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Abstract We study the blow-up behavior of minimizing sequences for the singular
Moser—Trudinger functional on compact surfaces. Assuming non-existence of mini-
mum points, we give an estimate for the infimum value of the functional. This result
can be applied to give sharp Onofri-type inequalities on the sphere in the presence of
at most two singularities.
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1 Introduction

Let (X, g) be a smooth, compact Riemannian surface; the standard Moser-Trudinger
inequality (see [16,22]) states that

1 = 1 5 |
log (ﬁ/ze ”dvg) < EL |VeulPdvg + C(E,8) YueHY(Z) (1)

where C(X, g) is a constant depending only on X and g, and the coefficient % is
optimal. A sharp version of (1) was proved by Onofti in [23] for the sphere endowed
with the standard Euclidean metric go. He identified the sharp value of C and the
family of functions attaining equality, proving
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1 _ 1
log —/ e dug, 5—/ |Vgoul*dug, )
4 Js2 167 Js2

with equality holding if and only if the metric ¢“g has constant positive Gaussian
curvature, or, equivalently, u = log|detdy| + ¢ with ¢ € R and ¢ a conformal
diffeomorphism of S2. Onofri’s inequality played an important role (see [12,13]) in
the variational approach to the equation

Agu+K e =1

which is connected to the classical problem of prescribing the Gaussian curvature of
S2. In this paper we will consider extensions of Onofri’s result in connection with the
study of the more general equation

m

Ke? 1 1
Agv=p|—---——)—4 N [ p——— 3
gV p(f):KeUdvg |E|) nZa,(p, IEI) 3)

i=1

where K € C*°(X) is a positive function, p > 0, p1,..., pm € X and @y, ...,y €
(—1, +00). This is known as the singular Liouville equation and arises in several prob-
lems in Riemannian geometry and mathematical physics. When (X, g) = (S2, go)
and p = 87 + 47 >/, &;, solutions of (3) provide metrics on S? with prescribed
Gaussian curvature K and conical singularities of angle 27 (1 + «;) (or of order «;)
in p;, i = 1,...,m (see for example [3,14,27]). Equation (3) also appears in the
description of Abelian Chern—Simons vortices in superconductivity and Electroweak
theory [17,25]. We refer to [4,9—-11,21], for some recent existence results. Liouville
equations also have applications in the description of holomorphic curves in CP” [6,8]
and in the nonabelian Chern—Simons theory which might have applications in high
temperature superconductivity (see [26] and references therein). Denoting by G, the
Green’s function at p, namely the solution of

1
—AgGp=38p — =
J5 Gpdvg =0 ’

the change of variables

m
u= v+4nZo¢,~Gm

i=1

transforms (3) into

A he' 1 @
Aoy = -
& P [5 hetdvg  |Z]
where
h=K H e 4maiGp; (5)
1<i<m
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1204 G. Mancini

satisfies
h(p) = ci d(p, p)* for p ~ pi, 6)
with ¢; > 0.

In [27], studying curvature functions for surfaces with conical singularities, Troy-
anov proved that if & € C*°(Z\{p1, ..., pm}) is a positive function satisfying (6),
then

1 u—u 1 2
log\ — [ he" "dug ) < |Veul"dve+C(Z, g, h).
%1 /s . .
16rmin 11, 1+ min o;
1<i<m
)

The optimal constant C(X, g, h) can be obtained by minimizing the functional

1 5 B 1
J5(u) = E/E |Vou|*dvg + ] /2 u dvy — plog (E /E he”dvg) ,

where p = min [1, 1+ lm.in oe,-]. In this paper we will assume non-existence of
<i<m

minimum points for Jz and exploit known blow-up results [1,2,5] to describe the

behavior of a suitable minimizing sequence and compute ilnf Jz. The same technique
HI(E)

was used by Ding, Jost, Li and Wang [15] to give an existence result for (3) in the

regular case. From their proof it follows that if ; = 0 V i and if there is no minimum

for J3, then
inf J5;=-8rn (1 + log (ll) + max {4 A(p) + logh(p)})
pe

HL(Z) |2

where A(p) is the value in p of the regular part of G . Here we extend this result to
the general case proving:

Theorem 1.1 Assume that h satisfies (5) with K € C*®(X), K > 0, o; €

(=1, +00)\{0}, and that there is no minimum point of J5. If o := ]min o <0,
<i<m

then

T
inf J;=-8v(1+a){l+log{—
Him) "’ ( )( g(IEI)

K(pi e G
+  max 4w A(p) + log %He 4na;Gpy (pi)

1<i<m,aj=«a e
J#

while ifa > 0

T
inf Jp=-87r(1+log{— )+ max dr A +logh .
) ( g(IEI) Pe\(PL,.y pm}{ () g (p)})
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In the last part of the paper we consider the case of the standard sphere with K = 1
and at most two singularities. When m = 1 a simple Kazdan—Warner type identity
proves non-existence of solutions for (4). Thus, one can apply Theorem 1.1 to obtain
the following sharp version of (7):

Theorem 1.2 Ifh = ¢ 41 Cn with oy # 0, thenV u € H'(5%)

1 _ 1
1 helt Uy \V4 2d
Og(4n /52 ¢ ”g") < Tormin(l 1t ar] Jg |00

+ max {oy, —log(l + a1)} .

The same non-existence argument works for m = 2, min{oy, a2} < 0 and o1 # a2
if the singularities are located in two antipodal points.

Theorem 1.3 Assume h = e~ *7*1Gn =4702Gp, 1ipp p2 = —pi1, o] = minfag, o} <
0 and a1 # ay; then¥Y u € H'(5?)

1 = 1
log(— [ he*"d — [ |Vu)’d — log(1 )
og (47_[ /52 e vgo) < Tor(l - ap) /S2 [Vul|"dvg, + an og(l+oay)

When o = oy < 0 Theorem 1.1 cannot be directly applied because (4) has
solutions. However, it is possible to use a stereographic projection and a classification
result in [24] to find an explicit expression for the solutions. In particular a direct
computation allows to prove that all the solutions are minima of J; and to find the

value of min Jz.
HI(5%)

Theorem 1.4 Assume h = ¢~ 7(Gr1+Gm) with o < 0 and p1 = —pa, then¥Y u €
H'(5%) we have

1 — 1
log{— [ he*"d <—— | |Vuld — log(1 .
og (47_[ /52 e vgo) = Tor( 1o Jo [Vul*dvg, +a —log(1 + a)

Moreover the following conditions are equivalent:

e u realizes equality.
e [f 1 denotes the stereographic projection from pj then

1 2\ 1+o
) )+

7] _
uomw (y)= 2]0g(1 +ek|y|2(]+a)

for some A\, c € R.
e he'gg is a metric with constant positive Gaussian curvature and conical singu-
larities of order o in pi, i =1, 2.

This is a generalization of Onofri’s inequality (2) for metrics with two conical
singularities.
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1206 G. Mancini

2 Preliminaries and Blow-Up Analysis

Let (X, g) be a smooth compact, connected, Riemannian surface and let § :=
{p1, ..., pm} be a finite subset of X. Let us consider a function % satisfying (5) with
K € C*(X), K > 0and «; € (—1, +00)\{0}. In order to distinguish the singular
points of /& from the regular ones, we introduce a singularity index function

| it p=p;
’3(1’)"[ 0if p¢sS

We will denote « := min S(p) = min [ min o;, O] the minimum singularity order.
peEX 1<i<m

We shall consider the functional

1 P 1
J,(u) = 5/2 |Vu|*dvg + ﬁ/z u dvg — plog (ﬁ/zhe”dvg). ®)

Our goal is to give a sharp version of (7) finding the explicit value of

CX, 8 h) = J87 (1) (1) ©))

——— inf
8m(1 + &) uer!(z)

To simplify the notation we will set p := 87 (1 + ), p. = p — &, Jg := J,, and
J := J5. From (7) it follows that V & > 0 the functional J; is coercive and, by direct
methods, it is possible to find a function u, € H'(X) satisfying

Je(ue) = inf  Je(u) (10)
ueH ()
and
A he ! (1)
— U = —_— .
gite = Pe Js hetsdvg  |Z]

Since J; is invariant under addition of constants V ¢ > 0, we may also assume

/ h e dv, = 1. (12)
b

Remark 2.1 u, € C%7 ()N W5(2) for some y € (0, 1) and s > 2.

Proof 1t is easy to see that » € L9(X) forsome g > 1 (g = 4ooif @ = 0 and
q < —é for « < 0). Applying locally Remarks 2 and 5 in [7] one can show that
ug € L°(%) so —Au, € L4(%) and by standard elliptic estimates u, € W>4(%).
Since g > 1 the conclusion follows by Sobolev’s embedding theorems. O

The behavior of u, is described by the following concentration-compactness result:
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Proposition 2.1 Let u,, be a sequence satisfying
_Agun = Vye'n — Yn

and

/ Vne””dvg <(Cy,
b3
where ||, || s (z) < Ca for some s > 1, and
V, =K, H e 4maiGy;
1<i<m

with K, € C*®(X),0<a <K, <banda; > —1,i =1, ..., m. Then there exists
a subsequence uy, of u, such that the following alternatives hold:

1. uy, is uniformly bounded in L*°(X);

2. uy, —> —oo uniformly on X;

3. there exist a finite blow-up set B = {q1, ..., q1} € X and a corresponding family
~ i k N

of sequences {q,ﬁ}keN, j=1,...,1 such that qk/ = qj and up, (q,ﬁ) 2 +o0

j=1,...,1. Moreover uy,, g —o0 uniformly on compact subsets of ¥\ B and

Ve A.Z.ljzl ,3]-851_/ weakly in the sense of measures where 8; = 8w (1 +
B(gj) for j=1,...,L

A proof of Proposition 2.1 in the regular case can be found in [19] while the
general case is a consequence of the results in [1,5]. In our analysis we will also need
the following local version of Proposition 2.1 proved by Li and Shafrir [20]:

Proposition 2.2 Let Q be an open domain in R* and v, be a sequence satisfying
”evn”Ll(Q) < C and

—Av, = V,e™
where 0 < V,, € Co(RQ) and V,, —> V uniformly in Q. If v, is not uniformly bounded
1

from above on compact subset of R, then V, e’ — 8x Z mjéy; as measures, with
j=1
gj € Qandmj eNt, j=1,...,L

Applying Proposition 2.1 to u, under the additional condition (12) we obtain that
either u, is uniformly bounded in L°°(X) or its blow-up set contains a single point
p such that 8(p) = «. In the first case, one can use elliptic estimates to find uniform
bounds on u, in W24(X), for some ¢ > 1; consequently, a subsequence of u, con-
verges in H!(X) to a functionu € H () that is a minimum point of J and a solution
of (4) for p = p. We now focus on the second case, that is

de 1= mzaxug =u,(pe) — +o0 and p, — p with B(p) = «. (13)
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1208 G. Mancini

By Proposition 2.1 we also get:

Lemma 2.1 Ifu, satisfies (11), (12) and (13), then, up to subsequences,

1. pche's —p §p;

Ug e —oo uniformly in Q,V Q CC Z\{p},

_ &—0

3. Uy —> —00;

4. There existy € (0, 1), s > 2 such that u, — u, 8—_)9 P Gpin COY( Q) NWs(Q)
VQcc I\{p)k

5. Vug is bounded in L1(2)V q € (1,2).

N

Proof 1.,2. and 3. are direct consequences of Proposition 2.1. To prove 4., we consider
the Green’s representation formula

e (x) — e = pe L G (Mh(y)e =Y dvg(y).

We stress that the Green’s function has the following properties:

o |G,(y)| <Ci(1+|logd(x,y))Vx,ye X, x#y.
VG <2 Vx.yerx, _

e |V, X(y)l_d(x,y) X,y x#y

e Gi(y)=Gy(x)Vx,ye X, x#y.

Take ¢ > 1 such that 1 € L9(X). The first property also yields

sup ||Gx||Lq’():) < Gs. (14)
xex

Let us fix § > 0 such that B3s(p) C X\ and take a cut-off function ¢ such that
¢ = 1in Bs(p) and ¢ = 0 in X\ Bos(p).

e (x) — Wz = pe /E (NG (Mh(y)e s dvg(y)
e /E (1= ()G (M) D dug ().

By (14) and 2. we have

‘ / (1= o)) G (MR D vy (v)] < / 1G] h()e" Py (3)
b 2\ Bs(p)

e—0

< C3llhllLacs)lle™ [l Loo(s\Bs (p)) — O.

By /. and the smoothness of G, for x € Q and y € X we get

/E (NG (Mh()e" P dvg(y) =2 0(p)Go(p) = Gp(x)
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uniformly for x € Q. Similarly we have

Ve (6) = e /2 POIVEG ()" Vv (3)
o, /E (1= NG, (A" Vg (y)
with
/2 POIVEG(Mh()e“DVdvg(y) '=F ViG,x)

uniformly in €2 and, assuming g € (1, 2), by the Hardy—Littlewood—Sobolev inequal-
ity

/2 ( /)S a —go(y))ngx<y)h<y)e”€0’>dvg(y>)‘ dvg(x)

e (y) s
e / / et dvg(y) ) dvg(x)
s \Us\Bs(p  d(x,y)

) . e—0
= Cliala sy le oo \y(py — O

where

Note that ¢ > 1 implies s > 2. Finally, to prove 5., we shall observe that for any
1 < g < 2 there exists a positive constant C; such that

/Z(P dve =0 and /):IVg<p|‘1/dvg <1 = ¢l <Cy.
Hence V ¢ € Wl,q’(z)

/EVgug Voo dvg = _/z Augp dvg < CqllAuglipi(s) < C,
so that

IVuellpa < sup [/ Vet - Voo dvg RS wha (%), ”V(P”Lt/ = 1] =< éq~
)

O

We now focus on the behavior of u, near the blow-up point. First we consider the
case o < 0. Let us fix a system of normal coordinates in a small ball Bs(p), with p
corresponding to 0 and p, corresponding to x,. We define

@ Springer



1210 G. Mancini

Ag
Qe (X) == Ug(teX) — Ag, 1o i=e 2THa), (15)

Lemma 2.2 [fa <0, @ is bounded.

&

Proof We define
Ve(x) = ue(|xelx) + 2(1 + a) log [ x| + s¢ (|xe |x)

where s, (x) is the solution of

1%

—Ase = £ in Bs(0)
se =0 if |x]=68"

The function . satisfies
—AYe = |xe| 2 peh(lxe|x)e e el = v eV

in B s (0). We stress that, by standard elliptic estimates, s, is uniformly bounded in

[xe |

c! (Bs) and that G p has the expansion

1
Gy(x) = —Elog lx[ + A(p) + O(|x|) (16)
in Bs(0). Thus

e | 72 R (|xg |x)e 5 (el

= |x; |—20te2a log(|xe [|x)—4mwaA(p)+ O (JxelIx]) ,—se (%o |’“)K(|x8 1x)

% H e—4mx,-Gp[ (Jxglx)

1<i<m,pi#p
_ |x|2ae—4naA(p)eO(|xsIIX\)e—Ss(IXaIX)K(|x€|x)

< [T ertmelm o < P )
l<i<m.pi#p

where i € C'(B;). In particular V, is uniformly bounded in Cc! (R2\{0}). If there

loc
. X
existed a subsequence such that M — 400 then
&

Xe |xel
We (—) =2(1+a) IOg( ) + 8¢ (xg) —> 00,

| xe | Ie

SOy i= lir% te would be a blow-up point for .. Since yg # 0, applying Proposition
e—=0 |[Xg

2.2 to ¥ in a small ball B,(yp) we would get
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e—0

lim inf / VeeVedx > 8.
B (y0)
But this would be in contradiction to (12) since

/ VeeVedx = / Pe x| T2 R (|xp|x)e 5 Xl Ve g
B (yo) B

r(y0)

< pe/ he"*dvg < 8m(1+a) < 8.
Bs(p)

O

Lemma 2.3 Assume a < 0. Then, possibly passing to a subsequence, ¢, converges

uniformly on compact subsets of R* and in Hllo . (R?) 0
mc(p)
¢o(x) := —2log (1 T |2<‘+“>)

where c(p) = [((p)e—4naA(p) H o~ 4mei Gy (p).
1<i<m,p;#p

Proof The function ¢, is defined in B, = B (0) and satisfies
te

3108

1
—Age = t2ps | h(tex)e? e — — h(tex)e¥s —
Pe gps( (tex)e¥ e |E|) /08 (tex)e Iz

and
17 / h(tex)e? < 1.
B

e

As in the previous proof we have

te_zah(tgx) — tE—Zana log(te\x|)—471aA(p)+0(tg|x|)K(tex) H e—47Ta,-Gpi (tgx)

1<i<m,pi#p
— _ . e—0
:|x|20le 4N0lA(p)eO(tg|X|)K(tgx) H e 4JTOl,Gpl([5.X) C(p)|x|
L<i<m,pi#p
in L?OC(RZ) for some ¢ > 1. Fix R > 0 and let v, be the solution of

2
—AYe = 172 peh(tex)e? — tfzpf in Br(0)
Ve =0 su dBr(0)

Since A, is bounded in L9 (B (0)) with g > 1, elliptic regularity shows that v, is
bounded in W24 (B (0)) and by Sobolev’s embeddings we may extract a subsequence
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1212 G. Mancini

such that v, converges in H' (B (0))NC%*(Bg(0)). The function & = @, — 1, is har-
monic in Bg and bounded from above. Furthermore &, (f—;) =~ ( )t‘f) is bounded

from below, hence by Harnack inequality &, is uniformly bounded in C 2(@(0)).
Thus ¢ is bounded in W9 (B R ) and we can extract a subsequence converging in
H'(B & )N CO*(B r ). Using a diagonal argument we find a subsequence for which
RHNC 0’)‘(}Rz) to a function ¢g solving

: 1
@, converges in H Toe

loc
—Ago = 87 (1 + a)c(p)|x|**e?

on R? with
/ Ix|?%e? M dx < 0.
RZ

The classification result in [24] yields

A
o0(x) = —2log (1 n M_C<P>|x|zu+a>) Lo
14+«

for some A € R. To conclude the proof it remains to note that, since 0 is the unique

maximum point of ¢p, the uniform convergence of ¢, implies f—j —> Oand A = 0.0

Asin [15],to give alower bound on J, (1) we need the following estimate from below
for u,:

Lemma 2.4 Fix R > 0 and definer, = t;R. Ifa < 0 and u, satisfies (11), (12), (13),
then

2(14a)
ue > p Gp —As —p A(p) +2log W +0:(1)
I+o

in 2\ B, (p), where o.(1) is a function of ¢ and R such that 0,(1) — Oas e — 0.

Proof ¥ C > 0 we have

1 0 &
—A —0G,—0C)= hets — — — = p.he's + — > 0.
g(us P Gp ) Ps( € |E|)+|2| Pehe +|E| =

Let us consider normal coordinates near p. We know that
1
Gplx) = —Elog x| + A(p) + O(lx]),
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Onofri-Type Inequalities for Singular Liouville Equations 1213

so by Lemma 2.3 if x = f,y with |y| = R we have
ug(x) —p Gp = @e(y) + 2 +4(1 + ) log(t: R) — pA(p) + O(t:R)

> -2 10g (1 + TCT@RZ(1+Q)) _)\-e+10g R4(1+a)_ﬁ A(p) + 0.(1).
o

Thus, taking

R2(1+Ol)
Cer = =2 —p A(p) +2log T mare )T 0(1)
I+ I+a R

we have ug, — pG, — Ce g > 0 on dB,,(p) and the conclusion follows from the
maximum principle. O

As a consequence we also have
Lemma 2.5 [fu, and t. are as above, then tgzﬁg — 0.

Proof By Lemma 2.3
/ ug dvg =tgz/ @e(V)dy + Ae|Bi, | = 0:(1).
By (p) B1(0)
and by the previous lemma
Iz [ wzp [ Gydue- BB+ O
Z\Bi. (p) E\Bi. (p)

|t |

Thus is bounded and, since Agtgz = 0,(1), we get the conclusion. O

&€

The case ¢ = 0 can be studied in a similar way. The main difference is that, since

we do not know whether 'f—“ is bounded, we have to center the scaling in p, and not

in p. Note that S(p) =0 means that p € X\S is aregular point of .

Lemma 2.6 Assume that « = 0 and that u. satisfies (11), (12) and (13). In normal
coordinates near p define

re

Ye(X) = ueg(xe +tex) —Xe Wwhere t, =€ 2.

Then

1. Y converges in C 110 . (R2) to
Yo(x) = —2log(1 + wh(p)lx|*)
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1214 G. Mancini

2. VR > 0one has
2

Ug = 87TGP5 —Ae — 87{A(p) +210g (W

) + 0:(1)

in X\ Bgi, (pe);
3. t2u, — 0.

3 A Lower Bound

In this section and in the next one we present the proof of Theorem 1.1. We begin by

giving an estimate from below of ilnf J. As before we consider u, satisfying (10),
HI(Z)

(11), (12), and (13). Again we will focus on the case « < 0 since the computation for

o = 0 is equivalent to the one in [15]. We consider normal coordinates in a small ball

Bs(p) and assume that G, has the expansion (16) in Bs(p). Let t, be defined as in

(15), then V R > 0 we shall consider the decomposition

/ |vgu8|2dvg=/ |vgu8|2dvg+/ |vgus|2dvg+/ |Vt |*dvg.
z 2\ Bs(p) Bs\ By, (p) By, (p)

Throughout this section, os(1) (and or (1)) will denote a function depending only
on § (resp. R) which converges to 0 as 6 — 0 (resp. R — 00), while the notation
0¢ (1) will be used for functions of &, § and R such that, for fixed § and R, 0,(1) —> 0
ase — 0.

On X\ Bs(p) we can use Lemma 2.1 and an integration by parts to obtain:

/ NN =52/ VoG pl2dvg + 0e(1)
£\Bs 2\Bs

:_5_2 G, dvg—ﬁz/ G,,@ dog + 0.(1)
IZ] Jx\Bs 3Bs an
- G,
=" | Gp=yhdog+ o)+ os(D. (17
Bs

On B,, (p) the convergence result for the scaling (15) stated in Lemma 2.3 yields
/ |Vqte|2dv, :/ IVgol?dx + 0. (1)=2p (log (1 + ”C—@R2<‘+‘*>) — 1)
By, Br(0) l+a
+0e(1) + or(D). (18)

For the remaining term we can use (11) and Lemma 2.1 to obtain

/ IVgute2dvg = ,08/ he" ugdvg — 25 uedv,
Bs\By, Bs\By, 1%] JB;\8,,

oy / Jug
+ u do, — u,—do
~/BBa ¢ Bn 8 aBVg ¢ on 8
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Onofri-Type Inequalities for Singular Liouville Equations 1215

= ,08/ he'“ugdvg — Pe ugdvg
Bs\B, 121 Bs\B,,

— 8”5 8148
+ do, — —do
Ug /336 an g /33)_6 Ug an g

_ G,
+p Gp——dog +o0.(1). (19)
9 Bs on

By Lemma 2.4 and (12) we get

ps/ he"“ugdvg > pgﬁ/ he'sG pdvg — pSAE/ he"sdvg
B(S\Brg B(S\Brg BB\Brg

+0() he" dv,
BS\Brg

= pgﬁ/ he'sG pdvg — psks/ he'sdvg
Bs\By, Bs\By,

+0:(1) + or(1). (20)

Again by (11) and Lemma 2.1

pg/ he" G pdvg = / G, (—Aug + ﬁ) dv,
B;\By, Bs\By, | 2]

1 G 0
- ugdvg +/ ue_p - Gpﬁdag
|Z[ JBs\B,, a(Bs\B,,) 0N n

+ 0.(1) +05(1)
1

= —— usdv +E/ —do
1= Jepng, ¢ Jo, on 8

ad G
+/ Gy usdag —/ ue—pdog
9By, an 3By, on

+ 0:(1) + o0s(1), 21
and
due Pehe
108)"8/ he'sdv, = —)Lg/ —dog + (Vol(B,;) — Vol(Brg))
Bs\By, 3Bs\B,, On D
x/ due +x/ e e+ LV o1(By) 00 (1). (22)
= — (o g, [ [ .
“Jogy on " Jop, o C T[S o
Using (19), (20), (21) and (22) we get
2 1 Pere
[Veue|"dvg > —(167(1 + ) — &) — ug dvg — Vol (Bg)
Bs\By, IZ] JBs\B,, %]

_ G ol g _ g
+pou / —Pdo, + A / —do, +u / do
¢ 9B; on 8 ¢ 9B; on § ¢ 9B; on 8
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1216 G. Mancini

+—2/ 6,252 —/ Gy
——do, — Ug——do
P 9Bs P on 8 P 9B, € on 8

€

Jug
- —5Gy+ A )—d
/BB (us pOptie on e

re

+0:(1) + 05(1) + or(D). (23)

By Lemmas 2.1 and 2.5 we can say that

/ usdvg = / (e — ug)dvg +u(Vol(Bs) — Vol(By,))
B(S\Brg B(Y\Brg

= ugVol(Bs) + o5(1) + 0. (1).

Using Green’s formula we find

9G Vol(B
ﬁg/ e, = —ﬁe/ NG dvg = —Ti, (1 - M) .
9By on $\Bs [ 2]

Similarly

oug / / ( 1 )
—do, = — Aug dv, = pe | he's — — ) dv
/335 on ¢ LY TR XV N P §

_ (l _ VOI(B(;))
Pe —|Z|

and
0 — - Vol(B
ﬁs/ kdag = ﬁgpge”f/ he'* " dvg — g ps (1 — M)
aBs On 2\Bs(p) ||
_ Vol(Bs)
= —UgP¢e (1 — T +08(1)

Lemma 2.3 yields

G G G
/ ue——Ldog = Ag/ —Ldo, + tg/ 0o —L (1) (1 + 0p(1))do
3B, on 3 dBR(0) on

on
re

A (1 VOZ(B”)) +1 / ( ! +0(1))d
= (1- —== oo (- o
’ 1] ‘ 3BR(0) 2rt: R

— a4 2log (1 L) R2<1+“>) +00(1)
14+«
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Onofri-Type Inequalities for Singular Liouville Equations 1217

and the estimate in Lemma 2.4 gives
/ (we =Gy +5) ous 4
— ug — —do
95, e =P Up ) 5, 408

R2(+) 87Tzc(p)R2(1+"‘)
>\ 2log\ ———— ) —PAW — +0:(1)
(el (1 + =)

14«

= —p A(p) —27 log ( 1 Jip)) +0:(1) +or (D).

Hence
2 — -2 G,
[Veue|"dvg > —(167(1 + ) — &)us + ehe + 0 G,——do,
Bs\ By, dBs on
_ we(p) 2(1+a) -2 — we(p)
—2pl 1+ —R —p°A —2p1 —
pog(+1+a pA(p) — 2plog T+
+0:(1) + 05(1) + or(1). (24)
By (17), (18) and (24) we can therefore conclude
me(p) _
|V u€| dvg > — (167 (1 + o) — &)ue + ehe — P A(p) log Tra —2p

+ 0:(1) + 05(1) + or(1),

so that

=2
g _ D _ mwe(p) _
Je(ue) > =(he —Ug) — A(p) — plog P — P+ pelog|X]
2 2 14+ o

+ 0:(1) +0s(1) + or(1)
—5 (47‘[(1 +a)A(p) + 1+ log (L(p)) ~log |>:|)
14+ o

+ 0:(1) 4+ 05(1) + or(1).

As e, — 0and R — oo we obtain

inf J > p(4n(l+a)A(p)+l+lg( (p))—10g|2|)
HI(Z) l+o

K
=7 [1+1og Z-+amAp)tlog [ =2 [T e @6 |). 5)
|2 I4+o
qES.qFp

Using Lemma 2.6 it is possible to prove that (25) holds even for « = 0. About the
blow-up point p we only know that 8(p) = «, so we have proved
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1218 G. Mancini

Proposition 3.1 If J has no minimum point, then

T
inf J>-p|1l+log— +  max 4w A(p)
H(Z) P 5121 T pesblp=a u

K
+1og [ X2 [ e*@cw

1
to qES.qFp

Notice that, if « < 0, the set
{peX  Bp=at={pi 1 ief{l,....m}, aj =a}
is finite, while if « = 0
{peX : B(p)=a}=X\S.

Although this set is not finite, the maximum in the above expression is still well defined
since the function

pr— 4w A(p) +log [ K(p) [[ e P @%P) | = 4z A(p) +logh(p)
ges

is continuous on X\ S and approaches —oo near S.

4 An Estimate from Above

In order to complete the proof of Theorem 1.1 we need to exhibit a sequence ¢, €
H'(X) such that

_ T
J(ps) — —p | 1 +log E + pe):n}g:c});)za 47 A(p)

K
+1og [ X2 [[ e *#@cw

1
ta qES.qF#p

1
Let us define r, := y,&2(+» where y; is chosen so that
e — 400, rlloge — 0, rZlog(1+ y2!*) — 0. (26)
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Let p € X be such that f(p) = « and

K
s +iog (K2 [T csmmano)
qe€S.q#p

K
=  max 4w A(€) + log ﬁ H e~ 4B@)Gy(8)
EeX,f(§)=a 1+«
q€S.q#E

and consider a cut-off function 5, such that n, = 1 1in B, (p), n. = 0in X\ By, (p)
and |Vgn:| = O(r;"). Define

=T

E(Gp—ngo)—i—Cg—{—logs r>re

—21og (¢ + r21+®) 4 1og e <
we(x)=[ e ) +loge s

where r = d(x, p), o(x) = O(r) is defined by
1
G,,(x):—glogr—}-A(p)—i-a(x), 27

and
2(1+a)
14y, _
Ce = —210g(%) — 0 A(p).
Ve

In the case @; = 0V i, a similar family of functions was used in [15] to give an
existence result for (4) by proving, under some strict assumptions on #, that

inf Jy < —87 (1 +log (l) + max {47 A(p) +10gh(p)}) .
HI(D) P peX

Here we only prove a weak inequality but we have no extra assumptions on 4. Taking
normal coordinates in a neighborhood of p it is simple to verify that

1
/ IVege*dvg = 167 (1 + ) (log (1 + yﬁ“*"‘)) e 1) +0.(1)
re + J/a

— 167(1 +a) (log (1 n yﬁ““”) - 1) +o.(1).

By our definition of ¢,

/ |vg¢g|2dvg=ﬁz(/ VoG p|*dvg + / |V (ne0) 2 d v,
\ By, Z\ By, S\B;,

&

— 2/ VoGp - Ve(neo) dvg)
DAV
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1220 G. Mancini

and by the properties of 7,
/2 . |Vo(ne0)|*dvg = /B . |Vene|*0? 4 2n:0 Vgne - Voo + n2|Veo |* du,
re 2re re

= 0@?).

Hence, integrating by parts and using (27), one has

o

Vo0 |2 dvg = p* (/E\B IVG ,|*dv,

€ €

— 2/ VeGp - Ve(neo) dvg) +0.(1)
2:\Bl‘g

1
=—p° —/ (Gp —2n.0) dvg
IZ] Js\5,,

+/ (Gp —2n,0) ”dag)+og(1)
0By,

:_52/ (G, —20) ”dog+og(1)
3By,

—7 [ (-5 o) + A - )
9By T

1 2
X (— +V0) (14+0(r;)))do + 0s(1)
27re

) log e
=—p 3 —7A(p)+0(10gre)+0(1) do+o.(1)
3B, 4 re 27T
P’ 1 )
= —2—tog (e ) + P2 A(p) + 02(1)

=25 (log p20+) 4 loge — dm(1 + a)A(p)) +os(1).

Thus

5 1+ 82(1+ot)
/): |Vepel“dv, = 2p | log W —1+47n(1+a)A(p) —loge )+ 0:(1)
&

=-2p(1 —4n(1 +a)A(p) +loge) + o.(1). (28)

Similarly one has

Te
/ ¢s dvg = |B, |loge — 471/ rlog (8 + r2(1+°‘)) (1 + o.(1))dr
B 0

re

r2(1+a)

=B, |loge — 27'rr52 loge — 471/ 4 rlog(l + )(1 + 0. (1))dr
0
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1
= 0(r2loge) — 471/ r2s log (1 + y82(1+°‘)s2(1+°‘)) (1 + 0p(1))dr
0
= 0(210ge) + 0 (r210g (14 72179)) = 0.1
and

/ , gedve=7 / (G — 1:0)dvy + (Cs + log )| S\ By, ()|
$\B,, S\B,

€

= |Z|loge — p|Z|A(p) + 0e(1)
so that 1
E/Z%dvg =loge — 7 A(p) + 0s(1). (29)

To compute the integral of the exponential term we fix a small § > 0 and observe
that

/ he**dvy = ﬁ(p)/ 6_4”“Gpe%dvg +/ (ﬁ - fz(p)) e_4"“GPe%dvg
by By,

re

+/ he**dv, +/ he**dv,
Bs\ By, X\ Bs

where i = h %% = K H e 4P @Gy For the first term we have
qES.qFp

21
/ e—47mGpeg05dvg _ 8/ o2 logr—4naA(p)—4nome—210g (s+r ( +a))dv
B B

Te

8
re

draA(p) r
=ge ¢ P/ —— (1 4+ o0:(1))dv
By, (8+r2(1+a))2( e(D)dve

e 4maA(p) y82(1+05)

= 1 1
1+a 1+y82(1+a)( +08( ))
—4raA(p)
e
= — 1). 30
Ta +0:(1) (30)

Since / is smooth in a neighborhood of p we obtain

/ (i = hp)) e Grevedv, = 0u(1) | e Oretedv, = 0.(1) (1)
By,

B,
and
/ he?*dvg| = / ﬁei4”°‘Gf’e‘/’5dvg Ssup|i~z| 674”“G"e¢€dvg
Bs\ By, Bs\ By, Bs Bs\ By,
= e¢ sup || e4ﬂ(2+°‘)6"e7ﬁ”5”dvg

Bs Bs\ By,
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1

= 0(e) MOy = O(e) ————dx
Bs\B,, Bs\B,, [X|2CH)
1 1 1
= 0(8)( I 82(1+a)) = O( 2(1+a))+ 0
Te Ve
= 0.(1). (32)
Finally
/ he*dv, = eeCS/ heﬁGl’dvg = 0(¢) (33)
2\ Bs Z\Bs
so by (30), (31), (32) and (33) we have
7.L,fl(p)e—4n'otA(p)
he¥edvy, = —————— 1). 34
/E € dVg I+ +o0g(1) (34)

Using (28), (29) and (34) we get

. - 1 wh(p)
811_1}})1(%)— p(1+4ﬂA(p)+1og(|E| 1+a))

T
=—-p|l+log— + max 47 A(E)
¢ |Z] s p@)=a

T A

1
O s

This, together with Proposition 3.1, completes the proof of Theorem 1.1.

5 Onofri’s Inequalities on S

In this section we will consider the special case of the standard sphere (S2, go) with
m<2and K =1. We fix ¢1, oy € R with —1 < a; < a» and as before we consider

the singular weight
h = e—47mth],1 —4710(2Gp2 )

In order to apply Theorem 1.1 and obtain sharp versions of (7), we need to study the
existence of minimum points for the functional J. Let us fix a system of coordinates
(x1, x2, x3) on R3 such that p1 = (0,0,1). When & € C1(5?), the Kazdan—Warner
identity (see [18]) states that any solution of (4) has to satisfy

P .
/52 VhVx; " dug, = (2~ E) /SZ hex; dvg, i=1,2,3.
We claim that if po = — p; the same identity holds, at least in the x3-direction, even

when £ is singular.
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Lemma 5.1 Let u be a solution of (4) on S2, then there exist C, 8¢ > 0 such that

o |Vu(x)| < Cd(x, p)*t if o <=5
o [Vu()| < C(—logd(x, p)) if o =—%;
o [Vu(x)| <C if ai>—1;
for0 <d(x, pi) <bo, i =1,2.

Proof Letus fix 0 < rp < mm{z,d(pl, p)tandi € {1,2}. Ifa; > —5 L then, by
standard elliptic regularity, u € c! (BrO (pi)) and the conclusion holds for do = 1o
and C = |[Vullr=B,,(p)- Let us now assume o; < —%. We know that h(y) <
Cid(y, p,-)z‘xi for y € By, (pi) so, if 8o < ro, by Green’s representation formula we
have

h(y) pe”"”OOIIhIILl(Sz)
Vul(x) = peltl [ 205 dug () = —— ==

d(y, pi)>

llloo

+pe C1/ ———————dvg,(y).
Byx) dx.) 8

Let 7 be the stereographic projection from the point — p;. It is easy to check that there
exist Cp, C3 > 0 such that

Crd(q.q") < |n(q) —n(g)| < C3d(q,q")

Vg,q € Bz (pi). Thus we have

d(y, pi)* d(y. pi)* -
/ AP < Md”go(y)fc“/ =T
By d(x.y) Bz (pi) d(x,y) (i< 1P () — 2|
2a;
= Cyfr ()it P
{Iz\f\n(xn} % N Z‘
2ai+1 |Z|2ai
< Csd(x, pi)™ [z
(=} |28 — Z‘

Notice that

|z| 2 1 1
/{|z|<|n('x>} ) _Z’dz = 22_“/{ (x) _Z‘<1} 7 (x) _Z‘dz

[T ()] 7 ()]

+2/ 1z1%%dz + 2/ 1z)?%1dz
(r1=2 [pstl= b

< Cs +2/ |z1%~1dz.
{2<|Z|<|n(x>\}

@ Springer



1224 G. Mancini

Ifa; < —%

/ 2|2 dz < €7,
{2§|z|§#]

|7 ()]

while if o = —1

1
/ 21> dz = 27 log( ) < Cg (—logd(x, p)).
[eslzl= iy} 2| (x)]

Thus we get the conclusion for ¢ sufficiently small. O

In any case there exists s € [0, 1) such that
IVu(x)| < Cd(x, p))~* (—logd(x, p;)) (35)

forO < d(x, pi) <do, i =1, 2.

Proposition 5.1 If po = —p; then any solution of (4) satisfies

p
/52 Vh-Vx3 e dvg, = (2 — E) /S2 he'x3 dvg,.

Proof Without loss of generality we may assume

/52 he"dvg, = 1. (36)

Let us denote S5 = S2\85 (p1) U Bs(p2). Since u is smooth in Ss, multiplying (4) by
Vu - Vx3 and integrating on Ss we have

1
—/ Au Vu - Vx3 dvg, :p/ (h e”——) Vu - V3 dvg, (37)
Ss Ss 47

Integrating by parts we obtain

—/ Au Vu - Vxz dvg, = / Vu - V(Vu - Vx3)dvg,
Ss Ss

2
ou
+ E / Vu - Vxz—do
Bs(pi) on %

i=1

and by (35)

/ Vi Vs 2 g
u-vxsy — do
dBs(pi) on %
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Using the identities
1
Vi V(Vu- Vxy) = 5V (|Vu|2 : Vx3) — x3|Vul?

and
—Ax3 = 2x3,

and applying again (35) to estimate the boundary term, we get
1
—/ Au Vu - Vi3 dvg, =/ —V|Vu|2 - V3 dvg, —/ X3|Vu|2dvgo + os(1)
S5 s5 2 S5
a
/ Ax3 |Vu|*dvg, — Z/ |vu|2£d%
daBs(pi)
—/ x3|VuPdvg, = 05(1).

Ss

Thus (37) becomes

1
/ he"Vu - Vxz dvg, — / Vu - Vxz dvg, = 05(1). (38)
Ss 4 Ss
Moreover

Vu - Vx3zdvg, = / Au x3 dv / X3—d0’
/. o o z g o

1
= p/ (he“ - —) x3 dvg, + O(8' ™ (—log 8))
Ss 47'[

p/ he'x3 dvg, + 05(1)
Ss
and

/ he" Vu - Vx3 dvg, =/ Ve" - hVx3 dvg, = —/ e" div( hVx3)dvg,
Ss Ss Ss

3X3
he" — doyg,

0Bs(p))  On

II[\I4N

Vh-Vx3e" dvg, + 2/ he"x3dvg, + O (8217).

S, Ss

A
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Thus by (38) we have

0

Vh-V “dvg, = (2 — — he'xy d 1).
[ o= ) et ot

Since u is continuouson SZand h, Vi-Vx3 € L'(5%)ass — Owe get the conclusion.OI
Remark 5.1 In this proof there is no need to assume K = 1.

Assuming p; = (0,0, 1) and p» = (0, 0, —1), one may easily verify that

Gy (x) = ——— log(1 — x3) — —log (&
) = Ty R T T Og(z)
and
1 1 e
Gp,(x) = i log(1 + x3) — Elog (5) ,
so that

Vh - Vx3 = —4nh(a1VG1 + Ol2VG2) . VX3 = (0[2 - Oll)/’l - (0[1 + O(z)h)C3.
Thus we can rewrite the identity in Proposition 5.1 as
P u
o) — o] = (2——+a1+a2)/ he'x3 dvg,. 39)
4 S2

Proof of Theorem 1.2 Assume m = 1 (i.e., «p = 0). We claim that equation (4) has
no solutions for p = p = 87 (1 + min{0, «1}), unless o1 = 0. Indeed if u were a
solution of (4) satisfying (36), then applying (39) with p = p we would get

—a) = (o] — 2min{0,a1})/ he"x3 dvg,
52
so that, if oy # 0,
=1.

/52 he'x3 dvg,

This contradicts (4). In particular we proved non-existence of minimum points for Jz
so we can exploit Theorem 1.1 and (9) to prove that (7) holds with

C=  max log L H e~ 4B@Gy(p)

2 = 14+«
pes.p(p)=a T Satp
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If @y < 0 one has
C = —log(l + ay).
IfOl] > O,

C = max {—4710{1Gp1(p)} = —4na1Gp (p2) = ay.
PESA\(p1})

O
Proof of Theorem 1.3 As in the previous proof, applying (39) with p = p =87 (1 +
a1), we obtain that any critical point of (4) for which (36) holds has to satisfy

ar — oy = (ap — al)/ he"x3dvg,.
S2

Since o # ap one has

/S2 he"x3dvg, =1

which is impossible. Thus J5 has no critical points and by Theorem 1.1 one has

1
C =log (raleMszpz(Pl)) =y —log(l + ay).

]

Now we assume o1 = a2 < 0. In this case identity (39) gives no useful condition.
Let us denote by 7 the stereographic projection from the point py. It is easy to verify
that u satisfies (4) and (36) if and only if

+ 2u log (f)

v::uon_l—i—(l—i—a)log( 7

)
(1+y»?

solves
—Apov = 87 (1 +a)|y|*¥e (40)

in R% and

/ yPeetdy = 1.
RZ

As we pointed out in the proof of Lemma 2.3 and Eq. (40) has a one-parameter family
of solutions:

T
vy (y) = —2log (1 + H—ael|y|2(l+a))
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[ € R. Thus we have a corresponding family {u; .} of critical points of J5 given by

the expression
14+«
1+ [y?)
Sy (
upcom (y)= 210%(1 MPYNEE +c, (41)

¢ € R, A > 0. A priori we do not know whether these critical points are minima for J5
(as it happens for o« = 0), so a direct application of 1.1 is not possible. However, we
can still get the conclusion by comparing J5(u; ) with the blow-up value provided
by Theorem 1.1.

Proof of Theorem 1.4 Let us first compute J(u; ). Let ¢; : $2 — 52 be the con-
formal transformation defined by 7 (¢ (Y v))) = ty. Itis not difficult to prove that
V>0

Jp(u) = Jp(uog + (1 +a)log|detde|);

in particular, since

upe=uipo¢ 1 +(1+a)logldety 1 |+ c—logh,
A A

2(T+a) 2(1+a)

we have that J(u; ) does not depend on A and c. Thus we may assume A = 1 and
¢ = 0. A simple computation shows that

20 20
4
/ h e“l,Odng = 4620[/ |y| 2(,Z1y = ¢ 7T. 42)
52 R2 (1 4 |y|2(1+a)) 1+«

Since u1 o(p1) = 0 and u o solves
—Aujg=whe' —2(1+a) with w:=2(1+ a)le

one has

/S2 ui,0 dvg, = 4w /52 Auy Gpdvg, = —47ra)/s2 he'"'0G p dvg,

and
1 2
— [Vuyoldvg, +2(1 + a) ur,o dvg,
2 Js2 52
1
= —a)/ he"“0uy o dvg, + (1 —|—a)/ ui,0 dvg,
2 Js2 ’ sz
_® het1.o 5G . )d 43
=2/ e (uro — pGp)dvg,. 43)
Since

1 1
Gp(x () = 2 log(l+ IyI?) — o
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we get

/ he"'"C(u1 0 —pGp) =2(1+ a)/ he"-0d vy,
52 52

Za/ |ly[>*log (1 + [y[*+)
—8e 5 d
R2 (14 y[20+e)
8 e /+°° log(1 +s) 8rae
S =
1+a Jy (1+s)2 l+a

= 8me™ — . (44)

Using (42), (43) and (44) we obtain
J(y. ) = J(,0) =8n(l + o) (log(l + o) — o) VA>0,ceR.

To conclude the proof it is sufficient to observe that u; . have to be minimum points
for J5 that is

inf J5=8n(l+a)(og(l+a)—o).
H1(52)

Indeed if this were false then J5 would have no minimum points but, by Theorem 1.1,
we would get

inf Jz=8n(l +a)log(l+a)—oa)=Juc).
Hl(sZ)

This is clearly a contradiction. O
Remark 5.2 There is no need to assume p; = —ps.

Indeed given two arbitrary points p1, p» € S with p; # ps it is always possible to
find a conformal diffeomorphism ¢ : $2 —» 52 such that <p_1(p1) = —go_l(pz).
Moreover one has

J5) = J5(u 0 ¢ + (1 4+ a)log | det dgl) + co.py. p

Y u e H'(S?), where J is the Moser—Trudinger functional associated to

—4raG —4raG
[ [

h=e —lop L)
and cg,p;,p, s an explicitly known constant depending only on «, p; and ps. In
particular one can still compute min 52, J5 and describe the minimum points of J5

in terms of ¢ and the family (41).
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