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Abstract We show that any compact convex simple lattice polytope is the moment
polytope of a Kähler–Einstein orbifold, unique up to orbifold covering and homothety.
We extend the Wang–Zhu Theorem (Wang and Zhu in Adv Math 188:47–103, 2004)
giving the existence of a Kähler–Ricci soliton on any toric monotone manifold on
any compact convex simple labeled polytope satisfying the combinatoric condition
corresponding to monotonicity. We obtain that any compact convex simple polytope
P ⊂ Rn admits a set of inward normals, unique up to dilatation, such that there exists
a symplectic potential satisfying the Guillemin boundary condition (with respect to
these normals) and the Kähler–Einstein equation on P × Rn . We interpret our result
in terms of existence of singular Kähler–Einstein metrics on toric manifolds.
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1 Introduction

The question of existence of Kähler–Einstein metrics on compact complex mani-
fold has been subject of intense investigations for the last decades. This problem
makes sense on a compact complex manifold (M2n, J ) with a given Kähler class
� ∈ H2

dR(M) for which there is λ ∈ R such that λ� = 2πc1(M). The case λ ≤ 0 is
non-obstructed and the existence of a Kähler–Einstein metric (g, ω), with ω ∈ � was
proved forty years ago [4,41]. The case λ > 0 proved to be a more difficult question,
recently related to a certain notion of stability [10–12,37] and for which there are
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400 E. Legendre

various known obstructions, notably the Futaki invariant [19]. In the toric case (the
Kähler structure is invariant by the Hamiltonian action of a real torus of dimension
n = dimC M), it follows from the Wang–Zhu Theorem [40] which has been extended
to orbifolds [35], that the only obstruction to the existence of Kähler–Einstein metrics
on monotone symplectic toric orbifolds (in the sense that there exists λ > 0 such
that λ[ω] = c1(M)) is the vanishing of the Futaki invariant. Through the toric corre-
spondence, finding such orbifolds is a combinatorial problem on labeled polytopes.
In the first part of this paper, we prove that any polytope can be labeled to satisfy
these two conditions. To give a precise statement, we now recall the main lines of the
correspondence.

Symplectic toric compact orbifolds are classified by rational labeled polytopes via
the Delzant–Lerman–Tolman correspondence [13,28]. A labeled polytope is a pair
(P, ν) where P is a simple bounded convex polytope, open in a n-dimensional vector
space t∗, ν = {ν1, . . . , νd} ⊂ t is a set of vectors, inward to P , such that if we
denote F1, . . . , Fd the facets (codimension 1 face) of P , the vector νk is normal to
Fk for k = 1, . . . , d where d is the number of facets. The defining functions of a
labeled polytope (P, ν) are the affine-linear functions L1, . . . , Ld on t∗ such that1

P = {p ∈ t∗ | Lk(p) > 0} and dLk = νk . A rational labeled polytope (P, ν,�) is a
labeled polytope (P, ν) and � a lattice in t such that ν ⊂ �.

Remark 1.1 If (P, ν,�) is rational, there are (uniquely determined) positive integers
m1, . . . ,md such that 1

mi
νi are primitive elements of �. Then (P,m1, . . . ,md) is a

rational labeled polytope in the sense of Lerman–Tolman [28].

For a given symplectic toric compact orbifold (M, ω, T ), t is the Lie algebra of the
torus T = t

/
� and the closure P is the image of the moment map. The symplectic

properties are encoded in the data (P, ν). Notably, see [14], monotone symplectic
toric orbifolds correspond to what we will call monotone labeled polytopes.

Definition 1.2 We say that (P, ν) ismonotone if there exists p ∈ P such that L1(p) =
L2(p) = · · · = Ld(p). In that case, we call p the preferred point of (P, ν).

The space of invariant Kähler metrics on M is parameterized by a subspace of
convex functions on P , the set of symplectic potentials S(P, ν), see [2,3,15], whose
definition we precisely recall in Sect. 2.3. The scalar curvature of the metric gu ,
associated to u ∈ S(P, ν), is given by the Abreu formula

S(u) = −
n∑

i, j=1

∂2ui j

∂xi∂x j
(1)

where (x1, . . . , xn) are coordinates on t∗ and ui j = (Hess u)−1, see [1,2].
The extremal affine function of (P, ν), denoted A(P,ν), is an affine–linear function

on t∗ which corresponds to the Futaki invariant [19] restricted to the (real) Lie algebra
of the torus (the symplectic counterpart of the Futaki invariant as introduced in [26]).

1 Our convention is that P is open and we denote P = {p ∈ t∗ | Lk (p) ≥ 0}. P is compact.
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In particular, A(P,ν) is constant if and only if the Futaki invariant vanishes on t. The
extremal affine function is a useful invariant of (P, ν) since it satisfies

– gu is extremal, in the sense of Calabi [8], if and only if S(u) = A(P,ν)

– A(P,ν) is constant, should a constant scalar curvature T -invariant compatible Käh-
ler (cscK) metric exist.

In this paper, we prove the following statement.

Theorem 1.3 Given a compact simple convex polytope P, there exists a set of normals
ν, unique up to dilatation, such that (P, ν) is monotone and has a constant extremal
affine function.

In dimension 2, the existence of such labeling follows from elementary considera-
tions [15].

Remark 1.4 As noticed in [16], labeled polytopes with constant extremal affine func-
tion are those for which the centers of mass of (P, d	) and (∂P, dσν) coincide,
where dσν is the volume form on ∂P such that νk ∧ dσν = −d	 on the facet Fk .
The set of normals ν given by Theorem 1.3 is characterized by the fact that the pre-
ferred point of (P, ν) (as a monotone labeled polytope) coincides with the center of
mass of (∂P, dσν). This last characterization was proved by Mabuchi [31] and used
to classify toric complex surfaces admitting a compatible Kähler–Einstein metric:
CP2,CP1 × CP1 and CP2#3CP2.

We will see that the set of normals ν given by Theorem 1.3 can be included in a
lattice if and only if P is a lattice polytope (i.e., whose vertices lie in a lattice) and
thus, using the Theorem of Wang–Zhu/Shi–Zhu [35,40] we get

Corollary 1.5 Every (simple convex compact) lattice polytope is the moment poly-
tope of a compact Kähler–Einstein toric orbifold, unique up to dilatation or orbifold
covering.

The case where the set of normals ν given by Theorem 1.3 is not rational motivates
us to extend the Wang–Zhu Theorem for general labeled polytopes. More precisely,
Wang and Zhu showed in [40] that any Fano toric manifold (M2n, J, T ) admits a
Kähler–Ricci soliton (g, Z), that is, a Kähler metric g and a holomorphic vector field
Z such that

ρg − λω = LZω (2)

where ρg is the Ricci form of g, ω the Kähler form ω = g(J ·, ·) and λ = 1
2n Scal

with Scal = ∫M Scalωn/
∫
M ωn . In that case, 2πc1(M) = λ[ω]. The vector field Z

is uniquely determined by the data (M, [ω], T ) as follows: denoting p the preferred
point of the monotone labeled polytope (P, ν) associated to (M, [ω], T ), there is a
unique linear function on t∗, a ∈ t, such that

∫

P
e2a( f − f (p))d	 = 0 (3)

for all f ∈ Aff(P,R). If a holomorphic vector field Z satisfies (2), then Z = J Xa−i Xa ,
see [39,40]. The case a = 0 implies that Z = 0 and the Kähler-Ricci soliton ofWang–
Zhu is a Kähler–Einstein metric.
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402 E. Legendre

According to the work of Donaldson [14], a symplectic potential u ∈ S(P, ν)

corresponds to a Kähler–Ricci soliton with respect to λ > 0 and a ∈ t if and only if

1

2
log det(Hess u)x + λh(x) = a(x) (4)

where h is the Legendre transform of u (seen as a function on P , via the change of
variable x �→ (du)x ∈ t) and the preferred point of (P, ν) is the origin.

In fact, the argument ofWang–Zhu holds for any labeled polytope without any deep
modification. In order to find appropriate scope for extending their proof in the case
when (P, ν) is not necessarily rational, we consider P×twith its symplectic structure
(that is, P × t ⊂ t∗ × t 
 T ∗t) and the t-Hamiltonian action by translation on the
second factor, the moment map being the projection on the first factor. The invariant
Kähler metric gu , for a symplectic potential u ∈ S(P, ν), is simply a t-invariant
Kähler metric on P × t with specific behavior along ∂P × t. As introduced in [18],
see also [14,15] and Sect. 2.1, for each vertex p of P there is an open toric symplectic
manifold (Mp, ωp, Tp) depending only on (P, ν). We point out that, in the rational
case, (Mp, ωp, Tp) is a uniformizing chart for the orbifold and the boundary condition
on symplectic potentials corresponds to the fact that gu defines a smooth metric on
each of the manifolds (Mp, ωp, Tp), see Sect. 2.3. In Sect. 5, we notice that the test
functions appearing in the proof of Wang–Zhu, behave as functions defined on the
compact set P while the boundary condition, suitably interpreted, allows us to apply
the (local) computations of Yau [41] and Tian–Zhu [39] on each chart (Mp, ωp, Tp).
Along the way, we have to show that both Yau’s Theorem [41] and Zhu’s Theorem [42]
hold, suitably interpreted, in this extended setting.

Theorem 1.6 Let (P, ν) be a monotone labeled polytope with preferred center 0 ∈ t∗
and compact closure P. There exists a solution u ∈ S(P, ν) of Eq. (4), so that gu is a
t-invariant Kähler–Ricci soliton on P × t. This solution u is unique in S(P, ν) up to
addition of an affine-linear function and gu is Kähler–Einstein if and only if A(P,ν) is
constant.

A result of Donaldson [15] implies that the set of normals for which there exists a
solution of the Abreu equation is open in the set of inward normals of a fixed polytope,
see Sect. 6.1. Together with Theorems 1.3 and 1.6, it gives

Corollary 1.7 For each n-dimensional polytope P, there exists a non-empty open set
E(P) of inward normals ν for which there exists an extremal toric Kähler metric gu
with u ∈ S(P, ν). Moreover, E(P) contains a codimension n subset corresponding to
cscK metrics and contains the 1-dimensional cone of toric Kähler–Einstein metrics.
In particular, if there exists a lattice for which P is rational then there exist extremal
toric Kähler orbifolds with moment polytope P.

A compact toric symplectic orbifold (M, ω, T ) associated to a rational labeled
polytope (P, ν,�) is a compactification of P × T where T = t/� and P ⊂ t∗.
Consequently, as a straightforward application of Theorems 1.3 and 1.6, we obtain
in Sect. 6.3, for any smooth compact toric symplectic manifold, the existence of
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a toric Kähler–Einstein metric gK E on the open dense subset where the torus acts
freely. The singular behavior of gK E along the pre-image of the interior of a facet
Fk is conical of angle 2πak where ak is the ratio between the normal νk and the
normal to Fk found in Theorems 1.3. Here, the complex structure and the metric
are singular while the symplectic structure is smooth. Using the standard procedure
(with Legendre transform) to complexify P × T the singularity lies along the pre-
image of the boundary and we can pass to the more usual setting in the study of
conical singularity of metrics (e.g., [17,38]) where the symplectic form and the met-
ric are singular but not the complex structure. This interpretation is valid for any
labeling η of P and any toric Kähler metric, in the sense that to any u ∈ S(P, η) cor-
responds a T -invariant Kähler metric gu which is smooth on a open dense subset
of M and conical along the divisor corresponding to the boundary of P . There-
fore, Corollary 1.7 provides families of conical extremal Kähler metrics of vari-
ous type (cscK or not) on each toric symplectic manifold. See Sect. 6.3 for more
details.

Theorem 1.6 provides an alternative proof of the Futaki–Ono–Wang Theorem [20].
This theorem establishes the existence of toric Sasaki–Ricci soliton on contact toric
manifolds with a (fixed) Reeb vector field satisfying the two conditions:

– the basic first Chern form of the normal bundle of the Reeb foliation is positive,
– the first Chern class of the contact bundle is trivial.

Compact contact toric manifolds with a fixed Reeb vector field are in one-to-one
correspondence with labeled polytopes whose defining functions lie in a lattice and
satisfy a certain weaker condition than the Delzant condition, see [5,25,27]. In this
correspondence as well, a compatible toric Sasaki metric is given by a symplectic
potential and the scalar curvature is given by the Abreu formula (1), up to an additive
constant depending only on the dimension. The hypothesis of the Futaki–Ono–Wang
Theorem corresponds to the fact that the associated labeled polytope is monotone,
see [20,32].

For the purpose of this paper, we need to slightly reinterpret the geometry
associated to a labeled polytope based on the approach [14,15,18]. We do that
in the next section. We prove Theorem 1.3 in Sect. 3. In Sect. 4, we intro-
duce the basic analytical tools needed to do geometric analysis in the non-
rational case (Sobolev norms, Maximum principle, cohomology, . . .). With these
tools in hand, in Sect. 5, we explain why some classical theorems in Käh-
ler geometry, due Yau, Zhu and Tian–Zhu, are valid in this context. Finally,
Sect. 6 gathers the geometric applications of our results which are Corollaries 1.5
and 1.7 and the existence of conical extremal Kähler metrics on toric mani-
fold.

2 Labeled Polytopes and Toric Geometry

In what follows, polytopes always refers to simple bounded polytope where simple
means that each vertex is the intersection of no more than n facets.
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404 E. Legendre

2.1 Symplectic Toric Orbifolds as Compactifications

Let (M, ω, T, 
) be a compact symplectic toric orbifold, that is, 
 : T ↪→ Ham(M, ω)

embeds T as a subgroup and 2 dim T = dim M . We denote t = Lie T . There is a
moment map

x : M → t∗

which is T -invariant and uniquely determined, up to addition of a constant, by the
relation d〈x, a〉 = −ω(Xa, ·) where Xa = did
(a) is the vector field induced by the
infinitesimal action of a ∈ t. The image of the moment map P = Im x is a compact
convex simple polytope.2 The weights of the action of the torus on the tangent spaces
of fixed points determine a set of vectors ν = {ν1, . . . , νd} ⊂ t normal to the facets
of P and lying in �, the lattice of circle subgroups of T , and thus makes (P, ν) a
rational labeled polytopewith respect to� as defined in the introduction. TheDelzant–
Lerman–Tolman correspondence [13,28] states that the data (P, ν,�) characterizes
(M, ω, T ) up to a T -equivariant symplectomorphism.

In [18], Duistermaat and Pelayo gave a way (alternative to the so-called Delzant
construction [13]) to build (M, ω, T ) from the data (P, ν,�) in the smooth case, see
also [14]. The idea is based on the fact that M can be seen as a compactification of
P × T prescribed by the combinatorial data of P . We slightly adapt this construction
here to cover the case of orbifolds and to see where it fails in the non-rational case.

Given a labeled polytope (P, ν), we denote the set of (closed) faces of P byF(P).
The facets of P are still denoted F1, . . . , Fd ∈ F(P). For F ∈ F(P), denote IF ⊂
{1, . . . , d}, the set of indices such that F = ⋂k∈IF Fk . For example, P ∈ F(P) and
IP = ∅. For a vertex p, I{p} has n elements and �p = spanZ{νk | k ∈ I{p}} is a lattice
in t. For a face F ∈ Fp(P), TF = spanR{νk | k ∈ IF }/�p ∩ spanR{νk | k ∈ IF } is a
subtorus of Tp = t

/
�p if p ∈ F .

Given a vertex p of P , we callFp(P) the set of faces containing p. For F ∈ Fp(P),
we denote sp(F) the subset of F obtained by removing all the subfaces which do not
contain p, that is sp(F) = {x | x ∈ E̊, p ∈ E, E ⊂ F} where E̊ is the interior
of the face E (in E). In particular, the interior of a vertex is the vertex itself. Thus,⋃

F∈Fp(P) sp(F) =⋃F∈Fp(P) F̊ is an open neighborhood of p in P . Set

Mp =⊔F∈Fp(P)(sp(F) × Tp/TF )
/
∼

where, for (x, θ) ∈ F × Tp/TF and (x ′, θ ′) ∈ F ′ × Tp/TF ′ , (x, θ) ∼ (x ′, θ ′) if
(1) x = x ′, and
(2) the equivalence classes of θ and θ ′ in Tp

/
TF∩F ′ coincide.

Here, the first condition implies that F ∩ F ′ �= ∅, so F ∩ F ′ ∈ Fp(P) and TF∩F ′ con-
tains TF and TF ′ as subgroups. The second condition refers to the fact that Tp

/
TF∩F ′

is the quotient of Tp/TF by TF∩F ′
/
TF and the quotient of Tp/TF ′ by TF∩F ′

/
TF ′ .

2 We denote P the interior of the polytope and P its closure. In this text, polytopes are always assumed to
be convex and simple with compact closure.

123



Toric Kähler–Einstein Metrics and Convex Compact Polytopes 405

Ordering the normals νk1 , . . . , νkn (ki ∈ I{p}), we get an identification Tp 
 Tn =
Rn/

Zn via which Tp acts on Cn . For an equivariant neighborhood Up of 0 ∈ Cn , the
map φp : Up → Mp, defined by

φp(z) =
[(

p + 1

2
|zi |2ν∗

ki ,
(
e2π

√−1θ1 , . . . , e2π
√−1θn
))]

(5)

where z = (|z1|e2π
√−1θ1 , . . . , |zn|e2π

√−1θn ), is a well-defined (i.e., does not depend
on the choice of e2π

√−1θi when |zi | = 0) equivariant homeomorphism. The chart(
Up, φp

)
provides a (smooth) differential structure to Mp.

Now, the cotangent space of Tp is naturally equipped with an exact symplectic
form, the differential of the Liouville 1-form, for which the action of Tp on itself pull-
backs to a Hamiltonian action. Given an equivariant trivialization T ∗Tp 
 t∗ × Tp,
the product P × Tp inherits of the structure of Hamiltonian Tp-space whose moment
map is simply the projection on the first factor. The chart above extends this structure
to give a (non-compact) symplectic toric manifold (Mp, ωp, Tp) with moment map
x : Mp → t∗ so that Im x =⋃F∈Fp(P) F̊ , see [14,28].

When (P, ν,�) is rational, �p ⊂ � for all vertex p and the quotient of Tp by the
finite subgroup �

/
�p is the torus T = t

/
�. The quotient map qp : Tp → T gives a

way to glueMp to P×T providing an orbifold uniformizing chart with structure group
�
/
�p. Doing that on all vertices, we obtain the compact symplectic toric orbifold,

(M, ω, T ), associated to (P, ν,�) with moment map x : M → t∗.

Definition 2.1 [13] A rational labeled polytope (P, ν,�) isDelzant if, for each vertex
p,�p = �. In particular, (P, ν,�) is Delzant if and only if the associated symplectic
toric orbifold is a manifold (all orbifold structure groups are trivial).

Remark 2.2 A bigger lattice �′ ⊃ � in t corresponds to the global quotient by the
finite subgroup �′/

� of T = t/�, see [3].

Remark 2.3 If (P, ν,�) is rational, we can replace �p by � in the definition of TF
and set

|M | =⊔F∈F(P)(F × T/TF )
/
∼

with the same equivalence relation as above. The topological space |M | is the under-
lying topological space of M and is a compactification of P × T . The choice of a
labeling specifies an orbifold structure on |M | but |M | does not depend on it.

2.2 Action-Angle Coordinates

To a convex polytope P ⊂ t∗ one can associate a symplectic manifold (P×t, dx∧dθ)

where x = (x1, . . . , xn) : t∗ → Rn and θ = (θ1, . . . , θn) : t → Rn are any sets of
affine coordinates and dx ∧ dθ = ∑n

i=1 dxi ∧ dθi is (trivially) a symplectic form.
More intrinsically, one could consider T ∗P , the cotangent of the polytope itself (recall
that P is open in t∗), endowed with its canonical symplectic structure. The action of
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406 E. Legendre

t on P × t by translation on the second factor is Hamiltonian with moment map
x : P × t → t∗.

Remark 2.4 One can choose (x, θ) to be dual coordinates (or canonical coordinates)
on t∗ × t, defined for a given basis e1, . . . , en of t as xi = 〈x, ei 〉 and θi = 〈θ, e∗

i 〉
where e∗

1, . . . , e
∗
n is the dual basis. Doing so would imply that dx ∧ dθ is a canonical

symplectic form on t × t∗ corresponding to the differential of the Liouville form on
T ∗t = t× t∗ = T ∗t∗. However, this is not essential for our purpose since the obvious
change of coordinates, say from θ to θ ′, on the second factor identifies the structures
dx ∧ dθ and dx ∧ dθ ′.

Given a compact symplectic toric orbifold (M, ω, T, 
) associated to (P, ν,�),
the action-angle coordinates are local coordinates on M̊ = x−1(P) (the subset of M
where T acts freely) identifying locally (M̊, ω|) with (P × t, dx ∧ dθ). Usually, the
existence of such coordinates is proved using a compatible toricKähler structurewhich
is known to exist by the Delzant construction, see [2,3,9]. In view of the construction
presented in Sect. 2.1, it is obvious that there is a T -equivariant symplectomorphism
between (M̊, ω|M̊ ) and (P × T, dx ∧ dθ). The universal cover of M̊ , endowed with
the symplectic form induced from ω|M̊ , is symplectomorphic to (P × t, dx ∧dθ). The

action-angle coordinates are (x, θ) but seen as local coordinates on M̊ on which they
satisfies dθi (X j ) := d θi (did
(e j )) = δi j .

Remark 2.5 Two compact symplectic toric orbifolds (M ′, ω′, T ′, 
′), (M, ω, T, 
)

associated to the same polytope P (assuming the Lie algebra t and t′ are identified but
not the lattices) share the same action-angle coordinates in the sense that the symplectic
manifolds (M̊ ′, ω′|M̊ ′ ) and (M̊, ω|M̊ ) have a common universal cover on which ω′ and
ω pull back as the same symplectic structure (up to a diffeomorphism).

Proposition 2.6 [1] For any strictly convex function u ∈ C∞(P), the metric

gu =
∑

i, j

Gi j dxi ⊗ dx j + Hi jdθi ⊗ dθ j , (6)

with (Gi j ) = Hess u and (Hi j ) = (Gi j )
−1, is a smooth Kähler structure on P × t

compatible with the symplectic form dx ∧ dθ . Conversely, any t-invariant compatible
Kähler structure on (P × t, dx ∧ dθ) is of this form.

2.3 The Boundary Condition

Here again (P, ν) is a labeled polytope (with P compact, convex and simple) and the
functions L1, . . . , Lk are the affine-linear functions defining (P, ν) as dLk = νk and
P = {x ∈ t∗|Lk(x) > 0, k = 1, . . . , d}.
Definition 2.7 A symplectic potential of (P, ν) is a continuous function u ∈ C0(P)

whose restriction to P or to any face’s interior (except vertices), is smooth and strictly
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convex, and u − uo is the restriction of a smooth function defined on an open set
containing P where

uo = 1

2

d∑

k=1

Lk log Lk

is the Guillemin potential. We denote by S(P, ν), the set of symplectic potentials.

The Guillemin potential is a symplectic potential corresponding to the Guillemin
metric [22]. Denote Aff(P,R) the space of real valued affine-linear functions on P .

Proposition 2.8 [3,15] The set of smooth compatible toric (orbifold) Kähler met-
rics on (M, ω, T ) is in one-to-one correspondence with the quotient of S(P, ν) by
Aff(P,R), acting by addition. The correspondence is explicit and given by (6).

The smooth compactification of a metric is a local issue. Even though (P, ν) might
not be rational (for any lattice), a symplectic potential u ∈ S(P, ν) defines, via (6), a
Kähler metric gu on P × t which is t-invariant and thus, for any vertex p, defines a
Kähler metric, still denoted gu , on P × Tp. The boundary condition implies that gu
is the restriction to P × Tp of a smooth Tp-invariant Kähler metric on (Mp, ωp, Tp).
Recall that (Mp,�

/
�p) is an orbifold uniformizing chart near the pre-image of a

vertex in the rational case and that a smooth orbifold metric is defined as a metric
which, on each chart, may be lifted as smooth metric.

Apostolov–Calderbank–Gauduchon–Tønnesen-Friedman gave the following alter-
native description of the boundary condition.

Proposition 2.9 [3] Given a labeled polytope (P, ν), a strictly convex function u ∈
C∞(P) is a symplectic potential of (P, ν) if and only if, denoting H = (Hess u)−1,

• H is the restriction to P of a smooth S2t∗-valued function on P,
• for every k = 1, . . . , d, for every y in the interior of the facet Fk,

Hy(νk, ·) = 0 and dHy(νk, νk) = 2νk, (7)

• the restriction of H to the interior of any face F ⊂ P is a positive definite
S2(t/tF )∗-valued function.

2.4 The Curvature and the Extremal Affine Function

Fixing any Euclidean volume form d	 on t∗, Donaldson [16] pointed out that the
L2(P, d	)-projection of the scalar curvature S(u), given by (1), on the space of
affine linear functions, Aff(P,R), is independent of the choice of u ∈ S(P, ν). The
resulting projection A(P,ν) ∈ Aff(P,R) is the extremal affine function of (P, ν).
Indeed, starting from formula (1) for the scalar curvature, integrating by part twice
and using the boundary condition 7, we get

1

2

∫

P
S(u)xi d	 =

∫

∂P
xidσν =: Zi (P, ν)
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408 E. Legendre

where dσν , when restricted to any facet Fk , is defined by νk ∧ dσν = −d	 .
Choose a basis (e1, . . . , en) of t and set x0 = 1, x1 = 〈e1, ·〉, . . . , xn = 〈en, ·〉.

The extremal affine function of (P, ν) is A(P,ν) =∑n
i=0 Ai xi where the vector A =

(A0, . . . ,An) ∈ Rn+1 is the unique solution of the linear system:

n∑

j=0

Wi j (P)A j = 2Zi (P, ν), i = 0, . . . , n

with Wi j (P) =
∫

P
xi x j d	 and Zi (P, ν) =

∫

∂P
xidσν. (8)

2.5 Complex Coordinates

For aKähler structure (gu, dx∧dθ, Ju) given by (6) on P×t, the set {Ju X1, . . . , Ju Xn,

X1, . . . , Xn, } is a frame of real holomorphic commutative vector fields providing an
identification t ⊕ √−1t 
 T(x,θ)(P × t) and local holomorphic coordinates z =
t + √−1θ where dti = −dcθi .

In the rational case, the complex coordinates z = t + √−1θ are only local on M̊
and are given by the exponential map, see [14]. Actually, in this context, for a point
y ∈ M̊ , the tangent space Ty M̊ 
 t ⊕ √−1t 
 Cn is naturally identified with the
universal cover of M̊ where the covering map is the exponential

M̊ 
 t ⊕ √−1t
/
2π

√−1� 
 (C∗)n .

As explained in the literature (see, e.g., [9,14])we canwrite dx∧dθ in z coordinates
and we find a Kähler potential φ : t → R

dx ∧ dθ =
n∑

i, j=1

∂2φ

∂ti∂t j
dti ∧ dθ j = ddcφ. (9)

In the rational case, φ is a globally defined function on t via the identification provided
by the exponential near a point of M̊ . Changing the base point corresponds to translate
φ by an affine-linear function of t. The correspondence between symplectic potentials
and Kähler potentials is done via the Legendre transform:

u(x) = 〈x, t〉 − φ(t) (10)

where t is the unique point of t such that dφt = x or inversely x is the unique point
of t∗ such that dux = t . The image of the differential of the Kähler potential is the
(open) polytope P (i.e., P = Im(t �→ dφt )).

A symplectic potential u ∈ S(P, ν) provides an identification

�u : P × t → t ⊕ √−1t
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via its differential du : P → t (which is a diffeomorphism since u is strictly convex on
M̊) so the coordinates z = t+√−1θ are globally defined on P×t. In the rational case,
this identification fits with the fact that both spaces are identified with the universal
cover of M̊ .

Remark 2.10 The common boundary behavior of symplectic potentials is equivalent
to the common asymptotic behavior of Kähler potentials via the identification du :
P

∼→ t or the inverse dφ : t ∼→ P (recall that ∂2φ
∂ti ∂t j

(t) = (Hi j (x)) for dux = t). The

Guillemin potential uo gives duo = 1
2

∑d
k=1(log Lk + 1)νk . In particular, the normals

determine the rate of divergence of duo when x → ∂P .

Distinct symplectic potentials u, uo ∈ S(P, ν) lead to distinct Kähler structures on
t ⊕ √−1t

(
(�−1

uo )∗guo , ωo = (�−1
uo )∗dx ∧ dθ

)
and

(
(�−1

u )∗gu, ω = (�−1
u )∗dx ∧ dθ

)

compatible with the same complex structure. Denoting φ and φo the Legendre trans-
form of u and uo respectively, we have ω − ωo = ddc(φ − φo). Going back on P × t,
using �−1

uo we get

(
guo , dx ∧ dθ, Juo

)
and

(
(�−1

u ◦ �uo)
∗gu, (�−1

u ◦ �uo)
∗dx ∧ dθ, Juo

)
.

(11)
The map �−1

u ◦ �uo is a t-invariant smooth diffeomorphism of P × t fixing the
boundary, thanks to the boundary condition on u and uo. In particular, the function
x �→ (φ − φo)(d(uo)x ) is the restriction to P of a smooth function on P .

3 Proof of Theorem 1.3

The proof of Theorem 1.3 relies on the following lemma.

Lemma 3.1 Let (P, ν) be a labeled polytope and let d	 be a volume form on t∗. The
linear map � : Aff(P,R) −→ t defined as

�(P,d	)( f ) =
d∑

k=1

(∫

Fk
f dσν

)
νk (12)

does not depend on the set of normals ν and�(P,d	)( f ) = 0 as soon as f is constant.
Moreover, seen as an endomorphism of t,

�(P,d	) = −vol(P, d	) Id (13)

Proof The first claim (no dependence on ν) is straightforward. Suppose that P =
P

′ ∪ P
′′
such that F = P

′ ∩ P
′′
is a facet in both P ′ and P ′′. Note that P ′ and P ′′

induce opposite orientations on F . If we choose v ∈ t a normal vector to F inward to
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P ′ and denote dσ ′ the form on F such that v ∧ dσ ′ = −d	 then −v ∈ t is inward to
P ′′ and −v ∧ −dσ ′ = −d	 . Therefore,

�(P,d	)( f ) = �(P ′,d	)( f ) + �(P ′′,d	)( f ).

By using a triangulation, that is, n-simplices P1, . . . , PN such that P =⋃N
α=1 Pα and

Pα ∩ Pβ = ∅ if α �= β we get

�(P,d	)( f ) =
N∑

α=1

�(Pα,d	)( f ). (14)

Consider the simplex � = {x ∈ Rn | xi > 0,
∑n

i=1 xi < 1} together with the set
of normals e = {e1, . . . , en, e0 = −∑n

i=1 ei }. Let f ∈ Aff(�,R), we have

�(�,dx1∧···∧dxn)( f ) =
n∑

i=1

(∫

Ei

f dσ −
∫

E0

f dσ

)
ei (15)

where for k = 0, . . . , n, Ek denotes the facet normal to ek .
Thus,

∫
Ei
dσ = ∫E0

dσ = 1
(n−1)! implies that �(�,dx1∧···∧dxn)( f ) = 0 as soon as

f is constant.
On the other hand, for each i = 1, . . . , n, the invertible affine-linear map

ψi : Rn −→ Rn

x �−→
⎛

⎝x1, . . . , xi−1, 1 −
n∑

j=1

x j , xi+1, . . . , xn

⎞

⎠

reverses the orientation of Rn , sends Ei to E0 and satisfies ψ∗
i e0 = ei . It follows that

ψ∗
i dσ|E0 = −dσ|Ei and in particular

∫
E0

f dσ = − ∫Ei
ψ∗
i ( f dσ) = ∫Ei

( f ◦ ψi )dσ .
Thus, by writing f in coordinates f (x) = f0 +∑n

j=1 f j x j , Eq. (15) becomes

�(�,dx1∧···∧dxn)( f ) =
n∑

i, j=1, j �=i

f j

(∫

Ei

x j dσ −
∫

E0

x j dσ

)
ei −

n∑

i=1

fi ei

∫

E0

xi dσ

= −
n∑

i=1

fi ei

∫

E0

xidσ.

Observe that for any i = 1, . . . , n the (n − 1)-form (−1)i+1xi dx1 ∧ · · · ∧ d̂xi ∧
· · · ∧ dxn vanishes identically when restricted to the facets E1, . . . , En and coincides
with xidσ on E0. Hence, we have
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∫

E0

xi dσ = (−1)i+1
∫

�

d (xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn) =
∫

�

dx1 ∧ · · · ∧ dxn

and, seen as an endomorphism ofRn, �(�,dx1∧···∧dxn) = −vol(�, dx1∧· · ·∧dxn)Id.
There is only one class of affinely equivalentn-simplices: for anyn-simplex Pα ⊂ t∗

there is an affine-linear map φα : t∗ → Rn such that φα(Pα) = �. Hence,

�(Pα,d	) = φ∗
α ◦ �

(�,(φ−1
α )∗d	)

◦ (φ−1)∗

= − (φ−1
α )∗d	

dx1 ∧ · · · ∧ dxn
vol(�, dx1 ∧ · · · ∧ dxn)Id

= −vol(Pα, d	)Id. (16)

The lemma follows then from (14). ��
Let P be a n-dimensional polytope in a vector space t∗ of dimension n and denote

by F1, . . . , Fd its facets. Up to translation, one can assume that P contains the origin
and denote ν the (unique) set of inward normals for which the defining functions of
(P, ν) satisfies L1(0) = · · · = Ld(0) = 1. The following observation will be useful.

Lemma 3.2 Let P be a polytope of dimension n, there is a (n + 1)-dimensional cone
of normals ν for which (P, ν) is monotone. Moreover, this cone is parameterized by
R>0 × P via the map

(λ, p) �→
{

λν1

L1(p)
, . . . ,

λνd

Ld(p)

}

where ν is any given set of normals for P with defining function L1, . . . , Ld .

To prove Theorem 1.3, we have to show that there exists only one point p ∈ P such

that
(
P,
{

ν1
L1(p)

, . . . ,
νd

Ld (p)

})
has a constant extremal affine function, see Lemma 3.2.

Notice that any set of normals ν(r) on P corresponds to a r = (r1, . . . , rd) ∈ Rd
>0

via the variation of normals:

ν(r) =
{
1

r1
ν1, . . . ,

1

rd
νd

}
.

Choose a basis e1, . . . , en of t and corresponding coordinates (x1, . . . , xn) on
t∗. By considering the linear system (8), we know that, for a given set of normals
ν(r), (P, ν(r)) has a constant extremal affine function if and only if

A(P,ν(r)) = A0 = Z0(P, ν(r))

W00(P)

which happens if and only if

Wi0(P)Z0(P, ν(r)) = W00(P)Zi (P, ν(r)) i = 1, . . . , n. (17)
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Since (dσν(r))|Fk = rk(dσν)|Fk , the system of Eq. (17) is linear in r and reads,

Wi0(P)

(
∑

l

∫

Fl
dσνrl

)

= W00(P)
∑

l

∫

Fl
xi dσνrl i = 1, . . . , n. (18)

Notation Indices i and j run from 1 to n while indices k and l run from 1 to d.

Observe that, since 〈νk, x〉 = −1 on Fk , the vector field X =∑n
i=1 xi

∂
∂xi

satisfies

ιXd	 = dσν divX = n and divx j X = (n + 1)x j .

In particular, W00 = 1
n

∑
k

∫
Fk
dσν,Wi0 = 1

n+1

∑
k

∫
Fk

xi dσν and the system of
Eq. (17) for (P, ν(r)) becomes, i = 1, . . . , n,

∑

k,l

(
n
∫

Fk
xi dσν

∫

Fl
dσν − (n + 1)

∫

Fk
dσν

∫

Fl
xi dσν

)
rl = 0. (19)

Since we seek monotone polytopes, by Lemma 3.2, we can restrict our attention to
those r = (r1, . . . , rd) ∈ Rd

>0 such that there exists p ∈ M̊ with

r = (L1(p), . . . , Ld(p)).

The system of Eq. (19) becomes, i = 1, . . . , n,

∑

k,l

(
n
∫

Fk
xi dσν

∫

Fl
dσν − (n + 1)

∫

Fk
dσν

∫

Fl
xi dσν

)
(〈νl , p〉 + 1) = 0. (20)

Lemma 3.1 implies that
∑d

k=1

∫
Fk
dσννk = 0, thus Eq. (20) reads

∑

l

∫

Fl
xi dσν〈νl , p〉 = −1

n + 1

∑

l

∫

Fl
xi dσν. (21)

The left hand side is just 〈�(P,d	)(e∗
i ), p〉 where �(P,d	) = −vol(P, d	)Id thanks

to Lemma 3.1. This ensures that there is a unique solution p ∈ t∗ of the linear
system (21) given as

p = 1

(n + 1)vol(P, d	)

(
∑

l

∫

Fl
x1dσν, . . . ,

∑

l

∫

Fl
xndσν

)

= n

(n + 1)
∫
∂P dσν

(∫

∂P
x1dσν, . . . ,

∫

∂P
xndσν

)
. (22)

This solution lies in a segment between the origin and the center of mass of (∂P, dσν)

and thus lies in P̊ . In conclusion, the labeled polytope (P, ν̃)with ν̃i = νi
Li (p)

where p
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is the barycenter of (P, d	) is monotone and has a constant extremal affine function.
This prove Theorem 1.3.

Corollary 3.3 The labeled polytope (P, ν) is monotone with preferred point pν and
has a constant extremal affine function A(P,ν) if and only if

pν = 1
∫
P d	

(∫

P
x1d	, . . . ,

∫

P
xnd	

)
= 1
∫
∂P dσ

(∫

∂P
x1dσ, . . . ,

∫

∂P
xndσ

)
.

Another simple corollary of Theorem 1.3 is that the linear space of r ∈ Rd such
that A(P,ν(r)) is constant meets the interior of the positive quadrant of Rd and thus:

Corollary 3.4 Given a polytope P, there is a cone of dimension d − n of inward
normals ν such that the extremal affine function A(P,ν) is constant.

4 Analysis in the Non-rational Case

4.1 Norms and Integration

Remark 4.1 In what follows, any function f , defined on P or on P , is identified with
its pull-back on P × t and is also denoted f . On suitable subsets, we even identify f
with the corresponding Tp-invariant function on the chart (Mp, ωp, Tp) of a vertex p.

Fixing an orientation on t∗, a lattice � ⊂ t naturally provides a volume form, say
d	�, on t∗ since Gl(�) ⊂ Sl(t). With the dual volume form d	 ∗

� on t, given by
the dual lattice, the volume of the torus T = t/� is (2π)n . As noticed in [22], given
a rational labeled polytope (P, ν,�) associated to the compact symplectic orbifold
(M, ω, T ) with moment map x : M → t∗, Fubini’s Theorem implies that the inte-
gration of a T -invariant function on V ⊂ M is the integration of the corresponding
function on x(V ) ⊂ P times the constant (2π)n . Precisely, given an integrable func-
tion f on U ⊂ P , assuming x−1(U ) is covered by the orbifold uniformizing chart(
Mp,�

/
�p, ψp

)
, see Sect. 2.1, we have

∫

U
f d	� = 1

(2π)n

∫

x−1(U )

f
ωn

n! = 1

|�/�p|
1

(2π)n

∫

ψ−1
p (x−1(U ))

f
ωn
p

n!

= 1
∫
Tp

d	 ∗
�

∫

ψ−1
p (x−1(U ))

f
ωn
p

n! . (23)

If we consider only a labeled polytope (P, ν), there is no preferred lattice but we
can arbitrarily choose a volume form d	 = dx1 ∧ . . .∧dxn . Formula (23) still holds:
for an integrable function f defined on a neighborhoodU of a vertex p of P , denoting
x : Mp → t∗ the moment map of the chart (Mp, ωp, Tp),

∫

U
f d	 = 1

cp

∫

x−1(U )

f
ωn
p

n! (24)
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where cp = ∫Tp d	 ∗ ∈ R>0 is a constant depending on p, on ν and on d	 . The
value (24) does not depend on the vertex p.

On the other hand, given u ∈ S(P, ν), the norm of any derivative |∇gu∇gu · · · ∇gu

ψ |gu is a smooth function on P as soon asψ is a smooth t-invariant function on P × t.
Indeed, |∇gu∇gu · · · ∇guψ |gu is then a Tp-invariant function on Mp for each vertex p
of P and thus, a smooth function on the image of the moment map of (Mp, ωp, Tp)

which is ∪F∈Fp(P) F̊ , see Sect. 2.1. These smooth continuations (one for each vertex)

coincide when overlapping and thus |∇gu∇gu · · · ∇guψ |gu ∈ C∞(P).
The above comments provide a scope for extending standard norms on functional

spaces on P . Namely, given u ∈ S(P, ν) and d	 , we take the pointwise norms of
the derivatives on P × t (or on Mp if applicable) with respect to the Kähler metric
gu while we integrate over P using the volume form d	 . Therefore, we define L p-
norms, Ck-norms, Hölder norms on suitable spaces of functions on P giving rise to
the definition of L p-space, Ck-space and Sobolev spaces. These spaces do not depend
on d	 and coincide respectively with their (T -invariant) namesake on toric Kähler
orbifolds in the rational case. Moreover, even when (P, ν) is non-rational, they behave
as if they were defined on a Kähler compact manifold: Sobolev inequalities, Hölder
inequalities, Schauder estimates (for smooth operators on P), Kondrakov Theorem
hold as well, see [23]. Because (24) is (23) in the rational case, a lot of proofs are
formally the same.

Remark 4.2 The boundary condition on symplectic potentials recalled in Sect. 2.3,
implies that H = (Hess u)−1 is the restriction of a smooth S2t∗-valued function on P .
Thus, as an example ofwhat has been said above, for f ∈ C∞(P), gu(∇gu f,∇gu f ) =∑n

i, j=1 Hi j f,i f, j ∈ C∞(P) (with notation (6)).

4.2 Maximum Principle

The Laplace operator of gu when restricted to the space of t-invariant functions on
P × t is

�u| =
n∑

i, j=1

Hi j
∂2

∂x j∂xi
+ ∂Hi j

∂x j

∂

∂xi
. (25)

Thanks to the boundary behavior of H,�u| is a smooth operator onC∞(P) satisfying

∫

P
h�u f d	 =

∫

P

n∑

i, j=1

Hi j f,i h, j d	 =: 〈d f, dh〉u .

Moreover, �u is a symmetric operator on C2(P) whose kernel consists in constant
functions. It is elliptic on P (but not uniformly elliptic). Let see why the Maximum
Principle holds in this context as well. If L1, . . . , Lk denote the defining affine-linear
functions of P , the operator �u is uniformly elliptic on

Pε = {x ∈ t∗ | Lk(x) > ε, k = 1, . . . , d}
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for any ε > 0. The classical Maximum Principle tells us that a function f ∈ C2(P)

satisfying −�u f ≥ 0 on Pε attains a maximum on the boundary of Pε . Passing to
the limit, we get that f must reach a maximum at a point, say p, of ∂P whenever
−�u f ≥ 0 on P . But if q is a vertex of the face in which lies p (or is p itself if
p is a vertex) then f ∈ C2(Mq)

Tq and reaches a maximum at a point in Mq while
−�u f ≥ 0 as a function on Mq . But �u is the Laplacian for the Kähler metric gu on
Mq . Then, f is constant. In sum, we have the following lemma.

Lemma 4.3 Let f ∈ C2(P) if there exists u ∈ S(P, ν) such that �u f ≤ 0 on P then
f is constant.

Remark 4.4 Of course the same principle holds for any symmetric operator which is
elliptic on P and corresponds to an elliptic operator on each chart Mp.

Remark 4.5 Whenever (P, ν) is rational, to u ∈ S(P, ν) is associated a toric compact
Kähler manifold (M, ω, guT ),�u is self-adjoint on the Hilbert space where it is
defined, that is W1,1(M). Now the subset W1,1(M)T of T -invariant functions is a
closed Hilbert subspace and thus, the restriction of �u is still self-adjoint. This means
that the operator �u| , as written in (25), is self-adjoint onW1,1(P). There is no reason
for that to fail in the non-rational case.

4.3 A Cohomology Group

A classical approach adopted in Kähler geometry of compact manifolds, is to fix a
complex structure J on a compact manifold M and a Kähler class � ∈ H1,1(M,R)

and study the space of compatible Kähler structures (g, ω, J ) with ω ∈ �. (This is
equivalent to fix ω instead, by Moser’s Theorem.) This approach makes sense in our
setting as well even though the cohomology of P× t is trivial because of the following
important fact, explained in [3], due to the combination of a result of Schwarz [34]
and the Slice theorem.

Lemma 4.6 Let (M, ω, g, J, T ) be a compact toric Kähler orbifold with moment
polytope P and moment map x : M → P. Then each T -invariant Ck function on M
is the pull-back by x of a Ck function on P. In particular, x defines a isomorphism
C∞(M)T 
 C∞(P).

As a consequence of Lemma 4.6, we get a way to define the Dolbeaut (1, 1) coho-
mology group.

Lemma 4.7 Let (M, ω, g, J, T ) be a compact toric Kähler orbifold. Two real closed
(1, 1)-forms β, β ′ on M corresponding respectively to potentials f, h ∈ C∞(P) (i.e.,
β = ddc f, β ′ = ddc f ′ on M̊) are cohomologous if and only if f − h ∈ C∞(P).

For a given symplectic potential u ∈ S(P, ν), the potential of the Ricci form
associated to gu has been computed in [6], to be

Ru(x) = 1

2
log det (Hess u)x . (26)
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Remark 4.8 Thus, using Lemma 4.7, (M, ω) is monotone with constant λ > 0 if
and only if for any symplectic potential u ∈ S(P, ν), Ru − λφ̃ ∈ C∞(P) where
φ̃(x) = φ((duo)x ). This condition makes sense in the non-rational case as well and is
equivalent to the fact that (P, ν) is monotone in the sense of Definition 1.2, see [14].

4.4 Compactifiable Forms

In the rational case, the 1-forms dx1, . . . , dxn arewell-defined on the compact orbifold
M and thus a k-form ψ ∈ �k(P) is pulled-back to give a basic k-form on M . Here
basic should be understood as t-basic, meaning that the contraction of ψ and dψ by
any element Xv with v ∈ t both vanish identically. However, not every t-invariant
k-form on P × t corresponds to a form that is the restriction of a smooth form on M .
This is the case forψ ∈ �k(P×t) if, for any k ∈ {1, . . . , d}, the contraction ofψ with
1
Lk

Xνk is smooth on P . To see this, we consider a chart Mp for a vertex p ∈ Fk and

observe that the 1-forms |zi |2dθi are smooth. We call these forms, those who behave
as if they were defined on a compact orbifold, compactifiable forms. Let ψ be such a
t-invariant (2n − 1)-form. Thanks to invariance dψ =∑n

i=1
∂

∂xi
ψi dx ∧ dθ and

∫

P
(dψ)|P =

∫

P
d

(
n∑

i=1

(−1)i+1ψi dx1 ∧ · · · ∧ d̂xi ∧ dxn

)

=
∫

∂P
ψ̂

where ψ̂ =∑n
i=1(−1)i+1ψi dx1 ∧ · · · ∧ d̂xi ∧ dxn . The right hand side is zero since

the condition that the contraction of ψ with 1
Lk

Xνk is smooth on P ∪ F̊k implies that

ψ̂ vanishes on ∂P . Hence, the integration of an exact compactifiable 2n-form is zero
supporting the evidence that compactifiable forms behave as forms living on a compact
manifold.

5 Some Classical Theorems

5.1 Yau’s Theorem

Theorem 5.1 ([7,41])Given a compact complex manifold (M, J ) of Kähler type and
a Kähler class �, for each (1, 1)-form ρ ∈ 2πc1(M) there exists a unique Kähler
form ω ∈ � such that ρ is the Ricci form of the Kähler structure (ω, J ).

Since the Ricci form only depends on the volume form, Yau’s Theorem reads as:
given a smooth function F ∈ C∞(M), satisfying

∫
M eFωn

o = ∫M ωn
o there exists a

unique ψ ∈ C∞(M) such that
∫
M ψ ωn = 0, ωo + ddcψ > 0 and

(ωo + ddcψ)n = eFωn
o . (27)

In termsof potentials, Eq. (27) furnishes aMonge–Ampère type equation. In [7],Calabi
showed the uniqueness of solution of this pde and suggested a continuity method to
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prove the existence. He proved the openness of the set of solutions of (27) while
Yau [41] produced a priori estimates. Good references for this proof are also [23,33].

Let (P, ν) be a labeled polytope with P ⊂ t∗. We fix a symplectic potential uo ∈
S(P, ν), thus the Kähler structure (go, ωo, J ) on t ⊕ it (J denote the endomorphism
of the tangent bundle induced by i), we denote ρo its Ricci form and φo the Legendre
transform of uo. Thanks to Lemma 4.7 and (26), Yau’s Theorem reads:

Theorem 5.2 Given R ∈ C∞(P) such that R − Ruo ∈ C∞(P), there exists u ∈
S(P, ν) such that R = 1

2 log det (Hess u)x and this solution is unique up to addition
by an affine-linear function.

The uniqueness follows from a simple use of the Maximum Principle. To see why
this argument holds in our setting, we recall the explanation given in [21]. Denote �

the Hermitian endomorphism of the tangent defined by ω(X, �(Y )) = ddcψ(X,Y )

and λ1, . . . , λn its real eigenvalues. Equation (27) is

n∏

i=1

(1 + λi ) = 1 + σ1(λ1, . . . , λn) + · · · + σn(λ1, . . . , λn) = eF

where σi is the i-th symmetric elementary function. In particular, ωo + ddcψ > 0 if
and only if 1 + λi > 0 for each i . Now, since

(
n∏

i=1

(1 + λi )

) 1
n

≤ 1

n

n∑

i=1

((1 + λi )) = 1 + σ1(λ1, . . . , λn)

and that σ1 = −�goψ . We get

�goψ ≤ n(1 − e
F
n ). (28)

We conclude, using Sect. 4.2, that in our generalized setting aswell if there is a solution
of Eq. (27) this solution is unique.

With the discussion of Sect. 4, we should be convinced that the proofs of Calabi
and Yau are still valid for non-rational labeled polytopes, but we check the details
a little bit more. We pass to the complex side of the picture in order to rely on the
existing literature on this topic. We consider the path of equations obtained by taking

eFt = et F
1
V�

∫
M etFd	

, where V� = ∫M d	 . The set S of t ∈ [0, 1] such that there exists
a solution of Eq. (27) with F = Ft is non-empty, since, at t = 0, ψ ≡ 0 is a solution.

The linearization of Eq. (27) is

Ḟ �→ �u Ḟ

as explained in [21,23,33]. Hence, the fact that S is open follows the fact that the
Laplacian defines an isomorphism of C∞

0,g(M) = { f ∈ C∞(M) | ∫M f d	g = 0}.
The space of invariant functions
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C∞
0,g(M)T =

{
f ∈ C∞(M)T |

∫

M
f d	g = 0

}
= C∞

0,d	 (P)

is closed under this isomorphism and the Laplacian, when acting on C∞
0,g(M)T ,

reduced the smooth elliptic operator (25). Thus, the argument is valid on non-rational
polytopes as well, see Sect. 4.

To prove that S is a closed subset of [0, 1], one needs a priori estimates on solutions
of the Monge–Ampère Eq. (27). The estimates were found by Yau in [41]. This is a
great piece of work that inspired a lot of subsequent studies. In particular, in [39], Tian
and Zhu used and adapted Yau’s ideas to a more complicated equation corresponding
to Kähler–Ricci solitons. In Sect. 5.3, we discuss how their study carries in our setting.
The uniform bound (the C0 estimate) follows a boot strapping method as explained
in [23] and uses only Stokes’s Theorem, Sobolev embedding Theorem, …that hold in
our setting as explained in Sect. 4.

5.2 Zhu’s Theorem

In [42], Zhu considered the following problem: on a compact Fano manifold (M, J ),
given a Kähler form τ ∈ 2πc1(M) and a holomorphic vector field Z on M , does there
exist a Kähler metric (ω, g) such that

ρg − τ = LZω (29)

and, if it exists, is it unique ? Zhu proved unicity of solution (up to automorphism) and
exhibited necessary and sufficient conditions on the vector field Z for a solution to
exist. In the toric case, for a T -invariant form τ , these conditions are fulfilled whenever
Z = J Xa − i Xa for some a ∈ t. Moreover, in this case, the solution is T -invariant.
Via Lemma 4.7, with the same notation as before (picking a reference metric ωo, . . .)
Zhu’s result reads as follows

Theorem 5.3 Given a convex function R ∈ C∞(P) such that R− Ruo ∈ C∞(P) and
a ∈ t, there exists u ∈ S(P, ν) such that Ru − R = a and this solution is unique up
to addition by an affine-linear function.

In terms of potentials, a solutionψ of Eq. (29), corresponding toωψ = ωo+ddcψ ,
satisfies

det(gıj̄ + ψıj̄) = e fo−θZ−Z .ψ det(gıj̄), gıj̄ + ψıj̄ > 0 (30)

where θZ , fo ∈ C∞(P) satisfies LZωo = ddcθZ and ρo − τ = ddc fo. He observed
that Z .ψ needs to be a real-valued function. In our case, working with t-invariant func-
tions and holomorphic vector field induced from t⊕ it this condition is satisfied. Then
using a continuity method Zhu proved uniqueness and existence of solutions assuming
that τ is positive definite (1, 1)-form. The path of equations he considered starts at
the pde corresponding to Yau’s result. So we get the non-emptyness thanks to Yau’s
Theorem (which holds in our context by the last section). The proof of openness and
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uniqueness use standard arguments and facts on compactmanifold (Stokes, integration
by parts, Maximum Principle, …). A key ingredient for estimates leading to the close-
ness part of Zhu’s proof is an a priori bound on |Z .ψ | on compact Kähler manifolds
as soon as (Im Z).ψ = 0 and ωo + ddcψ > 0. The proof of Zhu use classification of
complex surfaces and cannot be directly adapted to our generalized setting. However,
we only need a weaker result: since ψ(t) = φ(t) − φo(t) and Z = J Xa − i Xa for
some a ∈ t, with respect to the coordinates t + iθ , we have

|(Z .ψ)t | = |dψ(J Xa − i Xa)t | =
∣
∣∣∣∣

n∑

i=1

ai

(
∂φ

∂ti
− ∂φo

∂ti

)∣∣∣∣∣
= |〈a, x〉 − 〈a, xo〉|

≤ max{〈a, x〉 | x ∈ P} − min{〈a, xo〉 | xo ∈ P}. (31)

This gives the desired bound. For the rest of the estimates, Zhu adapts Yau’s argument
and we will see a more complicated version in the next section.

5.3 The Theorem of Wang and Zhu

Theorem 5.4 ([40]) Given a compact Fano toric manifold (M, J, T ) and Za the
Kähler-Ricci vector field (where a ∈ t is defined by (3)). For any λ > 0, there exists a
unique T -invariant Kähler form ω ∈ 2πλc1(M) such that (g, ω, J ) is a Kähler–Ricci
soliton with respect to Za.

Let (P, ν) be a monotone labeled polytope with preferred point p ∈ P and a ∈ t
be defined by (3). Again, we fix a symplectic potential uo ∈ S(P, ν) and use the same
notation as before.

If (g, ω, J ) is a Kähler–Ricci soliton with respect to Z = J Xa − i Xa in the sense
that it satisfies (2) with λ > 0, one can write

− ddc log
ωn

ωn
o

= ddc(θZ − fo + λψ + Z .ψ). (32)

Indeed, this is Eq. (2) with ρ − ρo = −ddc log ωn

ωn
o
and nλ

∫
P d	 = ∫

∂P dσν . Wang
and Zhu used a continuity method on the modified equation

(ωo + ddcψ)n = e fo−θZ−sψ−Z .ψωn
o (33)

for a parameter s ∈ [0, 1]. The normalization imposed is

∫

M
e foωn

o =
∫

M
ωn
o ,

∫

M
eθZ+Z .ψωn =

∫

M
e fo−ψωn

o =
∫

M
ωn
o . (34)

For s = 0, the existence of a unique solution is due to Zhu’s result [42], which holds
in our context see Sect. 5.2. Again the proof of Wang and Zhu to prove uniqueness of
solution and existence under small variation use standard stuff on compact manifold
(Stokes, integration by parts, Maximum Principle, …) that hold in our setting as
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explained in Sect. 4. The uniform estimate follows from some nice arguments of
convexity on the potentials which do not rely on the geometry of M , it is clearly
explained in [40, §3] and [14, §3.4]. The next lemma, stated and proved in [39] is
crucial to get the higher estimates of Wang and Zhu. It is still valid in our generalized
setting as we explain below.

Lemma 5.5 Fix 0 ≤ s ≤ 1. If ψ = φ − φo ∈ C∞(t) is a solution of

(ωo + ddcψ)n = e fo−θZ−sψ−Z .ψωn
o (35)

where φ, φo are the Legendre transforms of u, uo ∈ S(P, ν) and φo is a potential for
ωo then a C0 bound on ψ provides C2 and C3 bounds on ψ .

Remark 5.6 Note that the normalization (34) only affectsψ up to an additive constant,
so the condition Im(t �→ (dφ)t ) = Im(t �→ (dφo)t ) = P is not over determined.

Proof of Lemma 5.5 Equation (35) is (27) with F replaced by fo − θZ − sψ − Z .ψ .
The proof of Tian and Zhu is an adaptation of Yau’s approach. Recall that Zhu gave
an a priori bound on |Z .ψ | that still hold in our context Sect. 5.2. Apart from this
fact, the arguments of Tian–Zhu are essentially local, using the compactness of the
manifold only to get bounds on various continuous functions (depending on (ωo, guo))
appearing in the equations. Applying the principle explained in Sect. 4.1 is then enough
to claim that the estimates hold in our setting.

We present below the details for getting the second order estimate.

As a first step, a local computation shows that, for solutions of (27), a priori bounds
on |F | and |�goψ | give a priori bounds on |ddcψ |go , see [23, Proposition 5.3.4].
Hence, for solutions of (35), it is sufficient to bound |�goψ | and |sψ + Z .ψ |. A bound
on |Z .ψ | follows from (31). It remains to find a bound on |�goψ |. We only have to
find an upper bound to �goψ since

0 < trωo(ωo + ddcψ) = n + �goψ

where trωo is the trace with respect to ωo. Tian and Zhu computed that

�g((n + �ψ) exp(−cψ)) ≥ exp(−cψ)(c + inf
ı�=l

Rıı̄ll̄)(n + �ψ)

(
∑

ı
1

1+ψıı̄

)

+ exp(−cψ)

(
(�( fo − θZ − λψ − Z .ψ) − n2 inf

ı�=l
Rıı̄ll̄) − cn(n + �ψ)

)
(36)

at any point p, where � = �go , Rıj̄kl̄ are components of the curvature tensor of
the metric go with respect to holomorphic coordinates, say z, chosen at p so that
(go)ıj̄ = δıj andψıj̄ = δıjψıı̄ (this convention is used in local computation mentioned
above).

Note that each function appearing in the right hand side of (36) is smooth on P .
In particular, as a consequence of the boundary condition on symplectic potential
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(see Proposition 2.9), the function x �→ Rıı̄ll̄(tx ) is smooth on P . Indeed, changing
the variables from t to x , one gets

Rıı̄ll̄ = −∂2(go)ıı̄
∂zl∂ z̄l

+
∑

p,q

g pq̄
o

∂(go)pı̄
∂zl

∂(go)i q̄
∂ z̄l

= −
∑

r,s

Hls
∂

∂xs

(
Hlr

∂Hii

∂xr

)
+
∑

r,s

Hrs
∂Hil

∂xs

∂Hil

∂xr
. (37)

Now, let p ∈ P be a pointwhere the function exp(−cψ)(n+�ψ) attains itsmaximum.
Then, using (31) and the compactness of P , we can show, as Tian and Zhu did, that at
this point p, there exist C1,C2 > 0 such that

�(− fo + θZ + λψ + Z .ψ) ≤ C1 + C2(n + �ψ). (38)

Inserting this into (36) and using some local formulas (following [41]), there are
constants C3,C4,C5 independent of ψ such that

�g((n + �ψ) exp(−cψ)) ≥ − exp(−cψ)(C3 + C4(n + �ψ))

+C5 exp(−cψ + s

n − 1
ψ)(n + �ψ)n/(n−1). (39)

Then,Yau applied theMaximumPrinciple: the left hand side of (39) is the Laplacian of
a function at its maximum so it must be negative. This argument holds if the maximum
is not attained on the boundary of a manifold (which was obviously the case in Yau
and Tian–Zhu setting). Actually, it works in our setting as well: if p ∈ F ⊂ ∂P where
F is a face containing a vertex, say q, then the left hand side of (39) is the Laplacian
(of a smooth metric gu) of a function defined on Mq (see Sect. 2.3) which attains a
local maximum at p so it must be negative. Hence, we get the Tian–Zhu estimate in
our generalized setting:

(n + �ψs) ≤ C(1 + exp(−s inf
M

ψs)) exp(−c(ψs + inf
M

ψs)) (40)

for constants c,C independent of ψ .
Following the same argument, the C3-estimate of Tian and Zhu holds as well. ��

6 Applications

6.1 Extremal Kähler Equation

Consider the extremal Kähler equation

S(u) = A(P,ν) (41)
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for u ∈ S(P, ν)where S(u) is the scalar curvature of gu , given byAbreu’s formula (1).
If u is solution of (41), then gu is an extremal Kähler metric in the sense of Calabi [8].
In [15], Donaldson proved3 that the cokernel of the linearization of the map u �→ S(u)

in C∞(P) is the set of affine linear functions on P . In particular, denoting N(P) the
cone of normals inward to P , the linearization of the extension of the scalar curvature
map

S :
⋃

ν∈N(P)

S(P, ν) −→ C∞(P)

u �−→ S(u) (42)

is surjective on {A(P,ν) | ν ∈ N(P)} ⊕ (C∞(P)
/
Aff(P,R)

)
. Thus, together with the

fact that
⊔

ν∈N(P) S(P, ν) is path connected, the set E(P) of inward normals ν for
which there exists an extremal Kähler metric gu with u ∈ S(P, ν) is open in N(P).
Gathering this with Theorems 1.3, 1.6 and Corollary 3.4, we get Corollary 1.7.

6.2 Lattice Polytopes and Kähler–Einstein Orbifolds

Lemma 6.1 Let (P, ν) be amonotone labeled polytopewith a constant extremal affine
function. Then, spanZ{ν} is a lattice if and only if P is a lattice polytope.

Proof One direction is straightforward: if ν spans a lattice � there is a toric Kähler–
Einstein orbifold with moment polytope P and the general theory tells us that P is a
lattice polytope.

Conversely, first observe that the assumption implies that there is a lattice containing
both the set of vertices of P and the preferred point pν . To see this, one can use
Corollary 3.3 once t∗ identified with Rn and the lattice spanned by the vertices with
Zn . Denote by �∗ ⊂ t∗ the lattice spanned by pν and the vertices of P . Use a
translation to set pν = 0 (the vertices are still in �∗) and, up to a dilatation of ν,
assume that Ll = 〈νl , ·〉 + 1, l = 1, . . . , d. Since the origin lies in the interior of the
polytope, each facet contains a set of vertices of P which is a (real) linear basis of t∗.
Such a basis lies in �∗ by assumption and, thus, is a rational linear basis of �∗ ⊗ Q.
This implies that 〈νl , q〉 is a rational number for each q ∈ �∗ and l = 1, . . . , d. In
particular, there exists m ∈ N such that the set mν1, . . . ,mνd is included in the dual
lattice of �∗. ��

Corollary 6.2 If P is a polytope with vertices in�∗, and ν is a set of normals given by
Theorem 1.3 then there exists a real number s > 0 such that spanZ{sν} is a sublattice
of �, the dual lattice of �∗.

3 The argument is stated for n = 2 but holds in general.
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6.3 Singular Kähler–Einstein Metrics

Consider a Delzant labeled polytope (P, η,�), see Definition 2.1. The associated
compact symplectic toric orbifold (M, ω, T ) is a smooth manifold (all the orbifold
structure groups are trivial). Denote the moment map x : M → t∗ and recall that
T = t
/
�.

The construction of (M, ω, T ) of Duistermaat–Pelayo [18], recalled in Sect. 2,
allows us to see M as a smooth compactification of P × T . There is an equivariant
symplectomorphism between the open subset of M where the torus acts freely, say
M̊ = x−1(P), and P × T .

Consider another set ν of normals inward to P and a symplectic potential u ∈
S(P, ν). The Kähler metric gu defined by (6) is a t-invariant smooth Kähler metric on
P×t and, thus, defines a smooth Kähler metric, still denoted gu , on P×T , compatible
with the symplectic form dx ∧ dθ . Hence, via the equivariant symplectic embedding

(P × T, dx ∧ dθ, T ) = (M̊, ω|M̊ , T ) ⊂ (M, ω, T ),

gu is a smooth Kähler metric on M̊ compatible with the symplectic form ω|M̊ . This
metric gu is not the restriction of a smooth metric on M unless ν = η.

Remark 6.3 If ν spans a sub-lattice of �, the Kähler structure (gu, ω|M̊ , Ju) compact-
ifies smoothly (in the orbifold sense) on the orbifold associated to (P, ν,�′).

We now describe the singular behavior of gu along the toric submanifolds corre-
sponding to the pre-image of the interior of the facets of P . For each facet Fk , there
is a real number ak > 0 such that

akνk = ηk . (43)

The type of the singularity along x−1(F̊k) only depends on ak and to understand
which types of singularity may occur we only need to study the possibilities on a
sphere. To see this, we can use the alternative definition of S(P, ν) of [3], recalled in
Sect. 2.3.

Let P = (0, 2) ⊂ R and ν1 = 1
a η1 where η1 is the generator of S1. Thus,

(P, {η1,−η1}) is the labeled polytope of the sphere S2 of volume 4π . Let a neighbor-
hood of the origin U ⊂ R2 be a S1-equivariant chart around the south pole x−1(0).
With respect to polar coordinates (r, θ) on U (with the period 2π given by η1 as in
(5)), we have x = 1

2r
2 and θ = θ . On (0, 2) × S1 the metric gu is

gu = dx ⊗ dx

2ax + O(x2)
+ (2ax + O(x2))dθ ⊗ dθ. (44)

The change of coordinates in the metric (44) gives

gu = 1

a

(
dr ⊗ dr + a2r2dθ ⊗ dθ

)− r2dr ⊗ dr

a(a + O(r2))
+ O(r4)dθ ⊗ dθ (45)
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as computed in [3]. The last two terms are smooth and vanish at r = 0. Therefore

if a < 1, gu has a singularity of conical type and angle 2aπ,

if a = 1, gu is smooth,

if a > 1, gu has a singularity characterized by a large angle 2aπ > 2π. (46)

Consequently, we obtain

Proposition 6.4 Let (M, ω, T ) be a smooth compact symplectic toric manifold asso-
ciated to the Delzant labeled polytope (P, η,�). For any set ν of normals inward to P,
the symplectic potentials in S(P, ν) define T -invariant, compatible, Kähler metrics
on the open dense subset where the torus acts freely via formula (6). The behavior of
these metrics along the pre-image of the interior of the facet F̊k only depends on the
real number ak > 0, defined by akνk = ηk , as in (46).

Proposition 6.5 Let (M, ω, T ) be a smooth compact symplectic toric manifold asso-
ciated to the Delzant labeled polytope (P, η,�). Fix ν, a set of inward normals such
that (P, ν) is monotone and has a constant extremal affine function equals to 2n.

For any λ > 0, there exists a T -invariant Kähler–Einstein metric gλ smooth on
the open dense subset where the torus acts freely, compatible with ω and with scalar
curvature equals to 2nλ. The type of singularity of gλ along the pre-image of the
interior of the facet F̊k is one of the 3 cases of (46) with ak defined by λakνk = ηk .
In particular, for λ small enough, the singularity along the pre-image of the interior
of any facet is of conical type.

Remark 6.6 Proposition 6.4 gives a way to construct plenty of singular metrics. For
instance, a dilatation of the set of normals, sν with s > 0, corresponds in multiplying
the volume (with respect to gu ∈ S(P, sν)) of the orbits of T in M by a factor s

n
2 .

Now, we interpret the Kähler metric gu has a singular Kähler metric in the usual
sense (smooth complex structure and singular symplectic form). Indeed, the singularity
of �−1

u ◦ �uo : P × t → P × t (see notation (11) in Sect. 2.5) when u ∈ S(P, ν) and
uo ∈ S(P, η) lies along the boundary ∂P and only depends on the ratio of η and ν.
That is,

((�−1
u ◦ �uo)

∗gu, (�−1
u ◦ �uo)

∗dx ∧ dθ, Juo)

is a smooth Kähler metric on P × t = M̊ compatible with Juo and the complex
structure Juo admits a smooth compactification on M . We take back the local setting:
U ⊂ R2, a S1-equivariant chart around the south pole x−1(0) as above, with the
polar coordinates (r, θ) and singular Kähler structure (gu, Ju) given by (47) for some
a > 0. For our purpose (which is analyzing the local singularity), the smooth Kähler
structure (guo , dx ∧dθ, Juo) can be identified to the standard one onR

2 
 C, namely
(dr2 + r2dθ2, ω = rdr ∧ dθ, i), and the smooth part of gu can be forgotten. We
put gu = 1

a

(
dr ⊗ dr + a2r2dθ ⊗ dθ

)
. Moreover, we don’t need to find explicitly

�−1
u ◦ �uo but only a diffeomorphism of U\{0} which takes gu to a metric which is
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Kähler with respect to the standard complex structure onU\{0}. Consider z = r1/aeiθ

as in [17] to see that

a|z|2(a−1)dz ⊗ dz̄ = 1

a

(
dr ⊗ dr + a2r2dθ ⊗ dθ

)
− idx ∧ dθ = gu − iω. (47)

Up to the multiplicative factor a, the (1, 1)-form

ωa = a|z|2(a−1)idz ∧ dz̄

is either:

singular of conical type and angle 2aπ, when a < 1

smooth and positive definite, when a = 1

smooth but not positive definite, when a > 1. (48)

6.4 Singular Kähler–Einstein Metrics on the First Hirzebruch Surface

Let P be the convex hull of the points (1, 0), (1, 1), (2, 2), (2, 0) in R2. Consider the
two sets of inward normals:

η =
{
η1 =
(
1
0

)
, η2 =

(−1
0

)
, η3 =

(
0
1

)
, η4 =

(
1

−1

)}
,

ν(C) =
{
ν1 = C

7

5

(
1
0

)
, ν2 = C

7

4

(−1
0

)
, ν3 = C

(
0
1

)
, ν4 = C

(
1

−1

)}
.

One can check that (P, η) satisfies the Delzant condition and corresponds to the
first Hirzebruch surface P(O + O(−1)). On the other hand, (P, ν(C)) is monotone
and has constant extremal affine function. Actually, see [24], we explicitly know the
form of the Kähler–Einstein metric on quadrilaterals in terms of the inverse of the
Hessian of the potential: using notation (6), it reads

(Hi j ) = x1
x21 − x2

(
A(x1) + B(x2/x1) (x2/x1)A(x1) + x1B(x2/x1)

(x2/x1)A(x1) + x1B(x2/x1) (x2/x1)2A(x1) + x21 B(x2/x1)

)

(49)
with

A(x) = −2C

7
(x − 1)(x − 2)(2 + 3x),

B(y) = −2Cy(y − 1). (50)

Remark 6.7 The case C = 1 gives a singularity of angle 2π5/7 along the section
at infinity of P(O + O(−1)) which is precisely the angle of singularity obtained by
Székelyhidi [36] in the limit case of a construction (using Calabi ansatz) of metrics
on P(O + O(−1)) satisfying Ric(ω) ≥ 6

7ω, see also [29,30].
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