@r@ STLEO [950] (2)

=0 5(7) 1—[ (a)( ) 5
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foranarbitrary y € £"=m=4 (V, L), the differential form ®(¢) = >, ¥4 () Pu (),
and an admissible path {8, (7)}7'.

Then using for the right-hand side of equality above smoothness of the forms
19 [95]. I;f:)l [6 (95®)], and L5 [95®] with respect to z € U@ for fixed
and T — 0 we apply Theorem 1.8. 3 in [10] (see also [24] Prop. 2.2) and obtain the

following equality

D (2)0y (2)
(¢, y) = lim llm/ — A €D [9,0] (2)
n—0t—0 {Iga(z)\>n}ﬂ{ 5(T)} Hk Fk(a)(z) ; q [ﬁ ]

; ; Ve (2)y (2) ()
+ lim lim / 1 0 19 ) (z)
n—0 ‘E—)OZ Iga(z>\>n}ﬂ 73® H F(O‘)(z) Z q+l[ B ]

o Vo (2)y (2)
+ lim lim / [ P A L [95®] )
n—>0f—>0; {Iga(z>\>n}ﬂ{T3(r)} [T Fk(a)(Z) % !

5.1)

In the next step we pass to the limit in the right-hand side of (5.1) as t — 0 and
n > 01is fixed. We use the following lemma to simplify the limit of the right-hand side
of (5.1).

Lemma 5.1 Letp € Zj ©O.n=m) (V) be a d-closed residual current of homogeneity zero
defined by a collection of forms {®y }'H'1 satisfying conditions (1.5) and (1.9).
Then for fixedn > 0, y € £@.0) (V, L), and o > O there exist T, t, such that

ﬁ(z)% Zlcfg [0(9p®)] (@) || <o. (5.2)
-1 F @ B

‘/{ga(1)|>r]}ﬂ{ é(r)}

Proof Because of the choice of g, (see (1.10)) we conclude that equality (5.2) would
follow from equality

lim Z 158 8 (959)] () =0
forz € {Uy : |gq(2)| > n}, or using formula (4.22) from equality

. 3 (9p(H)P(2))
fh—r:g)z/e(” Hk 1 Pe(2)

q n—m—q—1
—_——

¢ dz dc
det =0, (5.3
/\de B*(; 2 B(; ) 0w B¢.o Beo | W s
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710 G. M. Henkin, P. L. Polyakov

where J = (1, ..., m) and {€; (1)}, is an admissible path.

For the differential form & of homogeneity zero we have &, = ®

:cb‘ =

Uy Ug

®g, and therefore
D0 (0p0p) = D 9p0Dp.
B B

But then, using condition (1.9) and part (ii) of Lemma 4.3 we obtain equality (5.3). O

To prove item (i) of Theorem 1 we use Lemma 5.1 in equality (5.1) and obtain for
a 9-closed residual current ¢ € Zg)’n_m) (V) and an arbitrary y € ™9 (V, £) the
equality

(@, y)=(I;[#].0y) + Ly (91, ¥). (5.4)
where
o (I,[¢],9y)
— lim lim lim zﬁ‘a(z)&A DO [9p0] @)
1=>07=01=0 Jyjg, o1 >min{r2) e 7@ \%
(5.5)

o Ly[¢p]=0forg=1,....n—m—1,
o (Ly_mle],y)

. . . v (2)
= lim lim lim / V(7)) — 2
77—>0r—>0t—>0§ {\ga(Z)|>71}ﬁ[Tf(r)} « HZ;1 Fk(a)(Z)
ELW)0®(@ (5.6)

with operators I, €™ and Le(t) defined in (4.22) and (3.24) respectively.

From formula (3.24) and Lemma 3.1 it follows that the limit in (5.6) is well defined
for a d-closed current ¢ and an arbitrary y € £™9 (V, £). Then, since the left-hand
side is also well defined for y € £™9 (V, L), we obtain that (I, [¢], dy) is also well
defined for a 9-closed residual current ¢ and y € £ (V, £).

We notice that though the d-closed current ¢ is defined by C™ forms satisfying
condition (1.9), the projection L,_,,[¢] is a residual current defined by the forms
analytically depending on z, 7.

To prove item (ii) we use formula (2.8) to obtain that operator L, is not zero only
for ¢ = n — m, and therefore formula (5.5) gives a solution /; [¢] of the d-equation

=0

for a 9-closed residual current ¢-9) of homogeneity zero for ¢ < n —m. Smoothness
of I, [¢] (z) on Uy \ V,, for smooth {®,}"_, follows from Proposition 4.6.
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Explicit Hodge-Type Decomposition 711

For ¢ = n — m we have a nontrivial cohomology group Hp™™" (V, Oy). In the
Proposition below we prove the necessary and sufficient condition from item (iii) in
Theorem 1 for a d-closed residual current to be exact.

Proposition 5.2 Let V. C CP" be a reduced complete intersection subvariety
as in (1.2) satisfying conditions of Theorem 1. Then a d-closed residual current

¢ € Zg)’"_m) (V) of homogeneity zero is d-exact, i.e., there exists a current ¥ €
COn=m=D (v such that 3y = ¢, iff condition (1.12) is satisfied.

Proof Sufficiency of condition (1.12) immediately follows from equality (5.4). On
the other hand, if ¢ = 9y for a current v € C©"~"=D (V) of homogeneity zero,
then we have equality

(@, 7) = (v, dy)

satisfied for an arbitrary y € £ (V, ).
Applying the last equality to differential forms

m n—m

_ _ e —=
Vi) =(Z-¢) Adet|Z Q(¢.2) dZ | Aw(Q),

and using Lemma 3.1 and holomorphic dependence of the forms y! on ¢ we obtain
equality

lim LEY (@] (z) = C(n,m,d,r) lim
>0 " ngdz,n,] =0/ {ig1=1, 1P l=a )L, )
r A D _
XM — z C(n,m,d,r)- (Y, 9 yl) =0

Hkmzl Pk({)

0<r<d—n-1

for an arbitrary z such that |gg(z)| > 7.
Using this equality in (5.6) we obtain the necessity of condition (1.12). O

This concludes the proof of Theorem 1.

Acknowledgments The second author was partially supported by the NEUP program of the Department
of Energy.
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