
J Geom Anal (2016) 26:529–556
DOI 10.1007/s12220-015-9561-2

Convergence of Harmonic Maps

Zahra Sinaei

Received: 28 September 2013 / Published online: 29 January 2015
© Mathematica Josephina, Inc. 2015

Abstract In this paper we prove a compactness theorem for sequences of harmonic
maps which are defined on converging sequences of Riemannian manifolds.

Keywords Harmonic maps · Gromov-Hausdorff convergence ·
Convergence of maps

Mathematics Subject Classification 53C23 · 53C43

1 Introduction

Harmonicmaps are critical points of the energy functional defined on the space ofmaps
between Riemannian manifolds. This theory was developed by Eells and Sampson [9]
in the 1960s. The notion of harmonic maps on smooth metric measure spaces was
introduced by Lichnerowicz in [21]. Harmonic maps between singular spaces have
been studied since the early 1990s in theworks ofGromovandSchoen in [16],Korevaar
and Schoen in [20] and Jost in [19]. Eells and Fuglede describe the application of the
methods of [20] to the study of maps between polyhedra [8].

A smooth metric measure space is a triple (M, g,� dvolM ), where (M, g) is an
n-dimensional Riemannian manifold, dvolM denotes the corresponding Riemannian
volume element on M , and � is a smooth positive function on M . These spaces have
been used extensively in geometric analysis and they arise as smooth collapsed mea-
sured Gromov–Hausdorff limits in the works of Cheeger and Colding [3–5], Fukaya
[11] and Gromov [15]. They have been studied recently by Morgan [24]. See also
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530 Z. Sinaei

works of Lott [23], Qian [28], Fang et al. [10], Wei and Wylie [34], Wu [33], Su and
Zhang [31] and Munteanu and Wang [26].

In this paper, we are going to study the behavior of harmonic maps under conver-
gence. Let M(n, D) denote the set of all compact Riemannian manifolds (M, g)

such that dim(M) = n, diam(M) < D, and the sectional curvature secg satis-
fies | secg | ≤ 1, equipped with the measured Gromov–Hausdorff topology. Let
(Mi , gi , dvolMi ) in M(n, D) be a sequence of manifolds which converges to a
smooth metric measure space (M, g,� dvolM ). Suppose fi : (Mi , gi ) → (N , h)

is a sequence of harmonic maps. We are interested in knowing under what circum-
stances the fi converge to a harmonic map f on the smooth metric measure space
(M, g,� dvolM ).

When a sequence of manifolds (Mi , gi ) in M(n, D) converges to a metric space
X , according to Fukaya [12], X is a quotient space Y/O(n), where Y is a smooth
manifold. Indeed Y is the limit point of the sequence of frame bundles, F(Mi ), over
themanifolds Mi and X has the structure of a Riemannian polyhedron (X, gX ,�Xμg)

where μg is the Riemannian volume element related to the metric gX on X .
We state themain result of this paper which is a compactness theorem for sequences

of harmonic maps.

Theorem 1.1 Let (Mi , gi ) be a sequence of smooth Riemannian manifolds in
M(n, D) which converges to a metric measure space (X, g,�μg) in the mea-
sured Gromov–Hausdorff topology. Suppose (N , h) is a compact Riemannian man-
ifold. Let fi : (Mi , gi ) → (N , h) be a sequence of harmonic maps such that
‖egi ( fi )‖L∞ < C, where ‖egi ( fi )‖L∞ is the L∞-norm of the energy density of the
map fi and C is a constant independent of i . Then fi has a subsequence which con-
verges to a map f : (X, g,�μg) → (N , h), and this map is a harmonic map in
H1((X,�μg), N ).

ByH1(X, N ) we mean

{ f ∈ H1(X, R
q)

∣
∣
∣ f (x) ∈ N for almost all x ∈ M},

where H1(X, R
q) is the standard Sobolev space and N is isometrically embedded in

R
q . In this work we use the notationsH1 and W 1,2 interchangeably. For the notion of

convergence of maps we refer the reader to the Definition 2.11.
The rest of this paper is organized as follows. In the first section we introduce our

main notations and preliminary results needed for the rest of this paper. In the second
section, we prove Theorem 1.1. We divide the proof into three cases. In Sect. 3.1
we consider the non-collapsing case, Proposition 3.1. Moreover using the regularity
results for harmonic maps in the work of Schoen and Lin [22,30] we study Theorem
1.1 under less restrictive assumption of uniform boundedness of the energy of the
maps fi (see Propositions 3.3, 3.4). In Sect. 3.2 we consider the case of collapsing
to a Riemannian manifold, Proposition 3.5. As a preliminary step we prove the result
under some regularity assumption on the metrics gi , see Proposition 3.6. The general
case is considered in Sect. 3.3. The Appendix is devoted to the study of convergence
of the tension fields of the maps fi under the assumptions of Proposition 3.6.
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2 Background

2.1 Harmonic Maps

In this subsection, we first recall the definition of weakly harmonic maps on smooth
metric measure spaces. We then briefly review this concept on Riemannian polyhedra.
At the endwe present some theorems and lemmas that we need in this paper. Let (N , h)

be a compact Riemannianmanifold and I an isometric embedding I : N → R
q . Since

I (N ) is a smooth, compact submanifold of R
q , there exists a number κ > 0 such that

the neighborhood

Uκ(N ) = {

y ∈ R
q : dist(y, N ) < κ

}

has the following property: for every y inUκ(N ) there exists a unique pointπN (y) ∈ N
such that

|y − πN (y)| = dist(y, N )

The map πN : Uκ(N ) → N defined as above is called the nearest point projection
onto N .

The HessπN defines an element in �(T N∗ ⊗ T N∗ ⊗ T N⊥) which coincides with
the second fundamental form of I : N → R

q up to a negative sign

〈HessπN (y)(X, Y ), η〉 = −〈∇Y η, X〉

where X and Y are in T N , y in N and η in T N⊥ (see §3 in Moser [25]).
A map f : (M, g,� dvolM ) → (N , h), belonging to H1

loc((M,� dvolM ), N ) is
called weakly harmonic if and only if

�I ◦ f − �( f )(d f, d f ) + d I ◦ f (∇ ln(�)) = 0 (1)

in the weak sense. Here

�( f )(d f, d f ) = trace Hess(πN )(I ◦ f )(d I ◦ f, d I ◦ f ), (2)

or in coordinates

�( f )(d f, d f ) =
∑

gi j ∂2π A
N

∂zB∂zC

∂ f B

∂xi

∂ f C

∂x j
.

For f : (Mn, g) → (N m, h) and η : M → R
q , we define


g( f, η) = 〈d I ◦ f, dη〉 − 〈�( f )(d f, d f ), η〉. (3)

We explain now what we mean by harmonic maps on Riemannian polyhedra. Follow-
ing Eells and Fuglede [8] on an admissible Riemannian polyhedron X , a continuous
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weakly harmonic map u : (X, g, μg) → (N , h) is of class H1
loc(X, N ) and satisfies:

for any chart η : V → R
n on N and any open set U ⊂ u−1(V ) of compact closure in

X , the equality

∫

U
g(∇λ,∇uk) dμg =

∫

U
λ(�k

αβ ◦ u)g(∇uα,∇uβ) dμg (4)

holds for every k = 1, . . . , n and every bounded function λ ∈ H1
0(U ). Here

�k
αβ denote the Christoffel symbols on N . Similarly on a polyhedron X with a

measure �μg , a continuous weakly harmonic map is a map in H1
loc((X,�μg), N )

which satisfies equation (4) with �dμg in place of dμg . When the target is compact a
continuous map f on an admissible Riemannian polyhedron is harmonic if and only
if it satisfies (1) weakly.

Theorem 2.1 (Moser [25], Theorem 3.1) Let f ∈ H1(U, N )∩C0(U, N ) be a weakly
harmonic map, where U is an open domain in R

n. Then f is smooth.

The energy functional is lower semi continuous, and we have

Lemma 2.2 (Xin [35]) Let S ⊂ H1(M, N ) be such that the energy functional is
bounded on S and S is closed under weak limits. Then S is sequentially compact.

Now we recall some regularity results for harmonic maps from [30] and [22]. Let
M and N be compact Riemannian manifolds. Define

F� = {u ∈ C∞(M, N ) : u is harmonic and E(u) ≤ �}.

We have the following results.

Theorem 2.3 (Schoen [30]) Let M and N be compact Riemannian manifolds. Any
map u in the weak closure of F� is smooth and harmonic outside a relatively closed
singular set of locally finite Hausdorff (n − 2)-dimensional measure.

Remark 1 (Schoen [30], Lin [22]) Let ui be a sequence in F�. Then there exists a
subsequence which converges weakly to some u inH1(M, N ). Define

� =
⋂

r>0

{

x ∈ M, lim inf
i→∞ r2−n

∫

Br (x)

e(ui ) ≥ ε0

}

where ε0 = ε0(n, N ) > 0 is a constant independent of ui as in Theorem 2.2 in [30]. If
we consider a sequence of Radon measures μi = |dui |2dx , without loss of generality
wemay assumeμi ⇀ μweakly as Radonmeasures. By Fatou’s lemma, wemaywrite

μ = |du|2dx + ν

for some non-negative Radon measure ν. We can show that � = spt ν ∪ sing u and
ν is absolutely continuous with respect to Hn−2|� . Therefore ui converges strongly
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in H1(M, N ) to u if and only if |dui |2dx ⇀ |du|2dx weakly, if and only if ν = 0,
if and only if Hn−2(�) = 0, if and only if there is no smooth non-constant harmonic
map from 2-sphere S

2 into N , e.g., negatively curved manifolds. See Lemma 3.1 in
[22] for a complete discussion.

The following reduction theorem shows the relation between the tension fields of
equivariant harmonic maps under Riemannian submersions.

Theorem 2.4 (Xin [35], Theorem 6.4) Let π1 : E1 → M1 and π2 : E2 → M2
be Riemannian submersions, H1 the mean curvature vector of the submanifold F1
in E1 and B2 the second fundamental form of the fiber submanifold F2 in E2. Let
f : E1 → E2 be a horizontal equivariant map and f̄ its induced map from M1 to M2
with tension field τ( f̄ ). Let f ⊥ be the restriction of f to the fiber F1. Then we have
the following formula

τ( f ) = τ ∗( f̄ ) + B2( f∗(et ), f∗(et )) − f∗(H1) + τ( f ⊥)

where {et }, t = n1 + 1, . . . , m1 is a local orthonormal frame field on the fiber F1 and
τ ∗( f̄ ) denotes the horizontal lift of τ( f̄ ).

2.2 Hölder Spaces on Manifolds

Let (M, g) be a Riemannian manifold and let ∇ be the Levi–Civita connection on
M . Let V be a vector bundle on M equipped with the Euclidean metric on its fibers.
Let ∇̂ be a connection on V preserving these metrics. Let Ck(M) be the space of
all continuous, bounded functions f that have k continuous, bounded derivatives and
define the norm ‖ · ‖Ck on Ck(M) by ‖ f ‖Ck = ∑k

j=0 supM |∇ j f |.
Now we define the Hölder space C0,α(M) for α ∈ (0, 1). The function f on M is

said to be Hölder continuous with exponent α, if

[ f ]α = sup
x �=y∈M

| f (x) − f (y)|
d(x, y)α

is finite. The vector space C0,α(M) is the set of continuous, bounded functions on M
which are Hölder continuous with exponent α and the norm C0,α(M) is ‖ f ‖C0,α =
‖ f ‖C0 + [ f ]α .

In the same way, we shall define Hölder norms on spaces of sections v of a vector
bundle V over M equipped with Euclidean metrics in the fibers as above. Let δ(g) =
injrad(M, g) be the injectivity radius of the metric g on M which we suppose to be
positive and set

[v]α = sup
x �=y∈M

d(x,y)<δ(g)

|v(x) − v(y)|
d(x, y)α

(5)

We now interpret |v(x) − v(y)|. When x �= y ∈ M , and d(x, y) ≤ δ(g), there is
unique geodesic γ of length d(x, y) joining x and y in M . Parallel translation along
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γ using ∇̂ identifies the fibers of V over x and y and the metrics on the fibers. With
this understanding the expression |v(x) − v(y)| is well defined.

Define Ck,α(M) to be the set of f in Ck(M) for which [∇k f ]α defined by (5) exists
as a section in the vector bundle

⊗k T ∗M with its natural metric and connection. The
Hölder norm on Ck,α(M) is ‖ f ‖Ck,α = ‖ f ‖Ck + [∇k f ]α .
Lemma 2.5 Let � ⊂ R

n be a bounded domain. Suppose that F : � → R
q is

bounded and Hölder continuous. Let Q : R
q → R

p be a quadratic function. Then
Q ◦ F : � → R

p is also Hölder continuous and

[Q ◦ F]α ≤ A sup
�

‖F‖Rq [‖F‖Rq ]α,

where A is a constant.

In the above lemma by a quadratic function we mean

Q(y) =
q

∑

i, j=1

Qi j yi y j , Qi j ∈ C1(�).

We have

Corollary 2.6 Let f ∈ C1,α(M, N ), then

[�( f )(d f, d f )]Cα ≤ A · ‖d f ‖L∞ · [d f ]Cα .

Proof Let {� j } be an atlas of M , such that diam(� j ) ≤ injrad(M) and set Fj = d f |� j

and Q = HessπN (X, X), for an smooth vector field X . Then using the previous lemma
and an appropriate partition of unity we will have the result. ��

Schauder Estimates

In this part, we give a quick review on the Schauder estimate of solutions to linear
elliptic partial differential equations. Suppose (M, g) is compact and L is an elliptic
operator, L = ai j∇i∇ j +bi∇i +c, where a is a symmetric and positive definite tensor,
b is a C0,α vector field on M and c is in C0,α(M) such that L satisfies the conditions

‖a‖C0,α + ‖b‖C0,α + ‖c‖C0,α ≤ �,

λ‖ξ‖2 ≤ ai j (x)ξiξ j ≤ �‖ξ‖2, for all x ∈ M, and ξ ∈ R
n .

Consider the following problem,

Lu = f in M,

if ∂ M = ∅ and
{

Lu = f in M
u = g on ∂ M.

if ∂ M �= ∅. Then we have (cf. Gilbarg and Trudinger [17])
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Theorem 2.7 (Schauder Estimate) If f ∈ C0,α(M) and u ∈ C2(M), then u ∈
C2,α(M) and we have

‖u‖C1,α ≤ C(‖ f ‖L∞ + ‖u‖L∞),

‖u‖C2,α ≤ C(‖ f ‖C0,α + ‖u‖L∞),

where C depends on M, λ,�.

Hereafter we present an introduction to the convergence and collapsing theory.
Most of the materials in this part was gathered from the work of Rong [29].

2.3 Convergence

Gromov introduced the notion of the Gromov–Hausdorff distance between metric
spaces in [15]), based on the notion of Hausdorff distance between subsets A, B in a
metric space Z :

d Z
H (A, B) = inf{ε > 0 : B ⊂ Tε(A) and A ⊂ Tε(B)}

where Tε(A) = {x ∈ Z : dZ (x, A) < ε} is a tubular neighborhood of a set A.

Definition 2.8 (Gromov [15]) Let X and Y be two compact metric spaces. The
Gromov–Hausdorff distance between X and Y is defined as

dG H (X, Y )

= inf

{

d Z
H (φ(X), ψ(Y )) : for all metric spaces Z and isometric embeddings

φ : X ↪→ Z , ψ : Y ↪→ Z

}

LetMET denote the set of all isometry classes of nonempty compactmetric spaces.
Then (MET , dG H ) is a complete metric space. There is an alternative definition for
Gromov–Hausdorff distance given in [15]:

Definition 2.9 (Gromov [15]) Let X and Y be two elements of MET . A map φ :
X → Y is said to be an ε-Hausdorff approximation from X to Y, if the following two
conditions are satisfied

i. ε-onto: Bε(φ(X)) = Y .
ii. ε-isometry: |d(φ(x), φ(y)) − d(x, y)| < ε for all x, y ∈ X .

The Gromov–Hausdorff distance d̂G H (X, Y ), between X and Y is defined to be the
infimum of the positive number ε such that there exists ε-Hausdorff approximation
from X to Y and form Y to X .

The distance d̂G H does not satisfy triangle inequality and d̂G H �= dG H but onecan
show that

2
3dG H ≤ d̂G H ≤ 2dG H
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Because a sequence inMET converges with respect to dG H if and only if it converges
with respect to d̂G H , we will not distinguish d̂G H from dG H .

For the notion of equivariant Gromov–Hausdorff convergence and equivariant mea-
sured Gromov–Hausdorff convergence, we refer the reader to Definition 1.5.2 in [29]
and Definition 3.11 in [11]. Also for the notion of Lipschitz distance see Definition
3.1 in [15]. LetMM denotes the class of all pairs (X, μ) of compact metric spaces X
equipped with a Borel measure μ on it such that μ(X) = 1. Fukaya in [11] presented
a notion of measured Gromov–Hausdorff convergence for the metric measure spaces:

Definition 2.10 (Fukaya [11]) Let (Xi , μi ) be a sequence in MM. We say that
(Xi , μi ) converges to an element (X, μ) inMM with respect to measured Gromov–
Hausdorff topology if there exist Borel measurable ε-Hausdorff approximations
fi : (Xi , μi ) → (X, μ) such that fi ∗(μi ) converges to μ in the weak∗ topology.

When M is a Riemannian manifold with finite volume, we let μM = dvolM
vol(M)

, where
dvolM denotes the volume element of M and regard (M, μM ) as an element inMM.

In [14], Grove and Petersen introduced the notion of convergence of maps.

Definition 2.11 (Grove–Petersen [14]) Let (Xi , pi ), (X, p), (Yi , qi ) and (Y, q) be
pointed metric spaces such that (Xi , pi ) converges to (X, p) in the pointed Gromov–
Hausdorff topology (resp. (Yi , qi ) converges to (Y, q)). We say that a sequence of
maps fi : (Xi , pi ) → (Yi , qi ) converges to a map f : (X, p) → (Y, q) if there exists
a subsequence Xik such that if xik ∈ Xik and xik converges to x (in

∐
Xik

∐
X with

the admissible metric), then fik (xik ) converges to f (x).

A family of maps fi : (Xi , dXi , pi ) → (Yi , dYi , qi ) is called equicontinuous if for
any ε > 0 there is δ > 0 such that dXi (xi , yi ) < δ implies dYi ( fi (xi ), fi (yi )) < ε for
all xi , yi in Xi and for all i . We have

Lemma 2.12 (Grove–Petersen [14]) Let (Xi , pi ), (X, p), (Yi , qi ) and (Y, q) be
pointed metric spaces such that (Xi , pi ) converges to (X, p) in the pointed Gromov–
Hausdorff topology (resp. (Yi , qi ) converges to (Y, q)). Let fi : (Xi , pi ) → (Yi , qi )

be a sequence of maps. Then

i. If fi s are equicontinuous, then there is a uniformly continuous map f and a con-
vergent subsequence Xik such that fi converges to f .

ii. If fi s are isometries then the limit map f : (X, p) → (Y, q) is also an isometry.

2.4 Convergence Theorems, Non-Collapsing

This subsection is devoted to the theory of convergence of manifolds in the non-
collapsing case. A sequence of n-manifolds Mi converging to a metric space X is
called non-collapsing if vol(Mi ) ≥ v > 0, and collapsing otherwise. For a non-
collapsing sequence of manifolds with bounded sectional curvature there is a uniform
lower bound on the injectivity radius of Mi , and thus Mi s are diffeomorphic for large i .
This result is due to Cheeger–Gromov (Cheeger [7], Peters [27], Greene andWu [18])
and is formulated as follows.
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Theorem 2.13 Let (Mi , gi ) be a sequence of closed Riemannian n-manifolds such
that | secgi | ≤ 1 and vol(Mi ) ≥ v > 0, and Mi converges to a metric space X. Then X
is homeomorphic to a manifold M such that for large i , and there are diffeomorphisms
φi : M → Mi such that the pullback metric converges to a C1,α-metric g on M in the
C1,α-topology.

The following smoothing result concerns the uniform approximation of Riemannian
manifolds by smooth ones.

Theorem 2.14 (Bemelmans et al. [2]) Let (M, g) be a compact Riemannian n-
manifold with | secg | < 1. For any ε > 0, there is a smooth metric gε on M such
that

|gε − g|C1 < ε, | secgε | ≤ 1, |∇k Rgε | ≤ C(n, k) · εk .

In particular

e−ε injrad(M, g) ≤ injrad(M, gε) ≤ eε injrad(M, g),

e−ε diam(M, g) ≤ diam(M, gε) ≤ eε diam(M, g),

e−ε vol(M, g) ≤ vol(M, gε) ≤ eε vol(M, g).

2.5 Convergence Theorems, Collapsing

This subsection is devoted to the theory of convergence of manifolds in the collapsing
case. We state some of the main results in this context.

Theorem 2.15 (Fibration theorem, Fukaya [13], Cheeger et al. [6]) Let Mn and N m

be compact Riemannian manifolds satisfying

secMn ≥ −1, | secN m | ≤ 1 (m ≥ 2), injrad(N m) ≥ i0 > 0.

Assume Mn and N m admit isometric compact Lie group G-actions. There exists a
constant ε(n, i0) > 0 such that if deqG H ((Mn, G), (N m, G)) < ε ≤ ε(n, i0), then
there is a C1-fibration G-invariant map, f : (Mn, G) → (N m, G) with connected
fibers such that

i. The diameter of any f -fibers is at most c1 · ε, where c1 = c1(n, ε) is such that
c1 → 1 as ε → 0.

ii. f is an almost Riemannian submersion, that is for any vector ξ ∈ T M orthogonal
to a fiber,

e−τ(ε) ≤ |d f (ξ)|
|ξ | ≤ eτ(ε),

where τ(ε) → 0 as ε → 0.
iii. If in addition, secMn ≤ 1 then f is smooth and the second fundamental form of

any fiber satisfies |I I f −1(x̄)| ≤ c2(n), for x̄ in N m.
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iv. The fibers are diffeomorphic to an infranilmanifold �\N̊ , where N̊ is a simply
connected nilpotent group, � ⊂ N̊ � Aut(N̊ ), such that [�, N̊ ∩ �] ≤ ω(n).

An easily accessible proof of this theorem can be founded in [29] Theorems 2.1.1
and 5.7.1.

A pure nilpotent Killing structure on Mn is a G-equivariant fibration N0 → Mn →
N m , with fiber N0 a nilpotent manifold (equipped with a flat connection) on which
parallel fields areKilling fields and the G-action preserves affine fibrations. The under-
lying G-invariant affine bundle structure is called a pure N0-structure and a metric for
which the N0-structure becomes a nilpotent Killing structure is called invariant.

Let Mn and N m be as in Theorem 2.15. Suppose Mn and N m satisfy the following:
for some sequence A = {Ak} of real non-negative numbers, for the Riemannian
curvature tensor on M and N we have

|∇k R | ≤ Ak . (6)

We can construct an invariant metric (invariant under the left action of N0) such that

|∇k(〈 , 〉 − ( , ))| ≤ c(n, A) · ε · injrad(N )−(k+1), (7)

where 〈 , 〉 denotes the original metric, ( , ) the invariant one, and c(n, A) is a
generic constant depending on finitelymany Ak and n. For the construction of invariant
metric which satisfies inequality (7) see Proposition 4.9 in [6] and the explanation
therein. Given such a metric we have a pure nilpotent killing structure.

When a sequence of Riemannian n-manifolds with bounded curvature collapses,
the limit space can be a singular space. We have

Theorem 2.16 (Singular fibration theorem, Fukaya [12]) Let (Mi , gi ) be a sequence
of closed Riemannian n-manifolds with | secgi | ≤ 1 and diam(Mi ) ≤ D which con-
verges to the closed metric space (X, d) in MET . Then

i. The frame bundles equipped with canonical metrics converge, (F(Mi ), O(n)) →
(Y, O(n)), where Y is a manifold.

ii. There is an O(n)-invariant fibration f̃i : F(Mi ) → Y satisfying the conditions in
Theorem 2.15 which becomes for ε > 0, a nilpotent Killing structure with respect
to an ε C1-closed metric (with respect to C1-topology). Moreover each fiber on
Mi has positive dimension.

iii. For any x̄ ∈ X, a fiber f −1
i (x̄) is singular if and only if p−1(x̄) is a singular

O(n)-orbit in Y .

For the proof see Theorem 4.1.3 in [29]. In the above theorem, the fibration map
f̃i descends to a (singular) fibration map fi : Mi → X = Y/O(n) such that the
following diagram commutes

F (Mi) Y

Mi X

f̃i

pi p

fi
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In the following remark we collect the main points that we need from the above
theorems and explain the classification in the proof of Theorem 1.1.

Remark 2 When a sequence of Riemannian manifolds Mi converges in M(n, D) to
a metric space X , the frame bundles over Mi equipped with the canonical metrics
g̃i converge to a manifold Y and f̃i : (F(Mi ), g̃i , O(n)) → (Y, O(n)) is an O(n)-
invariant fibration map.

To see this let g̃i ε be the smooth metric on F(Mi ) as in Theorem 2.14. Then
(F(Mi ), g̃i ε) converges to a smoothRiemannianmanifold (Yε , gε). For a small fixed ε0
and ε < ε0, the sectional curvature on (F(Mi ), g̃i ε) is uniformly bounded and we can
apply Theorem 2.15 to conclude that there exists an O(n)-invariant smooth fibration
map f̃i ε . By continuity (F(Mi ), g̃i ε) is conjugate to (F(Mi ), g̃i ε0) (by being conjugate
we mean there exists C1,α-diffeomorphism as in Theorem 2.13). This implies that the
convergence of Yε to Y is the same as the convergence of a sequence of metrics on
Yε0 , and therefore (Y, O(n)) is conjugate to (Yε0 , O(n))

(F(Mi ), O(n)) � (F(Mi ), g̃i ε0 , O(n))
f̃i ε0→ (Yε0 , O(n)) � (Y, O(n)),

and it induces a fibration map (F(Mi ), g̃i , O(n))
f̃i→ (Y, O(n)) . For more explana-

tions see the proof of Theorem 4.1.3 in [29].
Furthermore, there exists a C1-close invariant Riemannian metric g̊iε such that

(F(Mi ), g̊iε , O(n)) is a pure nilpotent Killing structure and the fibration map f̃i ε is
a Riemannian submersion considering the induced Riemannian metric on Yε by this
map.

2.6 Density Function

LetDM(n, D) denote the closure ofM(n, D) inMM with respect to the measured
Gromov–Hausdorff topology. Then DM(n, D) is compact with respect to the mea-

sured Gromov–Hausdorff topology. Let (Mi , gi ,
dvolMi
vol(Mi )

) ∈ M(n, D) be a sequence
of manifolds which converges to a manifold (M, g, μ). Suppose ψi : Mi → M is the
fibration map as in Theorem 2.13. For x ∈ M we define

�i = vol(ψ−1
i (x))

vol(Mi )
,

then there exists � such that � = limi→∞ �i and μ is absolutely continuous with
respect to dvolM , μ = � dvolM (see §3 in [11]). For the general case when (X, μ) ∈
DM(n, D), we first recall a remark on quotient spaces. Below S(B) denotes the
singular part of B.

Remark 3 (Besse [1]) Let (M, g) be a Riemannian manifold and G a closed subgroup
of isometries of M . Assume that the projection p : M → M/G is a smooth submer-
sion. Then there exists a unique Riemannian metric ǧ on B = M/G such that p is a
Riemannian submersion (see Subsection 9.12 in [1]).
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We recall that using the general theory of slices for the action of a groupof isometries
on a Riemannian manifold, one can show that there always exists an open dense
submanifold U of M (the union of the principle orbits), such that the restriction
p|U : U → U/G is a smooth submersion.

Considering now M/G as a Riemannian polyhedron and μg as its Riemannian
volume element, the restriction of μg on U/G is equal to dvolU/G = dvolB−S(B).

Now suppose Mi in M(n, D) converges to a metric space X . We may assume
that F Mi with the induced O(n)-invariant metric g̃i converges to (Y, g,�Y · dvolY )

with respect to the O(n)-measured Gromov–Hausdorff topology and g,�Y are C1,α-
regular. Moreover, since pi : F(Mi ) → Mi is a Riemannian submersion with
totally geodesic fibers, and since the fibers are isometric to each other, it follows that
(F Mi , dvolF Mi )/O(n) = (Mi , dvolMi ). Hence by equivariant Gromov–Hausdorff
convergence Mi converges to (X, ν) = (Y,�Y dvolY )/O(n) (see Theorem 0.6 in
[11]), and by Remark 3

ν(S(X)) = 0

For all x in X we let

�X (x) =
∫

y∈p−1(x)

�Y (y) dvolp−1(x),

where p : Y → X is the natural projection. For each open set U

ν(U ) =
∫

U
�X (x) dvolX−S(X) .

3 Proof of the Convergence Theorem

In this section we are going to prove Theorem 1.1. In the following M(n, D)

denotes the set of all compact Riemannian manifolds (M, g) such that dim(M) =
n, diam(M) < D and the sectional curvature satisfies | secg | ≤ 1, and M(n, D, v)

the set of Riemannian manifolds inM(n, D) with volume ≥ v.
We split the proof in three cases:

Case I: Non-collapsing (Mi , gi ) converge to (M, g) inM(n, D, v). We first consider
the situation where Mi = M and gi converges to a metric g inM(n, D, v). Then we
study the problem in the general case using Theorem 2.13.

Case II: Collapsing to a manifold (Mi , gi ) converge to (M, g) in M(n, D) with
g a C1,α-metric. We first consider the situation when (Mi , gi ) satisfies an additional
regularity assumption (see Assumption 1 below). Then we discuss the general case
using the fact that there is always a sequence of metrics gi (ε) on Mi , C1-close to the
the metric gi which satisfies Assumption 1 as explained in Remark 2.

Case III: Collapsing to a singular space (Mi , gi ) converge to a metric space (X, d)

in M(n, D). When a sequence of manifolds (Mi , gi ) converges in M(n, D) to a
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metric space X , the frame bundles over Mi converge to a Riemannian manifold Y ,
with a C1,α-metric and we have X = Y/O(n). The harmonic maps over Mi , induce
harmonic maps over F(Mi ) and this case reduces to the study of harmonic maps on
quotient spaces.

Hereafter we fix an isometric embedding I : N → Rq and we often denote the
composition I ◦ f simply by f , unless we need to explicitly distinguish these two
maps.

3.1 Case I: Non-collapsing

In this subsection we prove

Proposition 3.1 Let (Mi , gi ) be a sequence of Riemannian manifolds in M(n, D, v)

which converges to a Riemannian manifold (M, g) in the Gromov–Hausdorff
topology. Suppose (N , h) is a compact Riemannian manifold. Let fi : (Mi , gi ) →
(N , h) be a sequence of smooth harmonic maps such that ‖egi ( fi )‖L∞ < C, where C
is a constant independent of i . Then fi has a subsequence which converges to a map
f : (M, g) → (N , h) and this map is a smooth harmonic map.

To go through the proof in this case, we first consider the situation when a sequence
of metrics gi on a manifold M converges to a Riemannian metric g.

Lemma 3.2 Let gi be a sequence of Riemannian metrics on a smooth manifold M
and suppose (M, gi ) converge to (M, g) in M(n, D, v). Suppose fi : (M, gi ) → N
is a sequence of smooth harmonic maps such that

‖egi ( fi )‖L∞ < C,

where C is a constant independent of i . Then there exists a subsequence of fi which
converges to some f in the Ck-topology for any k ≥ 0 and f is also harmonic.

Proof By Theorem 2.13, the metric gi converges to g in M(n, D, v) in the C1,α-
topology. Using Schauder estimates, fi s have bounded norm in Ck(M) for every
k ≥ 0 and hence converge to a map f ∈ Ck(M). We have

lim
i→∞ �gi fi = �g f

and

lim
i→∞ �( fi )(d fi , d fi ) = �( f )(d f, d f )

The above limits lead to harmonicity of f . ��
Using the above lemma we can prove Proposition 3.1.
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Proof of Proposition 3.1 Since Mi converges to M inM(n, D, v), by Theorem 2.13
there is a diffeomorphismφi : Mi → M , such that the pushforward ḡi = φi ∗(gi ) of the
metrics gi on Mi converges to aC1,β -metric g. Since themapφi : (Mi , gi ) → (M, ḡi )

is an isometry

egi ( fi ) = eḡi ( f̄i ) (8)

where f̄i is the map fi ◦ φ−1
i . fi is harmonic and so f̄i . Therefore all the assumptions

of Lemma 3.2 are satisfied here and the proof of Theorem 1.1 in this case is complete.
��

In Lemma 3.2 if we replace the assumption of uniform boundedness of the energy
density ‖egi ( fi )‖L∞ < C with the assumption uniformbound on the energy Egi ( fi ) <

C , then the limiting map is not necessarily harmonic (see Theorem 2.3 and Remark
1).

Proposition 3.3 Let (Mi , gi ) be a sequence of manifolds in M(n, D, v) which
converges to a Riemannian manifold (M, g) in the measured Gromov–Hausdorff
topology. Suppose (N , h) is a compact Riemannian manifold which does not carry
any harmonic 2-sphere S2. Let fi : (Mi , gi ) → (N , h) be a sequence of harmonic
maps such that Egi ( fi ) < C where C is a constant independent of i . Then fi has
a subsequence which converges to a map f : (M, g) → (N , h), and this map is a
weakly harmonic map.

Proof With the same argument as in the proof of Proposition 3.1 we consider fi and
gi to be on the manifold M . When we have a sequence of Riemannian manifolds
(M, gi ) which converges inM(n, d, v), the injectivity radius is bounded from below
and dvolgi converges to dvolg weakly. Therefore if Egi ( fi ) < C, C independent of
i , then Eg( fi ) is uniformly bounded. Adapting the proof of Remark 1 for our case,
fi converges strongly inH1 to a map f . Also Hess(πN ) restricted to a neighborhood
of N is Lipschitz and Hess(πN ) ◦ fi converges to Hess(πN ) ◦ f in H1-norm (see
Lemma 6.4 in Taylor’s book [32]) and so therefore �( fi )(d fi , d fi ) converges weakly
to �( f )(d f, d f ). We have the same for � fi and so f is a weakly harmonic map. ��

Under the assumptions of the above theorem one can show more and prove f is
stationary harmonic. Under stronger assumptions on N or on the image of f , we can
show that the limit map f is strongly harmonic. These results are direct consequences
of some of the theorems in [30].

Proposition 3.4 Let (Mi , gi ) and fi be as in Proposition 3.3. Then the map f is
smooth harmonic, provided that N is a compact Riemannian manifold and we have
one of the following conditions:

i. (N , h) is a non-positively curved Riemannian manifold.
ii. There is no strictly convex bounded function on f (M).

Proof i. See Proposition 2.1 in [30].
ii. See Corollary 2.4 in [30].

��
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3.2 Case II: Collapsing to a Manifold

In this subsection we prove

Proposition 3.5 Let (Mi , gi ) be a sequence of Riemannian manifolds in M(n, D)

which converges to a Riemannian manifold (M, g,� dvolM ) in the measured Gromov–
Hausdorff topology with C1,α-pair (g,�). Suppose (N , h) is a compact Riemannian
manifold. Let fi : (Mi , gi ) → (N , h) be a sequence of smooth harmonic maps
such that ‖egi ( fi )‖L∞ < C, where C is a constant independent of i . Then fi has a
subsequence which converges to a map f : (M, g,� dvolg) → (N , h), and this map
is a weakly harmonic map.

Before we prove the proposition in general, we will prove the following proposition
which has an additional regularity assumption. Then at the end of this subsection, we
will apply this proposition to prove case II. Consider the following assumption,

Assumption 1 Let the Riemannian metric gi be regular on Mi , i.e., there exists a
sequence C = {Ck} of positive number Ck independent of i , such that

|∇k
gi
Rgi | < Ck . (9)

Suppose also that the Riemannian metric gi is an invariant metric with respect to the
nil-structure.

We have

Proposition 3.6 Let (Mi , gi ) be a convergent sequence of Riemannian manifolds in
M(n, D) (with respect to the measured Gromov–Hausdorff topology) such that gi

satisfies the Assumption 1. Let (M, g,�) be the limit manifold. Suppose (N , h) is a
compact Riemannian manifold. Let fi : (Mi , gi ) → (N , h) be a sequence of smooth
harmonic maps such that ‖egi ( fi )‖L∞ < C, where C is a constant independent of i .
Then fi has a subsequence which converges to a map f : (M, g,� dvolM ) → (N , h)

and this map is a smooth harmonic map.

Before we prove the Proposition 3.6, we first recall a few remarks from [12,13].
Then we prove Lemma 3.7 which is the main element in the proof of Proposition 3.6.

Remark 4 In [13] Fukaya proves that with the extra regularity assumption (9) on

gi , (Mi , gi ,
dvolMi
vol(Mi )

) converges to a smooth Riemannian manifold, with the smooth
pair (g,�). See Lemma 2.1 in [13]. By Theorem 2.15, we know that for i large
enough, there is a fibration map ψi : Mi → M . Since gi is an invariant metric, there
exist metrics gM

i on M such that the maps ψi : (Mi , gi ) → (M, gM
i ) are Riemannian

submersions and gM
i converges to g as in Theorem 2.13.

Remark 5 (Fukaya [12,13]) Take an arbitrary point p0 in M and choose pi ∈
ψ−1

i (p0). By | secgi | ≤ 1, at point pi on Mi the conjugate radius1 is greater than

1 The conjugate domain at a point p in a Riemannianmanifold M is the largest star shaped domain in which
d expp is non-singular and the conjugate radius is the radius of the largest ball in the conjugate domain at
p.
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some constant name it ρ. We name the pullback of the Riemannian metric gi by the
exponential map, exppi

at pi , g̃i . Therefore the injectivity radius at 0 is at least the
conjugate radius at pi (see Corollary 2.2.3 in [29]).

Consider the ball B = B(0, ρ) in Tpi Mi with the metric g̃i . By virtue of the
regularity assumption on gi , g̃i will converge to some g0 in the C∞-topology. There
are local groups Gi converging to a Lie group germ G such that

1. Gi act by isometries on the pointed metric spaces ((B, g̃i ), 0).
2. ((B, g̃i ), 0)/Gi is isometric to a neighborhood of pi in Mi .
3. G acts by isometries on the pointed metric space ((B, g0), 0).
4. ((B, g0), 0)/G is isometric to a neighborhood of p0 in M and the action of G is

free.

It follows that there is a neighborhood U of p0 in M and a C∞ map s : U → B such
that

i. s(p0) = 0.
ii. P ◦ s = I d, where P denotes the composition of the projection map and the

above mentioned isometry in 4.
iii. d(B,g0)(s(q), 0) = dM (q, p0) holds for q ∈ M .

Therefore there is some constant, which we again name ρ, independent of i such that,
M = ⋃m

j=1 Bρ
2
(x j , M) and Bρ

2
(x j , M) satisfies the preceding conditions and we can

construct a smooth section si, j : Bρ
2
(x j , M) → Mi of ψi , such that

|(si, j )∗(v)|
|v| < C (10)

for each v ∈ T Bρ
2
(x j , M). Here C is a constant independent of i . Hereafter we let

pi, j = ψ−1
i (x j ) and by B(pi, j ) we mean a ball centered at pi, j with radius ρ in

Tpi, j Mi . See section 3 in [12] and section 2 in [13].

Nowwe show that fi s are almost constant on the fibers of Mi . The following lemma
is similar to Lemma 4.3 in [11]. In the following lemma (Mi , gi ) is a convergent
sequence in M(n, D) such that gi satisfies only (9) and N is a compact Riemannian
manifold.

Lemma 3.7 Let hi : Mi → I (N ) ⊂ R
q be smooth maps which satisfy the Euler–

Lagrange equation (1). Suppose vi ∈ Tp(Mi ) satisfies (ψi )∗(vi ) = 0,where ψi is the
fibration map and v′

i , v
′′
i ∈ Tp(Mi ) (p ∈ B2ρ/3(pi, j , Mi )). Then we have

|vi · hi | ≤ C1 · ε′
i · |vi | · (‖�hi‖L∞ + ‖hi‖L∞), (11)

|v′
i · v′′

i · hi | ≤ C2 · |v′
i | · |v′′

i | · (‖�hi‖L∞ + ‖hi‖L∞), (12)

where C1 and C2 are some constants independent of i and ε′
i is a sequence converging

to zero. Also vi · hi = dhi (vi ) denotes the derivative of hi in the direction of vi .
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Proof We put �i, j = exppi, j
: B(pi, j ) → Mi , g̃i, j = �i, j ∗(gi ) and a = �−1

i, j (p).
We also denote hi ◦ �i, j by hi, j .

From the Schauder estimates for elliptic equations (see Theorem 2.7) we have

‖hi, j‖C1,α ≤ C ′ · (‖�hi, j‖L∞ + ‖hi, j‖L∞), (13)

and hence

‖v′
i · hi, j‖Cα ≤ C ′ · (‖�hi‖L∞ + ‖hi‖L∞), (14)

where C ′ depends on the metric g̃i, j . Since �i, j is an isometry, by the composition
formula (see formula 1.4.1 in [35]), we have �hi, j (x) = �hi (�i, j (x)). Also from
(13), and the fact that g̃i, j converges in C∞

‖�(hi, j )(dhi, j , dhi, j )‖Cα ≤ C ′′ · (‖�hi‖L∞ + ‖hi‖L∞),

where C ′′ is a constant independent of i . By Eq. (1), we have

‖�hi, j‖Cα ≤ C ′′ · (‖�hi‖L∞ + ‖hi‖L∞).

Using Schauder estimates for second derivative, we have

‖hi, j‖C2,α ≤ C · (‖�hi‖L∞ + ‖hi‖L∞), (15)

for some C independent of i and (12) follows.
Now we prove (11) by contradiction. Assume |vi | = 1. Let σ i (t) = expFi

p (tvi )

be a geodesic in the fiber containing p, Fi ⊂ Mi such that d
dt |t=0σ

i (t) = vi . For
0 ≤ t ≤ ρ

5 this curve has a lift li (t) ⊂ B(pi, j ) such that �i, j (li (t)) = σ i (t). We have

d(σi (t), p) ≤ diam(Fi ) ≤ εi .

By contradiction we assume that there is subsequence of hi and a positive number
A such that

|vi · hi, j | > A · (‖�hi‖L∞ + ‖hi‖L∞).

We know that

vi · hi = vi · hi, j = d

dt

∣
∣
∣
∣
t=0

hi, j ◦ li (t).

There exist β > 0 and δ > 0 independent of i such that for any t < δ, we have

|hi, j ◦ li (t) − hi, j (a)| > β · t · (‖�hi‖L∞ + ‖hi‖L∞). (16)

To explain this, let hi, j ◦ li (t) = qi, j (t). We know from (15) that
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| d

dt

∣
∣
∣
∣
t=0

q ′
i, j (t)| ≤ C(‖�hi‖L∞ + ‖hi‖L∞),

so for some fixed δ and 0 < t < δ we have

|q ′
i, j (t) − q ′

i, j (0)| ≤ C ′ · t · (‖�hi‖L∞ + ‖hi‖L∞).

On the other hand we have

|q ′
i, j (0)| > A · (‖�hi‖L∞ + ‖hi‖L∞),

so for δ small enough and t < δ we have

|q ′
i, j (t)| > β · (‖�hi‖L∞ + ‖hi‖L∞).

Therefore

|qi, j (t) − qi, j (0)| = |q ′
i, j (θi ) · t | > β · t · (‖�hi‖L∞ + ‖hi‖L∞),

from which (16) follows.
There exists b ∈ B(pi, j ), such that d(a, b) < εi and �i, j (li (δ′)) = b. For a fixed

δ′ < δ we have

|hi, j (b) − hi, j (a)| > β · δ′ · (‖�hi‖L∞ + ‖hi‖L∞).

If we fix {ξk}k=n
k=0 as a coordinate system at the point a ∈ B(pi, j ), for some b′ ∈ B(pi, j )

we have

k=n
∑

k=0

∂hi, j

∂ξ k
> C · β · δ′

εi
· (‖�hi‖L∞ + ‖hi‖L∞),

and this contradicts (14). ��
Now we prove Proposition 3.6.

Proof of Proposition 3.6 As we assumed ‖e( fi )‖L∞ < c and by the Euler–Lagrange
equation andCorollary 2.6,we have that ‖�I ◦ fi‖L∞ is uniformly bounded.Moreover,
‖I ◦ fi‖L∞ is uniformly bounded. Using (11), the maps fi s are equicontinuous. By
Lemma 2.12, there is a limit map f : M → N which is continuous.

We consider the following maps on M ,

f̃i =
∑

β j · (I ◦ fi ) ◦ si, j , (17)

where β j is an arbitrary C∞ partition of unity associated to Bρ
2
(x j , M), si, j is the

section associated to ψi as mentioned in Remark 5. Along a subsequence, which we
again denote by fi , we have
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lim
i→∞ fi (si, j (x)) = f (x) for x ∈ Bρ

2
(x j , M),

and also

lim
i→∞ f̃i (x) = I ◦ f (x) for x ∈ Bρ

2
(x j , M).

Since the energy density of fi is bounded and also si, j satisfies (10), we have
‖e( f̃i )‖L∞ is uniformly bounded. By the same argument as above, ‖ f̃i‖C1 is bounded
and f̃i converge uniformly to I ◦ f . Moreover ψi has bounded second fundamental
form (see Theorem 2.6 in [6]) and the same is true for si, j . So f̃i has boundedC2-norm
and there is a subsequence of f̃i which converges to I ◦ f in the C1-topology.

Choose a local orthonormal frame {ēk}m
k=1 on (M, gM

i ). Denote its horizontal lift
on (Mi , gi ) by {ek}m

k=1. Suppose {et }n
t=m+1 is a local orthonormal frame field of the

fiber Fi in Mi such that {ek, et } form a local orthonormal frame field in Mi (note that
we omit the index i for the orthonormal frame fields on (Mi , gi ) and (M, gM

i )). Our
aim is to show that f is also weakly harmonic. ��
Lemma 3.8 We have

lim
i→∞ |〈d I ◦ fi , dηi 〉(p) − 〈d f̃i , dη〉(ψi (p))| = 0,

where η : M → R
q , is a C∞-map ηi = η ◦ ψi , and p in Mi .

Proof By inequality (11),

|〈d I ◦ fi , dηi 〉(p) −
m

∑

k=1

〈di ◦ fi (ek), dηi (ek)〉(p)| ≤ C1 · ε′
i

for i large enough where C1 is a constant independent of i . Let Fi denote the fiber
containing p and choose a point q in Fi . By (12), and since diam(Fi ) ≤ εi

|d I ◦ fi (ek)(p) − d I ◦ fi (ek)(q)| ≤ C2 · εi ,

and so

|d I ◦ fi (ek)(p) − d I ◦ fi (ek)(si, j ◦ ψi (p))| ≤ C2 · εi .

Because ψi ◦ si, j = Id, for x ∈ M we have

ψi ∗
(

ek(si, j (x)) − si, j ∗(ēk(x))
) = 0.

By inequality (10), we have

|ek(si, j (x)) − si, j ∗(ēk(x))| ≤ C3,

for some constant C3 and therefore by (11),
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|d I ◦ fi (ek)(p) − d(I ◦ fi ) ◦ si, j ∗(ēk)(ψi (p))| ≤ C4 · εi .

From the convergence of fi ◦ si, j to f , we have

lim
i→∞ |

∑

dβ j · (I ◦ fi ) ◦ si, j −
∑

dβ j · (I ◦ f )| = 0,

So

lim
i→∞ |d f̃i −

∑

β j · d((I ◦ fi ) ◦ si, j )| = 0.

Since
∑

j β j = 1 we finally have

lim
i→ |〈d I ◦ fi , dηi 〉(p) − 〈d f̃i , dη〉(ψi (p))| = 0.

��
Lemma 3.9 We have

limı→∞
∣
∣
∣�( fi )(p)(d I ◦ fi , d I ◦ fi ) − �( f̃i )(ψi (p))(d f̃i , d f̃i )

∣
∣
∣ = 0.

Proof By the proof of the above lemma, we have

lim
i→∞ |d fi (p) − d f̃i (ψi (p))| = 0.

By the same argument as in Lemma 3.8 we can conclude

∣
∣
∣�( fi )(p)(d I ◦ fi , d I ◦ fi ) − �( f̃i )(ψi (p))(d f̃i , d f̃i )

∣
∣
∣

≤ C ·
∣
∣
∣d fi (p) − d f̃i (ψi (p))

∣
∣
∣ .

��
The map f̃i : (M, gM

i , dvolgM
i

) → R
q converges in C1 to the map I ◦ f , and �i

converges to� in theC∞-topology.Also (M, gM
i ) converges to (M, g) inM(n, D, v).

Therefore we have
∣
∣
∣
∣

∫

M

gM

i
(η, f̃i ) �i dvolgM

i
−

∫

M

(η, f ) � dvolg

∣
∣
∣
∣
≤ C · εi ,

where 
(·, ·) is defined by (3). By Lemma 3.8 and 3.9, we have

lim
i→∞

∣
∣
∣
∣

∫

Mi


gi (ηi , fi )
dvolMi
vol(Mi )

−
∫

M

gM

i
(η, f̃i )ψi ∗

(
dvolMi
vol(Mi )

)
∣
∣
∣
∣
= 0.

It follows that
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lim
i→∞

∫

Mi


gi (ηi , fi )
dvolMi
vol(Mi )

=
∫

M

g(η, f ) � dvolM . (18)

Therefore f is weakly harmonic and since it is continuous, it is also a smooth harmonic
map. ��

Now we prove Case II without considering Assumption 1.

Proof of Proposition 3.5 By Remark 2 we can obtain a C1-close metric gi (ε) to gi

which satisfies (9) and such that the map ψi : (Mi , gi (ε)) → (M, ψi ∗(gi (ε))) is a
Riemannian submersion.

For small ε, let M(ε) be the Gromov–Hausdorff limit of a subsequence of
(Mi , gi (ε)). By Lemma 2.3 in [12], (Mi , gi (ε)) and (M(ε), g(ε)) converge to (Mi , gi )

and (M, g) inM(n, D, v) respectively.
The map fi : (Mi , gi ) → (N , h) is harmonic and since gi (ε) is C1-close to g, we

have

|
gi ( fi , ηi ) − 
gi (ε)( fi , ηi )| ≤ C · ε.

By (18), we have

lim
i→∞

∣
∣
∣
∣

∫

Mi


gi (ε)( fi , ηi )
dvol(Mi ,gi (ε))

vol((Mi ,gi (ε)))
−

∫

M(ε)


g(ε)( f, η) · �(ε) dvolM(ε)

∣
∣
∣
∣
= 0,

and finally since g(ε) converges to g in the C1,α-topology, we have the desired result.
��

3.3 Case III: Collapsing to a Singular Space

Now we are going to investigate the general case when the sequence converges to a
singular space. This means that (Mi , gi ) inM(n, D) converges to some metric space
(X, d). First we recall the following remark from [11].

Remark 6 (Fukaya [11], §7) Let Y be a Riemannian manifold on which O(n) acts
by isometry, and let θ : Y → [0,∞) be an O(n)-invariant smooth function. Put
X = Y/O(n). Let p : Y → X be the natural projection, θ̄ : X → [0,∞) the function
induced from θ , and S(X) the set of all singular points of X . The set S(X) ⊂ X has a
well defined normal bundle on the codimension 2 strata (X = Y/O(n) is a Riemannian
polyhedron and S(X) is a subset of the (n − 2)-skeleton of X ). Set

Lip(X, S(X)) = {u ∈ Lip(X) | v · u = 0 if v is perpendicular to S(X)}.
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Define Q1 : Lip(Y ) × Lip(Y ) → [0,∞) and Q2 : Lip(X, S(X)) × Lip(X, S(X)) →
[0, 1) by

Q1(k̃, h̃) =
∫

Y
θ · 〈∇ k̃,∇h̃〉 dvolY ,

Q2(k, h) =
∫

X
θ̄ · 〈∇k,∇h〉 dμg.

It is easy to see that f ◦ p ∈ Lip(Y ) for each f contained in Lip(X, S(X)). Define
p∗ : Lip(X, S(X)) → Lip(Y ) by p∗( f ) = f ◦ p. Let LipO(n)(Y ) be the set of all
O(n)-invariant elements of Lip(Y ). Then, we can easily prove the following

Lemma 3.10 p∗ is a bijection between Lip(X, S(X)) and LipO(n)(Y ). For elements
f and k of Lip(X, S(X)), we have

Q1( f, k) = Q2(p∗( f ), p∗(k)), (19)

and

∫

Y
θ · p∗( f )p∗(k) dvolY =

∫

X
θ̄ · f k dμg. (20)

Now we prove the main theorem of this paper.

Proof of Theorem 1.1 We denote by (Y, g,�Y dvolY ) the limit space of the frame
bundles over Mi , and by (X, d, ν) the limit space of Mi with respect to the measured
Gromov–Hausdorff topology. We know (X, ν) = (Y,�Y dvolY )/O(n) (see Section
2.6). The projection pi : (F(Mi ), g̃i ) → (Mi , gi ) is a Riemannian submersion with
totally geodesic fibers. So using the reduction formula themap f̄i = fi ◦ pi is harmonic
on F(Mi ) and it is invariant under the action of O(n). Furthermore ‖eg̃i ( f̄i )‖∞ is
bounded (pi is a Riemannian submersion). Using Case II, f̄i converge to some map
f̄ on (Y, g,�Y dvolY ). The map f̄ satisfies

∫

Y

g( f̄ , η) �Y dvolY = 0,

where η is a test function. The map f̄ is also O(n) invariant and continuous. Consider
a quotient map f such that f̄ = p∗( f ). First we show that f is in H1((X, ν), N ).
By the argument in Case II, f̄ is in H1((Y,�Y dvolY ), N ) and so by Eq. (19), f has
finite energy. Now we show that f is weakly harmonic on (X, ν). By Eq. (19), for η

in Lip(X, S(X))

∫

Y
〈∇ I ◦ f̄ ,∇ p∗(η)〉 �Y dvolY =

∫

X
〈∇ I ◦ f,∇η〉 �X dμg.

Furthermore
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∫

Y
〈�( f̄ )(∇g(I ◦ f̄ ),∇g(I ◦ f̄ )), p∗(η)〉 �Y dvolY

=
∫

X
〈�( f )(∇(I ◦ f ),∇(I ◦ f )), η〉 �X dμg,

and since �Y = p∗(�X )

∫

Y

g( f̄ , p∗(η)) �Y dvolY =

∫

X

( f, η) �X dμg,

which shows that f : X → N is a weakly harmonic map. ��
Acknowledgments This work is part of my Ph.D. dissertation. I thank my advisor Professor Marc Troy-
anov for his guidance and support in the completion of this work. I also thank Professors Buser, Naber, and
Wenger for their reading of this document and their comments and suggestions.

Appendix: Convergence of Tension Field

In this section we study convergence of the tension fields of the maps fi , τ ( fi ), under
the assumptions of Proposition 3.6.

Assume (Mi , gi ), fi , N to be as in Proposition 3.6.Moreover consider the following
assumption

Assumption 2 The section si, j is almost harmonic,

|τ(si, j )| ≤ C · ε′′
i , (21)

and also

|∇X̄ dsi, j (X)| ≤ C · ε′′
i , (22)

where X is a smooth vector field on M and X̄ is its horizontal lift and ε′′
i is a sequence

which converges to zero.

Using Assumption 1 and by Theorem 2.4 we have

τ( fi ) = (∇ek d fi )ek + (∇et d fi )et (23)

= (∇ek d fi )ek + ∇ fi ∗(et ) fi ∗(et )

− fi ∗(∇et et )
H − fi ∗(∇et et )

V

= (∇ek d fi )ek − fi ∗(Hi ) + τ( fi
⊥)

where {ek, et } and ēk are as in the proof of Proposition 3.6, fi
⊥ denotes the restriction

of fi to the fibers Fi , and Hi is the mean curvature vector of the submanifold Fi .
We investigate how each term of the equation above behaves as fi converges to f .
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Lemma 3.11 We have

lim
i→∞

∣
∣
∣d I (∇ek d fi )ek(p) −

(

�gM
i

f̃i − �( f̃i )(d f̃i , d f̃i )
)

(ψi (p))

∣
∣
∣ = 0. (24)

Proof By the discussion in the proof of Proposition 3.6, we know that f̃i converges
to f in the C1-topology. Using the composition formula we have

d I (B fi (X1, X2)) = B(I ◦ fi )(X1, X2) − B(πN )(d(I ◦ fi )(X1), d(I ◦ fi )(X2)),

and so for k = 1, . . . , n,

d I ((∇ek d fi )ek) = (∇ek d(I ◦ fi ))ek − B(πN )(d(I ◦ fi )(ek), d(I ◦ fi )(ek)).

First we show that

lim
i→∞ |∇ek d(I ◦ fi )ek(p) − �gM

i
f̃i (ψi (p))| = 0.

By definition of f̃i ,

(∇ēk d f̃i )ēk =
∑ (

dβ j (ēk) · d fi (si, j ∗(ēk))

+β j · (∇ēk d( fi ◦ si, j ))ēk + �β j · fi ◦ si, j
)

.

and again by the composition formula

τ( fi ◦ si, j ) = Bsi, j ∗(ēk ),si, j ∗(ēk ) fi + d fi (τ (si, j )). (25)

Since fi ◦ si, j converges in C1 to f

lim
i→∞ | ∑ dβ j (ēk) · d fi (si, j ∗(ēk))| = 0,

lim
i→∞

∑
�β j · fi ◦ si, j (x) = ∑�β j · f (x) = 0.

Also, ψi ∗(ek − si, j ∗(ēk)) = 0 and so ek − si, j ∗(ēk) is vertical. On the other hand

|ek − si, j ∗(ēk)| ≤ εi .

By inequality (11) and almost harmonicity of si, j (21), the second term on the right
hand side of (25) converges to zero. Again by inequality (12) and (22), we have

limi→∞ |(∇ek d fi )(ek − si, j ∗(ēk))| = 0,

limi→∞ |(∇(ek−si, j ∗(ēk ))d fi )ek | = 0.

Finally

lim
i→∞ |(∇ek d(I ◦ fi ))ek(p) − (∇ēk d f̃i )ēk(ψ( p))| = 0.
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We have the same for the second term

lim
i→∞ |�( fi )(p)(d fi , d fi ) − �( f̃i )(ψi (p))(d f̃i , d f̃i )| = 0.

��
By the above lemma and ψi ∗(

dvolMi
vol(Mi )

) = �i dvolM , we have

lim
i→∞

∣
∣
∣
∣

∫

Mi

〈d I ((∇ek d fi )ek), ηi 〉 dvolMi
vol(Mi )

−
∫

M
〈�gM

i f̃i − �( f̃i )(d f̃i , d f̃i ), η〉 �i dvolgM
i

∣
∣
∣
∣
= 0,

and we conclude

lim
i→∞

∫

Mi
〈d I ((∇ek d fi )ek), ηi 〉 dvolMi

vol(Mi )

= ∫

M [〈d f, dη〉 + 〈d f (∇ ln�) − �( f )(d f, d f ), η〉] � dvolM . (26)

Here η is a test map on M and ηi = η ◦ψi . Now we will consider the second and third
terms in the decomposition of τ( fi ).

Lemma 3.12 With the same assumptions as above

i. lim
i→∞

∫

Mi
〈d fi (Hi ), ηi 〉 dvolMi

vol(Mi )
= − ∫

M 〈d f (∇ ln�), η〉 � dvolM .

ii. lim
i→∞ ‖τ( fi

⊥)‖ = 0.

Here Hi denotes the mean curvature vector of the fibers F x
i = ψ−1

i (x).

Before we prove Lemma 3.12, we prove the following lemma which we need for
the proof of part i.

Lemma 3.13 We have
∫

M
ηd ln�(X) � dvolM = − lim

i→∞

∫

Mi

η〈X,Hi 〉 dvolMi
vol(Mi )

. (27)

Proof Suppose X is a smooth vector field on M and Xi its horizontal lift on Mi . The
flow θ i

t of Xi sends fibers to fibers diffeomorphically. By the first variation formula

d

dt

∣
∣
∣
∣
t=0

θ i
t
∗
(dvolF x

i
) = −

∫

F x
i

〈Xi ,H
x
i 〉 dvolF x

i
. (28)

Also

�i (x) = vol(ψ−1
i (x))

vol(Mi )
.

and by (28),
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d�i (X)(x) = −
∫

F x
i

〈Xi ,H
x
i 〉 dvolFx

i
vol(Mi )

,

For an arbitrary η in C∞(M), we prove

∫

M
ηd�i (X) dvolgM

i
= −

∫

Mi

ηi 〈Xi ,Hi 〉 dvolMi
vol(Mi )

. (29)

If we consider (Uγ , hγ ) as a local trivialization of the fibration ψi , then

∫

M
χUγ d�i (X) dvolg

M
i = −

∫

Uγ

∫

F x
i

χUγ 〈Xi ,H
x
i 〉 dvolFx

i
vol(Mi )

dvolgM
i

,

and so

∫

M
χUγ d�i (X) dvol

gM
i

M = −
∫

ψ−1
i (Uγ )

〈Xi ,Hi 〉 dvolMi
vol(Mi )

,

whereχUγ denotes the characteristic function onUγ and sowehave (29). The functions

�i goes to � in C∞ and also dvolg
M
i goes to dvolM as i goes to infinity. Letting i go

to ∞ on the both sides of (29) and by the definition of weak derivatives

∫

M
ηd ln�(X) � dvolM = − lim

i→∞

∫

Mi

η〈X,Hi 〉 dvolMi
vol(Mi )

.

��

Proof of Lemma 3.12 Part i follows directly from Lemma 3.13.
To prove part ii consider

τ( fi
⊥) = ∇ fi ∗(et ) fi ∗(et ) − fi ∗(∇et et )

V .

From (11) and (12)

|∇ fi ∗(et ) fi ∗(et )| < C · ε′
i ,

‖ fi ∗(∇et et )
V ‖L∞ < C · ε′

i |(∇et et )
V |,

where C is a constant independent of i . It follows that

lim
i→∞ ‖τ( fi

⊥)‖ = 0.

��
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