J Geom Anal (2016) 26:231-251 @ CrossMark
DOI 10.1007/s12220-014-9547-5

ORIGINAL RESEARCH

A Detailed Proof of a Theorem of Aubin

Farid Madani

Received: 12 September 2013 / Published online: 25 November 2014
© Mathematica Josephina, Inc. 2014
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1 Introduction

The goal of this note is to give a detailed proof of the following theorem of Aubin.

Theorem 1 (Aubin [1]) Let (M, g) be a compact Riemannian manifold of dimension
n. Assume that, in a geodesic normal coordinate chart around a point x € M, det(g) =
14+ oG, with N sufficiently large, where r = d(x, -). Let  denote w:=1inf{k €
N : [VEWeylq(x)| # 0}. If [V@scal (x)| = 0, then A®Tscal (x) < 0. In particular,
B B, (x) Scaldo < 0, for r sufficiently small.

For the particular values of w € {1, 2}, Theorem 1 is proven by Hebey and Vaugon
[6]. The case w = 3 was studied by Zhang, as mentioned in [1].

Theorem 1 is fundamental in questions related to the compactness of the Yamabe
equation solutions and the equivariant Yamabe problem. For example, in [8,9], the
author used Theorem 1 to prove the validity of the Hebey—Vaugon conjecture, when
w < % (more details are given in Sect. 2).

Aubin used Theorem 1 in [1-3] in his study of the compactness of the set of
solutions to the Yamabe equation. He claimed the compactness of this set except for
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the round sphere. This claimis in a contradiction with the counter examples constructed
by Brendle [4] and by Brendle and Marques [5]. Many mathematicians had serious
concerns about the correctness of [1], although it remained unclear which parts of
[1] are correct. For example, the proof of [1, Théoreme 5] is only sketched and not
given in all details, and thus it is difficult for a reader to check whether the result of
this theorem holds or not. The aim of this note is to provide a rigorous proof of [1,
Théoréme 5].

In our proof of Theorem 1, we did not follow exactly the strategy proposed by
Aubin in [1]. However, there are certain common points. For example, the formula in
Corollary 7 coincides with the last formula on p. 279 in [1].

In order to facilitate the reading, we gathered all notation in Notation Index A.2.

2 The Equivariant Yamabe Problem

In this section, we present an application of Theorem 1. Let (M, g) be a compact
Riemannian manifold of dimension n > 3 and G be a subgroup of the isometry group
Isom(M, g). The equivariant Yamabe problem consists in finding a G-invariant metric
in the conformal class of g, with constant scalar curvature. Hebey and Vaugon proved
that a sufficient condition to solve this problem is to prove that the following conjecture
holds.

Hebey—Vaugon conjecture If (M, g) is not conformal to the round sphere S" or if
the action of G has no fixed point, then the following strict inequality holds

scal ,/dv,
inf —fM & nj

9 (f, <n(n—De" (inf card (G - x))*",
g'elgl® ([, dvg) n e

where wy, is the volume of round sphere S™.

For v < 2 Hebey and Vaugon [6] proved Theorem 1 and they used this result to
prove the above conjecture. They also proved it for @ > %, assuming the positive
mass theorem.

In [8,9], the author used Theorem 1 to prove the validity of the Hebey—Vaugon
conjecture for w < %, by constructing a local G-invariant positive test function,
which involves the scalar curvature, where the negative sign of fa B, (x) scal do plays

an important role. For more details, see [6,8,9] and the references therein.

3 The Hebey—Vaugon Formulas

Let us first mention some notation and convention used throughout this note. Our
convention for the components of the Riemann and Ricci curvature tensors are: in a
local normal coordinate chart,

Ri X = (ViVeX)? — (Vi X, (Vijek = (Vjiedk — Ry,
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A Detailed Proof of a Theorem of Aubin 233

for any vector ﬁ§ld X and 1-form «. Moreover, we set R;jre = giq R?kﬂ’ Ric;; = sz i
For any k-covariant tensor 7', we have:

VaTpi. i =VgDprpes ATpp =81V pgT)py .y

We define the symmetrization of the tensor 7' by

SymTj:= Sym Tp..ppi= Z Tpo(l)mpa(k)’
Py Pk oceBk)

where G (k) is the symmetric group on the finite set {1, ..., k}and I = (py, ..., px)
is a multi-index k-tuple. The two-by-two contraction of Sym77, denoted by Tr SymT77,
is defined by

ghipP2 L gP=1PkSymT,, if k is even,

Tr SymT;:= { . .
ghp2 . gP2PiiSymTy,, o, if kis odd.

Note that when k is odd, the two-by-two contraction of Sym7 is a 1-covariant tensor.

We always use the Einstein summation convention, i.e., each time an index occurs

twice we sum over it.

Let (M, g) be a compact Riemannian manifold of dimension n. We fix x € M and
define: w = inf{k € N : |V¥ Weyl,(x)| # 0}. Lee and Parker [7] proved that in each
conformal class [¢], there exists a metric g’ which satisfies, in a geodesic normal chart,
det(g’) =1+ o), with N sufficiently large, where r = d(x, -). This result was
extended by Hebey and Vaugon [6] in the equivariant setting. If G is a subgroup of
the isometry group Isom(M, g) and [g]¢ denotes the G-invariant conformal class of
g, then they proved

Lemma 2 In each class [g]C, there exists a metric g' which satisfies, in a geodesic
normal chart, det(g’) = 1 + o), with N sufficiently large, where r = d(x, -).
Moreover, in this chart, the Taylor expansion of g’ is given by

2(m —3)

! — 8 / 1 -2
8i;(y) = dij + Z 1! D3 bm— Ripy py j COXPL co,xPm
w+4=m=2w+6 ’
n
/ 4 p1 D2w+4
-‘rK(Ct)) Z vp3f---<,[7w+2 Rip[pzk (x)va+5 ----- P2o+4 ija,+3pa,+4k ()C))C """ x Pzt
k=1
+O(2H),

_ GosB@t)?
where K(0) = 5 63

Using the above Taylor expansion of the metric and writing the metric as exponential
of some symmetric matrix, Hebey and Vaugon proved the following formulas.

Theorem 3 (Hebey—Vaugon [6]) Let (M, g) be a compact Riemannian manifold of
dimension n. Assume that det(g) = 1+ O (r"V), with N sufficiently large, in a geodesic
normal coordinate chart around x. Then the following statements hold

@ Springer



234 F. Madani

~

For any nonnegative integer k < w — 1, |V¥Riem(x)| = 0.

2. For any nonnegative integer k < 2w + 1, the k-th covariant derivatives of the Rie-
mann, Ricci and scalar curvatures of g’ coincide with the usual partial derivatives
and thus they commute. Namely, for any multi-index B € {1, ..., n}x,

VgRiem(x) = dgRiem(x), VgRic(x) = dgRic(x), Vgscal ¢(x) = dgscal 4(x).

3. Foranyw+2 <m <2w+3, Sym V,,
Pls-sPm

pmRICp py (x) = 0 and

.....

Sym [ Vs, prora RICp s (X)
Pl---P2w+4

where C(w) = (w + D (w + 2)2Qw + 2)![(w + 3)!]72.

Assume that g satisfies the assumptions of Theorem 3. It follows from the theorem
that Afscal (x) = Oand |V Afscal (x)| = 0, for any nonnegative integer { < w.Indeed,

Tr Sym V. p,scal (x)=(20)!Alscal (x) and  Sym V), . sRicy p, (x) =
Pls--P2¢ Pls--sP20+43

Sym {2V, a2 RICp pyp 3 () +H2E+1)V s pyy 3 RiCp p, (1)}, since by The-
Plyeess P2e+2
orem 3, the covariant derivatives of order at most 2w + 1 of the Ricci curvature tensor

and the scalar curvature commute. It follows that

220)1(¢ + 1)*Alscal (x) = Tr Sym Vi, oRicy p(x) =0, (2)

P1-D2e42

QL+ +2)V 5 Alscal (x) = Tr Sym V. prsRicp p,(x) = 0. (3)
P1..-P2e+3

Moreover, if we assume that |V®scal (x)| = 0, then the (2w + 2)-covariant deriv-

atives of the scalar curvature at x commute (this fact will be proven at the end of
the proof of Proposition 6). For r = d(x, -) sufficiently small, one can write the
Taylor expansion of the scalar curvature in B, (x) and prove that there exists a pos-
itive constant c(n, w) depending on n and w, such that m fa B, (x) scaldo =

c(n, w) X9% Alscal (x)r?t + 0(r>**+3). We conclude that

1

—_— scaldo = c(n, @) AT scal (x)r**T2 + 0 (r**T3). @
vol (0B, (x)) JaB, (x) ( )

Thus, faB, (v Scal do and A®*lscal (x) have the same sign.

4 Ricci Symmetrization

From now on, (M, g) denotes a compact Riemannian manifold of dimension n. We
fix a point x € M and assume that det(g) = 1 + O@N), with N sufficiently large,
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A Detailed Proof of a Theorem of Aubin 235

in a geodesic normal coordinate chart around x (in particular, g;;(x) = §;;) and
that all the covariant derivatives of order w of the scalar curvature at x vanish, i.e.,
[V@®scal (x)| = 0. Since all the tensors are evaluated at x, we omit to mention x for
all tensors. For example, we write V[Ric;; instead of VRic;;(x).

We introduce the following notation:

Ry = [VO2A Riem 2, T; = [VO2A Ric)?, 0<e<2,
2

—1

My = ViV, AlRicy. - Vi V. ARicgp, 0<e<? —
w—2

Ne = Vi Vea A'Ricap - Vi Vap A'Ricea, 0<t<——,

where we denote by K and K’ two multi-indices (w —2¢ — 1) and (w — 2¢ — 2)-tuples
respectively, and the fixed point x is omitted. By convention, /\/ 0 = Mo 9 = =0,ifwis
even and/\/w 1 =0, if wis odd.

Lemma 4 For any { < % the following equality holds
270 + (0 — 20){(w — 2¢ — DNy +4M;} = 0. 5)

Proof By Theorem 3, wehave Sym V,,
Pls-s Po+2
is symmetric and its covariant derivatives commute, one can also rewrite this identity

as follows:

,,,,, Pes2RICp, p, = 0. Since the Ricci tensor

2 : Vptepiobjopor2RiCpip; = 0

I<i<j<w+2

After contracting by gPk+1Pk+2 - gPotlPot2 withk = w+2—2¢ > 2and 1 <€ <
7, we obtain
‘o
Z Vor.piopjp A RiCp p; =0, ©)
I<i<j<k

since we assumed |V®scal | = 0. Equality (5) is obtained by multiplying (6) with
Pk—2 AeRiCPk—l P O

.....

w

Lemma 5 For any { < %, the following inequality holds
277 + (w — 20N > 0.

Moreover, it follows that Ty + Ny — 2M, > 0.

Proof For o even and Z = 2, by definition M; = N; = 0. Thus, the inequalities

holds. For w odd and ¢ = by definition A; = 0 and by (5), we have 7y +2M,; =
0. Hence M, is nonposmve which proves the inequalities.
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236 F. Madani

From now on, we assume that £ < ‘”T*Z and set k:=w — 2¢ + 2 > 4. We use the

convention (;’ ) = 0if ¢ > p. Let I'(¢) be the k-covariant tensor, depending on the
real parameter ¢, whose components are given by

_ tn: o o
PO pype = Vproppa ARICH ppt + Z Vor.pipj. D RiCpp;
l<i<j<k—2

The square norm of I'(¢) is given by

k—2 k—2
F(t)m.A.ka(t)m,...,pk=72t2+< 5 )72+2( 5 )Net

k—2\ [k —4 k—2
+( 2 )( 2 )N“z( 2 )“‘“”M"

which is, with respect to 7, a second degree nonnegative polynomial. Thus its discrim-
inant is nonpositive, namely

(k —2)(k = 3)(Np)* — Tef2Te + (k — 4)(k — 5)Ni + 4k —H My} < 0.

We substitute M, using (5) and obtain

Ne Y N 4
(k—2)(k—3)(?£) +2(k—4)(?2) T r_2 <0,

where we assumed that 7, # 0 (otherwise the proof of the lemma is trivial, since
all terms involved vanish). We conclude that % < (%‘-) < m This proves
the first inequality, since w > 2¢ + 2. Substituting the value of My, given by (5), in
Tt + N¢ — 2 My and using the first inequality of the lemma yields the second one. O

5 Proof of Aubin’s Theorem

We recall that (M, g) denotes a compact Riemannian manifold of dimension n and
x € M is a fixed point. We assumed that det(g) = 1 + o), with N sufficiently
large, in a geodesic normal coordinate chart around x and that |[V®scal (x)| = 0. We
use the following notation for the symmetrizations that occur in our computation:

S = Tr SymVgRicgp, S1 = Tr SymViscal ,
&y = Tr SymV; Riqp; - VyRic;j, &3 = Tr SymV;Ric,; - VyRicy;,
S84 = TrSymVRiqpj - Vo ViRicej,  Q(R)1japca = SymViRiapj - Vi Ricaj,

where I, J, J' and K denote multi-indices of length #K = 2w + 2, #I = #J = w,

#J' = o — 1 and the symmetrization is taken over all the indices which are not
yet contracted. Note that Q(R) is a symmetric (2w + 4)-covariant tensor and S,
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A Detailed Proof of a Theorem of Aubin 237

S1, ..., Sy are real numbers. Using this notation, the two-by-two contraction of the
Hebey—Vaugon formula (1) is S + C(w)Tr Q(R) = 0.

Before we start the computation, let us here illustrate the idea of our proof of
Theorem 1. By (4), it is sufficient to show that A®*1scal < 0. The first step in the
proof is to compute S, which is the two-by-two contraction of the covariant deriva-
tives of the Ricci tensor. When the order of the covariant derivatives is less or equal
to 2w + 1, we know that they commute (cf. Theorem 3). Therefore, the two-by-two
contraction of the covariant derivatives of the Ricci tensor is, up to a positive integer,
equal to either A’scal or VA¢scal for some nonnegative integer £ (cf. (2) and (3)).
However in S and S, there are 2w + 2 covariant derivatives and in general they do
not commute. Each time we commute two of them in S or Sy, the Riemann curva-
ture tensor occurs. By using the fact that for any nonnegative integer k < w — 1,
|[VARiem| = 0 and |V®scal| = 0, we show that the 2w + 2 covariant derivatives
of the scalar curvature in S; commute and thus S| = (2w + 2)!A®*!scal. Using
this fact, we prove that S is equal to the sum of a positive integer times A®*!scal
and a positive combination, denoted .7, of the terms Sy, S3 and Ss, which corre-
sponds to the commutativity obstruction of the covariant derivatives in S. By tak-
ing into account the formula S + C(w)Tr Q(R) = 0, it is sufficient to show that
J + C(w)Tr Q(R) > 0. The second step is to compute the two-by-two contraction of
Q(R). We determine all possible terms that occur when contracting all the Riemann
tensor entries of Q(R) (i.e., in the definition of Q(R), they correspond to a, b, ¢ and
d). It turns out that Tr Q(R) is a positive integer combination of 27 terms (without
using Bianchi identities), denoted Ay, where each Ay is a two-by-two contraction of
a symmetric tensor of the same form as Q(R), but with contracted Riemann tensor
entries. Further, we prove that all A;’s are nonnegative and some of them are positive
(they are summarized in Table 1). These 27 terms Ay are themselves a positive com-
bination of the following 4 nonnegative terms {R¢, T¢, Ty — 2My + Ny, Ty — My},
which are defined in Sect. 4. The third step is to do the same thing as in the sec-
ond step for J. Namely, we compute all possible terms occurring in the two-by-
two contraction. We establish that 7 is also an integer (with positive and negative
coefficients) combination of the following 3 terms {7y, Mg, N¢}. In the last step,
one has to add the two combinations of Tr Q(R) and 7 and check, using Lemma
5 and (5), that each kind of term, occurring in J + C(w)Tr Q(R), is nonnegative.
We conclude by using the fact that R is positive, which holds by the definition of
w.

Proposition 6 The following equality involving the above defined symmetrizations
holds:

S =2(0+2)*Qw+2)1A"scal +C (@) {2(w+3)* (S +S83) +2w(w+3)Ss}, (7)

where C(®) = (0 + 1)2(w + 2)2Qw + 2)![(w + 3)!']72.

By Theorem 3, we have S + C(w)Tr Q(R) = 0, If we substitute S by its value given
in Proposition 6, we obtain the following equality.

@ Springer



238 F. Madani

Corollary 7 The following equality holds

(0 + 1)?

—AHlscal = ————
2[(w +3)1?

[Tr QR +2(w+3)[(@+3)(S2+S3) + wS4] {. (8)

Remark 8 Note that the equality above is claimed by Aubin [1, p. 279], which in his
notation, is written in the form 2(w + 2)2C(2, 2)SymVygu R + C(w)I = 0.

Proof of Proposition 6 Inorder to prove (7), we start by decomposing the symmetriza-
tion of the (2w + 2)-covariant derivatives of the Ricci tensor and then contract two-
by-two as follows:

S = 2(w+2) I‘S‘l +Tr Z vpo(l) vvvvv Po(k—1)4Po (k)»+++» pa(2u)+1)RiCp(7(2aH—2)q ] (9)

1<k<2w+2

=2(w+2) [Sl +Trz 1+ C‘)‘Sk(w+1))vpa<1) ~~~~~ Pa(k—l)qpa(k)wpa(2w+l)RicPa(2m+2)(1 ]v

0eSQw+2)
o+1<k<2w+2

where §;; denotes the Kronecker delta. The last equality follows by using the fact
that for any k < @ — 1, |[VFRiem| = 0 (cf. Theorem 3), which implies that any two
successive covariant derivatives of order at least @ + 2 and w + 3 respectively, in
the (2w + 2)-covariant derivatives of the Ricci tensor, commute. Namely, for each
1 <k < w+ 1 the following equality holds

Vpcr(l) ~~~~~ Po(k—1)4Po (k)s-++s Pa(2m+l)R]Cpo(2a)+2)q

= Vpo(l) vvvvv Po(0)9Po (w+1)s--+» prr(2ru+l)RICPa(2a)+2)q'

In the last sum over £ in (9), we obtain for k = 2w+ 2 a multiple of Sy, by applying
the contracted second Bianchi identity (28):

. 1
Tr Z V oty Po o 1)d RIC poaui2yg = 581' (10)
0eSQRw+2)

For all the other terms in the last sum over & in (9) we move the index ¢ to the right
in order to get it as last index of the derivatives and then apply again (10). Thus, for
eachw+1 < k < 2w+ 2, we obtain a term equal to %S 1. Summing up, we obtain that
Sj occurs in S with coefficient 2(w + 2)[1 + % Z,%‘;’ﬁrl (14 @bk (w+1)] = 2(w+ 2)2.

In the terms of the last sum in (9), each permutation of g to the right gives rise
to new terms involving the Riemannian curvature tensor. More precisely, for each
w+ 1 <k <2w+ 1, the following formula holds:
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A Detailed Proof of a Theorem of Aubin 239

Vpa(l)wpo(kfl)qpo(k) «-PoQo+1) Rlcpo(ZaH»Z)q

=V b (1) Po k=) Po (0P (1) -+ Por ot 1) RIC P (2004210
2w+1
+Vpa(l)mpa(kl)[ 2 , RPPa(j)Pa(k)QVpa(k+1)~-~ﬁa<j)--~Pa(2m+1)VPRICPa(szrz)q
j=k+1

FR ppo 02 Po 008 Y Po 1) Po 2wy RICpg

+Rlcl7z7(k)pVprr(k-H)-~-p0(2w+I)R1CPrr(2w+2)P ] ’ (l 1)

where we used the fact that the covariant derivatives commute up to order 2w + 1 (cf.
Theorem 3). Note that for k = 2w + 1, the sum over j in (11) is empty, meaning that
the corresponding terms do not occur in this case.

In the first term of (11), we continue to move the index ¢ to the right, using
repeatedly the same formula until ¢ attains the last position in the indices of the
covariant derivatives. For the remaining terms in (11), we first compute, using the
Leibniz rule, their covariant derivatives. For example, for the second type of term, we
have foreachw +1 <k <2w + 1:

Vpa(l) qqqqq Po(k—1) (Rppa(2w+2)pa(k)(1 : Vpa(kJrl)--‘Pa(2w+l)R1Cpq)

= 2 ; (Vs Rppa(2m+2)Pa(k)(1)(V{Pa(l)sm’Pcr(kfl)}\Svpa(kJrl)w~~’Pa(2m+l)Rlcpq)’
SC{Po(1)s--sPok—1) ), #S=w

Taking now in the last equality the sum over all permutations 0 € G(2w + 2) and
contracting two-by-two, we obtain foreach w + 1 <k < 2w + 1:

. k—1
Tr vaa(l)q---v[’a(k—l)(RPPU(2w+2)[’U(k)qVpa(kJrl)s-~-[’0(2w+l)R1Cpq) = ( » 5.
0eBGQw+2)

After iterating the formula (11) sufficiently many times in order to transform all
terms occurring in the last sum in (9) into terms having the index g as the last index
of the covariant derivates, we can compute as follows the coefficient of S; in S:

20+1 2w . 20

k

20+2) Y [<1+w8(w+1>k> >, ((f))] =2(“’+2)Z("+“(w)
k=w+1 j=k—1 k=w

= 2C(0) (@ +3)*.

The proof of the last equality is given in Appendix Sect. “Combinatorics Formulas”.
Applying the same argument as above to the last type of term in (11), yields that S3
occurs with the same multiplicity in S. Now, we consider the remaining term in (11).
For any w + 1 < k < 2w, we have

2w+1
Vpo(l)amvpo(kl)( Z Rppa(j)pa(k)qVpa(k+l)a~~v1§a(_j)-'~P<1(2a)+l)VPRICPG(2w+2)(1)
=kt 1
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2w+1
= E E VSRpp(y(j)Pa(k)qV{po(l)a---!p0(2w+1)}\(su{pa(1\')’pn(j)})
J=k+1 S po(1y---Pok—1)}
#S=w

Vp RlCPrr Qw+2)9 *

Taking in this last equality the sum over all permutations 0 € G(2w + 2) and
contracting two-by-two, we obtain for each w + 1 < k < 2w:

2w+1
Tr Z vpo(l)a-wpo(k—l) Z RPPG(j)PG(k)qvpo(k-%—l)mﬁo(j)~~Pa(2m+l)VpRiCpa(2m+2)q
0eSQRw+2) Jj=k+1
20+1
k—1 k—1
= Z ( )S4=(2w+1—k)( )34 (12)
w w

j=k+1

As above, in order to find the coefficient of S4 in S, we combine (9), (12) and we
obtain

2w 2w .
20+2) > [(l+a)8(w+1)k) > (2a)—j)(i))] = 2w(w +3)C(w),

k=w-+1 j=k—1

The proof of the last equality is given in Appendix Sect. “Combinatorics Formulas”.
To finish the proof of the proposition, it remains to show that S| = (2w+2)!A®*!scal .
In fact, when commuting any two successive covariant derivatives of the (2w + 2)-
covariant derivatives of the scalar curvature, there are curvature terms occurring. These
are all of the form V*RiemV’scal , with @ + f = 2w. By Theorem 3, we know that

for each k < w — 1, we have |V¥Riem| = |V¥scal| = 0. Since we assumed that
[V®scal | = 0, it follows that the (2w + 2)-covariant derivatives of the scalar curvature
commute. O

We recall the definition of the symmetric (2w + 4)-covariant tensor Q(R), whose
components Q(R)p, .. p,.4 are given by:

2 Vpo(l)---pa(w) Ri/’(r(w+l)pv(w+2)j ’ Vﬂﬁ<w+3)-"Pa(2w+2) RiPrf(Zw+3)[’a(2w+4) J*
ceSQ2w+4)

Our purpose is to show that Tr Q(R) is a positive combination of nonnegative terms.
In order to define these terms, we need first to introduce some new notation. For all
nonnegative integers £ and S, satisfying 0 < 8 <wand 0 < ¢ < ")2;'3
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A Detailed Proof of a Theorem of Aubin 241

7?)_/3_2[ ="Tr SymVIVKAeRiCijVJVKRiCij,
10UJ

7”72 := Tr Sym V;» ARic;; Vj» ARic;;,
’ 1"uJj”
where here I, J, I”, J” and K are multi-indices of cardinality w— 8 —2¢, w0 — B, w—2,
o — 2 and B respectively. In other words, 77)_'3 ~2 is obtained by taking the product
of (w — 2¢)-covariant derivatives of AfRic with w-covariant derivatives of Ric, where
B covariant derivatives of both factors are already contracted to each other and by
contracting two-by-two the symmetrization over the remaining covariant derivatives.
Set 7o~ = TP Note that 70 = (26)!7; (cf. Sect. 4 for the definition of 7p).
The terms Rz)fﬂize, M?iﬂfze, /\fzwiﬂfzg, RO=B, M® P and N®—F are defined

in the same way as ’Z}w_ﬁ ~2¢ and T@~P. Now we show that these terms are integer

combinations of R, Ty, M, and N. First, we note that

TP = Tr SymV, VgRic;; V; Vi Ric;;
= 2(w — B)Tr Sym{(w — B)Vyka4Rici;j VykaRicij
+(@ — B — D)VyrgaaRicij Vg Ricij}
=2 -Ple-PHT P +@-p- DT ")

It follows that for any 2 < y < w, we have
T =2y(y — DT> 4292777 (13)
Similarly, we obtain the following formulas:

TV =2y - DT 7 2y -3y - DT, (14)
T/ =20y - Dy - DT 7 +2(r - DT (15)

Using (13), (14) and (15), we prove, by induction on y, the following formulas

%1
TY — Zdz”ﬂg forall0 < y < w;
=0
3]
’]‘]7’72 = Ze;—lﬂ’ forall2 <y < w, (16)
=1
%1
7’1”1_2 = Zdé’_‘f’]}, forall2 <y < o, (17)
=1

200103 202
where d) ::(?}V_N% and eZ::zy (y_zg_!(zy)&z}j:(l})/!;m!' Note that the equalities (13)

and (16) hold also for RY, MY~ and NV ~2.
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Table 1 The terms occuring in the contraction of Q(R)

k Ay Uy B

1 Tr SymVRic;; VRic;; c] T®

2 ~Tr SymV 1 Ric;; V 1y, Ripej 20y 7ol - pme-l

3 —Tr SymVRic;; V ipe Ripej 2¢3 772

4 =TrSymV/,Ric;;V 1. Ripcj 2¢) B>

5 —Tr SymV 1, Ric;j V. Ripej 2c3 zijz] eP(Tp — 2My + Np)
6 Tr SymVj Riqpj Vi Riabj c1 R

7 TrSymVyy RiapjVyrcRiacj &) 2B,

8 Tr SymV 1, Riabj Vi Riacj 23 2Bs

9 Tt SymV 1 Riap; V.7 Riacj e FRe-!

10 Tr SymV; Riap; Vs Ripaj ¢l 1Bs

11 Tr SymV 1y Riapj V jre Ricaj 2¢p B>

12 Tr SymV e Riabj Vi Ricaj 2¢3 Bs

13 Tt SymV 1 Rianj V.7 Ricaj 2¢) 1By

14 Tr SymVRiap;V jrpe Ricaj 2¢3 Bs

15 TrSymVyRiapiV jr4c Richj 2¢3 2Bs

16 Tr SymV /. RiabjV 4 Richj &) By

17 TrSymVyp, RiapjV jre Richj (&) 2B,

18 Tr SymV gy Riab;V j7eq Ricdj ¢ Te?

19 Tr SymV mgpeq Riabj Vi Ricdj 2cs ZLZT;ZJ %m
20 Tr SymV pmgpe RiabjV yra Ricdj 2¢6 TP - MyT?

21 Tr SymVmapg RiabjV j'e Ricdj 2c6 Bao

2 TeSYmY 1 Riasy ¥ ydap Ricdj 2¢ SUE o1z — 2+ A
23 Tr SymV 1y Riab;V jcap Ricdj 2c6 Bas

24 Tr SymV g Riab; V g ap Ricdj cs FRO2

25 Tt SymV 144 Riab;V 7 pe Ricdj) ey 7072 - MO72

26 Tt SYMV g Riabj V.7 pa Ricdj 24 TO=2 _ o M@=2 4 o2
27 TeSymVyrep, RiabjV j7aqRicdj c4 Bos

Claim 9 Tr Q(R) = Zill up Ay and Ay = By for any 1 < k < 27, where the terms
Ak, By and the coefficients uy are defined in Table 1.

Each term A of the second column denotes a two-by-two contraction of a sym-
metric tensor, where the symmetrization is taken over all the indices which are not
already contracted. In the fourth column, we define the terms ;. We prove using
the two Bianchi identities that Ay = By (cf. Appendix Sect. “Proof of the Equalities
A = Bi”). The coefficients uy are given in terms of the following positive integers:

c1:=Qw+4HQw +2), c3:=20*(w — ey,
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cs:=4w’ (0 — 1)*(w — 2)(w — 3)cy,
C2:=2w361, C4:=4a)3(a) — l)3c1,

c6:=4a)3(a) — 1)2(0) —2)cy.

Let us recall that the covariant derivates of the Riemann curvature tensor already
commute (cf. Theorem 3). This allows us to determine all types of terms that are
obtained after taking the two-by-two contractions of Q(R) involving the indices that
occur directly in the Riemann curvature tensor, namely of the following kind:

g8 gV g"V Riavj - Vi Ricaj, (18)

where {a, b, ¢, d}UIUJ = {p1, ..., paw+a}isanarbitrary partitionof { p1, . . ., p2e+4}
into subsets of cardinality 4, respectively #/ = #J = w and {«, 8, y, 8} is any subset
of 4 indices of {py, ..., powta}, suchthato #a, B #b,y # cand § # d.

After taking into account the commutativity of the product, we identify 27 types
of terms like (18), which are denoted by .4 and listed in the second column of Table
1. Moreover, if I is a multi-index of length w, then I’ denotes a multi-index of length
® — 1, I"” amulti-index of length @ — 2 and so on. We also note that each of the sums
over the contraction indices a, b, ¢, d runs from 1 to n and that not all 27 types occur
for w < 3, for instance for w = 2 the terms Ao, ..., A>3 in the table do not occur.

We further compute the multiplicity of each such term of type (18) in the two-by-two
contraction of Q(R). We write it down in the third column of Table 1.

Let us here only illustrate how we determined the multiplicity for one of the terms.
For example, the third term A3 = Tr SymV; R;q4j - Vj7be Ribej has multiplicity equal
to 2¢3 as follows. For the choice of the three indices a, b and ¢ among the w + 2
pairs of distinct indices over which the contraction is done we have w (@ + 1)(w + 2)
possibilities, and for each such fixed choice we may permute the two indices of each
such pair, thus multiplying the coefficient by 23. Further we have to multiply by
w(w — 1), since we may choose for b and ¢ any two indices (whose order also counts)
of the multi-index of length w corresponding to the covariant derivatives, because
these commute, as remarked above. The remaining 2w — 2 indices in I and J” may
be permuted arbitrarily. One still has to take into account that the two factors of each
term commute and since the factors of this term are not symmetric, its coefficient has
to be doubled. Concluding, we obtain the claimed multiplicity. For all the other types
of terms in the table the multiplicity is computed similarly.

To verify that we obtained all the possible terms, we check, by summing up the
multiplicities, that

17 27
Qe)(u1 + s +u10) + Qo —2)! D e+ Qo —4! D wp = Qo +4)\.
k=2 k=18
k¢{6,10}

Using the two Bianchi identities, we show that for any 1 < k < 27, Ay = By (the
details of the computation can be found in Appendix Sect. “Proof of the Equalities
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Ay = By”. This finishes the proof of the claim. As a consequence, we obtain the first
part of the following result.

Proposition 10 The following equality holds: Tr Q(R) = 2%7:1 uy By, where the uy’s
are positive integer coefficients and By’s are nonnegative terms, defined in Table 1.
Furthermore, it follows that

Tr Q(R) > Qo +4) 2w + {7 + 40’ (0 — DT> + 4w’ (0 — DT
+4o* (@ + 4T = M) 480 (0 — 1) (0 — 2)(T 7 = MY73)
+4w? (0 — 1)(w + 7)Bs}.

Proof We still have to show that the BBy ’s are nonnegative. For this, we further contract

two-by-two the remaining indices occurring in the covariant derivatives in each of the

Bj’s. Since the covariant derivatives of order less or equal to w occurring in the terms
w

Bj commute, one establishes that for any 1 < k < 27, By = ZZ]O oy Bre, where oy
are nonnegative integers representing the multiplicities and

Bre € {Re, To, To — 2My + Ny, Ty — My},

due to equalities (16), (17), which hold for R®, 7%, M®=1and N©~2. Clearly, Ry
and 7; are nonnegative. By Lemma 5, 7y — 2 M, + N are nonnegative. The terms
Te — My are also nonnegative, as it follows by writing down that the square norm
of the k-covariant tensor Vg, AfRic,, — Via AfRicy, is nonnegative, where K is a
multi-index (@ — 2¢ — 1)-tuple. Therefore the ;s are nonnegative.

Substituting in the equality Tr Q(R) = Zill ui By, proven in Claim 9, the values
of By and uy from Table 1, we obtain

3
TrO(R) = Qo+ 4w +2) [ ER“’ + 30RO 4203 (w0 — 1)’ RO

T + 4% (@ — DT + 40’ (0 — 1P TP + 2007 (7071 — M2
+8w (@ — (T2 — M72) 4 160° (@ — 1)2 (@ — 2)(T"7> — MY ™3)
+28w* (0 — 1)Bs + 8w (w — 1)°

[(@ —2)(@ — 3)B19 + 20 (@ — 2By + w(@ - 1)626]]. (19)

It order to prove the inequality stated in the proposition, we use the following
equalities:

1 w—2 _ o—
T2 Mo = (e - e - SR -y, 20)
1 w—2
Bog = o 2 s 1322, (21)
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where the first one holds by (13) and the second one holds from the definition of Bs,
By and Byg. Substituting (20) and (21) in (19) and using the fact that by the definition
of w, Ro:=|V®Riem|? is positive, we obtain the desired strict inequality. O

Remark 11 There is another method to prove the equality Tr Q(R) = Z,%ll uy By, of
Proposition 10. One may contract the 4 entries of the Riemann tensor in Q(R) one by
one and then use the fact that Ay = By. This method is used in the proof of Lemma
12 for the computation of the Sg’s, with 2 < k < 4.

Lemma 12 The following identities hold:

S3 = 2(w + (T + 20’ M@,
~8 = 2w+ DT+ 40> (T — M) 420% (0 — T2 +20° (0 —1)Bs},
Si = 4o (@ + D{oT*™" — (@ + DM ™ + (0 — DBs + 20 — 1)’ N2}
Proof Recall that the S;’s are defined in the beginning of this section. First, we contract

the index b, occurring in the symmetric tensor which defines S, with all the other
indices not yet contracted (i.e., the indices in / U J U {a}), we obtain:

-S,
2w+ 2

=Tr Sym{V]RiCij VyRic;j—wVpVpRiapjVRic;j —wV Riap; VJ/V;,RiC,'j},

We continue, by contracting the index a with all possible indices and we obtain:

=S
) _:2 =T~ 20)2(0) —l)Tr Sym[V[//VabRiab/VJRiC,'/+V1R,‘aij]//VabRiC,'/]

—20°Tr SymI Vi'VRiapjVyVeRicij + Vp Ve Riqp;V j VpRic; }
1
= C_{Cl-Al + 2 Ay + 3 A3 + 02 A4 + 3 As),
1

where we used the notation of Table 1. Using the fact that A; = By, we obtain the
claimed equality for S,. Using the same method, which consists of contracting the
entries of the Riemann and Ricci curvature tensors, we compute S3 and Sy.

The identity holds for Sz, using the contracted second Bianchi identity and the fact

that |V®scal | = 0. For Sy, we first contract the index a with all the other not yet
contracted indices and obtain:
Sy

5043 = TrSym{=ViRici;VyiRics; +@VraRian; V.iRice

+(@ — D)V Riapj VyrigRice; + Vi Riap; V yiRica; }.

The third term of the right-hand side in the last equality vanishes since the Rie-
mann tensor is skew-symmetric with respect to the two first entries and the covariant
derivatives of the Ricci tensor commute. By the second Bianchi identity, we have
VaRiapj = VjRic;p — VpRic;;. Substituting in the second term and using the fact that
|[V®scal | = 0, we obtain
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Sa
20+ 2

= {20’ M + 20 (0 — D[2(w — D*N®72 = M7
+2w(w — DAs + 20> Ay}

Therefore, the equality corresponding to Sy holds, since A4 = B4 and As = Bs (cf.
Table 1). O

End of Theorem I proof By Corollary 7, it is sufficient to prove that
Z:=Tr Q(R) + 2( + 3)[(@ + 3)(S2 + S3) + wS4] > 0.
By Lemma 12, it follows that

2(w + 3)[(w + 3)(S2 + S3) + w84
= 4w+ 3)(w+ 1)w2I—2w(2w +5)(7°7 = M@
—2(w — D(@+3)T"? = 2(w — 1)(w + 2)Bs

+60 M + 4w (w — 1)3N? } . (22)

Therefore, by Proposition 10 and (22), we obtain

S, YN DTe! — Aol

4(a)+1)> w” (o + 1)( M)
+(@+ [T + 8w (@ — DX (0 — 2)(T"3 — MY}
+20% (0 — D{20(0 + 2)(0 — 1T = (0 + 40 + 5)T 2}
+(@ + 3 {60’ M + 403 (0 — 1)’ N2,

where we used the fact that Bs is nonnegative. Set

T, = 20w — {20 +2)(@ — 1)27—1?)1—2 — (0 + 4w + S)le—z
Ho( +2) @ — Do — 2T = My,

T =20+ )T = M+ (0+2)T°
o+ )66’ M + 40 (0 — 1 N2,

In this notation, we have Z > 4(w + 1)(Z; + Z3). In order to finish the proof, we
compute Z and 7, and show that Z; 4+ Z> > 0. For the computation of Z,, we have

(274 (2331
60’ MO+ 403 (0 — 1PN = 60 D" dPT M+ 40’ (@ — 1) D PN,
£=0 £=0
(274
= D (0 —=20dy[3BM + (0 —2¢ — DN,
=0
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since for w odd, NV, w1 = 0 by definition. We substitute the value of Ny, given by (5)
and obtain

(@ + )60’ M + 40 (0 — 1)’ N7
254
= D df(@+3){-2T — (@ — 20 My). (23)
=0
If w is even, then T% =0, by (5). Thus
(254
(@+2T° =D df(0+2)T. (24)
=0
1254
207+ DT = M) = D dP 0+ Diw = 20T — M. (25)
=0
The sum of the right-hand sides of (23), (24) and (25), denoted by 7, is given by

(7]
I, = di{l(w + D(w —20) — (0 + DT — 2(w — 20 (o + 2) M}
=

(=}

Substituting the value of M, given by (5) and using the inequality of Lemma 5, it
follows that

(2
> > 20dyT. (26)

For the computation of 71, we proceed similarly as above. By equalities (16) and (17)
we have

S

(274

—20% (@ — 1)@’ + 40 + 5T = 2(0 + 4o + 5)dYT,

—
I Mm‘
—_

,_
‘S
|

]
40’ (0 +2)(0 — DT = 40%(w + 2)d? T,

o~
Il
AR

,_,
‘ S
9|

71
8w (@ — 4 (0 — DT = MY = D" 4l +2)(0 — 20d) (Ty — My).
=1

Taking the sum of the last three equalities, we obtain

IS

(7]
Ii = Y 2dp{[w(w—20) — 4 — 51T — 2(w — 20) (0 + 2)M,}.
=1

N‘
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Hence
(251
7 > — Z 20deT;. 27)
=1
By (26) and (27), we conclude that 7 > 4(w + 1)(Z7 +Z>) > 0. O
Appendix

Proof of the Equalities Ay = By

In the following computation, the components of the Ricci tensor Ric are denoted by
R;;. Here we give some useful formulas for the computation of the Ay ’s:

ViRij = %Vjscal (28)
VaRiabj = —VpRij + V; Ry; (by 2" Bianchi) (29)
VoRiapj = —VaRij + ViRyj (30)

ARiabj = Vi Raj + Vaj Rbi — Vij Rap — Vap Rij.(by 2" Bianchi) (31)
A = VeRiapj - VeRibaj = —VeRiapj - (VeRpaij + VeRaivj)
= |VRiem|> — A, yielding A = %lVRiemlz. (32)
B :=VcRiuwpj - VoRiacj = —VeRiavj - (VjRiape + VeRiajp)
= |VRiem|? — B, yielding B = %|VRiem|2. (33)
A =T,
Ay = —TrSymVyeRijVip Ripe; ‘2 Tr SymVyRi;Vy(VeRi; — Vi Rei)
=777 = ML,
As = —Tr SymV; Ri; Vyrpe Rivej ' —Tr SymV; Ri;V yny(—VyRij + Vi Ry;)
= 7072

(30)
Ay =-Tr SymVypR;ijV e Ripej = TrSymV,RijVy(VpRij — ViRpj) = A».
Ag = R”.

30 _ _
A7 =Tr SymV iy Riapj Ve Riacj (=) 2(7T% Mm@ 1)~
(30
Ag = Tr SymVrep Riabj Vi Riacj 2 2Bs.
@y 1,
Ag :=TrSymVy RiupjVipRiaej = 573” g

3 1

A]() = TrSymV,RiaijJRibaj = ER(‘)
(30)

A :==TrSymVy,RiapjVyeRicaj = Ba.
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(30)
-AIZ _Trsymvl”bthaijJRuuj = Bs.

Az :=TrSymVypRiapjVypRicaj = Tr SymV (Vo Ricpj — ViRacbj) Vb Ricaj
1
= A9 — Ay3. Hence A3 = —R“’*].

(29
Alg :=Tr SymV; Riqp;VyrpeRicaj = Bs.

Ats :=TrSymV;RiapjVjrac Richj 2 28s.
33) 1
Aie =TrSymVyRianjVyaRichj @ R‘” L

(29) 2(7—(1) 1 wal)‘

A :=Tr SymVmapRiabjV yrca Ricdj 1y SymV»AR;;Vr AR;j = 7]‘f)f2.

A7 :=TrSymVipg Riapi Ve Richj

(30)
Az :=Tr SymVprape RiabjViaRicaj = TrSymVimc ARV (VeRij — ViRcj)

-3 -3
= T3 - MO
29
Aot :=TrSymVipmgap RiapjVieRicaj = TrSymVpmgAR;iVy(VaRij — V;iRy;)
— Tw—3 _M(u—3
(29)
-A23 —Vl’dARtab]vJ”’abchcd] = _vl’deaijJ”/dabRu = -A22
33 1
Azg :=Tr SymVyrapRicajVyreaRiabj =Tr SymVyrae RipajV jrea Riabj = 272“’ 2,

(29) — _
Aos =Tt SymV4q RiapjVyrpe Ricaj = T2 — M@72.

29).(A=3) _ _
A 3=TrSymvl”caRiaijj”bdRicd/'( YA qo-2 _ppe-2 4 Ne2,

(30)

Az —TrSymvl”chlab]VJ”adcha'] = Twiz—./\/lwiz.

For the remaining terms As, A9 and A, the computation is done by induction, by
introducing the following sequence Uy, —p:= — Tr SymV,p Vi RicijV Vg Ribej
for 1 < 8 < w— 2 and U,:=As, where Kg, Ig and Jg are multi-indices sets of
cardinalities 8, w — B — 2 and w — B respectively. The induction formula is given by

Up—p =2(w— B — 1w — B —2)Up_p_1
—2(w — B — 1)*Tr SymV,pc Vi Rici; V., , Vicy ARipe;.
Using (31), wehave Tr SymV ;5. Vg Rici iV, , Vg ARipej = T P2 o Me—P2
+ No=B=2, By induction on §, we prove that

k+

k k k
(kgz( —2MF + N

As = Uy = (0= Dl - 2>'Zz‘° !
16),(37 [%2]
QLD SN (T — 2M + NY). (34)

=0
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(30)
We have Ay :=Tr SymVycRiabjVyrapa Ricaj = —TrSymVypeRiapjVjmapeRij-
By contracting an index in .45, which corresponds to a covariant derivative of the
Riemann tensor and using the last equality, we obtain A5 = 2(w — 1)2By + 2(w —

w—3
1)(w — 2).Ap;. Therefore, by (34), we obtain Az = Ziz] 6‘;}_1 (Ty — 2 My + Ny).
We have A19:=TI’ Symprabcd Riabj V] Ricdj = —Tr Symvlwcd AR,’j Vj Ricdj .
By contracting an index in .45, which corresponds to a covariant derivative of the Ricci
tensor and using the last equality, we obtain A5 = 2(w—1)(w—3)Aj9+2w (w—1).A7;.
We deduce that

[252] ®
Ee(
./419 -

= 2 oo DDy M.

Combinatorics Formulas

The following identities hold for any nonnegative integer w

2w
(@+2) D (k+ 1)(k) = (0 +3)*C(w), (35)
k=w @
20—1 k
@+2) > (k+ 1)(2a)—k)( ):w(w+3)C(a)), (36)
k=w @

where C(w) = (0 + 1)*(@ + 2)2Qw + 2)![(w + 3)!172.

Proof Identities (35) and (36) can be written in a simpler way which can be viewed
as special cases (for n = 2w) of the following combinatorial identities:

g(i):(wL) g(n—k—l)(i)z(wiz), (37)

k=w

for all integers n > w, respectively n > w + 2.

These identities follow by counting in a different way the number of combinations.
The first identity is obtained by counting the number of subsets with (w + 1) elements
out of n elements in the following way: the sets are separated with respect to their
largest element. Foreachw <k <n —1, ((1;) counts the subsets of (w + 1)-elements
whose largest element is k + 1.

Similarly, the second identity follows by counting (w"+2) as follows: the sets are
separated with respect to their second largest element. For each w < k < n — 2,
n—k— 1)((’; ) is the number of subsets with w + 2 elements whose second largest
element is k + 1. Indeed, if the second largest element is k + 1, the others w elements
of the set which are smaller must form a subset of w + k and the largest element may
be any of the remaining n — k — 1 elements. O
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