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Abstract We study the existence of left invariant closed G2-structures defining a
Ricci soliton metric on simply connected nonabelian nilpotent Lie groups. For each
one of theseG2-structures, we show long time existence and uniqueness of solution for
the Laplacian flow on the noncompact manifold. Moreover, considering the Laplacian
flow on the associated Lie algebra as a bracket flow on R

7 in a similar way as in
Lauret (Commun Anal Geom 19(5):831–854, 2011) we prove that the underlying
metrics g(t) of the solution converge smoothly, up to pull-back by time-dependent
diffeomorphisms, to a flat metric, uniformly on compact sets in the nilpotent Lie
group, as t goes to infinity.
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1 Introduction

A G2-structure on a 7-dimensional manifold M can be characterized by the existence
of a globally defined 3-form ϕ, which is called the G2 form or the fundamental 3-form
and it can be described locally as

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

with respect to some local basis {e1, . . . , e7} of the 1-forms on M .
There are many different G2-structures attending to the behavior of the exterior

derivative of the G2 form [2,13]. In the following, we will focus our attention on
closed G2-structures which are characterized by the closure of the G2 form.

The existence of a G2 form ϕ on a manifold M induces a Riemannian metric gϕ

on M given by

gϕ(X,Y )vol = 1

6
ιXϕ ∧ ιYϕ ∧ ϕ, (1)

for any vector fields X,Y on M , where vol is the volume form on M .
By [3,6] a closed G2-structure on a compact manifold cannot induce an Einstein

metric, unless the induced metric has holonomy contained in G2. It is still an open
problem to see if the same property holds on noncompact manifolds. For the homo-
geneous case, a negative answer has been recently given in [12]. Indeed, we showed
that if a solvable Lie algebra has a closed G2-structure then the induced inner product
is Einstein if and only if it is flat.

Natural generalizations of Einstein metrics are given by Ricci solitons, which have
been introduced by Hamilton in [14]. A natural question is thus to see if a closed G2-
structure on a noncompact manifold induces a (non-Einstein) Ricci soliton metric.
In this paper we give a positive answer to this question, showing that there exist
7-dimensional simply connected nonabelian nilpotent Lie groups with a closed G2-
structure which determines a left invariant Ricci soliton metric.

All known examples of nontrivial homogeneous Ricci solitons are left invariant
metrics on simply connected solvable Lie groups, whose Ricci operator satisfies the
condition

Ric(g) = λI + D,

for some λ ∈ R and some derivation D of the corresponding Lie algebra. The left
invariant metrics satisfying the previous condition are called nilsolitons if the Lie
groups are nilpotent [19]. Not all nilpotent Lie groups admit nilsoliton metrics, but if a
nilsoliton exists, then it is unique up to automorphism and scaling [19]. The nilsolitons
metrics are strictly related to left invariant Einstein metrics on solvable Lie groups.
Indeed, by [20], a simply connected nilpotent Lie group N admits a nilsoliton metric
if and only if its Lie algebra n is an Einstein nilradical, which means that n has an
inner product 〈·, ·〉 such that there is a metric solvable extension of (n, 〈·, ·〉) which is
Einstein. According to [15,21], such an Einstein metric has to be of standard type and
it is unique, up to isometry and scaling.

Seven dimensional nilpotent Lie algebras admitting a closedG2-structure have been
recently classified in [8], showing that there are twelve isomorphism classes, including
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the abelian case which has a trivial nilsoliton because it is flat. A classification of 7-
dimensional nilpotent Lie algebras admitting a nilsoliton has been recently given in
[11], but the explicit expression of the nilsoliton is not written in all the cases that we
need.

Using the classification in [8] and Table 1 in [9], we have that, up to isomorphism,
there is a unique nilpotent Lie algebra with a closed G2 form but not admitting nil-
solitons. It turns out that all the other ten nilpotent Lie algebras have a nilsoliton,
and we can determine explicitly the nilsoliton except for the Lie algebra n10 which is
4-step nilpotent (see also [9–11]). In Proposition 3.4 we prove that the Lie algebra ni
(i = 3, 5, 7, 8, 11) has a nilsoliton but no closed G2-structure inducing the nilsoliton.
Moreover, as we mentioned before, the existence of a nilsoliton on the Lie algebra n10
was shown in [9, Example 2], butwe cannot explicit its nilsoliton. Therefore, it remains
open the question of whether the Lie algebra n10 admits a closed G2 form inducing
a nilsoliton or not. This is the reason why the result of Theorem 3.6 is restricted to
s-step nilpotent Lie algebras, with s = 2, 3. In fact, in Theorem 3.6, we show that, up
to isomorphism, there are exactly four s-step nilpotent Lie algebras (s = 2, 3) with a
closed G2 form defining a nilsoliton.

The Ricci flow became a very important issue in Riemannian geometry and has
been deeply studied. The same techniques are also useful in the study of the flow
involving other geometrical structures, like for example, the Kähler Ricci flow that
was studied by Cao in [5].

For any closed G2-structure on a manifold M , in [3] Bryant introduced a natural
flow, the so-called Laplacian flow, given by

{
d
dt ϕ(t) = �tϕ(t),
ϕ(0) = ϕ0,

where ϕ(t) is a closed G2 form on M , and �t is the Hodge Laplacian operator of the
metric determined by ϕ(t). If the initial 3-form ϕ0 is closed, then a solution ϕ(t) of the
flow remains closed, and the de Rham cohomology class [ϕ(t)] is constant in t . The
short time existence and uniqueness of solution for the Laplacian flow of any closed
G2-structure, on a compact manifold M , has been proved by Bryant and Xu in the
unpublished paper [4]. Also, long time existence and convergence of the Laplacian
flow starting near a torsion-freeG2-structurewas proved in the unpublished paper [29].

In Sect. 4 (Theorems 4.2, 4.7, 4.8 and 4.10) we show long time existence of the
solution for the Laplacian flow on the four nilpotent Lie groups admitting an invariant
closed G2-structure which determines the nilsoliton (see Theorem 3.6).

To our knowledge, these are the first examples of noncompact manifolds having a
closed G2-structure with long time existence of solution.

Since the Laplacian flow is invariant by diffeomorphisms and the initialG2-form ϕ0
is invariant, the solution ϕ(t) of the Laplacian flow has to be also invariant. Therefore,
we show that the Laplacian flow is equivalent to a system of ordinary differential
equations which admits a unique solution. We prove that the solution for the four
manifolds is defined for any t ∈ [0,+∞). Moreover, considering the Laplacian flow
on the associated Lie algebra as a bracket flow on R

7, in a similar way as Lauret did
in [23] for the Ricci flow, we show that the underlying metrics g(t) of the solution
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converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat
metric, uniformly on compact sets in the nilpotent Lie group as t goes to infinity.
Indeed, by [23, Proposition 2.1] the convergence of the metrics in the C∞ uniformly
on compact sets in R

7 is equivalent to the convergence of the nilpotent Lie brackets
μt in the algebraic subset of nilpotent Lie bracketsN ⊂ (�2

R
7)∗ ⊗R

7 with the usual
vector space topology.

2 Preliminaries on Nilsolitons

In this section, we recall some definitions and results about nontrivial homogeneous
Ricci solitonmetrics and, in particular, on nilsolitons. Formore details, see for instance
[7,17,19].

A complete Riemannian metric g on a manifold M is said to be a Ricci soliton if
its Ricci curvature tensor Ric(g) satisfies the following condition

Ric(g) = λg + LX g,

for some real constant λ and a complete vector field X on M , where LX denotes
the Lie derivative with respect to X . If in addition X is the gradient vector field of
a smooth function f : M → R, then the Ricci soliton is said to be of gradient type.
Ricci solitons are called expanding, steady or shrinking depending on whether λ < 0,
λ = 0 or λ > 0, respectively.

In the next section we will focus our attention on nilsolitons, that is, a particular
type of nontrivial homogeneous Ricci soliton metrics.

A Ricci soliton metric g on M is called trivial if g is an Einstein metric or g is the
product of a homogeneous Einstein metric with the Euclidean metric; and g is said to
be homogeneous if its isometry group acts transitively on M , and hence g has bounded
curvature [22].

In order to characterize the nontrivial homogeneous Ricci soliton metrics, we note
that any homogeneous steady or shrinking Ricci soliton metric g of gradient type is
trivial. Indeed, if g is steady, one can check that g is Ricci flat, and so by [1] g must be
flat. If g is shrinking, then by the results in [25, Theorem 1.2] and in [27], (M, g) is
isometric to a quotient of P × R

k , where P is some homogeneous Einstein manifold
with positive scalar curvature. Now, we should notice that this last result for shrinking
homogeneous Ricci soliton metrics is also true for homogeneous Ricci solitons of
gradient type [27]. Moreover, if a homogeneous Ricci soliton g on a manifold M is
expanding, then by [16] M must be noncompact; and from [26] all Ricci solitons
(homogeneous or nonhomogeneous) on a compact manifold are of gradient type.
Therefore, as it was noticed by Lauret in [22] we have the following

Lemma 2.1 ([22]) Let g be a nontrivial homogeneous Ricci soliton on a manifold M.
Then, g is expanding and it cannot be of gradient type. Moreover, M is noncompact.

All known examples of nontrivial homogeneous Ricci solitons are left invariant
metrics on simply connected solvable Lie groups whose Ricci operator is a multiple
of the identity modulo derivations, and they are called solsolitons or, in the nilpotent
case, nilsolitons.
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Let N be a simply connected nilpotent Lie group, and denote by n its Lie algebra.
A left invariant metric g on N is called a Ricci nilsoliton metric (or simply nilsoliton
metric) if its Ricci endomorphism Ric(g) differs from a derivation D of n by a scalar
multiple of the identity map I , i.e., if there exists a real number λ such that

Ric(g) = λI + D. (2)

Clearly, any left invariant metric which satisfies (2) is automatically a Ricci soliton.
Nilsolitonmetrics have properties thatmake them preferred left invariantmetrics on

nilpotent Lie groups in the absence of Einstein metrics. Indeed, nonabelian nilpotent
Lie groups do not admit left invariant Einstein metrics ([24]).

From now on, we will always identify a left invariant metric on a Lie group N with
an inner product 〈·, ·〉n on the Lie algebra n of N . A Lie algebra n endowed with an
inner product is usually called in the literature a metric Lie algebra and is denoted as
the pair (n, 〈·, ·〉n).

We will say that a metric nilpotent Lie algebra (n, 〈·, ·〉n) is a nilsoliton if there
exists a real number λ and a derivation D of n such that

Ric(n, 〈·, ·〉n) = λI + D. (3)

Not all nilpotent Lie algebras admit nilsoliton inner products, but if a nilsoliton inner
product exists, then it is unique up to automorphism and scaling [19]. A computational
method for classifying nilpotent Lie algebras having a nilsoliton inner product in a
large subclass of the set of all nilpotent Lie algebras, has been recently introduced
in [18]. By Lauret’s results it turns out that nilsoliton metrics on simply connected
nilpotent Lie groups N are strictly related to Einstein metrics on the so-called solvable
rank-one extensions of N .

Definition 2.2 Let (n, 〈·, ·〉)be ametric nilpotent Lie algebra. Ametric solvable exten-
sion of (n, 〈·, ·〉) is ametric solvable Lie algebra (s = n⊕a, 〈·, ·〉s) such that n = [s, s]
and 〈·, ·〉s|n×n = 〈·, ·〉. The metric solvable Lie algebra (s, 〈·, ·〉s) is standard, or has
standard type, if a is an abelian subalgebra of s; in this case, the dimension of a is
called the rank of the metric solvable extension.

Heber showed in [15] that a simply connected solvable Lie group admits at most
one Einstein left invariant metric up to isometry and scaling. Moreover, he proved that
the study of Einstein metrics on simply connected solvable Lie groups, of standard
type, can be reduced to the rank-one case, that is, dim a = 1.

Recently, Lauret in [20,21] proved the following

Theorem 2.3 ([20,21]) Any Einstein metric solvable Lie algebra (s, 〈·, ·〉s) has to
be of standard type. Moreover, a simply connected nilpotent Lie group N admits a
nilsoliton metric if and only if its Lie algebra n is an Einstein nilradical, that is, n
possesses an inner product 〈·, ·〉 such that (n, 〈·, ·〉) has a metric solvable extension
which is Einstein.
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3 Nilsoliton Metrics Determined by Closed G2 Forms

In this section we prove that, up to isomorphism, there are only four (nonabelian)
s-step nilpotent Lie groups (s = 2, 3) with a nilsoliton inner product determined by
a left invariant closed G2-structure. We also show that, up to isomorphism, there is a
unique 7-dimensional nilpotent Lie group with a left invariant closed G2-structure but
not having nilsoliton metrics.

Let N be a 7-dimensional simply connected nilpotent Lie group with Lie algebra
n. Then, a G2-structure on N is left invariant if and only if the corresponding 3-form
is left invariant. Thus, a left invariant G2-structure on N corresponds to an element ϕ
of �3(n∗) that can be written as

ϕ = e127 + e347 + e567 + e135 − e236 − e146 − e245,

with respect to some coframe {e1, . . . , e7} on n∗, and we shall say that ϕ defines a
G2-structure on n. A G2-structure on n is said to be closed if ϕ is closed, i.e.,

dϕ = 0,

where d denotes the Chevalley–Eilenberg differential on n∗.
From now on, given a 7-dimensional Lie algebra n whose dual is spanned by

{e1, . . . , e7}, we will write ei j = ei ∧ e j , ei jk = ei ∧ e j ∧ ek , and so forth. Moreover,
by the notation

n = (0, 0, 0, 0, e12, e13, 0),

we mean that the dual space n∗ of the Lie algebra n has a fixed basis {e1, . . . , e7} such
that

de5 = e12, de6 = e13, de1 = de2 = de3 = de4 = de7 = 0.

The classification of nilpotent Lie algebras admitting a closed G2-structure is given
in [8] as follows.

Theorem 3.1 Up to isomorphism, there are exactly 12 nilpotent Lie algebras that
admit a closed G2-structure. They are:

n1 = (0, 0, 0, 0, 0, 0, 0),

n2 = (0, 0, 0, 0, e12, e13, 0),

n3 = (0, 0, 0, e12, e13, e23, 0),

n4 = (0, 0, e12, 0, 0, e13 + e24, e15),

n5 = (0, 0, e12, 0, 0, e13, e14 + e25),

n6 = (0, 0, 0, e12, e13, e14, e15),

n7 = (0, 0, 0, e12, e13, e14 + e23, e15),

n8 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34),

n9 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34 + e25),
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n10 = (0, 0, e12, 0, e13 + e24, e14, e46 + e34 + e15 + e23),

n11 = (0, 0, e12, 0, e13, e24 + e23, e25 + e34 + e15 + e16 − 3e26),

n12 = (0, 0, 0, e12, e23,−e13, 2e26 − 2e34 − 2e16 + 2e25).

Using Table 1 in [9] we can determine which indecomposable Lie algebras ni
(4 ≤ i ≤ 12) do not have nilsoliton inner products. Note that the existence of nilsoli-
tons on n2 and n3 is not studied in [9] since they are decomposable. Concretely, the
correspondence between the indecomposable Lie algebras of Theorem 3.1 and Table
1 in [9] is the following:

n4 ∼= 3.8, n5 ∼= 3.11 n6 ∼= 3.20, n7 ∼= 2.39,

n8 ∼= 2.5, n9 ∼= 1.1(iv), and n10 ∼= 1.3(i1).

Moreover, n11 and n12 are respectively isomorphic to the real form of 1.2(i−3) and
3.1(i2). In particular, we have that n9 is the only 7-dimensional nilpotent Lie algebra
with a closed G2 form but not admitting a nilsoliton.

Remark 3.2 Note that the abelian Lie algebra n1 admits as rank-one Einstein solvable
extension the Lie algebra s1 with structure equations

(ae18, ae28, ae38, ae48, ae58, ae68, ae78, 0),

for some real numbera �= 0, and the nilsoliton inner product onn1 is trivial because it is
flat. Since we are interested in nontrivial nilsolitons inner products, in the sequel when
we refer to a nilpotent Lie algebra we will mean a nonabelian nilpotent Lie algebra.

In order to classify the Lie algebras ni admitting a (nontrivial) nilsoliton but with no
closed G2 forms inducing the nilsoliton, we need to recall the following obstruction
proved in [8] for the existence of a closedG2-structure on a 7-dimensional Lie algebra.

Lemma 3.3 ([8]). Let g be a 7-dimensional Lie algebra. If there is a non-zero X ∈ g
such that (ιXφ)3 = 0 (where ιX denotes the contraction by X) for every closed 3-form
φ on g, then g has no closed G2-structures.

By [28, Proposition 4.5] if ϕ is a G2-structure on a 7-dimensional Lie algebra and
we choose a vector X ∈ g of length one with respect to gϕ , then on the orthogonal
complement of the span of X one has an SU (3)-structure given by the 2-form α = ιXϕ

and the 3-form β = ϕ − α ∧ η, where η = ιX (gϕ). So in particular α ∧ β = 0.
By using these results we can prove the following proposition

Proposition 3.4 The Lie algebra ni (i = 3, 5, 7, 8, 11) has a nilsoliton inner product
but no closed G2-structure inducing the nilsoliton inner product.

Proof To prove that n3 has a nilsoliton, we consider the Lie algebra n3 defined by
the equations given in Theorem 3.1. Let 〈·, ·〉n3 be the inner product on n3 such that
{e1, . . . , e7} is orthonormal. Then, 〈·, ·〉n3 is a nilsoliton because its Ricci tensor

Ric = diag

(
−1,−1,−1,

1

2
,
1

2
,
1

2
, 0

)
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satisfies (3), for λ = −5/2 and

D = diag

(
3

2
,
3

2
,
3

2
, 3, 3, 3,

5

2

)
.

Since the nilsoliton inner product is unique (up to isometry and scaling) it suffices to
prove that there is no closed G2 form on n3 inducing such an inner product.

Suppose that n3 has a closed G2 form φ such that

gφ = 〈·, ·〉n3 =
7∑

i=1

(ei )2. (4)

Thus, gφ has to satisfy
7∏

i=1

gφ(ei , ei ) = 1. (5)

A generic closed 3-form γ on n3 has the following expression

γ = c123e
123 + c124e

124 + c125e
125 + c126e

126 + c127e
127 + c134e

134 + c135e
135

+ c136e
136 + c137e

137 + c145e
145 + c146e

146 + c147e
147 + c156e

156 + c157e
157

+ c167e
167 + c234e

234 + c235e
235 + c236e

236 + c237e
237 + c146e

245 + c246e
246

+ c247e
247 + c256e

256 + c257e
257 + c267e

267 + c156e
345 + c256e

346

+ (c257 − c167) e
347 + c356e

356 + c357e
357 + c367e

367,

where ci jk are arbitrary real numbers.
Now, we show conditions on the coefficients ci jk so that φ = γ is a closed G2

form such that gφ satisfies (4). To this end, we apply the aforementioned result of [28,
Proposition 4.5] for X = ei (1 ≤ i ≤ 7) and so η = ei by (4). For X = e1, thus
η = e1, we have

α1 = ιe1φ = c123e
23 + c124e

24 + c125e
25 + c126e

26 + c127e
27 + c134e

34 + c135e
35

+ c136e
36+c137e

37+c145e
45+c146e

46+c147e
47 + c156e

56 + c157e
57 + c167e

67,

and

β1 = φ − ιe1φ ∧ e1 = c234e
234+c235e

235+c236e
236 + c237e

237+c146e
245+c246e

246

+ c247e
247 + c256e

256 + c257e
257 + c267e

267 + c156e
345 + c256e

346

+ (c257 − c167) e
347 + c356e

356 + c357e
357 + c367e

367,

But, α1∧β1 = 0 describes a system of 6 equations. Hence, after apply the result of [28,
Proposition 4.5] for X = e2, . . . , e7, we obtain a system of 42 equations. This system
and condition (4) imply that any closed G2 form on n3 satisfying (5) is expressed as
follows

φ = c123e
123 + c145e

145 + c167e
167 + c246e

246 + c257e
257

+ (c257 − c167) e
347 + c356e

356.
(6)
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Because φ should be a closed G2 form on n3, at least for certain coefficients ci jk ,
Lemma 3.3 implies that the coefficients appearing on (6) cannot vanish. In particular,
c257 − c167 �= 0. Now, denote by Gφ the matrix associated with the inner product on
n3 induced by the 3-form φ given by (6). Then, (4) implies that Gφ = I7, for some
ci jk and then

S = Gφ − I7 = 0, (7)

for those coefficients. From now on, we denote by Si j the (i, j) entry of the matrix S.
One can check that the equations S11 = S22 = S55 = 0 imply that

c356 = 1

c145c257
, c246 = −c145c167

c257
and c123 = 1

c145c167
.

Therefore, the expression of S66 becomes

S66 = (c167 − c257)(c167 + c257)

c2257
,

and hence c167 = ±c257. But we know that c167 �= c257, and for c167 = −c257, we
have that S33 = −c123(c167 − c257)c356 and so S �= 0, which is a contradiction with
(7). This means that n3 does not admit a closed G2 form inducing the nilsoliton given
by (4).

To prove that n5 has a nilsoliton, we consider the Lie algebra n5 defined by the
structure equations

n5 =
(
0, 0,

√
3e12, 0, 0, 2e13, e14 + √

3e25
)
.

Consider the inner product 〈·, ·〉n5 such that the basis {e1, . . . , e7} is orthonormal.
Then, its Ricci tensor satisfies

Ric = diag

(
−4,−3,−1

2
,−1

2
,−3

2
, 2, 2

)
.

Actually, Ric = − 13
2 I7 + D, where D is the derivation of n5 given by

D = diag

(
5

2
,
7

2
, 6, 6, 5,

17

2
,
17

2

)

and so 〈·, ·〉n5 = ∑7
i=1(e

i )2 is a nilsoliton inner product.
Since the nilsoliton inner product is unique (up to isometry and scaling) it is suffi-

cient to prove that there is no closed G2 form on n5 inducing such an inner product.
Suppose that n5 has a closed G2 form φ such that gφ = 〈·, ·〉n5 .

A generic closed 3-form γ on n5 has the following expression
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γ = c123e
123 + c124e

124 + c125e
125 + c126e

126 + c127e
127 + c134e

134 + c135e
135

+ c136e
136 + c137e

137 + c145e
145 + c146e

146 + c147e
147 + c156e

156 + c157e
157

+ c167e
167 + c234e

234 + c235e
235 + c236e

236 + c237e
237 + c245e

245 + 1

2
c237e

246

+ c247e
247− 1

2

√
3c137e

256+√
3(c345−c147)e

257+c345e
345−c167e

356+c457e
457,

where ci jk are arbitrary real numbers. Now we show conditions on the coefficients
ci jk so that φ = γ is a closed G2 form such that gφ = 〈·, ·〉n5 . Lemma 3.3 (applied
for X = e7) implies that

c167 c237 c457 �= 0. (8)

Now, we denote by Gφ the matrix associated with the inner product on n5 induced
by the generic closed 3-form φ. Then the condition gφ = 〈·, ·〉n5 implies (7) for some
coefficients ci jk . From the equations S66 = S77 = S67 = S37 = S46 = S33 = S36 =
S47 = 0 we have that

c237 = 2

c2167
, c457 = 1

2
c167, c236 = −2c247, c136 = −2c147,

c345 = 0, c134 = 1

2
c167, c137 = 2c146, c234 = 0.

Therefore, S44 = − 3
8c

2
167c237 which by (8) cannot vanish and so S �= 0, which is a

contradiction with (7).
Consider now the Lie algebra n7 defined by the structure equations

n7 =
(
0, 0, 0, e12,

√
6

2
e13, e14 +

√
6

2
e23,

√
2e15

)
.

Let 〈·, ·〉n7 be the inner product on n7 such that the basis {e1, . . . , e7} is orthonormal.
Then, 〈·, ·〉n7 = ∑7

i=1(e
i )2 is a nilsoliton since

Ric =
(

−11

4
,−5

4
,−3

2
, 0,−1

4
,
5

4
, 1

)
= −4I7 + D,

where

D = diag

(
5

4
,
11

4
,
5

2
, 4,

15

4
,
21

4
, 5

)
,

is a derivation of n7. As before, since the nilsoliton inner product is unique (up to
isometry and scaling) it suffices to prove that there is no closedG2 form on n7 inducing
such an inner product.
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Suppose that n7 has a closed G2 form φ such that gφ = 〈·, ·〉n7 . A generic closed
3-form γ on n7 has the following expression

γ = c123e
123 + c124e

124 + c125e
125 + c126e

126 + c127e
127 + c134e

134 + c135e
135

+ c136e
136 + c137e

137 + c145e
145 + c146e

146 + c147e
147 + c156e

156 + c157e
157

+ c167e
167 + c234e

234 + c235e
235 +

(√
6

2
c245 −

√
6

2
c146

)
e236 + c237e

237

+ c245e
245 + c246e

246 +
√
2

2
c256e

247 + c256e
256 +

(
c167 +

√
6

3
c347

)
e257

+
(√

6

2
c156+

√
2c237

)
e345+

√
6

2
c256e

346+c347e
347+√

2c347e
356 + c357e

357,

where ci jk are arbitrary real numbers. Now, we show conditions on the coefficients
ci jk so that φ = γ be a closed G2 form such that gφ = 〈·, ·〉n7 . Lemma 3.3 applied
for X = e7 implies that

c167 �= 0. (9)

Nowwe apply the result of [28, Proposition 4.5] for X = ei (1 ≤ i ≤ 7) and so η = ei

by (4). For X = e1, we have

α1 = ιe1φ = c123e
23 + c124e

24 + c125e
25 + c126e

26 + c127e
27 + c134e

34 + c135e
35

+ c136e
36 + c137e

37 + c145e
45 + c146e

46 + c147e
47 + c156e

56 + c157e
57

+ c167e
67

and

β1 = φ − ιe1φ ∧ e1 = c234e
234 + c235e

235 +
(√

6

2
c245 −

√
6

2
c146

)
e236 + c237e

237

+ c245e
245 + c246e

246 +
√
2

2
c256e

247 + c256e
256 +

(
c167 +

√
6

3
c347

)
e257

+
(√

6

2
c156+

√
2c237

)
e345+

√
6

2
c256e

346+c347e
347+√

2c347e
356 + c357e

357.

Therefore, α1∧β1 = 0 describes a system of 6 equations. Hence, after apply the result
of [28, Proposition 4.5] for X = e2, . . . , e7, we obtain a system of 42 equations. This
system together with the fact that c167 �= 0 and the condition gφ = 〈·, ·〉n7 imply that
any closed G2 form on n7 satisfying (5) is expressed as follows

123



Laplacian Flow of Closed G2-Structures Inducing... 1819

φ = c123e
123 + c145e

145 + c167e
167 + c246e

246 +
(
c167 +

√
6

3
c347

)
e257

+ c347e
347 + √

2c347e
356.

(10)

Now we denote by Gφ the matrix associated with the inner product on n7 induced by
the 3-form φ given by (10). Then, the condition gφ = 〈·, ·〉n7 implies (7) is satisfied
for some coefficients ci jk . From equations S11 = S33 = S44 = S66 = 0 we have

c123 =
√
2

2c3347
, c145 = −√

2c347, c167 = −c347, and c246 =
√
2

2c3347
.

Therefore S55 = 1 and so S �= 0 which is a contradiction with (7).
Let n8 be the Lie algebra described by the structure equations

n8 =
(
0, 0, e12,−e13,−e23, e15 + e24,−e16 − e34

)
,

and let 〈·, ·〉n8 be the inner product on n8 such that {e1, . . . , e7} is orthonormal. Then,
〈·, ·〉n8 = ∑7

i=1(e
i )2 is a nilsoliton because its Ricci tensor

Ric = diag

(
−2,−3

2
,−1,−1

2
, 0,

1

2
, 1

)

satisfies (3), for λ = − 5
2 and

D = diag

(
1

2
, 1,

3

2
, 2,

5

2
, 3,

7

2

)
.

The nilsoliton inner product is unique (up to isometry and scaling) therefore it suffices
to prove that there is no closed G2 form on n8 inducing such an inner product. A
generic closed 3-form γ on n8 has the following expression

γ = c123e
123 + c124e

124 + c125e
125 + c126e

126 + c1,2,7e
127 + c134e

134 + c135e
135

+ c136e
136 + c137e

137 + (−c127 − c136) e
145 + c146e

146 + c147e
147 + c156e

156

+ c157e
157 + c234e

234 + c235e
235 + c2,3,6e

236 + c237e
237 + c236e

245

+ (c156 − c237) e
246 + c157e

247 + c256e
256 + c267e

267 + (c237 − 2c156) e
345

+ c157e
346 − c267e

357 + c267e
456,

where ci jk are real numbers. Now, we show conditions on the coefficients ci jk so that
φ = γ is a closed G2 form such that gφ = 〈·, ·〉n8 . We apply the result previously
mentioned [28, Proposition 4.5] for X = ei (1 ≤ i ≤ 7) and so η = ei by the condition
gφ = 〈·, ·〉n8 . After solving the system of 42 equations we have that any closed G2
form on n8 satisfying (5) is expressed as follows
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φ = c123e
123 + c124e

124 + c125e
125 + c126e

126 + c135e
135 + c136e

136 − c136e
145

+ c234e
234 + c235e

235 + c236e
236 + c236e

245 + c256e
256.

(11)
Now denote by Gφ the matrix associated with the inner product on n8 induced by the
3-form φ given by (11). Then Gφ = 0 obtaining a contradiction with (7).

It only remains to study the Lie algebra n11. According to Theorem 3.1, n11 is
defined by the equations

n11 =
(
0, 0, f 12, 0, f 13, f 24 + f 23, f 25 + f 34 + f 15 + f 16 − 3 f 26

)
.

We consider the new basis {e j }7j=1 of n
∗
11 with

{
e1 = f 2, e2 = −

√
3

3
f 1, e3 =

√
39

39
f 3 +

√
39

78
f 4, e4 = −

√
78

78
f 4,

e5 =
√
3

39
f 6, e6 = −1

3
f 5, e7 = −

√
3

1014
f 7

}
.

Thus, the Lie algebra n11 can also be described by the structure equations

n11 =
(
0, 0,

√
13

13
e12, 0,

√
13

13
e13 −

√
26

26
e14,

√
26

26
e24 +

√
13

13
e23,

√
13

26
e25 +

√
26

26
e34 +

√
39

26
e15 +

√
13

26
e16 −

√
39

26
e26

)
,

Let 〈·, ·〉n11 be the inner product on n11 such that {e1, . . . , e7} is orthonormal. Then,
〈·, ·〉n11 = ∑7

i=1(e
i )2 is a nilsoliton because its Ricci tensor

Ric = 1

52
diag(−7,−7,−3,−3, 1, 1, 5)

satisfies Ric = − 11
52 I d + D, where D is the derivation of the Lie algebra n11 given

by

D = 1

13
diag(1, 1, 2, 2, 3, 3, 4).

It suffices to prove that there is no closed G2 form on n11 inducing such an inner
product. Let’s suppose that n11 has a closed G2 form φ such that gφ = 〈·, ·〉n11 . A
generic closed 3-form γ on n11 has the following expression

γ = c123e123 + c124e124 + c125e125 + c126e126 + c127e127 + c134e134 + c135e135

+ c136e136 + c137e137+c145e145 + c146e146 + c147e147 + c156e156−
√

3
2c347e

157

+ c347e167√
2

+ c234e234 + c235e235 + c236e236 +
(
c137√

3
− 2c156√

3

)
e237
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+
(
c127√

2
− c136√

2
+ c146 − c235√

2

)
e245 + c246e246 + c247e247 +

(
c156√

3
− 2c137√

3

)
e256

+ c347e257√
2

+
√

3
2c347e

267 +
(
1
2c147 − c156√

2
− 1

2

√
3c247

)
e345

+
(

−
√

2
3c137 − 1

2

√
3c147 + c156√

6
− 1

2c247

)
e346 + c347e347 + √

2c347e356

where ci jk are arbitrary real numbers.
Now, we show conditions on the coefficients ci jk so that φ = γ is a closed G2

form such that gφ = 〈·, ·〉n11 . We apply the result of [28, Proposition 4.5] for X = ei
(1 ≤ i ≤ 7) and so η = ei by the condition gφ = 〈·, ·〉n11 . After solving the system
of 42 equations we have that any closed G2 form on n11 satisfying (5) is expressed as
follows

φ = c123e
123 − c246e

145 − √
3c246e

167 −
√
6

2
c347e

157 +
√
2

2
c347e

167 − √
3c246e

245

+ c246e
246 +

√
2

2
c347e

257 +
√
6

2
c347e

267 + c347e
347 + √

2c347e
356.

(12)
As before denote by Gφ the matrix associated with the inner product induced by the
3-form φ given by (12). Then, the condition gφ = 〈·, ·〉n11 implies (7), for some ci jk .
Equations S66 = S77 = 0 imply that

c246 = −1

2
c347, and c347 = 2−1/3.

Therefore, S44 = − 1
2 and so S �= 0 which contradicts (7). ��

Remark 3.5 Note that the 4-step nilpotent Lie algebra n10 is isomorphic in the classifi-
cation given in [11] to the Lie algebra 1.3(i)[λ = 1] and the existence of the nilsoliton
was shown in [9, Example 2]. Since an explicit expression of the nilsoliton is not
known, we cannot apply the argument used in the proof of Proposition 3.4. Thus, it
remains open the question of whether the Lie algebra n10 admits a closed G2 form
inducing a nilsoliton or not. Moreover, the explicit expression of the nilsolitons for
n11 and n12 have been already determined in [11] (see there page 20, Remark 3.5), but
our basis is different for the nilsoliton on the other Lie algebras.

Theorem 3.6 Up to isomorphism, n2, n4, n6 and n12 are the unique s-step nilpotent
Lie algebras (s = 2, 3) with a nilsoliton inner product determined by a closed G2-
structure.

Proof We will show that the Lie algebra ni (i = 2, 4, 6, 12) has a closed G2 form ϕi
such that the Ricci tensor of the inner product gϕi satisfies (3), for some derivation D
of ni and some real number λ.

For n2 we consider the closed G2 form ϕ2 defined by

ϕ2 = e147 + e267 + e357 + e123 + e156 + e245 − e346. (13)

123



1822 M. Fernández et al.

The inner product gϕ2 given by (1) is the one making orthonormal the basis
{e1, . . . , e7}, and it is a nilsoliton since Ric = −2I7 + D, where

D = diag

(
1,

3

2
,
3

2
, 2,

5

2
,
5

2
, 2

)

is a derivation of n2.
On the Lie algebra n4, we define the G2 form ϕ4 by

ϕ4 = −e124 − e456 + e347 + e135 + e167 + e257 − e236. (14)

Then, ϕ4 is closed, the inner product gϕ4 makes the basis {e1, . . . , e7} orthonormal
and gϕ4 is a nilsoliton since Ric = − 5

2 I7 + D, where D is the derivation of n4 given
by

D = diag

(
1,

3

2
,
5

2
, 2, 2,

7

2
, 3

)
.

For the Lie algebra n6 we consider the closed G2-structure defined by the 3-form

ϕ6 = e123 + e145 + e167 + e257 − e246 + e347 + e356. (15)

Therefore, the inner product gϕ6 is such that the basis {e1, . . . , e7} is orthonormal and
it is a nilsoliton since Ric = − 5

2 I7 + D, where D is the derivation of n6 given by

D = diag

(
1

2
, 2, 2,

5

2
,
5

2
, 3, 3

)
.

Theorem 3.1 implies that the Lie algebra n12 is defined by the equations

n12 =
(
0, 0, 0, h12, h23,−h13, 2h26 − 2h34 − 2h16 + 2h25

)
.

We consider the basis {ei }7i=1 of n
∗
12 given by

{
e1 =

√
3

2
h2, e2 = h1 − 1

2
h2, e3 = h3, e4 = −1

4
h4, e5 = 1

4
h5 + 1

4
h6,

e6 = −
√
3

12
h5 +

√
3

12
h6, e7 = −

√
3

48
h7

}
.

Then, n12 is defined as follows

n12 =
(
0, 0, 0,

√
3

6
e12,−1

4
e23 +

√
3

12
e13,−

√
3

12
e23 − 1

4
e13,

−
√
3

6
e34 +

√
3

12
e25 + 1

4
e26 +

√
3

12
e16 − 1

4
e15

)
.

(16)
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We define the G2 form ϕ12 by

ϕ12 = −e124 + e135 + e167 − e236 + e257 + e347 − e456. (17)

Clearly ϕ12 is closed. Moreover, ϕ12 defines the inner product gϕ12 which makes the
basis {e1, . . . , e7} orthonormal, and gϕ12 is a nilsoliton since Ric = − 1

4 I d + 1
8D,

where D is the derivation of n12 given by

D = diag(1, 1, 1, 2, 2, 2, 3).

��

4 Laplacian Flow

Let us consider the nilpotent Lie algebra ni (i = 2, 4, 6) defined in Theorem 3.1, and
the Lie algebra n12 defined by (16). Let Ni be the simply connected nilpotent Lie
group with Lie algebra ni , and let ϕi be the closed G2 form on Ni (i = 2, 4, 6, 12)
given by (13), (14), (15) and (17), for i = 2, 4, 6 and 12, respectively.

The purpose of this section is to prove long time existence and uniqueness of
solution for the Laplacian flow of ϕi on Ni , and that the underlying metrics g(t) of
this solution converge smoothly, up to pull-back by time-dependent diffeomorphisms,
to a flat metric, uniformly on compact sets in Ni , as t goes to infinity.

Let M be a 7-dimensional manifold with an arbitrary G2 form ϕ. The Laplacian
flow of ϕ is defined to be ⎧⎨

⎩
d

dt
ϕ(t) = �tϕ(t),

ϕ(0) = ϕ,

where �t is the Hodge Laplacian of the metric gt determined by the G2 form ϕ(t).
For the different types ofG2-structures the behavior of the solution of the Laplacian

flow is very different. For example, the stable solutions of the Laplacian flow are given
by the G2 manifolds (M, ϕ) such that Hol(M) ⊆ G2.

The study of the Laplacian flow of a closed G2 form ϕ on a manifold M consists to
study long time existence, convergence and formation of singularities for the system
of differential equations ⎧⎪⎪⎨

⎪⎪⎩

d

dt
ϕ(t) = �tϕ(t),

dϕ(t) = 0,

ϕ(0) = ϕ.

(18)

In the case of closed G2-structures on compact manifolds, Bryant and Xu [4] gave
a result of short time existence and uniqueness of solution.

Theorem 4.1 [4] If M is compact, then (18) has a unique solution for a short time
0 ≤ t < ε, with ε depending on ϕ = ϕ(0).
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In the following theorem we determine a global solution of the Laplacian flow of
the closed G2 form ϕ2 on N2.

Theorem 4.2 The family of closed G2 forms ϕ2(t) on N2 given by

ϕ2(t) = e147 + e267 + e357 + f (t)3e123 + e156 + e245 − e346, t ∈
(

− 3

10
,+∞

)
,

(19)
is the solution of the Laplacian flow (18) of ϕ2, where f = f (t) is the function

f (t) =
(
10

3
t + 1

) 1
5

.

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-
back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets
in N2, as t goes to infinity.

Proof Let fi = fi (t) (i = 1, . . . , 7) be some differentiable real functions depending
on a parameter t ∈ I ⊂ R such that fi (0) = 1 and fi (t) �= 0, for any t ∈ I , where
I is a real open interval. For each t ∈ I , we consider the basis {x1, . . . , x7} of left
invariant 1-forms on N2 defined by

xi = xi (t) = fi (t)e
i , 1 ≤ i ≤ 7.

From now on we write fi j = fi j (t) = fi (t) f j (t), fi jk = fi jk(t) = fi (t) f j (t) fk(t),
and so forth. Then, the structure equations of N2 with respect to this basis are

dxi = 0, i = 1, 2, 3, 4, 7, dx5 = f5
f12

x12, dx6 = f6
f13

x13. (20)

Now, for any t ∈ I , we consider the G2 form ϕ2(t) on N2 given by

ϕ2(t) = x147 + x267 + x357 + x123 + x156 + x245 − x346

= f147e
147+ f267e

267+ f357e
357+ f123e

123 + f156e
156+ f245e

245− f346e
346.

(21)
Note that ϕ2(0) = ϕ2 and, for any t , the 3-form ϕ2(t) on N2 determines the

metric gt such that the basis {xi = 1
fi
ei ; i = 1, . . . , 7} of n2 is orthonormal. So,

g(t)(ei , ei ) = fi 2.
Using (20), one can check that dϕ2(t) = 0 if and only if

f26(t) = f35(t), (22)

for any t . Assuming fi (0) = 1 and (22), to solve the flow (18) of ϕ2, we need to
determine the functions fi and the interval I so that d

dt ϕ2(t) = �tϕ2(t), for t ∈ I .
Using (21) we have
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d

dt
ϕ2(t) =

(
f147

)′
e147 +

(
f267

)′
e267 +

(
f357

)′
e357 +

(
f123

)′
e123

+
(
f156

)′
e156 +

(
f245

)′
e245 −

(
f346

)′
e346.

(23)

Now, we calculate �tϕ2(t) = −d ∗t d ∗t ϕ2(t). On the one hand, we have

∗tϕ2(t) = x2356 − x1345 − x1246 + x4567 + x2347 − x1367 + x1257. (24)

So, x4567 is the unique nonclosed summand in ∗tϕ2(t). Then, taking into account (22),
we obtain

d(∗t d ∗t ϕ2(t)) = f6
f13

(
− f6

f13
x123 − f5

f12
x123

)
= −2

(
f6
f13

)2

x123.

Therefore, in terms of the forms ei jk , the expression of −d(∗t d ∗t ϕ2(t)) is

− d(∗t d ∗t ϕ2(t)) = 2 f123

(
f6
f13

)2

e123 = 2

(
f2( f6)2

f13

)
e123. (25)

Comparing (23) and (25) we see that, in particular, f156(t) = 1, for any t ∈ I . Then,
using (22), we have

f2( f6)2

f13
= 1

( f1)2
.

This equality and (25) imply that −d(∗t d ∗t ϕ2(t)) can be expressed as follows

− d(∗t d ∗t ϕ2(t)) = 2
1

( f1)2
e123. (26)

Then, from (23) and (26) we have that d
dt ϕ2(t) = �tϕ2(t) if and only if the functions

fi (t) satisfy the following system of differential equations

(
f147

)′ =
(
f267

)′ =
(
f357

)′ =
(
f156

)′ =
(
f245

)′ =
(
f346

)′ = 0,
(
f123

)′ = 2
1

( f1)2
.

(27)

Because ϕ2(0) = ϕ2, the equations in the first line of (27) imply

f147(t) = f267(t) = f357(t) = f156(t) = f245(t) = f346(t) = 1, (28)

for any t ∈ I . From the equations (28) we obtain

f 21 = f 22 = f 23 .
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Let us consider f = f1 = f2 = f3. Using again (28) we have

fi (t) =
(
f (t)

)− 1
2
, i = 4, 5, 6, 7.

Now, the last equation of (27) implies that f 4 f ′ = 2
3 . Integrating this equation, we

obtain

f 5 = 10

3
t + B, B = constant.

But ϕ2(0) = ϕ2 implies f 3(0) = f123(0) = 1, that is, B = 1. Hence,

f (t) =
(
10

3
t + 1

) 1
5

,

and so the one-parameter family of 3-forms {ϕ2(t)} given by (19) is the solution of
the Laplacian flow of ϕ2 on N2, and it is defined for every t ∈ (− 3

10 ,+∞).
To complete the proof, we study the behavior of the underlying metric g(t) of such

a solution in the limit for t → +∞. Indeed, if we think of the Laplacian flow as a one-
parameter family of G2 manifolds with a closed G2-structure, it can be checked that,
in the limit, the resultingmanifold has vanishing curvature. For every t ∈ (− 3

10 ,+∞)
,

denote by g(t) the metric on N2 induced by the G2 form ϕ2(t) given by (19). Then,

g(t) =
(
10

3
t + 1

)2/5

(e1)2 +
(
10

3
t + 1

)2/5

(e2)2 +
(
10

3
t + 1

)2/5

(e3)2

+
(
10

3
t + 1

)−1/5

(e4)2 +
(
10

3
t + 1

)−1/5

(e5)2 +
(
10

3
t + 1

)−1/5

(e6)2

+
(
10

3
t + 1

)−1/5

(e7)2.

Concretely, taking into account the symmetry properties of the Riemannian curvature
R(t) we obtain

R1212 = R1313 = − 3

4(1 + 10
3 t)

,

R1515 = R1616 = R3636 = R2525 = 1

4(1 + 10
3 t)

,

R2356 = − 1

4(1 + 10
3 t)

, Ri jkl = 0 otherwise,

where Ri jkl = R(t)(ei , e j , ek, el). Therefore, limt→+∞ R(t) = 0. ��
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Remark 4.3 Note that, for every t ∈ (− 3
10 ,+∞)

, the metric g(t) is a nilsoliton on the
Lie algebra n2 of N2. In fact, with respect to the orthonormal basis (x1(t), . . . , x7(t)),
we have

Ric(g(t)) = − 6

(3 + 10t)
I d + 3

(3 + 10t)
diag

(
1,

3

2
,
3

2
, 2,

5

2
,
5

2
, 2

)

= 3

(3 + 10t)
Ric(g(0))

with 3
(3+10t)diag

(
1, 3

2 ,
3
2 , 2,

5
2 ,

5
2 , 2

)
a derivation of n2 for every t .

Remark 4.4 The limit can be also computed fixing the G2-structure and changing the
Lie bracket as in [23]. We evolve the Lie brackets μ(t) instead of the 3-form defining
theG2-structure andwe can show that the corresponding bracket flowhas a solution for
every t . Indeed, ifwefix onR7 the 3-form x147+x267+x357+x123+x156+x245−x346,
the basis (x1(t), . . . , x7(t)) defines for every positive t a nilpotent Lie algebra with
bracket μ(t) such that μ(0) is the Lie bracket of n2. Moreover, the solution converges
to the null bracket corresponding to the abelian Lie algebra.

In order to prove long time existence of solution for the Laplacian flow (18) of
the closed G2 form ϕ4 on N4, we need to study the (nonlinear) system of ordinary
differential equations ⎧⎪⎨

⎪⎩
u′ = +2

3

2 − u3

u3v3
,

v′ = −2

3

1 − 2u3

u4v2
,

(29)

with initial conditions
u(0) = v(0) = 1, (30)

where u = u(t) and v = v(t) are differentiable real functions such that are both
positive. Note that the first equation of (29) implies that u′ > 0 since u(0) = 1,
u = u(t) > 0 and v = v(t) > 0. Moreover, we note also that the functions at the
second member of (29) are C∞ in the domain

 = {
(u, v) ∈ R

2 | 0 < u < 21/3, v > 0
}
,

in the phase plane. Then, for every point (u0, v0) ∈ , there exists a unique maximal
solution (u, v), which has (u0, v0) as initial condition, and with existence domain a
certain open interval I such that either

lim
t→inf I

(
u(t)2 + v(t)2

)
= +∞,

or

lim
t→inf I

(
u(t), v(t)

) ∈ ∂,
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and either

lim
t→sup I

(
u(t)2 + v(t)2

)
= +∞,

or

lim
t→sup I

(
u(t), v(t)

) ∈ ∂,

where ∂ denotes the boundary of .

Proposition 4.5 The maximal solution
(
u(t), v(t)

)
of (29), satisfying the initial con-

ditions (30), belongs to the trajectory of equation

v = 1√
u(2 − u3)

. (31)

Proof From (29) we obtain
dv

du
= −v(1 − 2u3)

u(2 − u3)
,

that is,
dv

v
= − 1 − 2u3

u(2 − u3)
du.

Integrating this equation and using (30), we have

log v = log
(
u(2 − u3)−1/2).

Therefore,

v = 1√
u(2 − u3)

.

��
As a consequence we have the following corollary.

Corollary 4.6 The maximal solution of (29)–(30),

I � t �→ (
u(t), v(t)

) ∈ 

parameterizes the whole curve (31). Moreover, the maximal solution is defined in the
interval

I = (tmin,+∞),

where

tmin = −3

2

∫ 1

0

x3/2

(2 − x3)5/2
dx, (32)
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and {
limt→tmin u(t) = 0,

limt→tmin v(t) = +∞,

{
limt→+∞ u(t) = 21/3,

limt→+∞ v(t) = +∞.

Proof Let I = (tmin, tmax ) the existence interval of the maximal solution (u(t), v(t))
of (29) satisfying the initial conditions (30). Using the previous proposition and the
first equation of (29) we see that

v(t) = (2u(t) − u(t)4)−1/2, u′(t) = − 2u(t)3 − 4

3u(t)3v(t)3
,

which imply

u′(t) = 2

3

(2 − u(t)3)
5
2

u(t)
3
2

.

We define the functions x(t) and f (x) by

x(t) = u(t), f (x) = 2

3

(2 − x3)
5
2

x
3
2

.

In order to find tmax , we can use that dx
dt = f (x(t)) or, equivalently,

dx

f (x)
= dt.

So, in particular, we have

dt

dx
= 3

2
x

3
2 (2 − x3)−

5
2 .

Note that the function 3
2 x

3
2 (2 − x3)− 5

2 is increasing from 0, for x = 0, to +∞, for

x = 2
1
3 . Then, integrating dx

f (x) = dt between tmin and 0, and using that x(tmin) = 0
and x(0) = 1, we have that tmin is finite and equal to the real number

tmin = −3

2

∫ 1

0
x3/2(2 − x3)−5/2dx .

Similarly, in order to find tmax we integrate again dx
f (x) = dt between 0 and tmax . Since

x(tmax ) = 2
1
3 we get

tmax = −3

2

∫ 2
1
3

1
x

3
2 (2 − x3)−

5
2 dx,

which implies that tmax is +∞ because this integral is not defined in x = 2
1
3 . ��
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Theorem 4.7 There exists a solution ϕ4(t) of the Laplacian flow of ϕ4 on N4 defined
in the interval I = (tmin,+∞), where tmin is the negative real number given by the
elliptic integral

tmin = −3

2

∫ 1

0
x3/2(2 − x3)−5/2dx .

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to
pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact
sets in N4, as t goes to infinity.

Proof Let us consider some differentiable real functions fi = fi (t) (i = 1, . . . , 7)
and h j = h j (t) ( j = 1, 2, 3) depending on a parameter t ∈ I ⊂ R such that
fi (0) = 1, h j (0) = 0 and fi (t) �= 0, for any t ∈ I and for any i and j . For each t ∈ I ,
we consider the basis {x1, . . . , x7} of left invariant 1-forms on N4 defined by

xi = xi (t) = fi (t)e
i , 1 ≤ i ≤ 4, x5 = x5(t) = f5(t)e

5 + h1(t)e
1,

x6 = x6(t) = f6(t)e
6 + h2(t)e

2, x7 = x7(t) = f7(t)e
7 + h3(t)e

4.

The structure equations of N4 with respect to this basis are

dxi = 0, i = 1, 2, 4, 5, dx3 = f3
f12

x12,

dx6 = f6
f13

x13 + f6
f24

x24, dx7 = f7
f15

x15.
(33)

For any t ∈ I , we define the G2 form ϕ4(t) on N4 by

ϕ4(t) = −x124 − x456 + x347 + x135 + x167 + x257 − x236

=
(

− f124 − f4h12 − f2h13 + f1h23
)
e124 − f456e

456 + f347e
347

+ f135e
135 + f167e

167 + f257e
257 − f236e

236 +
(
f46h1 − f16h3

)
e146

−
(
f45h2 + f25h3

)
e245 +

(
− f27h1 + f17h2

)
e127.

(34)
Clearly ϕ4(0) = ϕ4 since fi (0) = 1 and h j (0) = 0. Moreover, using (33) and (34),
one can check that dϕ4(t) = 0 if and only if

f16(t) = f34(t), f37(t) = f56(t),

for any t .
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To study the flow (18) of ϕ4, we need to determine the functions fi , h j and the
interval I so that d

dt ϕ4(t) = �tϕ4(t), for t ∈ I . On the one hand, using (34) we have

d

dt
ϕ4(t) =

(
− f124 − f4h12 − f2h13 + f1h23

)′
e124 −

(
f456

)′
e456 +

(
f347

)′
e347

+
(
f135

)′
e135 +

(
f167

)′
e167 +

(
f257

)′
e257 −

(
f236

)′
e236

+
(
f46h1 − f16h3

)′
e146

−
(
f45h2 + f25h3

)′
e245 +

(
− f27h1 + f17h2

)′
e127.

(35)
On the other hand,

∗tϕ4(t) = x3567 + x1237 + x1256 − x2467 + x2345 + x1457 + x1346.

So, x3567 and x2467 are the nonclosed summands in ∗tϕ4(t).
Then, for �tϕ4(t) = −d ∗t d ∗t ϕ4(t) we obtain

�tϕ4(t) = −
(
f124

(
f 23

f 21 f 22
+ f 26

f 22 f 24

)
− f37h3

f15
− f 26 h1

f13

)
e124

+ f135

(
f 26

f 21 f 23
+ f 27

f 21 f 25

)
e135 + f5 f 26

f13
e245 + f3 f 27

f1 f5
e127.

(36)

Comparing (35) and (36) we see that the functions fi , h1 and h3 satisfy

f167(t)= f236(t)= f257(t)= f347(t)= f456(t)=1, f46(t)h1(t) − f16(t)h3(t) = 0,

for any t ∈ I . But these equations are satisfied if

f1 = f 223, f4 = f2, f5 = f3, f6 = f7 = 1

f23
, h1 = f2 f

2
3 h3. (37)

Using (37), we write (35) and (36) in terms of fi , h1 and h3. Then, we see that
d
dt ϕ4(t) = �tϕ4(t) if and only if

f1 = u · v, f2 = f4 = v1/2, f3 = f5 = u1/2, f6 = f7 = (uv)−1/2,

h1 = 1
2u

5/2v − 1
2u

1/2, h2 = 0, h3 = 1
2u

3/2v1/2 − 1
2 (uv)−1/2,

(38)

where u = u(t) and v = v(t) are differentiable real functions satisfying the system
of ordinary differential equations (29) with initial conditions (30). By Corollary 4.6,
we know that the system (29)–(30) has a solution u = u(t), v = v(t) defined in
I = (tmin,+∞). Then, taking into account (34) and (38), the family of closed G2
forms ϕ4(t) solving (18) for ϕ4 is given by
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ϕ4(t) = 1

4
e124

(
−u4v2 + 2u2v − 4uv2 − 1

)
+ 1

2
e127

(
u2v − 1

)
+ u2ve135

+ e167 − e236 + 1

2
e245

(
u2v − 1

)
+ e257 + e347 − e456,

for t ∈ (tmin,+∞). The underlying metric g(t) of this solution converges to a flat
metric. To check that the corresponding manifold in the limit is flat, we note that all
non-vanishing coefficients of the Riemannian curvature R(t) of g(t) are proportional
to the function 2u(t)−u4(t). According with Corollary 4.6), we have that the function
u(t) satisfies

lim
t→+∞ u(t) = 21/3,

and so

lim
t→+∞ R(t) = 0.

��
Concerning the Laplacian flow (18) of the closed G2 form ϕ6 on N6 we have the

following.

Theorem 4.8 The Laplacian flow of ϕ6 has a solution ϕ6(t) on N6 defined in the
interval I = (tmin,+∞), where tmin is the negative real number given by (32).
Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-
back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets
in N6, as t goes to infinity.

Proof We take differentiable real functions fi = fi (t) (i = 1, . . . , 7) and h j = h j (t)
( j = 1, 2) depending on a parameter t ∈ I ⊂ R such that fi (0) = 1, h j (0) = 0 and
fi (t) �= 0, for any t ∈ I and for any i and j . Now, for each t ∈ I , we consider the
basis {x1, . . . , x7} of left invariant 1-forms on N6 defined by

xi = xi (t) = fi (t)e
i , 1 ≤ i ≤ 5,

x6 = x6(t) = f6(t)e
6 + h1(t)e

2,

x7 = x7(t) = f7(t)e
7 + h2(t)e

3.

For any t ∈ I , let ϕ6(t) the G2 form on N6 defined by

ϕ6(t) = x123 + x145 + x167 + x257 − x246 + x347 + x356. (39)

In order to study the flow (18) of ϕ6, we proceed as in the proof of Theorem 4.7.
We see that the forms ϕ6(t) defined by (39) are a solution of (18) if and only if the
functions fi , h1 and h2 satisfy
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f1 = u · v, f2 = f3 = v1/2, f4 = f5 = u1/2,

f6 = f7 = (uv)−1/2, h1 = h2 = −1

2
(uv)−1/2 + 1

2
u3/2v1/2,

where u = u(t) and v = v(t) are differentiable real functions satisfying the system
of ordinary differential equations

⎧⎪⎨
⎪⎩
u′ = 2

3

2 − u3

u3v3
,

v′ = −2

3

1 − 2u3

u4v2
,

(40)

with initial conditions
u(0) = v(0) = 1. (41)

Clearly, the systems (40)–(41) and (29)–(30) are the same. Thus, the maximal
solution of (40)–(41) satisfies the properties expressed inCorollary 4.6 for themaximal
solution of (29)–(30).

To finish the proof we see that, for t ∈ (tmin,+∞), the expression of ϕ6(t) is given
by

ϕ6(t) = 1

4

(
1 + 4uv2 − 2u2v + u4v2

)
e123 + e347 + e356 + e167 − e246 + e257

+ u2ve145 + 1

2

(
1 − u2v

)(
e136 − e127

)
.

The underlying metric g(t) of this solution converges to a flat metric. To check that
the limit metric is flat, we note that all non-vanishing coefficients of the Riemannian
curvature R(t) of g(t) are proportional to the function

u p(t)(2 − u3(t))q ,

where p and q are real numbers satisfying that q > 0. According with Corollary 4.6),
we have that the function u(t) satisfies

lim
t→+∞ u(t) = 21/3,

and so

lim
t→+∞ R(t) = 0.

��
Remark 4.9 Note that surprising in the N4 and N6 cases we get the same system of
equations.

Finally, for the Laplacian flow of the closed G2 form ϕ12 on N12 we have the
following.
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Theorem 4.10 The family of closed G2 forms ϕ12(t) on N12 given by

ϕ12(t) = −e124 + e167 + f (t)6e135 − f (t)6e236 + e257 + e347 − e456, t ∈ (−3,+∞)

(42)
is the solution of the Laplacian flow of ϕ12, where f = f (t) is the function

f (t) =
(
1

3
t + 1

)1/8

.

Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-
back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets
in N12, as t goes to infinity.

Proof Let fi = fi (t) (i = 1, . . . , 7) be some differentiable real functions depending
on a parameter t ∈ I ⊂ R such that fi (0) = 1 and fi (t) �= 0, for any t ∈ I , where I
is an open interval. For each t ∈ I , we consider the basis {x1, . . . , x7} of left invariant
1-forms on N12 defined by

xi = xi (t) = fi (t)e
i , 1 ≤ i ≤ 7.

Then, from (16) the structure equations of N12 with respect to this basis are

dxi = 0, i = 1, 2, 3, dx4 =
√
3

6

f4
f12

x12,

dx5 = −1

4

f5
f23

x23 +
√
3

12

f5
f13

x13, dx6 = −
√
3

12

f6
f23

x23 − 1

4

f6
f13

x13,

dx7 = −
√
3

6

f7
f34

x34 +
√
3

12

f7
f25

x25 + 1

4

f7
f26

x26 +
√
3

12

f7
f16

x16 − 1

4

f7
f15

x15.

(43)

Now, for any t ∈ I , we consider the G2 form ϕ12(t) on N12 given by

ϕ12(t) = −x124 + x167 + x135 − x236 + x257 + x347 − x456 =
= − f124e

124+ f167e
167+ f135e

135− f236e
236+ f257e

257+ f347e
347− f456e

456.

(44)
Note that ϕ12(0) = ϕ12 and, for any t , the 3-form ϕ12(t) on N12 determines the
metric gt such that the basis {xi = 1

f1
ei ; i = 1, . . . , 7} of n12 is orthonormal. So,

gt (ei , ei ) = f 2i .
We need to determine the functions fi and the interval I so that d

dt ϕ12(t) = �tϕ12(t),
for t ∈ I . Using (44) we have

d

dt
ϕ12(t) = −( f124)

′e124 + ( f167)
′e167 + ( f135)

′e135 − ( f236)
′e236+

+ ( f257)
′e257 + ( f347)

′e347 − ( f456)
′e456.

(45)
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Now, we calculate �tϕ12(t) = −d ∗t d ∗t ϕ12(t). On the one hand, we have

∗t ϕ12(t) = x3567 − x2467 + x2345 + x1457 + x1346 + x1256 + x1237. (46)

So, x2467 and x1457 are the unique non closed summands in ∗tϕ12(t). Then, taking into
account the structure equations (43) and that xi (t) = fi (t)ei , 1 ≤ i ≤ 7 we obtain

�tϕ12(t) = − ( f15 + f26)( f 25 f 26 + f 23 f 27 )

16 f1 f2 f3 f5 f6
(e236 − e135)+

+ ( f15 + f26)( f 25 f 26 − f 23 f 27 )

16
√
3 f1 f2 f3 f5 f6

(e136 + e235).

(47)

Comparing (45) and (47), in particular, we have that

( f124)
′ = ( f167)

′ = ( f257)
′ = ( f347)

′ = ( f456)
′ = 0,

and since ϕ12(0) = ϕ12 this imply that

f124(t) = f167(t) = f257(t) = f347(t) = f456(t) = 1, (48)

for any t ∈ I . From the equation (48) we obtain that

f1= f1; f2= f2; f3=( f1 f2)
2; f4= 1

f1 f2
; f5= f1; f6= f2; f7= 1

f1 f2
.

Let us consider f = f1 = f2. With these concrete values (45) and (47) become

d

dt
ϕ12(t) = ( f 6(t))′(e135 − e236), (49)

and

�tϕ12(t) = f (t)−2

4

(
e135 − e236

)
, (50)

respectively. From (49) and (50) finding a solution of the Laplacian flow is equivalent
to solve f 7 f ′ = 1

24 . Integrating this equation, we obtain

f 8 = 1

3
t + B, B = constant.

But ϕ(0) = ϕ12 implies that f (0) = 1, that is, B = 1. Hence

f (t) =
(
1

3
t + 1

)1/8

,

and so the one-parameter family of 3-forms {ϕ12(t)} given by (42) is the solution of
the Laplacian flow of ϕ12 on N12, and it is defined for every t ∈ (−3,+∞).
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Finally, we study the behavior of the underlying metric g(t) of such a solution in the
limit. If we think of the Laplacian flow as a one-parameter family ofG2 manifolds with
a closed G2-structure, it can also be checked that, in the limit, the resulting manifold
has vanishing curvature. Denote by g(t), t ∈ (−3,+∞), the metric on N12 induced
by the G2 form ϕ12(t) defined by (42). Then, g(t) has the following expression

g(t) =
(
1

3
t + 1

)1/4

(e1)2 +
(
1

3
t + 1

)1/4

(e2)2 +
(
1

3
t + 1

)−1

(e3)2

+
(
1

3
t + 1

)−1/2

(e4)2 +
(
1

3
t + 1

)1/4

(e5)2 +
(
1

3
t + 1

)1/4

(e6)2

+
(
1

3
t + 1

)−1/2

(e7)2.

Concretely, every non vanishing coefficient appearing in the expression of the
Riemannian curvature R(t) of g(t) is proportional to (t + 3)−1. Therefore,
limt→+∞ R(t) = 0. ��
Remark 4.11 Note that, for every t ∈ (−3,+∞), the metric g(t) is a nilsoliton on the
Lie algebra n12 of N12. In fact, with respect to the orthonormal basis (x1(t), . . . , x7(t)),
we have

Ric(g(t)) = − 3

4(3 + t)
I d + 3

8(3 + t)
diag(1, 1, 1, 2, 2, 2, 3) = 3

(3 + t)
Ric(g(0))

with 3
8(3+t)diag(1, 1, 1, 2, 2, 2, 3) a derivation of n12 for every t .
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