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Abstract We show that the non-pluripolar product of positive currents is a bimero-
morphic invariant. Under some natural assumptions, we show that the (weighted)
energy associated with big cohomology classes are also bimeromorphic invariants.
We compare the weighted energy functionals of currents with respect to different
cohomology classes and establish quantitative estimates between big capacities.
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1 Introduction

Let X be a compact n-dimensional Kihler manifold, 71 = 6y + dd¢y, ..., T,
= 0, + dd“p, be closed positive (1, 1)-currents where 6; are smooth representa-
tives of the cohomology classes {7;}. Denote by 01 + dd“Vy,, ..., 0, + dd“Vy, the

canonical currents with minimal singularities. Following the construction of Bedford—
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Taylor [2] in the local setting, it has been shown in [5] that
lﬂ,{¢j>Ve_,—k}(91 +dd° max(¢1, Vg, —k)) A+ A (0 + dd° max (g, Vo, — k)
is non-decreasing in k and converges to the so-called non-pluripolar product

(Ty A - ANTp).

The resulting positive (p, p)-current does not charge pluripolar sets, and it is always
well defined and closed.

Given « a big cohomology class, a positive closed (1, 1)-current 7' € « is said to
have full Monge-Ampére mass if

/ (") = vol(@),
X

and we then write T € £(X, «). In [5] the authors also define weighted energy functio-
nals E, (for any weight x) in the general context of a big class extending the case of
a Kibhler class ([13]). The space of currents with finite weighted energy is denoted by
E (X, a).

The aim of the present paper is to show the invariance of the non-pluripolar product
and establish stability properties of energy classes.

Theorem A The non-pluripolar product is a bimeromorphic invariant.
More precisely, fixa € H1(X, R) a big class and f : X — — > Y a bimeromorphic
map. Then

1) fi{T™) = ((fiT)") for any positive closed T € a.
Furthermore, if f, (’]; (X)) =T,q(Y), then

2) (X, ) =EY, fia);
3) filly (X, o)) =& (Y, fua) for any weight x € W™ U WA";

Here 7,(X) denotes the set of all positive and closed currents in the big class o and
Tt,4(Y) is the set of all positive closed currents in the image class. The condition on
the image of positive currents ensures that the push-forward of a current with minimal
singularities is still with minimal singularities; this easily implies that the volumes
are preserved, i.e., vol(a) = vol(f,«). We show conversely in Proposition 3.5 that
the condition f, (ZX(X )) = T4,4(Y) is equivalent to vol(a) = vol( fir) in complex
dimension 2, by using the existence of Zariski decompositions.

A related problem is to understand what happens to the energy classes if we change
cohomology classes on a fixed compact Kédhler manifold. Let «, 8 be big cohomology
classes. Given T € 7,(X) and S € 7g(X) so that T + S € T,44(X); we wonder
whether

I

Te&(X,a) and Se&(X,B) = T+Se& (X, a+p).
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Itturns outthat 7+ S € &, (X, o + B) implies T € £, (X, @) and § € &, (X, B) in
a very general context (Proposition 4.1), but the reverse implication is false in general
(see Counterexamples 4.5 and 4.7). We obtain a positive answer under restrictive
conditions on the cohomology classes (see Propositions 4.3 and 5.8).

Theorem B Let o, B be big classes, T € To(X), S € Tg(X) and x € W~ UWj,.
Then

1) T+SelX,a+pB)impliesT € E(X,a)and S € E(X, B),

2) T+Se&X,a+ B)impliesT € Ex(X,a) and S € (X, p).

If a, B are Kdihler, conversely

3) Te&X,a)and S € E(X, B) impliesT + S € E(X, a + B),
4) T e&(X,a)and S € E (X, B) impliesT + S € £ (X, a + B).

Proposition C Assume that S € B has bounded local potentials and that the sum of
currents with minimal singularities in o and in B is still with minimal singularities. If
p > n? —1, then

Te&l(X,a) =T +Se&X, a+p),

where 0 < g < p —n® + 1.

We stress that the condition on the sum of currents having minimal singularities is not
always satisfied as noticed in Remark 4.8, but it is a necessary condition if we want
the positive intersection class (« - 8) to be multi-linear (see [5]).

In our proof of Proposition C we establish a comparison result of capacities which
is of independent interest:

Theorem D Let o be a big class and B be a semipositive class. We assume that the sum
of currents with minimal singularities in o and B is still with minimal singularities.
Then, for any Borel set K C X, there exist C > 0 such that

1

(K) = Cap, (K))".

o+f,min

(K) = C (Capy

—1 C
a .
C p ‘o, min

eoc,min

where Oy min 1= 0y +ddVy,.

Let us now describe the contents of the article. We first introduce some basic notions
such as currents with minimal singularities and finite energy classes, and we recall
more or less known facts, e.g., that currents with full Monge—Ampere mass have zero
Lelong number on a Zariski open set (Proposition 2.9).

In Sect. 3, we show that the non-pluripolar product is a bimeromorphic invariant
(Theorem 3.1). Furthermore, under a natural condition on the set of positive (1, 1)-
currents, we are able to prove that weighted energy classes are preserved under bimero-
morphic maps (Proposition 3.3).

In the third part of the paper we study the stability of the energy classes (see, e.g.,
Theorem 4.1 and Proposition 4.3) and we give some counterexamples.

Finally, we compare the Monge—Ampere capacities with respect to different big
classes (Theorem 5.6) and we use this result to give a partial positive answer to the
stability property of weighted homogeneous classes £7 (Proposition 5.8).
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2568 E. Di Nezza

2 Preliminaries
2.1 Big Classes

Let X be a compact Kdhler manifold and let « € H LI(X,R) be a real (1, 1)-
cohomology class.

Recall that « is said to be pseudo-effective (psef for short) if it can be represented
by a closed positive (1, 1)-current 7. Given a smooth representative 6 of the class
«, it follows from the 89-lemma that any positive (1, 1)-current can be written as
T = 6 + dd°¢p, where the global potential ¢ is a 6-psh function, i.e., & + dd¢ > 0.
Here, d and d€ are real differential operators, defined as

—a4d  dc=(5_
d=0+0, d=—(1-9).

The set of all psef classes forms a closed convex cone, and its interior is by definition
the set of all big cohomology classes:

Definition 2.1 We say that « is big if it can be represented by a Kdhler current, i.e.,
there exists a positive closed (1, 1)-current 7 € « that dominates a Kéhler form.

2.1.1 Analytic and Minimal Singularities

A positive current T = 0 + dd€y is said to have analytic singularities if there exists
¢ > 0 such that (locally on X),

N
¢ 2
Y= EIOg ‘§1|fj| +u,
]:

where u is smooth and fi, ..., fn are local holomorphic functions.

Definition 2.2 If « is a big class, we define its ample locus Amp («) as the set of
points x € X such that there exists a strictly positive current 7 € « with analytic
singularities and smooth around x.

The ample locus Amp () is a Zariski open subset by definition, and it is nonempty
thanks to Demailly’s regularization result (see [8]).

If T and T are two closed positive currents on X, then T is said to be more singular
than 7" if their local potentials satisfy ¢ < ¢’ + O(1).

Definition 2.3 A positive current 7 is said to have minimal singularities (inside its
cohomology class ) if it is less singular than any other positive current in «. Its 6-psh
potentials ¢ will correspondingly be said to have minimal singularities.

Such 6-psh functions with minimal singularities always exist; one can consider, for
example,

Vo :=sup{¢ 6-psh,p <0on X}.
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Remark 2.4 Let us stress that the sum of currents with minimal singularities does
not necessarily have minimal singularities. For example, consider 7 : X — P? the
blow-up at one point p and set E := 7~ '(p). Take @ = n*{wps} + (E} and B =
2n*{wrs} — {E}, where wps denotes the Fubini—Study form on P2. As we will see in
Remark 3.4, currents with minimal singularities in « are of the form Spin = 7* Tinin +
[E], where Ty is a current with minimal singularities in {wfgs} (i.e., its potential is
bounded) and so they have singularities along E. On the other hand, currents with
minimal singularities in the Kéhler class g have bounded potentials, hence the sum of
currents with minimal singularities in @ and in 8 is a current with unbounded potentials.
Buta+p = 3n*{wrs} is semipositive, hence currents with minimal singularities have
bounded potentials.

2.1.2 Images of Big Classes

It is classical that big cohomology classes are invariant under pull-back and push-
forward (see, e.g., [7, Proposition 4.13]).

Lemma 2.5 Let f : X --» Y be a bimeromorphic map and ay € H"“'(X,R),
ay € HVYL(Y,R) be big cohomology classes. Then f.ax and f*ay are still big
classes.

Note that this is not true in the case of Kéihler classes.

2.1.3 Volume of Big Classes

Fixa € HL!

big (X, R). We introduce

Definition 2.6 Let Ty, be a current with minimal singularities in « and let €2 be a
Zariski open set on which the potentials of Ty, are locally bounded. Then

vol(e) :=/ . >0 (2.1
Q

is called the volume of «.

Note that the Monge—Ampere measure of Tp, is well defined in €2 by [1] and that
the volume is independent of the choice of Tri, and €2 ([5, Theorem 1.16]).

Let f : X — Y be a modification between compact Kéhler manifolds and let
ay € H1(Y, R) be a big class. The volume is preserved by pull-backs,

vol(f*ay) = vol(ay)

(see [7]). On the other hand, it is in general not preserved by push-forwards:

Example 2.7 Let 1 : X — P? be the blow-up along P? at point p. The class
ax = {7*wrs} — ¢{E} is Kihler whenever 0 < ¢ < 1 and m,ax = {wrs}. Now,
vol(ay) =1— 2, while vol(meayx) = 1.
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2.2 Finite Energy Classes

Fix X an n-dimensional compact Kéhler manifold, and let « € H 1*l(X ,R) be a big
class and 6 € « a smooth representative.

2.2.1 The Non-Pluripolar Product

Let us stress that since the non-pluripolar product does not charge pluripolar sets,

vol(oz):/(TIflin).
b'e

Definition 2.8 A closed positive (1, 1)-current 7 on X with cohomology class « is
said to have full Monge—Ampere mass if

/ (T™) = vol(a).
X

We denote by £(X, ) the set of such currents. If ¢ is a 6-psh function such that
T = 0 + dd€y, the non-pluripolar Monge-Ampeére measure of ¢ is

MA (¢) := (0 +dd°)") = (T").

We will say that ¢ has full Monge—Ampére mass it 6 + dd€ ¢ has full Monge—Ampere
mass. We denote by £(X, 0) the set of corresponding functions.

Currents with full Monge—Ampere mass have mild singularities.

Proposition 2.9 A closed positive (1, 1)-current T € £(X, a) has zero Lelong number
at every point x € Amp («).

Proof This is an adaptation of [13, Corollary 1.8]. Let us denote 2 = Amp («). We
claim that for any compact K CC €2 there exists a positive closed (1, 1)-current
Tx € a with minimal singularities and such that it is a smooth Kihler form near K.
Fix 6 a smooth form in « and Tinin = 6 +dd pmin a current with minimal singularities.
By Demailly’s regularization theorem [10], in the big class @ we can find a strictly
positive current with analytic singularities Top = 0 + dd° ¢ that is smooth on 2. Then
we define

@c = max(¢o, Pmin — C),

where C >> 1. Clearly, Tc = 0 + dd g is the current we were looking for. For
any point x € @, let K = B(x,r). Let x be a smooth cut-off function on X such
that x = 1 on B(x,r) C K and x = O on X \ B(x, 2r), where r > 0 is small.
Consider a local coordinate system in a neighborhood of x and define the 6-psh
function v, = ey log| - || + ¢c¢ for ¢ small enough. Now, if T = 6 + dd“p has
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Stability of Monge—Ampere Energy Classes 2571

positive Lelong number at point x, then ¢ < ¥. On the other hand T, = 0 + dd V.
does not have full Monge—Ampere mass since

/ MA (y0)
{Ve<pc—k}NB(x,r)

does not converge to 0 as k goes to +00, where 1/f§k) ;= max(ye, oc — k) are the

“canonical” approximants of . ([5, p. 229]). Therefore, by [5, Proposition 2.14], it
follows that T ¢ £(X, «). O

We say that a positive closed (1, 1)-current T € « is pluripolar if it is supported by
some closed pluripolar set: if T = 0 + dd“p, T is pluripolar implies that supp 7" C

{¢ = —oo}.

Lemma2.10 For j =1,...,p, leta; € HI’I(X, R) be a big class and T; € aj. If
Ty is pluripolar, then

(i A---ANTp) =0.

Proof First note that, since the non-pluripolar product does not put mass on pluripolar
sets, we have

Ixyva(Ti A ATy =(T1 AN AN Ty),

with A the closed pluripolar set supporting 77. Now, let w be a Kéhler form on X. In
view of [5, Proposition 1.14], upon adding a large multiple of  to the T;’s we may
assume that their cohomology classes are Kéhler classes. We can thus find Kihler
forms w; such that T; = w; +dd p;. Let U be a small open subset of X \ A on which
wj = ddy, where ¥; < 0 is a smooth psh function on U, so that T; = dd“u; on
U. By definition, on the plurifine open subset

Oy = m{uj > —k}
J

we must have 1o, (ddui A --- Addup) = 1p, /\j dd® max (uj, —k). Since u; is
a smooth potential on U, u; > —k for k big enough, and furthermore, since 77 is
supported by A, we have that dd“u; = 0. So, clearly

1o, /\ dd®max (uj, —k) =0
J

and hence the conclusion. O
2.2.2 Weighted Energy Classes

By a weight function, we mean a smooth increasing function x : R~ — R™ such that
x(0) =0and x(—o0) = —oo0. We let
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W™ :={x :R™ — R™ | x convex increasing, x (0) = 0, x (—o0) = —oc}
and
Wt = {X :R™ — R | x concave increasing, x (0) = 0, x(—o0) = —oo}
denote the sets of convex/concave weights. We say that x € WA",', ifdM > 0
0<|tx' ()] <M|x@)| forallt e R™.

Definition 2.11 Let x € W := W~ U W™. We define the x-energy of a 6-psh
function ¢ as

Eyo(p) = Z/( (@ — Vo) T A6)) €]~ 00, +00]

with T = 0 + dd ¢ and O = 0 + ddVy. We set
E4(X.0) = (¢ € E(X.0) | Ey() < +00).

We denote by &, (X, «) the set of positive currents in the class & whose global potential
has finite y-energy.

When x € W7, [5, Proposition 2.8] ensures that the x-energy is non-increasing and
for an arbitrary 6-psh function ¢,

Ey o(p) = 1iup Ey o) €] — 00, +00]
=@

over all ¢ > ¢ with minimal singularities. On the other hand, if y € Wit we lose
monotonicity of the y-energy function, but it has been shown in [13, p. 465] that

pe&X,a) iff 1;up Ey o(¥) < +00
>¢

over all ¥ with minimal singularities. Recall that for all weights x € W™, x € W™,
we have

E (X, ) CENX, @) C (X, @) C EX, ).
For any p > 0, we use the notation

EP(X,0) 1= E,(X,0), when x(1) = —(—1)".
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3 Bimeromorphic Images of Energy Classes

From now on, X and Y denote arbitrary n-dimensional compact Kihler manifolds.
We recall that a bimeromorphic map f : X —> Y can be decomposed as

r
RN
X Y

where 71, 2 are two holomorphic and bimeromorphic maps and I denotes a desin-
gularization of the graph of f. For any positive closed (1, 1)-current 7 on X we
set

f*T = (jTZ)* nr T.
For any positive closed (p, p)-current S it is not always possible to define the push-
forward under a bimeromorphic map. However, we define f,(S) in the usual sense in
the Zariski open set V, where f : U — V is a biholomorphism and extending to zero
inY\V.

3.1 Bimeromorphic Invariance of the Non-Pluripolar Product

The goal of this section is to show that the non-pluripolar product is a bimeromorphic
invariant.

Theorem 3.1 Let f : X — Y be a bimeromorphic map. Let a1, ..., 0, €
HU1(Y,R) be big classes and fix T; a positive closed (1, 1)-current in o j. Then

f*(Tl/\"'/\Tp)=<f*T1/\"'/\f*Tp)- 3.1
Proof By the definition of a bimeromorphic map, f induces an isomorphism between
Zariski open subsets U and V of X and Y, respectively. By construction, the non-

pluripolar product does not charge pluripolar sets, thus it is enough to check (3.1) on
V. Since f induces an isomorphism between U and V, we have

(flTi A AT ) lv = fu ((Ti A AT)u) = filTilu A A Tplu)
and
(TN N LTp)ly = (f(Tilu) A A fuTplu)).
Now, let w be a Kihler form on X. Upon adding a multiple of w to each T; we can

assume that their cohomology classes are Kihler. Thus we can find Kihler forms
wj such that T; = w; + dd°p;. Fix p € U and take a small open set B such that
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p € B C U.In the open set B we can write @; = dd“yj so that T; = ddu; on B
withu; := v; + ¢;. We infer that

p
LN dduj) = (fuddu) A+ A fulddCup)).
j=1

Indeed, on the plurifine open subset Oy := [ j{u j > —k} we have

fo(10d N\ dduy)) = £.(1o, \ da® max(u;, —5)
j J

=10\, (ujos1>—k) N\ fo(dd max(u;, —k)),
j

where the last equality follows from the fact that for any positive (1, 1)-current S with
locally bounded potential (£, S)" = fi(S™). O

3.2 Condition (V)

Finite energy classes are in general not preserved by bimeromorphic maps (see Exam-
ple 2.7). We introduce a natural condition to circumvent this problem.

Definition 3.2 Fix « a big class on X. Let 7,(X) denote the set of positive closed
(1, 1)-currents in «. We say that Condition (V) is satisfied if

Fo(Ta(X)) = T1a(Y),

where 77,4 (Y) is the set of positive currents in the image class f,o.

Theorem A of the Introduction is a consequence of Theorem 3.1 and Proposition
3.3.

Proposition 3.3 Fix « € Hyj, (X, R). If Condition (V) holds, then
(i) vol(a) = vol( fr),

(ii) fR(E(X, ) =E, fia),

(i) fo(Ex(X, @) = Ey (Y, fua) for any weight x € W~ UW;.

Observe that in general vol(«) < vol( f,«) (see Example 2.7).

Proof Fix T a current with minimal singularities in «. Observe that Condition (V)
implies that f, Ty is still a current with minimal singularities; thus,

vol(a) = / (T ) = / (fuTmin)") = vol( o).
X Y
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Fix T € 7,(X). Using Theorem 3.1, the change of variables formula, and the fact that
the pluripolar product does not put mass on analytic sets, we get

/(T"> =/((f*T)”>-
X Y

Hence by (i) it follows that
TeéX,a) < fiT € £, fia).

We now want to prove (iii). Let T = 6 + dd¢ and Ty, = 6 + dd°¢*, where ¢¥
= max(¢, Vp — k) are the canonical approximant (note they have minimal singular-
ities and decrease to ¢). We recall that f induces an isomorphism between Zariski
opens subsets U and V; thus, by (ii) and the change of variables we get that for any
j=0,...,n

/X(—xmok — VoUT A Oin” ) = /U(—x)(w — Vol T A0

- /v(_’”("’k o [T = Vo o fTNATO A (fullin) ).

hence the conclusion. O

Condition (V) is easy to understand when f is a blow-up with smooth center:

Remark 3.4 Let w : X — Y be a blow-up with smooth center Z, let E = 7~ 1(2)
be the exceptional divisor, and fix a big class ovx on X. There exists a unique y € R
such that at the level of cohomology classes oy = n*m.ax + y{E}. Furthermore,
for any (1, 1)-current S € ayx there exists a (1, 1)-current 7 € m,ax such that § =
7*T + y[E] and S is positive iff T is positive and y > —v(T, Z) (consequence of
Proposition 8.16 in [11] together with Corollary 1.1.8 in [6]). If Condition (V) holds,
then any current Sp,i, with minimal singularities in oy admits the decomposition

Smin = T Tinin + v[E],

where Ty 1S a current with minimal singularities in m,axy. When y > 0, Condition
(V) is always satisfied. On the other hand, when y < 0 this is not necessarily the case
since it could happen that for some positive current 7" in m,ax, v(T, Z2) < —y (see
Example 2.7, where y = —¢ and v(wfrgs, Z) = 0).

We observe indeed that Condition (V) is equivalent to requiring that every current
Ty € meax is such that v(Ty, Z) > —y.

As the first statement of Proposition 3.3 shows, there is a link between Condition
(V) and the invariance of the volume under push-forward. For example, if Z ¢ X \
Amp (o) then

vol(ary) = vol(meax) <= u(Tay (X)) = Tryay (V).
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Indeed, (=) is an easy consequence of the fact that under the assumption on the
volumes we can decompose any current with minimal singularities Smin € ox as
Smin = 7T + y[E] with T € E(Y, meax). Proposition 2.9 implies v(7, Z) = 0,
hence y > 0. Let us stress that the assumption on Z could be removed if we knew
that v(T', y) = v(Tin, y) for any T with full Monge—Ampere mass, for any T, with
minimal singularities in w,ax and for any y € Y. It is, however, quite delicate to get
such information at points y which lie outside the ample locus.

Proposition 3.5 Let f : X — — > Y be a bimeromorphic map between compact
Kdihler manifolds of complex dimension 2. Then the following are equivalent:

(i) vol(a) = vol( fee)
(ii) fu(To(X)) = Tra(Y).

Proof Let us recall that (ii) always implies (i). Furthermore, by Noether’s factoriza-
tion theorem it suffices to consider the case of a blow-up at one point p. We write
a = 7*m.a + y{E}. We recall that if y > 0 there is nothing to prove; we can thus
assume y < 0. Let S be a current with minimal singularities representing « and
T a current with minimal singularities representing m,«. By [5, Proposition 1.12],
7*T € m*m,.a is also with minimal singularities. Note that 7*7 is cohomologous
to S — y[E]. Since « is big, the Siu decomposition of S gives in cohomology the
Zariski decomposition of «, and similarly the Siu decomposition of 7*T gives the
Zariski decomposition of 7*m,« (see, e.g., [8]). Furthermore, since 7*7 is minimal
every divisor appearing in the singular part of the Siu decomposition of 7*T also
appears in the singular part of the Siu decomposition of S — y[ E'] with larger or equal
coefficients. Then we write the Siu decomposition of S and of 7*T as

N N
S=0+ D 2Dl +rlEl, 7T =1+ Y ni[Dil+nolE]

i=1 i=1

with D; # E for all i, A; > 0, Ao, i, no > 0, where in particular ng = v(7*T, E)
= v(T, p). Moreover, {0}, {t} are big and nef classes and p; = X; — n; > 0, po
=Xo—y —no = 0. It follows that

6+ A} = {1}, (3.2)

where A = ZlNzl pi[Di] + polE] is an effective R divisor. Observe that if we show
po = 0then Ao = no +y = v(T, p) + y > 0 and so we are done. Intersecting
first with 6 and then with t the relation (3.2), using the assumption on the volumes,
ie., {6}2 = {1}2, the fact that A is effective, and that T and 6 are nef, we find
{r} - {A} = {0} - {A} = 0. If we develop the square of the left-hand side of (3.2)
we conclude {A}> = 0. Since {6} > 0, the Hodge index theorem shows that {A} = 0
and since A is effective, it is the zero divisor. Hence pg = 0. O

We expect that v(T', x) = v(Tin, x) for all x € X whenever T € £(X, o). We
show the following partial result in this direction:

@ Springer



Stability of Monge—Ampere Energy Classes 2577

Proposition 3.6 Let X be a compact Kdhler surface, o be a big class on X and
T € E(X, a). Then the set {x | v(T, x) > v(Tmin, X)} is at most countable.

Proof We write the Siu decomposition of the current 7 as 7 = R + Z;V:] MilDil.
Note that the set E4(T) := {x € X | v(T,x) > 0} contains at most finitely many
divisors (Proposition 2.9). We claim that { R} is big and nef. Indeed, by construction the
current R has no positive Lelong number along curves and so any current with minimal
singularities Rmin € {R} has the same property. Thus the Zariski decomposition of
{R} is of the type {R} = {R} + 0. Furthermore,

vol({R}) < vol(@) = / (%) = / (R?) < vol((R}),
X X

which implies vol(e) = {R}> > 0. Then T = R+ > )_, p;[D;]1 + X2, ni[D;1.
where n; = v(Tin, D;) with Tip € «. Clearly p; > 0, for any i. We want to show
that p; = 0. Set S := R + Z?’:] pi[D;] and write the Zariski decomposition of

aaso = oy + ijzl ni{D;}. Then oy = {S}. This means that {S} is big and nef

and vol(a) = a% = {S)2. Now, {R + A} = (S}, where A = 29;1 pi[D;] is an
effective R divisor. Using the same arguments as in the proof of Proposition 3.5, we
get {A} - {R} = {A} - {S} = {A}*> = 0, and using the Hodge index theorem we
conclude. O

4 Sums of Finite Energy Currents

Let X be a compact Kihler manifold of complex dimension n and let « and 8 be big
classes on X. Given two positive currents 7 € « and § € $ with full Monge—Ampere
mass, it is natural to wonder whether 7 + S has full Monge—Ampere mass in o + S,
and conversely.

4.1 Stability of Energy Classes

We start proving Theorem B of the Introduction.

Theorem 4.1 Fix T € T,(X), S € T3(X) and x € W~ UW}. Then

(i) T+SelX,a+ B)impliesT € E(X,a)and S € E(X, B),
(i) T+ S e & (X, a+ B) implies T € E(X,a) and S € £,(X, ).

If a, B are Kdhler classes, then conversely

(iii) T e EX,a)and S € E(X, B) implies T + S € E(X, a + B),
(iv) Te&(X,a)and S € E4(X, B) implies T + S € £,(X, o + B).

Proof Pick 6, and 05 smooth representatives in o and $, so that 0 := Oy + Op is a
smooth form representing o + 8. We decompose T = 6, +dd ¢ and S = Og +dd .
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We assume ¢ + 1 € (X, §), and first prove that ¢ has full mass, which is equivalent
to showing

mg :=/ (0o + dd° max(¢, gmin —k))") — 0 as k — +o0,
{9 <¢min—k}

where Tiin = 0y + dd° pmin has minimal singularities in « ([5, p. 229]). First, observe
that on X \ {yy = —oo} we have

{wf‘pmin_k}g{(p_‘_wf¢min+1/f_k}g{¢+w5¢min_k}»

where Spin = 0+dd € ®min has minimal singularities in « + . Since the non-pluripolar
product does not charge pluripolar sets, we infer

0<my < / (6 + dd° max(@, min — K))")
{W"F‘//f(pmin_k}

<

/ (0 + dd® max(¢ + ¥, @min + ¥ — k)")
{o+¥ <Pmin—k}\{y=—00}

< / (@ + dd° max(@ + ¥, dmin — )",
{0+ <dmin—k}

where the last inequality follows from the fact that ¢y is less singular than ¢min + ¥
(see [5, Proposition 2.14]). But, by assumption, the last term goes to 0 as k tends to
+o00, hence the conclusion. Changing the role of ¢ and ¥ one can prove similarly that
also ¢ is with full Monge—Ampere mass.

We now prove the second statement. By assumption, ¢ + v € &, (X, 6) with x
a convex weight, and so from above we know that ¢ and v both have full Monge—
Ampere mass. It suffices to check that ¢ € £, (X, 6,). By [5],

Eyo(p) < +oo iff sup/ (=) (@r — Pmin) M A(pr) < +00,
k X

for any sequence ¢y of 6,-psh functions with full Monge—Ampere mass decreasing to
. Since T1 < T, implies (T}") < (T,'), we obtain

/X (=30 (G min) (G + dd0)")
< / (=) @k — Pmin) (@ + dd* (@r +¥))")
X\(y=—o0}

< / (=0 @k + ¥ — GmimMA (g + ).
X\{Yy=—o0}
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where the last inequality follows from the monotonicity of x and the fact that on

X\ (¢ = —oo)
Yk — Pmin = (@k +¥) — (@min +¥) = (@k + V) — Pmin-

Therefore, Exyé(go + ¥) < +oo implies E, g, (¢) < +00, as desired.

Assume now that «, 8 are both Kihler classes and choose Kihler forms w, € «,
wg € B as smooth representatives. We want to prove that if ¢ € £(X, wy) and
Y € E(X, wp) then ¢ + Y € E(X, wy + wg). Let @ be another Kéhler form on X.
We first show that ¢ € £(X, wy) (resp., ¢ € (X, wy)) if and only if ¢ € £(X, w)
(resp., ¢ € £, (X, w)) whenever ¢ € PSH (X, ). We recall that, since w, and w are
Kihler forms, there exists a constant C > 0 such that %a) < wy < Cw. Thus,

/ (wg +ddp)" < / (Co+dd )"
{p<—k} {p=<—k}
n

<C Z/ ol A (@ +dd“p)"
pr TS

where ¢y := max(¢, —k). And so ¢ € £(X, w) implies ¢ € £(X, w,). Analogously,
one can prove the reverse. Similarly, for any weight x € W~ U W},

n
/ —x(@i) (g + dd @) < C / —x (@) (@ + dd“p)) A"
X : X
j=0

Thus, if ¢ € £,(X, w) then ¢ € &, (X, wy). With the same argument we get the
reverse. Now, let @ be a Kihler form such that w,, wg < @. From above we have that
o,y € EX,w) (resp., ¢, ¥ € £,(X, w)) and since the energy classes are convex
([13, Propositions 1.6, 2.10 and 3.8]), it follows ¢ + ¢ € (X, 2w) (resp., ¢ + ¢ €
&y (X, 2w)). From the previous observation we can deduce ¢ + ¢ € £(X, wy +wp).0

Examples 4.5 and 4.7 below show the reverse implication is not true in general.
This is particularly striking if the following condition is not satisfied:

Definition 4.2 We say that pseudoeffective classes ay, . . ., a, satisfy Condition MS
if the sum 71 + --- + T), of positive currents 7; € «; with minimal singularities has
minimal singularities in a1 + - - - + .

Note that if oy, ..., a, satisfy Condition MS the positive intersection class
(o1 - - - ap) turns out to be multi-linear, while it is not so in general ([5, p. 219]).

Proposition 4.3 Let T € 1,(X) and x € W~ UW,,. Assume that a is a Kiihler class
and B is a semipositive class. Fix 6g € B a semipositive form. Then

(i) T+6gel(X,a+p)ifandonly if T € E(X, ),
(ii) T +6g € &, (X, a + B) ifand only if T € £, (X, a).
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We will exhibit an Example 4.5 such that « is semipositive, 8 is Kihler, 04 is a
Kihler formin 8, T € EX(X,a) but T + 6p ¢ EX(X, o + B).

Proof We will first prove the second statement. Fix w, 6g smooth representatives of «
and B, respectively, and denote & := w + 0. Note that @ can be chosen to be Kihler.
LetT :=w+dd¢p € (X, a). By [5] we have

Ey.0(p) <= sup E, ,(¢r) < +o00,
k

where ¢ := max (g, —k). We now show that £, ;(¢x) is uniformly bounded from
above. Fix A such that ® < (A + 1)w. Then

/ @) (@ + dde ) A&
X

<Aty / —x (@) (Ao + o+ ddpr) Ao
X
j . ‘
=C Z/ —x (@) (@ +ddp)’ ™ A" < C"Eyo(00).
1=0 7%

The first statement is an easy consequence of the second one, recalling that

EX.a)= ] &X. a).
xXeEW—

The reverse inclusion is Theorem 4.1. O

Remark 4.4 Let us stress that the first statement of Proposition 4.3 could be proved
in great generality («, 8 big classes such that Condition MS holds, 05 current with
minimal singularities) if given«y, . . ., , bigclassesand 77 € £(X, «1); the following
would hold

/ <Tl N 92,min ZANRERIVAN en,min) = / <91,min ZARERIAN en,min)s
X X
where 0; min 1= 6; +ddVy, € a;.

4.2 Counterexamples

The following example shows that given two currents T € ENX,a)and S € E(X, ),
we cannot expectthat T+ S € £ 1 (X, a+B), evenif « is semipositive and g is Kahler.

Example 4.5 Let w : X — P? be the blow-up at one point p and set E := 7~ (p).
Fix ¢ = n*{wrs} and B = 2n*{wps} — {E} sothata + B = 3n*{wFrs} — {E}. We
pick @ € « + B a Kéhler form of the type @ = n*wrs + w, where w € § is a Kihler
form. We will show that
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ENX,a) ¢ E'X, a+ B) N Ty(X).

The goal is to find a wrg-psh function ¢ on P2 such that 7*¢ € EY(X, n*wrs) but
7*¢ ¢ EY(X, @). Let U be a local chart of P2 such that p — (0, 0) € U. We define

1
= —=x-us — Ks,
2) CX ) )

where us := —(—log llzIN?, x is a smooth cut-off function such that x = 1 on B and
x =0on U \ B(2), Ks is a positive constant such that s < 1 and C > 0. Choosing
C big enough ;s induces a wrs-psh function on P2, say @s. Note that by [9, Corollary
2.6] @5 € EP?, wrs) if 0 < 8 < 1. We let the reader check that ¢5 € W2(P2, wrs)
for all 0 < § < 1. Therefore, @5 € SI(JP’Z, wrs) iff

[~y < +oc.

We claim this is the case iff 0 < § < %

Note that @5 is smooth outside p; therefore, we have to check that

/ —ug(ddus)? < +oo. 4.1)
B(3)

Set x(t) = —(—1)® so that us = x(log||z|). Then (ddus)® = C; mx” :

X/(log lzIDdz1 A dzy A dza A dZp on IB%(%) \ {(0, 0)}, hence the convergence of the
integral in (4.1) is equivalent to the convergence of

dziAndzZy ANdzp ANdZp

/ —x(og izl - x" ogllzll) - x (log lIzI})
B(1)\((0,0)) llz]|4

1 ” 4

I . | . +00 1

:/2 x(log p) - x"(log p) - x (log p) dp=8<1—8)/ 3 4,
0 P ~oeg (7

which is finite iff 0 < § < %, as claimed. Therefore, by Proposition 3.3 we get
m*gs € EVX, m*wFs). But m*gs ¢ (X, @) if § < § < % since

IV(*@s)| ¢ L*(X, (@)% if 6>

| =

Indeed, let z = (z1, z2) € B and fix a coordinate chart in X; then 7 (s, t) = (z1, 22) =
(s, st). Therefore, on 7~ 1(B),

] 1 5
ps 0 (s, 1) = Z (s, 1) = — (— log 5| — log v/1 + |z|2) :
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Hence,

/nl(IB%)

which is not finite if § > % The conclusion follows from [13, Theorem 3.2].

d(ps o 1)
as

2 2 _ _
ds nds ndi ndi > (2 / ds nds ndi ndi
2C 1@y |s1>(—log |s[)?—2}

Remark 4.6 Observe that «, 8 satisfy Condition MS in the previous example and
also that 7*@s € £(X, ®). Indeed, let T := n*wrs + dd(¢s o 7); we need to check
that T + w € E(X,a + B). Since T € £(X, o) and

(T +w)?) = (T + 2T) Ao + ()7,
it suffices to show that
UT) A} = (T wrs) - (o),
which is equivalent to
{(T —(T) Aw} =0,

Hence, what we need to show is that 7 —(T') = 0. The (1, 1)-current 7 —(T') is positive
and is supported by the exceptional divisor E. Therefore, using [11, Corollary 2.14],
it results that

T =(T)+vLE]

where y = v(T, E) = v(m,T, p) = 0 since § < 1. And so the conclusion.

The previous remark could let us think that whenever T € £(X, o) and S € £(X, B)
then T + S € £(X, « + B), but this is not true either, as the following example shows:

Example 4.7 Let w : X — P? be the blow-up at one point p and set E := 7~ (p).
Consider « = n*{wrs} + {E} and B = 27n*{wFrs} — {E}. Thus o« 4+ B = 3n*{wrs}.
Since B is a Kihler class we can choose S = w with w a Kihler form. Observe that
currents with minimal singularities in « are of the type 7*Spin + [E], where Spip is
a current with minimal singularities in {wrs} (Remark 3.4). By Lemma 2.10,

vol(a) = /X ((T* Smin + [E])?) = /X ((T*Smin)?) = /X (82 =1,

while vol(a + ) = (@ + )% = 9.

Letnow T € £(X, o) and recall that any positive (1, 1)-current in « is of the form
T =n*S+[E]with § € ’Z'{wFS}(IP’Z). In particular, we choose T := n*wrs + [E].
We want to show that T + w ¢ £(X, o + ). Now, from the multilinearity of the
non-pluripolar product, we get

/ (T + ) = / (T wrs + [E] + o)) = / (T wrs + 0)?) = 8.
X X X
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Hence [, (T +)?) =8 < 9 = vol(« + p).

The same type of computations show that if we pick 7' € £(X, «), then, for any
O<e<1,THew ¢ EX, o+ cw).

Remark 4.8 Note that in the latter example «, B do not satisfy Condition MS.

5 Comparison of Capacities
Let X be a compact Kéhler manifold of complex dimension n and let « be a big class

on X. Set 6 € o a smooth form and Oy, := 6 4+ dd°Vp the positive (1, 1)-current in
« with “canonical” minimal singularities.

5.1 Intrinsic Capacities
We introduce the space of “Opyi,-plurisubharmonic” functions
PSH(X, 60min) :={¢¥ | ¥ +Vp isa 6—pshfunction}.
Note that a Oin-psh function ¥ is not upper-semi-continuous, but ¢ 4+ Vj is.
5.1.1 Monge-Ampére Capacity

Following [5] we introduce the Monge—Ampere capacity with respect to a big class.

Definition 5.1 We define the capacity of a Borel set K C X as

Capy,,, (K) := sup [/ (Omin +dd“P)"), ¥y € PSH(X, Oin) | =1 =9 < 0] .
K

Observe that the above one is the same definition as [5, Definition 4.3], just taking
Y = ¢—Vp, where ¢ is a0-psh function. Here we introduce this equivalent formulation
since we need the positivity of the reference current Opy;p.

5.1.2 The Relative Extremal Function

We introduce the notion of the relative extremal function with respect to Opip. If E is
a Borel subset of X, we set

RE i (%) == sup {Y(x) | € PSH(X, Omin), ¥ < 0and Y < —1},
and
E‘aemin = (hEvemin + VG)* - V@-
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It is a standard matter to show that, as in the Kihler case (see [12]), the Omin-psh
function A7 o, Satisfies

Capy . (K) :/ MA (Vo + hg g ) :/(—h};ﬂmm)MA(v@+h’;<,9min),
K X

where K C X is a compact set (for details, see [4, Lemma 1.5]).
5.1.3 Capacities of Sublevel Sets
We now generalize [13, Lemma 5.1].
Lemma 5.2 Fix x e W™ UW,, M > 1. If g € £,(X, 0), then
3Cy > 0,Vr > 1, Capy . (¢ < Vp —1) < C¢|t)((—t)|_1.
Conversely, if there exists Cy, € > 0 such that for all t > 1,
Capg,, (¢ < Vo —1) < Cylt"** x (=07,
then ¢ € £, (X, 0).

Proof Fix ¢ € £,(X,0)andu € PSH(X, 6) suchthat —1 <u —Vy <0.Fort > 1,
observe that by [5, Proposition 2.14], £ + (1 — 1) V; € £(X, 6) and

—v
((p—V9<—2t)§(¢ t 0 <—1+u—V9)§(<p—V9<—t).

It therefore follows from the generalized comparison principle and from the multilin-
earity of the non-pluripolar product ([5, Propositions 2.2 and 1.4]) that

/ MA(u)
(p—Vp<-21)
© 1
= MAl=+(1—-)W
(p—Vo<—1) 4 !
1\" " (n
< (1 — —) / Opin) +171> (k)/ (T* A omhy,
! (p=Vo<—1) P (p—Vo<—1)

where T := 6 + dd¢. Furthermore, since
MA(Vy) = 1{\/0:0}9"

(see [3, Corollary 2.5]), we get

/ {Bfnin) =/ 0" =1pb" (¢ < —1) < Co"(p < —1),
(p—Vyp<—1) (p—Vg<—t)ND
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where D := {Vy = 0}, w is a Kéhler form on X and C > 0. We recall that vol, (¢ <
—t) decreases exponentially fast (see [12]) and observe that for all 1 < k <n,

_ 1 _
/ Tk Aok < [ 00 =T i) = .
(p—Vo<—1) X

Ix (=0 ~x (=0l

This yields the first assertion.

The second statement follows from similar arguments as in the Kéhler case, working
with the 6-psh function u := %(pt + (1 — %) Vo, where ¢; := max(¢, Vp — t) for any
¢ € PSH(X, 0). Let us stress that this is the only place where the assumption on the
weight, x € W™ U Wi is used. O

5.1.4 Alexander Capacity
For K a Borel subset of X, we set
Vik.o :=sup{eg |9 € PSH(X,60), ¢ <0 on K}.
Note that
Vo =Vxo < Vi
by definition. It follows from standard arguments (see [12, Theorem 4.2]) that the

usc regularization V;g’ ¢ of Vi g is either a 6-psh function with minimal singularities
(when K is non-pluripolar) or identically 400 (when K is pluripolar).

Definition 5.3 (Alexander—Taylor capacity) Let K be a Borel subset of X. We set

Ty(K) 1= exp(—sup Vg 4).
X

As in the Kihler case, the capacities Ty and Cap, . compare as follows:

Proposition 5.4 There exists A > 0 such that for all Borel subsets K C X,

|~

exp —L <Tp(K)<e-exp| — M
C:a'pgmin (K) B B Capemin (K)

Proof It suffices to treat the case of compact sets. The second inequality is [5, Lemma
4.2]. We prove the first inequality. We can assume that M := My (K) > 1; otherwise,
it is sufficient to adjust the value of A. Let ¢ be a 6-psh function such that ¢ < 0 on
K. Then ¢ < M on X, hence w := M1 (p — M — Vy) € PSH(X, Omin) satisfies
supy w < 0and w < —1 on K. We infer w < h;ﬁmin and

VE,—M—Vy
wg = KQT < M by = O-
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Then we get

Cap@min(K) = / (_ *Kﬁmin) MA (V9 + h*Kvgmin)
X

1
5_/ ~(Vgg— M —Vo)MA (Vo + hi g )
M Jx ’ ’
_a
- M

with C; > 0. The last estimate follows from the lemma below, together with [12,
Proposition 1.7], since supX(VEQ — M — V) = 0 and by [3, Corollary 2.5], ((6 +
ddVe)") = 1{y,=00" < Co". |

The following lemma is a straightforward generalization of [12, Corollary 2.3] (see
also [4, Lemma 3.2]).

Lemma 5.5 Let , ¢ be 0-psh functions with minimal singularities with ¢ normalized
in such a way that 0 < ¢ — Vy < 1. Then we have

/X—(W — Vo)((0 +ddp)") < /X = — Vo)((0 +dd“Vp)") + n vol(a).

5.2 Comparing Capacities

We introduce a slightly different notion of big capacity that is comparable with respect
to the usual one. For any Borel set K C X we define

Capj,, (K) := sup [ / (Bmin +dd“Y)"), ¥ € PSH(X, 6min) | =1 < ¥ < o] ,
K

where A > 1. We let the reader check that
Cap,, . (K) < Capj,_ (K) < A" Capy__ (K). (5.1)
We now compare the Monge—Ampere capacities with respect to different big classes

(Theorem D of the Introduction).

Theorem 5.6 Let oy and oy be big classes on X such that ay < ap. We assume that
{ag, ap — a1} satisfies Condition MS and that there exists a positive (1, 1)-current
To € ap — oy with bounded potentials. Then there exist C > 0 such that for any Borel
set K C X,

1 "
E Capel,min (K) = Capaz,min (K) = ¢ (Capel.min (K)) .

Note that in case of Kihler forms the result is stronger and the proof much simpler (see
[5, Proposition 2.5]) but we cannot expect better in the general case of big classes. The
following Example 5.7 shows that the exponent at the right-hand side is necessary.
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Proof Fix 0 € ay,0; € ap smooth forms. Write Ty = (6, —61)+dd° fy, where fyisa
bounded potential. Let ¢ be a 61-psh function such that —1 < ¢ —Vjp, < 0. Then ¢+ fo
is a 6»-psh function. Condition M ensures that the potential Vi, 4+ fo has minimal
singularities, thus there exists a positive constant C such that |V, — Vp, — fol < C.
Therefore, —A < ¢ + fo — C — Vg, < 0, where A = 1 + 2C. Now, using (5.1) and
the fact that 71 < 75 implies (T7}') < (T,'), we get

/K<(91+dd“¢)”> S/K<(92+dd0(<p+fo)”>,

namely, Capgl mm(K ) < Cap92 (K) < A" Cap92 mm(K ), hence the left inequality.
In order to prove the other 1nequa11ty, we have to go through the Alexander capacity.
Since Vi ¢ + fo = Vg, k-

sup(Vg*z’K) > sup(Vg";,K) + inf fy,
X X X
and so ,
To,(K) < Ty (K) - e~ X /o,

Furthermore, using Proposition 5.4 we get

A
exp [—m} < Ty, (K)

< Ty, (K) . ¢~ infx fo+1

1
< eiinfx fot+l exp | — M '
B Capel,min (K)

with A a positive constant. Thus, there exists a constant C > 0 such that

vol(ap)

1
C (K)< A e E— inf fo — 1
apgz«""“ ( ) - (Capgl min (K) ) ' H} fo

1
<C Capgl in (K)n.
Hence the conclusion. O

Example 5.7 Let  : X — P? be the blow-up at one point p and set E := 7~ !(p).
Consider o) = {m*wrs} and ap = {®}, where @ is a Kéhler form on X. Let A, be
the polydisc of radius » < 1 on P?. By [12, Proposition 2.10] and [14, Lemma 4.5.8]
we know that

1

-1 -
Capn*wrs (= (Ar) = CaprS(A’) ~ (—log r)?2’
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Fix now alocal chart U C X such that p € U and consider K, C U, K, :={(s,1) €
U|O0<|s| <r 0<|t|| <1}.Then

Cap; (71 (A,)) > Cap,(K,) ~ C

—logr’

with C a positive constant.

5.3 Energy Classes with Homogeneous Weights

As Example 4.5 shows, we cannot hope to get stability of weighted energy classes £,
by only adding Condition MS. We nevertheless establish a partial stability property
with a gap for energy classes with respect to homogeneous weights x () = —(—1)?.
We recall that the functions x (1) = —(—f)? belong to W™ if 0 < p < 1, while they
belong to W;,r, when p > 1.

Proposition 5.8 Let o, B be big classes. Assume that S € B has bounded potential
and the couple (o, B) satisfies Condition MS. If p > n* — 1 then

TelPX,a)=T+SecllX,a+p),

where0 < q < p —n®+ 1.

Proof Fix 6, g smooth representatives of «, 8, respectively, and set 0 := O + 0g.
Write § = 6g + ddy and denote Oy min := 0y + ddVy, and émin =0+ ddVy.
We want to show that there exists a positive number ¢ < p such that given a 6,-psh
function ¢ € £P(X, 6,) then ¢ + ¢ € £9(X, 0). By the first claim of Lemma 5.2, for
any ¢ > 1 there exists a constant Cy, > 0 such that

Capy, (¢ — Vg, < —1) < Cpt~ PV, (5.2)

o, min

The goal is to find a similar estimate from above of the quantity Cap; (¢ +v —V; <
—t).SetK :={¢p—Vy, < —t}and K = {p+v¥ —V;z < —t}. We infer that Condition
MS implies K € K. Thus Capy (K) < Cap; . (K).Now, by Theorem 5.6 we know
that there exists A > 0 such that

+1

Capémin(k) = A Capgoz min(K)% = C(p t_pT’

where the last inequality follows from (5.2). This means that there exist Cy, & > 0
such that

Capémin([%) < C(pt_(n+5+q)
with0 < g < p —n? 4+ 1 — ne. Hence by Lemma 5.2 we get ¢ + ¢ € £9(X, 0). O
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