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Abstract The Orlicz–Legendre ellipsoids, which are in the framework of emerging
dual Orlicz Brunn–Minkowski theory, are introduced for the first time. They are in
some sense dual to the recently found Orlicz–John ellipsoids, and have largely gen-
eralized the classical Legendre ellipsoid of inertia. Several new affine isoperimetric
inequalities are established. The connection between the characterization of Orlicz–
Legendre ellipsoids and isotropy of measures is demonstrated.
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1 Introduction

Corresponding to each body in Euclidean n-space Rn , there is a unique ellipsoid with
the followingproperty: Themoment of inertia of the ellipsoid and themoment of inertia
of the body are the same about every 1-dimensional subspace of Rn . This ellipsoid
is called the Legendre ellipsoid of the body. The Legendre ellipsoid is a well-known
concept from classical mechanics, and is closely related to the long-standing unsolved
maximal slicing problem. See, e.g., Lindenstrauss and Milman [27], and Milman and
Pajor [46].
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Orlicz–Legendre Ellipsoids 2475

The Legendre ellipsoid is an object in the dual Brunn–Minkowski theory, which
was originated by Lutwak [31] and achieved great development since 1980s. See,
e.g., [9–11,32,33,55,56]. It is remarkable that for each convex body (compact convex
subset with non-empty interior) K in R

n , Lutwak, Yang and Zhang [36] introduced
a new ellipsoid by using the notion of L2-curvature, which is now called the LYZ
ellipsoid and is precisely the dual analogue of the Legendre ellipsoid.

Following LYZ [36], we write �2K and �−2K for the Legendre ellipsoid and LYZ
ellipsoid, respectively. In [39], LYZ extended the domain of �−2 to star-shaped sets
and showed the relationship between the two ellipsoids: If K is a star-shaped set,
then �−2K ⊂ �2K , with equality if and only if K is an ellipsoid centered at the
origin. This inclusion is the geometric analogue of one of the basic inequalities in
information theory: the Cramer–Rao inequality. When viewed as suitably normalized
matrix-valued operators on the space of convex bodies, it was proved by Ludwig
[28] that the Legendre ellipsoid and the LYZ ellipsoid are the only linearly invariant
operators that satisfy the inclusion-exclusion principle. The Legendre ellipsoid also
has applications in Finsler geometry [45].

In the geometry of convex bodies, many extremal problems of an affine nature often
have ellipsoids as extremal bodies. Besides the above-mentioned Legendre ellipsoid
and LYZ ellipsoid, the John ellipsoid JK [24] and the Löwner ellipsoid LK are of
fundamental importance. Since the object considered in this paper is dual to the John
ellipsoid, in what follows, we recall the John ellipsoid in detail.

Associated with each convex body K in R
n , its John ellipsoid JK is the unique

ellipsoid ofmaximal volume contained in K . The John ellipsoid hasmany applications
in convex geometry, functional analysis, PDEs, etc. Particularly, by combining the
isotropic characterization of the John ellipsoid and the celebrated Brascamp–Lieb
inequality, it has a powerful effect on attacking reverse isoperimetric problems. See,
e.g., [1–3,40–42].

Since 2005, the family of John ellipsoids has expanded rapidly, and experienced
the L p stage [41] and the very recent Orlicz stage [59]. It is interesting that with the
expansion of the family, several ellipsoids, including the LYZ ellipsoid, are found to
be close relatives of the John ellipsoid. We do a bit of review on this point.

Motivated by the study of geometry of L p Brunn–Minkowski theory (see, e.g.,
[34,35,37]), LYZ [41] introduced a family of ellipsoids, called the L p John ellipsoids
Ep K , p > 0. It is striking that the bodies Ep K form a spectrum linking several
fundamental objects in convex geometry: If the John point of K , i.e., the center of JK ,
is at the origin, then E∞K is precisely the classical John ellipsoid JK . The L2 John
ellipsoid E2K is just the LYZ ellipsoid. The L1 John ellipsoid E1K is the so-called
Petty ellipsoid. The volume-normalized Petty ellipsoid is obtained by minimizing the
surface area of K under SL(n) transformations of K [14,47].

Throughout this paper, we consider convex ϕ : [0,∞) → [0,∞) that is strictly
increasing and satisfies ϕ(0) = 0. Along the line of extension, the authors of this
paper originally introduced the Orlicz–John ellipsoids [59] Eϕ K for each convex
body K with the origin in its interior, in the framework of booming Orlicz Brunn–
Minkowski theory (see, e.g., [12,13,21,29,43,44]). The new Orlicz–John ellipsoids
Eϕ K generalize LYZ’s L p John ellipsoids Ep K to the Orlicz setting, analogous to the
way that Orlicz norms [50] generalize L p norms. Indeed, if ϕ(t) = t p, 1 ≤ p < ∞,
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2476 D. Zou, G. Xiong

then Eϕ K precisely turns to the L p John ellipsoid Ep K . If p → ∞, then Eϕ p K
approaches E∞K .

The Löwner ellipsoid LK is the unique ellipsoid of minimal volume containing
K , which is investigated widely in the field of convex geometry and local theory of
Banach spaces. We refer to, e.g., [1,2,14,17–20,24–27,30,49,58].

As LYZ [39] pointed out, there is in fact a “dictionary” correspondence between
the Brunn–Minkowski theory [51] and its dual [31]. In retrospect, the John ellipsoid,
LYZ ellipsoid and Petty ellipsoid are objects within the Brunn–Minkowski theory;
while the Legendre ellipsoid and Löwner ellipsoid are objects within the dual Brunn–
Minkowski theory. Along the idea of dictionary relation, we are tempted to consider
the naturally posed problem:What is the dual analogue of the newly foundOrlicz–John
ellipsoid?

One of the main tasks in this paper is to demonstrate this existence of such a dual
analogue of the Orlicz–John ellipsoid. Incidentally, it precisely acts as the spectrum
linking the Legendre ellipsoid and Löwner ellipsoid. So, this paper is a sequel of [59].

For star bodies K , L in R
n , define the normalized dual Orlicz mixed volume¯̃V ϕ(K , L) of K and L with respect to ϕ by

¯̃V ϕ(K , L) = ϕ−1
(∫

Sn−1
ϕ

(
ρK

ρL

)
dV ∗

K

)
.

Here, Sn−1 is the unit sphere in R
n ; ρK and ρL are the radial functions of K and L ,

respectively; V ∗
K is the normalized dual conical measure of K , defined by

dV ∗
K = ρn

K

nV (K )
d S,

where S is the spherical Lebesgue measure on Sn−1.
Enlightened by our work on Orlicz–John ellipsoids [59], we focus on
Problem S̃ϕ Suppose K is a star body inRn . Find an ellipsoid E , among all origin-

symmetric ellipsoids, which solves the following constrained minimization problem:

min
E

V (E) subject to ¯̃V ϕ(K , E) ≤ 1.

In Sect. 4, we prove that there exists a unique ellipsoid which solves the above
minimization problem. It is called the Orlicz–Legendre ellipsoid of K with respect to
ϕ, and denoted by Lϕ K . If ϕ(t) = t2, then Lϕ K is precisely the Legendre ellipsoid
�2K .

It is interesting that theOrlicz–Legendre ellipsoidmirrors theOrlicz–John ellipsoid.
Similar to the important property of the Orlicz–John ellipsoid Eϕ K , in Sect. 5 we

show that the Orlicz–Legendre ellipsoid Lϕ K is jointly continuous in ϕ and K .
In Sect. 6, we establish a characterization of Orlicz–Legendre ellipsoids, which is

closely related to the isotropy of measures.
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In general, Orlicz–Legendre ellipsoids Lϕ K do not contain K . In Sect. 7, we prove
that: If K is a star body (about the origin) in Rn , then

V (Lϕ K ) ≥ V (K ),

with equality if and only if K is an ellipsoid centered at the origin.
If ϕ(t) = t2, it reduces to the celebrated inequality: V (�2K ) ≥ V (K ), which goes

back to Blaschke [6], John [23], Milman and Pajor [46], Petty [48], and also LYZ [36].

2 Preliminaries

2.1 Notation

The setting will be the Euclidean n-space R
n . As usual, x · y denotes the standard

inner product of x and y in Rn , and V denotes the n-dimensional volume.
In addition to its denoting absolute value, without confusion we often use | · | to

denote the standard Euclidean norm, on occasion the total mass of a measure, and the
absolute value of the determinant of an n × n matrix.

For a continuous real function f defined on Sn−1, write ‖ f ‖∞ for the L∞ norm of
f . Let L n denote the space of linear operators from R

n to R
n . For T ∈ L n , T t and

‖T ‖ denote the transpose and norm of T , respectively.
A finite positive Borel measure μ on Sn−1 is said to be isotropic if

n

|μ|
∫

Sn−1
(u · v)2dμ(u) = 1, for all v ∈ Sn−1.

For nonzero x ∈ R
n , the notation x ⊗ x represents the rank 1 linear operator on Rn

that takes y to (x · y)x . It immediately gives

tr(x ⊗ x) = |x |2.

Equivalently, μ is isotropic if

n

|μ|
∫

Sn−1
u ⊗ udμ(u) = In,

where In denotes the identity operator on R
n . For more information on the isotropy

of measures, we refer to [5,14,15,46].

2.2 Orlicz Norms

Throughout this paper, � denotes the class of convex functions ϕ : [0,∞) → [0,∞)

that are strictly increasing and satisfy ϕ(0) = 0.
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2478 D. Zou, G. Xiong

We say a sequence {ϕi }i∈N ⊂ � is such that ϕi → ϕ0 ∈ �, provided

|ϕi − ϕ0|I = max
t∈I

|ϕi (t) − ϕ0(t)| → 0,

for each compact interval I ⊂ [0,∞).
Let μ be a finite positive Borel measure on Sn−1. For a continuous function f :

Sn−1 → [0,∞), the Orlicz norm ‖ f : μ‖ϕ of f is defined by

‖ f : μ‖ϕ = inf

{
λ > 0 : 1

|μ|
∫

Sn−1
ϕ

(
f

λ

)
dμ ≤ ϕ(1)

}
.

If ϕ(t) = t p, 1 ≤ p < ∞, then ‖ f : μ‖ϕ is just the classical L p norm. According
to the context, without confusion we write ‖ f ‖ϕ for ‖ f : μ‖ϕ .

Lemma 2.1 was previously proved in [21], which will be used frequently.

Lemma 2.1 Suppose μ is a finite positive Borel measure on Sn−1 and the function
f : Sn−1 → [0,∞) is continuous and such that μ({ f �= 0}) > 0. Then the function

ψ(λ) =
∫

Sn−1
ϕ

(
f

λ

)
dμ λ ∈ (0,∞),

has the following properties:

(1) ψ is continuous and strictly decreasing in (0,∞);
(2) lim

λ→0+ ψ(λ) = ∞;

(3) lim
λ→∞ ψ(λ) = 0;

(4) 0 < ψ−1(a) < ∞ for each a ∈ (0,∞).

Consequently, the Orlicz norm ‖ f ‖ϕ is strictly positive. Moreover,

‖ f ‖ϕ = λ0 ⇐⇒ 1

|μ|
∫

Sn−1
ϕ

(
f

λ0

)
dμ = ϕ(1).

2.3 Convex Bodies and Star Bodies

The support function hK of a compact convex set K in Rn is defined by

hK (x) = max{x · y : y ∈ K }, for x ∈ R
n .

For T ∈ GL(n), the support function of the image T K = {T x : x ∈ K } is given by

hT K (x) = hK (T t x).

As usual, a body is a compact set with non-empty interior. Write Kn
o for the class

of convex bodies in R
n that contain the origin in their interiors. Kn

o is often equipped
with the Hausdorff metric δH , which is defined by
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Orlicz–Legendre Ellipsoids 2479

δH (K1, K2) = ‖hK1 − hK2‖∞, for K1, K2 ∈ Kn
o .

Next, we turn to some basics on star bodies.
A set K ⊆ R

n is star-shaped, if λx ∈ K for any (λ, x) ∈ [0, 1] × K . For a
non-empty, compact and star-shaped set K in Rn , its radial function ρK is defined by

ρK (x) = sup{λ ≥ 0 : λx ∈ K }, for x ∈ R
n\{o}.

It is easily seen that ρK is homogeneous of degree −1. For T ∈ GL(n), we obviously
have

ρT K (x) = ρK (T −1x). (2.1)

A star-shaped set K is called a star body about the origin o, if o ∈ intK and ρK is
continuous on Sn−1. Write Sn

o for the class of star bodies about the origin o in Rn . Sn
o

is often equipped with the dual metric δ̃H , which is defined by

δ̃H (K1, K2) = ‖ρK1 − ρK2‖∞, for K1, K2 ∈ Sn
o .

The dual conical measure ṼK of a star body K ∈ Sn
o is a Borel measure on Sn−1

defined by

dṼK = ρn
K

n
d S.

It is convenient to use its normalization V ∗
K , given by V ∗

K = ṼK
V (K )

. Observe that V ∗
K

was first introduced by LYZ [44] to define Orlicz centroid bodies. Note that the dual
conical measure differs from the cone-volume measure (see, e.g., [7,8,21,22,38,43,
52,53,60]), but both are outgrowth from the cone measure (see, e.g., [4,16]).

Note that for each Borel subset ω ⊆ Sn−1, we also have

ṼK (ω) = V (K ∩ {su : s ≥ 0 and u ∈ ω}) .

Thus, it follows that

ṼT K (ω) = ṼK (〈T −1ω〉), for T ∈ SL(n), (2.2)

where 〈T −1ω〉 = { T −1u
|T −1u| : u ∈ ω}.

For K ∈ Kn
o , its polar body K ∗ of K is defined by

K ∗ = {x ∈ R
n : x · y ≤ 1, for y ∈ K }.

For K ∈ Kn
o , we have

ρK ∗(u) = 1

hK (u)
and hK ∗(u) = 1

ρK (u)
, for u ∈ Sn−1, (2.3)
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2480 D. Zou, G. Xiong

and
(T K )∗ = T −t K ∗, for T ∈ GL(n). (2.4)

2.4 Ellipsoids and Linear Operators

Throughout, En is used exclusively to denote the class of n-dimensional origin-
symmetric ellipsoids in Rn .

For E ∈ En , let d(E) denote its maximal principal radius. Two facts are in order.
First, T ∈ L n is non-degenerated, if and only if the ellipsoid T B is non-degenerated.
Second, for T ∈ L n , since

‖T ‖ = max
u∈Sn−1

|T u| = max
u∈Sn−1

|T t u| = ∥∥T t
∥∥ ,

it follows that

d(T B) = max
u∈Sn−1

hT B(u) = max
u∈Sn−1

|T t u| = max
u∈Sn−1

|T u| = max
u∈Sn−1

hT t B(u) = d(T t B).

Let

dn(T1, T2) = ‖T1 − T2‖, for T1, T2 ∈ L n .

Then the metric space (L n, dn) is complete. SinceL n is of finite dimension, a set in
(L n, dn) is compact if and only if it is bounded and closed.

We conclude this section with the following basic known facts, which will be used
in Sects. 4 and 5.

Lemma 2.2 Suppose {Tj } j∈N ⊂ SL(n). Then

‖Tj‖ → ∞ ⇐⇒ ‖T −1
j ‖ → ∞.

Thus, {Tj } j∈N is bounded from above, if and only if {T −1
j } j∈N is bounded from above.

Lemma 2.3 Suppose E0 ∈ En, {E j } j∈N ⊂ En and V (E j ) = a, ∀ j ∈ N, a > 0. Then
E j → E0 with respect to δH , if and only if E j → E0 with respect to δ̃H .

3 Dual Orlicz Mixed Volumes

In order to define Orlicz–Legendre ellipsoids, we make some necessary preparations.

Definition 3.1 Suppose K , L ∈ Sn
o and ϕ ∈ �. The geometric quantity

Ṽϕ(K , L) =
∫

Sn−1
ϕ

(
ρK

ρL

)
dṼK

123



Orlicz–Legendre Ellipsoids 2481

is called the dual Orlicz mixed volume of K and L with respect to ϕ. The quantity

¯̃V ϕ(K , L) = ϕ−1

(
Ṽϕ(K , L)

V (K )

)
= ϕ−1

(∫
Sn−1

ϕ

(
ρK

ρL

)
dV ∗

K

)

is called the normalized dual Orlicz mixed volume of K and L with respect to ϕ.

It is noted that dual Orlicz mixed volumes were previously introduced in [57].

Obviously, Ṽϕ(K , K ) = ϕ(1)V (K ), and ¯̃V (K , K ) = 1. If ϕ(t) = t p, 1 ≤ p < ∞,
then Ṽϕ(K , L) reduces to the classical dual mixed volume

Ṽ−p(K , L) =
∫

Sn−1

(
ρK

ρL

)p

dṼK ,

and ¯̃V ϕ(K , L) reduces to normalized dual mixed volume [54]

¯̃V −p(K , L) =
[

Ṽp(K , L)

V (K )

] 1
p

=
(∫

Sn−1

(
ρK

ρL

)p

dV ∗
K

) 1
p

.

Combining Definition 3.1 with (2.1) and (2.2), we have the following.

Lemma 3.2 Suppose K , L ∈ Sn
o and ϕ ∈ �. Then Ṽϕ(T K , L) = |T |Ṽϕ(K , T −1L),

for T ∈ GL(n).

Along with the functional Ṽϕ(K , L), we introduce

Definition 3.3 Suppose K , L ∈ Sn
o and ϕ ∈ �; define

Oϕ(K , L) =
∥∥∥∥ρK

ρL
: ṼK

∥∥∥∥
ϕ

= inf

{
λ > 0 : ϕ−1

(∫
Sn−1

ϕ

(
ρK

λρL

)
dV ∗

K

)
≤ 1

}
.

Obviously, Oϕ(K , K ) = 1. If ϕ(t) = t p, 1 ≤ p < ∞, then Oϕ(K , L) =
¯̃V −p(K , L).
From Definition 3.3 and Definition 3.1, we have

Oϕ(K , L) = inf

{
λ > 0 : Ṽϕ(K , λL)

V (K )
≤ ϕ(1)

}

= inf
{
λ > 0 : ¯̃V ϕ(K , λL) ≤ 1

}
.

Combining this with Lemma 3.2, we immediately obtain

Lemma 3.4 Suppose K , L ∈ Sn
o and ϕ ∈ �. Then

(1) Oϕ(T K , L) = Oϕ(K , T −1L), for all T ∈ GL(n).
(2) Oϕ(λK , L) = Oϕ(K , λ−1L) = λOϕ(K , L), for all λ > 0.
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The next lemma provides a simple but powerful identity.

Lemma 3.5 Suppose K , L ∈ Sn
o and ϕ ∈ �. Then

¯̃V ϕ(K , Oϕ(K , L)L) = 1.

Consequently, there is the following equivalence

¯̃V ϕ(K , L) = 1 ⇐⇒ Oϕ(K , L) = 1.

Proof From Definition 3.1, Definition 3.3, together with Lemma 2.1, it follows that

ϕ
( ¯̃V ϕ(K , Oϕ(K , L)L)

)
=

∫
Sn−1

ϕ

(
ρK

Oϕ(K , L)ρK

)
dV ∗

K = ϕ(1).

Thus, ¯̃V ϕ(K , Oϕ(K , L)L) = 1. ByLemma2.1 again, the desired equivalence follows.
��

What follows establishes the dual Orlicz Minkowski inequalities.

Lemma 3.6 Suppose K , L ∈ Sn
o and ϕ ∈ �. Then

¯̃V ϕ(K , L) ≥
(

V (K )

V (L)

) 1
n

, (3.1)

and

Oϕ(K , L) ≥
(

V (K )

V (L)

) 1
n

. (3.2)

Each equality holds in the above inequalities if and only if K and L are dilates.

Proof From Definition 3.1, the fact that ϕ−1 is strictly increasing in (0,∞) together
with the convexity of ϕ and Jensen’s inequality, the definition of V ∗

K , and Hölder’s
inequality, we have

¯̃V ϕ(K , L) = ϕ−1
(∫

Sn−1
ϕ

(
ρK

ρL

)
dV ∗

K

)

≥ 1

nV (K )

∫
Sn−1

ρn+1
K

ρL
d S

≥ 1

V (K )

(
1

n

∫
Sn−1

ρ
(n+1)· n

n+1
K d S

) n+1
n

(
1

n

∫
Sn−1

ρ
−1·(−n)
L d S

)− 1
n

=
(

V (K )

V (L)

) 1
n

.
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By the equality condition of Hölder’s inequality, the equality in the fourth line
occurs only if ρK /ρL is a positive constant on Sn−1. Thus, the equality holds in
(3.1) only if K and L are dilates. Conversely, if K = sL for some s > 0, then
¯̃V ϕ(K , L) = s = (V (K )/V (L)))1/n .
By Lemma 3.5 with inequality (3.1), we can derive inequality (3.2) directly. ��
The next lemma is crucial to proving the continuity of the functionals Ṽϕ(K , L),

¯̃V ϕ(K , L) and Oϕ(K , L) in (K , L , ϕ).

Lemma 3.7 Suppose fi , f are strictly positive and continuous functions on Sn−1;
ϕk, ϕ ∈ �; μl , μ are Borel probability measures on Sn−1; i, k, l ∈ N. If fi → f
uniformly, ϕk → ϕ uniformly on each compact set, and μl → μ weakly, then

∫
Sn−1

ϕk ( fi ) dμl →
∫

Sn−1
ϕ ( f ) dμ, (3.3)

ϕ−1
k

(∫
Sn−1

ϕk ( fi ) dμl

)
→ ϕ−1

(∫
Sn−1

ϕ ( f ) dμ

)
, (3.4)

and
‖ fi : μl‖ϕk

→ ‖ f : μ‖ϕ. (3.5)

Proof Since fi → f uniformly, there exists an N0 ∈ N, such that

1

2
min

u∈Sn−1
f (u) ≤ fi ≤ 2 max

u∈Sn−1
f (u), for i > N0.

Let

cm = min

{
1

2
min

u∈Sn−1
f (u), min

u∈Sn−1
fi (u), with i ≤ N0

}
,

and

cM = max

{
2 max

u∈Sn−1
f (u), max

u∈Sn−1
fi (u), with i ≤ N0

}
.

So, by the strict positivity and continuity of fi and f , we have

f (u), fi (u) ∈ [cm, cM ] ⊂ (0,∞), for u ∈ Sn−1 and i ∈ N. (3.6)

From the continuity and uniform convergence of fi and ϕk on [cm, cM ], it follows
that as i, k → ∞,

ϕk( fi ) → ϕ( f ), uniformly on Sn−1.

Added that μl → μ weakly as l → ∞, one immediately concludes (3.3) and (3.4).
Finally, we conclude to show (3.5).
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From (3.6) together with the strict monotonicity of ϕ and ϕ−1, Lemma 2.1, and
(3.6) together with the strict monotonicity of ϕ and ϕ−1 again, it follows that

cm

‖ fi : μl‖ϕk

≤ ϕ−1
k

(∫
Sn−1

ϕk

(
fi

‖ fi : μl‖ϕk

)
dμl

)
= 1 ≤ cM

‖ fi : μl‖ϕk

,

which immediately gives

cm ≤ ‖ fi : μl‖ϕk
≤ cM , for i, k, l ∈ N.

Since
{‖ fi : μl‖ϕk : i, k, l ∈ N

}
is bounded, to prove (3.5), it suffices to prove that

each convergent subsequence {‖ fi p : μlr ‖ϕkq
}p,q,r∈N of

{‖ fi : μl‖ϕk : i, k, l ∈ N
}

necessarily converges to ‖ f : μ‖ϕ , as i p, kq , lr → ∞.

Assume lim
p,q,r→∞

∥∥ fi p : μlr

∥∥
ϕkq

= λ0. Then,
fi p∥∥∥ fi p :μlr

∥∥∥
ϕkq

→ f
λ0

uniformly on Sn−1.

Hence, by (3.4), we have

lim
p,q,r→∞ ϕ−1

kq

⎛
⎝∫

Sn−1
ϕkq

⎛
⎝ fi p∥∥ fi p : μlr

∥∥
ϕkq

⎞
⎠ dμlr

⎞
⎠ = ϕ−1

(∫
Sn−1

ϕ

(
f

λ0

)
dμ

)
.

Meanwhile, since

ϕ−1
kq

⎛
⎝∫

Sn−1
ϕkq

⎛
⎝ fi p∥∥ fi p : μlr

∥∥
ϕkq

⎞
⎠ dμlr

⎞
⎠ = 1, for each (p, q, r),

it yields that ϕ−1
(∫

Sn−1 ϕ
(

f
λ0

)
dμ

)
= 1. From Lemma 2.1, it follows that λ0 = ‖ f :

μ‖ϕ , which concludes (3.5). ��
Using Lemma 3.7, we immediately obtain

Lemma 3.8 Suppose K , Ki , L , L j ∈ Sn
o and ϕ, ϕk ∈ �, i, j, k ∈ N. If Ki → K ,

L j → L and ϕk → ϕ; then

lim
i, j,k→∞ Ṽϕk (Ki , L j ) = Ṽϕ(K , L),

lim
i, j,k→∞

¯̃V ϕk (Ki , L j ) = ¯̃V ϕ(K , L),

and

lim
i, j,k→∞ Oϕk (Ki , L j ) = Oϕ(K , L).
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Proof That Ki → K and L j → L yields ρKi /ρL j and ρK /ρL are strictly positive

continuous on Sn−1; ρKi /ρL j → ρK /ρL uniformly on Sn−1; ṼKi → ṼK weakly,
and V ∗

Ki
→ V ∗

K weakly. Combining these facts and applying Lemma 3.7, it yields the
desired limits. ��

Recall that

¯̃V −1(K , L) =
∫

Sn−1

ρK

ρL
dV ∗

K , for K , L ∈ Sn
o .

The next lemma will be used in Sect. 5.

Lemma 3.9 Suppose K , L ∈ Sn
o , ϕ ∈ � and p ∈ [1,∞). Then for 1 < p < q < ∞,

¯̃V −1(K , L) ≤ Oϕ(K , L)≤ Oϕ p (K , L) ≤ Oϕq (K , L)≤
∥∥∥∥ρK

ρL

∥∥∥∥∞
= lim

p→∞ Oϕ p (K , L).

Proof For λ ∈ (0,∞), let gp(λ) =
(∫

Sn−1 ϕ
(

ρK
λρL

)p
dV ∗

K

)1/p
, 1 ≤ p < ∞.

From the definition of ¯̃V−1(K , λL) together with the convexity of ϕ and
Jensen’s inequality, Hölder’s inequality, and finally the fact that limp→∞ gp(λ) =
ϕ

(
1
λ
‖ρK

ρL
‖∞

)
, it follows that

ϕ
( ¯̃V−1(K , λL)

)
≤g1(λ)≤gp(λ)≤gq(λ)≤ϕ

(
1

λ

∥∥∥∥ρK

ρL

∥∥∥∥∞

)
, for 1 < p < q < ∞.

Thus, from the definitions of Oϕ p (K , L) and gp(λ), and the monotonicity of ϕ−1, it
yields the desired inequalities except the equality on the right.

Finally, we proceed to show
∥∥∥ρK

ρL

∥∥∥∞ = lim p→∞ Oϕ p (K , L).

Take {p j } j∈N ⊂ N with lim j→∞ p j = ∞. For brevity, let λ∞ = ‖ρK
ρL

‖∞, λ j =
Oϕ

p j (K , L), and g∞(λ) = ϕ
(
1
λ
‖ρK

ρL
‖∞

)
. Recall that gp j and g∞ are positive and

continuous on [λ1, λ∞], and gp j increases to g∞ pointwise on [λ1, λ∞]. By Dini’s
theorem, gp j → g∞, uniformly on [λ1, λ∞]. Consequently,

lim
j→∞ g j (λ j ) =

(
lim

j→∞ g j

) (
lim

j→∞ λ j

)
= g∞

(
lim

j→∞ λ j

)
.

Added that g∞ is strictly decreasing on [λ1, λ∞], and gp j (λ j ) = ϕ(1) for each j , we
obtain

lim
j→∞ λ j = λ∞,

which completes the proof. ��
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4 Orlicz–Legendre Ellipsoids

Let K ∈ Sn
o and ϕ ∈ �. For any T ∈ SL(n), by Lemma 3.6 it gives

¯̃V ϕ(K , T B) ≥
(

V (K )

ωn

) 1
n

and Oϕ(K , T B) ≥
(

V (K )

ωn

) 1
n

.

In view of the intimate connection between ¯̃Vϕ and Oϕ , to find the so-called Orlicz–
Legendre ellipsoids, we also consider the following three problems, which are closely
related to our originally posed Problem S̃ϕ .
Problem P1 Find an ellipsoid E , among all origin-symmetric ellipsoids, which solves
the constrained minimization problem

min
E

¯̃V ϕ(K , E) subject to V (E) ≤ ωn .

Problem P2 Find an ellipsoid E , among all origin-symmetric ellipsoids, which solves
the constrained minimization problem

min
E

Oϕ(K , E) subject to V (E) ≤ ωn .

The homogeneity of the volume functional and Orlicz norm prompts us to consider
the following Problem P3, which is in some sense dual to Problem P2.
Problem P3 Find an ellipsoid E , among all origin-symmetric ellipsoids, which solves
the constrained maximization problem

min
E

V (E) subject to Oϕ(K , E) ≤ 1.

For convenient comparison, we restate Problem S̃ϕ as the following.
Problem S̃ϕ Find an ellipsoid E , among all origin-symmetric ellipsoids, which solves
the constrained maximization problem

min
E

V (E) subject to ¯̃V ϕ(K , E) ≤ 1.

This section is organized as follows. Lemma 4.2 and Theorem 4.3 demonstrate the
existence and uniqueness of the solution to P1, respectively. The connection between
P1 and P2 is established by Lemma 4.4. Theorem 4.5 demonstrates the existence and
uniqueness of a solution to P2. Theorem 4.6 shows that the solutions to P2 and P3 only
differ by a scalar factor. Lemma 4.7 reveals that P3 and S̃ϕ are essentially identical.
Therefore, the notion of Orlicz–Legendre ellipsoids is ready to come out.

From Definition 3.1 together with the fact that ϕ−1 is strictly increasing in (0,∞),
the objective functional in P1 can be replaced by Ṽϕ(K , E).
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Lemma 4.1 Suppose T ∈ SL(n). Then

lim
T ∈SL(n)

‖T ‖→∞
Ṽϕ(K , T B) = ∞ and lim

T ∈SL(n)

‖T ‖→∞
Oϕ(K , T B) = ∞.

Proof Let T ∈ SL(n) and rK = min
Sn−1

ρK . Then rK B ⊆ K . For |α| > n, it is known

that

lim
T ∈SL(n)

‖T ‖→∞

∫
Sn−1

|T u|αd S(u) = ∞. (4.1)

From the definition of Ṽϕ(K , T B) together with the convexity of ϕ and Jensen’s
inequality, the facts

∫
Sn−1

ρn+1
K

ρT B
d S =

∫
Sn−1

ρn+1
T −1K

d S and T −1K ⊇ T −1(rK B)

together with the monotonicity of ϕ, and finally (2.1), it follows that

Ṽϕ(K , T B)

V (K )
≥ ϕ

(
1

nV (K )

∫
Sn−1

ρn+1
K

ρT B
d S

)

≥ ϕ

(
1

nV (K )

∫
Sn−1

ρn+1
T −1(rK B)

d S

)

= ϕ

(
rn+1

K

nV (K )

∫
Sn−1

|T u|n+1d S(u)

)
.

Thus, by the monotonicity of ϕ and (4.1), it concludes the first limit.
To prove the second limit, we argue by contradiction and assume it to be false.

Then, there is a constant c ∈ (0,∞) such that sup
{

Oϕ(K , Tj B) : j ∈ N
}

< c, for
any sequence {Tj } j ⊂ N with lim j→∞ ‖Tj‖ = ∞. By using arguments similar to
those above, we can show that for each j ∈ N,

Ṽϕ(K , Oϕ(K , Tj B)Tj B)

V (K )
≥ ϕ

(
rn+1

K

ncV (K )

∫
Sn−1

|Tj u|n+1d S(u)

)
.

Combining this with (4.1), we have

lim
j→∞

Ṽϕ(K , Oϕ(K , Tj B)Tj B)

V (K )
= ∞.

However, this obviously contradicts Lemma 3.5. ��
Now, using Lemma 4.1, we can prove the existence of a solution to problem P1.

Lemma 4.2 Suppose K ∈ Sn
o and ϕ ∈ �. Then there exists a solution to P1.
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Proof Note that any E ∈ En with V (E) < ωn cannot be a solution to P1. Hence,
Problem P1 can be equivalently restated as

inf
{

Ṽϕ(K , T B) : T ∈ SL(n)
}

.

Observe that the infimum exists, since

V (K )ϕ

((
V (K )

ωn

) 1
n
)

≤ inf
{

Ṽϕ(K , T B) : T ∈ SL(n)
}

≤ Ṽϕ(K , B) < ∞,

where the left inequality follows from Lemma 3.6 and Definition 3.1.
Let

T =
{

T ∈ SL(n) : Ṽϕ(K , T B) ≤ Ṽϕ(K , B)
}

.

From the definition of dn (see Sect. 2.4) and Lemma 3.8, Ṽϕ(K , T B) is continuous in
T ∈ (SL(n), dn). Thus, the set T is closed in (SL(n), dn). Meanwhile, the definition of
T and Lemma 4.1 guarantee that T is bounded in (SL(n), dn). Hence, T is compact.

The continuity of Ṽϕ(K , T B) on (T , dn) implies that there exists a T0 ∈ T such
that

Ṽϕ(K , T0B) = min{Ṽϕ(K , T B) : T ∈ T } = inf{Ṽϕ(K , T B) : T ∈ SL(n)},

which completes the proof. ��

Theorem 4.3 Suppose K ∈ Sn
o and ϕ ∈ �. Then, modulo orthogonal transforma-

tions, there exists a unique SL(n) transformation solving the extremal problem

min
{

Ṽϕ(K , T B) : T ∈ SL(n)
}

.

Equivalently, there exists a unique solution to Problem P1.

Proof Lemma 4.2 shows the existence. We prove the uniqueness by contradiction.
Assume that T1, T2 ∈ SL(n) both solve the considered minimization problem. Let

E1 = T1B, E2 = T2B. It is known that each T ∈ SL(n) can be represented in the form
T = P Q, where P is symmetric, positive definite and Q is orthogonal. So, without
loss of generality, we may assume that T1, T2 are symmetric and positive definite.

By theMinkowski inequality for symmetric and positive definite matrices, we have

det

(
T −1
1 + T −1

2

2

) 1
n

>
1

2
det

(
T −1
1

) 1
n + 1

2
det

(
T −1
2

) 1
n = 1.
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Let

T −1
3 = det

(
T −1
1 + T −1

2

2

)− 1
n T −1

1 + T −1
2

2
.

Then T3 ∈ SL(n) is symmetric. Moreover, for all u ∈ Sn−1, we have

hT −1
3 B(u) < h T −1

1 +T −1
2

2 B
(u) ≤ 1

2
hT −1

1 B(u) + 1

2
hT −1

1 B(u).

Thus, from the fact that ϕ is strictly increasing and convex in [0,∞), it implies that

ϕ
(
ρK hT −1

3 B

)
<

1

2
ϕ

(
ρK hT −1

1 B

)
+ 1

2
ϕ

(
ρK hT −1

2 B

)
.

Hence, letting E3 = T3B and using the fact

Ṽϕ(K , Ei ) =
∫

Sn−1
ϕ

(
ρK hT −1

i B

)
dṼK , i = 1, 2, 3,

it gives

Ṽϕ(K , E3) < Ṽϕ(K , E1) = Ṽϕ(K , E2).

However, from the fact that T3 ∈ SL(n) and the assumption on E1 and E2, we also
have

Ṽϕ(K , E3) ≥ Ṽϕ(K , E1) = Ṽϕ(K , E2),

which contradicts the above. This completes the proof. ��

Lemma 4.4 Suppose E0 ∈ En and V (E0) = ωn. Then, for any T ∈ SL(n),

Ṽϕ

(
K , Oϕ(K , E0)E0

) ≤ Ṽϕ

(
K , Oϕ(K , E0)T E0

)

if and only if

Oϕ(K , E0) ≤ Oϕ(K , T E0).
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Proof From Definition 3.1 together with the strict monotonicity of ϕ−1, Lemma 3.5,
and Lemma 2.1 together with Definition 3.3, it follows that

Ṽϕ

(
K , Oϕ(K , E0)E0

) ≤ Ṽϕ

(
K , Oϕ(K , E0)T E0

)
⇐⇒ ¯̃V ϕ

(
K , Oϕ(K , E0)E0

) ≤ ¯̃V ϕ

(
K , Oϕ(K , E0)T E0

)
⇐⇒ 1 ≤ ¯̃V ϕ

(
K , Oϕ(K , E0)T E0

)
⇐⇒ ¯̃V ϕ

(
K , Oϕ(K , T E0)T E0

) ≤ ¯̃V ϕ

(
K , Oϕ(K , E0)T E0

)
⇐⇒ Ṽϕ

(
K , Oϕ(K , T E0)T E0

) ≤ Ṽϕ

(
K , Oϕ(K , E0)T E0

)
⇐⇒ Oϕ(K , E0) ≤ Oϕ(K , T E0),

as desired. ��
From Theorem 4.3 and Lemma 4.4, we can prove the following

Theorem 4.5 Suppose K ∈ Sn
o and ϕ ∈ �. Then there exists a unique solution to

Problem P2.

Proof First, we prove the existence of a solution to problemP2.Note that the constraint
condition in P2 can be turned into V (E) = ωn .

Let λ0 = inf
{

Oϕ(K , T B) : T ∈ SL(n)
}
. From Lemma 3.6, we have

0 <

(
V (K )

ωn

) 1
n ≤ λ0 ≤ Oϕ(K , B) < ∞.

Similar to the proof of Lemma 4.2, we can show the set

{T ∈ SL(n) : Oϕ(K , T B) ≤ Oϕ(K , B)}

is compact. Combining this with the continuity of Oϕ(K , T B), the existence of solu-
tion to P2 is demonstrated.

Now, we proceed to prove the uniqueness.
Assume ellipsoid E0 is a solution to P2. Then, Oϕ(K , E0) ≤ Oϕ(K , T E0), for

T ∈ SL(n). Thus, by Lemma 4.4, it follows that

Ṽϕ

(
K , Oϕ(K , E0)E0

) ≤ Ṽϕ

(
K , Oϕ(K , E0)T E0

)
, for T ∈ SL(n).

Thus, E0 is a solution to Problem P1 for star body λ−1
0 K . Hence, by Theorem 4.3, the

solution to P2 is unique. ��
Theorem 4.6 Suppose K ∈ Sn

o and ϕ ∈ �. Then

(1) If E0 is the unique solution to Problem P2, then Oϕ(K , E0)E0 is a solution to
Problem P3.

(2) If E1 is a solution to Problem P3, then
(

ωn
V (E1)

) 1
n

E1 is a solution to Problem P2.

Consequently, there exists a unique solution to Problem P3.
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Proof (1) Let E ∈ En with Oϕ(K , E) ≤ 1. Since
(

ωn
V (E)

) 1
n

E satisfies the con-

straint condition of P2, by Lemma 3.4 (2), the fact V (E0) = ωn , and the assumption
Oϕ(K , E) ≤ 1, we have

V
(
Oϕ(K , E0)E0

) = Oϕ(K , E0)
n V (E0)

≤ Oϕ

(
K ,

(
ωn

V (E)

) 1
n

E

)n

V (E0)

= V (E)

ωn
Oϕ(K , E)n V (E0)

= V (E)Oϕ(K , E)n

≤ V (E),

which shows that Oϕ(K , E0)E0 solves Problem P3.
(2) Note that a solution E1 to P3 must satisfy Oϕ(K , E1) = 1.
Let E ′ ∈ En with V (E ′) ≤ ωn . By Lemma 3.4 (2), Oϕ

(
K , Oϕ(K , E ′)E ′) = 1.

Thus Oϕ(K , E ′)E ′ satisfies the constraint condition of Problem P3. Since E1 is a
solution to Problem P3, it follows that

V
(
Oϕ(K , E ′)E ′) ≥ V (E1).

So, by the assumption V (E ′) ≤ ωn , the fact Oϕ(K , E1) = 1 and Lemma 3.4 (2),
we have

Oϕ(K , E ′) ≥
(

V (E1)

V (E ′)

) 1
n ≥

(
V (E1)

ωn

) 1
n = Oϕ

(
K ,

(
ωn

V (E1)

) 1
n

E1

)
,

which shows that
(

ωn
V (E1)

) 1
n

E1 solves Problem P2. ��
Lemma 4.7 Suppose K ∈ Sn

o and ϕ ∈ �. Then Problems P3 and S̃ϕ have the same
solution.

Proof From the facts

min{E∈En :Oϕ(K ,E)≤1} V (E) = min{E∈En :Oϕ(K ,E)=1} V (E)

and

min{
E∈En : ¯̃V ϕ(K ,E)≤1

} V (E) = min{
E∈En : ¯̃V ϕ(K ,E)=1

} V (E)

together with the implication that for E ∈ En ,

Oϕ(K , E) = 1 ⇐⇒ ¯̃V ϕ(K , E) = 1,
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it follows that an ellipsoid E ∈ En solves Problem P3, if and only if it solves Problem
S̃ϕ . By Theorem 4.6, it concludes the proof. ��

For different dilations λ1K and λ2K , λ1, λ2 > 0, Problems P1 do not generally
have the identical solution. By contrast, the homogeneity of Oϕ(λK , L) in λ ∈ (0,∞)

guarantees that all Problems P2 for λK in λ ∈ (0,∞) have the identical unique
solution. Problems P3 and S̃ϕ are identical, and Problem P3 is the dual problem of P2.
Thus, Problem S̃ϕ is not the dual problem of P1 in general.

In viewofTheorem4.5, Theorem4.6 andLemma4.7,we are in position to introduce
a family of ellipsoids in the framework of dual Orlicz Brunn–Minkowski theory, which
are extensions of Legendre ellipsoids.

Definition 4.8 Suppose K ∈ Sn
o and ϕ ∈ �. Among all origin-symmetric ellipsoids

E , the unique ellipsoid that solves the constrained minimization problem

min
E

V (E) subject to ¯̃Vϕ(K , E) ≤ 1

is called the Orlicz–Legendre ellipsoid of K with respect to ϕ, and is denoted by Lϕ K .
Among all origin-symmetric ellipsoids E , the unique ellipsoid that solves the con-

strained minimization problem

min
E

Oϕ(K , E) subject to V (E) = ωn

is called the normalized Orlicz–Legendre ellipsoid of K with respect to ϕ, and is
denoted by Lϕ K .

For the polar of Lϕ K or Lϕ K , we write L∗
ϕ K or L

∗
ϕ K , rather than (Lϕ K )∗ or

(Lϕ K )∗.
If ϕ(t) = t p, 1 ≤ p < ∞, we write Lϕ K and Lϕ K for Lp K and Lp K , respectively.

Especially, L2K is precisely the Legendre ellipsoid �2K .
We observe that for the case ϕ(t) = t p, Problems P1 and P2 are identical, and were

previously solved by Bastero and Romance [5]. Yu [54] introduced the ellipsoids Lp K
for convex bodies containing the origin in their interiors.

From Theorem 4.6, it is obvious that

Lϕ K = Oϕ(K ,Lϕ K )Lϕ K and Lϕ K =
(

ωn

V (Lϕ K )

) 1
n

Lϕ K . (4.2)

Definition 4.8 combined with inequality (3.1) shows that for any E ∈ En ,

Lϕ E = E .

FromDefinition 4.8 andLemma3.4,we easily know that the operator Lϕ intertwines
with elements of GL(n).
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Lemma 4.9 Suppose K ∈ Sn and ϕ ∈ �. Then for any T ∈ GL(n),

Lϕ(T K ) = T (Lϕ K ).

To connect Orlicz–Legendre ellipsoids with the Löwner ellipsoid, it is necessary to
introduce the following.

Definition 4.10 Suppose K ∈ Sn
o . The unique origin-symmetric ellipsoid of minimal

volume containing K is denoted by L∞K .
Among all origin-symmetric ellipsoids E , the unique ellipsoid that uniquely solves

the constrained minimization problem

min
E

∥∥∥∥ρK

ρE

∥∥∥∥∞
subject to V (E) ≤ ωn

is denoted by L∞K .

The notion of L∞K is well defined, since (L∞K )∗ is the L∞ John ellipsoid
E∞ (convK )∗, i.e., the unique origin-symmetric ellipsoid of maximal volume con-
tained in (convK )∗. The extremal problems involved in the definition are dual to each
other. Thus, we have

L∞K = (
E∞ (convK )∗

)∗ and L∞K =
(

ωn

V (L∞K )

) 1
n

L∞K .

Here, convK denotes the convex hull of K .
For a convex body K ∈ Kn

o , if the John point of K ∗ is at the origin, then (L∞K )∗
is precisely the John ellipsoid J(K ∗) of K ∗. If K is an origin-symmetric star body in
R

n , then L∞K is precisely the Löwner ellipsoid of K .

5 The Continuity of Orlicz–Legendre Ellipsoids

In this section, we aim to show the continuity of Orlicz–Legendre ellipsoids Lϕ K with
respect to ϕ and K .

Throughout this section, we suppose ϕ ∈ �, K , Ki ∈ Sn
o , ϕ, ϕ j ∈ �, i, j ∈ N, and

Ki → K and ϕ j → ϕ. It is easily seen that there exist positive rm and rM such that

rm B ⊆ K ⊆ rM B and rm B ⊆ Ki ⊆ rM B for each i ∈ N.

Lemma 5.1 sup
i, j∈N

{
d

(
Lϕ K

)
, d

(
Lϕ Ki

)
, d

(
Lϕ j K

)
, d

(
Lϕ j Ki

)}
< ∞.

Proof Let E ∈ En . First, we prove the implication

Oϕ(K , E) ≤ 1 �⇒ d(E∗) ≤ nωn

2rmωn−1
ϕ−1

((
rM

rm

)n

ϕ(1)

)
. (5.1)
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Assume Oϕ(K , E) ≤ 1. From the definition of Oϕ(K , E) together with Lemma 2.1
and Lemma 3.5, the definition of Ṽϕ(K , E) together with the fact rm B ⊆ K ⊆ rM B
and the monotonicity of ϕ, the convexity of ϕ together with Jensen’s inequality, the
monotonicity of ϕ again together with (2.3) and the fact hE∗(u) ≥ d(E∗)|vE∗ · u| for
u ∈ Sn−1, and finally Cauchy’s projection formula, it follows that

ϕ(1) ≥ Ṽϕ(K , E)

V (K )

≥
(

rm

rM

)n 1

nωn

∫
Sn−1

ϕ

(
rm

ρE

)
d S

≥
(

rm

rM

)n

ϕ

(
1

nωn

∫
Sn−1

rm

ρE
d S

)

≥
(

rm

rM

)n

ϕ

(
rm

nωn

∫
Sn−1

d(E∗)|vE∗ · u|d S(u)

)

=
(

rm

rM

)n

ϕ

(
2rmωn−1

nωn
d(E∗)

)
,

which, together with the monotonicity of ϕ−1, immediately yields (5.1).
Since that ϕ j → ϕ implies ϕ j (1) → ϕ(1) and ϕ−1

j → ϕ−1, it follows that

ϕ−1
j

((
rM

rm

)n

ϕ j (1)

)
→ ϕ−1

((
rM

rm

)n

ϕ(1)

)
,

and therefore

sup
j∈N

{
ϕ−1

((
rM

rm

)n

ϕ(1)

)
, ϕ−1

j

((
rM

rm

)n

ϕ j (1)

)}
< ∞.

This, as well as (5.1), yields

sup
i, j∈N

{
d

(
L∗

ϕ K
)
, d

(
L∗

ϕ Ki
)
, d

(
L∗

ϕ j
K

)
, d

(
L∗

ϕ j
Ki

)}
< ∞. (5.2)

From (4.2), the inequality V (Lϕ K ) ≤ V (L∞K ) (which will be given by Theorem
7.2) together with Definition 4.10, we have

d
(
L

∗
ϕ K

)
≤ rM d

(
L∗

ϕ K
)
. (5.3)

Observe that (5.3) also holds when ϕ is replaced by ϕ j or K is replaced by Ki . Thus,
from (5.2), it follows that
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sup
i, j∈N

{
d

(
L

∗
ϕ K

)
, d

(
L

∗
ϕ Ki

)
, d

(
L

∗
ϕ j

K
)

, d
(
L

∗
ϕ j

Ki

)}
< ∞,

which, together with Lemma 2.2, concludes the desired lemma. ��
Now, fromLemma5.1, there exists a constant R ∈ (0,∞) such that all the ellipsoids

Lϕ K , Lϕ j K , Lϕ Ki and Lϕ j Ki are in the set

ER = {
E ∈ En : V (E) = ωn and E ⊆ RB

}
.

From the compactness of the sets ER and {K ∈ Sn
o : rm B ⊆ K ⊆ rM B}, together

with Lemma 3.8, we immediately obtain:

Lemma 5.2 The limit limi, j→∞ Oϕ j (Ki , E) = Oϕ(K , E) is uniform in E ∈ ER.

Lemma 5.3 limi, j→∞ Oϕ j (Ki ,Lϕ j Ki ) = Oϕ(K ,Lϕ K ).

Proof From Definition 4.8 and Lemma 5.2, we have

lim
i, j→∞ Oϕ j (Ki ,Lϕ j Ki ) = lim

i, j→∞ min
E∈ER

Oϕ j (Ki , E)

= min
E∈ER

lim
i, j→∞ Oϕ j (Ki , E)

= min
E∈ER

Oϕ(K , E)

= Oϕ(K ,Lϕ K ),

as desired. ��
Lemma 5.4 limi, j→∞ Lϕ j Ki = Lϕ K .

Proof From the compactness of ER , to prove the lemma, it suffices to prove that any
convergent subsequence {Lϕ jq

Ki p }p,q∈N of {Lϕ j Ki } must converge to Lϕ K .
From Lemma 3.8 and Lemma 5.3, it follows that

Oϕ(K , lim
p,q→∞Lϕ jq

Ki p ) = lim
p,q→∞ Oϕ(K ,Lϕ jq

Ki p )

= lim
p,q→∞ Oϕ jq

(Ki p ,Lϕ jq
Ki p )

= Oϕ(K ,Lϕ K ),

which, together with the uniqueness of Lϕ K , implies lim p,q→∞ Lϕ jq
Ki p = Lϕ K . ��

Theorem 5.5 Suppose K , Ki ∈ Sn
o and ϕ, ϕ j ∈ �, i, j ∈ N. If Ki → K and ϕ j → ϕ,

then

lim
i, j→∞Lϕ j Ki = Lϕ K .
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Proof From Lemma 5.3, Lemma 5.4, together with the identity

Lϕ K = Oϕ(K ,Lϕ K )Lϕ K ,

the desired limit is immediately derived. ��
Note that Lϕ p K and therefore Lp K are continuous in (K , p) ∈ Sn

o × [1,∞).
We observe that although Yu et al. [54] first introduced the notion of L p Legendre
ellipsoids, they did not consider the above continuity at all. We proceed to show the
following.

Theorem 5.6 Suppose K ∈ Sn
o and ϕ ∈ �. Then limp→∞ Lϕ p K = L∞K .

Proof By Lemma 5.1, there exists a constant C ∈ (0,∞) such that L∞K and all the
Orlicz–Legendre ellipsoids Lϕ p K are in the set

F = {E ∈ En : V (E) = ωn and E ⊆ C B}.

For E ∈ F , let f p(E) = Oϕ p (K , E) for p ∈ [1,∞), and let f∞(E) = ‖ρK /ρE‖∞.
By Lemma 3.9, the sequence { f j } of continuous functionals is increasing pointwise
to f∞ on the compact set F , and therefore by Dini’s theorem,

f j → f∞, uniformly on F . (5.4)

The theorem will be obtained after the following steps.
First, using (5.4) and an argument similar to the proofs of Lemmas 5.3 and 5.4, it

will establish
lim

p→∞Lϕ p K = L∞K . (5.5)

Second, using the definition of f p, (5.4), (5.5), and the definition of f∞, it will
establish

lim
p→∞ Oϕ p (K ,Lϕ p K ) =

∥∥∥∥∥
ρK

ρL∞K

∥∥∥∥∥∞
. (5.6)

Finally, from the identities

Oϕ p (K ,Lϕ p K )Lϕ p K = Lϕ p K and

∥∥∥∥∥
ρK

ρL∞K

∥∥∥∥∥∞
L∞K = L∞K ,

together with (5.5) and (5.6), it concludes the desired limit. ��

6 A Characterization of Orlicz–Legendre Ellipsoids

In this section, we establish a connection linking the characterization of Orlicz–
Legendre ellipsoids and the isotropy of measures.
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Definition 6.1 Suppose K ∈ Sn
o and ϕ ∈ �∩ C1[0,∞), the Borel measure μϕ(K , ·)

on Sn−1 is defined by

dμϕ(K , ·) = ϕ′ (ρK ) ρn+1
K d S.

The next theorem characterizes the Orlicz–Legendre ellipsoid Lϕ K .

Theorem 6.2 Suppose K ∈ Sn
o , ϕ ∈ � ∩ C1[0,∞), and T ∈ GL(n). Then, Lϕ K =

T B, if and only if μϕ

(
Oϕ(T −1K , B)−1T −1K , ·) is isotropic on Sn−1.

Proof In terms of Lemma 4.9, without loss of generality, we may assume T = In .
Then, Lϕ K = B. Let K ′ = Oϕ(K , B)−1K . Note that by Lemma 4.4,

Lϕ K = B ⇐⇒ Ṽϕ(K ′, B) = min
T ∈SL(n)

Ṽϕ(K ′, T B).

Hence, to prove the desired equivalence, it suffices to prove that

Ṽϕ(K ′, B) = min
T ∈SL(n)

Ṽϕ(K ′, T B) ⇐⇒ μϕ

(
K ′, ·) is isotropic on Sn−1.

First, we assume Ṽϕ(K ′, B) = minT ∈SL(n) Ṽϕ(K ′, T B), and prove the necessity
by the variational method.

Let L : Rn → R
n be a linear transformation. Choose ε0 > 0 sufficiently small so

that for all ε ∈ (−ε0, ε0) the matrix In + εL is invertible. For ε ∈ (−ε0, ε0), define

Lε = In + εL

|In + εL| 1n
.

Then Lε ∈ SL(n). Our assumption implies that for all ε,

Ṽϕ(K ′, L−1
ε B) ≥ Ṽϕ(K ′, B).

The fact 1
ρ

L−1
ε B

(u)
= hLt

ε B(u) for u ∈ Sn−1, together with the definition of

Ṽϕ(K ′, L−1
ε B), gives

Ṽϕ(K ′, L−1
ε B) =

∫

Sn−1

ϕ

⎛
⎝ρK ′(u)

(1 + 2εu · Lu + ε2Lu · Lu)
1
2

|In + εL| 1n

⎞
⎠ dṼK ′(u).

From the smoothness of ϕ and |Lεu| in ε, the integrand depends smoothly on ε. Thus,

d

dε

∣∣∣∣
ε=0

Ṽϕ(K ′, L−1
ε B) = 0.
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Calculating it directly, we have

0 = 1

n

∫
Sn−1

(
− tr L

n
+ u · Lu

)
dμϕ(K ′, u).

Let v ∈ Sn−1 and L = v⊗v. Using the facts tr(v⊗v) = 1 and u ·(v⊗v)u = (u ·v)2,
it gives

∫
Sn−1

(u · v)2dμϕ(K ′, u) = |μϕ(K ′, ·)|
n

.

Thus, μϕ(K ′, ·) is isotropic on Sn−1.
Conversely, suppose that μϕ(K ′, ·) is isotropic on Sn−1. We prove that if E ∈ En

and V (E) = ωn , then

Ṽϕ(K ′, E) ≥ Ṽϕ(K ′, B).

The proof will be completed after two steps.
First, for a = (a1, . . . , an) ∈ [0,∞)n , define

F(a) =
∫

Sn−1
ϕ (ρK ′(u)) |diag(a1, . . . , an)u|dṼK ′(u),

where diag(a1, . . . , an) denotes the n × n diagonal matrix with diagonal elements
a1, . . . , an . We aim to show that

F(a) ≥ F(e), whenever
n∏

j=1

a j = 1. (6.1)

Here, e denotes the point (1, . . . , 1).
From the smoothness of ϕ and |diag(a1, . . . , an)u| in (a1, . . . , an), we have

∂

∂a j

∣∣∣∣
a=e

F(a) =
∫

Sn−1
u2

jϕ
′ (ρK ′(u)) ρK ′(u)dṼK ′(u),

where (u1, . . . , un) denotes the coordinates of u ∈ Sn−1. From the isotropy of
μϕ(K ′, ·), it follows that

∂

∂a j

∣∣∣∣
a=e

F(a) = |μϕ(K ′, ·)|
n

.

Thus,

∇F(e) = |μϕ(K ′, ·)|
n

e. (6.2)
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It can be checked that the function F : [0,∞)n → [0,∞) is continuous and convex,
and F(λa) is strictly increasing in λ ∈ [0,∞), for a ∈ (0,∞)n . Thus, F−1([0, F(e)])
is a convex body. Its boundary is given by the equation F(a) = F(e)with a ∈ [0,∞)n ,
so (6.2) implies the vector e is an outer normal of the convex body F−1([0, F(e)]) at
the boundary point e.

Consequently, F−1([0, F(e)]) ⊂ {a ∈ R
n : a · e ≤ n}. That is to say, for all a ∈

[0,∞)n , if F(a) ≤ F(e), then a·e ≤ n. In contrast, for all b = (b1, . . . , bn) ∈ (0,∞)n

with b1 · · · bn = 1, the AM–GM inequality yields that b · e ≥ n, with equality if and
only if b = e. Hence, (6.1) is derived.

Finally, represent each T ∈ SL(n) into the form T = O−1
1 AO2, where O1, O2 are

n ×n orthogonal matrices, and A = diag(a1, . . . , an) is diagonal and positive definite
with a1a2 · · · an = 1. Note that Ṽϕ(K ′, T B) = Ṽϕ(O1K ′, AB), and μϕ(O1K ′, ·) is
isotropic on Sn−1. So, applying (6.1) to the body O1K ′, it gives

Ṽϕ(K ′, T B) ≥ Ṽϕ(K ′, B),

which concludes the desired sufficiency. ��
Corollary 6.3 Suppose K ∈ Sn

o and ϕ ∈ � ∩ C1[0,∞). Then, modulo orthogo-
nal transformations, there exists an SL(n) transformation T such that the measure
μϕ(T K , ·) is isotropic on Sn−1.

7 Volume Ratio Inequalities

In general, the Orlicz–Legendre ellipsoid Lϕ K does not contain K . However, we
show that the volume functional over the class of Orlicz–Legendre ellipsoids of K is
bounded by V (L1K ) from below and by V (L∞K ) from above.

Theorem 7.1 Suppose K ∈ Sn
o , ϕ ∈ � and 1 ≤ p < q < ∞. Then

V (L1K ) ≤ V (Lϕ K ) ≤ V (Lϕ p K ) ≤ V (Lϕq K ) ≤ V (L∞K ).

Proof From Lemma 3.9, it follows that

{
E ∈ En :

∥∥∥∥ρK

ρE
: V ∗

K

∥∥∥∥
1

≤ 1

}
⊇

{
E ∈ En :

∥∥∥∥ρK

ρE
: V ∗

K

∥∥∥∥
ϕ

≤ 1

}

⊇
{

E ∈ En :
∥∥∥∥ρK

ρE
: V ∗

K

∥∥∥∥
ϕ p

≤ 1

}

⊇
{

E ∈ En :
∥∥∥∥ρK

ρE
: V ∗

K

∥∥∥∥
ϕq

≤ 1

}

⊇
{

E ∈ En :
∥∥∥∥ρK

ρE

∥∥∥∥∞
≤ 1

}
.
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From the above inclusions and the definition ofOrlicz–Legendre ellipsoids, the desired
inequalities are obtained. ��
Theorem 7.2 Suppose K ∈ Sn

o and ϕ ∈ �. Then

V (Lϕ K ) ≥ V (K ),

with equality if and only if K ∈ En.

Proof From Lemma 3.6 and the fact that Lϕ E = E for any E ∈ En , it follows that

Oϕ

(
K ,Lϕ K

) ≥
(

V (K )

V (Lϕ K )

) 1
n

,

with equality if and only if K ∈ En . Combining this with the fact 1 = Oϕ

(
K ,Lϕ K

)
,

it establishes the desired inequality. ��
If ϕ(t) = t p, 1 ≤ p < ∞, then Theorem 7.2 implies that V (Lp K ) ≥ V (K ), and

in particular that V (�2K ) ≥ V (K ).
A classical result on John’s ellipsoid is Ball’s volume ratio inequality [1,2], which

states: if K is an origin-symmetric convex body in R
n , then

V (K )

V (JK )
≤ 2n

ωn
,

with equality if and only if K is a parallelotope. The fact that equality holds in Ball’s
inequality only for parallelotopes was established by Barthe [3]. He also established
the outer volume-ratio inequality: if K is an origin-symmetric convex body in R

n ,
then

V (K )

V (LK )
≥ 2n

n!ωn
,

with equality if and only if K is a cross-polytope.
Recall that when K is an origin-symmetric convex body, L∞K is just the Löwner

ellipsoid LK . Thus, combining Theorem 7.1 with Barthe’s outer volume ratio inequal-
ity, we immediately obtain

Theorem 7.3 Suppose K ∈ Kn
o is origin-symmetric and ϕ ∈ �. Then

V (K )

V (Lϕ K )
≥ 2n

n!ωn
.
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