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Abstract The Kähler rank was introduced by Harvey and Lawson in their 1983 paper
as a measure of the kählerianity of a compact complex surface. In this work we gener-
alize this notion to the case of compact complexmanifolds andwe prove several results
related to this notion. We show that on class VII surfaces, there is a correspondence
between the closed positive forms on a surface and those on a blow-up in a point.
We also show that a manifold of maximal Kähler rank which satisfies an additional
condition is in fact Kähler.
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1 Introduction

In [8], Harvey and Lawson introduced the Kähler rank of a compact complex surface,
a quantity intended to measure how far a surface is from being Kähler. A surface has
Kähler rank 2 iff it is Kähler. It has Kähler rank 1 iff it is not Kähler but still admits
a closed (semi-) positive (1, 1)-form whose zero-locus is contained in a curve. In the
remaining cases, it has Kähler rank 0.

In this paper we generalize the notion of Kähler rank to compact complexmanifolds
of arbitrary dimension and study its properties.

First, we discuss the problem of the bimeromorphic invariance of the Kähler rank.
There are examples that show that it is not a bimeromorphic invariant. However, two
bimeromorphic surfaces have the sameKähler rank [2]. This was shown by classifying
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604 I. Chiose

the surfaces of rank 1. In this paper we take a different approach, local in nature, which
was alluded to in [2]. Namely, we study the problem of when a plurisubharmonic
function on the blow-up is the pull-back of a smooth function. However, this method
leads to an involved system of differential equations, and we were able to solve this
system only up to order 3. Thus we obtain:

Theorem 1.1 Let X be a compact, complex, non-Kähler surface with b1(X) = 1, and
let p : X ′ → X be the blow-up of X at a point. Suppose that ω′ is a closed, positive
(1, 1) form on X ′. Then there exists ω a closed positive (1, 1) form on X of class C1
such that p∗ω = ω′.

Second, we study the manifolds of maximal Kähler rank, i.e., those manifolds that
admit a positive d-closed (1, 1)-form of strictly positive volume. It is conjectured that
such manifolds are in the Fujiki class C. Under an additional condition, we prove that
they are in fact Kähler:

Theorem 1.2 Let X be a compact complex manifold of dimension n such that there
exists {α} ∈ H1,1

BC (X,R) a nef class such that

∫
X

αn > 0

Suppose moreover that there exists h a Hermitian metric on X such that

i∂∂̄h = 0, ∂h ∧ ∂̄h = 0

Then X is Kähler.

The same method yields a simpler proof of a key theorem of Demailly and Păun in
[5].

2 Definition and Examples

The Kähler rank of a manifold is the maximal rank a closed positive (1, 1)-form can
reach on the manifold:

Definition 2.1 Let X be a compact complex manifold of dimension n. The Kähler
rank of X , denoted Kr(X), is

Kr(X) = max
{
k|∃ω ∈ C∞

1,1(X,R), ω ≥ 0, dω = 0, ωk 
= 0
}

(2.1)

The original definition in [8] for surfaces required that the form ω appearing in the
definition have zeroes in a analytic subset of X . Corollary 4.3 in [2] shows that the
definition above coincides with the one in [8] for surfaces.

Remark 2.2 Note that if Kr(X) = dim X then for every p ∈ 0, n the operator ∂ :
H p,0(X) → H p+1,0(X) is zero, while, if Kr(X) = 0 then ∂ : H1,0(X) → H2,0(X)

is into. Indeed, if σ ∈ H1,0(X)\{0} satisfies ∂σ = 0, then iσ ∧ σ̄ is a closed, non-zero
positive (1, 1)-form.
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The Kähler Rank of Compact Complex Manifolds 605

Remark 2.3 As in the surface case considered in [8], on a compact complex manifold
X of Kähler rank Kr(X) = k, there exists a complex analytic canonical foliation F
of codimension k. It is defined on the open set

B =
{
x ∈ X |∃ω ∈ C∞

1,1(X,R), dω = 0, ω ≥ 0, ωk(x) 
= 0
}

(2.2)

and is characterized by ωk |F = 0,∀ω ≥ 0, dω = 0.

Example 2.4 A compact complex surface X has Kähler rank 2 if and only if it is
Kähler (see remark 4.3 below) and this is equivalent to b1(X) even (see [10]). When
b1(X) is odd but at least 3, then H1,0(X) 
= 0 and if σ is a non-zero holomorphic
1-form on X then it is d-closed, hence iσ ∧ σ̄ is a d-closed positive (1, 1)-form on
X . If b1(X) = 1, then the main results of [2] and [1] show that the only surfaces
of Kähler rank equal to 1 are the Inoue surfaces and some Hopf surfaces. The other
known surfaces (the other Hopf surfaces and the Kato surfaces) have Kähler rank 0.

Example 2.5 In [9] the author constructed an example of a threefold X which is a
proper modification of a Kähler manifold but which is not Kähler. In fact, it is a proper
modification p : X → P

3 of the projective space. One can take p∗ωFS , where ωFS

is the Fubini–Study metric, to obtain a closed positive (1, 1)-form, not everywhere
degenerate, on a manifold that is not Kähler. Therefore, unlike the surface case, in
higher dimensions there are manifolds of maximal Kähler rank and which are not
Kähler.

Example 2.6 The well-known Iwasawa threefold is the quotient H/� where H is the
group of matrices of the form

⎛
⎝ 1 x z
0 1 y
0 0 1

⎞
⎠

with complex entries, and � is the subgroup of the matrices whose entries have integer
real and imaginary entries. Then the holomorphic 1-forms on dx , dy and dz− xdy on
H induce three holomorphic 1-forms on H/� denoted by σ1, σ2 and σ3 respectively.
Then dσ3 = −σ1 ∧σ2, hence σ3 is not d-closed, therefore Kr(H/�) ≤ 2. But σ1 and
σ2 are d-closed, therefore the form ω = iσ1 ∧ σ̄1 + iσ2 ∧ σ̄2 is closed and positive,
and ω2 
= 0, therefore the Kähler rank is 2.

Example 2.7 In [11] the author constructed a Moishezohn threefold Y that contains
an algebraic 1-cycle � homologous to zero and which moves and covers the whole Y .
Such a manifold cannot have maximal Kähler rank. Indeed, if ω is a closed positive
(1, 1)-form on Y , and if y ∈ Y is arbitrary, let �′ be a 1-cycle passing through y and
which is homologous to zero. Then

∫
�′

ω = 0
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606 I. Chiose

and therefore at y, ω cannot have rank 3. Therefore ω3 = 0. This example shows that
for dimension at least 3 the Kähler rank is not a bimeromorphic invariant. However,
it is expected that, if Y → X is the blow-up of a compact complex manifold X in a
point, then Kr(X) = Kr(Y ).

Example 2.8 In [6] the authors constructed a complex structure on the connected sum
#k S3×S3 of k ≥ 2 copies of S3×S3 and a balancedmetric g2 which is i∂∂̄-exact. Such
a manifold has Kähler rank equal to 0. Indeed, if ω is a closed positive (1, 1)-form,
then its trace with respect to g2 is zero, hence the form ω has to be 0.

Remark 2.9 Starting with the above examples, and taking products, one can obtain
compact complexmanifolds of any dimensionn ≥ 2 and anyKähler rank 0 ≤ Kr ≤ n.

3 The Bimeromorphic Invariance of the Kähler Rank for Class VII Surfaces

In this section we discuss the bimeromorphic invariance of the Kähler rank on class
VII surfaces, the only non-trivial case. We show that the problem can be reduced to
a system of differential equations, and then we solve the system up to order 3, thus
proving Theorem 1.1.

3.1 Preliminaries

Suppose X is a surface with b1 = 1 and let π : X ′ → X be the blow-up of X in
a point p. Let γ 0,1 be a ∂̄ closed (0, 1) form on X which generates H0,1(X). Then
γ ′0,1 = π∗γ 0,1 generates H0,1(X ′).

Let ω′ be a closed, positive (1, 1) form on X ′; then it is d exact [8], Proposition 37.
We want to show that there exists ω on X such that π∗ω = ω′. Then on X ′, ω′ can be
written as

ω′ = μ∂γ ′0,1 + μ∂γ ′0,1 + i∂∂̄φ′ (3.1)

where μ ∈ C and φ′ ∈ C∞(X ′,R). We need to show that φ′ is the pull-back of a C∞
function φ on X .

Locally on a disk �2 = {|z| < 1} around p on X , γ 0,1 is ∂̄ exact, so it can be
written as γ 0,1|�2 = ∂̄ f , where f ∈ C∞(�2). Then on π−1(�2),

ω′ = i∂∂̄
(
2Im(μ̄ f ′) + φ′) (3.2)

where f ′ = π∗ f . Set ϕ′ = 2Im(μ̄ f ) + φ′. We need to show that ϕ′ is the pull-back
of a smooth function on �2.

So let π : �̂2 → �2 be the blow-up of the unit disk in C2, let E be the exceptional
divisor, and suppose that locally π is given by (z, w) → (z, zw) = (z1, z2). The
exceptional divisor is given by {z = 0}. Let ϕ′ be a C∞ function on �̂2. Then we have

123



The Kähler Rank of Compact Complex Manifolds 607

Proposition 3.1 There exists ϕ a C∞ function on �2 such that ϕ′ = π∗ϕ if and only
if there exist Ap,q

α,β ∈ C such that

∂α+βϕ′

∂zα∂ z̄β

∣∣∣∣
z=0

=
α∑

p=0

β∑
q=0

(
α

p

)(
β

q

)
Ap,q

α,βw pw̄q (3.3)

Proof If ϕ′ = π∗ϕ, with ϕ ∈ C∞(�2), then, from ϕ′(z, w) = ϕ(z, zw) and the chain
rule, we obtain the above equation with

Ap,q
α,β = ∂α+βϕ

∂z p1 ∂zα−p
2 ∂ z̄q1∂ z̄

β−q
2

(0) (3.4)

Conversely, if ϕ′ satisfies the above conditions on its partial derivatives, then ϕ′|E is
constant, and it induces a continuous function ϕ on �2. It is actually C∞, with the
partial derivatives at 0 equal to Ap,q

α,β as above.

Remark 3.1 If the above Eq. 3.3 holds only for α + β ≤ k, it follows that ϕ′ is the
pull-back of a Ck function ϕ.

So in order to prove that ϕ′ is the pull-back of a C∞ function ϕ on �2, it is enough
to prove that

∂α+βϕ′

∂zα∂ z̄β

∣∣∣∣
z=0

(3.5)

are polynomials in w and w̄ of degrees α and β respectively.

3.2 The System of Differential Equations

Now we set up the system of differential equations which needs to be solved in order
to prove that ω′ is the pull-back of a smooth ω.

We will use the fact that ω′ is of rank 1 ([8], Proposition 37), i.e., that

ω′ ∧ ω′ = 0 (3.6)

and we will show that ϕ is of class C3, i.e., that ω′ is the pull-back of a C1 form.
First, ω′ = i∂∂̄ϕ′ and it is positive, hence ϕ′ is plurisubharmonic. Restricted to the

exceptional divisor E , it follows that ϕ′|E is constant. Hence ϕ′ is the pull-back of a
continuous function ϕ on �2.

Next, denote by

Pα,β = ∂α+βϕ′

∂zα∂ z̄β

∣∣∣∣
z=0

(3.7)
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608 I. Chiose

which are C∞ functions onC. Since ϕ′ is defined on the whole �̂2, the functions Pα,β

satisfy the following growth conditions:

wαw̄β Pα,β

(
1

w

)
(3.8)

can be extended to C∞ functions at 0.
Consider the equation ω′ ∧ ω′ = 0 written in local coordinates (z, w):

∂2ϕ′

∂z∂ z̄
· ∂2ϕ′

∂w∂w̄
= ∂2ϕ′

∂z∂w̄
· ∂2ϕ′

∂w∂ z̄
(3.9)

Take
∂α+β

∂zα∂ z̄β
(3.10)

and restrict it to z = 0; we obtain

α∑
p=0

β∑
q=0

(
α

p

)(
β

q

)
Pp+1,q+1

∂2Pα−p,β−q

∂w∂w̄

=
α∑

p=0

β∑
q=0

(
α

p

)(
β

q

)
∂Pp+1,q

∂w̄

∂Pα−p,β−q+1

∂w
(3.11)

which gives a system of partial differential equations in the unknowns Pα,β which
satisfy the conditions 3.8 and moreover Pα,β = Pβ,α .

We know that P0,0 is constant, and from

P1,1 · ∂2P0,0
∂w∂w̄

= ∂P1,0
∂w̄

· ∂P0,1
∂w

(3.12)

we obtain that P1,0 is holomorphic, and from the growth condition 3.8 it follows that
P1,0 has the desired form, i.e., it is a polynomial in w of degree 1. This shows that ϕ
is a function of class C1.

3.3 The Proof of Theorem 1.1

We complete the proof of Theorem 1.1. We show that ϕ is in fact of class C3, hence ω

is of class C1.
For α = 2 and β = 0 in 3.11 we obtain

P1,1 · ∂2P2,0
∂w∂w̄

= 2
∂P2,0
∂w̄

· ∂P1,1
∂w

(3.13)
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The Kähler Rank of Compact Complex Manifolds 609

and for α = 1, β = 1 we obtain

P1,1 · ∂2P1,1
∂w∂w̄

= ∂P2,0
∂w̄

· ∂P0,2
∂w

+ ∂P1,1
∂w̄

· ∂P1,1
∂w

(3.14)

Set

f = ∂P2,0
∂w̄

and g = P1,1. Then f and g satisfy the following properties: they are C∞ functions
on C; g has real values; the functions

ww̄g

(
1

w

)
(3.15)

and
w2

w̄2 · f

(
1

w

)
(3.16)

are C∞ at 0, and moreover f and g satisfy the following equations:

∂ f

∂w
· g = 2 f · ∂g

∂w
(3.17)

g · ∂2g

∂w∂w̄
= | f |2 +

∣∣∣∣ ∂g

∂w

∣∣∣∣
2

(3.18)

We will show the following

Proposition 3.2 f = 0 and g is a quadratic form of rank 1, i.e., g(w) = |a + bw|2.
Proof Let Dg be the non-zero set of g, i.e., Dg = {w ∈ C|g(w) 
= 0}. If Dg = ∅,
then g = 0 and from 3.18 it follows that f = 0.

If Dg = C, then g is never 0, and from3.17 it follows that there exists h holomorphic
on C such that f = h̄g2. We can assume that g > 0 on C. Then from 3.18 it follows
that ln g is subharmonic, hence ln | f | is subharmonic on D f = {w ∈ C| f (w) 
= 0}. It
follows that | f |2 is subharmonic on C and since f is bounded (from 3.16), it follows
that | f | is constant. If | f | 
= 0, then from f = h̄g2 we obtain that i∂∂̄ ln g = 0 and
from 3.18 we get that | f | = 0, contradiction. Hence f = 0 and Eq. 3.18 implies that
ln g is harmonic, i.e., g = exp(Re j), where j is a holomorphic function on C. From
condition 3.15 on g it follows that j is constant, hence also g is constant.

Now assume that Dg 
= ∅,C and denote by D′
g a connected component of Dg .

Assume that g > 0 on D′
g . From3.17 it follows that f = h̄g2 where h is a holomorphic

function on D′
g . Again 3.18 implies that ln g is subharmonic on D′

g and so ln | f | is
subharmonic on D′

g ∩ D f . Let w0 ∈ ∂D′
g (the boundary of D′

g) and set

f ′(w) = f (w)√|w − w0| (3.19)
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610 I. Chiose

as a function on D′
g . Since ln | f | is subharmonic, it follows that ln | f ′| is also sub-

harmonic on D′
g , so | f ′|2 is subharmonic on D′

g . Moreover, f = 0 on the boundary
∂D′

g (this follows again from 3.18) except possibly at w0, and limw→∞ | f ′(w)| = 0
because f is bounded at infinity (from 3.16). Since f (w0) = 0 it follows that f ′
can be extended to a continuous function at w0, with f ′(w0) = 0. Hence | f ′| is
a subharmonic function on D′

g , f ′ = 0 on ∂D′
g ∪ {∞}, hence from the maximum

principle, it follows that f ′ = 0 on D′
g , hence also f = 0 on D′

g . Since f = 0 on
{w ∈ C|g(w) = 0}, we get that f = 0 on the whole C.

So g satisfies the equation

g · ∂2g

∂w∂w̄
= ∂g

∂w
· ∂g

∂w̄
(3.20)

and

ww̄ · g
(
1

w

)
(3.21)

is C∞ at 0. If g has two zeroes, w0 and w1, w0 
= w1, we consider as above D′
g a

connected component of Dg . Assume that g > 0 on D′
g . Then ln g is harmonic on

D′
g . Let

g′(w) = g(w)√|w − w0|3
√|w − w1|3

Then ln g′ is harmonic on D′
g , so g

′ is subharmonic. Moreover, it is 0 on the boundary
∂D′

g of D
′
g , except possibly at w0 and w1. But at w0, g(w0) = 0 and

∂g

∂w
(w0) = ∂g

∂w̄
(w0) = 0 (3.22)

and the same at w1, which implies that g′ is continuous on the whole boundary ∂D′
g .

At infinity, g approaches 0, and again by the maximum principle we obtain that g = 0
on D′

g , contradiction. This shows that g has exactly one zero. Assume that g(w0) = 0.
Then consider the function

g′′(w) = g(w)

|w − w0|2

onC\{w0}. Then ln g′′ is harmonic onC\{w0}, and it is bounded at infinity.Moreover,
since g(w0) = 0 and dg(w0) = 0, it follows that g′′ is bounded near w0. Hence
g′′ is a bounded, subharmonic function on C \ {w0}, so it is constant. Therefore
g(w) = C |w − w0|2.

Returning to our previous notations, we showed that P2,0 is holomorphic, hence it
is a polynomial of degree 2 in w, and that P1,1 is a polynomial of degree ≤ 1 in w and
w̄. Hence ϕ is a function of class C2 and ω is continuous.
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The Kähler Rank of Compact Complex Manifolds 611

Next, we show that if P1,1 
= 0, then ϕ is actually C3. First, we can assume, without
loss of generality, that P1,1 is constant. Indeed, if P1,1(w) = C |w − w0|2, then we
replace the functions Pα,β by

1

(w − w0)α(w̄ − w̄0)β
Pα,β(w) (3.23)

and we end up with the same system of differential equations and the same growth
conditions.

When α = 3 and β = 0 in 3.11 we obtain

P1,1 · ∂2P3,0
∂w∂w̄

= 3 · ∂P3,0
∂w̄

· ∂P1,1
∂w

(3.24)

and when α = 2 and β = 1 we obtain

P1,1 · ∂2P2,1
∂w∂w̄

+ 2 · P2,1 · ∂P1,1
∂w∂w̄

= ∂P1,1
∂w̄

· ∂P2,1
∂w

+ 2 · ∂P2,1
∂w̄

· ∂P1,1
∂w

(3.25)

P1,1 is a non-zero constant, so the equations imply that both P3,0 and P2,1 are harmonic.
By using the growth conditions we obtain that P3,0 is holomorphic and that P2,1 has
the desired form.

If P1,1 = 0, things get more complicated, but we can still show that ϕ is of class
C3. If ω(0) = 0, then for α +β = 4 the system 3.11 implies the following equations:

3 f · ∂g

∂w
= 2

∂ f

∂w
· g (3.26)

ḡ · ∂ f

∂w
+ 3g · ∂2g

∂w∂w̄
= 3

∂g

∂w
· ∂g

∂w̄
+ 3 f

∂ ḡ

∂w
(3.27)

2g · ∂2 ḡ

∂w∂w̄
+ 2ḡ

∂2g

∂w∂w̄
= ∂g

∂w
· ∂ ḡ

∂w̄
+ 4

∂g

∂w̄
· ∂ ḡ

∂w
+ f · f̄ (3.28)

where

f = ∂P3,0
∂w̄

and g = P2,1 and we have the corresponding growth conditions for f and g. This
system can be solved by using similar methods as in Proposition 3.2, so we omit it.

4 Manifolds of Maximal Kähler Rank

In this section we show that a compact complex manifold X of dimension n such that
Kr(X) = n and which moreover admits a special Hermitian metric is in fact Kähler:

123



612 I. Chiose

Theorem 4.1 Let X be a compact complex manifold such that there exists a nef class
{α} ∈ H1,1

BC (X,R) such that

∫
X

αn > 0

Suppose moreover that X supports a Hermitian metric h such that

i∂∂̄h = ∂h ∧ ∂̄h = 0 (4.1)

Then {α} is big and h is ∂ + ∂̄ cohomologous to a Kähler metric. In particular X is
Kähler.

Remark 4.1 Here bigmeans that the class {α} contains a Kähler current, i.e., a closed
positive current that dominates some Hermitian metric.

Remark 4.2 Condition 4.1 is needed in order to bound some integrals (see 4.9 below)
and it is equivalent to

i∂∂̄hk = 0, ∀k = 1, n − 1 (4.2)

The condition 4.1 appeared in the work [7], where the authors discussed the Monge–
Ampère equation on Hermitian manifolds.

Remark 4.3 When n = 2, the existence of a Hermitian form satisfying 4.1 is well-
known, and we obtain another proof of the fact that a surface of Kähler rank equal to
2 is Kähler. When n = 3 just the equation i∂∂̄h = 0 is needed.

Remark 4.4 The above theorem is a particular case of a conjecture of Demailly and
Păun (see [5], Conjecture 0.8) which states that if a manifold admits a nef class of
strictly positive self-intersection, the manifold is in Fujiki class C, i.e., it is bimero-
morphic to a Kähler manifold.

Proof First, we show that {α} is big. We need to show that there exists ε0 > 0 and a
distribution χ such that α + i∂∂̄χ ≥ ε0h. According to Lamari’s result [10], Lemma
3.3, this is equivalent to showing that

∫
X

α ∧ gn−1 ≥ ε0

∫
X
h ∧ gn−1 (4.3)

for any Gauduchon metric gn−1 on X . So suppose that ∀m ∈ N, ∃gn−1
m a Gauduchon

metric such that ∫
X

α ∧ gn−1
m ≤ 1

m

∫
X
h ∧ gn−1

m (4.4)

We can assume that ∫
X
h ∧ gn−1

m = 1 (4.5)

and therefore ∫
X

α ∧ gn−1
m ≤ 1

m
(4.6)
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The Kähler Rank of Compact Complex Manifolds 613

Since {α} is nef, for every m we can find ψm ∈ C∞(X,R) such that α + i∂∂̄ψm ≥
− 1

2m h. The main result of [12] implies that we can solve the equation

(
α + 1

m
h + i∂∂̄ϕm

)n

= Cmg
n−1
m ∧ h (4.7)

for a function ϕm ∈ C∞(X,R) such that if we set αm = α + 1
m h + i∂∂̄ϕm , then

αm > 0. The constant Cm is given by

Cm =
∫
X

(
α + 1

m
h

)n

≥
∫
X

αn = C > 0 (4.8)

Now

∫
X

αn−1
m ∧ h =

∫
X
h ∧

(
α + 1

m
h

)n−1

≤
∫
X
h ∧ (α + h)n−1 = M (4.9)

and if we set

E =
{

αn−1
m ∧ h

gn−1
m ∧ h

> 2M

}
(4.10)

then ∫
E
gn−1
m ∧ h ≤ 1

2
(4.11)

Therefore on X \ E we have αn−1
m ∧ h ≤ 2Mgn−1

m ∧ h. By looking at the eigenvalues
of αm with respect to h, from 4.11 and 4.7, it follows that on X \ E we have

αm ≥ Cm

2nM
h

Therefore
∫
X

αm ∧ gn−1
m ≥

∫
X\E

αm ∧ gn−1
m ≥ Cm

2nM

∫
X\E

h ∧ gn−1
m (4.12)

= Cm

2nM

(∫
X
h ∧ gn−1

m −
∫
E
h ∧ gn−1

m

)
≥ C

4nM

On the other hand
∫
X

αm ∧ gn−1
m =

∫
X

α ∧ gn−1
m + 1

m

∫
X
h ∧ gn−1

m ≤ 2

m
(4.13)

contradiction with 4.12.
Therefore {α} is big, and from [5] it follows that X is in the Fujiki class C. Theorem

2.2 in [3] implies that a manifold in the Fujiki class C and which is SKT (strong
Kähler with torsion, i.e., it supports a i∂∂̄-closed Hermitian metric), is in fact Kähler.
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614 I. Chiose

Remark 4.5 A very similar method gives a much simpler proof of a key result in [5]
Theorem 0.5 that a nef class on a compact Kähler manifold of strictly positive self-
intersection contains a Kähler current. Indeed, suppose {α} is not big, then by Lamari
[10] there exists a sequence of Gauduchon metrics such that

∫
X

α ∧ gn−1
m ≤ 1

m

and
∫
X
h ∧ gn−1

m = 1

If h is assumed to be Kähler, the proof proceeds as above to obtain a contradiction.
This proof is not independent of the proof of Demailly and Păun. In a few words, we
replaced the explicit and involved construction of the metrics ωε in [5] by the abstract
sequence of Gauduchon metrics given by the Hahn–Banach theorem, via Lamari [10]

Remark 4.6 An adaptation of the proof of Theorem 0.5 in [5] can not work in our case.
One of the obstructions is that, if a complex manifold X admits a Hermitian metric
with property 4.1, then it is not clear that X × X admits a Hermitian metric with the
same property.

Remark 4.7 We should also point out that a simplified proof of another part of the
proof of the Demailly and Păun theorem on the Kähler cone was given recently by
Collins and Tosatti [4]. Together with the above proof, one obtains a more compact
proof of the main result in [5]
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