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1 Introduction

The goal of this note is to give a detailed proof of the following theorem of Aubin.

Theorem 1 (Aubin [1]) Let (M, g) be a compact Riemannian manifold of dimension
n. Assume that, in a geodesic normal coordinate chart around a point x ∈ M, det(g) =
1 + O(r N ), with N sufficiently large, where r = d(x, ·). Let ω denote ω:= inf{k ∈
N : |∇kWeylg(x)| �= 0}. If |∇ωscal (x)| = 0, then �ω+1scal (x) < 0. In particular,∫
∂Br (x)

scal dσ < 0, for r sufficiently small.

For the particular values of ω ∈ {1, 2}, Theorem 1 is proven by Hebey and Vaugon
[6]. The case ω = 3 was studied by Zhang, as mentioned in [1].

Theorem 1 is fundamental in questions related to the compactness of the Yamabe
equation solutions and the equivariant Yamabe problem. For example, in [8,9], the
author used Theorem 1 to prove the validity of the Hebey–Vaugon conjecture, when
ω ≤ n−6

2 (more details are given in Sect. 2).
Aubin used Theorem 1 in [1–3] in his study of the compactness of the set of

solutions to the Yamabe equation. He claimed the compactness of this set except for
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232 F. Madani

the round sphere. This claim is in a contradictionwith the counter examples constructed
by Brendle [4] and by Brendle and Marques [5]. Many mathematicians had serious
concerns about the correctness of [1], although it remained unclear which parts of
[1] are correct. For example, the proof of [1, Théorème 5] is only sketched and not
given in all details, and thus it is difficult for a reader to check whether the result of
this theorem holds or not. The aim of this note is to provide a rigorous proof of [1,
Théorème 5].

In our proof of Theorem 1, we did not follow exactly the strategy proposed by
Aubin in [1]. However, there are certain common points. For example, the formula in
Corollary 7 coincides with the last formula on p. 279 in [1].

In order to facilitate the reading, we gathered all notation in Notation Index A.2.

2 The Equivariant Yamabe Problem

In this section, we present an application of Theorem 1. Let (M, g) be a compact
Riemannian manifold of dimension n ≥ 3 and G be a subgroup of the isometry group
Isom(M, g). The equivariant Yamabe problem consists in finding aG-invariant metric
in the conformal class of g, with constant scalar curvature. Hebey and Vaugon proved
that a sufficient condition to solve this problem is to prove that the following conjecture
holds.
Hebey–Vaugon conjecture If (M, g) is not conformal to the round sphere Sn or if
the action of G has no fixed point, then the following strict inequality holds

inf
g′∈[g]G

∫
M scal g′dvg′

(
∫
M dvg′)

n−2
n

< n(n − 1)ω2/n
n ( inf

x∈M card (G · x))2/n,

where ωn is the volume of round sphere Sn .

For ω ≤ 2 Hebey and Vaugon [6] proved Theorem 1 and they used this result to
prove the above conjecture. They also proved it for ω > n−6

2 , assuming the positive
mass theorem.

In [8,9], the author used Theorem 1 to prove the validity of the Hebey–Vaugon
conjecture for ω ≤ n−6

2 , by constructing a local G-invariant positive test function,
which involves the scalar curvature, where the negative sign of

∫
∂Br (x)

scal dσ plays
an important role. For more details, see [6,8,9] and the references therein.

3 The Hebey–Vaugon Formulas

Let us first mention some notation and convention used throughout this note. Our
convention for the components of the Riemann and Ricci curvature tensors are: in a
local normal coordinate chart,

Rq
jk�X

j = (∇k∇�X)q − (∇�∇k X)q , (∇i jα)k = (∇ j iα)k − R�
ki jα�,
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A Detailed Proof of a Theorem of Aubin 233

for any vector field X and 1-form α. Moreover, we set Ri jk� = giq R
q
jk�, Rici j = R�

i�j .
For any k-covariant tensor T , we have:

∇qTp1...pk :=(∇qT )p1...pk , �Tp1...pk :=(gpq∇pqT )p1...pk

We define the symmetrization of the tensor T by

SymTI := Sym
p1,...,pk

Tp1...pk :=
∑

σ∈S(k)

Tpσ(1)...pσ(k) ,

whereS(k) is the symmetric group on the finite set {1, . . . , k} and I = (p1, . . . , pk)
is a multi-index k-tuple. The two-by-two contraction of SymTI , denoted by Tr SymTI ,
is defined by

Tr SymTI :=
{

gp1 p2 . . . gpk−1 pkSymTp1...pk , if k is even,

gp1 p2 . . . gpk−2 pk−1SymTp1...pk , if k is odd.

Note that when k is odd, the two-by-two contraction of SymT is a 1-covariant tensor.
We always use the Einstein summation convention, i.e., each time an index occurs
twice we sum over it.

Let (M, g) be a compact Riemannian manifold of dimension n. We fix x ∈ M and
define: ω = inf{k ∈ N : |∇kWeylg(x)| �= 0}. Lee and Parker [7] proved that in each
conformal class [g], there exists a metric g′ which satisfies, in a geodesic normal chart,
det(g′) = 1 + O(r N ), with N sufficiently large, where r = d(x, ·). This result was
extended by Hebey and Vaugon [6] in the equivariant setting. If G is a subgroup of
the isometry group Isom(M, g) and [g]G denotes the G-invariant conformal class of
g, then they proved

Lemma 2 In each class [g]G, there exists a metric g′ which satisfies, in a geodesic
normal chart, det(g′) = 1 + O(r N ), with N sufficiently large, where r = d(x, ·).
Moreover, in this chart, the Taylor expansion of g′ is given by

g′
i j (y) = δi j +

∑

ω+4≤m≤2ω+6

2(m − 3)

(m − 1)! ∇p3,...,pm−2 R
′
i p1 p2 j (x)x

p1 , . . . , x pm−2

+K (ω)

n∑

k=1

∇p3,...,pω+2 R
′
i p1 p2k(x)∇pω+5,...,p2ω+4 R

′
j pω+3 pω+4k(x)x

p1 , . . . , x p2ω+4

+O(r2ω+5),

where K (ω) = (3ω+8)(ω+1)2

(2ω+5)[(ω+3)!]2 .

Using the aboveTaylor expansion of themetric andwriting themetric as exponential
of some symmetric matrix, Hebey and Vaugon proved the following formulas.

Theorem 3 (Hebey–Vaugon [6]) Let (M, g) be a compact Riemannian manifold of
dimension n. Assume that det(g) = 1+O(r N ), with N sufficiently large, in a geodesic
normal coordinate chart around x. Then the following statements hold
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234 F. Madani

1. For any nonnegative integer k ≤ ω − 1, |∇kRiem(x)| = 0.
2. For any nonnegative integer k ≤ 2ω +1, the k-th covariant derivatives of the Rie-

mann, Ricci and scalar curvatures of g′ coincide with the usual partial derivatives
and thus they commute. Namely, for any multi-index β ∈ {1, . . . , n}k ,

∇βRiem(x) = ∂βRiem(x), ∇βRic(x) = ∂βRic(x), ∇βscal g(x) = ∂βscal g(x).

3. For any ω + 2 ≤ m ≤ 2ω + 3, Sym
p1,...,pm

∇p3,...,pmRicp1 p2(x) = 0 and

Sym
p1...p2ω+4

{

∇p3,...,p2ω+4Ricp1 p2(x)

+C(ω)∇p3,...,pω+2 Rip1 p2 j (x) · ∇pω+5,...,p2ω+4 Ripω+3 pω+4 j (x)

}

= 0, (1)

where C(ω) = (ω + 1)2(ω + 2)2(2ω + 2)![(ω + 3)!]−2.

Assume that g satisfies the assumptions of Theorem 3. It follows from the theorem
that��scal (x) = 0 and |∇��scal (x)| = 0, for anynonnegative integer � ≤ ω. Indeed,
Tr Sym

p1,...,p2�
∇p1,...,p2�scal (x)= (2�)!��scal (x) and Sym

p1,...,p2�+3

∇p3,...,p2�+3Ricp1 p2(x)=
Sym

p1,...,p2�+2

{
2∇p2,...,p2�+2Ricp1 p2�+3(x)+(2�+1)∇p3,...,p2�+3Ricp1 p2(x)

}
, since byThe-

orem 3, the covariant derivatives of order at most 2ω + 1 of the Ricci curvature tensor
and the scalar curvature commute. It follows that

2(2�)!(� + 1)2��scal (x) = Tr Sym
p1...p2�+2

∇p3...p2�+2Ricp1 p2(x) = 0, (2)

(2� + 2)!(� + 2)∇p2�+3�
�scal (x) = Tr Sym

p1...p2�+3

∇p3...p2�+3Ricp1 p2(x) = 0. (3)

Moreover, if we assume that |∇ωscal (x)| = 0, then the (2ω + 2)-covariant deriv-
atives of the scalar curvature at x commute (this fact will be proven at the end of
the proof of Proposition 6). For r = d(x, ·) sufficiently small, one can write the
Taylor expansion of the scalar curvature in Br (x) and prove that there exists a pos-
itive constant c(n, ω) depending on n and ω, such that 1

vol(∂Br (x))

∫
∂Br (x)

scal dσ =
c(n, ω)

∑ω+1
�=0 ��scal (x)r2� + O(r2ω+3). We conclude that

1

vol(∂Br (x))

∫

∂Br (x)
scal dσ = c(n, ω)�ω+1scal (x)r2ω+2 + O

(
r2ω+3

)
. (4)

Thus,
∫
∂Br (x)

scal dσ and �ω+1scal (x) have the same sign.

4 Ricci Symmetrization

From now on, (M, g) denotes a compact Riemannian manifold of dimension n. We
fix a point x ∈ M and assume that det(g) = 1 + O(r N ), with N sufficiently large,
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A Detailed Proof of a Theorem of Aubin 235

in a geodesic normal coordinate chart around x (in particular, gi j (x) = δi j ) and
that all the covariant derivatives of order ω of the scalar curvature at x vanish, i.e.,
|∇ωscal (x)| = 0. Since all the tensors are evaluated at x , we omit to mention x for
all tensors. For example, we write ∇IRici j instead of ∇IRici j (x).

We introduce the following notation:

R� = |∇ω−2���Riem|2, T� = |∇ω−2���Ric|2, 0 ≤ � ≤ ω

2
,

M� = ∇K∇a�
�Ricbc · ∇K∇c�

�Ricab, 0 ≤ � ≤ ω − 1

2
,

N� = ∇K ′∇cd�
�Ricab · ∇K ′∇ab�

�Riccd , 0 ≤ � ≤ ω − 2

2
,

where we denote by K and K ′ two multi-indices (ω−2�−1) and (ω−2�−2)-tuples
respectively, and the fixed point x is omitted. By convention,N ω

2
= M ω

2
= 0, if ω is

even and N ω−1
2

= 0, if ω is odd.

Lemma 4 For any � ≤ ω
2 the following equality holds

2T� + (ω − 2�){(ω − 2� − 1)N� + 4M�} = 0. (5)

Proof ByTheorem3,we have Sym
p1,...,pω+2

∇p3,...,pω+2Ricp1 p2 = 0. Since theRicci tensor

is symmetric and its covariant derivatives commute, one can also rewrite this identity
as follows:

∑

1≤i< j≤ω+2

∇p1... p̂i ... p̂ j ...pω+2Ricpi p j = 0.

After contracting by gpk+1 pk+2 , . . . , gpω+1 pω+2 , with k = ω+2−2� ≥ 2 and 1 ≤ � ≤
ω
2 , we obtain ∑

1≤i< j≤k

∇p1... p̂i ... p̂ j ...pk�
�Ricpi p j = 0, (6)

since we assumed |∇ωscal | = 0. Equality (5) is obtained by multiplying (6) with
∇p1,...,pk−2�

�Ricpk−1 pk . �	
Lemma 5 For any � ≤ ω

2 , the following inequality holds

2T� + (ω − 2�)N� ≥ 0.

Moreover, it follows that T� + N� − 2M� ≥ 0.

Proof For ω even and � = ω
2 , by definition M� = N� = 0. Thus, the inequalities

holds. For ω odd and � = ω−1
2 , by definitionN� = 0 and by (5), we have T� +2M� =

0. Hence M� is nonpositive, which proves the inequalities.
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236 F. Madani

From now on, we assume that � ≤ ω−2
2 and set k:=ω − 2� + 2 ≥ 4. We use the

convention
(p
q

) = 0 if q > p. Let 
(t) be the k-covariant tensor, depending on the
real parameter t , whose components are given by


(t)p1,...,pk = ∇p1,...,pk−2�
�Ricpk−1 pk t +

∑

1≤i< j≤k−2

∇p1... p̂i ... p̂ j ...pk�
�Ricpi p j ,

The square norm of 
(t) is given by


(t)p1...pk
(t)p1,...,pk = T�t
2 +

(
k − 2

2

)

T� + 2

(
k − 2

2

)

N�t

+
(
k − 2

2

)(
k − 4

2

)

N� + 2

(
k − 2

2

)

(k − 4)M�,

which is, with respect to t , a second degree nonnegative polynomial. Thus its discrim-
inant is nonpositive, namely

(k − 2)(k − 3)(N�)
2 − T�{2T� + (k − 4)(k − 5)N� + 4(k − 4)M�} ≤ 0.

We substituteM�, using (5) and obtain

(k − 2)(k − 3)

(N�

T�

)2

+ 2(k − 4)

(N�

T�

)

− 4

k − 2
≤ 0,

where we assumed that T� �= 0 (otherwise the proof of the lemma is trivial, since
all terms involved vanish). We conclude that −2

k−2 ≤ (N�

T�

) ≤ 2
(k−2)(k−3) . This proves

the first inequality, since ω ≥ 2� + 2. Substituting the value of M�, given by (5), in
T� + N� − 2M� and using the first inequality of the lemma yields the second one. �	

5 Proof of Aubin’s Theorem

We recall that (M, g) denotes a compact Riemannian manifold of dimension n and
x ∈ M is a fixed point. We assumed that det(g) = 1 + O(r N ), with N sufficiently
large, in a geodesic normal coordinate chart around x and that |∇ωscal (x)| = 0. We
use the following notation for the symmetrizations that occur in our computation:

S = Tr Sym∇KRicab, S1 = Tr Sym∇K scal ,

S2 = Tr Sym∇I Riabj · ∇JRici j , S3 = Tr Sym∇IRicaj · ∇JRicbj ,

S4 = Tr Sym∇I Riabj · ∇J ′∇iRiccj , Q(R)I Jabcd = Sym∇I Riabj · ∇J Ricd j ,

where I , J , J ′ and K denote multi-indices of length #K = 2ω + 2, #I = #J = ω,
#J ′ = ω − 1 and the symmetrization is taken over all the indices which are not
yet contracted. Note that Q(R) is a symmetric (2ω + 4)-covariant tensor and S,
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A Detailed Proof of a Theorem of Aubin 237

S1, . . . ,S4 are real numbers. Using this notation, the two-by-two contraction of the
Hebey–Vaugon formula (1) is S + C(ω)TrQ(R) = 0.

Before we start the computation, let us here illustrate the idea of our proof of
Theorem 1. By (4), it is sufficient to show that �ω+1scal < 0. The first step in the
proof is to compute S, which is the two-by-two contraction of the covariant deriva-
tives of the Ricci tensor. When the order of the covariant derivatives is less or equal
to 2ω + 1, we know that they commute (cf. Theorem 3). Therefore, the two-by-two
contraction of the covariant derivatives of the Ricci tensor is, up to a positive integer,
equal to either ��scal or ∇��scal for some nonnegative integer � (cf. (2) and (3)).
However in S and S1, there are 2ω + 2 covariant derivatives and in general they do
not commute. Each time we commute two of them in S or S1, the Riemann curva-
ture tensor occurs. By using the fact that for any nonnegative integer k ≤ ω − 1,
|∇kRiem| = 0 and |∇ωscal | = 0, we show that the 2ω + 2 covariant derivatives
of the scalar curvature in S1 commute and thus S1 = (2ω + 2)!�ω+1scal . Using
this fact, we prove that S is equal to the sum of a positive integer times �ω+1scal
and a positive combination, denoted J , of the terms S2, S3 and S4, which corre-
sponds to the commutativity obstruction of the covariant derivatives in S. By tak-
ing into account the formula S + C(ω)TrQ(R) = 0, it is sufficient to show that
J +C(ω)TrQ(R) > 0. The second step is to compute the two-by-two contraction of
Q(R). We determine all possible terms that occur when contracting all the Riemann
tensor entries of Q(R) (i.e., in the definition of Q(R), they correspond to a, b, c and
d). It turns out that TrQ(R) is a positive integer combination of 27 terms (without
using Bianchi identities), denoted Ak , where each Ak is a two-by-two contraction of
a symmetric tensor of the same form as Q(R), but with contracted Riemann tensor
entries. Further, we prove that allAk’s are nonnegative and some of them are positive
(they are summarized in Table 1). These 27 terms Ak are themselves a positive com-
bination of the following 4 nonnegative terms {R�, T�, T� − 2M� + N�, T� − M�},
which are defined in Sect. 4. The third step is to do the same thing as in the sec-
ond step for J . Namely, we compute all possible terms occurring in the two-by-
two contraction. We establish that J is also an integer (with positive and negative
coefficients) combination of the following 3 terms {T�,M�,N�}. In the last step,
one has to add the two combinations of TrQ(R) and J and check, using Lemma
5 and (5), that each kind of term, occurring in J + C(ω)TrQ(R), is nonnegative.
We conclude by using the fact that R0 is positive, which holds by the definition of
ω.

Proposition 6 The following equality involving the above defined symmetrizations
holds:

S = 2(ω+2)2(2ω+2)!�ω+1scal +C(ω)
{
2(ω+3)2(S2+S3)+2ω(ω+3)S4

}
, (7)

where C(ω) = (ω + 1)2(ω + 2)2(2ω + 2)![(ω + 3)!]−2.

By Theorem 3, we have S + C(ω)TrQ(R) = 0, If we substitute S by its value given
in Proposition 6, we obtain the following equality.
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238 F. Madani

Corollary 7 The following equality holds

−�ω+1scal = (ω + 1)2

2[(ω + 3)!]2
{

TrQ(R)+2(ω+3)
[
(ω+3)(S2 +S3)+ωS4

]
}

. (8)

Remark 8 Note that the equality above is claimed by Aubin [1, p. 279], which in his
notation, is written in the form 2(ω + 2)2C(2, 2)Sym∇αβkl R + C(ω)I = 0.

Proof of Proposition 6 In order to prove (7), we start by decomposing the symmetriza-
tion of the (2ω + 2)-covariant derivatives of the Ricci tensor and then contract two-
by-two as follows:

S=2(ω+2)

{

S1+Tr
∑

σ∈S(2ω+2)
1≤k≤2ω+2

∇pσ(1),...,pσ(k−1)qpσ(k),...,pσ(2ω+1)Ricpσ(2ω+2)q

}

(9)

=2(ω + 2)

{

S1+Tr
∑

σ∈S(2ω+2)
ω+1≤k≤2ω+2

(1 + ωδk(ω+1))∇pσ(1),...,pσ(k−1)qpσ(k)...pσ(2ω+1)Ricpσ(2ω+2)q

}

,

where δi j denotes the Kronecker delta. The last equality follows by using the fact
that for any k ≤ ω − 1, |∇kRiem| = 0 (cf. Theorem 3), which implies that any two
successive covariant derivatives of order at least ω + 2 and ω + 3 respectively, in
the (2ω + 2)-covariant derivatives of the Ricci tensor, commute. Namely, for each
1 ≤ k ≤ ω + 1 the following equality holds

∇pσ(1),...,pσ(k−1)qpσ(k),...,pσ(2ω+1)Ricpσ(2ω+2)q

= ∇pσ(1),...,pσ(ω)qpσ(ω+1),...,pσ(2ω+1)Ricpσ(2ω+2)q .

In the last sum over k in (9), we obtain for k = 2ω+2 a multiple of S1, by applying
the contracted second Bianchi identity (28):

Tr
∑

σ∈S(2ω+2)

∇pσ(1),...,pσ(2ω+1)qRicpσ(2ω+2)q = 1

2
S1. (10)

For all the other terms in the last sum over k in (9) we move the index q to the right
in order to get it as last index of the derivatives and then apply again (10). Thus, for
each ω+1 ≤ k ≤ 2ω+2, we obtain a term equal to 1

2S1. Summing up, we obtain that

S1 occurs in S with coefficient 2(ω+2)[1+ 1
2

∑2ω+2
k=ω+1(1+ωδk(ω+1))] = 2(ω+2)2.

In the terms of the last sum in (9), each permutation of q to the right gives rise
to new terms involving the Riemannian curvature tensor. More precisely, for each
ω + 1 ≤ k ≤ 2ω + 1, the following formula holds:
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A Detailed Proof of a Theorem of Aubin 239

∇pσ(1)...pσ(k−1)qpσ(k)...pσ(2ω+1)Ricpσ(2ω+2)q

= ∇pσ(1)...pσ(k−1) pσ(k)qpσ(k+1)...pσ(2ω+1)Ricpσ(2ω+2)q

+∇pσ(1)...pσ(k−1)

{ 2ω+1∑

j=k+1

Rppσ( j) pσ(k)q∇pσ(k+1)... p̂σ( j)...pσ(2ω+1)∇pRicpσ(2ω+2)q

+Rppσ(2ω+2) pσ(k)q∇pσ(k+1)...pσ(2ω+1)Ricpq

+Ricpσ(k) p∇pσ(k+1)...pσ(2ω+1)Ricpσ(2ω+2) p

}

, (11)

where we used the fact that the covariant derivatives commute up to order 2ω + 1 (cf.
Theorem 3). Note that for k = 2ω + 1, the sum over j in (11) is empty, meaning that
the corresponding terms do not occur in this case.

In the first term of (11), we continue to move the index q to the right, using
repeatedly the same formula until q attains the last position in the indices of the
covariant derivatives. For the remaining terms in (11), we first compute, using the
Leibniz rule, their covariant derivatives. For example, for the second type of term, we
have for each ω + 1 ≤ k ≤ 2ω + 1:

∇pσ(1),...,pσ(k−1) (Rppσ(2ω+2) pσ(k)q · ∇pσ(k+1)...pσ(2ω+1)Ricpq)

=
∑

S⊆{pσ(1),...,pσ(k−1)},#S=ω

(∇S Rppσ(2ω+2) pσ(k)q)(∇{pσ(1),...,pσ(k−1)}\S∇pσ(k+1),...,pσ(2ω+1)Ricpq).

Taking now in the last equality the sum over all permutations σ ∈ S(2ω + 2) and
contracting two-by-two, we obtain for each ω + 1 ≤ k ≤ 2ω + 1:

Tr
∑

σ∈S(2ω+2)

∇pσ(1),...,pσ(k−1) (Rppσ(2ω+2) pσ(k)q∇pσ(k+1),...pσ(2ω+1)Ricpq) =
(
k − 1

ω

)

S2.

After iterating the formula (11) sufficiently many times in order to transform all
terms occurring in the last sum in (9) into terms having the index q as the last index
of the covariant derivates, we can compute as follows the coefficient of S2 in S:

2(ω + 2)
2ω+1∑

k=ω+1

{

(1 + ωδ(ω+1)k)

2ω∑

j=k−1

(
j

ω

)}

= 2(ω + 2)
2ω∑

k=ω

(k + 1)

(
k

ω

)

= 2C(ω)(ω + 3)2.

The proof of the last equality is given in Appendix Sect. “Combinatorics Formulas”.
Applying the same argument as above to the last type of term in (11), yields that S3
occurs with the same multiplicity in S. Now, we consider the remaining term in (11).
For any ω + 1 ≤ k ≤ 2ω, we have

∇pσ(1),...,pσ(k−1)

( 2ω+1∑

j=k+1

Rppσ( j) pσ(k)q∇pσ(k+1),..., p̂σ( j)...pσ(2ω+1)∇pRicpσ(2ω+2)q

)
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=
2ω+1∑

j=k+1

∑

S⊆{pσ(1)...pσ(k−1)}
#S=ω

∇S Rppσ( j) pσ(k)q∇{pσ(1),...,pσ(2ω+1)}\(S∪{pσ(k),pσ( j)})

∇pRicpσ(2ω+2)q .

Taking in this last equality the sum over all permutations σ ∈ S(2ω + 2) and
contracting two-by-two, we obtain for each ω + 1 ≤ k ≤ 2ω:

Tr
∑

σ∈S(2ω+2)

∇pσ(1),...,pσ(k−1)

2ω+1∑

j=k+1

Rppσ( j) pσ(k)q∇pσ(k+1)... p̂σ( j)...pσ(2ω+1)∇pRicpσ(2ω+2)q

=
2ω+1∑

j=k+1

(
k − 1

ω

)

S4 = (2ω + 1 − k)

(
k − 1

ω

)

S4 (12)

As above, in order to find the coefficient of S4 in S, we combine (9), (12) and we
obtain

2(ω + 2)
2ω∑

k=ω+1

{

(1 + ωδ(ω+1)k)

2ω∑

j=k−1

(2ω − j)

(
j

ω

)}

= 2ω(ω + 3)C(ω),

The proof of the last equality is given in Appendix Sect. “Combinatorics Formulas”.
To finish the proof of the proposition, it remains to show thatS1 = (2ω+2)!�ω+1scal .
In fact, when commuting any two successive covariant derivatives of the (2ω + 2)-
covariant derivatives of the scalar curvature, there are curvature terms occurring. These
are all of the form ∇αRiem∇βscal , with α + β = 2ω. By Theorem 3, we know that
for each k ≤ ω − 1, we have |∇kRiem| = |∇kscal | = 0. Since we assumed that
|∇ωscal | = 0, it follows that the (2ω+2)-covariant derivatives of the scalar curvature
commute. �	

We recall the definition of the symmetric (2ω + 4)-covariant tensor Q(R), whose
components Q(R)p1...p2ω+4 are given by:

∑

σ∈S(2ω+4)

∇pσ(1)...pσ(ω)
Ripσ(ω+1) pσ(ω+2) j · ∇pσ(ω+3)···pσ(2ω+2) Ripσ(2ω+3) pσ(2ω+4) j .

Our purpose is to show that TrQ(R) is a positive combination of nonnegative terms.
In order to define these terms, we need first to introduce some new notation. For all
nonnegative integers � and β, satisfying 0 ≤ β ≤ ω and 0 ≤ � ≤ ω−β

2 ,
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T ω−β−2�
� := Tr Sym

I∪J
∇I∇K��Rici j∇J∇KRici j ,

T ω−2
1,1 := Tr Sym

I ′′∪J ′′
∇I ′′�Rici j∇J ′′�Rici j ,

where here I , J , I ′′, J ′′ and K aremulti-indices of cardinalityω−β−2�,ω−β,ω−2,
ω − 2 and β respectively. In other words, T ω−β−2�

� is obtained by taking the product
of (ω −2�)-covariant derivatives of ��Ric with ω-covariant derivatives of Ric, where
β covariant derivatives of both factors are already contracted to each other and by
contracting two-by-two the symmetrization over the remaining covariant derivatives.

Set T ω−β = T ω−β
0 . Note that T 0

� = (2�)!T� (cf. Sect. 4 for the definition of T�).

The terms Rω−β−2�
� , Mω−β−2�

� , Nω−β−2�
� , Rω−β , Mω−β and Nω−β are defined

in the same way as T ω−β−2�
� and T ω−β . Now we show that these terms are integer

combinations of R�, T�, M� and N�. First, we note that

T ω−β = Tr Sym∇I∇KRici j∇J∇KRici j
= 2(ω − β)Tr Sym{(ω − β)∇I ′KaRici j∇J KaRici j

+(ω − β − 1)∇I ′′KaaRici j∇J KRici j }
= 2(ω − β){(ω − β)T ω−β−1 + (ω − β − 1)T ω−β−2

1 }.

It follows that for any 2 ≤ γ ≤ ω, we have

T γ = 2γ (γ − 1)T γ−2
1 + 2γ 2T γ−1. (13)

Similarly, we obtain the following formulas:

T γ−2
1 = 2γ (γ − 1)T γ−3

1 + 2(γ − 3)(γ − 1)T γ−4
2 , (14)

T γ−2
1 = 2(γ − 1)(γ − 2)T γ−3

1 + 2(γ − 1)2T γ−2
1,1 . (15)

Using (13), (14) and (15), we prove, by induction on γ , the following formulas

T γ =
[ γ
2 ]∑

�=0

dγ

� T�, for all 0 ≤ γ ≤ ω;

T γ−2
1 =

[ γ
2 ]∑

�=1

eγ

�−1T�, for all 2 ≤ γ ≤ ω, (16)

T γ−2
1,1 =

[ γ
2 ]∑

�=1

dγ−2
�−1 T�, for all 2 ≤ γ ≤ ω, (17)

where dγ

� := 2γ−2�(γ !)3
(γ−2�)!(�!)2 and eγ

� := 2γ−2�−2γ !(γ−1)!(γ−2)!
(γ−2�−2)!(�+1)!�! . Note that the equalities (13)

and (16) hold also for Rγ , Mγ−1 and N γ−2.
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Table 1 The terms occuring in the contraction ofQ(R)

k Ak uk Bk

1 Tr Sym∇IRici j∇JRici j c1 T ω

2 −Tr Sym∇I ′cRici j∇J ′b Ribcj 2c2 T ω−1 − Mω−1

3 −Tr Sym∇IRici j∇J ′′bc Ribcj 2c3 T ω−2
1

4 −Tr Sym∇I ′bRici j∇J ′c Ribcj 2c2 B2

5 −Tr Sym∇I ′′bcRici j∇J Ribcj 2c3
∑[ ω−2

2 ]
�=0 eω

�
(T� − 2M� + N�)

6 Tr Sym∇I Riabj∇J Riabj c1 Rω

7 Tr Sym∇I ′b Riabj∇J ′c Riacj c2 2B2

8 Tr Sym∇I ′′cb Riabj∇J Riacj 2c3 2B5

9 Tr Sym∇I ′c Riabj∇J ′b Riacj c2
1
2R

ω−1

10 Tr Sym∇I Riabj∇J Ribaj c1
1
2B6

11 Tr Sym∇I ′b Riabj∇J ′c Ricaj 2c2 B2

12 Tr Sym∇I ′′bc Riabj∇J Ricaj 2c3 B5

13 Tr Sym∇I ′c Riabj∇J ′b Ricaj 2c2
1
2B9

14 Tr Sym∇I Riabj∇J ′′bc Ricaj 2c3 B5

15 Tr Sym∇I Riabj∇J ′′ac Ricbj 2c3 2B5

16 Tr Sym∇I ′c Riabj∇J ′a Ricbj c2 B9

17 Tr Sym∇I ′a Riabj∇J ′c Ricbj c2 2B2

18 Tr Sym∇I ′′ab Riabj∇J ′′cd Ricd j c4 T ω−2
1,1

19 Tr Sym∇I ′′′′abcd Riabj∇J Ricd j 2c5
∑[ ω−2

2 ]
�=0

�eω
�

(T�−2M�+N�)

(ω−1)(ω−2)(ω−3)

20 Tr Sym∇I ′′′abc Riabj∇J ′d Ricd j 2c6 T ω−3
1 − Mω−3

1

21 Tr Sym∇I ′′′abd Riabj∇J ′c Ricd j 2c6 B20

22 Tr Sym∇I ′c Riabj∇J ′′′dab Ricd j 2c6
∑[ ω−3

2 ]
�=0 eω−1

�
(T� − 2M� + N�)

23 Tr Sym∇I ′d Riabj∇J ′′′cab Ricd j 2c6 B22

24 Tr Sym∇I ′′cd Riabj∇J ′′ab Ricd j c4
1
2R

ω−2

25 Tr Sym∇I ′′da Riabj∇J ′′bc Ricd j ) c4 T ω−2 − Mω−2

26 Tr Sym∇I ′′ca Riabj∇J ′′bd Ricd j 2c4 T ω−2 − 2Mω−2 + Nω−2

27 Tr Sym∇I ′′cb Riabj∇J ′′ad Ricd j c4 B25

Claim 9 TrQ(R) = ∑27
k=1 ukAk and Ak = Bk for any 1 ≤ k ≤ 27, where the terms

Ak , Bk and the coefficients uk are defined in Table 1.

Each term Ak of the second column denotes a two-by-two contraction of a sym-
metric tensor, where the symmetrization is taken over all the indices which are not
already contracted. In the fourth column, we define the terms Bk . We prove using
the two Bianchi identities that Ak = Bk (cf. Appendix Sect. “Proof of the Equalities
Ak = Bk”). The coefficients uk are given in terms of the following positive integers:

c1:=(2ω + 4)(2ω + 2), c3:=2ω2(ω − 1)c1,

123



A Detailed Proof of a Theorem of Aubin 243

c5:=4ω2(ω − 1)2(ω − 2)(ω − 3)c1,

c2:=2ω3c1, c4:=4ω3(ω − 1)3c1,

c6:=4ω3(ω − 1)2(ω − 2)c1.

Let us recall that the covariant derivates of the Riemann curvature tensor already
commute (cf. Theorem 3). This allows us to determine all types of terms that are
obtained after taking the two-by-two contractions of Q(R) involving the indices that
occur directly in the Riemann curvature tensor, namely of the following kind:

gaαgbβgcγ gdδ∇I Riabj · ∇J Ricd j , (18)

where {a, b, c, d}∪I∪J = {p1, . . . , p2ω+4} is an arbitrary partitionof {p1, . . . , p2ω+4}
into subsets of cardinality 4, respectively #I = #J = ω and {α, β, γ, δ} is any subset
of 4 indices of {p1, . . . , p2ω+4}, such that α �= a, β �= b, γ �= c and δ �= d.

After taking into account the commutativity of the product, we identify 27 types
of terms like (18), which are denoted by Ak and listed in the second column of Table
1. Moreover, if I is a multi-index of length ω, then I ′ denotes a multi-index of length
ω − 1, I ′′ a multi-index of length ω − 2 and so on. We also note that each of the sums
over the contraction indices a, b, c, d runs from 1 to n and that not all 27 types occur
for ω ≤ 3, for instance for ω = 2 the terms A19, . . . ,A23 in the table do not occur.

We further compute themultiplicity of each such termof type (18) in the two-by-two
contraction of Q(R). We write it down in the third column of Table 1.

Let us here only illustrate how we determined the multiplicity for one of the terms.
For example, the third termA3 = Tr Sym∇I Riaaj · ∇J ′′bc Ribcj has multiplicity equal
to 2c3 as follows. For the choice of the three indices a, b and c among the ω + 2
pairs of distinct indices over which the contraction is done we have ω(ω + 1)(ω + 2)
possibilities, and for each such fixed choice we may permute the two indices of each
such pair, thus multiplying the coefficient by 23. Further we have to multiply by
ω(ω − 1), since we may choose for b and c any two indices (whose order also counts)
of the multi-index of length ω corresponding to the covariant derivatives, because
these commute, as remarked above. The remaining 2ω − 2 indices in I and J ′′ may
be permuted arbitrarily. One still has to take into account that the two factors of each
term commute and since the factors of this term are not symmetric, its coefficient has
to be doubled. Concluding, we obtain the claimed multiplicity. For all the other types
of terms in the table the multiplicity is computed similarly.

To verify that we obtained all the possible terms, we check, by summing up the
multiplicities, that

(2ω)!(u1 + u6 + u10) + (2ω − 2)!
17∑

k=2
k /∈{6,10}

uk + (2ω − 4)!
27∑

k=18

uk = (2ω + 4)!.

Using the two Bianchi identities, we show that for any 1 ≤ k ≤ 27, Ak = Bk (the
details of the computation can be found in Appendix Sect. “Proof of the Equalities
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Ak = Bk”. This finishes the proof of the claim. As a consequence, we obtain the first
part of the following result.

Proposition 10 The following equality holds:TrQ(R) = ∑27
k=1 ukBk , where the uk’s

are positive integer coefficients and Bk’s are nonnegative terms, defined in Table 1.
Furthermore, it follows that

TrQ(R) > (2ω + 4)(2ω + 2)
{
T ω + 4ω2(ω − 1)T ω−2

1 + 4ω3(ω − 1)3T ω−2
1,1

+4ω3(ω + 4)(T ω−1 − Mω−1) + 8ω3(ω − 1)2(ω − 2)(T ω−3
1 − Mω−3

1 )

+4ω2(ω − 1)(ω + 7)B5
}
.

Proof We still have to show that theBk’s are nonnegative. For this, we further contract
two-by-two the remaining indices occurring in the covariant derivatives in each of the
Bk’s. Since the covariant derivatives of order less or equal to ω occurring in the terms

Bk commute, one establishes that for any 1 ≤ k ≤ 27, Bk = ∑[ ω
2 ]

�=0 αk�Bk�, where αk�

are nonnegative integers representing the multiplicities and

Bk� ∈ {R�, T�, T� − 2M� + N�, T� − M�},

due to equalities (16), (17), which hold for Rω, T ω, Mω−1 and Nω−2. Clearly, R�

and T� are nonnegative. By Lemma 5, T� − 2M� + N� are nonnegative. The terms
T� − M� are also nonnegative, as it follows by writing down that the square norm
of the k-covariant tensor ∇Kc�

�Ricab − ∇Ka�
�Ricbc is nonnegative, where K is a

multi-index (ω − 2� − 1)-tuple. Therefore the Bk’s are nonnegative.
Substituting in the equality TrQ(R) = ∑27

k=1 ukBk , proven in Claim 9, the values
of Bk and uk from Table 1, we obtain

TrQ(R) = (2ω + 4)(2ω + 2)

{
3

2
Rω + 3ω3Rω−1 + 2ω3(ω − 1)3Rω−2

+T ω + 4ω2(ω − 1)T ω−2
1 + 4ω3(ω − 1)3T ω−2

1,1 + 20ω3(T ω−1 − Mω−1)

+8ω3(ω − 1)3(T ω−2 − Mω−2) + 16ω3(ω − 1)2(ω − 2)(T ω−3
1 − Mω−3

1 )

+28ω2(ω − 1)B5 + 8ω2(ω − 1)2

[
(ω − 2)(ω − 3)B19 + 2ω(ω − 2)B22 + ω(ω − 1)B26

]
}

. (19)

It order to prove the inequality stated in the proposition, we use the following
equalities:

T ω−2 − Mω−2 = 1

2(ω − 1)2
(T ω−1 − Mω−1) − ω − 2

ω − 1
(T ω−3

1 − Mω−3
1 ), (20)

B26 = 1

2(ω − 1)2
B5 − ω − 2

ω − 1
B22, (21)
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where the first one holds by (13) and the second one holds from the definition of B5,
B22 and B26. Substituting (20) and (21) in (19) and using the fact that by the definition
of ω,R0:=|∇ωRiem|2 is positive, we obtain the desired strict inequality. �	
Remark 11 There is another method to prove the equality TrQ(R) = ∑27

k=1 ukBk of
Proposition 10. One may contract the 4 entries of the Riemann tensor inQ(R) one by
one and then use the fact that Ak = Bk . This method is used in the proof of Lemma
12 for the computation of the Sk’s, with 2 ≤ k ≤ 4.

Lemma 12 The following identities hold:

S3 = 2(ω + 1)(T ω + 2ω3Mω−1),

−S2 = 2(ω + 1){T ω+ 4ω3(T ω−1 − Mω−1)+2ω2(ω −1)T ω−2
1 +2ω2(ω −1)B5},

S4 = 4ω(ω + 1)
{
ωT ω−1 − ω(ω + 1)Mω−1 + (ω − 1)B5 + 2ω(ω − 1)3Nω−2}.

Proof Recall that theSk’s are defined in the beginning of this section. First, we contract
the index b, occurring in the symmetric tensor which defines S2, with all the other
indices not yet contracted (i.e., the indices in I ∪ J ∪ {a}), we obtain:
−S2

2ω + 2
=Tr Sym

{∇IRici j∇JRici j−ω∇I ′∇bRiabj∇JRici j−ω∇I Riabj∇J ′∇bRici j
}
,

We continue, by contracting the index a with all possible indices and we obtain:

−S2

2ω + 2
= T ω− 2ω2(ω −1)Tr Sym

{

∇I ′′∇abRiabj∇JRici j +∇I Riabj∇J ′′∇abRici j

}

−2ω3Tr Sym

{

∇I ′∇bRiabj∇J ′∇aRici j + ∇I ′∇a Riabj∇J ′∇bRici j

}

= 1

c1
{c1A1 + c2A2 + c3A3 + c2A4 + c3A5},

where we used the notation of Table 1. Using the fact that Ak = Bk , we obtain the
claimed equality for S2. Using the same method, which consists of contracting the
entries of the Riemann and Ricci curvature tensors, we compute S3 and S4.

The identity holds for S3, using the contracted second Bianchi identity and the fact
that |∇ωscal | = 0. For S4, we first contract the index a with all the other not yet
contracted indices and obtain:

S4

2ω + 2
= Tr Sym

{−∇IRici j∇J ′iRiccj + ω∇I ′a Riabj∇J ′iRiccj

+(ω − 1)∇I Riabj∇J ′′iaRiccj + ∇I Riabj∇J ′iRicaj
}
.

The third term of the right-hand side in the last equality vanishes since the Rie-
mann tensor is skew-symmetric with respect to the two first entries and the covariant
derivatives of the Ricci tensor commute. By the second Bianchi identity, we have
∇a Riabj = ∇ jRicib −∇bRici j . Substituting in the second term and using the fact that
|∇ωscal | = 0, we obtain
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S4

2ω + 2
= {−2ω2Mω−1 + 2ω2(ω − 1)[2(ω − 1)2Nω−2 − Mω−1]

+2ω(ω − 1)A5 + 2ω2A4
}
.

Therefore, the equality corresponding to S4 holds, since A4 = B4 and A5 = B5 (cf.
Table 1). �	
End of Theorem 1 proof By Corollary 7, it is sufficient to prove that

I:=TrQ(R) + 2(ω + 3)[(ω + 3)(S2 + S3) + ωS4] > 0.

By Lemma 12, it follows that

2(ω + 3)[(ω + 3)(S2 + S3) + ωS4]
= 4(ω + 3)(ω + 1)ω2

{

−2ω(2ω + 5)(T ω−1 − Mω−1)

−2(ω − 1)(ω + 3)T ω−2
1 − 2(ω − 1)(ω + 2)B5

+6ωMω−1 + 4ω(ω − 1)3Nω−2
}

. (22)

Therefore, by Proposition 10 and (22), we obtain

I
4(ω + 1)

> 2ω3(ω + 1)(T ω−1 − Mω−1)

+(ω + 2)
{
T ω + 8ω3(ω − 1)2(ω − 2)(T ω−3

1 − Mω−3
1 )

}

+2ω2(ω − 1)
{
2ω(ω + 2)(ω − 1)2T ω−2

1,1 − (ω2 + 4ω + 5)T ω−2
1

}

+(ω + 3)
{
6ω3Mω−1 + 4ω3(ω − 1)3Nω−2},

where we used the fact that B5 is nonnegative. Set

I1 := 2ω2(ω − 1)
{
2ω(ω + 2)(ω − 1)2T ω−2

1,1 − (ω2 + 4ω + 5)T ω−2
1

+4ω(ω + 2)(ω − 1)(ω − 2)(T ω−3
1 − Mω−3

1 )
}
,

I2 := 2ω3(ω + 1)(T ω−1 − Mω−1) + (ω + 2)T ω

+(ω + 3){6ω3Mω−1 + 4ω3(ω − 1)3Nω−2}.
In this notation, we have I > 4(ω + 1)(I1 + I2). In order to finish the proof, we
compute I1 and I2 and show that I1 + I2 ≥ 0. For the computation of I2, we have

6ω3Mω−1+ 4ω3(ω −1)3Nω−2 = 6ω3
[ ω−1

2 ]∑

�=0

dω−1
� M� + 4ω3(ω − 1)3

[ ω−2
2 ]∑

�=0

dω−2
� N�

=
[ ω−1

2 ]∑

�=0

(ω − 2�)dω
� [3M� + (ω − 2� − 1)N�],
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since for ω odd, N ω−1
2

= 0 by definition. We substitute the value of N�, given by (5)
and obtain

(ω + 3){6ω3Mω−1 + 4ω3(ω − 1)3Nω−2}

=
[ ω−1

2 ]∑

�=0

dω
� (ω + 3){−2T� − (ω − 2�)M�}. (23)

If ω is even, then T ω
2

= 0, by (5). Thus

(ω + 2)T ω =
[ ω−1

2 ]∑

�=0

dω
� (ω + 2)T�. (24)

2ω3(ω + 1)(T ω−1 − Mω−1) =
[ ω−1

2 ]∑

�=0

dω
� (ω + 1)(ω − 2�)(T� − M�). (25)

The sum of the right-hand sides of (23), (24) and (25), denoted by I2, is given by

I2 =
[ ω−1

2 ]∑

�=0

dω
� {[(ω + 1)(ω − 2�) − (ω + 4)]T� − 2(ω − 2�)(ω + 2)M�}.

Substituting the value of M� given by (5) and using the inequality of Lemma 5, it
follows that

I2 ≥
[ ω−1

2 ]∑

�=0

2�dω
� T�. (26)

For the computation of I1, we proceed similarly as above. By equalities (16) and (17)
we have

−2ω2(ω − 1)(ω2 + 4ω + 5)T ω−2
1 = −

[ ω−1
2 ]∑

�=1

2�(ω2 + 4ω + 5)dω
� T�,

4ω3(ω + 2)(ω − 1)3T ω−2
1,1 =

[ ω−1
2 ]∑

�=1

4�2(ω + 2)dω
� T�,

8ω3(ω2 − 4)(ω − 1)2(T ω−3
1 − Mω−3

1 ) =
[ ω−1

2 ]∑

�=1

4�(ω + 2)(ω − 2�)dω
� (T� − M�).

Taking the sum of the last three equalities, we obtain

I1 =
[ ω−1

2 ]∑

�=1

2�dω
�

{[ω(ω − 2�) − 4� − 5]T� − 2(ω − 2�)(ω + 2)M�

}
.
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Hence

I1 ≥ −
[ ω−1

2 ]∑

�=1

2�dω
� T�. (27)

By (26) and (27), we conclude that I > 4(ω + 1)(I1 + I2) ≥ 0. �	

Appendix

Proof of the Equalities Ak = Bk

In the following computation, the components of the Ricci tensor Ric are denoted by
Ri j . Here we give some useful formulas for the computation of the Ak’s:

∇i Ri j = 1

2
∇ j scal (28)

∇a Riabj = −∇bRi j + ∇ j Rbi (by 2
nd Bianchi) (29)

∇bRiabj = −∇a Ri j + ∇i Raj (30)

�Riabj = ∇bi Raj + ∇aj Rbi − ∇i j Rab − ∇abRi j .(by 2
nd Bianchi) (31)

A := ∇c Riabj · ∇c Ribaj = −∇c Riabj · (∇c Rbai j + ∇c Raibj )

= |∇Riem|2 − A, yielding A = 1

2
|∇Riem|2. (32)

B := ∇c Riabj · ∇bRiacj = −∇c Riabj · (∇ j Riabc + ∇c Ria jb)

= |∇Riem|2 − B, yielding B = 1

2
|∇Riem|2. (33)

A1 := T ω.

A2 := −Tr Sym∇I ′c Ri j∇J ′bRibcj
(29)= Tr Sym∇I ′c Ri j∇J ′(∇c Ri j − ∇ j Rci )

= T ω−1 − Mω−1.

A3 := −Tr Sym∇I Ri j∇J ′′bc Ribcj
(30)= −Tr Sym∇I Ri j∇J ′′b(−∇bRi j + ∇i Rbj )

= T ω−2
1 .

A4 = −Tr Sym∇I ′bRi j∇J ′c Ribcj
(30)= Tr Sym∇I ′bRi j∇J ′(∇bRi j − ∇i Rbj ) = A2.

A6 := Rω.

A7 := Tr Sym∇I ′bRiabj∇J ′c Riacj
(30)= 2(T ω−1 − Mω−1).

A8 := Tr Sym∇I ′′cb Riabj∇J Riacj
(30)= 2B5.

A9 := Tr Sym∇I ′c Riabj∇J ′bRiacj
(33)= 1

2
Rω−1.

A10 := Tr Sym∇I Riabj∇J Ribaj
(32)= 1

2
Rω.

A11 := Tr Sym∇I ′bRiabj∇J ′c Rica j
(30)= B2.
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A12 := Tr Sym∇I ′′bc Riabj∇J Rica j
(30)= B5.

A13 := Tr Sym∇I ′c Riabj∇J ′bRica j = Tr Sym∇I ′(∇a Ricbj − ∇i Racbj )∇J ′bRica j

= A9 − A13. Hence A13 = 1

4
Rω−1.

A14 :=Tr Sym∇I Riabj∇J ′′bc Rica j
(29)= B5.

A15 :=Tr Sym∇I Riabj∇J ′′ac Ricbj
(29)= 2B5.

A16 :=Tr Sym∇I ′c Riabj∇J ′a Ricbj
(33)= 1

2
Rω−1.

A17 :=Tr Sym∇I ′a Riabj∇J ′c Ricbj
(29)= 2(T ω−1 − Mω−1).

A18 :=Tr Sym∇I ′′′abRiabj∇J ′′cd Ricd j
(29)= Tr Sym∇I ′′�Ri j∇J ′′�Ri j = T ω−2

1,1 .

A20 :=Tr Sym∇I ′′′abc Riabj∇J ′d Ricd j
(30)= Tr Sym∇I ′′′c�Ri j∇J ′(∇c Ri j − ∇i Rcj )

= T ω−3
1 − Mω−3

1 .

A21 :=Tr Sym∇I ′′′dabRiabj∇J ′c Ricd j
(29)= Tr Sym∇I ′′′d�Ri j∇J ′(∇d Ri j − ∇ j Rdi )

= T ω−3
1 − Mω−3

1 .

A23 :=∇I ′d�Riabj∇J ′′′abc Ricd j
(29)= −∇I ′d Riabj∇J ′′′dabRi j

(30)= A22.

A24 :=Tr Sym∇I ′′abRicd j∇J ′′cd Riabj =Tr Sym∇I ′′ac Ribd j∇J ′′cd Riabj
(33)= 1

2
Rω−2.

A25 :=Tr Sym∇I ′′da Riabj∇J ′′bc Ricd j
(29)= T ω−2 − Mω−2.

A26 :=Tr Sym∇I ′′ca Riabj∇J ′′bd Ricd j
(29),(A−3)= T ω−2 − 2Mω−2 + Nω−2.

A27 :=Tr Sym∇I ′′cb Riabj∇J ′′ad Ricd j
(30)= T ω−2 − Mω−2.

For the remaining termsA5,A19 andA22, the computation is done by induction, by
introducing the following sequence Uω−β := − Tr Sym∇Iβbc∇KβRici j∇Jβ ∇Kβ Ribcj

for 1 ≤ β ≤ ω − 2 and Uω:=A5, where Kβ , Iβ and Jβ are multi-indices sets of
cardinalities β, ω − β − 2 and ω − β respectively. The induction formula is given by

Uω−β = 2(ω − β − 1)(ω − β − 2)Uω−β−1

−2(ω − β − 1)2Tr Sym∇Iβbc∇KβRici j∇Jβ−2∇Kβ �Ribcj .

Using (31),wehaveTr Sym∇Iβbc∇KβRici j∇Jβ−2∇Kβ �Ribcj = T ω−β−2−2Mω−β−2

+ Nω−β−2. By induction on β, we prove that

A5 = Uω = (ω − 1)!(ω − 2)!
ω−2∑

k=0

2ω−k−1 k + 1

(k!)2 (T k − 2Mk + N k)

(16),(37)=
[ ω−2

2 ]∑

�=0

eω
� (T� − 2M� + N�). (34)
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We have A22:=Tr Sym∇I ′c Riabj∇J ′′′abd Ricd j
(30)= −Tr Sym∇I ′c Riabj∇J ′′′abcRi j .

By contracting an index in A5, which corresponds to a covariant derivative of the
Riemann tensor and using the last equality, we obtain A5 = 2(ω − 1)2B26 + 2(ω −
1)(ω − 2)A22. Therefore, by (34), we obtain A22 = ∑[ ω−3

2 ]
�=0 eω−1

� (T� − 2M� +N�).
We have A19:=Tr Sym∇I ′′′′abcd Riabj∇J Ricd j = −Tr Sym∇I ′′′′cd�Ri j∇J Ricd j .

By contracting an index inA5, which corresponds to a covariant derivative of the Ricci
tensor and using the last equality,we obtainA5 = 2(ω−1)(ω−3)A19+2ω(ω−1)A22.
We deduce that

A19 =
[ ω−2

2 ]∑

�=0

�eω
�

(ω − 1)(ω − 2)(ω − 3)
(T� − 2M� + N�).

Combinatorics Formulas

The following identities hold for any nonnegative integer ω

(ω + 2)
2ω∑

k=ω

(k + 1)

(
k

ω

)

= (ω + 3)2C(ω), (35)

(ω + 2)
2ω−1∑

k=ω

(k + 1)(2ω − k)

(
k

ω

)

= ω(ω + 3)C(ω), (36)

where C(ω) = (ω + 1)2(ω + 2)2(2ω + 2)![(ω + 3)!]−2.

Proof Identities (35) and (36) can be written in a simpler way which can be viewed
as special cases (for n = 2ω) of the following combinatorial identities:

n−1∑

k=ω

(
k

ω

)

=
(

n

ω + 1

)

,

n−2∑

k=ω

(n − k − 1)

(
k

ω

)

=
(

n

ω + 2

)

, (37)

for all integers n ≥ ω, respectively n ≥ ω + 2.
These identities follow by counting in a different way the number of combinations.

The first identity is obtained by counting the number of subsets with (ω+1) elements
out of n elements in the following way: the sets are separated with respect to their
largest element. For each ω ≤ k ≤ n − 1,

(k
ω

)
counts the subsets of (ω + 1)-elements

whose largest element is k + 1.
Similarly, the second identity follows by counting

( n
ω+2

)
as follows: the sets are

separated with respect to their second largest element. For each ω ≤ k ≤ n − 2,
(n − k − 1)

(k
ω

)
is the number of subsets with ω + 2 elements whose second largest

element is k + 1. Indeed, if the second largest element is k + 1, the others ω elements
of the set which are smaller must form a subset of ω + k and the largest element may
be any of the remaining n − k − 1 elements. �	
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