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Abstract We prove that the bilinear Hilbert transforms and maximal functions along
certain general plane curves are bounded from L2(R) × L2(R) to L1(R).
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1 Introduction

Since the initial breakthroughs for singular integrals along curves and surfaces by
Nagel, Rivière, Stein, Wainger, et al., in the 1970s (see for example [14,15] and [17]
for some of their works on Hilbert transforms along curves), extensive research in this
area of harmonic analysis has been done and a great many fascinating and important
results have been established, which culminate in a general theory of singular Radon
transforms (see for instance Christ et al. [2]).
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968 J. Guo, L. Xiao

Another attractive area, parallel to the above one, is the bilinear extension of the
classical Hilbert transform. The boundedness of such bilinear transforms was con-
jectured by Calderón and motivated by the study of the Cauchy integral on Lipschitz
curves. In the 1990s, this conjecture was verified by Lacey and Thiele in a break-
through pair of papers [8,9]. In their works, a systematic and delicate method was
developed, inspired by the famous works of Carleson [1] and Fefferman [3], which
is nowadays referred as the method of time-frequency analysis. Over the past two
decades, this method has emerged as a powerful analytic tool to handle problems that
are related to multilinear analysis.

We are interested in the study of bilinear/multilinear singular integrals along curves
and surfaces—a problem that is closely related to the two areas above. (We refer the
readers to Li [11] for connections of this problem with ergodic theory and multilinear
oscillatory integrals.) To begin with, we consider a model case—the truncated bilinear
Hilbert transforms along plane curves. One formulation of the problem is as follows.

Let �(t) = (t, γ (t)) : (−1, 1) → R
2 be a curve in R

2. With � we associate the
truncated bilinear Hilbert transform operator H� given by the principal value integral

H�( f, g)(x) =
∫ 1

−1
f (x − t)g(x − γ (t))t−1dt (x ∈ R), (1.1)

where f and g are Schwartz functions onR.When the function γ has certain curvature
(or “non-flat”, i.e., not “resembling” a line) conditions, the boundedness properties of
this operator (e.g., whether it is bounded from L p1(R) × L p2(R) to Lr (R) for certain
p1, p2, and r ) are of great interest to us.

Li [11] studied such an operator (the integral defining H�( f, g)(x) in [11] is over
R) with the curve being defined by a monomial (i.e., γ (t) = td , d ∈ N, d ≥ 2) and
proved that it is bounded from L2(R) × L2(R) to L1(R). In his proof, he combined
results and tools from both time-frequency analysis and oscillatory integral theory and
used ingeniously a uniformity concept (the so-called σ -uniformity; see [11, Section
6]). Lie [13] improved Li’s results both qualitatively, by extending monomials to
more general curves (certain “slow-varying” curveswith extra curvature assumptions),
and quantitatively, by improving the estimates. Instead of using Li’s method of σ -
uniformity, Lie used a Gabor frame decomposition to discretize certain operators in
a smart way and then worked with the discretized operators which have variables
separated on the frequency side and preserve certain main characteristics (see the
appendix of [13] for a detailed comparison between their methods).

Another interesting aspect of this problem was considered by Li and the second
author [12], in which they studied the case when the curve is defined by a polynomial
with different emphasis of getting bounds uniform in coefficients of the polynomial
and the full range of indices (p1, p2, r). They provided, among other results, complete
answers (except to the endpoint case) for H� when the polynomial is “non-flat” near
the origin (i.e., without a linear term).When the polynomial has a linear term, however,
the full range of indices for the corresponding uniform estimates is extremely difficult
to find and remains open.

In this paper we consider a family of general “non-flat” curves and provide an easy-
to-check criterion for a curve whose associated bilinear Hilbert transform is bounded
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Bilinear Hilbert Transforms 969

from L2(R) × L2(R) to L1(R) (for the precise statement of our results, see Sect.
2). Our goal is to extend Li [11]’s method and results to general plane curves, (in
some sense) recover Lie [13]’s results without using the wave packets to discretize the
operators, and also prove the boundedness of corresponding maximal functions.

Our criterion, motivated by results in Lie [13] and Nagel et al. [16], mainly asks
one to check whether certain bounds of various expressions involving derivatives of a
quotient are satisfied. In [16] a simple necessary and sufficient condition is provided
(among other results) for the L2-boundedness of the Hilbert transform along the curve
� with γ odd, that is, one needs to check whether an auxiliary function h(t) =
tγ ′(t) − γ (t) has bounded doubling time. Both Lie’s and our results indicate that an
appropriate replacement for h in the bilinear setting might be in the form of a quotient
(see the Qε(t) defined in Sect. 2). We still do not know whether our criterion is a
necessary condition for certain “non-flat” curves.

In our main estimates in Sect. 4, we apply the T T ∗ method both in frequency space
(with an extra size restriction |γ ′(2− j )| > 2−m) and in time space (with an extra restric-
tion on the function space), then we combine both results to get the fast decay needed
in proving the boundedness of the desired operator. Since we are considering general
curves, certain uniformity of estimates is important, hence we formulate carefully the
assumptions on curves and pay special attention to the dependence on parameters of
all bounds, especially whenwe apply a quantitative version of themethod of stationary
phase.

We also establish analogous results for the bilinear maximal function along �

(defined below) by using the arguments of [12, Section 7] and our main estimates in
Sect. 4.

M�( f, g)(x) = sup
0<ε<1

ε−1
∫ ε

0
| f (x − t)g(x − γ (t))| dt (x ∈ R). (1.2)

We note that such an operator along a “non-flat” polynomial was already carefully
studied in [12]. Much deeper and more elegant results for a linear curve can be found
in Lacey [7].

Notations The Fourier transform of f is f̂ (ξ) = F[ f ](ξ) = ∫
R
f (x)e−2π iξ x dx

and its inverse Fourier transform is F−1[g](x) = ∫
R
g(ξ)e2π iξ x dξ . Let 1a,n be the

indicator function of interval a · [n, n+1) for a, n ∈ R and 1I the indicator function of
interval I. The indices (p1, p2, r) are always assumed to satisfy 1/p1 + 1/p2 = 1/r ,
p1 > 1, p2 > 1, and r > 1/2. We use C to denote an absolute constant which may
be depending on the curve and different from line to line.

2 Statement of Theorems

For any a ∈ R, we say that a curve �(t) = (t, γ (t) + a) : (−1, 1) → R
21 belongs

to a family of curves, F(−1, 1), if the function γ satisfies the following conditions

1 In the problems considered in this paper, we can always remove the constant a from the definition of �

by a translation argument, hence there is no need to specify the dependence of � on a and we will always
let a = 0.
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(2.1)–(2.4). There exists a constant 0 < A1 < 1/2 such that on (−A1, A1) \ {0} the
function γ is of class CN (N ≥ 5) and γ ′ �= 0. Let Qε(t) = γ (εt)/εγ ′(ε). For
0 < |ε| < c0 < A1/4 and 1/4 ≤ |t | ≤ 4, we have

∣∣∣D j Qε(t)
∣∣∣ ≤ C1, 0 ≤ j ≤ N , (2.1)∣∣∣D2Qε(t)
∣∣∣ ≥ c1, (2.2)

2 and ∣∣(D2Qε)
2(t) − D1Qε(t)D

3Qε(t)
∣∣ ≥ c2, if

∣∣γ ′(ε)
∣∣ ≤ K1|ε|c1, (2.3)

or

∣∣2(D2Qε)
2(t) − D1Qε(t)D

3Qε(t)
∣∣ ≥ c3, if

∣∣γ ′(ε)
∣∣ ≥ K2|ε|−c1 . (2.3′)

Let� j = ∣∣2− jγ ′(2− j )
∣∣−1. If γ ′′(ε)γ ′(ε) < 0 for 0 < ε < c0, then there exist K3 ∈ Z

and K4 ∈ N such that
� j+K3 ≥ 2� j , if j ≥ K4. (2.4)

Theorem 2.1 If � ∈ F(−1, 1), then H�( f, g) can be extended to a bounded operator
from L2(R) × L2(R) to L1(R).

The analogous version for bilinear maximal functions is as follows.

Theorem 2.2 If � ∈ F(−1, 1), then M�( f, g) is a bounded operator from L2(R) ×
L2(R) to L1(R).

Remark 2.3 By combining the results in this paper with the time-frequency analysis
arguments in [12], the boundedness of H� and M� from L p1(R) × L p2(R) to Lr (R)

may be obtained for r < 1. We do not carry the details out in this paper. The lower
bound of such r , as indicated in [12, Theorem 4], is closely related to the decay rate
of the size of the sublevel set

{|t | < 1 : |γ ′(t) − 1| < h
}
, (2.5)

as h → 0+. In particular, if the size of (2.5) is bounded by cνhν for some ν > 0 and
cν > 0, then H� and M� are expected to be bounded from L p1(R)× L p2(R) to Lr (R)

given r > max{1/(1 + ν), 1/2}; see [12, Theorem 4] when γ is a polynomial.

2 The condition (2.2) implies that there exist constants K1, K2 > 0 such that

∣∣γ ′(ε)
∣∣ ≤ K1|ε|c1 for 0 < |ε| < c0

or ∣∣γ ′(ε)
∣∣ ≥ K2|ε|−c1 for 0 < |ε| < c0.

See also Lie [13, p. 4] Observation (6) and (7).
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Bilinear Hilbert Transforms 971

Remark 2.4 (1) We use A1, c0, c1, c2, c3, C1, K1, K2, K3, and K4 throughout this
paper.

(2) The condition (2.1) with j = 1 implies that

∣∣D1Qε(t)
∣∣ ≥ 1/C1, for 0 < |ε| < c0/4, 1/4 ≤ |t | ≤ 4.

(3) If γ ′′(ε)γ ′(ε) > 0 for 0 < ε < c0, then (2.4) always holds with K3 = 1.
(4) We now compare our assumptions (2.1)–(2.4) with Lie’s assumptions (1)–(5) in

[13, P. 3]. The (2.4) implies Lie’s (1). The (2.1) and (2.2) correspond to Lie’s (2)
and (4) (the Q′′ part) while the (2.3) essentially corresponds to Lie’s (5).

(5) Note that the curves considered here are not necessarily differentiable at the origin
(they can even have a pole). One explanation for this phenomenon is that the
bilinear Hilbert transform possesses certain symmetry between its two functions
f and g (as well as its two variables ξ and η on the frequency side) that we can
take advantage of to somehow transfer the case with a pole to the case without a
pole (see the two expressions of Bϕ

j,m( f, g) at the beginning of Sect. 4).

Remark 2.5 Here are some curves �(t) = (t, γ (t)) that belong to F(−1, 1):

(1) Those smooth curves that have contact with t-axis at the origin of finite order ≥ 2
(namely, γ (0) = γ ′(0) = · · · = γ (d−1)(0) = 0, but γ (d)(0) �= 0 for some natural
number d ≥ 2), for example, γ (t) = td or et

d − 1 if d ≥ 2;
(2) The function γ has a pole at the origin of finite order≥ 1 (namely, γ (t) = t−nh(t)

for some natural number n ≥ 1 and some smooth function h with h(0) �= 0);
(3) γ (t) = a linear combination of finitely many terms of the form |t |α| log |t ||β for

α, β ∈ R and α �= 0, 1;
(4) γ (t) = sgn(t)|t |α or |t |α| log | log |t |||β for α, β ∈ R and α �= 0, 1.

3 Preliminaries

In this section,wefirst study a special oscillatory integralwhich occurs in later sections.
The results are standard, but we include a proof for completeness and the convenience
of the readers.

Let ρ ∈ C∞
0 (R) be a real-valued function with supp ρ ⊂ [1/2, 2], ξ, η ∈ R, η �= 0,

A > 1 a constant, and

I
(
λ, ε, ξ, η

) = 1[−A,A](ξ/η)

∫ ∞

0
ρ(t)eiλφε(t,ξ,η) dt, λ > 1,

where
φε

(
t, ξ, η

) = Qε(t) + (ξ/η)t.

Lemma 3.1 Assume that Qε ∈ CN ([1/4, 4]) (N ≥ 5) is a real-valued function such
that |D j Qε | ≤ C1 for 0 ≤ j ≤ N and |D2Qε | ≥ c1 for constants C1 and c1. If
χ ∈ C∞

0 (R) has its support contained in an interval of length c1/12, then either one
of the following two statements holds.
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972 J. Guo, L. Xiao

(1) We have
χ
(− ξ/η

)
I
(
λ, ε, ξ, η

) = O
(
λ−(N−1)). (3.1)

(2) For each pair (ξ, η) with −ξ/η ∈ suppχ , there exists a unique t = t (ξ, η) ∈
[1/3, 13/6] such that t (ξ, η) = (Q′

ε)
−1(−ξ/η) is (N − 1)-times differentiable

and satisfies
D1
t φε

(
t (ξ, η), ξ, η

) = 0 (3.2)

and

χ
(− ξ/η

)
I
(
λ, ε, ξ, η

) = Cχ
(− ξ/η

)
1[−A,A]

(
ξ/η

)
ρ
(
t (ξ, η)

)
· ∣∣D2

t φε(t (ξ, η), ξ, η)
∣∣−1/2

eiλφε(t (ξ,η),ξ,η)λ−1/2

+ O
(
λ−3/2)

(3.3)

with C being an absolute constant.

Furthermore, the implicit constants in (3.1) and (3.3) are independent of λ, ε, ξ ,
and η.

Proof Due to (2.2), we observe that Q′
ε is monotone on [1/4, 4] and that, for any

t ∈ [1/3, 13/6] and r ∈ (0, 1/12], Q′
ε is a bijection from B(t, r)3 to an interval which

contains B(Q′
ε(t), c1r).

Assume that there exist a ∈ [1/2, 2] and (ξ0, η0) with −ξ0/η0 ∈ suppχ such that
|D1

t φε(a, ξ0, η0)| < c1/12, otherwise we get (3.1) by integration by parts.
Since D1

t φε(t, ξ, η) = Q′
ε(t) + ξ/η, we have that −ξ0/η0 ∈ B(Q′

ε(a), c1/12).
It follows from the observation above that there exists a unique a0 ∈ [1/4, 4] such
that a0 ∈ B(a, 1/12) and Q′

ε(a0) = −ξ0/η0. Thus suppχ ⊂ B(Q′
ε(a0), c1/12). The

observation above then implies that, for each pair (ξ, η) with −ξ/η ∈ suppχ , there
exists a unique t (ξ, η) ∈ B(a0, 1/12) such that Q′

ε(t (ξ, η)) = −ξ/η, which is (3.2).
In particular, t (ξ, η) = (Q′

ε)
−1(−ξ/η), whose differentiability is a consequence of

the inverse function theorem.
Note that B(t (ξ, η), 1/12) ⊂ [1/4, 9/4] and we also have

∣∣D1
t φε(t, ξ, η)

∣∣ = ∣∣D1
t φε(t, ξ, η) − D1

t φε(t (ξ, η), ξ, η)
∣∣ ≥ c1

∣∣t − t (ξ, η)
∣∣.

Applying to I (λ, ε, ξ, η) the method of stationary phase on B(t (ξ, η), 1/12) and
integration by parts outside B(t (ξ, η), 1/24) yields (3.3). ��
Remark 3.2 A similar argument in high dimensions can be found in the proof of [4,
Proposition 2.4]. For the method of stationary phase, the reader can check [6, Section
7.7].

We quote below Li’s [11, Theorem 6.2] with a small modification in the statement
for the sake of our later application, however its proof remains the same. Let σ ∈ (0, 1],
I ⊂ R be a fixed bounded interval, andU (I) a nontrivial subset of L2(I) such that the

3 B(t, r) denotes the interval (t − r, t + r).
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Bilinear Hilbert Transforms 973

L2-norm of every element of U (I) is uniformly bounded by a constant. We say that a
function f ∈ L2(I) is σ -uniform in U (I) if

∣∣∣∣
∫
I
f (x)u(x) dx

∣∣∣∣ ≤ σ‖ f ‖L2(I) for all u ∈ U (I).

Lemma 3.3 LetL be a bounded sublinear functional from L2(I) to C, Sσ the set of
all functions that are σ -uniform in U (I),

Aσ = sup
{|L ( f )|/‖ f ‖L2(I) : f ∈ Sσ , f �= 0

}
,

and
M = sup

u∈U (I)
|L (u)|.

Then
‖L ‖ ≤ max

{
Aσ , 2σ−1M

}
.

We also need the following theorem to handle the minor part in Sect. 6. This
theorem is a variant of the results in [10, Theorem 2.1] concerning estimates for
certain paraproducts. The only change is that the standard dyadic sequence {2α j } j∈Z
with α ∈ N\{0} (in [10]) is replaced by a dyadic-like sequence {� j } here, while the
proof remains the same; see [10, Sections 3 and 4].

Theorem 3.4 Let L ∈ Z and let {� j } j>L be a sequence of positive numbers which is
dyadic-like, i.e., there is a K ∈ Z such that for all j > L and j +K > L the following
holds

� j+K ≥ 2� j . (3.4)

Let �1 and �2 be Schwartz functions on R whose Fourier transforms are standard
bump functions supported on [−2,−1/2] ∪ [1/2, 2] and [−1, 1] respectively, and
�̂2(0) = 1. For (n1, n2) ∈ Z

2 and l = 1 or 2, set

Ml,n1,n2

(
ξ, η

) =
∑
j>L

�̂l

( ξ

2 j

)
e
2π in1

ξ

2 j �̂3−l

( η

� j

)
e
2π in2

η
� j .

Then for l = 1 and 2, for any p1, p2 > 1 with 1/r = 1/p1 +1/p2, there is a constant
C independent of (n1, n2) such that for all f1 ∈ L p1(R), f2 ∈ L p2(R), the following
holds ∥∥�l,n1,n2( f1, f2)

∥∥
r ≤ C

(
1 + n21

)10(1 + n22
)10‖ f1‖p1‖ f2‖p2 ,

where

�l,n1,n2

(
f1, f2

)
(x) =

∫∫
Ml,n1,n2

(
ξ, η

)
f̂1(ξ) f̂2(η)e2π i(ξ+η)x dξ dη.
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4 The Main Estimates

Let ϕ̂ ∈ C∞
0 (R) such that ϕ̂ = 1 on {t ∈ R : 3/8 ≤ |t | ≤ 17/8} and supp ϕ̂ ⊂ {t ∈

R : 1/4 ≤ |t | ≤ 9/4}. For j,m ∈ N denote ε j = 2− j and

K j,m(ξ, η) =
∫ ∞

0
ρ(t)e−2π i2mηφε j (t,ξ,η) dt,

where ρ and φε j are as defined at the beginning of Sect. 3.
For f, g ∈ L2(R) denote, when |γ ′(ε j )| ≤ K1|ε j |c1 ,

Bϕ
j,m( f, g)(x) = ∣∣γ ′(ε j )

∣∣1/2
∫∫

f̂ (ξ)ϕ̂(ξ)ĝ(η)ϕ̂(η)e2π i
(
γ ′(ε j )ξ+η

)
x K j,m(ξ, η) dξ dη,

and, when |γ ′(ε j )| ≥ K2|ε j |−c1 ,

Bϕ
j,m( f, g)(x) = ∣∣γ ′(ε j )

∣∣−1/2
∫∫

f̂ (ξ)ϕ̂(ξ)ĝ(η)ϕ̂(η)e2π i
(
ξ+γ ′(ε j )−1η

)
x

K j,m(ξ, η) dξ dη.

Proposition 4.1 Assume that �(t) = (t, γ (t)) ∈ F(−1, 1).4 For any β < 1, there
exist an L ∈ N and a constant Cβ such that whenever j ≥ L, m ∈ N, n ∈ Z, and
f, g ∈ L2(R), we have

(1) if |γ ′(ε j )| ≤ K1|ε j |c1 , then
∥∥Bϕ

j,m( f, g)12mγ ′(ε j )−1,n

∥∥
1 ≤ CβC j,m‖ f ‖2‖g‖2,

where

C j,m =
{
2−m/16 if |γ ′(ε j )| > 2−m,

2−βm/4 if |γ ′(ε j )| ≤ 2−m; (4.1)

(2) if |γ ′(ε j )| ≥ K2|ε j |−c1 , then

∥∥Bϕ
j,m( f, g)12mγ ′(ε j ),n

∥∥
1 ≤ CβC

′
j,m‖ f ‖2‖g‖2,

where

C ′
j,m =

{
2−m/16 if |γ ′(ε j )| < 2m,

2−βm/4 if |γ ′(ε j )| ≥ 2m .
(4.2)

The rest of this section is devoted to the proof of Proposition 4.1.
We first observe that there is actually a symmetry between the case |γ ′(ε j )| ≤

K1|ε j |c1 and the case |γ ′(ε j )| ≥ K2|ε j |−c1 , hencewe only prove the former casewhile
the other one can be handled similarly. We can also simplify the domain of integration
of Bϕ

j,m( f, g)(x) by using a decomposition ϕ̂ = ϕ̂1(0,∞) + ϕ̂1(−∞,0], which allows

4 We actually do not need the condition (2.4) for this proposition.
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Bilinear Hilbert Transforms 975

us to restrict the domain to one of the cubes (±[1/4, 9/4]) × (±[1/4, 9/4]). We still
use ϕ̂ below but with its support contained in either [1/4, 9/4] or [−9/4,−1/4] (and
this won’t cause any problem).

The proof is split into three parts. In the first part, we apply the T T ∗ method to
estimate ‖Bϕ

j,m( f, g)‖1, during which procedure we need a standard result from the
oscillatory integral theory and a necessary condition |γ ′(ε j )| > 2−m . The bound we
get (see (4.4) below) is efficient when |γ ′(ε j )| is large but inefficient when |γ ′(ε j )|
is close to 2−m . In the second part, with the help of Lemma 3.3 (the method of σ -
uniformity introduced in Li [11]), we can put certain restrictions on the function f
(or g) and reduce the estimate of ‖Bϕ

j,m( f, g)‖1 to a restricted version, to which the
T T ∗ method can be applied without extra assumptions on the size of |γ ′(ε j )|. The
bound we get in this part (see (4.23) and (4.24) below) is efficient when |γ ′(ε j )| is
small (even when |γ ′(ε j )| is close to 2−m) but inefficient when |γ ′(ε j )| is large (see
also Lie [13, p. 18]). In the last part, we take advantage of both results and prove the
desired estimate.

4.1 Part 1: j ≥ L , m ∈ N such that |γ ′(ε j )| > 2−m

5 We first prove that, for h ∈ L2(R),

∣∣∣∣
∫

Bϕ
j,m( f, g)(x)h(x) dx

∣∣∣∣ ≤ C
(
2m |γ ′(ε j )|

)−1/6‖ f ‖2‖g‖2 · (2−m |γ ′(ε j )|
)1/2‖h‖2,

(4.3)
which trivially leads to the estimate

∥∥Bϕ
j,m( f, g)12mγ ′(ε j )−1,n

∥∥
1 ≤ C

(
2m |γ ′(ε j )|

)−1/6‖ f ‖2‖g‖2. (4.4)

We can find a finite open cover of the interval [−10, 10] by using open intervals of
length c1/12, associated with which we can construct a partition of unity. By inserting
this partition of unity we reduce the estimate of

∫
Bϕ
j,m( f, g)(x)h(x) dx to

∫
B̃ϕ
j,m( f, g)(x)h(x) dx

= ∣∣γ ′(ε j )
∣∣1/2

∫∫
f̂ ϕ̂(ξ)ĝϕ̂(η)F−1[h](γ ′(ε j )ξ + η

)
χ
(− ξ/η

)
K j,m

(
ξ, η

)
dξ dη,

where χ is smooth and supported in an interval of length c1/12.
We can then apply Lemma 3.1 to χ(−ξ/η)K j,m(ξ, η). If (3.1) holds, then an

application of Hölder’s inequality yields

5 In this part we mainly follow the argument contained in Section 6 of the preprint arXiv:0805.0107 and
make necessary modifications in order to adapt it to the current case.
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∣∣∣∣
∫

B̃ϕ
j,m( f, g)(x)h(x) dx

∣∣∣∣ ≤ C2−m/2‖ f ‖2‖g‖2 · (2−m |γ ′(ε j )|
)1/2‖h‖2. (4.5)

This estimate immediately leads to (4.3).
Below we assume that the second statement in Lemma 3.1 holds. Applying (3.3)

yields

∫
B̃ϕ
j,m( f, g)(x)h(x)dx = C

(
2−m |γ ′(ε j )|

)1/2

·
∫∫

f̂ ϕ̂(ξ)ĝϕ̂(η)F−1[h](γ ′(ε j )ξ + η
)

a
(
ξ, η

)
e−2π i2mηφε j

(
t (ξ,η),ξ,η

)
dξdη, (4.6)

where we have omitted the error term in (3.3) (since it leads to the same bound as in
(4.5)), and a(ξ, η) is defined as

a
(
ξ, η

) = χ
(− ξ/η

)
ρ
(
t (ξ, η)

)|η|−1/2
∣∣D2

t φε j (t (ξ, η), ξ, η)
∣∣−1/2

.

Applying to the double integral in (4.6) a change of variables γ ′(ε j )ξ + η → ξ ,
η/γ ′(ε j ) → η and then Hölder’s inequality yields

∣∣∣∣
∫

B̃ϕ
j,m( f, g)(x)h(x) dx

∣∣∣∣ ≤ C‖Tj,m( f, g)‖2 · (2−m |γ ′(ε j )|
)1/2‖h‖2, (4.7)

where

Tj,m( f, g)(ξ) =
∫

f̂ ϕ̂
(
γ ′(ε j )

−1ξ − η
)
ĝϕ̂
(
γ ′(ε j )η

)
a
(
γ ′(ε j )

−1ξ − η, γ ′(ε j )η
)

· e−2π i2m
(
γ ′(ε j )η

)
φε j

(
t
(
γ ′(ε j )−1ξ−η,γ ′(ε j )η

)
,γ ′(ε j )−1ξ−η,γ ′(ε j )η

)
dη.

We then have, after a change of variables,

∥∥Tj,m( f, g)
∥∥2
2 =

∫
Tj,m( f, g)(ξ)Tj,m( f, g)(ξ) dξ

=
∫

dτ
∫∫

Fτ (x)Gτ (y)Aτ (x, y)e
−2π i2m Pτ (x,y) dx dy, (4.8)

where

Fτ (x) = f̂ ϕ̂(x − τ) f̂ ϕ̂(x),

Gτ (y) = ĝϕ̂(y + γ ′(ε j )τ )ĝϕ̂(y),

Aτ (x, y) = a(x − τ, y + γ ′(ε j )τ )a(x, y),

and
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Pτ (x, y) = P1
(
x − τ, y + γ ′(ε j )τ

)− P1(x, y)

with
P1(x, y) = yφε j

(
t (x, y), x, y

)
.

In order to estimate the inner double integral in (4.8), we first show that there exists
an L ∈ N such that if j ≥ L then

∣∣∣∣ ∂
2Pτ

∂y∂x
(x, y)

∣∣∣∣ � |τ |. (4.9)

Recall that t (x, y) satisfies (3.2) (with ξ , η, and ε replaced by x , y, and ε j respec-
tively). By implicit differentiation, we get

∂t

∂x
(x, y) = − 1

yQ′′
ε j

(t (x, y))
and

∂t

∂y
(x, y) = − Q′

ε j
(t (x, y))

yQ′′
ε j

(t (x, y))
.

By (2.1), (2.2), and (2.3), we then have

∂2t

∂x∂y
(x, y) = 1

y2

(
Q′′

ε j

)2 − Q′
ε j
Q′′′

ε j

(Q′′
ε j

)3

(
t (x, y)

) � 1

and
∂2t

∂y2
(x, y) = 1

y2
Q′

ε j

(
2(Q′′

ε j
)2 − Q′

ε j
Q′′′

ε j

)
(Q′′

ε j
)3

(
t (x, y)

)
� 1.

By using (3.2) we also get

∂2P1
∂y∂x

(x, y) = ∂t

∂y
(x, y).

Noticing that |γ ′(ε j )| is small if L is large, by the mean value theorem we get (4.9).
Let τ0 = (2m |γ ′(ε j )|)−1/3. We have the following splitting of (4.8):

‖Tj,m( f, g)‖22 =
(∫

|τ |<τ0

+
∫

τ0≤|τ |≤10
dτ

)

·
∫∫

Fτ (x)Gτ (y)Aτ (x, y)e
−2π i2m Pτ (x,y) dx dy.

Applying the trivial estimate and Hörmander’s [5, Theorem 1.1] to the two parts above
(and also Hölder’s inequality) yields

∥∥Tj,m( f, g)
∥∥2
2 ≤ Cτ0‖ f ‖22‖g‖22 + C

∫
τ0≤|τ |≤10

(
2m |τ |)−1/2‖Fτ‖2‖Gτ‖2 dτ

≤ C
(
τ0 + (2m |γ ′(ε j )|τ0)−1/2)‖ f ‖22‖g‖22

≤ C
(
2m |γ ′(ε j )|

)−1/3‖ f ‖22‖g‖22.
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To conclude, the desired estimate (4.3) follows from (4.5), (4.7), and the estimate
above of ‖Tj,m( f, g)‖2.

4.2 Part 2: j ≥ L , m ∈ N

6 We can find a finite open cover of the interval [−36C1, 36C1] by using open intervals
of length c1/24, associated with which we can construct a partition of unity {χs : 1 ≤
s ≤ �} such that∑s χs ≡ 1 in [−36C1, 36C1] and each χs is smooth and supported
in an interval that belongs to the finite open cover above.

Lemma 3.1 will be applied to χs(−ξ/η)K j,m(ξ, η) (below). Here we denote S to
be the collection of all 1 ≤ s ≤ � for which the second statement in Lemma 3.1
holds. Let I be either [1/4, 9/4] or [−9/4,−1/4], and

U (I) := {
us,r,η(ξ) ∈ L2(I) : s ∈ S, r ∈ R, 1/16C1 ≤ |η| ≤ 9C1

}
,

where

us,r,η(ξ) = χs
(− ξ/η

)
e2π i

(
2mηφε j (t (ξ,η),ξ,η)+rξ

)
.

According to Lemma 3.3, we finish this part in three steps.

Step 1: Let f̂ |I, the restriction of f̂ to I, be an arbitrary function in L2(I) that is
σ -uniform in U (I).

We first note that Bϕ
j,m( f, g)(x) in the time space can be expressed as

Bϕ
j,m( f, g)(x) = ∣∣γ ′(ε j )

∣∣1/2 ∫ ∞

0
f ∗ ϕ

(
γ ′(ε j )x − 2mt

)
g ∗ ϕ

(
x − 2mQε j (t)

)
ρ(t) dt,

(4.10)
which leads to, for h ∈ L2(R),

∫
Bϕ
j,m( f, g)(x)h(x) dx = ∣∣γ ′(ε j )

∣∣1/2 ·
∑
l∈Z

∫∫ ∞

0
f ∗ ϕ

(
γ ′(ε j )x − 2mt

)
g j,m,l

(
x − 2mQε j (t)

)
ρ(t)

(
1|γ ′(ε j )|−1,l h

)
(x) dt dx,

where g j,m,l = 1I j,m,l · g ∗ ϕ with I j,m,l = [α j,l − C12m, α j,l+1 + C12m] and α j,l =
|γ ′(ε j )|−1l. In the frequency space we then have

∫
Bϕ
j,m( f, g)(x)h(x) dx = ∣∣γ ′(ε j )

∣∣1/2 ·
∑
l∈Z

∫∫∫
f̂ ϕ̂(ξ)e2π iγ

′(ε j )ξ x ĝ j,m,l(η)e2π iηx

K j,m(ξ, η)
(
1|γ ′(ε j )|−1,l h

)
(x) dx dξ dη.

6 In this part we mainly generalize the argument contained in Sections 8, 10, and 11 of the preprint
arXiv:0805.0107. In particular we apply Lemma 3.3 with a carefully-chosen function set U (I).
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Let ϕ̂1 ∈ C∞
0 (R) such that ϕ̂1(η) = 1 if |η| ∈ [1/8C1, 9C1/2] and supp ϕ̂1 ⊂ {x ∈

R : 1/16C1 ≤ |x | ≤ 9C1}. By using 1 = ϕ̂1(η) + (1 − ϕ̂1(η)) and the power series
of e2π iγ

′(ε j )ξ(x−α j,l ), we get

∫
Bϕ
j,m( f, g)(x)h(x) dx = I + I I,

where

I = ∣∣γ ′(ε j )
∣∣1/2∑

l∈Z

∞∑
p=0

(2π i)p

p!
∫∫

f̂ ϕ̂(ξ)ξ pe2π iγ
′(ε j )α j,lξ

· ĝ j,m,l(η)ϕ̂1(η)K j,m(ξ, η)F−1
[(

γ ′(ε j )(· − α j,l)
)p(1|γ ′(ε j )|−1,l h

)
(·)
]
(η) dξ dη

and

I I = ∣∣γ ′(ε j )
∣∣1/2∑

l∈Z

∞∑
p=0

(2π i)p

p!
∫∫

f̂ ϕ̂(ξ)ξ pe2π iγ
′(ε j )α j,lξ

· ĝ j,m,l(η)
(
1 − ϕ̂1(η)

)
K j,m(ξ, η)F−1

[(
γ ′(ε j )(· − α j,l)

)p(1|γ ′(ε j )|−1,l h
)
(·)
]

(η) dξ dη.

We first estimate Sum II. When 1 − ϕ̂1(η) �= 0, Remark 2.4 (2) implies that the
gradient of the phase function of K j,m(ξ, η) has a uniform lower bound, which leads
to the bound K j,m(ξ, η) = O(2−m). Then by Hölder’s inequality we get

|I I | ≤ C2−m
∣∣γ ′(ε j )

∣∣1/2‖1I f̂ ‖2∑
l∈Z

‖g j,m,l‖2‖1|γ ′(ε j )|−1,l h‖2.

Applying the Cauchy–Schwarz inequality yields

|I I | ≤
{
C2−m/2

∥∥1I f̂ ∥∥2‖g‖2 · (2−m |γ ′(ε j )|
)1/2‖h‖2, if |γ ′(ε j )| ≤ 2−m,

C
∣∣γ ′(ε j )

∣∣1/2∥∥1I f̂ ∥∥2‖g‖2 · (2−m |γ ′(ε j )|
)1/2‖h‖2, if |γ ′(ε j )| > 2−m .

(4.11)
The estimate of Sum I, by using the partition of unity we have constructed at the

beginning of this subsection, can be reduced to

Is = ∣∣γ ′(ε j )
∣∣1/2∑

l∈Z

∞∑
p=0

(2π i)p

p!
∫∫

f̂ ϕ̂(ξ)ξ pe2π iγ
′(ε j )α j,lξ ĝ j,m,l(η)ϕ̂1(η)

· χs
(− ξ/η

)
K j,m(ξ, η)F−1

[(
γ ′(ε j )(· − α j,l)

)p(1|γ ′(ε j )|−1,l h
)
(·)
]
(η) dξ dη

for any 1 ≤ s ≤ �. We apply Lemma 3.1 to χs(−ξ/η)K j,m(ξ, η). If (3.1) holds,
then Is is bounded by (4.11) too. Hence we may assume that the second statement in
Lemma 3.1 holds. Applying (3.3) yields
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Is = C
(
2−m |γ ′(ε j )|

)1/2∑
l∈Z

∞∑
p=0

(2π i)p

p!

·
∫
M(η)ĝ j,m,l(η)F−1

[(
γ ′(ε j )(· − α j,l)

)p(1|γ ′(ε j )|−1,l h
)
(·)
]
(η) dη,

where we have omitted the error term in (3.3) (since it leads to the same bound as in
(4.11)), and M(η) is defined as

M(η) :=
∫
I
b(ξ, η) f̂ (ξ)χs

(− ξ/η
)
e−2π i

(
2mηφε j (t (ξ,η),ξ,η)−γ ′(ε j )α j,lξ

)
dξ

with
b(ξ, η) = ϕ̂(ξ)ϕ̂1(η)ξ pρ

(
t (ξ, η)

)|η|−1/2
∣∣D2

t φε j (t (ξ, η), ξ, η)
∣∣−1/2

.

Using the Fourier series of b(ξ, η) and the assumption that f̂ |I is σ -uniform in U (I),
we have ∣∣M(η)

∣∣ ≤ C9pσ
∥∥1I f̂ ∥∥2.

Hence by using Hölder’s and the Cauchy–Schwarz inequalities we get

|Is |≤
{
Cσ

∥∥1I f̂ ∥∥2‖g‖2 · (2−m |γ ′(ε j )|
)1/2‖h‖2, if |γ ′(ε j )| ≤ 2−m,

C
(
2m |γ ′(ε j )|

)1/2
σ
∥∥1I f̂ ∥∥2‖g‖2 · (2−m |γ ′(ε j )|

)1/2‖h‖2, if |γ ′(ε j )| > 2−m .

To conclude Step 1, if σ > 2−m/2, then the bound above of Is and (4.11) lead to,
for h ∈ L∞(R),

∣∣∣∣
∫

Bϕ
j,m( f, g)(x)12mγ ′(ε j )−1,n(x)h(x) dx

∣∣∣∣
≤
{
Cσ

∥∥1I f̂ ∥∥2‖g‖2‖h‖∞, if |γ ′(ε j )| ≤ 2−m,

C
(
2m |γ ′(ε j )|

)1/2
σ
∥∥1I f̂ ∥∥2‖g‖2‖h‖∞, if |γ ′(ε j )| > 2−m .

(4.12)

Step 2: We now assume that f̂ |I ∈ U (I).
By using (4.10), a change of variables x → 2mγ ′(ε j )

−1(x + γ ′(ε j )Qε j (t)), and
Hölder’s inequality, we have, for h ∈ L∞(R),

∣∣∣∣
∫

Bϕ
j,m( f, g)(x)h(x) dx

∣∣∣∣ = 2m
∣∣γ ′(ε j )

∣∣−1/2
∣∣∣∣
∫∫ ∞

0
f ∗ ϕ

(
2m(x+γ ′(ε j )Qε j (t)−t)

)

· g ∗ ϕ
(
2mγ ′(ε j )

−1x
)
h j,m

(
x+γ ′(ε j )Qε j (t)

)
ρ(t) dt dx

∣∣∣∣
≤ C‖g‖2‖T1(h)‖2, (4.13)

where h j,m(x) = h(2mγ ′(ε j )
−1x) and
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T1(h)(x) = 2m/2
∫ ∞

0
f ∗ϕ

(
2m(x+γ ′(ε j )Qε j (t)−t)

)
h j,m

(
x+γ ′(ε j )Qε j (t)

)
ρ(t) dt.

Let f̂ |I = us,r,η(ξ) for arbitrarily fixed s ∈ S, r ∈ R, and 1/16C1 ≤ |η| ≤ 9C1.
By applying the Fourier inversion formula to f ∗ ϕ and changing variables, we get

∥∥T1(h)
∥∥2
2 = 2m

∫ ∣∣∣∣
∫ ∞

0
K1(x, t)h j,m

(
x − 2−mr + γ ′(ε j )Qε j (t)

)
ρ(t) dt

∣∣∣∣
2

dx,

(4.14)
where

K1(x, t) =
∫

ϕ̂(ξ)χs
(− ξ/η

)
e2π i2

mη
[
φε j (t (ξ,η),ξ,η)+y(x,t)(ξ/η)

]
dξ (4.15)

with
y = y(x, t) = x + γ ′(ε j )Qε j (t) − t.

Let χM be a smooth cut-off function supported in [−M, M], which equals 1 in
[−M/2, M/2]. We decompose the right-hand side of (4.14) into two parts by using
the decomposition 1 = (1 − χM (x)) + χM (x) to restrict the integration domain of x
to {x ∈ R : |x | ≥ M/2} and {x ∈ R : |x | < M} respectively for a sufficiently large
constant M . The former part is bounded by

C2−m‖h‖2∞, (4.16)

since integration by parts yields K1(x, t) = O(2−m |x |−1).
We next consider the latter part with |x | < M . After inserting a partition of unity,

we may replace K1(x, t) by χ̃(−y(x, t))K1(x, t) with a smooth cut-off function χ̃

supported in an interval of sufficiently small length. Then by repeating the argument in
the proof of Lemma 3.1, we have that either χ̃ (−y(x, t))K1(x, t) = O(2−m) (leading
to the bound (4.16)) or the phase function in (4.15) has a critical point ξ(x, t) satisfying

t
(
ξ(x, t), η

) = −y(x, t).

This equation, together with ∂tφε j (t (ξ, η), ξ, η) = 0 (namely, Eq. (3.2) satisfied by
t (ξ, η)), yields

ξ(x, t) = −ηQ′
ε j

(− y(x, t)
)
.

By using the method of stationary phase in a neighborhood of ξ(x, t) and integration
by parts away from it, we get the following asymptotic formula.

χ̃
(− y(x, t)

)
K1(x, t) = Cχ̃

(− y(x, t)
)
χs
(− ξ(x, t)/η

)
ϕ̂
(
ξ(x, t)

)
∣∣∣∂ξ t

(
ξ(x, t), η

)∣∣∣−1/2

· e2π i2mηQε j

(
−y(x,t)

)
2−m/2 + O

(
2−3m/2).
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By using the leading term above and a change of variables u = Qε j (t), we now need
to estimate

∫
χM (x)

∣∣∣∣∣
∫

h j,m
(
x − 2−mr + γ ′(ε j )u

)
k(x, u)e

2π i2mηQε j

(
−y
(
x,Q−1

ε j
(u)
))

du

∣∣∣∣∣
2

dx,

(4.17)
where

k(x, u) = χ̃
(

− y
(
x, Q−1

ε j
(u)
))

χs

(
− ξ

(
x, Q−1

ε j
(u)
)
/η
)
ϕ̂
(
ξ
(
x, Q−1

ε j
(u)
))

·
∣∣∣∂ξ t

(
ξ(x, Q−1

ε j
(u)
)
, η
)∣∣∣−1/2

ρ
(
Q−1

ε j
(u)
)(

Q′
ε j

(
Q−1

ε j
(u)
))−1

.

We use the T T ∗ method for (4.17). By changing variables u1 = υ + τ , u2 = υ,
followed by x → x − γ ′(ε j )υ, (4.17) becomes

∫
dτ
∫

Hτ (x) dx
∫

Kτ,x (υ)e2π i2
mηPτ,x (υ) dυ, (4.18)

where all three integrals are over some finite intervals,

Hτ (x) = h j,m
(
x − 2−mr + γ ′(ε j )τ

)
h j,m(x − 2−mr),

Kτ,x (υ) = χM
(
x − γ ′(ε j )υ

)
k
(
x − γ ′(ε j )υ, υ + τ

)
k(x − γ ′(ε j )υ, υ),

and
Pτ,x (υ) = P2

(
x + γ ′(ε j )τ, υ + τ

)− P2(x, υ)

with
P2(x, υ) = Qε j

(
− [

x − Q−1
ε j

(υ)
])

.

Before applying integration by parts to the innermost integral in (4.18) we first
estimate its phase function Pτ,x (υ). Actually we have that if |γ ′(ε j )|/|x | is sufficiently
small then ∣∣Dυ Pτ,x (υ)

∣∣ � |x ||τ | (4.19)

and ∣∣D2
υ Pτ,x (υ)

∣∣ � |x ||τ |. (4.20)

The (4.19) follows from the mean value theorem and the following estimates

∂2P2
∂x∂υ

(x, υ) = −Q
′′
ε j

(− [x − Q−1
ε j

(υ)])
Q ′

ε j

(
Q−1

ε j (υ)
) � 1

and

∂2P2
∂υ2 (x, υ) = x · Q

′
ε j

(− [x − Q−1
ε j

(υ)])(
Q ′

ε j

(
Q−1

ε j (υ)
))2 ·

(
Q′′

ε j

)2 − Q′
ε j
Q′′′

ε j(
Q′

ε j

)2 (c) � |x |,
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where c is between −[x − Q−1
ε j

(υ)] and Q−1
ε j

(υ). The (4.20) can be proved similarly.
Therefore, if |γ ′(ε j )|/|x | is sufficiently small, for any β < 1 we have

∣∣∣∣
∫

Kτ,x (υ)e2π i2
mηPτ,x (υ) dυ

∣∣∣∣ ≤ C min
{
1, (2m |x ||τ |)−1} ≤ C

(
2m |x ||τ |)−β

.

We now estimate (4.18) by splitting it into two parts (depending on the size of
|γ ′(ε j )|/|x |) and using the trivial estimate and the bound above respectively. Then
it is bounded by

C
(|γ ′(ε j )| + 2−βm)‖h‖2∞. (4.21)

To conclude Step 2, by (4.13), (4.14), (4.16), and (4.21), we get, for h ∈ L∞(R),

∣∣∣∣
∫

Bϕ
j,m( f, g)(x)12mγ ′(ε j )−1,n(x)h(x) dx

∣∣∣∣
≤
{
C2−βm/2‖g‖2‖h‖∞, if |γ ′(ε j )| ≤ 2−m,

C
(
max{|γ ′(ε j )|, 2−βm})1/2‖g‖2‖h‖∞, if |γ ′(ε j )| > 2−m .

(4.22)

Step 3: To conclude this subsection (namely, Part 2), by using Lemma 3.3 and the
estimates (4.12) and (4.22), we get that for any β < 1

∥∥Bϕ
j,m( f, g)12mγ ′(ε j )−1,n

∥∥
1 ≤ C2−βm/4‖ f ‖2‖g‖2, if

∣∣γ ′(ε j )
∣∣ ≤ 2−βm, (4.23)

and

∥∥Bϕ
j,m( f, g)12mγ ′(ε j )−1,n

∥∥
1 ≤ C2m/4

∣∣γ ′(ε j )
∣∣1/2‖ f ‖2‖g‖2, if |γ ′(ε j )| ≥ 2−βm .

(4.24)

4.3 Part 3: Conclusion

If |γ ′(ε j )| ≥ 2−βm , balancing (4.4) with (4.24) yields (see also Lie [13, p. 20])

∥∥Bϕ
j,m( f, g)12mγ ′(ε j )−1,n

∥∥
1 ≤ C min

{(
2m |γ ′(ε j )|

)−1/6
, 2m/4|γ ′(ε j )|1/2

}
‖ f ‖2‖g‖2

≤ C2−m/16‖ f ‖2‖g‖2.

If |γ ′(ε j )| ≤ 2−βm , the (4.23) is already good enough. This finishes the proof of
Proposition 4.1.

5 Estimate of ‖B�
j,m( f, g)‖1

Let �̂ ∈ C∞
0 (R) be supported in {ξ ∈ R : 1/2 ≤ |ξ | ≤ 2} and B�

j,m( f, g) be as
defined at the beginning of Sect. 4 (with ϕ there replaced by �).
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Proposition 5.1 Assume that �(t) = (t, γ (t)) ∈ F(−1, 1).7 For any β < 1, there
exist an L ∈ N and a constantC ′

β such that whenever j ≥ L,m ∈ N, and f, g ∈ L2(R)

we have
‖B�

j,m( f, g)‖1 ≤ C ′
β A

β
j,m‖ f ‖2‖g‖2, (5.1)

where A j,m equals C j,m if |γ ′(ε j )| ≤ K1|ε j |c1 and C ′
j,m if |γ ′(ε j )| ≥ K2|ε j |−c1 (with

C j,m and C ′
j,m defined as in Proposition 4.1).

Remark 5.2 This proposition is a consequence of Proposition 4.1. It is essentially
the Lemma 5.1 contained in the arXiv preprint (arXiv:0805.0107) (which was later
published as Li [11]).

Proof of Proposition 5.1 We only prove the case when |γ ′(ε j )| ≤ K1|ε j |c1 while the
other case can be handled similarly. Let φ be a Schwartz function on R such that∫
φ = 1 and supp φ̂ ⊂ [−1/100, 1/100]. Denote φK (x) = K−1φ(K−1x). We have

B�
j,m( f, g)(x) = ∣∣γ ′(ε j )

∣∣1/2∑
n∈Z

∑
k1,k2∈Z

∫ ∞

0

(
12m ,n+k1 ∗ φ2m · f ∗ �

)(
γ ′(ε j )x−2mt

)

·
(
12mγ ′(ε j )−1,n+k2 ∗ φ2mγ ′(ε j )−1 · g ∗ �

)
(
x − 2mQε j (t)

)
ρ(t) dt · 12mγ ′(ε j )−1,n .

We then make the decomposition B�
j,m( f, g)(x) := I + II by splitting the inner

summation for k1, k2 into two parts such that the first part, denoted by I, sums over
{k1, k2 ∈ Z : max{|k1|, |k2|} ≥ A} and the second one, denoted by II, over {k1, k2 ∈
Z : max{|k1|, |k2|} < A} with A = C−(1−β)/2

j,m > 1.
Using the fast decay of 12m ,n+k1 ∗φ2m and 12mγ ′(ε j )−1,n+k2 ∗φ2mγ ′(ε j )−1 yields that

|I| ≤ C
∣∣γ ′(ε j )

∣∣1/2 ∑
k1,k2∈Z

max{|k1|,|k2|}≥A∫ ∞

0

∣∣ f ∗ �
(
γ ′(ε j )x − 2mt

)
g ∗ �

(
x − 2mQε j (t)

)
ρ(t)

∣∣
(
1 + |t + k1|

)N1
(
1 + |γ ′(ε j )Qε j (t) + k2|

)N2
dt

≤ C
(
A1−N1 + A1−N2

)∣∣γ ′(ε j )
∣∣1/2·∫ ∞

0

∣∣ f ∗ �
(
γ ′(ε j )x − 2mt

)
g ∗ �

(
x − 2mQε j (t)

)
ρ(t)

∣∣ dt

for any N1, N2 ∈ N. By Hölder’s and Young’s inequalities, we get

‖I‖1 ≤ C
(
A1−N1 + A1−N2

)‖ f ‖2‖g‖2 ≤ C ′′
βC

β
j,m‖ f ‖2‖g‖2, (5.2)

where the second inequality holds whenever N1, N2 ≥ (1 + β)/(1 − β).

7 We do not need the condition (2.4) for this proposition.
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On the other hand, since

supp
(F[12m ,n+k1 ∗ φ2m · f ∗ �]) ⊂ {

ξ ∈ R : 3/8 ≤ |ξ | ≤ 17/8
}

and

supp
(F[12mγ ′(ε j )−1,n+k2 ∗ φ2mγ ′(ε j )−1 · g ∗ �]) ⊂ {

ξ ∈ R : 3/8 ≤ |ξ | ≤ 17/8
}
,

we then have

II =
∑
n∈Z

∑
k1,k2∈Z

max{|k1|,|k2|}<A

Bϕ
j,m

(
12m ,n+k1 ∗ φ2m · f ∗ �,

12mγ ′(ε j )−1,n+k2 ∗ φ2mγ ′(ε j )−1 · g ∗ �
)
(x)12mγ ′(ε j )−1,n(x).

Using Proposition 4.1 and the Cauchy–Schwarz inequality, we have

‖II‖1 ≤ CβC j,m A2‖ f ‖2‖g‖2 = CβC
β
j,m‖ f ‖2‖g‖2. (5.3)

The desired inequality (5.1) follows from (5.2) and (5.3). ��

6 Proof of Theorem 2.1

We prove Theorem 2.1 in this section. Let ρ ∈ C∞
0 (R) be an odd function supported

in {t ∈ R : 1/2 ≤ |t | ≤ 2} and ρ j (t) = 2 jρ(2 j t) such that

1/t =
∑
j∈Z

ρ j (t), if t �= 0.

Then

H�( f, g)(x) =
∑
j≥0

∫ 1

−1
f (x − t)g

(
x − γ (t)

)
ρ j (t) dt.

Let L ∈ N. If 0 ≤ j ≤ L , we can trivially estimate the L1-norm of each summand
above by Hölder’s inequality and get a bound in the form of C‖ f ‖2‖g‖2. Hence we
may assume j > L below. By the Fourier inversion formula we need to estimate

H̃�( f, g)(x) =
∑
j>L

∫∫
f̂ (ξ)ĝ(η)m j (ξ, η)e2π i(ξ+η)x dξ dη,

where

m j (ξ, η) =
∫
R

ρ(t)e−2π i
(
2− j ξ t+ηγ (2− j t)

)
dt. (6.1)
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Let �̂ ∈ C∞
0 (R) be an even nonnegative function supported in {ξ ∈ R : 1/2 ≤

|ξ | ≤ 2} such that ∑
m∈Z

�̂

(
ξ

2m

)
= 1, if ξ �= 0.

Let m,m′ ∈ Z. Set

m j,m,m′(ξ, η) = �̂

(
ξ

2 j+m

)
�̂

(
η

2m′
� j

)
m j (ξ, η)

with � j defined as in Sect. 2. Then m j (ξ, η) can be decomposed as the sum of

m j,+,+(ξ, η) =
∑

max{m,m′}≥0
|m′−m|<C

m j,m,m′(ξ, η),

m j,−,−(ξ, η) =
∑
m<0

∑
m′<0

m j,m,m′(ξ, η),

m j,−,+(ξ, η) =
∑
m′≥0

∑
m≤m′−C

m j,m,m′(ξ, η),

and
m j,+,−(ξ, η) =

∑
m≥0

∑
m′≤m−C

m j,m,m′(ξ, η),

where C is a large constant (to be determined later; see (6.5) below). Then

H̃�( f, g)(x) =
∑

(∗,∗∗)∈A

∑
j>L

∫∫
f̂ (ξ)ĝ(η)m j,∗,∗∗(ξ, η)e2π i(ξ+η)x dξ dη

=:
∑

(∗,∗∗)∈A
H̃(∗,∗∗)( f, g)(x),

where the index set A is given by

A = {
(+,+), (−,−), (−,+), (+,−)

}
. (6.2)

We split H̃�( f, g)(x) into two parts:
Major part: (∗, ∗∗) = (+,+);
Minor part: (∗, ∗∗) = (−,−), (−,+), and (+,−).
The essential difficulty in the proof of Theorem 2.1 lies in the estimates of the major

part. All our preparations in Sects. 3–5 are done for it. The minor part can be reduced
to classical paraproducts by using the Taylor and Fourier series expansions, and then
handled by Theorem 3.4.

The following proposition completes the proof of Theorem 2.1.

Proposition 6.1 Using the notations above, if L is sufficiently large we have
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(i) For the major part, if (∗, ∗∗) = (+,+) then

∥∥H̃(∗,∗∗)( f, g)
∥∥
1 ≤ C‖ f ‖2‖g‖2.

(ii) For the minor part, if (∗, ∗∗) �= (+,+) then
∥∥H̃(∗,∗∗)( f, g)

∥∥
r ≤ C‖ f ‖p1‖g‖p2 ,

for all p1 > 1 and p2 > 1 such that 1/r = 1/p1 + 1/p2.

The rest of this section is devoted to the proof of this proposition.

6.1 Estimates of the Major Part

We consider the case max{m,m′} ≥ 0 and |m −m′| < C in this subsection. Actually
it suffices to prove the special case m′ = m ∈ N to which we can easily reduce the
case m′ = m + b (for each integer b with 1 ≤ |b| < C) simply by replacing γ by a
constant multiple of γ , namely, 2−bγ . We also notice that there is a symmetry between
the two cases: t ≥ 0 and t ≤ 0 and they can be handled similarly.

With these simplifications it suffices to prove
∥∥∥∥
∑
j>L

∑
m∈N

Tj,m( f, g)

∥∥∥∥
1

≤ C‖ f ‖2‖g‖2, (6.3)

where

Tj,m( f, g)(x) =
∫∫

f̂ (ξ)ĝ(η)�̂

(
2− jξ

2m

)
�̂

(
2− jγ ′(2− j )η

2m

)

m+
j (ξ, η)e2π i(ξ+η)x dξ dη

with

m+
j (ξ, η) =

∫ ∞

0
ρ(t)e−2π i

(
2− j ξ t+ηγ (2− j t)

)
dt.

To prove (6.3) we first apply a change of variables and get

Tj,m( f, g)(x) = 22( j+m)
∣∣γ ′(2− j )

∣∣−1

·
∫∫

f̂ j,m(ξ)�̂(ξ)ĝ j,m(η)�̂(η)e2π i
(
2 j+m/γ ′(2− j

))(
γ ′(2− j

)
ξ+η

)
x

K j,m(ξ, η) dξ dη,

where

f j,m(x) = 2− j−m f
(
2− j−mx

)
,

g j,m(x) = 2− j−mγ ′(2− j )g(2− j−mγ ′(2− j )x),
and
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K j,m(ξ, η) = m+
j

(
2 j+mξ, 2 j+mη/γ ′(2− j )) =

∫ ∞

0
ρ(t)e−2π i2m

(
ξ t+ηQ2− j (t)

)
dt

with
Q2− j (t) = γ

(
2− j t

)
/
(
2− jγ ′(2− j )).

Let 10 be the indicator function of {x ∈ R : 1/2 ≤ |x | ≤ 2}. Then
∥∥Tj,m( f, g)

∥∥
1 = 2 j+m

∣∣γ ′(2− j )
∣∣−1/2

∥∥∥B�
j,m

(F−1[ f̂ j,m10],F−1 [̂g j,m10]
)∥∥∥

1
,

≤ C2−m/322 j+m
∣∣∣γ ′(2− j )∣∣∣−1/2∥∥ f̂ j,m10∥∥2

∥∥ĝ j,m10
∥∥
2,

≤ C2−m/32
∥∥ f̂ (·)10(2− j−m · )∥∥2

∥∥ĝ(·)10(2− j−mγ ′(2− j ) · )∥∥2,
where we have applied Propositions 4.1 and 5.1 if L is sufficiently large. Thus,

∥∥∥∥
∑
j>L

∑
m∈N

Tj,m( f, g)

∥∥∥∥
1

≤ C
∑
m∈N

2−m/32
∑
j>L

∥∥ f̂ (·)10(2− j−m · )∥∥2
∥∥ĝ(·)10

(
2− j−mγ ′(2− j ) ·

)∥∥
2

≤ C‖ f ‖2‖g‖2.

In the last inequality, we have used the Cauchy–Schwarz inequality and the bound

∑
j>L

10
(
2− j−mγ ′(2− j )η) ≤ C,

which follows from the condition (2.4) (and also Remark 2.4 (3)). This finishes the
estimates of the major part.

6.2 Estimates of the Minor Part

For the minor part, we begin with (∗, ∗∗) = (−,−). Notice

m j,−,−(ξ, η) =
−1∑

m′=−∞

⎛
⎝ m′∑

m=−∞
m j,m,m′(ξ, η)

⎞
⎠+

−1∑
m=−∞

⎛
⎝ m−1∑

m′=−∞
m j,m,m′(ξ, η)

⎞
⎠

=:
−1∑

m′=−∞
m j,−,m′(ξ, η) +

−1∑
m=−∞

m j,m,−(ξ, η).

The treatments ofm j,−,m′(ξ, η) andm j,m,−(ξ, η) are similar. We show how to handle
m j,−,m′(ξ, η). Set
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�̂(ξ) =
∑
m≤0

�̂

(
ξ

2m

)
.

Then, by applying the Taylor expansion to m j (ξ, η), we have

m j,−,m′(ξ, η) =
∞∑

p,q=0

c j,p,q
p!q! 2

m′(p+q)N j,p,q(ξ, η),

where

c j,p,q =
∫

ρ(t)(−2π i t)p
(

− 2π iγ
(
2− j t

)
� j )

)q
dt (6.4)

and

N j,p,q(ξ, η) = �̂

(
ξ

2 j+m′

)(
ξ

2 j+m′

)p

�̂

(
η

2m′
� j

)(
η

2m′
� j

)q

.

Since ρ is an odd function, c j,0,0 = 0 for all j ∈ Z and thus we do not need to consider
N j,0,0(ξ, η). This yields a decay factor as follows

2m
′(p+q) ≤ 2m

′
if (p, q) �= (0, 0),

which allows us to sum over m′ < 0 later.
The condition (2.1) gives

|c j,p,q | ≤ ‖ρ‖1(4π)p(2πC1)
q ,

which leads to ∑
p,q≥0

|c j,p,q |
p!q! < C < ∞

for some constant C independent of j .
Set

Np,q(ξ, η) =
∑
j>L

N j,p,q(ξ, η) =
∑
j>L

�̂

(
ξ

2 j+m′

)(
ξ

2 j+m′

)p

�̂

(
η

2m′
� j

)(
η

2m′
� j

)q

.

It suffices to show that Np,q , as a bilinear multiplier, maps L p1 × L p2 to Lr with a
bound independent ofm′. Indeed, the dependence ofm′ can be removed easily via the
following claim:

Claim 6.2 Assume M(ξ, η), as a symbol for a bilinear multiplier, maps L p1 × L p2

to Lr with a bound A. Here p1 > 1, p2 > 1, and 1/p1 + 1/p2 = 1/r.
Let R > 0 be any constant. Then MR(ξ, η) = M(Rξ, Rη) is also a bounded

bilinear multiplier which maps L p1 × L p2 to Lr with the same bound A.
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Claim 6.2 can be proved by a standard rescaling argument and we omit the details
here.

Applying the same arguments tom j,m,−(ξ, η), we obtain the corresponding multi-
plier

Ñp,q(ξ, η) =
∑
j>L

�̂

(
ξ

2 j+m−1

)(
ξ

2 j+m−1

)p

�̂

(
η

2m−1� j

)(
η

2m−1� j

)q

.

Again, Claim 6.2 allows us to dispose the factor 2m−1 on the right-hand side.
To sum up, the case (∗, ∗∗) = (−,−) is reduced to establishing the boundedness

of the bilinear multipliers whose symbols are given by

∑
j>L

�̂

(
ξ

2 j

)(
ξ

2 j

)p

�̂

(
η

� j

)(
η

� j

)q

and ∑
j>L

�̂

(
ξ

2 j

)(
ξ

2 j

)p

�̂

(
η

� j

)(
η

� j

)q

,

which is ensured by Theorem 3.4 (with (n1, n2) = (0, 0) there).
Now we turn to the case (∗, ∗∗) = (−,+). Notice

m j,−,+(ξ, η) =
∑
m′≥0

m̃ j,−,m′(ξ, η),

where

m̃ j,−,m′(ξ, η) :=
m′−C∑
m=−∞

m j,m,m′(ξ, η).

Applying the Fourier series of m j (ξ, η) yields

m̃ j,−,m′(ξ, η) =�̂

(
ξ

2 j+m′−C

)
�̂

(
η

2m′
� j

)
m j (ξ, η)

=�̂

(
ξ

2 j+m′−C

)
�̂

(
η

2m′
� j

) ∑
n1,n2∈Z

an1,n2e
2π i

(
n1

ξ

2 j+m′−C
+n2

η

2m
′
� j

)

.

Since
∣∣∣∂t
(
ηγ (2− j t)

)∣∣∣ > 29|∂t (ξ2− j t)| (6.5)

given C sufficiently large, integration by parts gives the following fast decay
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|an1,n2 | ≤ CN
(
1 + n21 + n22

)−N2−m′N for any N ∈ N.

Consequently, we only need to handle the following multiplier, for a fixed m′ and a
fixed pair (n1, n2),

Nn1,n2(ξ, η) =
∑
j>L

�̂

(
ξ

2 j+m′−C

)
e
2π in1

ξ

2 j+m′−C �̂

(
η

2m′
� j

)
e
2π in2

η

2m
′
� j . (6.6)

Similarly, in the case (∗, ∗∗) = (+,−) we need to handle

Ñn1,n2(ξ, η) =
∑
j>L

�̂

(
ξ

2 j+m

)
e
2π in1

ξ

2 j+m �̂

(
η

2m−C� j

)
e
2π in2

η

2m−C� j . (6.7)

By Claim 6.2, the factor 2m
′
in (6.6) and the factor 2m in (6.7) are disposable. Thus

the problem is reduced to establishing the boundedness of the paraproducts whose
symbols are given by

∑
j>L

�̂

(
ξ

2 j−C

)
e
2π in1

ξ

2 j−C �̂

(
η

� j

)
e
2π in2

η
� j (6.8)

and ∑
j>L

�̂

(
ξ

2 j

)
e
2π in1

ξ

2 j �̂

(
η

2−C� j

)
e
2π in2

η

2−C� j , (6.9)

with bounds growing no faster than a polynomial of (1+ n21 + n22), which are ensured
by Theorem 3.4. Indeed, Theorem 3.4 is applicable to the multiplier (6.9), since the
sequence {2−C� j } j>L satisfies the condition (3.4). For the multiplier (6.8), one can
perform a rescaling (ξ, η) → (2−Cξ, 2−Cη) and then apply Theorem 3.4 again since
the sequence {2C� j } j>L also satisfies the condition (3.4). This finishes the estimates
of the minor part.

7 The Bilinear Maximal Functions

This section is devoted to the proof of Theorem 2.2. The arguments we use here are
essentially those from [12, Section 7]. Recall that

M�( f, g)(x) = sup
0<ε<1

ε−1
∫ ε

0
f (x − t)g(x − γ (t)) dt, (7.1)

where we have assumed that f and g are both nonnegative. We want to show

∥∥M�( f, g)
∥∥
1 ≤ C‖ f ‖2‖g‖2. (7.2)
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The proof of (7.2) is almost identical to the proof of Theorem 2.1 in Sect. 6. One
noticeable difference is that the minor part of (7.1) can be controlled pointwisely by
the Hardy–Littlewood maximal function.

Let ρ ∈ C∞
0 ([1/4, 1]) be nonnegative with ρ(1/2) = 1. Set ρ j (t) = 2 jρ(2 j t). It

suffices to establish the boundedness of the following maximal function

M∗( f, g)(x) = sup
j>L

∫
f (x − t)g(x − γ (t))ρ j (t) dt=: sup

j>L
M j ( f, g)(x),

where L ∈ N. Like what we did in Sect. 6, we have

Mj ( f, g)(x) =
∫∫

f̂ (ξ)ĝ(η)m j (ξ, η)e2π i(ξ+η)x dξ dη

=
∑

(∗,∗∗)∈A

∫∫
f̂ (ξ)ĝ(η)m j,∗,∗∗(ξ, η)e2π i(ξ+η)x dξ dη

=:
∑

(∗,∗∗)∈A
Mj,∗,∗∗( f, g)(x),

wherem j (ξ, η) andA are as defined in (6.1) and (6.2) respectively. It suffices to prove

∥∥∥∥∥supj |Mj,∗,∗∗( f, g)|
∥∥∥∥∥
1

≤ C‖ f ‖2‖g‖2 (7.3)

for each pair (∗, ∗∗) ∈ A.

Lemma 7.1 (Minor part) Let M( f ) denote the Hardy–Littlewood maximal function
of f . If L is sufficiently large and (∗, ∗∗) �= (+,+), then there is a constant C > 0
such that

sup
j>L

|Mj,∗,∗∗( f, g)(x)| ≤ CM( f )(x)M(g)(x).

As a consequence of this lemma and the boundedness of the Hardy–Littlewood
maximal function, we have

∥∥∥∥∥supj>L
|Mj,∗,∗∗( f, g)|

∥∥∥∥∥
1

≤ C‖M( f )‖2‖M(g)‖2 ≤ C‖ f ‖2‖g‖2.

This proves (7.3) when (∗, ∗∗) �= (+,+).

Proposition 7.2 (Major part) If L is sufficiently large we have

∥∥∥∥∥supj>L
|Mj,+,+( f, g)|

∥∥∥∥∥
1

≤ C‖ f ‖2‖g‖2.
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This proposition is essentially the result obtained in Sect. 6.1. Indeed, we have the
following pointwise estimate

sup
j>L

∣∣Mj,+,+( f, g)(x)
∣∣ ≤

∑
j>L

∣∣Mj,+,+( f, g)(x)
∣∣.

Then (6.3) implies

∥∥∥∥∥supj>L
|Mj,+,+( f, g)|

∥∥∥∥∥
1

≤
∥∥∥∥
∑
j>L

|Mj,+,+( f, g)|
∥∥∥∥
1

≤ C‖ f ‖2‖g‖2.

It remains to verify Lemma 7.1. We first consider the case (∗, ∗∗) = (−,−). Most
of the calculation in Sect. 6.2 remains valid. In particular, we have

m j,−,−(ξ, η) : =
∑
p,q∈N

c j,p,q
p!q! �̂

(
ξ

2 j

)(
ξ

2 j

)p

�̂

(
η

� j

)(
η

� j

)q

.

Notice

sup
j>L

∣∣∣∣
∫

�̂

(
ξ

2 j

)(
ξ

2 j

)p

f̂ (ξ)e2π iξ x dξ

∣∣∣∣ ≤ C ′
1M( f )(x)

and

sup
j>L

∣∣∣∣
∫

�̂

(
η

� j

)(
η

� j

)q

ĝ(η)e2π iηx dη

∣∣∣∣ ≤ C ′
2M(g)(x),

where C ′
1 and C

′
2 depend at most exponentially on p and q. Thus

sup
j>L

∣∣∣∣
∫∫

f̂ (ξ)ĝ(η)m j,−,−(ξ, η)e2π i(ξ+η)x dξ dη

∣∣∣∣ ≤ CM( f )(x)M(g)(x),

which proves Lemma 7.1 when (∗, ∗∗) = (−,−).
The cases (−,+) and (+,−) are similar, hence we only show how to handle the

former one. Using the same notations as in Sect. 6.2, we have

m j,−,+(ξ, η) =
∑
m′≥0

m̃ j,−,m′(ξ, η) (7.4)

and

m̃ j,−,m′(ξ, η) = �̂

(
ξ

2 j+m′−C

)
�̂

(
η

2m′
� j

) ∑
n1,n2∈Z

an1,n2e
2π i

(
n1

ξ

2 j+m′−C
+n2

η

2m
′
� j

)

,

(7.5)
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where
|an1,n2 | ≤ CN

(
1 + n21 + n22

)−N2−m′N for any N ∈ N. (7.6)

Then

sup
j>L

∣∣∣∣
∫

�̂

(
ξ

2 j+m′−C

)
e
2π in1

ξ

2 j+m′−C f̂ (ξ)e2π iξ x dξ

∣∣∣∣ ≤ C
(
1 + n21

)
M( f )(x) (7.7)

and

sup
j>L

∣∣∣∣
∫

�̂

(
η

2m′
� j

)
e
2π in2

η

2m
′
� j ĝ(η)e2π iηx dη

∣∣∣∣ ≤ C
(
1 + n22

)
M(g)(x). (7.8)

To get (7.7) and (7.8), we have applied the following fact

sup
t>0

∣∣∣ f ∗ �t

(
x − n

t

) ∣∣∣ ≤ C�

(
1 + n2

)
M( f )(x),

where

�t (x) = t�(t x).

Then (7.4), (7.5), (7.6), (7.7) and (7.8) yield

sup
j>L

∣∣Mj,−,+( f, g)(x)
∣∣ ≤ CM( f )(x)M(g)(x),

as desired.
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