
J Geom Anal (2016) 26:1202–1230
DOI 10.1007/s12220-015-9589-3

Onofri-Type Inequalities for Singular Liouville
Equations

Gabriele Mancini

Received: 1 September 2014 / Published online: 13 February 2015
© Mathematica Josephina, Inc. 2015

Abstract We study the blow-up behavior of minimizing sequences for the singular
Moser–Trudinger functional on compact surfaces. Assuming non-existence of mini-
mum points, we give an estimate for the infimum value of the functional. This result
can be applied to give sharp Onofri-type inequalities on the sphere in the presence of
at most two singularities.
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1 Introduction

Let (�, g) be a smooth, compact Riemannian surface; the standard Moser–Trudinger
inequality (see [16,22]) states that

log

(
1

|�|
∫

�

eu−udvg

)
≤ 1

16π

∫
�

|∇gu|2dvg + C(�, g) ∀ u ∈ H1(�) (1)

where C(�, g) is a constant depending only on � and g, and the coefficient 1
16π is

optimal. A sharp version of (1) was proved by Onofri in [23] for the sphere endowed
with the standard Euclidean metric g0. He identified the sharp value of C and the
family of functions attaining equality, proving
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log

(
1

4π

∫
S2
eu−udvg0

)
≤ 1

16π

∫
S2

|∇g0u|2dvg0 (2)

with equality holding if and only if the metric eug has constant positive Gaussian
curvature, or, equivalently, u = log | det dϕ| + c with c ∈ R and ϕ a conformal
diffeomorphism of S2. Onofri’s inequality played an important role (see [12,13]) in
the variational approach to the equation

�g0u + K eu = 1

which is connected to the classical problem of prescribing the Gaussian curvature of
S2. In this paper we will consider extensions of Onofri’s result in connection with the
study of the more general equation

−�gv = ρ

(
Kev∫

�
Kevdvg

− 1

|�|
)

− 4π
m∑
i=1

αi

(
δpi − 1

|�|
)

, (3)

where K ∈ C∞(�) is a positive function, ρ > 0, p1, . . . , pm ∈ � and α1, . . . , αm ∈
(−1,+∞). This is known as the singular Liouville equation and arises in several prob-
lems in Riemannian geometry and mathematical physics. When (�, g) = (S2, g0)
and ρ = 8π + 4π

∑m
i=1 αi , solutions of (3) provide metrics on S2 with prescribed

Gaussian curvature K and conical singularities of angle 2π(1 + αi ) (or of order αi )
in pi , i = 1, . . . ,m (see for example [3,14,27]). Equation (3) also appears in the
description of Abelian Chern–Simons vortices in superconductivity and Electroweak
theory [17,25]. We refer to [4,9–11,21], for some recent existence results. Liouville
equations also have applications in the description of holomorphic curves inCPn [6,8]
and in the nonabelian Chern–Simons theory which might have applications in high
temperature superconductivity (see [26] and references therein). Denoting by Gp the
Green’s function at p, namely the solution of

{−�gG p = δp − 1
|�|∫

�
Gp dvg = 0

,

the change of variables

u = v + 4π
m∑
i=1

αi G pi

transforms (3) into

−�gu = ρ

(
heu∫

�
heudvg

− 1

|�|
)

(4)

where
h = K

∏
1≤i≤m

e−4παi G pi (5)
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1204 G. Mancini

satisfies
h(p) ≈ ci d(p, pi )

2αi for p ≈ pi , (6)

with ci > 0.
In [27], studying curvature functions for surfaces with conical singularities, Troy-

anov proved that if h ∈ C∞(�\{p1, . . . , pm}) is a positive function satisfying (6),
then

log

(
1

|�|
∫

�

h eu−udvg

)
≤ 1

16πmin

{
1, 1+ min

1≤i≤m
αi

}
∫

�

|∇gu|2dvg+C(�, g, h).

(7)
The optimal constant C(�, g, h) can be obtained by minimizing the functional

Jρ(u) = 1

2

∫
�

|∇gu|2dvg + ρ

|�|
∫

�

u dvg − ρ log

(
1

|�|
∫

�

heudvg

)
,

where ρ = min

{
1, 1 + min

1≤i≤m
αi

}
. In this paper we will assume non-existence of

minimum points for Jρ and exploit known blow-up results [1,2,5] to describe the
behavior of a suitableminimizing sequence and compute inf

H1(�)
Jρ . The same technique

was used by Ding, Jost, Li and Wang [15] to give an existence result for (3) in the
regular case. From their proof it follows that if αi = 0 ∀ i and if there is no minimum
for Jρ , then

inf
H1(�)

Jρ = −8π

(
1 + log

(
π

|�|
)

+ max
p∈�

{4π A(p) + log h(p)}
)

where A(p) is the value in p of the regular part of Gp. Here we extend this result to
the general case proving:

Theorem 1.1 Assume that h satisfies (5) with K ∈ C∞(�), K > 0, αi ∈
(−1,+∞)\{0}, and that there is no minimum point of Jρ . If α := min

1≤i≤m
αi < 0,

then

inf
H1(�)

Jρ = −8π(1 + α)

(
1 + log

(
π

|�|
)

+ max
1≤i≤m,αi=α

⎧⎨
⎩4π A(pi ) + log

⎛
⎝K (pi )

1 + α

∏
j �=i

e−4πα j G p j (pi )

⎞
⎠
⎫⎬
⎭
⎞
⎠

while if α > 0

inf
H1(�)

Jρ = −8π

(
1 + log

(
π

|�|
)

+ max
p∈�\{p1,...,pm } {4π A(p) + log h(p)}

)
.
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Onofri-Type Inequalities for Singular Liouville Equations 1205

In the last part of the paper we consider the case of the standard sphere with K ≡ 1
and at most two singularities. When m = 1 a simple Kazdan–Warner type identity
proves non-existence of solutions for (4). Thus, one can apply Theorem 1.1 to obtain
the following sharp version of (7):

Theorem 1.2 If h = e−4πα1Gp1 with α1 �= 0, then ∀ u ∈ H1(S2)

log

(
1

4π

∫
S2
heu−udvg0

)
<

1

16π min{1, 1 + α1}
∫
S2

|∇u|2dvg0

+max {α1,− log(1 + α1)} .

The same non-existence argument works form = 2, min{α1, α2} < 0 and α1 �= α2
if the singularities are located in two antipodal points.

Theorem 1.3 Assume h = e−4πα1Gp1−4πα2Gp2 with p2 = −p1, α1 = min{α1, α2} <

0 and α1 �= α2; then ∀ u ∈ H1(S2)

log

(
1

4π

∫
S2
heu−udvg0

)
<

1

16π(1 + α1)

∫
S2

|∇u|2dvg0 + α2 − log(1 + α1).

When α1 = α2 < 0 Theorem 1.1 cannot be directly applied because (4) has
solutions. However, it is possible to use a stereographic projection and a classification
result in [24] to find an explicit expression for the solutions. In particular a direct
computation allows to prove that all the solutions are minima of Jρ and to find the
value of min

H1(S2)
Jρ .

Theorem 1.4 Assume h = e−4πα
(
Gp1+Gp2

)
with α < 0 and p1 = −p2; then ∀ u ∈

H1(S2) we have

log

(
1

4π

∫
S2
heu−udvg0

)
≤ 1

16π(1 + α)

∫
S2

|∇u|2dvg0 + α − log(1 + α).

Moreover the following conditions are equivalent:

• u realizes equality.
• If π denotes the stereographic projection from p1 then

u ◦ π−1(y) = 2 log

(
(1 + |y|2)1+α

1 + eλ|y|2(1+α)

)
+ c

for some λ, c ∈ R.
• heug0 is a metric with constant positive Gaussian curvature and conical singu-
larities of order αi in pi , i = 1, 2.

This is a generalization of Onofri’s inequality (2) for metrics with two conical
singularities.
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1206 G. Mancini

2 Preliminaries and Blow-Up Analysis

Let (�, g) be a smooth compact, connected, Riemannian surface and let S :=
{p1, . . . , pm} be a finite subset of �. Let us consider a function h satisfying (5) with
K ∈ C∞(�), K > 0 and αi ∈ (−1,+∞)\{0}. In order to distinguish the singular
points of h from the regular ones, we introduce a singularity index function

β(p) :=
{

αi if p = pi
0 if p /∈ S

.

We will denote α := min
p∈�

β(p) = min

{
min

1≤i≤m
αi , 0

}
the minimum singularity order.

We shall consider the functional

Jρ(u) = 1

2

∫
�

|∇gu|2dvg + ρ

|�|
∫

�

u dvg − ρ log

(
1

|�|
∫

�

heudvg

)
. (8)

Our goal is to give a sharp version of (7) finding the explicit value of

C(�, g, h) = − 1

8π(1 + α)
inf

u∈H1(�)
J8π(1+α)(u). (9)

To simplify the notation we will set ρ := 8π(1 + α), ρε = ρ − ε, Jε := Jρε and
J := Jρ . From (7) it follows that ∀ ε > 0 the functional Jε is coercive and, by direct
methods, it is possible to find a function uε ∈ H1(�) satisfying

Jε(uε) = inf
u∈H1(�)

Jε(u) (10)

and

−�guε = ρε

(
heuε∫

�
heuεdvg

− 1

|�|
)

. (11)

Since Jε is invariant under addition of constants ∀ ε > 0, we may also assume

∫
�

h euεdvg = 1. (12)

Remark 2.1 uε ∈ C0,γ (�) ∩ W 1,s(�) for some γ ∈ (0, 1) and s > 2.

Proof It is easy to see that h ∈ Lq(�) for some q > 1 ( q = +∞ if α = 0 and
q < − 1

α
for α < 0). Applying locally Remarks 2 and 5 in [7] one can show that

uε ∈ L∞(�) so −�uε ∈ Lq(�) and by standard elliptic estimates uε ∈ W 2,q(�).
Since q > 1 the conclusion follows by Sobolev’s embedding theorems. �

The behavior of uε is described by the following concentration-compactness result:
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Onofri-Type Inequalities for Singular Liouville Equations 1207

Proposition 2.1 Let un be a sequence satisfying

−�gun = Vne
un − ψn

and
∫

�

Vne
undvg ≤ C1,

where ‖ψn‖Ls (�) ≤ C2 for some s > 1, and

Vn = Kn

∏
1≤i≤m

e−4παi G pi

with Kn ∈ C∞(�), 0 < a ≤ Kn ≤ b and αi > −1, i = 1, . . . ,m. Then there exists
a subsequence unk of un such that the following alternatives hold:

1. unk is uniformly bounded in L∞(�);
2. unk −→ −∞ uniformly on �;
3. there exist a finite blow-up set B = {q1, . . . , ql} ⊆ � and a corresponding family

of sequences {q j
k }k∈N, j = 1, . . . , l such that q j

k
k→∞−→ q j and unk (q

j
k )

k→∞−→ +∞
j = 1, . . . , l. Moreover unk

k→∞−→ −∞ uniformly on compact subsets of �\B and
Vnk e

unk ⇀
∑l

j=1 β jδq j weakly in the sense of measures where β j = 8π(1 +
β(q j )) for j = 1, . . . , l.

A proof of Proposition 2.1 in the regular case can be found in [19] while the
general case is a consequence of the results in [1,5]. In our analysis we will also need
the following local version of Proposition 2.1 proved by Li and Shafrir [20]:

Proposition 2.2 Let � be an open domain in R
2 and vn be a sequence satisfying

‖evn‖L1(�) ≤ C and

−�vn = Vne
vn

where 0 ≤ Vn ∈ C0(�) and Vn −→ V uniformly in �. If vn is not uniformly bounded

from above on compact subset of �, then Vnevn ⇀ 8π
l∑

j=1

m jδq j as measures, with

q j ∈ � and m j ∈ N
+, j = 1, . . . , l.

Applying Proposition 2.1 to uε under the additional condition (12) we obtain that
either uε is uniformly bounded in L∞(�) or its blow-up set contains a single point
p such that β(p) = α. In the first case, one can use elliptic estimates to find uniform
bounds on uε in W 2,q(�), for some q > 1; consequently, a subsequence of uε con-
verges in H1(�) to a function u ∈ H1(�) that is a minimum point of J and a solution
of (4) for ρ = ρ. We now focus on the second case, that is

λε := max
�

uε = uε(pε) −→ +∞ and pε −→ p with β(p) = α. (13)
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1208 G. Mancini

By Proposition 2.1 we also get:

Lemma 2.1 If uε satisfies (11), (12) and (13), then, up to subsequences,

1. ρεheuε ⇀ ρ δp;

2. uε
ε→0−→ −∞ uniformly in �, ∀ � ⊂⊂ �\{p};

3. uε
ε→0−→ −∞;

4. There exist γ ∈ (0, 1), s > 2 such that uε − uε
ε→0−→ ρ Gp in C0,γ (�) ∩ W 1,s(�)

∀ � ⊂⊂ �\{p};
5. ∇uε is bounded in Lq(�) ∀ q ∈ (1, 2).

Proof 1., 2. and 3. are direct consequences of Proposition 2.1. To prove 4., we consider
the Green’s representation formula

uε(x) − uε = ρε

∫
�

Gx (y)h(y)euε(y)dvg(y).

We stress that the Green’s function has the following properties:

• |Gx (y)| ≤ C1(1 + | log d(x, y)|) ∀ x, y ∈ �, x �= y.

• |∇x
g Gx (y)| ≤ C2

d(x, y)
∀ x, y ∈ �, x �= y.

• Gx (y) = Gy(x) ∀ x, y ∈ �, x �= y.

Take q > 1 such that h ∈ Lq(�). The first property also yields

sup
x∈�

‖Gx‖Lq′
(�)

≤ C3. (14)

Let us fix δ > 0 such that B3δ(p) ⊂ �\� and take a cut-off function ϕ such that
ϕ ≡ 1 in Bδ(p) and ϕ ≡ 0 in �\B2δ(p).

uε(x) − uε = ρε

∫
�

ϕ(y)Gx (y)h(y)euε(y)dvg(y)

+ρε

∫
�

(1 − ϕ(y))Gx (y)h(y)euε(y)dvg(y).

By (14) and 2. we have

∣∣∣∣
∫

�

(1 − ϕ(y))Gx (y)h(y)euε(y)dvg(y)

∣∣∣∣ ≤
∫

�\Bδ(p)
|Gx (y)| h(y)euε(y)dvg(y)

≤ C3‖h‖Lq (�)‖euε‖L∞(�\Bδ(p))
ε→0−→ 0.

By 1. and the smoothness of ϕGx for x ∈ � and y ∈ � we get

∫
�

ϕ(y)Gx (y)h(y)euε(y)dvg(y)
ε→0−→ ϕ(p)Gx (p) = Gp(x)

123



Onofri-Type Inequalities for Singular Liouville Equations 1209

uniformly for x ∈ �. Similarly we have

∇guε(x) = ρε

∫
�

ϕ(y)∇x
g Gx (y)h(y)euε(y)dvg(y)

+ρε

∫
�

(1 − ϕ(y))∇x
g Gx (y)h(y)euε(y)dvg(y)

with
∫

�

ϕ(y)∇x
g Gx (y)h(y)euε(y)dvg(y)

k→∞−→ ∇x
g G p(x)

uniformly in � and, assuming q ∈ (1, 2), by the Hardy–Littlewood–Sobolev inequal-
ity

∫
�

(∫
�

(1 − ϕ(y))∇x
g Gx (y)h(y)euε(y)dvg(y)

)s

dvg(x)

≤ Cs
2

∫
�

(∫
�\Bδ(p)

h(y)euε(y)

d(x, y)
dvg(y)

)s

dvg(x)

≤ C‖h‖sLq (�)‖eun‖sL∞(�\Bδ(p))
ε→0−→ 0

where

1

s
= 1

q
− 1

2
.

Note that q > 1 implies s > 2. Finally, to prove 5., we shall observe that for any
1 < q < 2 there exists a positive constant Cq such that

∫
�

ϕ dvg = 0 and
∫

�

|∇gϕ|q ′
dvg ≤ 1 �⇒ ‖ϕ‖∞ ≤ Cq .

Hence ∀ ϕ ∈ W 1,q ′
(�)

∫
�

∇guε · ∇gϕ dvg = −
∫

�

�uεϕ dvg ≤ Cq‖�uε‖L1(�) ≤ C̃q

so that

‖∇uε‖Lq ≤ sup

{∫
�

∇guε · ∇gϕ dvg : ϕ ∈ W 1,q ′
(�), ‖∇ϕ‖Lq′ ≤ 1

}
≤ C̃q .

�
We now focus on the behavior of uε near the blow-up point. First we consider the

case α < 0. Let us fix a system of normal coordinates in a small ball Bδ(p), with p
corresponding to 0 and pε corresponding to xε. We define

123



1210 G. Mancini

ϕε(x) := uε(tεx) − λε, tε := e− λε
2(1+α) . (15)

Lemma 2.2 If α < 0,
|xε|
tε

is bounded.

Proof We define

ψε(x) = uε(|xε|x) + 2(1 + α) log |xε| + sε(|xε|x)

where sε(x) is the solution of

{−�sε = ρε|�| in Bδ(0)
sε = 0 if |x | = δ

.

The function ψε satisfies

−�ψε = |xε|−2αρεh(|xε|x)e−sε(|xε |x)eψε = Vεe
ψε

in B δ
|xε |

(0). We stress that, by standard elliptic estimates, sε is uniformly bounded in

C1(Bδ) and that Gp has the expansion

Gp(x) = − 1

2π
log |x | + A(p) + O(|x |) (16)

in Bδ(0). Thus

|xε|−2αh(|xε|x)e−sε(|xε |x)

= |xε|−2αe2α log(|xε ||x |)−4παA(p)+O(|xε ||x |)e−sε(|xε |x)K (|xε|x)
×

∏
1≤i≤m,pi �=p

e−4παi G pi (|xε |x)

= |x |2αe−4παA(p)eO(|xε ||x |)e−sε(|xε |x)K (|xε|x)
×

∏
1≤i≤m,pi �=p

e−4παi G pi (|xε |x) = |x |2α h̃(|xε|x)

where h̃ ∈ C1(Bδ). In particular Vε is uniformly bounded in C1
loc(R

2\{0}). If there
existed a subsequence such that

|xε|
tε

−→ +∞ then

ψε

(
xε

|xε|
)

= 2(1 + α) log

( |xε|
tε

)
+ sε(xε) −→ +∞,

so y0 := lim
ε→0

xε

|xε| would be a blow-uppoint forψε . Since y0 �= 0, applyingProposition

2.2 to ψε in a small ball Br (y0) we would get

123



Onofri-Type Inequalities for Singular Liouville Equations 1211

lim inf
ε→0

∫
Br (y0)

Vεe
ψεdx ≥ 8π.

But this would be in contradiction to (12) since

∫
Br (y0)

Vεe
ψεdx =

∫
Br(y0)

ρε |xε|−2αh(|xε|x)e−sε(|xε |x)eψεdx

≤ ρε

∫
Bδ(p)

heuεdvg ≤ 8π(1 + α) < 8π.

�
Lemma 2.3 Assume α < 0. Then, possibly passing to a subsequence, ϕε converges
uniformly on compact subsets of R2 and in H1

loc(R
2) to

ϕ0(x) := −2 log

(
1 + πc(p)

1 + α
|x |2(1+α)

)

where c(p) = K (p)e−4παA(p)
∏

1≤i≤m,pi �=p

e−4παi G pi (p).

Proof The function ϕε is defined in Bε = B δ
tε

(0) and satisfies

−�ϕε = t2ε ρε

(
h(tεx)e

ϕεeλε − 1

|�|
)

= t−2α
ε ρεh(tεx)e

ϕε − t2ε ρε

|�|
and

t−2α
ε

∫
B δ
tε

h(tεx)e
ϕε ≤ 1.

As in the previous proof we have

t−2α
ε h(tεx) = t−2α

ε e2α log(tε |x |)−4παA(p)+O(tε |x |)K (tεx)
∏

1≤i≤m,pi �=p

e−4παi G pi (tεx)

=|x |2αe−4παA(p)eO(tε |x |)K (tεx)
∏

1≤i≤m,pi �=p

e−4παi G pi (tεx)
ε→0−→c(p)|x |2α

in Lq
loc(R

2) for some q > 1. Fix R > 0 and let ψε be the solution of

{
−�ψε = t−2α

ε ρεh(tεx)eϕε − t2ε ρε

|�| in BR(0)
ψε = 0 su ∂BR(0)

.

Since �ψε is bounded in Lq(BR(0)) with q > 1, elliptic regularity shows that ψε is
bounded inW 2,q(BR(0)) and by Sobolev’s embeddings wemay extract a subsequence

123



1212 G. Mancini

such thatψε converges in H1(BR(0))∩C0,λ(BR(0)). The function ξε = ϕε−ψε is har-

monic in BR and bounded from above. Furthermore ξε

(
xε

tε

)
= −ψε

(
xε

tε

)
is bounded

from below, hence by Harnack inequality ξε is uniformly bounded in C2(B R
2
(0)).

Thus ϕε is bounded in W 2,q(B R
2
) and we can extract a subsequence converging in

H1(B R
2
) ∩ C0,λ(B R

2
). Using a diagonal argument we find a subsequence for which

ϕε converges in H1
loc(R

2) ∩ C0,λ
loc (R2) to a function ϕ0 solving

−�ϕ0 = 8π(1 + α)c(p)|x |2αeϕ0

on R2 with

∫
R2

|x |2αeϕ0(x)dx < ∞.

The classification result in [24] yields

ϕ0(x) = −2 log

(
1 + πeλc(p)

1 + α
|x |2(1+α)

)
+ λ

for some λ ∈ R. To conclude the proof it remains to note that, since 0 is the unique
maximum point of ϕ0, the uniform convergence of ϕε implies xε

tε
−→ 0 and λ = 0.�

As in [15], to give a lower bound on Jε(uε)we need the following estimate from below
for uε:

Lemma 2.4 Fix R > 0 and define rε = tεR. If α < 0 and uε satisfies (11), (12), (13),
then

uε ≥ ρ Gp − λε − ρ A(p) + 2 log

(
R2(1+α)

1 + πc(p)
1+α

R2(1+α)

)
+ oε(1)

in �\Brε (p), where oε(1) is a function of ε and R such that oε(1) −→ 0 as ε → 0.

Proof ∀ C > 0 we have

−�g(uε − ρ Gp − C) = ρε

(
heuε − 1

|�|
)

+ ρ

|�| = ρεhe
uε + ε

|�| ≥ 0.

Let us consider normal coordinates near p. We know that

Gp(x) = − 1

2π
log |x | + A(p) + O(|x |),

123



Onofri-Type Inequalities for Singular Liouville Equations 1213

so by Lemma 2.3 if x = tε y with |y| = R we have

uε(x) − ρ Gp = ϕε(y) + λε + 4(1 + α) log(tεR) − ρA(p) + O(tεR)

≥ −2 log

(
1 + πc(p)

1 + α
R2(1+α)

)
−λε+log R4(1+α)−ρ A(p) + oε(1).

Thus, taking

Cε,R = −λε − ρ A(p) + 2 log

(
R2(1+α)

1 + πc(p)
1+α

R2(1+α)

)
+ oε(1)

we have uε − ρGp − Cε,R ≥ 0 on ∂Brε (p) and the conclusion follows from the
maximum principle. �

As a consequence we also have

Lemma 2.5 If uε and tε are as above, then t2ε uε −→ 0.

Proof By Lemma 2.3

∫
Btε (p)

uε dvg = t2ε

∫
B1(0)

ϕε(y)dy + λε|Btε | = oε(1).

and by the previous lemma

λε|�| ≥
∫

�\Btε (p)
uε ≥ ρ

∫
�\Btε (p)

Gp dvg − λε|�\Btε (p)| + O(1).

Thus
|uε|
λε

is bounded and, since λεt2ε = oε(1), we get the conclusion. �

The case α = 0 can be studied in a similar way. The main difference is that, since
we do not know whether |xε |

tε
is bounded, we have to center the scaling in pε and not

in p. Note that β(p) = 0 means that p ∈ �\S is a regular point of h.

Lemma 2.6 Assume that α = 0 and that uε satisfies (11), (12) and (13). In normal
coordinates near p define

ψε(x) = uε(xε + tεx) − λε where tε = e− λε
2 .

Then

1. ψε converges in C1
loc(R

2) to

ψ0(x) = −2 log(1 + πh(p)|x |2)
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1214 G. Mancini

2. ∀ R > 0 one has

uε ≥ 8πGpε − λε − 8π A(p) + 2 log

(
R2

1 + πh(p)R2

)
+ oε(1)

in �\BRtε (pε);
3. t2ε uε → 0.

3 A Lower Bound

In this section and in the next one we present the proof of Theorem 1.1. We begin by
giving an estimate from below of inf

H1(�)
J . As before we consider uε satisfying (10),

(11), (12), and (13). Again we will focus on the case α < 0 since the computation for
α = 0 is equivalent to the one in [15]. We consider normal coordinates in a small ball
Bδ(p) and assume that Gp has the expansion (16) in Bδ(p). Let tε be defined as in
(15), then ∀ R > 0 we shall consider the decomposition∫

�

|∇guε|2dvg =
∫

�\Bδ(p)
|∇guε|2dvg+

∫
Bδ\Brε (p)

|∇guε|2dvg+
∫
Brε (p)

|∇guε|2dvg.

Throughout this section, oδ(1) (and oR(1)) will denote a function depending only
on δ (resp. R) which converges to 0 as δ → 0 (resp. R → ∞), while the notation
oε(1)will be used for functions of ε, δ and R such that, for fixed δ and R, oε(1) −→ 0
as ε → 0.

On �\Bδ(p) we can use Lemma 2.1 and an integration by parts to obtain:∫
�\Bδ

|∇guε|2dvg = ρ2
∫

�\Bδ

|∇gG p|2dvg + oε(1)

= − ρ2

|�|
∫

�\Bδ

Gp dvg − ρ2
∫

∂Bδ

Gp
∂Gp

∂n
dσg + oε(1)

= −ρ2
∫

∂Bδ

Gp
∂Gp

∂n
dσg + oε(1) + oδ(1). (17)

On Brε (p) the convergence result for the scaling (15) stated in Lemma 2.3 yields
∫
Brε

|∇guε|2dvg =
∫
BR(0)

|∇ϕ0|2dx + oε(1)=2ρ

(
log

(
1 + π c(p)

1 + α
R2(1+α)

)
−1

)

+ oε(1) + oR(1). (18)

For the remaining term we can use (11) and Lemma 2.1 to obtain∫
Bδ\Brε

|∇guε|2dvg = ρε

∫
Bδ\Brε

heuεuεdvg − ρε

|�|
∫
Bδ\Brε

uεdvg

+
∫

∂Bδ

uε

∂uε

∂n
dσg −

∫
∂Brε

uε

∂uε

∂n
dσg
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Onofri-Type Inequalities for Singular Liouville Equations 1215

= ρε

∫
Bδ\Brε

heuεuεdvg − ρε

|�|
∫
Bδ\Brε

uεdvg

+ uε

∫
∂Bδ

∂uε

∂n
dσg −

∫
∂Brε

uε

∂uε

∂n
dσg

+ ρ2
∫

∂Bδ

Gp
∂Gp

∂n
dσg + oε(1). (19)

By Lemma 2.4 and (12) we get

ρε

∫
Bδ\Brε

heuεuεdvg ≥ ρερ

∫
Bδ\Brε

heuεGpdvg − ρελε

∫
Bδ\Brε

heuεdvg

+ O(1)
∫
Bδ\Brε

heuεdvg

= ρερ

∫
Bδ\Brε

heuεGpdvg − ρελε

∫
Bδ\Brε

heuεdvg

+ oε(1) + oR(1). (20)

Again by (11) and Lemma 2.1

ρε

∫
Bδ\Brε

heuεGpdvg =
∫
Bδ\Brε

Gp

(
−�uε + ρε

|�|
)
dvg

= − 1

|�|
∫
Bδ\Brε

uεdvg +
∫

∂(Bδ\Brε )

uε

∂Gp

∂n
− Gp

∂uε

∂n
dσg

+ oε(1) + oδ(1)

= − 1

|�|
∫
Bδ\Brε

uεdvg + uε

∫
∂Bδ

∂Gp

∂n
dσg

+
∫

∂Brε

Gp
∂uε

∂n
dσg −

∫
∂Brε

uε

∂Gp

∂n
dσg

+ oε(1) + oδ(1), (21)

and

ρελε

∫
Bδ\Brε

heuεdvg = −λε

∫
∂Bδ\Brε

∂uε

∂n
dσg + ρελε

|�|
(
Vol(Bδ) − Vol(Brε )

)

=−λε

∫
∂Bδ

∂uε

∂n
dσg+λε

∫
∂Brε

∂uε

∂n
dσg+ ρελε

|�| Vol(Bδ)+oε(1). (22)

Using (19), (20), (21) and (22) we get
∫
Bδ\Brε

|∇guε|2dvg ≥ −(16π(1 + α) − ε)
1

|�|
∫
Bδ\Brε

uε dvg − ρελε

|�| Vol(Bδ)

+ ρ uε

∫
∂Bδ

∂Gp

∂n
dσg + λε

∫
∂Bδ

∂uε

∂n
dσg + uε

∫
∂Bδ

∂uε

∂n
dσg
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1216 G. Mancini

+ ρ2
∫

∂Bδ

Gp
∂Gp

∂n
dσg − ρ

∫
∂Brε

uε

∂Gp

∂n
dσg

−
∫

∂Brε

(
uε − ρ Gp + λε

)∂uε

∂n
dσg

+ oε(1) + oδ(1) + oR(1). (23)

By Lemmas 2.1 and 2.5 we can say that

∫
Bδ\Brε

uεdvg =
∫
Bδ\Brε

(uε − uε)dvg + uε(Vol(Bδ) − Vol(Brε ))

= uεVol(Bδ) + oδ(1) + oε(1).

Using Green’s formula we find

uε

∫
∂Bδ

∂Gp

∂n
dσg = −uε

∫
�\Bδ

�gG p dvg = −uε

(
1 − Vol(Bδ)

|�|
)

.

Similarly

∫
∂Bδ

∂uε

∂n
dσg = −

∫
�\Bδ

�uε dvg =
∫

�\Bδ

ρε

(
heuε − 1

|�|
)
dvg

≥ −ρε

(
1 − Vol(Bδ)

|�|
)

and

uε

∫
∂Bδ

∂uε

∂n
dσg = uερεe

uε

∫
�\Bδ(p)

h euε−uεdvg − uερε

(
1 − Vol(Bδ)

|�|
)

= −uερε

(
1 − Vol(Bδ)

|�|
)

+ oε(1).

Lemma 2.3 yields

∫
∂Brε

uε

∂Gp

∂n
dσg = λε

∫
∂Brε

∂Gp

∂n
dσg + tε

∫
∂BR(0)

ϕε

∂Gp

∂n
(tεx)(1 + oε(1))dσ

= −λε

(
1 − Vol(Brε )

|�|
)

+ tε

∫
∂BR(0)

ϕ0

(
− 1

2π tεR
+ O(1)

)
dσ

= −λε + 2 log

(
1 + π c(p)

1 + α
R2(1+α)

)
+ oε(1)
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and the estimate in Lemma 2.4 gives

−
∫

∂Brε

(
uε − ρ Gp + λε

)∂uε

∂n
dσg

≥
(
2 log

(
R2(1+α)

1 + πc(p)
(1+α)

R2(1+α)

)
− ρA(p)

)
8π2c(p)R2(1+α)(
1 + πc(p)R2(1+α)

1+α

) + oε(1)

= −ρ2A(p) − 2 ρ log

(
πc(p)

1 + α

)
+ oε(1) + oR(1).

Hence

∫
Bδ\Brε

|∇guε|2dvg ≥ −(16π(1 + α) − ε)uε + ελε + ρ2
∫

∂Bδ

Gp
∂Gp

∂n
dσg

− 2ρ log

(
1 + πc(p)

1 + α
R2(1+α)

)
−ρ2A(p) − 2ρ log

(
πc(p)

1 + α

)

+ oε(1) + oδ(1) + oR(1). (24)

By (17), (18) and (24) we can therefore conclude

∫
�

|∇guε|2dvg ≥ −(16π(1 + α) − ε)uε + ελε − ρ2A(p) − 2ρ log

(
πc(p)

1 + α

)
− 2ρ

+ oε(1) + oδ(1) + oR(1),

so that

Jε(uε) ≥ ε

2
(λε − uε) − ρ2

2
A(p) − ρ log

(
πc(p)

1 + α

)
− ρ + ρε log |�|

+ oε(1) + oδ(1) + oR(1)

≥ − ρ

(
4π(1 + α)A(p) + 1 + log

(
πc(p)

1 + α

)
− log |�|

)

+ oε(1) + oδ(1) + oR(1).

As ε, δ → 0 and R → ∞ we obtain

inf
H1(�)

J ≥ −ρ

(
4π(1 + α)A(p) + 1 + log

(
πc(p)

1 + α

)
− log |�|

)

=−ρ

⎛
⎝1+log

π

|�| +4π A(p)+log

⎛
⎝K (p)

1+α

∏
q∈S,q �=p

e−4πβ(q)Gq (p)

⎞
⎠
⎞
⎠. (25)

Using Lemma 2.6 it is possible to prove that (25) holds even for α = 0. About the
blow-up point p we only know that β(p) = α, so we have proved
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1218 G. Mancini

Proposition 3.1 If J has no minimum point, then

inf
H1(�)

J ≥ −ρ

⎛
⎝1 + log

π

|�| + max
p∈�,β(p)=α

⎧⎨
⎩4π A(p)

+ log

⎛
⎝ K (p)

1 + α

∏
q∈S,q �=p

e−4πβ(q)Gq (p)

⎞
⎠
⎫⎬
⎭
⎞
⎠ .

Notice that, if α < 0, the set

{p ∈ � : β(p) = α} = {pi : i ∈ {1, . . . ,m}, αi = α}

is finite, while if α = 0

{p ∈ � : β(p) = α} = �\S.

Although this set is not finite, themaximum in the above expression is still well defined
since the function

p �−→ 4π A(p) + log

⎛
⎝K (p)

∏
q∈S

e−4πβ(q)Gq (p)

⎞
⎠ = 4π A(p) + log h(p)

is continuous on �\S and approaches −∞ near S.

4 An Estimate from Above

In order to complete the proof of Theorem 1.1 we need to exhibit a sequence ϕε ∈
H1(�) such that

J (ϕε) −→ −ρ

⎛
⎝1 + log

π

|�| + max
p∈�,β(p)=α

⎧⎨
⎩4π A(p)

+ log

⎛
⎝ K (p)

1 + α

∏
q∈S,q �=p

e−4πβ(q)Gq (p)

⎞
⎠
⎫⎬
⎭
⎞
⎠ .

Let us define rε := γεε
1

2(1+α) where γε is chosen so that

γε → +∞, r2ε log ε −→ 0, r2ε log
(
1 + γ 2(1+α)

ε

) −→ 0. (26)
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Let p ∈ � be such that β(p) = α and

4π A(p) + log

⎛
⎝ K (p)

1 + α

∏
q∈S,q �=p

e−4πβ(q)Gq (p)

⎞
⎠

= max
ξ∈�,β(ξ)=α

⎧⎨
⎩4π A(ξ) + log

⎛
⎝ K (ξ)

1 + α

∏
q∈S,q �=ξ

e−4πβ(q)Gq (ξ)

⎞
⎠
⎫⎬
⎭

and consider a cut-off function ηε such that ηε ≡ 1 in Brε (p), ηε ≡ 0 in �\B2rε (p)
and |∇gηε| = O(r−1

ε ). Define

ϕε(x) =
{−2 log

(
ε + r2(1+α)

) + log ε r ≤ rε
ρ
(
Gp − ηεσ

) + Cε + log ε r ≥ rε

where r = d(x, p), σ(x) = O(r) is defined by

Gp(x) = − 1

2π
log r + A(p) + σ(x), (27)

and

Cε = −2 log

(
1 + γ

2(1+α)
ε

γ
2(1+α)
ε

)
− ρ A(p).

In the case αi = 0 ∀ i , a similar family of functions was used in [15] to give an
existence result for (4) by proving, under some strict assumptions on h, that

inf
H1(�)

Jρ < −8π

(
1 + log

(
π

|�|
)

+ max
p∈�

{4π A(p) + log h(p)}
)

.

Here we only prove a weak inequality but we have no extra assumptions on h. Taking
normal coordinates in a neighborhood of p it is simple to verify that

∫
Brε

|∇gϕε|2dvg = 16π(1 + α)

(
log

(
1 + γ 2(1+α)

ε

)
+ 1

1 + γ
2(1+α)
ε

− 1

)
+ oε(1)

= 16π(1 + α)
(
log

(
1 + γ 2(1+α)

ε

)
− 1

)
+ oε(1).

By our definition of ϕε

∫
�\Brε

|∇gϕε|2dvg = ρ2

(∫
�\Brε

|∇gG p|2dvg +
∫

�\Brε
|∇g(ηεσ )|2dvg

− 2
∫

�\Brε
∇gG p · ∇g(ηεσ ) dvg

)
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1220 G. Mancini

and by the properties of ηε∫
�\Brε

|∇g(ηεσ )|2dvg =
∫
B2rε \Brε

|∇gηε|2σ 2 + 2ηεσ ∇gηε · ∇gσ + η2ε |∇gσ |2 dvg

= O(r2ε ).

Hence, integrating by parts and using (27), one has

∫
�\Brε

|∇gϕε|2dvg = ρ2

(∫
�\Brε

|∇Gp|2dvg

− 2
∫

�\Brε
∇gG p · ∇g(ηεσ ) dvg

)
+ oε(1)

= −ρ2

(
1

|�|
∫

�\Brε
(Gp − 2ηεσ ) dvg

+
∫

∂Brε

(Gp − 2ηεσ )
∂Gp

∂n
dσg

)
+ oε(1)

= −ρ2
∫

∂Brε

(Gp − 2σ)
∂Gp

∂n
dσg + oε(1)

= −ρ2
∫

∂Brε

(
− 1

2π
log(rε) + A(p) − σ

)

×
(

− 1

2πrε
+ ∇σ

) (
1 + O(r2ε )

)
dσ + oε(1)

= −ρ2
∫

∂Brε

(
log rε
4π2rε

− 1

2πrε
A(p)+O(log rε)+O(1)

)
dσ +oε(1)

= − ρ2

2π
log

(
γεε

1
2(1+α)

)
+ ρ2A(p) + oε(1)

= −2ρ
(
log γ 2(1+α)

ε + log ε − 4π(1 + α)A(p)
)

+ oε(1).

Thus

∫
�

|∇gϕε|2dvg = 2ρ

(
log

(
1 + γ

2(1+α)
ε

γ
2(1+α)
ε

)
− 1 + 4π(1 + α)A(p) − log ε

)
+ oε(1)

= −2ρ (1 − 4π(1 + α)A(p) + log ε) + oε(1). (28)

Similarly one has

∫
Brε

ϕε dvg = |Brε | log ε − 4π
∫ rε

0
r log

(
ε + r2(1+α)

)
(1 + oε(1))dr

=|Brε | log ε − 2πr2ε log ε − 4π
∫ rε

0
r log

(
1 + r2(1+α)

ε

)
(1 + oε(1))dr
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= O
(
r2ε log ε

) − 4π
∫ 1

0
r2ε s log

(
1 + γ 2(1+α)

ε s2(1+α)
)

(1 + oε(1))dr

= O
(
r2ε log ε

) + O
(
r2ε log

(
1 + γ 2(1+α)

ε

))
= oε(1)

and ∫
�\Brε

ϕε dvg = ρ

∫
�\Brε

(Gp − ηεσ )dvg + (Cε + log ε)|�\Brε (p)|
= |�| log ε − ρ|�|A(p) + oε(1)

so that
1

|�|
∫

�

ϕεdvg = log ε − ρ A(p) + oε(1). (29)

To compute the integral of the exponential term we fix a small δ > 0 and observe
that∫

�

heϕεdvg = h̃(p)
∫
Brε

e−4παGpeϕεdvg +
∫
Brε

(
h̃ − h̃(p)

)
e−4παGpeϕεdvg

+
∫
Bδ\Brε

heϕεdvg +
∫

�\Bδ

heϕεdvg

where h̃ = h e4παGp = K
∏

q∈S,q �=p

e−4πβ(q)Gq . For the first term we have

∫
Brε

e−4παGpeϕεdvg = ε

∫
Brε

e2α log r−4παA(p)−4πασ e−2 log
(
ε+r2(1+α)

)
dvg

= εe−4παA(p)
∫
Brε

r2α(
ε + r2(1+α)

)2 (1 + oε(1))dvg

= πe−4παA(p)

1 + α

γ
2(1+α)
ε

1 + γ
2(1+α)
ε

(1 + oε(1))

= πe−4παA(p)

1 + α
+ oε(1). (30)

Since h̃ is smooth in a neighborhood of p we obtain

∫
Brε

(
h̃ − h̃(p)

)
e−4παGpeϕεdvg = oε(1)

∫
Brε

e−4παGpeϕεdvg = oε(1) (31)

and
∣∣∣∣∣
∫
Bδ\Brε

heϕεdvg

∣∣∣∣∣ =
∣∣∣∣∣
∫
Bδ\Brε

h̃e−4παGpeϕεdvg

∣∣∣∣∣ ≤ sup
Bδ

|h̃|
∫
Bδ\Brε

e−4παGpeϕεdvg

= εeCε sup
Bδ

|h̃|
∫
Bδ\Brε

e4π(2+α)Gpe−ρηεσdvg
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= O(ε)

∫
Bδ\Brε

e4π(2+α)Gpdx = O(ε)

∫
Bδ\Brε

1

|x |2(2+α)
dx

= O(ε)

(
1

r2(1+α)
ε

− 1

δ2(1+α)

)
= O

(
1

γ
2(1+α)
ε

)
+ O(ε)

= oε(1). (32)

Finally ∫
�\Bδ

heϕεdvg = εeCε

∫
�\Bδ

heρGpdvg = O(ε) (33)

so by (30), (31), (32) and (33) we have

∫
�

heϕεdvg = π h̃(p)e−4παA(p)

1 + α
+ oε(1). (34)

Using (28), (29) and (34) we get

lim
ε→0

J (ϕε) = −ρ

(
1 + 4π A(p) + log

(
1

|�|
π h̃(p)

1 + α

))

= −ρ

⎛
⎝1 + log

π

|�| + max
ξ∈�,β(ξ)=α

⎧⎨
⎩4π A(ξ)

+ log

⎛
⎝ K (ξ)

1 + α

∏
q∈S,q �=ξ

e−4πβ(q)Gq (ξ)

⎞
⎠
⎫⎬
⎭
⎞
⎠ .

This, together with Proposition 3.1, completes the proof of Theorem 1.1.

5 Onofri’s Inequalities on S2

In this section we will consider the special case of the standard sphere (S2, g0) with
m ≤ 2 and K ≡ 1. We fix α1, α2 ∈ R with −1 < α1 ≤ α2 and as before we consider
the singular weight

h = e−4πα1Gp1−4πα2Gp2 .

In order to apply Theorem 1.1 and obtain sharp versions of (7), we need to study the
existence of minimum points for the functional J . Let us fix a system of coordinates
(x1, x2, x3) on R

3 such that p1 = (0, 0, 1). When h ∈ C1(S2), the Kazdan–Warner
identity (see [18]) states that any solution of (4) has to satisfy

∫
S2

∇h · ∇xi e
u dvg0 =

(
2 − ρ

4π

) ∫
S2
heuxi dvg0 i = 1, 2, 3.

We claim that if p2 = −p1 the same identity holds, at least in the x3-direction, even
when h is singular.
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Lemma 5.1 Let u be a solution of (4) on S2, then there exist C, δ0 > 0 such that

• |∇u(x)| ≤ Cd(x, pi )2αi+1 i f αi < − 1
2 ;• |∇u(x)| ≤ C (− log d(x, pi )) i f αi = − 1

2 ;• |∇u(x)| ≤ C i f αi > − 1
2 ;

for 0 < d(x, pi ) < δ0, i = 1, 2.

Proof Let us fix 0 < r0 < 1
2 min{π

2 , d(p1, p2)} and i ∈ {1, 2}. If αi > − 1
2 then, by

standard elliptic regularity, u ∈ C1(Br0(pi )) and the conclusion holds for δ0 = r0
and C = ‖∇u‖L∞(Br0 (pi )). Let us now assume αi ≤ − 1

2 . We know that h(y) ≤
C1d(y, pi )2αi for y ∈ B2r0(pi ) so, if δ0 < r0, by Green’s representation formula we
have

|∇u|(x) ≤ ρe‖u‖∞
∫
S2

h(y)

d(x, y)
dvg0(y) ≤ ρe‖u‖∞‖h‖L1(S2)

r0

+ρe‖u‖∞C1

∫
Br0 (x)

d(y, pi )2αi

d(x, y)
dvg0(y).

Let π be the stereographic projection from the point −pi . It is easy to check that there
exist C2,C3 > 0 such that

C2 d(q, q ′) ≤ |π(q) − π(q ′)| ≤ C3 d(q, q ′)

∀ q, q ′ ∈ B π
2
(pi ). Thus we have

∫
Br0 (x)

d(y, pi )2αi

d(x, y)
dvg0(y)≤

∫
B π

2
(pi )

d(y, pi )2αi

d(x, y)
dvg0(y)≤C4

∫
{|z|≤1}

|z|2αi
|π(x) − z|dz

= C4|π(x)|2αi+1
∫
{
|z|≤ 1

|π(x)|
} |z|2αi∣∣∣ π(x)

|π(x)| − z
∣∣∣dz

≤ C5d(x, pi )
2αi+1

∫
{
|z|≤ 1

|π(x)|
} |z|2αi∣∣∣ π(x)

|π(x)| − z
∣∣∣dz.

Notice that

∫
{
|z|≤ 1

|π(x)|
} |z|2αi∣∣∣ π(x)

|π(x)| − z
∣∣∣dz ≤ 1

22αi

∫
{∣∣∣ π(x)

|π(x)| −z
∣∣∣≤ 1

2

} 1∣∣∣ π(x)
|π(x)| − z

∣∣∣dz

+ 2
∫

{|z|≤2}
|z|2αi dz + 2

∫
{
2≤|z|≤ 1

|π(x)|
} |z|2αi−1dz

≤ C6 + 2
∫
{
2≤|z|≤ 1

|π(x)|
} |z|2αi−1dz.
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If αi < − 1
2

∫
{
2≤|z|≤ 1

|π(x)|
} |z|2αi−1dz ≤ C7,

while if αi = − 1
2

∫
{
2≤|z|≤ 1

|π(x)|
} |z|2αi−1dz = 2π log

(
1

2|π(x)|
)

≤ C8 (− log d(x, pi )) .

Thus we get the conclusion for δ0 sufficiently small. �
In any case there exists s ∈ [0, 1) such that

|∇u(x)| ≤ Cd(x, pi )
−s (− log d(x, pi )) (35)

for 0 < d(x, pi ) < δ0, i = 1, 2.

Proposition 5.1 If p2 = −p1 then any solution of (4) satisfies

∫
S2

∇h · ∇x3 e
u dvg0 =

(
2 − ρ

4π

) ∫
S2
heux3 dvg0 .

Proof Without loss of generality we may assume

∫
S2
heudvg0 = 1. (36)

Let us denote Sδ = S2\Bδ(p1) ∪ Bδ(p2). Since u is smooth in Sδ , multiplying (4) by
∇u · ∇x3 and integrating on Sδ we have

−
∫
Sδ

�u ∇u · ∇x3 dvg0 = ρ

∫
Sδ

(
h eu − 1

4π

)
∇u · ∇x3 dvg0 (37)

Integrating by parts we obtain

−
∫
Sδ

�u ∇u · ∇x3 dvg0 =
∫
Sδ

∇u · ∇(∇u · ∇x3)dvg0

+
2∑

i=1

∫
∂Bδ(pi )

∇u · ∇x3
∂u

∂n
dσg0

and by (35)

∣∣∣∣
∫

∂Bδ(pi )
∇u · ∇x3

∂u

∂n
dσg0

∣∣∣∣≤
∫

∂Bδ(pi )
|∇u|2|∇x3|dσg0 =O(δ2(1−s) log2 δ) = oδ(1).
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Using the identities

∇u · ∇(∇u · ∇x3) = 1

2
∇
(
|∇u|2 · ∇x3

)
− x3|∇u|2

and

−�x3 = 2x3,

and applying again (35) to estimate the boundary term, we get

−
∫
Sδ

�u ∇u · ∇x3 dvg0 =
∫
Sδ

1

2
∇|∇u|2 · ∇x3 dvg0 −

∫
Sδ

x3|∇u|2dvg0 + oδ(1)

= −1

2

∫
Sδ

�x3 |∇u|2dvg0 −
2∑

i=1

∫
∂Bδ(pi )

|∇u|2 ∂x3
∂n

dσg0

−
∫
Sδ

x3|∇u|2dvg0 = oδ(1).

Thus (37) becomes

∫
Sδ

heu∇u · ∇x3 dvg0 − 1

4π

∫
Sδ

∇u · ∇x3 dvg0 = oδ(1). (38)

Moreover

∫
Sδ

∇u · ∇x3 dvg0 = −
∫
Sδ

�u x3 dvg0 −
2∑

i=1

∫
∂Bδ(pi )

x3
∂u

∂n
dσg0

= ρ

∫
Sδ

(
heu − 1

4π

)
x3 dvg0 + O(δ1−s(− log δ))

= ρ

∫
Sδ

heux3 dvg0 + oδ(1)

and

∫
Sδ

heu ∇u · ∇x3 dvg0 =
∫
Sδ

∇eu · h∇x3 dvg0 = −
∫
Sδ

eu div( h∇x3)dvg0

−
2∑

i=1

∫
∂Bδ(pi )

heu
∂x3
∂n

dσg0

= −
∫
Sδ

∇h · ∇x3 e
u dvg0 + 2

∫
Sδ

heux3dvg0 + O
(
δ2(1+α)

)
.
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Thus by (38) we have

∫
Sδ

∇h · ∇x3 e
u dvg0 =

(
2 − ρ

4π

) ∫
Sδ

heux3 dvg0 + oδ(1).

Sinceu is continuous on S2 andh,∇h·∇x3 ∈ L1(S2) as δ → 0weget the conclusion.�
Remark 5.1 In this proof there is no need to assume K ≡ 1.

Assuming p1 = (0, 0, 1) and p2 = (0, 0,−1), one may easily verify that

Gp1(x) = − 1

4π
log(1 − x3) − 1

4π
log

( e
2

)

and

Gp2(x) = − 1

4π
log(1 + x3) − 1

4π
log

( e
2

)
,

so that

∇h · ∇x3 = −4πh(α1∇G1 + α2∇G2) · ∇x3 = (α2 − α1)h − (α1 + α2)hx3.

Thus we can rewrite the identity in Proposition 5.1 as

α2 − α1 =
(
2 − ρ

4π
+ α1 + α2

) ∫
S2
heux3 dvg0 . (39)

Proof of Theorem 1.2 Assume m = 1 (i.e., α2 = 0). We claim that equation (4) has
no solutions for ρ = ρ = 8π(1 + min{0, α1}), unless α1 = 0. Indeed if u were a
solution of (4) satisfying (36), then applying (39) with ρ = ρ we would get

−α1 = (α1 − 2min{0, α1})
∫
S2
heux3 dvg0

so that, if α1 �= 0,

∣∣∣∣
∫
S2
heux3 dvg0

∣∣∣∣ = 1.

This contradicts (4). In particular we proved non-existence of minimum points for Jρ
so we can exploit Theorem 1.1 and (9) to prove that (7) holds with

C = max
p∈S2,β(p)=α

⎧⎨
⎩log

⎛
⎝ 1

1 + α

∏
q∈S,q �=p

e−4πβ(q)Gq (p)

⎞
⎠
⎫⎬
⎭ .
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If α1 < 0 one has

C = − log(1 + α1).

If α1 > 0,

C = max
p∈S2\{p1}

{−4πα1Gp1(p)
} = −4πα1Gp1(p2) = α1.

�
Proof of Theorem 1.3 As in the previous proof, applying (39) with ρ = ρ = 8π(1 +
α1), we obtain that any critical point of (4) for which (36) holds has to satisfy

α2 − α1 = (α2 − α1)

∫
S2
heux3dvg0 .

Since α1 �= α2 one has

∫
S2
heux3dvg0 = 1

which is impossible. Thus Jρ has no critical points and by Theorem 1.1 one has

C = log

(
1

1 + α1
e−4πα2Gp2 (p1)

)
= α2 − log(1 + α1).

�
Now we assume α1 = α2 < 0. In this case identity (39) gives no useful condition.

Let us denote by π the stereographic projection from the point p1. It is easy to verify
that u satisfies (4) and (36) if and only if

v := u ◦ π−1 + (1 + α) log

(
4

(1 + |y|2)2
)

+ 2α log
( e
2

)

solves
−�R2v = 8π(1 + α)|y|2αev (40)

in R2 and
∫
R2

|y|2αevdy = 1.

As we pointed out in the proof of Lemma 2.3 and Eq. (40) has a one-parameter family
of solutions:

vλ(y) = −2 log

(
1 + π

1 + α
el |y|2(1+α)

)
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l ∈ R. Thus we have a corresponding family {uλ,c} of critical points of Jρ given by
the expression

uλ,c ◦ π−1(y) = 2 log

( (
1 + |y|2)1+α

1 + λ|y|2(1+α)

)
+ c, (41)

c ∈ R, λ > 0. A priori we do not know whether these critical points are minima for Jρ
(as it happens for α = 0), so a direct application of 1.1 is not possible. However, we
can still get the conclusion by comparing Jρ(uλ,c) with the blow-up value provided
by Theorem 1.1.

Proof of Theorem 1.4 Let us first compute J (uλ,c). Let ϕt : S2 −→ S2 be the con-
formal transformation defined by π(ϕt (π

−1(y))) = t y. It is not difficult to prove that
∀ t > 0

Jρ(u) = Jρ(u ◦ ϕt + (1 + α) log | det dϕt |);
in particular, since

uλ,c = u1,0 ◦ ϕ
λ

1
2(1+α)

+ (1 + α) log | det ϕ
λ

1
2(1+α)

| + c − log λ,

we have that J (uλ,c) does not depend on λ and c. Thus we may assume λ = 1 and
c = 0. A simple computation shows that

∫
S2
h eu1,0dvg0 = 4e2α

∫
R2

|y|2α(
1 + |y|2(1+α)

)2 dy = 4e2απ

1 + α
. (42)

Since u1,0(p1) = 0 and u1,0 solves

−�u1,0 = ω h eu1,0 − 2(1 + α) with ω := 2(1 + α)2e−2α

one has
∫
S2
u1,0 dvg0 = 4π

∫
S2

�u1,0 Gp1dvg0 = −4πω

∫
S2
heu1,0Gp1dvg0

and

1

2

∫
S2

|∇u1,0|2dvg0 + 2(1 + α)

∫
S2
u1,0 dvg0

= 1

2
ω

∫
S2
heu1,0u1,0 dvg0 + (1 + α)

∫
S2
u1,0 dvg0

= ω

2

∫
S2
heu1,0(u1,0 − ρGp1)dvg0 . (43)

Since

Gp1(π
−1(y)) := 1

4π
log(1 + |y|2) − 1

4π
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we get

∫
S2
heu1,0(u1,0 − ρGp1) = 2(1 + α)

∫
S2
heu1,0dvg0

− 8e2α
∫
R2

|y|2α log (1 + |y|2(1+α)
)

(
1 + |y|2(1+α)

)2 dy

= 8πe2α − 8πe2α

1 + α

∫ +∞

0

log(1 + s)

(1 + s)2
ds = 8παe2α

1 + α
. (44)

Using (42), (43) and (44) we obtain

J (uλ,c) = J (u1,0) = 8π(1 + α) (log(1 + α) − α) ∀ λ > 0, c ∈ R.

To conclude the proof it is sufficient to observe that uλ,c have to be minimum points
for Jρ that is

inf
H1(S2)

Jρ = 8π(1 + α) (log(1 + α) − α) .

Indeed if this were false then Jρ would have no minimum points but, by Theorem 1.1,
we would get

inf
H1(S2)

Jρ = 8π(1 + α) (log(1 + α) − α) = J (uλ,c).

This is clearly a contradiction. �
Remark 5.2 There is no need to assume p1 = −p2.

Indeed given two arbitrary points p1, p2 ∈ S2 with p1 �= p2 it is always possible to
find a conformal diffeomorphism ϕ : S2 −→ S2 such that ϕ−1(p1) = −ϕ−1(p2).
Moreover one has

Jρ(u) = J̃ρ(u ◦ ϕ + (1 + α) log | det dϕ|) + cα,p1,p2

∀ u ∈ H1(S2), where J̃ is the Moser–Trudinger functional associated to

h̃ = e
−4παG

ϕ−1(p1)
−4παG

ϕ−1(p2) .

and cα,p1,p2 is an explicitly known constant depending only on α, p1 and p2. In
particular one can still compute minH1(S2) Jρ and describe the minimum points of Jρ
in terms of ϕ and the family (41).
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