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Abstract Let (M3, g, e− f dμM ) be a compact three-dimensional smoothmetricmea-
sure space with nonempty boundary. Suppose that M has nonnegative Bakry–Émery
Ricci curvature and the boundary ∂M is strictly f -mean convex. We prove that there
exists a properly embedded smooth f -minimal surface� in M with free boundary ∂�

on ∂M . If we further assume that the boundary ∂M is strictly convex, then we prove
that M3 is diffeomorphic to the 3-ball B3, and a compactness theorem for the space of
properly embedded f -minimal surfaceswith free boundary in such (M3, g, e− f dμM ),
when the topology of these f -minimal surfaces is fixed.
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1 Introduction

Let (Mn, g) be a compact smooth Riemannianmanifold with boundary ∂M and f be a
smooth function onM .We denote by ∇̄, �̄ and ∇̄2 the gradient, Laplacian andHessian
operator on M with respect to g, respectively. The Bakry–Émery Ricci curvature on
M is defined by
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Ric f = Ric + ∇̄2 f, (1.1)

which is an important generalization of the Ricci curvature. The equation Ric f = κg
for some constant κ is just the gradientRicci soliton equation,which plays an important
role in the singularity analysis of Ricci flow (see [1]). Denote by dμM the volume form
onM with respect to g, then (Mn, g, e− f dμM ) is often called a smoothmetricmeasure
space. We refer the interested readers to [2] for further motivation and examples of
the smooth metric measure spaces.

Let � be a hypersurface in M and ν the unit outward normal vector of �. Define
the second fundamental form of � in M by h(X,Y ) = 〈∇̄Xν,Y 〉 for any two tangent
vector fields X and Y on �, and the mean curvature by H = tr(h). The f -mean
curvature at a point x ∈ � with respect to ν is given by

H f (x) = H(x) − 〈∇̄ f (x), ν(x)〉. (1.2)

� is called an f -minimal hypersurface in M if its f -mean curvature H f vanishes
everywhere. In some places, in order to avoid confusion, we will use H�

f instead of
H f . The most well-known example of a smooth metric measure space is the Gaussian

soliton: (Rn, g0, e− 1
4 |x |2dμ), where g0 is the standard Euclidean metric on R

n . The
Gaussian soliton satisfies Ric f = 1

2g0. Note that the f -minimal hypersurfaces in the
Gaussian soliton are self-shrinkers �n−1 ⊂ R

n which satisfy H = 1
2 〈x, ν〉. Self-

shrinkers play an important role in the mean curvature flow, as they correspond to the
self-similar solution to mean curvature flow, and also describe all possible blow ups
at a given singularity.

Recently, Colding–Minicozzi [3] and Ding–Xin [4] considered the compactness
property for the space of self-shrinkers in R

3. After that, joint with Li, the second
author [5] proved the first compactness theorem for the space of closed f -minimal
surface in closed three-dimensional smooth metric measure space with positive Ricci
curvature, generalizing the classical compactness theorem of closed minimal surfaces
in closed three manifold with positive Ricci curvature by Choi and Schoen [6]. The
result in [5] was later generalized by Cheng et al. [7,8] to the case where the ambient
space M3 is complete and noncompact. At the same time, f -minimal hypersurfaces
(and generally f -minimal submanifolds) became an active research subject; see other
related research papers [9–11].

On the other hand, in a recent beautiful work [12], Fraser and Li proved a compact-
ness theorem for the space of compact properly embedded minimal surfaces with free
boundary in compact three-dimensional manifold with nonnegative Ricci curvature
and strictly convex boundary, which is a free boundary version of the classical com-
pactness theorem by Choi and Schoen [6]. In this paper, we consider the following
natural problem: The compactness property for the space of compact properly embed-
ded f -minimal surfaces with free boundary in a compact three-dimensional smooth
metric measure space with nonempty boundary, i.e., a free boundary version of the
result in Li–Wei [5].

In Sect. 2, we first collect some variation formulas for the weighted area of the
hypersurface and the Reilly formula for the smooth metric measure space with bound-
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ary, which are important tools in this paper. In particular, we have the observation
that an f -minimal hypersurface � in (M, g) is a minimal hypersurface in (M, g̃)

with the conformal changed metric g̃ = e− 2
n−1 f g. This can be easily seen from the

first variation formula. We also calculate the transformation formulas for the mean
curvature and the second fundamental form of � in M under the conformal change
of the ambient metrics. Then we use the variation formulas and Reilly formula to
prove some properties about f -minimal hypersurface with free boundary. Under the
assumption that M has nonnegative Ric f and the boundary ∂M is strictly f -mean
convex (i.e., the f -mean curvature H f of ∂M is positive everywhere), we show that
M contains no smooth closed embedded f -minimal hypersurface in the interior of
M . Moreover, if n ≤ 7, we have an isoperimetric type inequality for � with respect
to the metric induced from g̃. In the three-dimensional case, using the nonexistence
of closed embedded f -minimal hypersurfaces in M and a general existence result
due to Li [13, Theorem 1.1], we have the following existence result for the properly
embedded f -minimal hypersurface with free boundary.

Theorem 1.1 Let (M3, g, e− f dμM ) be a compact smooth metric measure space with
nonempty boundary. Suppose that M has nonnegative Ric f and the boundary ∂M
is strictly f -mean convex. Then there exists a properly embedded smooth f -minimal
hypersurface � in M with free boundary ∂� on ∂M.

We can also prove that if M has nonnegative Ric f and the boundary is strictly
convex and strictly f -mean convex, then any properly embedded f -minimal hyper-
surface in M with free boundary is connected, the boundary ∂M is connected and the
(n − 1)-th relative integral homology group Hn−1(M, ∂M) vanishes. Based on these
properties, we have the following strong topology restriction of (M3, g, e− f dμM ).
The proof is by using a similar argument as in Meeks–Simon–Yau [14, Sect. 8], with
an argument in the proof of Theorem 2.11 in [12].

Theorem 1.2 Let (M3, g, e− f dμM ) be a compact smooth metric measure space with
nonempty boundary ∂M. Suppose that M has nonnegative Ric f and the boundary
∂M is strictly convex and strictly f -mean convex. Then M3 is diffeomorphic to the
3-ball B3.

Note that in the case where the boundary ∂M is empty, Liu [11, Theorem 3] recently
obtained some classification results for complete (M3, g, e− f dμM ) with bounded f
and nonnegative Ric f .

In Sect. 3,wefirst define the f -Steklov eigenvalueλ1, f of theDirichlet-to-Neumann
operator for general smooth metric measure space with boundary. Then we estimate
the lower bound for the first f -Steklov eigenvalue of a compact properly embedded
f -minimal hypersurface in terms of the boundary convexity of the ambient space.
Using this estimate, in n = 3 case, we can obtain an upper bound on the boundary
length L̃(∂�) of the f -minimal surface � with respect to the conformal metric g̃.
However in the free boundary case, unlike the closed case in [5, Sect. 3], we cannot
obtain a direct comparison between the first f -Steklov eigenvalue λ1, f and the first
Steklov eigenvalue λ̃1 of � with respect to the conformal metric g̃ = e− f g. We need
to go back to modify Fraser–Schoen’s [15, Sect. 2] argument to get an upper bound
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for λ1, f L̃(∂�). To show this, a crucial idea is to consider a new conformal metric
ĝ = e−2 f g on M , not the g̃. Once we have the upper bound of λ1, f L̃(∂�), the lower
bound for λ1, f then implies the upper bound for L̃(∂�).

In the last section, we use the upper bound for L̃(∂�), the isoperimetric inequality
(2.9) and the Gauss–Bonnet Theorem to obtain a uniform upper bound for the L2 norm
of the second fundamental form of � in (M3, g̃). Then we prove our main theorem
using a standard argument as in [6,12,16] with some modification.

Theorem 1.3 Let (M3, g, e− f dμM ) be a compact smooth metric measure space with
nonempty boundary ∂M. Suppose that M has nonnegative Ric f and the boundary
∂M is strictly convex and strictly f -mean convex. Then the space of compact properly
embedded f -minimal surfaces of fixed topological type in M is compact in the Ck

topology for any k ≥ 2.

As in [5], one of the key ingredients in the proof of Theorem 1.3 is the observation
that an f -minimal hypersurface � in (M, g) is a minimal hypersurface in (M, g̃)

with the conformal changed metric g̃ = e− 2
n−1 f g. However, Theorem 1.3 does not

directly follow from Fraser–Li’s [12] compactness theorem for free boundary minimal
surfaces in three-dimensional smooth metric measure space with nonnegative Ricci
curvature and strictly convex boundary. In fact, the Ricci curvature of the conformal
changed metric g̃ may not have a sign (see [5, Sect. 1]), and the boundary convexity
may also not hold again. See the transformation formula for the second fundamental
form for any hypersurface under the conformal change of the ambient metrics in Sect.
2.1.

Remark 1.1 We remark that very recently, Sharp [17] proved a smooth compactness
theorem for the space of closed embedded minimal hypersurfaces with bounded index
and bounded volume in a closed Riemannian manifold Mn+1 with positive Ricci
curvature and 2 ≤ n ≤ 6, generalizing Choi–Schoen’s [6] compactness theorem to
higher dimensions. The idea in [17] has been used by the authors and Sharp [18]
to obtain an analogous smooth compactness for the space of complete f -minimal
hypersurfaces of dimension 2 ≤ n ≤ 6 and in particular the space of self-shrinkers.
This motivates the natural question: Can we obtain a smooth compactness theorem for
the space of free boundary minimal (or f -minimal) hypersurface with bounded index
(or f -index) and bounded volume? In fact, this forms a topic of current investigation
by the authors.

2 f -Minimal Hypersurfaces with Free Boundary

2.1 Variation Properties

Let (Mn, g) be a compact Riemannian manifold with nonempty boundary ∂M and
f be a smooth function on M . Then (Mn, g, e− f dμM ) is usually called a smooth
metric measure space. Let� be a compact properly immersed hypersurface in M with
boundary ∂�. Proper means that the boundary ∂� lies in ∂M . If � is two-sided, there
exists a globally defined unit normal vector field ν on�. The second fundamental form
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of � is defined as h(ei , e j ) = −g(∇̄ei ei , ν) for any orthonormal basis {e1, . . . , en−1}
of T�. Here ∇̄ is the connection with respect to g on M . For any normal variation �s

of � with the variation vector field X = ϕν for some ϕ ∈ C∞(�), the first variation
formula for the weighted area of �

A f (�) :=
∫

�

e− f dμ�

is given by (see [19, Lemma 3.2])

d

ds

∣∣∣∣
s=0

A f (�s) =
∫

�

ϕH f e
− f dμ� +

∫
∂�

ϕ〈ν, ν∂�〉e− f dμ∂�, (2.1)

where ν∂� is the unit outwardnormal of ∂� in�.We say that� is strongly f -stationary
if d

ds

∣∣
s=0A f (�s) = 0 for any variation �s of �. Then from (2.1) we have that � is

strongly f -stationary if and only if H f = 0 on� and� meets ∂M orthogonally along
∂�. We also call such hypersurface� an f -minimal hypersurface with free boundary.

We also have the second variation formula for A f (�) (see [19, Proposition 3.5]):

d2

ds2

∣∣∣∣
s=0

A f (�s) =
∫

�

(
|∇ϕ|2 − (Ric f (ν, ν) + ‖h�‖2)ϕ2

)
e− f dμ�

−
∫

∂�

h∂M (ν, ν)ϕ2e− f dμ∂�, (2.2)

where∇ is the gradient operator on�, h� and h∂M are the second fundamental forms
of � and ∂M in M , respectively. Since � is f -minimal with free boundary, � meets
∂M orthogonally along ∂�, we have that ν is tangent to ∂M along ∂�. � is called
f -stable if d2

ds2

∣∣
s=0A f (�s) ≥ 0 for any ϕ ∈ C∞(�).

On the other hand, an f -minimal hypersurface can be viewed as a minimal hyper-
surface under a conformal metric. This can be seen as follows: Define a conformal
metric g̃ = e− 2

n−1 f g on M . Then the area of � with respect to the induced metric
from g̃ is given by

Ã(�) =
∫

�

dμ̃� =
∫

�

e− f dμ� = A f (�).

The first variation formula for Ã is given by (see, e.g., [13])

d

ds

∣∣∣∣
s=0

Ã(�s) = −
∫

�

g̃(X, H̃)dμ̃� +
∫

∂�

g̃(X, ν̃∂�)dμ̃∂�,

=
∫

�

e− f
n−1 ϕ H̃e− f dμ� +

∫
∂�

ϕ〈ν, ν∂�〉e− f dμ∂�, (2.3)

where H̃ = −H̃ ν̃ = −e
f

n−1 H̃ν is the mean curvature vector field of � in (M, g̃), and

ν̃∂� = e
f

n−1 ν∂� , dμ̃∂� = e− n−2
n−1 f dμ∂� are the unit outward normal and the volume
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form of ∂� with respect to the conformal metric g̃. Comparing (2.1) and (2.3), we
have

H̃ = e
f

n−1 H f . (2.4)

We can also calculate the relationship between the second fundamental form h̃ of�
in (M, g̃) and the second fundamental form h of � in (M, g): Choose an orthonormal
basis e1, . . . , en−1 for T� with respect to the metric induced from (M, g). Then

h(ei , e j ) = −g(∇̄ei ei , ν). Under the conformal metric g̃, {ẽ1 = e
f

n−1 e1, . . . , ẽn−1 =
e

f
n−1 en−1} and ν̃ = e

f
n−1 ν are the orthonormal basis for T� and unit normal vector

field of � in (M, g̃). Denote by ∇̃ and ∇̄ the connections with respect to g̃ and g,
respectively. Then a direct calculation gives

∇̃XY = ∇̄XY − 1

n − 1
d f (X)Y − 1

n − 1
d f (Y )X + 1

n − 1
g(X,Y )∇̄ f (2.5)

for any tangent vector fields X,Y on M . Thus the second fundamental form h̃ satisfies

h̃(ẽi , ẽ j ) = −g̃(∇̃ẽi ẽ j , ν̃)

= −g̃

(
∇̄ẽi ẽ j − 1

n − 1
d f (ẽi )ẽ j − 1

n − 1
d f (ẽ j )ẽi + 1

n − 1
g(ẽi , ẽ j )∇̄ f, ν̃

)

= −g̃

(
∇̄ẽi ẽ j + 1

n − 1
g(ẽi , ẽ j )∇̄ f, ν̃

)

= −e− 2
n−1 f g

(
e

2
n−1 f ∇̄ei e j + 1

n − 1
e

2
n−1 f g(ei , e j )∇̄ f, e

f
n−1 ν

)

= e
f

n−1

(
h(ei , e j ) − 1

n − 1
g(ei , e j )g(∇̄ f, ν)

)
. (2.6)

Letting i = j and summing from 1 to n − 1 in (2.6) can also give the relation (2.4).
Finally, since Ã(�) = A f (�) and noting that the normal direction of � in M

is unchanged under the conformal change of the ambient metric, we know that the
second variation d2

ds2
A f (�) ≥ 0 if and only if d2

ds2
Ã(�) ≥ 0 for any normal variation

�s of �. Thus � is f -stable in (M, g) if and only if � is stable in (M, g̃) in the usual
sense.

2.2 Reilly Formula for Smooth Metric Measure Space

We next exhibit the Reilly formula for a smooth metric measure space, which is an
important tool in this paper. Let (Mn, g, e− f dμM ) be a compact metric measure space
with boundary ∂M . The f -Laplacian �̄ f = �̄ − ∇̄ f · ∇̄ on M is self-adjoint with
respect to the weighted measure e− f dμ. A simple calculation gives the following
Bochner formula (see [2,20,21]) for any function u ∈ C3(M):

1

2
�̄ f |∇̄u|2 = |∇̄2u|2 + Ric f (∇̄u, ∇̄u) + g(∇̄u, ∇̄�̄ f u). (2.7)
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Using the Bochner formula (2.7) and integration by parts, Ma–Du [20] obtained the
following Reilly formula (see also [5, Sect. 2]):

0 =
∫
M

(
Ric f (∇̄u, ∇̄u) − |�̄ f u|2 + |∇̄2u|2

)
e− f dμM

+
∫

∂M

((
� f u + H f

∂u

∂ν

)
∂u

∂ν
−

〈
∇u,∇ ∂u

∂ν

〉
+ h∂M (∇u,∇u)

)
e− f dμ∂M .

(2.8)

Here, Ric f is the Bakry–Émery Ricci tensor of M ; dμM and dμ∂M are volume forms
on M and ∂M respectively. �̄ f , ∇̄ and ∇̄2 are the f -Laplacian, gradient and Hessian
onM respectively;� f = �−∇ f ·∇ and∇ are the f -Laplacian and gradient operators
on ∂M ; ν is the unit outward normal of ∂M ; H f and h∂M are the f -mean curvature
and the second fundamental form of ∂M in M with respect to ν respectively. Note that
the formula (2.8) also holds for piecewise smooth boundary ∂M = ∪k

i=1�i .

2.3 Some Properties of f -Minimal Hypersurfaces with Free Boundary

Lemma 2.1 Let (Mn, g, e− f dμM ) be a compact smooth metric measure space with
nonempty boundary. Suppose that M has nonnegative Ric f and the boundary ∂M
is strictly f -mean convex. Then M contains no smooth closed embedded f -minimal
hypersurface. Moreover, if n ≤ 7, then there exists a constant c > 0 such that

Ṽ ol(�) ≤ c Ṽ ol(∂�) (2.9)

for any smooth immersed minimal hypersurface � in M, where the volumes Ṽ ol are
measured with respect to metrics on � and ∂� induced from the conformal metric

g̃ = e− 2
n−1 f g on M.

Proof For the first statement, suppose that there exists a smooth closed embedded
f -minimal hypersurface � in M . Since H ∂M

f > 0 on ∂M and H�
f = 0 on �, then

� ∩ ∂M = ∅ and d(�, ∂M) = d > 0. Let γ : [0, d] → M be the minimizing
geodesic (parameterized by arc-length) realizing the distance between � and ∂M .
From the first variation formula for arc-length, we can see that γ meets � and ∂M
orthogonally. Choose an orthonormal basis e1, . . . , en−1 for Tγ (0)� and let Vi be the
parallel transport of ei along γ . The second variation formula for arc-length gives that

0 ≤
n−1∑
i=1

δ2γ (Vi , Vi ) =
n−1∑
i=1

∫ d

0

(
|V ′

i (s)|2 − |Vi (s)|2K (γ ′(s), Vi (s))
)
ds

+
n−1∑
i=1

(〈∇̄Vi (d)Vi (d), γ ′(d)〉 − 〈∇̄Vi (0)Vi (0), γ
′(0)〉)

= −
∫ d

0
Ric(γ ′(s), γ ′(s))ds − H�(γ (0)) − H ∂M (γ (d))
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= −
∫ d

0
Ric f (γ

′(s), γ ′(s))ds − H�(γ (0)) − H ∂M (γ (d))

+
∫ d

0
∇̄2 f (γ ′(s), γ ′(s))ds, (2.10)

where K (u, v) is the sectional curvature of the plane spanned by u and v in M . Note
that γ ′(d) is the unit outward normal at γ (d) ∈ ∂M and γ ′(0) is the unit inward
normal at γ (0) ∈ �, so in the second equation of (2.10) we used

H ∂M (γ (d)) = −
n−1∑
i=1

〈∇̄ei ei , γ
′(d)〉, H�(γ (0)) =

n−1∑
i=1

〈∇̄ei ei , γ
′(0)〉.

Using the facts that

d

ds
f (γ (s)) = 〈∇̄ f (γ (s)), γ ′(s)〉,

d2

ds2
f (γ (s)) = ∇̄2 f (γ ′(s), γ ′(s)),

and by integration by parts, we deduce that

0 ≤
n−1∑
i=1

δ2γ (Vi , Vi ) = −
∫ d

0
Ric f (γ

′(s), γ ′(s))ds − H�(γ (0)) − H ∂M (γ (d))

+ 〈∇̄ f (γ (d)), γ ′(d)〉 − 〈∇̄ f (γ (0)), γ ′(0)〉

= −
∫ d

0
Ric f (γ

′(s), γ ′(s))ds − H�
f (γ (0)) − H ∂M

f (γ (d))

< 0, (2.11)

where in the second equality we used the facts

H ∂M
f (γ (d)) = H ∂M (γ (d)) − 〈∇̄ f (γ (d)), γ ′(d)〉
H�

f (γ (0)) = H�(γ (0)) + 〈∇̄ f (γ (0)), γ ′(0)〉

as γ ′(d) ⊥ Tγ (d)M pointing outward and γ ′(0) ⊥ Tγ (0)� pointing inward; in the last
inequality we used the condition Ric f ≥ 0 in M , H ∂M

f > 0 on ∂M and H�
f = 0

on �. This is a contradiction. Therefore, M contains no smooth closed embedded
f -minimal hypersurface.
For the second statement, suppose that � is an f -minimal hypersurface in (M, g)

with free boundary, then � is a minimal hypersurface in (M, g̃) with free boundary,

where g̃ = e− 2
n−1 f g is a conformal metric on M . Denote by H̃ the mean curvature

of any hypersurface in M with respect to the conformal metric g̃, then from (2.4)

we have the relation H̃ = e
1

n−1 f H f . Therefore the first statement in this lemma is
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equivalent to that (M, g̃) contains no smooth closed embedded minimal hypersurface.
By assumption H f > 0 on ∂M , we have H̃ > 0 on ∂M . Then the manifold (M, g̃)
with boundary ∂M satisfies the condition of Theorem 2.1 in [22]. The conclusion of
Theorem 2.1 in [22] implies that there exists a constant c > 0 such that any smooth
hypersurface � in (M, g̃) satisfies

Ṽ ol(�) ≤ c Ṽ ol(∂�) +
∫

�

|H̃ |dμ̃�.

In particular, for any smooth f -minimal hypersurface � in (M, g) (which is minimal
in (M, g̃)), the above inequality implies Ṽ ol(�) ≤ c Ṽ ol(∂�). ��

Using Lemma 2.1 and [13, Theorem 1], we can prove Theorem 1.1, which is an
existence result of f -minimal surface with free boundary in (M3, g, e− f dμM ).

Proof of Theorem 1.1 From Lemma 2.1 we know that (M3, g) contains no smooth
closed embedded f -minimal surface in the interior of M , which is equivalent to that
(M3, g̃) (with g̃ = e− f g) contains no smooth closed embeddedminimal surface in the
interior of M . Then Theorem 1 in [13] implies that there exists a properly embedded
smooth minimal surface � in (M3, g̃) with free boundary ∂� on ∂M , from which the
assertion follows. ��
Lemma 2.2 Let (Mn, g, e− f dμM ) be a compact smooth metric measure space with
nonempty boundary ∂M. Suppose that M has nonnegative Ric f and the boundary ∂M
is strictly convex and strictly f -mean convex. Then any two-sided properly immersed
f -minimal hypersurface � in M with free boundary ∂� on ∂M must be f -unstable.
Moreover if M is orientable, then the (n − 1)-th relative integral homology group
Hn−1(M, ∂M) vanishes.

Proof The first statement follows from taking ϕ ≡ 1 in the second variation formula
(2.2) and the curvature assumption Ric f ≥ 0 on M and the strictly convexity of the
boundary ∂M . Recall that� is f -unstable if and only if� is unstable in (M, g̃). Then
the second statement follows a similar argument as in the proof of Lemma 2.1 in [12],
where we used the assumption ∂M is strictly f -mean convex and Lemma 2.1. ��

The next lemma is a connectedness principle for properly embedded f -minimal
hypersurfaces with free boundary.

Lemma 2.3 Let (Mn, g, e− f dμM ) be a compact smooth metric measure space with
nonempty boundary ∂M. Suppose that M has nonnegative Ric f and the boundary ∂M
is strictly convex. Then any two properly embedded orientable f -minimal hypersur-
faces�1 and�2 in M with free boundaries on ∂M must intersect, i.e.,�1∩�2 �= Ø. In
other words, any properly embedded f -minimal hypersurface in M with free boundary
is connected.

Proof Suppose that �1 and �2 are disjoint. Since Hn−1(M, ∂M) = 0, there exists
a compact connected domain � in M with piecewise smooth boundary ∂� =
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�1 ∪ �2 ∪ �, where � lies in ∂M . Consider the following boundary value problem
on �:

⎧⎪⎪⎨
⎪⎪⎩

�̄ f u = 0, in �,

u = 0, on �1,

u = 1, on �2,
∂u
∂ν

= 0, on �,

(2.12)

where ν is the outward unit normal on � ⊂ ∂M . By the free boundaries condition of
�1 and �2, there exists a smooth function ϕ ∈ C∞(�) with

⎧⎨
⎩

ϕ = 0, on �1,

ϕ = 1, on �2,
∂ϕ
∂ν

= 0, on �.

Let û = u − ϕ. Then the above problem (2.12) is equivalent to the following

⎧⎨
⎩

�̄ f û = −�̄ f ϕ, in �

û = 0, on �1 ∪ �2,
∂ û
∂ν

= 0, on �.

(2.13)

Since �̄ f ϕ ∈ C∞(�), the classical results for elliptic equations with homogeneous
boundary value imply that (2.13) has a solution û ∈ C0,α(�)∩C∞(�\(∂�1∪∂�2)),
and therefore u = û + ϕ ∈ C0,α(�) ∩ C∞(� \ (∂�1 ∪ ∂�2)) is a solution to (2.12).
Apply u and � to the Reilly formula (2.8), and we obtain

0 ≥
∫

�

Ric f (∇̄u, ∇̄u)e− f dμM +
∫

�

h∂M (∇u,∇u)e− f dμ∂M , (2.14)

where we used that �1 and �2 are f -minimal and u is constant on �1 and �2. Since
Ric f is nonnegative in � and � ⊂ ∂M is strictly convex, (2.14) implies u is constant
on �, which is a contradiction since u = 0 on �1 and u = 1 on �2. ��
Lemma 2.4 Let (Mn, g, e− f dμM ) be a compact smooth metric measure space with
nonempty boundary ∂M. Suppose that M has nonnegative Ric f and the boundary
∂M is strictly f -mean convex. Then ∂M is connected.

Proof This can be proved by a similar argument as in Lemma 2.3: Suppose that ∂M
is not connected. Let � be one of its components. Choose an f -harmonic function u
(i.e., �̄ f u = 0 in M) which is equal to 0 on � and is equal to one on ∂M \ �. The
existence of u is given by the classical results for elliptic equations as in the proof of
Lemma 2.3. Then under the curvature assumption of M and ∂M , the Reilly formula
(2.8) implies that u is a constant, which is a contradiction. ��

Using similar arguments in [5, Lemma 6] and [23, Theorem 2], we have the fol-
lowing corollary.
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Corollary 2.5 Let (Mn, g, e− f dμM ) be a compact orientable smooth metric mea-
sure space with nonempty boundary ∂M. Suppose that M has nonnegative Ric f and
the boundary ∂M is strictly f -mean convex and strictly convex. If � be a properly
embedded orientable f -minimal hypersurface in M with free boundary on ∂M, then
� divides M into two components �1 and �2.

We finish this section with the Proof of Theorem 1.2.

Proof of Theorem 1.2 First, we assume that M is orientable. Since M has nonnegative
Ric f and the boundary ∂M is strictly f -mean convex, Lemma 2.1 implies thatM con-
tains no smooth closed embedded f -minimal surface. This is equivalent to that (M, g̃)
contains no smooth closed embedded minimal surface. In particular, if π : M̃ → M
is the universal cover of M , then (M̃, π−1g̃) contains no embedded orientable two
sphere of least weighted area in its isotopy class. As in the proof of Theorem 3 in [14],
we conclude that every two sphere in M bounds a ball and M is irreducible. Since the
boundary ∂M is nonempty and (M, g̃) contains no closed embedded minimal surface,
Proposition 1 in [14] implies that M is a handlebody. From the strictly convexity and
strictly f -mean convexity of ∂M , Lemma 2.2 gives that H2(M, ∂M) vanishes and
Lemma 2.4 gives that ∂M is connected, which imply that M is diffeomorphic to the 3-
ball B3. IfM3 is nonorientable, then the orientable double cover M̃ is diffeomorphic to
B3. Thus ∂M is homeomorphic to theRP

2, because ∂ M̃ ≈ S2 is a double cover of ∂M .
However since ∂M is the boundary of a compact manifold, all the Stiefel–Whitney
numbers of ∂M vanish [24], which contradicts the facts ω1(RP

2) = ω2(RP
2) = 1.

So M is orientable and diffeomorphic to the 3-ball B3. ��

3 Estimate for the f -Steklov Eigenvalue and Boundary Length of
f -Minimal Surfaces

Comparing with the definition of classical Steklov eigenvalue (see [15, Sect. 2]), we
define the following f -Steklov eigenvalue. Let (�, g) be an m-dimensional compact
Riemannian manifold with nonempty boundary ∂� and f be a smooth function on
�. The f -Laplacian � f = �−∇ f · ∇ is defined as before with respect to the metric
g. Given a smooth function u ∈ C∞(∂�), by the classical existence result for elliptic
PDE, there exists the f -harmonic extension û of u with

{
� f û = 0, in �,

û = u, on ∂�.
(3.1)

Let ν be the unit outward normal of ∂�. The Dirichlet-to-Neumann map is the map
L : C∞(∂�) → C∞(∂�) given by

Lu = ∂ û

∂ν
, (3.2)

which is a nonnegative self-adjoint operator with respect to the weighted volume form
e− f dμ∂� on ∂�. Thus there exist discrete eigenvalues λ0, f < λ1, f ≤ λ2, f ≤ · · ·+∞
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of the operator L . Clearly λ0, f = 0 because the constant function lies in the kernel of
L . The first nonzero one λ1, f can be characterized by

λ1, f = inf

{∫
�

|∇û|2e− f dμ�∫
∂�

u2e− f dμ∂�

: u ∈ C∞(∂�),

∫
∂�

ue− f dμ∂� = 0

}
. (3.3)

The following proposition gives a positive lower bound for λ1, f when � is
a compact properly embedded f -minimal hypersurface with free boundary in
(Mn, g, e− f dμM ).

Proposition 3.1 Let (Mn, g, e− f dμM ) be a compact orientable smooth metric mea-
sure space with nonempty boundary ∂M. Suppose that M has nonnegative Ric f and
the boundary ∂M is strictly convex (h∂M (u, u) ≥ κ > 0 for any tangent unit vector
u ∈ T ∂M) and strictly f -mean convex. Let � be a properly embedded f -minimal
hypersurface in M with free boundary on ∂M. Suppose that either � is orientable or
π1(M) is finite, then the first f -Steklov eigenvalue λ1, f (�) of the f -Laplacian on �

satisfies λ1, f ≥ κ/2.

Proof We use a similar argument as in the Proof of Theorem 3.1 in [12] (see also
[25,26]). To explain the difference and for the convenience of the readers, we give a
complete proof here. The Reilly formula (2.8) again plays an important role.

Firstly, we assume that � is orientable. By the Lemma 2.3 and Corollary 2.5, we
know that� is connected and� dividesM into two connected components�1 and�2.
Without loss of generality, we consider � = �1 with boundary ∂� = � ∪ �, where
� ⊂ ∂M . Let u ∈ C∞(∂�) be the eigenfunction corresponding to the first nonzero f -
Steklov eigenvalue λ1, f . Then there exists an f -harmonic extension u1 ∈ C∞(�) of
u with��

f u1 = 0 in� and ∂u1
∂ν∂�

= λ1, f u on ∂�. Here ν∂� is the unit outward normal
of ∂� in �. Since ∂� = ∂�, we can have an f -harmonic extension u2 ∈ C∞(�) of
u ∈ C∞(∂�) to �. Now let û be the solution of the following problem,

⎧⎨
⎩

�̄�
f û = 0, in �,

û = u1, on �,

û = u2, on �.

Since the boundary ∂� is piecewise smooth, the standard results on elliptic PDE
implies that û exists and û ∈ C1,α(�) ∩ C∞(� \ ∂�) for α ∈ (0, 1). Applying the
Reilly formula (2.8) to û and noting that � ⊂ M is a domain of M with boundary
∂� = � ∪ �, we obtain

0 =
∫

�

(
Ric f (∇̄û, ∇̄û) − |�̄�

f û|2 + |∇̄2û|2
)
e− f dμ�

+
∫

∂�

((
�∂�

f û + H ∂�
f

∂ û

∂ν

)
∂ û

∂ν
−

〈
∇û,∇ ∂ û

∂ν

〉
+ h∂�(∇û,∇û)

)
e− f dμ∂�.

≥
∫

�

(
H�

f

(
∂ û

∂ν�

)2

−
〈
∇û,∇ ∂ û

∂ν�

〉
+ h�(∇û,∇û)

)
e− f dμ�
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+
∫

�

(
H�

f

(
∂ û

∂ν�

)2

−
〈
∇û,∇ ∂ û

∂ν�

〉
+ h�(∇û,∇û)

)
e− f dμ�

≥ −
∫

∂�

∂ û

∂ν∂�

∂ û

∂ν�

e− f dμ∂� −
∫

∂�

∂ û

∂ν∂�

∂ û

∂ν�

e− f dμ∂� +
∫

�

κ|∇û|2e− f dμ�,

(3.4)

where in the first inequality we used the nonnegativity of Ric f and �̄�
f û = 0 in �; in

the second inequality we used H�
f = 0, H�

f > 0, h� ≥ κ ,��
f u1 = 0,��

f u2 = 0 and

integration by parts. We also assumed
∫
�
h�(∇û,∇û)e− f dμ� ≥ 0 without loss of

generality, for otherwise, we can choose� = �2. Because� meets ∂M orthogonally,
we have ν� = ν∂�, ν� = ν∂� on ∂� = ∂�. Then (3.4) implies

κ

∫
�

|∇û|2e− f dμ� ≤ 2
∫

∂�

∂ û

∂ν∂�

∂ û

∂ν∂�

e− f dμ∂�

= 2λ1, f

∫
∂�

û
∂ û

∂ν∂�

e− f dμ∂�

= 2λ1, f

∫
�

|∇û|2e− f dμ� . (3.5)

Since û is not a constant function on �, it follows from (3.5) that λ1, f ≥ κ/2.
For the case where π1(M) is finite, let M̃ be the universal cover of M . Then M̃

is compact and satisfies the same curvature assumption as M . Let �̃ = π−1(�).
Since M̃ is simply connected and �̃ is properly embedded in M̃ , both M̃ and �̃ are
orientable. Then λ1, f (�̃) ≥ κ/2 by the conclusion in the first case. Note that the lift
of the first f -Steklov eigenfunction is also an f -Steklov eigenfunction on �̃, thus
λ1, f (�) ≥ λ1, f (�̃) ≥ κ/2.

In the three-dimensional case, let �2 be a compact properly embedded f -minimal
surface in (M3, g, e− f dμM ). We will use the above estimate on the first f -Steklov
eigenvalue to obtain an a priori upper bound on the length of the boundary ∂� with
respect to the metric induced from the conformal metric g̃ = e− f g on M3.

Corollary 3.2 Under the assumption of Proposition 3.1, in the n = 3 case, the length
L̃(∂�) of ∂� with respect to the induced metric from (M3, g̃) satisfies

L̃(∂�) ≤ 4π(γ + k)

κ
e
7
2 maxM f , (3.6)

where γ is the genus of � and k is the number of the boundary components of ∂�. In
other words, we have a uniform upper bound of L̃(∂�) in terms of the topology of �,
the boundary convexity κ of ∂M and the bound of f on M.

Proof Unlike the conformal metric g̃ = e− f g in Sect. 2.1, we consider another
conformal metric ĝ = e−2 f g on M3 for a moment. This is crucial in the following
proof. Then dμ̂� = e−2 f dμ� , dμ̂∂� = e− f dμ∂� . We modify the argument in
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[15, Theorem 2.3]. Recall that any compact surface with boundary can be properly
conformally branched cover the disk D. Precisely, there exists a proper conformal
branched cover ϕ : (�, ĝ) → D of degree at most γ + k (see [27]). Here we denote
by the same ĝ as the induced metric on � from (M3, ĝ). Using the automorphisms of
the disk, we can further assume that the map ϕ satisfies (see, e.g., [26])

∫
∂�

ϕi dμ̂∂� = 0, i = 1, 2.

Then ϕi , i = 1, 2 satisfies
∫
∂�

ϕi e− f dμ∂� = 0. Let ϕ̂i be the f -harmonic extension
of ϕi |∂� w.r.t. the metric induced from (M, g), i.e., � f ϕ̂

i = 0, i = 1, 2. Here � f is
the f -Laplacian w.r.t. g. Then by the variational characterization (3.3) of λ1, f (�), we
have

λ1, f (�)

∫
∂�

(ϕi )2e− f dμ∂� ≤
∫

�

|∇ϕ̂i |2ge− f dμ� ≤
∫

�

|∇ϕi |2ge− f dμ�

=
∫

�

e3 f |∇ϕi |2ĝdμ̂� ≤ e3maxM f
∫

�

|∇ϕi |2ĝdμ̂�,

(3.7)

where in the second inequalityweused the fact that the f -harmonic functionminimizes
theweightedDirichlet energy in the space of smooth functionswith the same boundary
values on ∂�. Since ϕ : (�, ĝ) → D is conformal,

2∑
i=1

∫
�

|∇ϕi |2ĝdμ̂� = 2A(ϕ(�)) ≤ 2π(γ + k), (3.8)

where γ is the genus of � and k is the number of the boundary components of ∂�.
On the other hand, since ϕ is a proper map, we have ϕ(∂�) ⊂ ∂D. Thus

2∑
i=1

∫
∂�

(ϕi )2e− f dμ∂� =
2∑

i=1

∫
∂�

(ϕi )2dμ̂∂� =
∫

∂�

dμ̂∂�

=
∫

∂�

e− f
2 dμ̃∂� ≥ e− 1

2 maxM f L̃(∂�), (3.9)

where L̃(∂�) = ∫
∂�

dμ̃∂� is the length of ∂� with respect to the conformal metric
g̃. Combining (3.7), (3.8), (3.9) and Proposition 3.1, we obtain

L̃(∂�) ≤ 2π(γ + k)

λ1, f (�)
e
7
2 maxM f ≤ 4π(γ + k)

κ
e
7
2 maxM f . (3.10)

��
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4 Proof of Theorem 1.3

By Theorem 1.2, under the curvature assumption of M and convexity of ∂M , M3 is
diffeomorphic to the 3-ball B3. ThenM is simply connected. Let� be a compact prop-
erly embedded f -minimal surface in (M3, g) with free boundary ∂�. As explained
in Sect. 2.1, � is a compact properly embedded minimal surface in (M, g̃) with free
boundary. We still denote by g̃ the metrics on � and ∂� induced from (M3, g̃). Then
from the Gauss equation and the minimality of � in (M, g̃), we have

1

2
‖h̃�(x)‖2 = K̃ M (x) − K̃�(x) (4.1)

for any x ∈ �, where h̃� is the second fundamental form of � in (M, g̃),
K̃ M (x), K̃�(x) are the sectional curvatures of the plane Tx� w.r.t. (M, g̃) and (�, g̃)
respectively. Integrating (4.1) over � w.r.t. g̃ and using the Gauss–Bonnet theorem,
we have

1

2

∫
�

‖h̃�‖2dμ̃� =
∫

�

K̃ M (x)dμ̃� +
∫

∂�

kg̃dμ̃∂� − 2πχ(�), (4.2)

where kg̃ is the geodesic curvature of the curve (∂�, g̃). Since � meets ∂M orthogo-
nally, the geodesic curvature kg̃ is equal to h̃∂M (ṽ, ṽ) for the unit tangent vector ṽ of
(∂�, g̃). By the transformation formula (2.6) for the second fundamental form under
the conformal change of the ambient metrics,

h̃∂M (ṽ, ṽ) = e
f
2

(
h(v, v) − 1

2
g(∇̄ f, ν)

)
, (4.3)

where v = e− f
2 ṽ is the unit tangent vector of (∂�, g). Thus

1

2

∫
�

‖h̃�‖2dμ̃� ≤ C Ã(�) + C L̃(∂�) − 2π(2 − 2k − γ )

≤ C L̃(∂�) − 2π(2 − 2k − γ ) ≤ C, (4.4)

where in the second inequality we used the isoperimetric inequality in Lemma 2.1,
and in the third inequality we used Corollary 3.2. Because the curvature K̃ M involves
up to second derivatives of f , the geodesic curvature kg̃ involves up to first order
derivatives of f , then the constant C in (4.4) depends only on the topology of �, the
geometry of the ambient manifold (M, g) and the bounds on ‖ f ‖C2 .

Now let {�i } be a sequence of compact properly embedded f -minimal surfaces
in (M3, g) with free boundary of fixed topology type. Then {�i } is a sequence of
compact properly embedded minimal surfaces in (M3, g̃) with free boundary of fixed
topology type. Using the same argument as in [12, Sect. 6] (see also [6,16]), we can
find a subsequence, still denoted by {�i }, and a finite point {x1, . . . , xl} such that �i

converges in C∞ to some �0 in M \ Ul
j=1Br (x j ) for any small r > 0. Moreover,

� = �0 ∪ {x1, . . . , xl} is a compact properly embedded minimal surface with free
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boundary in (M3, g̃). In order to show that �i converges in C∞ to � even across the
points {x1, . . . , xl}, we need to show that � as the limit of �i has only multiplicity
one. As the standard argument in [6], we want to find some test function on�i to show
that λ1, f (�i ) → 0 as i → ∞, if the multiplicity of � is bigger than one. In fact, we
can use the same test function as in [6]. As �i converges to �0 in M \Ul

j=1Bε2(x j ),

by Theorem 5.1 in [12] and (4.4), for sufficiently large i , �i \Ul
j=1Bε2(x j ) is locally

a union of graphs over �0. Suppose that the number of graphs is bigger than one, then
the top graph is disconnectedwith the other graphs. Thus�i \Ul

j=1Bε2(x j ) = �1∪�2,
where �1, �2 are disjoint. Then define the Lipschitz function ϕ on �i :

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, on �1 \Ul
j=1Bε(x j )

ln r j−ln ε2

ln ε−ln ε2
, on each �1 ∩ (Bε(x j ) \ Bε2(x j ))

0, on �i ∩Ul
j=1Bε2(x j )

− ln r j−ln ε2

ln ε−ln ε2
, on each �2 ∩ (Bε(x j ) \ Bε2(x j ))

−1, on �2 \Ul
j=1Bε(x j ),

(4.5)

where r j is the distance function from the point x j on (M3, g̃). Define

ϕ̄ =
∫
∂�i

ϕe− f dμ∂�i∫
∂�i

e− f dμ∂�i

.

Then ψ = ϕ − ϕ̄ satisfies ∫
∂�i

ψe− f dμ∂�i = 0. (4.6)

The weighted Dirichlet energy of ψ on �i satisfies

∫
�i

|∇ψ |2ge− f dμ�i =
∫

�i

e f |∇ψ |2g̃dμ̃�i ≤ emaxM f
∫

�i

|∇ψ |2g̃dμ̃�i → 0

as ε → 0, where we used a same calculation as in [6,12], using the coarea formula and
monotonicity formula for minimal surfaces with free boundary. On the other hand,
since ∂�1, ∂�2 both cover ∂�0 at least once, we obtain

∫
∂�i

e− f dμ∂�i ≥
∫

∂�0

e− f dμ∂�0 − η , (4.7)

for any arbitrarily small η > 0 as ε → 0. Clearly, by the definition of ψ ,∫
∂�i

ψ2e− f dμ∂�i tends to a constant C as ε → 0. Using (4.7), such constant C
is nonzero, because as ε → 0, we obtain

∫
∂�i

ψ2e− f dμ∂�i ≈ c1

∫
∂�1

e− f dμ∂�1 + c2

∫
∂�2

e− f dμ∂�2

≥ (c1 + c2)
∫

∂�0

e− f dμ∂�0 − (c1 + c2)η > 0,
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where c1, c2 are positive constants. Therefore by the variational characterization (3.3)
of λ1, f (�i ), we have

λ1, f (�i ) ≤
∫
�i

|∇ψ |2ge− f dμ�i∫
∂�i

ψ2e− f dμ∂�i

→ 0,

which contradicts with the conclusion of Proposition 3.1. So � as the limit of �i has
only multiplicity one. The remaining thing is just using the Allard regularity theorem
[28] for minimal surfaces with free boundary to conclude that �i converges in C∞ to
� even across the points {x1, . . . , xl}. Then we complete the proof of Theorem 1.3.
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