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1 Introduction

Let g be a Lie algebra endowed with an endomorphism J : g −→ g such that J 2 =
−Id. The endomorphism J is a complex structure if the integrability condition

[J X, JY ] = J [J X,Y ] + J [X, JY ] + [X,Y ]

is satisfied for any X,Y ∈ g; equivalently, the i-eigenspace g1,0 of J in gC = g⊗R C

is a complex subalgebra of gC. Nilpotent Lie algebras g admitting a complex structure
were classified by Salamon [29] up to dimension 6. More recently, Andrada, Barberis
and Dotti classified in [2,3] the 6-dimensional Lie algebras g having a complex struc-
ture J of abelian type, that is, the complex subalgebra g1,0 is abelian, or equivalently
[J X, JY ] = [X,Y ] for any X,Y ∈ g.

A related question is to determine the complex structures on a given Lie algebra g
up to isomorphism in the following sense. Two complex structures J and J ′ on g are
equivalent if there exists an automorphism F : g −→ g of the Lie algebra such that
J = F−1 ◦ J ′ ◦ F . The latter condition is equivalent to say that F , extended to gC,
satisfies F(gJ1,0) ⊂ gJ

′
1,0. If C(g) denotes the space of complex structures on g then

C(g)/Aut(g) parameterizes the equivalence classes of complex structures on g.
A classification of abelian complex structures in dimension 6 is given in [2,3]. Some

partial results on nilpotent Lie algebras can be found in several papers [7,20,31,32],
although to our knowledge there is no complete classification of complex structures
on 6-dimensional nilpotent Lie algebras. This is our first goal here.

The classification of complex structures on nilpotent Lie algebras provides a classi-
fication of invariant complex structures on nilmanifolds. Let M = �\G be a nilmani-
fold, i.e., a compact quotient of a simply-connected nilpotent Lie groupG by a lattice�

of maximal rank. If J is a complex structure on the Lie algebra g ofG, then it gives rise
to a left-invariant complex structure on G which descends to a complex structure on
the quotient M in a natural way. Several interesting aspects of this complex geometry
have been investigated, as for instance the Dolbeault cohomology [8,14,27], com-
plex deformations [7,9,21,28] or the existence of special Hermitian metrics [17,31].
Recently, it is proved in [5] that the canonical bundle of any complex nilmanifold is
holomorphically trivial and some applications to hypercomplex geometry are given.

As a first application of the classification of complex structures we study the behav-
ior of the Frölicher sequence [18]. Recall that the Frölicher sequence Er (M, J ) of a
complex manifold (M, J ) is the spectral sequence associated to the double complex
(�p,q(M, J ), ∂, ∂̄), where ∂ + ∂̄ = d is the decomposition, with respect to J , of
the exterior differential d. The first term E1(M, J ) is precisely the Dolbeault coho-
mology of (M, J ) and after a finite number of steps the sequence converges to the de
Rham cohomology of M . The first examples of compact complex manifolds for which
E2 � E∞ were independently found in [10] and [22]. The examples in [10] are com-
plex nilmanifolds of complex dimension 3, which is the lowest possible dimension for
which the Frölicher sequence can be non-degenerate at E2. More recently, Rollenske
has constructed in [26] complex nilmanifolds for which the sequence {Er } can be
arbitrarily non-degenerate. The behavior of the Frölicher sequence has been studied
for some other complex manifolds [15,30], but as far as we know its general behavior
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for complex nilmanifolds has not been studied, although some partial results can be
found in [11–13]. Here we study the Frölicher spectral sequence for general invariant
complex structures on a 6-dimensional nilmanifold. A remarkable consequence of this
study is the existence of a compact complex manifold on which the ∂∂̄-lemma fails
but E1 ∼= E∞ and the Hodge diamond is symmetric.

As a second application of the classification of complex structures we consider
strongly Gauduchon (sG for short) metrics in the sense of Popovici [23,24]. Any
balanced Hermitianmetric is sG and any sGmetric is a Gauduchonmetric [19]. In [25]
the relation between the degeneration of the Frölicher sequence at E1 and the existence
of sG metrics is studied, showing that these two notions are unrelated. We study
the existence of sG or balanced metrics on 6-nilmanifolds in relation to the general
behavior of the Frölicher sequence. Moreover, Popovici proved in [24] that the sG
property of compact complex manifolds is open under holomorphic deformations, and
conjectured in [25] that the sG property and the balanced property of compact complex
manifolds are closed under holomorphic deformations.We construct a counterexample
to both closedness conjectures.

The paper is structured as follows. In Sect. 2wefirst review some general facts about
complex structures on a 6-dimensional nilpotent Lie algebra g. By [29] such gmust be
isomorphic toh1, . . . , h16, h

−
19 orh

+
26 (seeTheorem2.1 for a description of theLie alge-

bras). Of special interest is h5 because it corresponds to the real Lie algebra underlying
the Iwasawamanifold, whose complex geometry is studied in [20]. For the first sixteen
classes the complex structure is necessarily of nilpotent type in the sense of [14]. We
classify the non-abelian nilpotent complex structures on 2-step and 3-step nilpotent
Lie algebras in Sects. 2.1 and 2.2, respectively. Then, using the classification of non-
nilpotent complex structures obtained in [32] as well as the classification of abelian
structures given in [2,3], we present in Tables 1 and 2 of Sect. 3 the complete classifica-
tion of complex structures on 6-dimensional nilpotent Lie algebras up to equivalence.

Since J equivalent to J ′ implies that the terms in the associated Frölicher sequences
are isomorphic, as an application we study the general behavior of the Frölicher
sequence Er (�\G, J ) in Sect. 4 (see Theorem 4.1 for details). We find that E2 � E∞
if and only if the underlying Lie algebra g ∼= h13, h14 or h15. Moreover, E1 ∼= E2 �

E3 ∼= E∞ for any J when g ∼= h13 or h14. In contrast, h15 has a rich complex geome-
try with respect to Frölicher sequence because it admits complex structures for which
E1 � E2 ∼= E∞, E1 ∼= E2 � E3 ∼= E∞ or even E1 � E2 � E3 ∼= E∞. In Exam-
ple 4.8 we give a family Jt of non-equivalent complex structures on h15 along which
the Frölicher sequence has these three behaviors.We also show that a nilmanifold with
underlying Lie algebra h6 has a complex structure with degenerate Frölicher sequence
and satisfying h p,q

∂̄
= hq,p

∂̄
for every p, q ∈ N, which provides an answer to a question

recently posed in [4] (see Proposition 4.3).
In Sect. 5 we study the existence of sG metrics on 6-dimensional nilmanifolds

endowed with an invariant complex structure and show that the underlying Lie alge-
bra must be isomorphic to h1, . . . , h6 or h

−
19. It is also proved that the existence of sG

metric implies the degeneration of the Frölicher sequence at E2. Using [33] we give
in Proposition 5.5 a classification of complex structures having sG metrics but not
admitting any balanced metric, as well as a classification of nilpotent complex struc-
tures admitting balanced metric (see Table 3). Based on the complex geometry of the
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Invariant Complex Structures on 6-Nilmanifolds 255

Lie algebra h4, in Theorem 5.9 we show that neither the sG property nor the balanced
property of compact complex manifolds are closed under holomorphic deformation.

2 Nilpotent Complex Structures on 6-Dimensional Nilpotent Lie Algebras

Given a Lie algebra g, let g∗
C
be the dual of the complexification gC of g. If J : g −→ g

is an endomorphism such that J 2 = −Id, then there is a natural bigraduation induced
on

∧∗ g∗
C

= ⊕p,q
∧p,q

(g∗), where the spaces
∧1,0

(g∗) and
∧0,1

(g∗), which we
shall also denote by g1,0 and g0,1, are the eigenspaces of the eigenvalues ±i of J as an
endomorphism of g∗

C
, respectively. Now, if d : ∧∗ g∗

C
−→ ∧∗+1 g∗

C
is the extension

to the complexified exterior algebra of the usual Chevalley–Eilenberg differential, then
it is well known that J is a complex structure if and only if π0,2 ◦ d|g1,0 ≡ 0, where

π0,2 : ∧2 g∗
C

−→ ∧0,2
(g∗) denotes the canonical projection.

We shall focus on nilpotent Lie algebras (NLA for short). Salamon has proved
in [29] the following equivalent condition for the integrability of J on a 2n-dimensional
NLA g: J is a complex structure on g if and only if g1,0 has a basis {ω j }nj=1 such that

dω1 = 0 and

dω j ∈ I(ω1, . . . , ω j−1), for j = 2, . . . , n,

where I(ω1, . . . , ω j−1) is the ideal in
∧∗ g∗

C
generated by {ω1, . . . , ω j−1}.

Recall that a complex structure J on a 2n-dimensional NLA g is nilpotent [14] if
there exists a basis {ω j }nj=1 for g

1,0 satisfying dω1 = 0 and

dω j ∈
∧

2 〈ω1, . . . , ω j−1, ω1, . . . , ω j−1〉, for j = 2, . . . , n. (1)

An important special class of nilpotent complex structures is the abelian class con-
sisting of those structures J satisfying [J X, JY ] = [X,Y ], for all X,Y ∈ g, or
equivalently d(g1,0) ⊂ ∧1,1

(g∗). They are also characterized by the fact that the
subalgebra g1,0 is abelian.

In six dimensions, the classification of NLAs in terms of the different types of
complex structures that they admit is as follows.

Theorem 2.1 [29,31]Let g be anNLAof dimension 6. Then, g has a complex structure
if and only if it is isomorphic to one of the following Lie algebras:

h1= (0, 0, 0, 0, 0, 0),
h2= (0, 0, 0, 0, 12, 34),
h3= (0, 0, 0, 0, 0, 12 + 34),
h4= (0, 0, 0, 0, 12, 14 + 23),
h5= (0, 0, 0, 0, 13 + 42, 14 + 23),
h6= (0, 0, 0, 0, 12, 13),
h7= (0, 0, 0, 12, 13, 23),
h8= (0, 0, 0, 0, 0, 12),
h9= (0, 0, 0, 0, 12, 14 + 25),

h10= (0, 0, 0, 12, 13, 14),
h11= (0, 0, 0, 12, 13, 14 + 23),
h12= (0, 0, 0, 12, 13, 24),
h13= (0, 0, 0, 12, 13 + 14, 24),
h14= (0, 0, 0, 12, 14, 13 + 42),
h15= (0, 0, 0, 12, 13 + 42, 14 + 23),
h16= (0, 0, 0, 12, 14, 24),
h−
19= (0, 0, 0, 12, 23, 14 − 35),

h+
26= (0, 0, 12, 13, 23, 14 + 25).
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256 M. Ceballos et al.

Moreover:

(a) Any complex structure on h−
19 and h+

26 is non-nilpotent;
(b) For 1 ≤ k ≤ 16, any complex structure on hk is nilpotent;
(c) Any complex structure on h1, h3, h8 and h9 is abelian;
(d) There exist both abelian and non-abelian nilpotent complex structures on

h2, h4, h5 and h15;
(e) Any complex structure on h6, h7, h10, h11, h12, h13, h14 and h16 is not abelian.

Remark 2.2 Here we use the usual notation, i.e., for instance h2 = (0, 0, 0, 0, 12, 34)
means that there is a basis {e j }6j=1 satisfying de1 = de2 = de3 = de4 = 0, de5 =
e1 ∧ e2, de6 = e3 ∧ e4; equivalently, the Lie bracket is given in terms of its dual basis
{e j }6j=1 by [e1, e2] = −e5, [e3, e4] = −e6.

Let g be a Lie algebra endowed with two complex structures J and J ′. We recall
that J and J ′ are said to be equivalent if there is an automorphism F : g −→ g of
the Lie algebra such that J ′ = F−1 ◦ J ◦ F , that is, F is a linear automorphism such
that F∗ : g∗ −→ g∗ commutes with the Chevalley–Eilenberg differential d and F
commutes with the complex structures J and J ′. The latter condition is equivalent to
say that F∗, extended to the complexified exterior algebra, preserves the bigraduations
induced by J and J ′.

Notice that if g1,0J and g1,0J ′ denote the (1, 0)-subspaces of g∗
C
associated to J and

J ′, then the complex structures J and J ′ are equivalent if and only if there is aC-linear
isomorphism F∗ : g1,0J −→ g1,0J ′ such that d ◦ F∗ = F∗ ◦ d.

In dimension 6, by Theorem 2.1, if the NLA g admits complex structures then all
of them are either nilpotent or non-nilpotent. The classification of abelian complex
structures up to equivalence is obtained in [2,3], whereas the non-nilpotent complex
structures are classified in [32] (see Sect. 3 for details). Therefore, it remains to study
the equivalence classes of non-abelian nilpotent complex structures. In order to pro-
vide such classification, our starting point is the following reduction of the nilpotent
condition (1).

Proposition 2.3 [31] Let J be a nilpotent complex structure on anNLA g of dimension
6. There is a basis {ω j }3j=1 for g

1,0 satisfying

⎧
⎨

⎩

dω1 = 0,
dω2 = ε ω11̄ ,

dω3 = ρ ω12 + (1 − ε)Aω11̄ + B ω12̄ + C ω21̄ + (1 − ε)D ω22̄,

(2)

where A, B,C, D ∈ C and ε, ρ ∈ {0, 1}.

Here ω jk (resp. ω jk) means the wedge product ω j ∧ ωk (resp. ω j ∧ ωk), where
ωk indicates the complex conjugated of ωk . From now on, we shall use a similar
abbreviated notation for “basic” forms of arbitrary bidegree.

Notice that in the equations (2) the complex structure is not abelian if and only if
ρ = 1. Next we study the 2-step and 3-step cases in Sects. 2.1 and 2.2, respectively.
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2.1 Non-Abelian Complex Structures in the 2-Step Case

Any 6-dimensional 2-step NLA g has first Betti number at least 3, and if it is equal to 3
then necessarily the coefficient ε in (2) is non-zero. We consider firstly ε = 0, i.e., the
Lie algebra has first Betti number ≥ 4, and we will finish the section by considering
the remaining case ε = 1.

The following proposition provides a further reduction of the equations (2) when
ε = 0 and the structure is not complex-parallelizable. Recall that J is complex-
parallelizable if [J X,Y ] = J [X,Y ], for all X,Y ∈ g, or equivalently d(g1,0) ⊂∧2,0

(g∗). These structures are the natural complex structures of complex Lie algebras,
and in six dimensions they correspond to ε = A = B = C = D = 0 and the possible
Lie algebras are h1 (for ρ = 0) and h5 (for ρ = 1).

Proposition 2.4 Let J be a complex structure on a 2-step NLA g of dimension 6 with
first Betti number≥ 4. If J is not complex-parallelizable, then there is a basis {ω j }3j=1

for g1,0 such that

dω1 = dω2 = 0, dω3 = ρ ω12 + ω11̄ + λ ω12̄ + D ω22̄, (3)

where ρ ∈ {0, 1}, λ ∈ R such that λ ≥ 0, and D ∈ C with Im D ≥ 0. Moreover, if
we denote x = Re D and y = Im D, then:

(i) If λ = ρ, then the Lie algebra g is isomorphic to
(i.1) h2, for y > 0;
(i.2) h3, for ρ = y = 0 and x �= 0;
(i.3) h4, for ρ = 1, y = 0 and x �= 0;
(i.4) h6, for ρ = 1 and x = y = 0;
(i.5) h8, for ρ = x = y = 0.

(ii) If λ �= ρ, then the Lie algebra g is isomorphic to
(ii.1) h2, for 4y2 > (ρ − λ2)(4x + ρ − λ2);
(ii.2) h4, for 4y2 = (ρ − λ2)(4x + ρ − λ2);
(ii.3) h5, for 4y2 < (ρ − λ2)(4x + ρ − λ2).

Proof In [31, Lemma 11] it is proved that under these conditions there is a basis
{σ j }3j=1 for g

1,0 such that

dσ 1 = dσ 2 = 0, dσ 3 = ρ σ 12 + σ 11̄ + B σ 12̄ + D σ 22̄, (4)

where B, D ∈ C and ρ ∈ {0, 1}.
If B �= 0 thenwe can take any non-zero solution z of z̄ B

|B| = z, and the equations (4)

reduce to (3) with λ = |B|with respect to the new basis {ω1 = z σ 1, ω2 = z̄ σ 2, ω3 =
|z|2 σ 3}.

Consider now B = λ with λ ∈ R
≥0 in (4). If D �= 0, then with respect to the new

basis {ω1 = −D̄ σ 2, ω2 = σ 1 + λ σ 2, ω3 = D̄ σ 3} we get (3) with D̄ instead of D.
Finally, the secondpart of the proposition follows directly from [31, Proposition 13].

��
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From now on we consider ρ = 1. By Proposition 2.4 any two complex structures
on the Lie algebra h6 are equivalent. Thus, it remains to classify up to equivalence
the non-abelian structures J on h2, h4 and h5. Any such J is identified with a triple
(1, λ, D) through equations (3) with ρ = 1, λ ≥ 0 and Im D ≥ 0.

We will say that two triples (1, λ, D) and (1, λ′, D′) are equivalent, denoted by
(1, λ, D) ∼ (1, λ′, D′), if the corresponding structures J and J ′ are equivalent. So,
the problem reduces to classify triples (1, λ, D) up to equivalence.

Lemma 2.5 Let us consider two triples (1, λ, D) and (1, t, E) as above.

(i) If D = 0 then, (1, t, E) ∼ (1, λ, 0) if and only if t = λ and E = 0.
(ii) If D �= 0 then, (1, t, E) ∼ (1, λ, D) if and only if there exist non-zero complex

numbers e, f such that E = De/ē and

( | f |2
ē

− 1

)

(D̄ē − De)2 = (
λ f̄ − t f

) (
λD̄ē f − t De f̄

)
. (5)

Proof The structure equations corresponding to the triples (1, λ, D) and (1, t, E) are

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λω12̄ + Dω22̄,

dσ 1 = dσ 2 = 0, dσ 3 = σ 12 + σ 11̄ + tσ 12̄ + Eσ 22̄,

where λ, t ≥ 0 and Im D,Im E ≥ 0. Then (1, t, E) ∼ (1, λ, D) if and only if there
exists an automorphism of the Lie algebra preserving the complex equations, i.e., there
is (mi j ) ∈ GL(3, C) such that σ i = ∑3

j=1mi j ω
j and

dσ i =
3∑

j=1

mi j dω j , i = 1, 2, 3.

These conditions are equivalent to

σ 1 = a ω1 + bω2, σ 2 = cω1 + f ω2, σ 3 = m31 ω1 + m32 ω2 + eω3,

and ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(I) e = a f − bc,
(II) e = |a|2 + t ac̄ + E |c|2,
(III) λe = ab̄ + t a f̄ + Ec f̄ ,
(IV) 0 = āb + t bc̄ + Ec̄ f,
(V) De = |b|2 + t b f̄ + E | f |2.

(6)

Notice that m13 = m23 = 0, e �= 0 and the coefficients m31 and m32 are not relevant.
It is straightforward to see that coefficient f must be non-zero (otherwise λ = t

and D = E) and so we can express a as

a = e + bc

f
.
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First of all, let us suppose that D = 0. Replacing a in (IV) and using (V) we obtain
that b = 0 and therefore E = 0 by equation (V). Combining (I) and (III) we get that
λ f = t f̄ . Since λ and t are real non-negative numbers, we conclude that λ = t , i.e.,
(1, λ, 0) defines an equivalence class for every λ ≥ 0. This completes the proof of (i).

We suppose next that D �= 0. In order to solve (6) we transform it into an equivalent
system by doing the following substitutions. Replacing a in equation (IV) and using
(V) we can express

c̄ = − bē

De
.

Next, in (II) we can substitute a and c and use again (V) to obtain that

De = Eē,

which implies in particular |D| = |E |. Notice that since D �= 0we can assume E �= D̄
by Proposition 2.4. Now, c̄ = −b/E . Proceeding in a similar way in equation (III) we
get

b̄ = λ f − t f̄

1 − D/Ē
.

Finally, using the expressions of a, b, c above, equation (V) is equivalent to (5). There-
fore, given e, f ∈ C − {0} satisfying De = Eē and (5), it is always possible to find
a, b, c ∈ C such that system (6) is satisfied. ��
Remark 2.6 As a consequence of Lemma 2.5 (ii), when D �= 0 a necessary condition
for (1, t, E) to be equivalent to (1, λ, D) is that |D| = |E |. Moreover, to find an
equivalent complex structure (1, t, E) it suffices to find t ≥ 0 and e, f ∈ C − {0}
satisfying (5), because E is necessarily given by E = De/ē.

Corollary 2.7 Let E �= D̄. If (1, t, E) ∼ (1, λ, D) then, t = λ if and only if E = D.

Proof By hypothesis D cannot be zero, so we are in case (ii) of Lemma 2.5. Suppose
first that λ = t in (5), i.e.,

(D̄ē − De)2
( | f |2

ē
− 1

)

= λ2
(
f̄ − f

) (
D̄ē f − De f̄

)
.

The right hand side of the previous equality is a real number. If it is zero then e = | f |2
(otherwise De = D̄ē would imply E = D̄); thus, e is a real number and since
E = De/ē we conclude that D = E . On the other hand, if it is a non-zero real

number, then | f |2
ē − 1 must be a real number and then e ∈ R and again D = E .

Conversely, let us suppose that E = D �= 0. In this case e ∈ R and by (5) we can
express it as

e = | f |2 −
(
λ f̄ − t f

) (
λD̄ f − t D f̄

)

(D̄ − D)2
.
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Notice that by hypothesis D �= Ē = D̄. To ensure that e ∈ R it must happen that
(λ f̄ − t f )(λD̄ f − t D f̄ ) ∈ R or equivalently,

| f |2(λ2 − t2)(D̄ − D) = 0.

As f (D̄ − D) �= 0 the only possibility to solve the previous equation is λ = t . ��
From the previous results it follows that it remains to consider the case when D �= 0

and λ �= t . The next lemma provides a simplification of equation (5).

Lemma 2.8 Let us suppose that λ �= t, D = x + iy �= 0 and e ∈ C − {0}. Then,
(1, λ, D) ∼ (1, t, De/ē) if and only if

4y2 − (t2 − λ2)(4x + t2 − λ2) ≥ 0. (7)

Proof By Lemma 2.5 (ii), we know that (1, λ, D) ∼ (1, t, De/ē) if and only if (5) is
satisfied. This condition reads, with respect to H = De, as

(
H̄ − H

)2
(
D̄| f |2 − H̄

)
= H̄

(
λ f̄ − t f

) (
λ f H̄ − t f̄ H

)
.

Taking real and imaginary parts in the expression above we obtain

⎧
⎪⎨

⎪⎩

4H2
2 (H1 − x | f |2) =| f |2(t2 − λ2)H2

2 + | f |2(t2 + λ2)H2
1−2λt ( f 21 − f 22 )H2

1 − 4λt H1H2 f1 f2,

4H2
2 (y| f |2 − H2) =2λH2

[
t H1( f 21 − f 22 ) + 2t H2 f1 f2 − λ| f |2H1

]
,

(8)

where H = H1 + i H2 and f = f1 + i f2. Observe that H2 �= 0, otherwise we get a
contradiction using the first equation of (8).

Substituting the second equation of (8) in the first one and replacing H by De, we
can express the system (8) as

{
e21(t

2 − λ2) + 4ye1e2 + e22(t
2 − λ2 + 4x) = 0,

2H2(y| f |2 − H2) = λ
[
t H1( f 21 − f 22 ) + 2t H2 f1 f2 − λ| f |2H1

]
,

(9)

where e = e1 + ie2.
To solve the first equation in (9) as a second degree equation in e1 we need the

discriminant to be greater than or equal to 0, i.e., 4y2 − (t2 − λ2)(4x + t2 − λ2) ≥ 0,
which is precisely condition (7).

Now, suppose that (7) holds. Then we obtain that

e1 = e2β

λ2 − t2
, e = e2

(
β

λ2 − t2
+ i

)

,

where β = 2y+√
4y2 − (t2 − λ2)(4x + t2 − λ2) and e2 is determined by the second

equation in (9). ��

123



Invariant Complex Structures on 6-Nilmanifolds 261

Corollary 2.9 Let us suppose that λ �= t and D = x + iy �= 0. If (7) holds then

(1, λ, D) ∼
(

1, t, D

(
β2 − (λ2 − t2)2

β2 + (λ2 − t2)2
+ 2β(λ2 − t2)

β2 + (λ2 − t2)2
i

))

,

where β = 2y + √
4y2 − (t2 − λ2)(4x + t2 − λ2).

Comparing the inequalities (ii.1) and (ii.2) in Proposition 2.4 with the condition (7),
we observe that for h2 and h4 it is possible to take t = 1 in the previous corollary
in order to get equivalences with the complex structures (i.1) and (i.3), respectively.
Therefore, using Corollary 2.7, we conclude:

Proposition 2.10 Let us consider the family of complex structures

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + D ω22̄, Im D ≥ 0. (10)

Then:

(i) Any non-abelian complex structure on h2 is equivalent to one and only one struc-
ture in (10) with Im D > 0;

(ii) Any non-abelian complex structure on h4 is equivalent to one and only one struc-
ture in (10) with D ∈ R − {0}.

The classification of complex structures on h5 requires a more subtle study.

Lemma 2.11 Any non-abelian complex structure on h5 which is not complex-
parallelizable belongs to one of the following families:

(I) dω1 = dω2 = 0, dω3 = ω12+ω11̄+λ ω12̄+iy ω22̄, where 0 ≤ 2y < |1−λ2|;
(II) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + (x + iy) ω22̄, where 4y2 < 1 + 4x.

Moreover,

(i) the structures in family (I) are non-equivalent;
(ii) the structures in family (II) are non-equivalent;
(iii) a structure (1, λ, iy) in family (I) is equivalent to a structure in family (II) if and

only if 2λ2 ∈ [0, 1) and 2y ∈ [λ2, 1 − λ2).

Proof Let us consider a complex structure given by (1, λ, D = x + i y) on h5, i.e.,

4y2 < (1 − λ2)(4x + 1 − λ2),

according to Proposition 2.4 (ii.3). If λ2 ≥ 2x , then (1, λ, D) ∼ (1,
√

λ2 − 2x, i |D|)
because (7) expresses simply as 4|D|2 ≥ 0 and it trivially holds. On the other hand,
if λ2 < 2x , then (1, λ, D) ∼ (1, 0, E), where E is given in Corollary 2.9, because in
this case 4y2 + λ2(4x − λ2) ≥ 0, that is, condition (7) is satisfied.

To study further equivalences, it is clear that structures in family (I) are non-
equivalent and the same holds for structures in family (II). Now let us consider the
triples (1, λ, iy) and (1, 0, E). Then, (7) expresses simply as

4y2 ≥ λ4. (11)
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Condition for family (I) implies that 4y2 < (1−λ2)2,which is equivalent to 4y2−λ4 <

1− 2λ2, so if 2λ2 ≥ 1 then (11) does not hold. Now, if 0 ≤ λ2 < 1
2 then the condition

for family (I) is equivalent to y < 1
2−λ2

2 , and thereforewhen2y ∈ [λ2, 1−λ2) the triple

(1, λ, iy) in family (I) is equivalent to the triple (1, 0, E = − 1
2 (λ

2 − √
4y2 − λ4 i))

in family (II). ��
Proposition 2.12 Any non-abelian complex structure on h5 which is not complex-
parallelizable is equivalent to one and only one structure in the following families:

(I) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λ ω12̄ + D ω22̄,

where Re D = 0 and

{
0 ≤ 2 Im D < λ2, 0 < λ2 < 1

2 ; or

0 ≤ 2 Im D < |1 − λ2|, 1
2 ≤ λ2.

(II) dω1 = dω2 = 0, dω3 = ω12+ω11̄+D ω22̄, where 4(Im D)2 < 1+4Re D.

To finish this section, it remains to study the case of 2-step NLAs g with first Betti
number equal to 3, which corresponds to ε = 1 in (2).

Proposition 2.13 Let J be a nilpotent complex structure on an NLA g given by (2)
with ε = 1, i.e.,

dω1 = 0, dω2 = ω11̄, dω3 = ρ ω12 + B ω12̄ + C ω21̄,

with ρ ∈ {0, 1} and B,C ∈ C such that (ρ, B,C) �= (0, 0, 0). Then g is 2-step
nilpotent if and only if B = ρ = 1 and C = 0. In such case g is isomorphic to h7 and
all the complex structures are equivalent.

Proof Let Z1, Z2, Z3 be the dual basis of ω1, ω2, ω3. It is clear that [g, g] has dimen-
sion at least 2 and is contained in 〈i(Z2 − Z̄2),Re Z3,Im Z3〉. Since Re Z3,Im Z3
are central elements and

[i(Z2 − Z̄2), Z1] = (ρ − B)i Z3 + C̄i Z̄3,

we conclude that g is 2-step nilpotent if and only if B = ρ and C vanishes.
Let (ρ, B,C) = (1, 1, 0) and let us consider a basis {e1, . . . , e6} for g∗ given by

ω1 = 1√
2
(e2 + ie1), ω2 = 1√

2
e3 + ie4 and ω3 = e6 + ie5. Now, the Lie algebra g is

isomorphic to h7. ��

2.2 Nilpotent Complex Structures in the 3-Step Case

In this section we classify, up to equivalence, nilpotent complex structures on 3-step
NLAs g of dimension 6. In this case the coefficient ε = 1 in the equations (2) given in
Proposition 2.3. The equivalence of complex structures in terms of the triple (ρ, B,C)

is given in the following lemma.

Lemma 2.14 Let g be an NLA endowed with a nilpotent complex structure (2) with
ε = 1 and (ρ, B,C) �= (0, 0, 0). Then:
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(i) If the structure is abelian, then there is a basis {ω j }3j=1 for g
1,0 satisfying either

dω1 = 0, dω2 = ω11̄, dω3 = ω21̄, (12)

or
dω1 = 0, dω2 = ω11̄, dω3 = ω12̄ + cω21̄, (13)

where c ∈ R, c ≥ 0.
(ii) In the non-abelian case there is a basis {ω j }3j=1 for g

1,0 satisfying

dω1 = 0, dω2 = ω11̄, dω3 = ω12 + B ω12̄ + cω21̄, (14)

where B ∈ C and c ∈ R such that c ≥ 0.

Moreover, for any possible choice of parameters B and c, each structure in (12), (13)
and (14) defines an equivalence class of complex structures.

Proof If the complex structure is abelian then the pair (B,C) �= (0, 0) since ρ = 0.
If B = 0 then it is clear that one arrives at equation (12). If B �= 0 then with respect

to the basis {z ω1, |z|2 ω2,
z|z|2
B ω3}, where z is any non-zero solution of |C|

|B| z̄ = C
B z,

the equations (2) reduce to the form (13).
For the proof of (ii), we observe that with respect to {z ω1, |z|2 ω2, z|z|2 ω3}, where

z �= 0 satisfies z̄ |C | = z C , the equations (2) reduce to (14).
Finally, the non-equivalence of the different complex structures defined in (12),

(13) and (14) follows by a similar argument to the first part of the proof of Lemma 2.5.
��

The following result provides a classification of abelian structures in the 3-step case
in a slightly more straightforward way than the one given in [2,3].

Corollary 2.15 Let J be an abelian structure on an NLA g given by (12) or (13).
Then, g is isomorphic to h15, except for c = 1 in which case g ∼= h9.

Proof For the equations (13), let us consider a basis {e1, . . . , e6} for g∗ given by
ω1 = −e1 + i e2, ω2 = 2e3 + 2i e4 and ω3 = 2e5 + 2(c + 1)i e6. Then, e1, e2, e3

are closed, de4 = e12, de5 = (c − 1)(e13 + e42) and de6 = e14 + e23. Thus, if c �= 1
then the Lie algebra g is isomorphic to h15; otherwise, g ∼= h9. Finally, it is easy to
check that the Lie algebra g underlying (12) is also isomorphic to h15. ��

Notice that the family (14) includes the case h7 precisely for ρ = B = 1 and c = 0
as it is shown in Proposition 2.13. Next we determine the Lie algebras underlying the
complex equations (14) in the remaining cases. They all have first Betti number equal
to 3 and are nilpotent in step 3. Also notice that the dimension of their center is at least
2.

Proposition 2.16 Let J be a nilpotent complex structure on a 3-step NLA g given
by (14). Then g has 3-dimensional center if and only if |B| = 1, B �= 1 and c = 0. In
such case g is isomorphic to h16.
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Proof Let Z1, Z2, Z3 be the dual basis of ω1, ω2, ω3. Then, Re Z3 and Im Z3 are
central elements. Let T = λ1Z1 + λ̄1 Z̄1 +λ2Z2 + λ̄2 Z̄2 be another non-zero element
in the center of g, where (λ1, λ2) ∈ C

2 − {(0, 0)}. It follows from (14) that

0 = [T, Z1] = λ̄1Z2 − λ̄1 Z̄2 − (λ2 − Bλ̄2)Z3 − cλ̄2 Z̄3,

which implies λ1 = 0, cλ2 = 0 and λ2 = Bλ̄2. Therefore, c = 0 and |B| = 1 in order
the center to be 3-dimensional, because otherwise the equation λ2 = Bλ̄2 would have
trivial solution. Moreover, B �= 1 because g is nilpotent in step 3.

Finally, since |B| = 1 and B �= 1, let us consider the basis {e1, . . . , e6} for g∗ given
by: e1 + i e2 = i(B − 1)ω1, e3 = ω2 + ω2̄, e4 = 1−ReB

1−B i(ω2 + B ω2̄), e5 + i e6 =
(1 − Re B)ω3. Then, we can write the differential of ω3 in the form

dω3 = ω1 ∧ (ω2 + B ω2̄) =
(
i(B − 1)

1 − Re B
ω1

)

∧
(
1 − Re B

1 − B
i(ω2 + B ω2̄)

)

,

which implies that e1, e2, e3 are closed, de4 = e12, de5 = e14 and de6 = e24, i.e.,
g ∼= h16. ��

Next we establish the conditions for the coefficients B and c in terms of the dimen-
sion of g2 = [g, [g, g]].
Lemma 2.17 Let J be a complex structure on a 3-step NLA g given by (14). Then:

(i) If c = |B − 1| �= 0, then dim g2 = 1.
(ii) If c �= |B − 1|, then dim g2 = 2.

Proof From (14) we have that

g2 = [Z2 − Z̄2, g] = 〈(1 − B)Z3 + c Z̄3, c Z3 + (1 − B̄)Z̄3〉.

It is clear that dim g2 = 2 if and only if (1 − B)(1 − B̄) − c2 �= 0. ��
Notice that if c = |B − 1| �= 0 then g is isomorphic to h10, h11 or h12. Since the

case c = 0 �= |B − 1|, |B| = 1 corresponds to g ∼= h16 by Proposition 2.16, we
conclude that for c �= |B − 1| and (c, |B|) �= (0, 1) the Lie algebra g is isomorphic to
h13, h14 or h15.

In order to distinguish the underlying Lie algebras, we use the following argument
for g = hk, 10 ≤ k ≤ 15. Let α(g) be the number of linearly independent elements
τ in

∧2
(g∗) such that τ ∈ d(g∗) and τ ∧ τ = 0. This number can be identified with

the number of linearly independent exact 2-forms which are decomposable, that is,
α(hk) = 3 for k = 10, 12, 13, α(hk) = 2 for k = 11, 14 and α(hk) = 1 for k = 15.

If τ is any exact element in
∧2

(g∗) then τ = μ dω2 + μ̄ dω2̄ + ν dω3 + ν̄ dω3̄,
for some μ, ν ∈ C, and by (14) we have

τ = (μ − μ̄) ω11̄ + ν ω12 + (νB − ν̄c) ω12̄ + (νc − ν̄ B̄) ω21̄ + ν̄ ω1̄2̄.
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A direct calculation shows that

τ ∧ τ = 2
(
|ν|2(1 − |B|2 − c2) + c

(
ν2B + ν̄2 B̄

))
ω121̄2̄.

Thus, if we denote p = Re ν and q = Im ν, then τ ∧ τ = 0 if and only if

(
1−|B|2−c2+ 2cRe B

)
p2 − (4c Im B) pq +

(
1−|B|2−c2− 2cRe B

)
q2 = 0.

(15)
Observe that the trivial solution p = q = 0 corresponds to τ = 2i Im μω11̄, accord-
ing to the fact that α(g) ≥ 1.

Proposition 2.18 Let J be a complex structure on a 3-step NLA g given by (14) with
c = |B − 1| �= 0. Then:

(i) g ∼= h10 if and only if B = 0;
(ii) g ∼= h11 if and only if B ∈ R − {0, 1};
(iii) g ∼= h12 if and only if Im B �= 0.

In particular, all the complex structures on h10 are equivalent.

Proof Since c = |B − 1| �= 0, it follows from Lemma 2.17 that g is isomorphic to
h10, h11 or h12.

Firstly, g ∼= h10 if and only if the coefficients in equation (15) vanish. In fact, for
h10 we have by Theorem 2.1 that ν dω3 + ν̄ dω3̄ ∈ 〈e12, e13, e14〉 for any ν ∈ C

so any pair (p, q) ∈ R
2 solves the equation (15), which implies the vanishing of

its coefficients. Conversely, if the coefficients 1 − |B|2 − c2 + 2cRe B, c Im B and
1 − |B|2 − c2 − 2cRe B are all zero then necessarily B = 0 and c = 1, that is,
dω1 = 0, dω2 = ω11̄ and dω3 = (ω1 − ω1̄) ∧ ω2, and therefore the Lie algebra is
isomorphic to h10.

On the other hand, notice that if c = |B − 1| �= 0 and (B, c) �= (0, 1) then (15)
is a second degree equation in p or q. Since its discriminant is a positive multiple of
(Im B)2, if Im B �= 0 then we get two independent solutions and α(g) = 3, that is,
g ∼= h12. Finally, for Im B = 0 the equation (15) provides one solution and α(g) = 2,
so g ∼= h11. ��
Proposition 2.19 Let J be a complex structure on a 3-step NLA g given by (14) with
c �= |B − 1| such that (c, |B|) �= (0, 1). Then:

(i) g ∼= h13 if and only if c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 < 0;
(ii) g ∼= h14 if and only if c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 = 0;
(iii) g ∼= h15 if and only if c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 > 0.

Proof Since c �= |B − 1| and (c, |B|) �= (0, 1), it follows from Lemma 2.17 and
Proposition 2.16 that g is isomorphic to h13, h14 or h15.

Notice that the condition (c, |B|) �= (0, 1) implies that the coefficients of p2 and
q2 in equation (15) cannot be both zero, so (15) is always a second degree equation.
Let

� = c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2.
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Since the discriminant as a second degree equation in p is equal to −4q2� and
the discriminant as a second degree equation in q equals −4p2�, the number of
independent solutions of equation (15) depends on the sign of �. Thus, for � < 0
there exist two such solutions and thus g ∼= h13, for � = 0 there exists only one such
solution and g ∼= h14, and finally for � > 0 there is no solution and α(g) = 1, which
implies that g ∼= h15. ��

3 Classification of Complex Structures

As a consequence of our previous study, in this section we present in Table 1 the clas-
sification of nilpotent complex structures up to equivalence on 6-dimensional NLAs.
In the table the closed (1,0)-form ω1 does not appear, and the coefficients c, λ ∈ R

≥0

and B, D ∈ C with Im D ≥ 0.
In Table 1 we have also included the classification of abelian structures J on 6-

dimensional NLAs obtained in [2,3]. In the 3-step case we use directly the equations
given in Lemma 2.14 and Corollary 2.15, but in the 2-step case we have written the
complex structure equations of any abelian J in a form that fits in our Proposition 2.4.
More precisely, in the 2-step case we consider first the following reduction of the
equations (3) of any abelian complex structure.

Corollary 3.1 If J is abelian and g is 2-step then there is a basis {ω j }3j=1 for g1,0

satisfying one of the following equations:

(i) dω1 = dω2 = dω3 = 0;
(ii) dω1 = dω2 = 0, dω3 = ω11̄ + D ω22̄, with D ∈ C, |D| = 1, Im D ≥ 0;
(iii) dω1 = dω2 = 0, dω3 = ω11̄ + ω12̄ + D ω22̄, with D ∈ C, Im D ≥ 0.

Proof Suppose ρ = 0 in (3). If in addition λ = 0, then in terms of the basis
{√|D| ω1, |D| ω2, |D| ω3} we obtain (i) or (ii), whereas if λ �= 0 then we get
equations (iii) with respect to {ω1, λ ω2, ω3}. ��

Next we illustrate how to rewrite the complex structure equations of any abelian J
on the Lie algebra h5 in a form that fits in our Corollary 3.1. By [2,3, Theorem 3.5]
there is, up to isomorphism, one family Jt , t ∈ (0, 1], of abelian structures given by

Jt e
1 = e3, Jt e

2 = e4, Jt e
5 = 1

t
e6,

where {e1, . . . , e6} is the real basis of h5 in Theorem 2.1. Let us consider the basis of
(1, 0)-forms {σ 1, σ 2, σ 3} given by σ 1 = e1 − i Jt e1 = e1 − i e3, σ 2 = e2 − i Jt e2 =
e2 − i e4 and σ 3 = 2i(e5 − i Jt e5) = 2i e5 + 2

t e
6. Hence, the complex structure

equations for Jt are

dσ 1 = dσ 2 = 0, dσ 3 = σ 11̄ − i

t
σ 12̄ − i

t
σ 21̄ − σ 22̄.
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Table 1 Classification of nilpotent complex structures

g Abelian structures (ρ = 0) Non-abelian Nilpotent structures (ρ = 1)

h1 dω2 = 0, dω3 = 0 –

h2 dω2 = 0, dω3 = ω11̄ ± Dω22̄,

ImD=1
dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄+Dω22̄,

ImD > 0

h3 dω2 = 0, dω3 = ω11̄ ± ω22̄ –

h4 dω2 = 0, dω3 = ω11̄ + ω12̄ + 1
4ω22̄ dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + D ω22̄,

D ∈ R−{0}
h5 dω2 = 0, dω3 = ω11̄ + ω12̄ + D ω22̄,

D ∈ [0, 1
4 )

dω2 = 0, dω3 = ω12

dω2 = 0, dω3 = ω12 + ω11̄ + λ ω12̄ + D ω22̄,

with (λ, D) satisfying one of:

• λ = 0 ≤ ImD, 4(ImD)2 < 1 + 4ReD;

• 0 < λ2 < 1
2 , 0 ≤ ImD < λ2

2 , ReD= 0;

• 1
2 ≤ λ2 < 1, 0 ≤ ImD < 1−λ2

2 , ReD= 0;

• λ2 > 1, 0 ≤ ImD < λ2−1
2 ,ReD= 0.

h6 – dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄

h7 – dω2 = ω11̄, dω3 = ω12 + ω12̄

h8 dω2 = 0, dω3 = ω11̄ –

h9 dω2 = ω11̄, dω3 = ω12̄ + ω21̄ –

h10 – dω2 = ω11̄, dω3 = ω12 + ω21̄

h11 – dω2 = ω11̄, dω3 = ω12 + B ω12̄ +|B−1|ω21̄,

B ∈ R−{0, 1}
h12 – dω2 = ω11̄, dω3 = ω12 + B ω12̄ +|B−1|ω21̄,

ImB �= 0

h13 – dω2 = ω11̄, dω3 = ω12 + B ω12̄ + cω21̄,

c �= |B − 1|, (c, |B|) �= (0, 1),
c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 < 0

h14 – dω2 = ω11̄, dω3 = ω12 + B ω12̄ + cω21̄,

c �= |B − 1|, (c, |B|) �= (0, 1),
c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 = 0

h15 dω2 = ω11̄, dω3 = ω21̄ dω2 = ω11̄, dω3 = ω12 + B ω12̄ + cω21̄,

dω2 = ω11̄, dω3 = ω12̄ + cω21̄,

c �= 1
c �= |B − 1|, (c, |B|) �= (0, 1),
c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 > 0

h16 – dω2 = ω11̄, dω3 = ω12 + B ω12̄, |B| = 1,
B �= 1

dω1 = 0; λ, c ≥ 0; B, D ∈ C
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Table 2 Classification of non-nilpotent complex structures

g Complex structures

h−
19 dω1 = 0, dω2 = ω13 + ω13̄, dω3 = ±i(ω12̄ − ω21̄)

h+
26 dω1 = 0, dω2 = ω13 + ω13̄, dω3 = i ω11̄ ± i(ω12̄ − ω21̄)

Now, by [31, Lemma 11] there exists a (1,0)-basis {ω j }3j=1 satisfying

dω1 = dω2 = 0, dω3 = ω11̄ + ω12̄ + D ω22̄,

with D = 1−t2
4 . Notice that D ∈ [0, 1

4 ) because t ∈ (0, 1]. Therefore, any abelian
complex structure on h5 is given, up to isomorphism, as in Table 1.

For completeness we include Table 2 with the classification of non-nilpotent com-
plex structures on 6-dimensional NLAs obtained in [32]. For any of such structures
there exists a (1, 0)-basis {ω1, ω2, ω3} satisfying the following structure equations:

dω1 = 0, dω2 = ω13 + ω13̄, dω3 = iε ω11̄ ± (ω12̄ − ω21̄), (16)

where ε ∈ {0, 1}.

4 Frölicher Spectral Sequence

In this section we study the behavior of the Frölicher sequence for 6-nilmanifolds
endowed with an invariant complex structure. Recall that given a complex mani-
fold M , the Frölicher spectral sequence E p,q

r (M) is the spectral sequence associated
to the double complex (�p,q(M), ∂, ∂̄), where ∂ and ∂̄ come from the well-known
decomposition d = ∂ + ∂̄ of the exterior differential d on M [18].

The first term E1(M) in the sequence is precisely the Dolbeault cohomology of M ,
that is, E p,q

1 (M) ∼= H p,q
∂̄

(M), and after a finite number of steps this sequence con-
verges to the de Rham cohomology of M . More concretely, for each r ≥ 1 there is a
sequence of homomorphisms dr

· · · −→ E p−r,q+r−1
r (M)

dr−→ E p,q
r (M)

dr−→ E p+r,q−r+1
r (M) −→ · · ·

such that dr ◦ dr = 0 and E p,q
r+1(M) = Ker dr/Im dr . The homomorphisms dr are

induced from ∂ . When r = 1 the homomorphism d1 : H p,q
∂̄

(M) −→ H p+1,q
∂̄

(M) is

given by d1([αp,q ]) = [∂αp,q ], for [αp,q ] ∈ H p,q
∂̄

(M). We will also use that

E p,q
2 (M) = {αp,q ∈ �p,q(M) | ∂̄αp,q = 0, ∂αp,q = −∂̄αp+1,q−1}

{∂̄βp,q−1 + ∂γp−1,q | ∂̄γp−1,q = 0} ,
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and the homomorphism d2 : E p,q
2 (M) −→ E p+2,q−1

2 (M) is given by d2([αp,q ]) =
[∂αp+1,q−1], for [αp,q ] ∈ E p,q

2 (M) (see for example [12] for general descriptions of
dr and E p,q

r ).
Let M = �\G be a nilmanifold endowed with an invariant complex structure J ,

and let g be the Lie algebra of G. In dimension 6, Rollenske proved in [28, Sect. 4.2]
that if g � h7 then the natural inclusion

(∧
p,•(g∗), ∂̄

)
↪→ (�p,•(M), ∂̄)

induces an isomorphism
ι : H p,q

∂̄
(g) −→ H p,q

∂̄
(M) (17)

between the Lie-algebra Dolbeault cohomology of (g, J ) and the Dolbeault cohomol-
ogy of M . Thus, an inductive argument [13, Theorem 4.2] implies that the natural map
ι : E p,q

r (g) −→ E p,q
r (M) is also an isomorphism, and therefore E p,q

r (M) ∼= E p,q
r (g)

for any p, q and any r ≥ 1, whenever g � h7 (see Remark 4.2 below). Using this, in
the next result we show the general behavior of the Frölicher sequence in dimension 6.

Theorem 4.1 Let M = �\G be a 6-dimensional nilmanifold endowed with an invari-
ant complex structure J such that the underlying Lie algebra g � h7. Then the
Frölicher spectral sequence E p,q

r (M, J ) behaves as follows:

(a) If g ∼= h1, h3, h6, h8, h9, h10, h11, h12 or h
−
19, then E1 ∼= E∞ for any J .

(b) If g ∼= h2 or h4, then E1 ∼= E∞ if and only if J is non-abelian; moreover, any
abelian complex structure on h2 or h4 satisfies E1 � E2 ∼= E∞.

(c) If g ∼= h5 and J is a complex structure on h5 given in Table 1, then:
(c.1) E1 � E2 ∼= E∞ when J is complex-parallelizable;
(c.2) E1 ∼= E∞ if and only if J is not complex-parallelizable and ρD �= 0;

moreover, E1 � E2 ∼= E∞ when ρD = 0.
(d) If g ∼= h16 or h

+
26, then E1 � E2 ∼= E∞ for any J .

(e) If g ∼= h13 or h14, then E1 ∼= E2 � E3 ∼= E∞ for any J .
(f) If g ∼= h15 and J is a complex structure on h15 given in Table 1, then:
(f.1) E1 � E2 ∼= E∞, when c = 0 and |B − ρ| �= 0;
(f.2) E1 ∼= E2 � E3 ∼= E∞, when ρ = 1 and |B − 1| �= c �= 0;
(f.3) E1 � E2 � E3 ∼= E∞, when ρ = 0 and |B| �= c �= 0.

Proof The proof is straightforward and we only give it explicitly for the case (f), that
is, g ∼= h15, because it is the most intriguing case where different non-trivial behaviors
can be produced.

We will use the notation E |k|
r = ⊕p+q=k E

p,q
r . Since E |k|∞ ∼= Hk

dR, it is clear that

dim E |k|
r ≥ bk = dim Hk

dR for all k, and the equalities hold if and only if Er ∼= E∞.
Recall that b1(h15) = 3, b2(h15) = 5 and b3(h15) = 6 (see [29]).

For the calculation of the first term E1, that is, the Dolbeault cohomology,
by the Serre duality it suffices to study the spaces E p,q

1 = H p,q
∂̄

for (p, q) =
(1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0) and (2, 1).
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Let J be a complex structure on h15 given in Table 1. If J is abelian then (B, c) =
(0, 1) or (1, c) with c �= 1, therefore

H1,0
∂̄

= 〈[ω1]〉, H2,0
∂̄

= 〈[ω12], δc0[ω13]〉, H3,0
∂̄

= 〈[ω123]〉,
H0,1

∂̄
= 〈[ω1̄], [ω2̄], [ω3̄]〉, H0,2

∂̄
= 〈[ω1̄2̄], [ω1̄3̄], [ω2̄3̄]〉,

H1,1
∂̄

= 〈(1 − δc0)[ω12̄], [ω13̄], δc0[ω21̄], [Bω22̄ + ω31̄], δc0[ω32̄]〉,
H2,1

∂̄
= 〈δc0[ω121̄], [ω122̄], [ω123̄], [Bω132̄ − cω231̄], δc0[ω133̄]〉,

(18)

where δc0 is equal to 0 if c �= 0, and equals 1 if c = 0. Since dim E |1|
1 = 4 > 3 =

b1(h15) we get that E1 � E∞ for any abelian J .
When J is not abelian, i.e., ρ = 1, the Dolbeault cohomology groups are

H1,0
∂̄

= 〈[ω1], δB0 δc0[ω3]〉, H2,0
∂̄

= 〈[ω12], δc0[ω13]〉, H3,0
∂̄

= 〈[ω123]〉,
H0,1

∂̄
= 〈[ω1̄], [ω2̄]〉, H0,2

∂̄
= 〈[ω1̄3̄], [ω2̄3̄]〉,

H1,1
∂̄

= 〈(Bc + δB0 )[ω12̄], [ω13̄ + ω22̄], [Bω13̄ − ω31̄], δc0[ω21̄], δc0[ω32̄]〉,
H2,1

∂̄
= 〈δc0[ω121̄], [ω122̄], [cω123̄ + ω132̄], [Bω123̄ + ω231̄], δc0[ω133̄ + ω232̄]〉,

(19)

where δB0 has a similar definition as for δc0 above. Notice that the coefficient Bc + δB0

is non-zero except for B �= 0 and c = 0. Thus, dim E |2|
1 ≥ 6 > 5 = b2(h15) and so

E1 � E∞ also for any non-abelian J .
In order to prove (f.1) we need to study independently the abelian and the non-

abelian complex structures with c = 0 and B �= ρ on h15. We start with the abelian
ones. In this case, by Table 1 we can suppose B = 1 and from (18) it follows that the
dimensions of E |2|

1 and E |3|
1 are

dim E |2|
1 = 9 > 5 = b2(h15), dim E |3|

1 = 12 > 6 = b3(h15).

For the following d1-homomorphisms E0,1
1

d1−→ E1,1
1

d1−→ E2,1
1

d1−→ E3,1
1 , the classes

[ω3̄], [ω13̄], [ω32̄], [ω133̄] have linearly independent images. On the other hand, for

E0,2
1

d1−→ E1,2
1

d1−→ E2,2
1

d1−→ E3,2
1 , the images of the classes [ω2̄3̄], [ω32̄3̄], [ω22̄3̄ +

ω31̄3̄] and [ω132̄3̄] are also independent. Counting dimensions for E |k|
2 we get that

dim E |1|
2 ≤ dim E |1|

1 − 1 = 3 = b1(h15), dim E |2|
2 ≤ dim E |2|

1 − 4 = 5 = b2(h15),

dim E |3|
2 ≤ dim E |3|

1 − 6 = 6 = b3(h15), dim E |4|
2 ≤ dim E |4|

1 − 4 = 5 = b4(h15),

dim E |5|
2 ≤ dim E |5|

1 − 1 = 3 = b5(h15).

This implies that E2 ∼= E∞ because necessarily dim E |k|
2 = bk(h15) for all k.

If ρ = 1 and c = 0, then B �= 1 and by (19) we have dim E |1|
1 = b1(h15) + δB0 . So

E |1|
1

∼= E |1|∞ when B �= 0. For B = 0, since d1([ω3]) �= 0 and d1([ω31̄2̄3̄]) �= 0, we
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conclude that dim E |1|
2 ≤ dim E |1|

1 −1 = 3 = b1(h15) and dim E |5|
2 ≤ dim E |5|

1 −1 =
3 = b1(h15), and therefore, E |k|

2
∼= E |k|∞ if k = 1 or k = 5.

Now, for B �= 1 we have that dim E |2|
1 = 8+ δB0 > 5 = b2(h15), dim E |3|

1 = 12 >

6 = b3(h15), dim E |4|
1 = 8 + δB0 > 5 = b4(h15). In order to conclude that E2 ∼= E∞

it suffices to observe that for the following homomorphisms

E1,1
1

d1−→ E2,1
1

d1−→ E3,1
1 , E0,2

1
d1−→ E1,2

1
d1−→ E2,2

1

the classes [ω13̄ + ω22̄], [ω32̄], [ω133̄ + ω232̄], [ω2̄3̄], [ω32̄3̄] and [Bω22̄3̄ + ω31̄3̄] have
linearly independent images.

For case (f.2), we consider ρ = 1 and |B−1| �= c �= 0. As dim E |1|
1 = 3 = b1(h15),

we get that E |1|
1

∼= E |1|∞ . Now, for the map E0,2
2

d2−→ E2,1
2 we have d2([ω2̄3̄]) =[

∂
(
ω23̄ + 1−B̄

c ω32̄
)]

= |B−1|2−c2

c [ω122̄] �= 0, because ω122̄ �= ∂̄β2,0 + ∂γ1,1 for

any β2,0 and any ∂̄-closed γ1,1. Hence,

b2(h15) ≤ dim E |2|
3 ≤ dim E |2|

2 − 1 ≤ dim E |2|
1 − 1 = 6 − 1 = 5 = b2(h15)

and we conclude that E |2|∞ ∼= E |2|
3 � E |2|

2
∼= E |2|

1 .

Similarly, d2 : E1,2
2 −→ E3,1

2 is non-zero (for instance, d2([ω31̄3̄ + Bω22̄3̄]) �= 0).
Thus,

b3(h15) ≤ dim E |3|
3 ≤ dim E |3|

2 − 2 ≤ dim E |3|
1 − 2 = 8 − 2 = 6 = b3(h15)

and we conclude that E |3|∞ ∼= E |3|
3 � E |3|

2
∼= E |3|

1 . By the same argument

b4(h15) ≤ dim E |4|
3 ≤ dim E |4|

2 − 1 ≤ dim E |4|
1 − 1 = 6 − 1 = 5 = b4(h15)

and therefore E |4|∞ ∼= E |4|
3 � E |4|

2
∼= E |4|

1 . Summing up all the information, we
conclude that E1 ∼= E2 � E3 ∼= E∞ in case (f.2).

For the last case (f.3), we first observe that d1([ω3̄]) = −c[ω12̄]− B̄[ω21̄]. Since this
class is zero if and only if cω12̄+ B̄ω21̄ ∈ ∂̄(

∧1,0
) = 〈ω11̄, Bω12̄+cω21̄〉, i.e., |B| =

c, the map d1 : E0,1
1 −→ E1,1

1 is non-zero. Therefore, dim E |1|
2 ≤ dim E |1|

1 − 1 = 3,

i.e., E |1|
1 � E |1|

2
∼= E |1|∞ . Moreover, since d2([ω2̄3̄]) �= 0, we deduce that

b2(h15) ≤ dim E |2|
3 ≤ dim E |2|

2 − 1 ≤ dim E |2|
1 − 2 = 7 − 2 = 5 = b2(h15),

so E |2|∞ ∼= E |2|
3 � E |2|

2 � E |2|
1 . Analogously, d2([ω31̄3̄ + Bω22̄3̄]) �= 0, which implies

b3(h15) ≤ dim E |3|
3 ≤ dim E |3|

2 − 2 ≤ dim E |3|
1 − 2 = 8 − 2 = 6 = b3(h15),
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and we conclude that E |3|∞ ∼= E |3|
3 � E |3|

2
∼= E |3|

1 . We also have

b4(h15) ≤ dim E |4|
3 ≤ dim E |4|

2 − 1 ≤ dim E |4|
1 − 2 = 7 − 2 = 5 = b4(h15),

and therefore E |4|∞ ∼= E |4|
3 � E |4|

2 � E |4|
1 . Consequently, E1 � E2 � E3 ∼= E∞ in

case (f.3). ��
Remark 4.2 Let (M = �\G, J ) be a 6-dimensional nilmanifold endowed with an
invariant complex structure J and suppose that g = h7. In [28, Theorem 4.4] it is
proved that there is a dense subset of the space of all invariant complex structures for
which the complex nilmanifold admits the structure of principal holomorphic bundle
of elliptic curves over a Kodaira surface, but this is not true for all complex structures.
In fact, the invariant complex structure J may not be compatible with the lattice �

(see [28, Example 1.14]), so one cannot ensure the existence of the isomorphism (17),
and hence of a canonical isomorphism between E p,q

r (g, J ) and E p,q
r (M, J ), for any

invariant J on the nilmanifold M . However, notice that up to equivalence there is only
one complex structure on h7 and it can be proved that it satisfies that the sequence
degenerates at the first step, i.e., E1(h7) ∼= E∞(h7).

In [4] the authors posed the following problem: to construct a compact complex
manifold such that E1 ∼= E∞ and h p,q

∂̄
= hq,p

∂̄
for every p, q ∈ N but for which the

∂∂̄-lemma does not hold. Since nilmanifolds do not satisfy the ∂∂̄-lemma, unless they
are complex tori, the following result provides a solution.

Proposition 4.3 Let J be any invariant complex structure on a nilmanifold M with
underlying Lie algebra isomorphic to h6. Then E1(M) ∼= E∞(M) and the Hodge
numbers satisfy

h0,0
∂̄

(M) = 1,

h1,0
∂̄

(M) = 2, h0,1
∂̄

(M) = 2,

h2,0
∂̄

(M) = 2, h1,1
∂̄

(M) = 5, h0,2
∂̄

(M) = 2,

h3,0
∂̄

(M) = 1, h2,1
∂̄

(M) = 5, h1,2
∂̄

(M) = 5, h0,3
∂̄

(M) = 1,

h3,1
∂̄

(M) = 2, h2,2
∂̄

(M) = 5, h1,3
∂̄

(M) = 2,

h3,2
∂̄

(M) = 2, h2,3
∂̄

(M) = 2,

h3,3
∂̄

(M) = 1.

Proof Any complex structure J on h6 is equivalent to the complex structure given in
Table 1, that is, ρ = λ = 1 and D = 0. Its Dolbeault cohomology groups H p,q

∂̄
for

(p, q) = (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0) and (2, 1) are

H1,0
∂̄

= 〈[ω1], [ω2]〉, H2,0
∂̄

= 〈[ω12], [ω13]〉, H3,0
∂̄

= 〈[ω123]〉,
H0,1

∂̄
= 〈[ω1̄], [ω2̄]〉, H0,2

∂̄
= 〈[ω1̄3̄], [ω2̄3̄]〉,

H1,1
∂̄

= 〈[ω12̄], [ω21̄], [ω22̄], [ω13̄ + ω32̄], [ω31̄ + ω32̄]〉,
H2,1

∂̄
= 〈[ω122̄], [ω131̄], [ω123̄ + ω231̄], [ω123̄ − ω232̄], [ω132̄]〉.

123



Invariant Complex Structures on 6-Nilmanifolds 273

By Serre duality we get the above Hodge diamond which is symmetric. Moreover,

dim E |1|
1 = 4 = b1(h6), dim E |2|

1 = 9 = b2(h6), dim E |3|
1 = 12 = b3(h6),

so the Frölicher spectral sequence degenerates at the first step. ��

The following result shows that there are many complex nilmanifolds for which
the Frölicher spectral sequence is stable under small deformations of the complex
structure.

Proposition 4.4 Let M = �\G be a 6-dimensional nilmanifold endowed with
an invariant complex structure J , and let g be the Lie algebra of G. If g ∼=
h1, h3, h6, h8, h9, h10, h11, h12, h13, h14, h16, h

−
19 or h

+
26, then dim E p,q

r (M, J ) is sta-
ble under small deformations of J for any p, q and any r ≥ 1.

Proof By [27, Theorem 2.6], all small deformations of the complex structure J are
again invariant complex structures. Proceeding as in the proof of Theorem 4.1, it can
be proved that if g � h2, h4, h5 or h15, then dim E p,q

r (M) does not depend on the
invariant complex structure on M for any p, q and any r ≥ 1, so it is stable under
small deformations of J . ��

Remark 4.5 The 6-dimensional nilmanifolds with underlying Lie algebra isomorphic
to h2, h4, h5 or h15 are the only ones that have both abelian and non-abelian complex
structures (see Table 1).More generally, let M be a 2n-dimensional nilmanifold, g the
underlying Lie algebra, J an abelian complex structure and J ′ a non-abelian invariant
complex structure on M . It is well known that J is abelian if and only if there is a
basis {ω1, . . . , ωn} of invariant forms of type (1,0) satisfying ∂ω j = 0 for 1 ≤ j ≤ n;
therefore, by [8] one has that h0,1

∂̄
(M, J ) = n because (17) holds for abelian structures.

However, for J ′ we have dim H0,1
∂̄

(g, J ′) < n and, if an isomorphism like (17) holds,

then the Hodge number satisfies h0,1
∂̄

(M, J ′) < n. Thus, the existence of J and J ′ on a
nilmanifoldM might lead to the non-stability of dim E0,1

1 under small deformations. A
natural question arises in this context: is the Frölicher spectral sequence stable under
small deformations if and only if the nilmanifold does not admit both abelian and
non-abelian complex structures? Proposition 4.4 above gives an affirmative answer
for n = 3.

Next we provide some examples of explicit families of complex structures on nil-
manifolds corresponding to h5 and h15 along which the Frölicher sequence varies. In
Corollaries 5.11 and 5.12 below, further properties of the Frölicher spectral sequence
on nilmanifolds are shown.

Example 4.6 Let J be a non complex-parallelizable and non-abelian complex struc-
ture on h5 given in Table 1 with non-degenerate Frölicher sequence, i.e., E1 � E∞
for J . We will construct a family of complex structures Jt by deforming the previous
one, i.e., J0 = J , such that the Frölicher spectral sequence degenerates at the first step
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for any t �= 0. According to Theorem 4.1, J has complex structure equations of the
form

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λ ω12̄,

for some non-negative λ �= 1, where {ω1, ω2, ω3} is a (1, 0)-basis for J . With respect
to the real basis {e1, . . . , e6} given by

e1 + i e2 = ω1,
1

1 + λ
(e3 − e1) + i

1 − λ
(e2 + e4) = ω2, e5 + ie6 = ω3,

the complex structure J expresses as

Je1 = −e2, Je3 = − 2
1−λ

e2 − 1+λ
1−λ

e4, Je5 = −e6,

Je2 = e1, Je4 = − 2
1+λ

e1 + 1−λ
1+λ

e3, Je6 = e5.

For any t ∈ [0, 1
2 ), consider the complex structure Jt given by

Jt e1 = 4d(1−λ)

α2 e1 − 1−λ2

α
e2 − 2d(1−λ)2

α2 e3 + 8d2(1−λ)

α3 e4,

Jt e2 = 1−λ2

α
e1 + 2d(1−λ2)

α2 e4,

Jt e3 = − 2d
(1−λ)2

e1 − 2α
(1−λ2)(1−λ)

e2 − (1+λ)2

α
e4,

Jt e4 = − 2(1−λ)
α

e1 + 2d
1−λ2

e2 + (1−λ)2

α
e3 − 4d(1−λ)

α2 e4,

Jt e5 = 2d
1−λ2

e5 − 4d2+(1−λ2)2

α(1−λ2)
e6,

Jt e6 = α
1−λ2

e5 − 2d
1−λ2

e6,

where α = √
(1 − λ2)2 − 4d2, and

d(t, λ) =

⎧
⎪⎪⎨

⎪⎪⎩

t, if λ = 0,
tλ2/4, if λ2 ∈ (0, 1/2),
t (1 − λ2)/4, if λ2 ∈ [1/2, 1),
−t (1 − λ2)/4, if λ2 > 1.

Notice that J0 = J . Now, the forms

ω1
t = 1−λ2

α
e1 + 2d(1−λ2)

α2 e4 + i e2,

ω2
t = 1−λ

α
(e3 − e1) − 2d(1−λ)

α2 e4 + i
1−λ

(
2d
α
e1 + e2 + (1−λ2)2

α2 e4
)

,

ω3
t = e5 − 2d

α
e6 + i 1−λ2

α
e6,
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satisfy Jtωk
t = i ωk

t for k = 1, 2, 3, i.e., {ω1
t , ω

2
t , ω

3
t } is a basis of type (1, 0) for Jt .

Furthermore, with respect to this basis the complex structure equations are

dω1
t = dω2

t = 0, dω3
t = ω12

t + ω11̄
t + λ ω12̄

t + D ω22̄
t ,

with D = i d(t, λ). According to Theorem 4.1, the Frölicher spectral sequence degen-
erates if and only if D �= 0, i.e., if and only if t > 0. In conclusion, J can be deformed
into a non-abelian complex structure with E1 ∼= E∞.

Corollary 4.7 Let M = �\G be the nilmanifold underlying the Iwasawa manifold,
i.e., g ∼= h5. Let J be a non complex-parallelizable and non-abelian complex structure
on M given in Table 1 with E1 � E∞. Then, J can be deformed into an invariant
complex structure with degenerate Frölicher spectral sequence.

The Lie algebra h15 has a rich complex geometry with respect to the Frölicher
sequence and in the next example we construct a family Jt along which the three cases
in (f) of Theorem 4.1 are realized.

Example 4.8 On h15, let us consider the real basis {e1, . . . , e6} given in Theorem 2.1
and the following family of complex structures

Jt e
1 = −

√
3(3 − sin t)(7 + 3 sin t)

(5 + sin t)(11 − sin t)
e2,

Jt e
3 =

√
3(3 − sin t)(11 − sin t)

(5 + sin t)(7 + 3 sin t)
e4,

Jt e
5 = −

√
(11 − sin t)(7 + 3 sin t)

3(3 − sin t)(5 + sin t)
e6,

where t ∈ R. Let

4ω1
t =√

(11 − sin t)(5 + sin t) e1 + i
√
3(3 − sin t)(7 + 3 sin t) e2,

8ω2
t = (5+sin t)(7+3 sin t) e3−i

√
3(5+sin t)(3−sin t)(11−sin t)(7 + 3 sin t) e4,

and

128ω3
t = (5 + sin t)(7 + 3 sin t)

[
3(3 − sin t)

√
(11 − sin t)(5 + sin t) e5

+ i (11 − sin t)
√
3(3 − sin t)(7 + 3 sin t) e6

]
.

Then, {ω1
t , ω

2
t , ω

3
t } is a (1, 0)-basis for Jt satisfying

dω1
t = 0, dω2

t = ω11̄
t , dω3

t = 1 − sin t

2
ω12
t + 2ω12̄

t + 1 + sin t

4
ω21̄
t .
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If sin t = 1, the coefficient of ω12
t vanishes and therefore Jt is an abelian com-

plex structure that is equivalent to the one given by (ρ, Bt , ct ) = (0, 1, 1
4 ) (see

Lemma 2.14). If sin t �= 1, then we can normalize the coefficient of ω12
t and the

complex structure equations can be written in form (14) as

dω1
t = 0, dω2

t = ω11̄, dω3
t = ω12

t + 4

1 − sin t
ω12̄
t + 1 + sin t

2(1 − sin t)
ω21̄
t ,

i.e., they are determined by the triple (ρ, Bt , ct ) =
(
1, 4

1−sin t ,
1+sin t

2(1−sin t)

)
. Now, con-

cerning the Frölicher spectral sequence for the family {Jt }t∈R, by Theorem 4.1 (f) we
get

• If sin t = 1, then (ρt , Bt , ct ) = (0, 1, 1
4 ) and therefore E1 � E2 � E3 ∼= E∞.

• If sin t = −1, then (ρt , Bt , ct ) = (1, 2, 0) and E1 � E2 ∼= E∞.
• If | sin t | �= 1, E1 ∼= E2 � E3 ∼= E∞.

As a consequence of this example, in the following result we show that for r ≥ 2 the
dimension of the term E p,q

r (Jt ) in general is neither upper nor lower semi-continuous
function of t . This is in deep contrast with the case r = 1, as it is well known the
upper semicontinuity of the Hodge numbers dim H p,q

∂̄
(Jt ) with respect to t along a

deformation.

Corollary 4.9 Let M be a nilmanifold with underlying Lie algebra h15 endowed with
the invariant complex structures Jt given in Example 4.8. Then,

dim E0,2
2 (Jπ

2
) = 3 > 2 = dim E0,2

2 (Jt ), dim E1,1
2 (Jπ

2
) = 2 < 3 = dim E1,1

2 (Jt ),

and

dim E0,2
3 (Jπ

2
) = 2 > 1 = dim E0,2

3 (Jt ), dim E1,1
3 (Jπ

2
) = 2 < 3 = dim E1,1

3 (Jt ),

for any t ∈ (π
2 , 3π

2 ). Therefore, the dimensions of the terms E1,1
2 (Jt ) and E1,1

3 (Jt ) are

not upper semi-continuous functions of t , and the dimensions of the terms E0,2
2 (Jt )

and E0,2
3 (Jt ) are not lower semi-continuous functions of t .

Proof It follows directly from the proof of Theorem 4.1 taking into account that for
t = π

2 the complex structure lies in case (f.3) and for any t ∈ (π
2 , 3π

2 ) the structures
Jt lie in case (f.2). ��

5 Strongly Gauduchon and Balanced Hermitian Metrics

Let (M, J ) be a complex manifold of complex dimension n. A Hermitian metric g
on (M, J ) can be described by means of a positive definite smooth form � on M of
bidegree (1, 1) with respect to J . We will use this approach in what follows and we
will refer to � as a Hermitian structure or as a Hermitian metric indistinctly.
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A Hermitian structure � is strongly Gauduchon (sG for short) if ∂�n−1 is ∂̄-
exact [23,24]. In particular, any balanced Hermitian structure (i.e., d�n−1 = 0) is
sG, and any sG metric is a Gauduchon metric [19], that is, �n−1 is ∂∂̄-closed or
equivalently the Lee form is co-closed.

Next we suppose that (M = �\G, J ) is a nilmanifold endowed with an invariant
complex structure. It is proved in [16] that (M = �\G, J ) has a balanced metric if
and only if it has an invariant one. Moreover, by using the symmetrization process
given in [6] (see also [16,31] and [33, Proposition 3.2]) one easily arrives at:

Proposition 5.1 (M = �\G, J ) has an sG metric if and only if it has an invariant
one.

Therefore, the existence of sGmetrics on (M = �\G, J ) is reduced to the existence
at the Lie algebra level g of G.

Corollary 5.2 Let � be an invariant Hermitian structure on (M = �\G, J ). If J is
abelian, then � is sG if and only if it is balanced.

Proof Let g be the Lie algebra of G. First we prove that ∂̄(
∧n,k

(g∗)) = 0 for every
1 ≤ k ≤ n. Let us consider a decomposable form α ∈ ∧n,k

(g∗) given by α = β ∧ γ ,
where β ∈ ∧n,0

(g∗) and γ ∈ ∧0,k
(g∗). Since g is nilpotent and J is abelian, one has

that dβ = 0 and dγ ∈ ∧1,k
(g∗), so in particular β and γ are ∂̄-closed. Hence,

∂̄α = (∂̄β) ∧ γ + (−1)nβ ∧ (∂̄γ ) = 0.

Now, the statement in the corollary follows directly from Proposition 5.1 and from the
previous property for k = n − 2, i.e., ∂̄(

∧n,n−2
(g∗)) = 0. ��

From now on we consider n = 3.

Proposition 5.3 Let M = �\G be a 6-dimensional nilmanifold endowed with an
invariant complex structure J . There exists an sG metric on (M = �\G, J ) if and
only if the Lie algebra g of G is isomorphic to h1, . . . , h6 or h

−
19.

Proof By Proposition 5.1 it suffices to study the invariant case. By [31], the funda-
mental 2-form of any J -Hermitian metric is given by

2� = i (r2ω11̄+s2ω22̄+ t2ω33̄)+uω12̄− ūω21̄+vω23̄− v̄ω32̄+zω13̄− z̄ω31̄, (20)

where coefficients r2, s2, t2 are non-zero real numbers and u, v, z ∈ C satisfy r2s2 >

|u|2, s2t2 > |v|2, r2t2 > |z|2 and r2s2t2 + 2Re (i ūv̄z) > t2|u|2 + r2|v|2 + s2|z|2.
Let us start with the non-nilpotent case. From (16)

2∂� = (iεv ∓ i z)ω121̄ ∓ iv ω122̄ + (u − ū − ε t2)ω131̄ + (is2 ± t2)ω132̄ +
v ω133̄ + (is2 ∓ t2)ω231̄
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and therefore

4∂� ∧ � =
(
iε(s2t2 − |v|2) ± (t2u + t2ū + ivz̄ − i v̄z)

)
ω1231̄2̄

+
(
uv − is2z

)
ω1231̄3̄.

Direct computations show that ∂̄(
∧3,1

(g∗)) = 〈ω1231̄3̄〉. If the Hermitian structure
(J,�) is sG then

∓iε(s2t2 − |v|2) = t2(u + ū) + ivz̄ − i v̄z.

Since the left-hand side is purely imaginary and the right-hand side is real, we get that
ε = 0 and therefore g ∼= h−

19.
For the nilpotent case, let us consider the general complex equations (2). Now,

the fundamental 2-form of any J -Hermitian metric is given also by (20). Using [31,
Lemma 17 and Proposition 25], we get

4∂� ∧ � =
(
(1 − ε) Ā(s2t2 − |v|2) + B̄(i t2u + v̄z) − C̄(i t2ū − vz̄)

+ (1 − ε)D̄(r2t2 − |z|2)
)

ω1231̄2̄ − ε(s2t2 − |v|2) ω1231̄3̄.

It is straightforward to verify that ∂̄(
∧3,1

(g∗)) = 〈ρ ω1231̄2̄〉, and therefore, if the
Hermitian structure (J,�) is sG then ε = 0, i.e., g ∼= hi for i = 1, . . . , 6. Moreover,
if in addition ρ = 1, then any J -Hermitian structure is sG.

In conclusion, if there exists an sGmetric then g ∼= h1, . . . , h6 or h
−
19. The converse

follows directly from [31, Theorem 26] because these Lie algebras admit balanced
Hermitian metrics. ��
Remark 5.4 From the proof of the previous proposition it follows that onh2, h4, h5 and
h6, if J is a non-abelian nilpotent complex structure then any invariant J -Hermitian
metric is sG. This is in contrast with h−

19, where for any complex structure the space of
balanced metrics is strictly contained in the space of sG metrics, and moreover there
are Hermitian metrics which are not sG. For instance, consider a Hermitian metric on
h−
19 given by

� = i

2
ω11̄ + (u2 + z2 + 1)i ω22̄ + (u2 + z2 + 1)i ω33̄ + u

2
(ω12̄ − ω21̄)

+ z

2
(ω13̄ − ω31̄),

that is, in (20) we take r = 1, v = 0, u and z real and s2 = t2 = 2(u2 + z2 + 1):

• if u = z = 0 then the metric is balanced;
• if u = 0 and z �= 0 then the metric is sG but not balanced;
• if u �= 0 then the metric is not sG.
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Notice that this indicates a contrast between the sG and SKT geometries, since by [17]
the existence of an SKT structure on a 6-dimensional nilpotent Lie algebra depends
only on the complex structure.

There exist compact complex manifolds having sG metrics but not admitting any
balancedmetric [25,Theorem1.8].Nextwe show thegeneral situation for nilmanifolds
in dimension 6.

Proposition 5.5 Let M = �\G be a 6-dimensional nilmanifold with an invariant
complex structure J such that (M = �\G, J ) does not admit balanced metrics. If
(M = �\G, J ) has sG metric, then J is non-abelian nilpotent and g is isomorphic
to h2, h4 or h5. Moreover, according to the classification in Table 1, such a J is given
by: Re D + (Im D)2 ≥ 1

4 on h2; Re D ≥ 1
4 on h4; and λ = 0,Im D �= 0 or

λ = Im D = 0,Re D ≥ 0 on h5.

Proof Any complex structure on h6 or h
−
19 admits balancedmetrics. From [33]we have

that only h3 and h5 have abelian complex structures J admitting balanced metric. In
fact, any such J on h5 admits balanced Hermitian metrics, whereas for h3 the complex
structure must be equivalent to the choice of (−)-sign in Table 1. From Corollary 5.2,
it remains to study the non-abelian nilpotent complex structures J on h2, h4 and h5.
Since any such J admits sG metrics by Remark 5.4, next we show which of them do
not admit balanced metrics.

In the three cases the complex equations are of the form

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λ ω12̄ + D ω22̄. (21)

A similar argument as in the proof of [33, Proposition 2.3] shows that, up to equiva-
lence, the fundamental 2-form of any J -Hermitian metric is given by

2� = i (ω11̄ + s2 ω22̄ + t2 ω33̄) + u ω12̄ − ū ω21̄,

where s2 > |u|2 and t2 > 0.
If D = x + iy and u = u1 + iu2, the balanced condition is

s2 + x + iy = u2λ + iu1λ. (22)

We distinguish several cases depending on the values of λ.
If λ �= 0 then � is balanced if and only if u1 = y/λ and u2 = (s2 + x)/λ. The

condition s2 > |u|2 is equivalent to s4 + (2x − λ2)s2 + x2 + y2 < 0 and it is easy to
see that a non-zero s satisfying this condition exists if and only if the discriminant of
the previous equation as a second degree equation in s2 is positive, i.e.,

λ4 − 4xλ2 − 4y2 > 0. (23)

According to Table 1, non-abelian complex structures on h2 have λ = 1. In this
case (23) reads as x + y2 < 1/4, which means that any J such that x + y2 ≥ 1

4 has

123



280 M. Ceballos et al.

no balanced metrics. Similarly, for h4 any J such that x ≥ 1
4 does not admit balanced

metric.
For h5 and λ �= 0 we have that x = 0 by Table 1. Thus, there is no balanced metrics

if and only if λ4 ≤ 4y2. Since y ≥ 0, this is equivalent to λ2 ≤ 2y. However, none of
the three cases detailed in Table 1 verifies that λ2 ≤ 2y, and therefore any complex
structure on h5 with λ �= 0 admits balanced metrics.

Finally, in the case λ = 0 on h5 we get that the balanced condition (22) reduces to
y = 0 and s2 = −x > 0. From Table 1 we have that 0 < 1 + 4x , i.e., x ∈ (− 1

4 ,∞).
Therefore, if y �= 0 or y = 0, x ≥ 0 then there are no balanced metrics. ��

As pointed out by Popovici [25], the degeneration of the Frölicher sequence at E1
and the existence of sG metrics are unrelated. From the study of the sG geometry
above and from Theorem 4.1 we get:

Theorem 5.6 Let M = �\G be a 6-dimensional nilmanifold endowed with an invari-
ant complex structure J . If there exists an sG metric then the Frölicher spectral
sequence degenerates at the second level, i.e., E2(M) ∼= E∞(M). Moreover, if there
exists an sG metric and g � h5, then E1(M) ∼= E∞(M).

Proof ByProposition 5.3, the Lie algebra g underlyingM = �\Gmust be isomorphic
to h1, . . . , h6 or h

−
19, so Theorem 4.1 implies that the Frölicher sequence degenerates at

the second level. The last assertion follows directly by taking into accountCorollary 5.2
and Table 3 below. ��

It is interesting whether this result holds in general, that is:

Question 5.7 Does the Frölicher spectral sequence degenerate at the second step for
any compact complex manifold M of complex dimension 3 admitting an sG metric?

In the following table we show the complex structures J , up to equivalence, on
h1, . . . , h6 that admit balanced Hermitian metrics. The classification follows from the
proof of Proposition 5.5.

Motivated by [25, Theorem1.9] nextwe study the relation between the degeneration
of the Frölicher spectral sequence and the existence of sG or balanced metrics. The
possibilities are well illustrated in the following deformations of the complex structure
corresponding to λ = x = y = 0 on a nilmanifold with underlying Lie algebra h5.

Example 5.8 Let us consider the Lie algebra h5 with the real basis {e1, . . . , e6}
described in Theorem 2.1. Let us consider the complex structure J0,0 given by

J0,0 e1 = −e2, J0,0 e3 = −2e2 − e4, J0,0 e5 = −e6,
J0,0 e2 = e1, J0,0 e4 = −2e1 + e3, J0,0e6 = e5.

With respect to the (1, 0)-basis ωk
0,0 = e2k−1 − i J0,0e2k−1, for k = 1, 2, 3, the

complex structure equations are given by (3) where (ρ, λ, D) = (1, 0, 0). Therefore,
there are sG metrics (according to Remark 5.4 because ρ = 1), there do not exist
balanced metrics (see Table 3) and E1 � E2 ∼= E∞ (by Theorem 4.1 (c.2) since
ρD = 0).
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We consider the following deformation of J0,0:

Jλ,0 e1 = −e2, Jλ,0 e2 = e1,
Jλ,0 e3 = −1

1−λ
(2e2 + (1 + λ) e4), Jλ,0 e4 = 1

1+λ
(−2e1 + (1 − λ) e3),

Jλ,0 e5 = −e6, Jλ,0e6 = e5,

where λ2 ∈ [0, 1
2 ). The (1, 0)-basis ωk

λ,0 = e2k−1 − i Jλ,0e2k−1, for k = 1, 2, 3,

satisfies (3) where (ρ, λ, D) = (1, λ, 0). If λ2 ∈ (0, 1
2 ), then there are balanced

metrics by Table 3 and E1 � E2 ∼= E∞ by Theorem 4.1 (c.2).
Finally, let us consider this other deformation of J0,0:

J0,x e1 = 1√
1+4x

[
(4x − 1)e2 + 2xe4

]
, J0,x e2 = √

1 + 4x e1 + 2x√
1+4x

e3,

J0,x e3 = −√
1 + 4x (2e2 + e4), J0,x e4 = −2

√
1 + 4x e1 + 1−4x√

1+4x
e3,

J0,x e5 = −√
1 + 4x e6, J0,x e6 = 1√

1+4x
e5,

where x ∈ (− 1
4 ,∞). The (1, 0)-basis ω1

0,x = i(e2 − i J0,x e2), ω2
0,x = 1√

1+4x
(e3 −

i J0,x e3), ω3
0,x = e5 − i J0,x e5 satisfies (3) with (ρ, λ, D) = (1, 0, x). Using Theo-

rem 4.1, Remark 5.4 and Table 3 we get:

• If x ∈ (− 1
4 , 0) then there are balanced metrics and E1 ∼= E∞.

• If x ∈ (0,∞) then there are sG metrics, there do not exist balanced metrics and
E1 ∼= E∞.

Table 3 Classification of nilpotent complex structures admitting balanced metrics

g Abelian structures Non-Abelian Nilpotent structures

h1 dω2 = 0, dω3 = 0 –

h2 – dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + (x + iy) ω22̄,
y > 0, x + y2 < 1

4

h3 dω2 = 0, dω3 = ω11̄ − ω22̄ –

h4 – dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + x ω22̄,

x < 1
4 , x �= 0

h5 dω2 = 0, dω2 = 0, dω3 = ω12

dω3 = ω11̄ + ω12̄ + x ω22̄, dω2 = 0, dω3 = ω12 +ω11̄ +λ ω12̄ + (x + iy) ω22̄

0 ≤ x < 1
4 with (λ, x, y) satisfying one of:

• λ = y = 0, x ∈
(
− 1

4 , 0
)
;

• 0 < λ2 < 1
2 , 0 ≤ y < λ2

2 , x = 0;

• 1
2 ≤ λ2 < 1, 0 ≤ y < 1−λ2

2 , x = 0;

• λ2 > 1, 0 ≤ y < λ2−1
2 , x = 0.

h6 – dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄
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Next we address some problems on deformation openness or closedness of several
properties. Let � be an open disc around the origin in C. Following [25, Definition
1.12], a given propertyP of a compact complexmanifold is said to be open under holo-
morphic deformations if for every holomorphic family of compact complex manifolds
(M, Ja)a∈� and for every a0 ∈ � the following implication holds:

(M, Ja0) has propertyP �⇒ (M, Ja) has property P for all a ∈ � sufficiently

close to a0.

A given propertyP of a compact complex manifold is said to be closed under holo-
morphic deformations if for every holomorphic family of compact complex manifolds
(M, Ja)a∈� and for every a0 ∈ � the following implication holds:

(M, Ja) has property P for all a ∈ �\{a0} �⇒ (M, Ja0) has property P.

Alessandrini and Bassanelli proved in [1] (see also [16]) that the balanced property
of compact complex manifolds is not deformation open. In contrast, Popovici has
shown in [24] that the sG property is open under holomorphic deformations, and
conjectured in [25, Conjectures 1.21 and 1.23] that both the sG and the balanced
properties of compact complex manifolds are closed under holomorphic deformation.

The following result provides a counterexample to both conjectures. For that, we
startwith a nilmanifoldM with underlyingLie algebra isomorphic toh4, endowedwith
its abelian complex structure, whichwewill denote by J0.We know fromCorollary 5.2
and Table 3 that the complex nilmanifold (M, J0) does not admit sG metrics. The idea
is to deform holomorphically J0 in an open disc � = {a ∈ C | |a| < 1} around the
origin so that Ja admits balanced metric for any a �= 0. To find such a deformation we
will use a result by Maclaughlin, Pedersen, Poon and Salamon [21] that describes the
Kuranishi space of the abelian complex structure J0 in terms of invariant forms. We
will combine this result with our existence result of balanced metrics (see Table 3).

Theorem 5.9 There is a holomorphic family (M, Ja)a∈� of compact complex man-
ifolds, where � = {a ∈ C | |a| < 1}, such that (M, Ja) has balanced metrics for
each a ∈ �\{0}, but (M, J0) does not admit any strongly Gauduchon metric. In par-
ticular, the sG property and the balanced property are not closed under holomorphic
deformations.

Proof Let M be a nilmanifold with underlying Lie algebra h4 and let J0 be its abelian
complex structure. Recall (see Table 1) that there is a (1,0)-basis {ω1, ω2, ω3} for J0
satisfying dω1 = dω2 = 0 and dω3 = ω11̄ + ω12̄ + 1

4ω
22̄. However, instead of

using these structure equations for J0, we will consider another (1,0)-basis given by
{η1 = 2ω1 + ω2, η2 = 4i ω1 + i ω2, η3 = 2i ω3} which satisfies

dη1 = dη2 = 0, dη3 = i

2
η11̄ + 1

2
η12̄ + 1

2
η21̄.

The reason for using these complex structure equations for J0 instead of the previous
ones is that the latter are better adapted to the deformation parameter space of J0
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found byMaclaughlin, Pedersen, Poon and Salamon in [21]. In fact, using Kuranishi’s
method, it is proved in [21, Example 8] (see also [20]) that J0 has a locally complete
family of deformations consisting entirely of invariant complex structures and obtained
the deformation parameter space in terms of the invariant forms η1, η2, η3, η1̄, η2̄, η3̄.
Indeed, any complex structure sufficiently close to J0 has a basis {μ1

�,μ2
�,μ3

�} of
(1, 0)-forms such that ⎧

⎪⎨

⎪⎩

μ1
�= η1 + �1

1 η1̄ + �1
2 η2̄,

μ2
�= η2 + �2

1 η1̄ + �2
2 η2̄,

μ3
�= η3 + �3

3 η3̄,

(24)

where the coefficients �
j
k are sufficiently small and satisfy the condition i(1 +

�3
3)�

1
2 = (1 − �3

3)(�
1
1 − �2

2). Therefore, the Kuranishi space has dimension 4.
Moreover, the complex structures remain abelian if and only if �1

2 = 0 and �1
1 = �2

2.
Next we will find a particular holomorphic deformation for J0 which is not abelian

and having balanced metrics. Let � = {a ∈ C | |a| < 1}. For each a ∈ �, we
consider the basis {μ1

a, μ
2
a, μ

3
a} of complex 1-forms given by

μ1
a = η1 + aη1̄ − iaη2̄, μ2

a = η2, μ3
a = η3.

Note that this corresponds to take �1
1 = a,�1

2 = −ia and �2
1 = �2

2 = �3
3 = 0

in the parameter space (24). Notice also that this basis defines implicitly an invariant
complex structure Ja onM just by declaring that the formsμ1

a, μ
2
a, μ

3
a are of type (1,0)

with respect to Ja . Moreover, a direct calculation shows that the complex structure
equations for Ja , with respect to this basis, are

dμ1
a = dμ2

a = 0, 2(1 − |a|2)dμ3
a = 2āμ12

a + iμ11̄
a + μ12̄

a + μ21̄
a − i |a|2μ22̄

a ,

(25)

for each a ∈ �.
Recall that by Corollary 5.2 and Table 3, if a = 0 then the complex nilmanifold

(M, J0) does not admit sG metrics because J0 is abelian.
For each a ∈ �\{0} the complex structure is nilpotent but not abelian. In this case

we can normalize the coefficient of μ12
a by taking 1−|a|2

ā μ3
a instead of μ3

a , so we can
suppose that the complex structure equations are

dμ1
a = dμ2

a = 0, dμ3
a = μ12

a + i

2ā
μ11̄
a + 1

2ā
(μ12̄

a + μ21̄
a ) − ia

2
μ22̄
a .

Moreover, with respect to the (1,0)-basis given by {τ 1a = μ1
a − iμ2

a, τ
2
a =

−2āi μ2
a, τ

3
a = −2āi μ3

a}, the structure equations for Ja become

dτ 1a = dτ 2a = 0, dτ 3a = τ 12a + τ 11̄a − 1

a
τ 12̄a + 1 − |a|2

4|a|2 τ 22̄a .
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Now, according to Proposition 2.4 we can suppose that the coefficient of τ 12̄a is equal
to 1/|a| (in fact, any complex structure given by (ρ, B, D) is equivalent to (ρ, |B|, D)

where B ∈ C).
In conclusion, for each a ∈ �\{0} there exists a (1,0)-basis for which the complex

equations are of the form (21) with λ = 1
|a| and D = 1−|a|2

4|a|2 . Taking x = Re D =
1−|a|2
4|a|2 and y = Im D = 0, one has λ2 − 4x = 1. Now, following the proof of
Proposition 5.5, since λ �= 0 the complex structure Ja admits a balanced metric if and
only if (23) is satisfied. But the latter condition reads

λ2(λ2 − 4x) = 1

|a|2 > 0,

so there exists a balanced Hermitian metric for each a ∈ C such that 0 < |a| < 1. ��
Remark 5.10 It is worth giving a closer look at the failure of the sG property at a = 0.
Let Ja be the family of complex structures given by (25) for any a ∈ � = {a ∈ C |
|a| < 1}, and let us consider the real 2-form � of bidegree (1,1) for Ja given by

2� = ir2 μ11̄
a + is2 μ22̄

a + i t2 μ33̄
a ,

where r, s, t ∈ R. Since

4� ∧ d� = i t2

2(1 − |a|2) (s
2 − |a|2r2)(μ121̄2̄3̄

a − μ1231̄2̄
a ),

the 4-form �2 is closed if and only if s2 = |a|2r2, i.e., if and only if � is given by

2� = ir2 μ11̄
a + i |a|2r2 μ22̄

a + i t2 μ33̄
a .

This defines a balanced Ja-Hermitian metric for any r, t > 0 and for any 0 < |a| < 1.
However, in the central limit, a = 0 and the form� becomes degenerate, i.e.,�3 = 0,
therefore it does not define a J0-Hermitian metric because the fundamental form of
any Hermitian structure is always non degenerate.

It is well known that the property of “the Frölicher spectral sequence degenerating
at E1” is open under holomorphic deformations. In [15, Theorem 5.4] it is proved
that this property is not closed under holomorphic deformations. As a consequence of
Theorems 4.1 and 5.9 we obtain another example based on the complex geometry of
h4.

Corollary 5.11 Let (M, J0) be a nilmanifold with underlying Lie algebra h4 endowed
with abelian complex structure J0. There is a holomorphic family of compact complex
manifolds (M, Ja)a∈�, where � = {a ∈ C | |a| < 1}, such that E1(M, Ja) ∼=
E∞(M, Ja) for each a ∈ �\{0}, but E1(M, J0) � E∞(M, J0).
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The upper semicontinuity of the Hodge numbers is crucial in the proof of the
openness of the property “E1 ∼= E∞”. Since we proved in Corollary 4.9 that the upper
semicontinuity fails for E p,q

2 , the following result is not so unexpected.

Corollary 5.12 The property of “the Frölicher spectral sequence degenerating at E2”
is not open.

Proof The family Jt given in Example 4.8 satisfies E2(J− π
2
) ∼= E∞(J− π

2
), because

J− π
2
is in case (f.1) of Theorem 4.1, but E2(Jt ) � E∞(Jt ) for t ∈ (−π

2 , π
2 ). ��

This result is relevant in relation to Question 5.7 since the existence of sG metric
is an open property. Notice that there is no contradiction because the Lie algebra in
Example 4.8 is h15 which does not admit any sG metric.
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