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Abstract We show that the non-pluripolar product of positive currents is a bimero-
morphic invariant. Under some natural assumptions, we show that the (weighted)
energy associated with big cohomology classes are also bimeromorphic invariants.
We compare the weighted energy functionals of currents with respect to different
cohomology classes and establish quantitative estimates between big capacities.
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1 Introduction

Let X be a compact n-dimensional Kähler manifold, T1 = θ1 + ddcϕ1, . . . , Tp

= θp + ddcϕp be closed positive (1, 1)-currents where θ j are smooth representa-
tives of the cohomology classes {Tj }. Denote by θ1 + ddcVθ1 , . . . , θp + ddcVθp the
canonical currents with minimal singularities. Following the construction of Bedford–
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2566 E. Di Nezza

Taylor [2] in the local setting, it has been shown in [5] that

1⋂
j {ϕ j>Vθ j −k}(θ1 + ddc max(ϕ1, Vθ1 − k)) ∧ · · · ∧ (θp + ddc max(ϕp, Vθp − k))

is non-decreasing in k and converges to the so-called non-pluripolar product

〈T1 ∧ · · · ∧ Tp〉.

The resulting positive (p, p)-current does not charge pluripolar sets, and it is always
well defined and closed.

Given α a big cohomology class, a positive closed (1, 1)-current T ∈ α is said to
have full Monge–Ampère mass if

∫

X
〈T n〉 = vol(α),

and we then write T ∈ E(X, α). In [5] the authors also defineweighted energy functio-
nals Eχ (for any weight χ ) in the general context of a big class extending the case of
a Kähler class ([13]). The space of currents with finite weighted energy is denoted by
Eχ (X, α).

The aim of the present paper is to show the invariance of the non-pluripolar product
and establish stability properties of energy classes.

Theorem A The non-pluripolar product is a bimeromorphic invariant.
More precisely, fix α ∈ H1,1(X, R) a big class and f : X − − > Y a bimeromorphic
map. Then

1) f�〈T n〉 = 〈( f�T )n〉 for any positive closed T ∈ α.

Furthermore, if f�
(
Tα(X)

) = T f�α(Y ), then

2) f�(E(X, α)) = E(Y, f�α);
3) f�(Eχ (X, α)) = Eχ (Y, f�α) for any weight χ ∈ W− ∪ W+

M.

Here Tα(X) denotes the set of all positive and closed currents in the big class α and
T f�α(Y ) is the set of all positive closed currents in the image class. The condition on
the image of positive currents ensures that the push-forward of a current with minimal
singularities is still with minimal singularities; this easily implies that the volumes
are preserved, i.e., vol(α) = vol( f�α). We show conversely in Proposition 3.5 that
the condition f�

(
Tα(X)

) = T f�α(Y ) is equivalent to vol(α) = vol( f�α) in complex
dimension 2, by using the existence of Zariski decompositions.

A related problem is to understand what happens to the energy classes if we change
cohomology classes on a fixed compact Kähler manifold. Let α, β be big cohomology
classes. Given T ∈ Tα(X) and S ∈ Tβ(X) so that T + S ∈ Tα+β(X); we wonder
whether

T ∈ Eχ (X, α) and S ∈ Eχ (X, β)
�⇒⇐� T + S ∈ Eχ (X, α + β).
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Stability of Monge–Ampère Energy Classes 2567

It turns out that T + S ∈ Eχ (X, α +β) implies T ∈ Eχ (X, α) and S ∈ Eχ (X, β) in
a very general context (Proposition 4.1), but the reverse implication is false in general
(see Counterexamples 4.5 and 4.7). We obtain a positive answer under restrictive
conditions on the cohomology classes (see Propositions 4.3 and 5.8).

Theorem B Let α, β be big classes, T ∈ Tα(X), S ∈ Tβ(X) and χ ∈ W− ∪ W+
M.

Then

1) T + S ∈ E(X, α + β) implies T ∈ E(X, α) and S ∈ E(X, β),
2) T + S ∈ Eχ (X, α + β) implies T ∈ Eχ (X, α) and S ∈ Eχ (X, β).

If α, β are Kähler, conversely

3) T ∈ E(X, α) and S ∈ E(X, β) implies T + S ∈ E(X, α + β),
4) T ∈ Eχ (X, α) and S ∈ Eχ (X, β) implies T + S ∈ Eχ (X, α + β).

Proposition C Assume that S ∈ β has bounded local potentials and that the sum of
currents with minimal singularities in α and in β is still with minimal singularities. If
p > n2 − 1, then

T ∈ E p(X, α) �⇒ T + S ∈ Eq(X, α + β),

where 0 < q < p − n2 + 1.

We stress that the condition on the sum of currents having minimal singularities is not
always satisfied as noticed in Remark 4.8, but it is a necessary condition if we want
the positive intersection class 〈α · β〉 to be multi-linear (see [5]).

In our proof of Proposition C we establish a comparison result of capacities which
is of independent interest:

Theorem D Letα be a big class andβ be a semipositive class.We assume that the sum
of currents with minimal singularities in α and β is still with minimal singularities.
Then, for any Borel set K ⊂ X, there exist C > 0 such that

1

C
Capθα,min

(K ) ≤ Capθα+β,min
(K ) ≤ C

(
Capθα,min

(K )
) 1

n
,

where θα,min := θα + ddcVθα .

Let us now describe the contents of the article.We first introduce some basic notions
such as currents with minimal singularities and finite energy classes, and we recall
more or less known facts, e.g., that currents with full Monge–Ampère mass have zero
Lelong number on a Zariski open set (Proposition 2.9).

In Sect. 3, we show that the non-pluripolar product is a bimeromorphic invariant
(Theorem 3.1). Furthermore, under a natural condition on the set of positive (1, 1)-
currents, we are able to prove that weighted energy classes are preserved under bimero-
morphic maps (Proposition 3.3).

In the third part of the paper we study the stability of the energy classes (see, e.g.,
Theorem 4.1 and Proposition 4.3) and we give some counterexamples.

Finally, we compare the Monge–Ampère capacities with respect to different big
classes (Theorem 5.6) and we use this result to give a partial positive answer to the
stability property of weighted homogeneous classes E p (Proposition 5.8).
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2 Preliminaries

2.1 Big Classes

Let X be a compact Kähler manifold and let α ∈ H1,1(X, R) be a real (1, 1)-
cohomology class.

Recall that α is said to be pseudo-effective (psef for short) if it can be represented
by a closed positive (1, 1)-current T . Given a smooth representative θ of the class
α, it follows from the ∂∂̄-lemma that any positive (1, 1)-current can be written as
T = θ + ddcϕ, where the global potential ϕ is a θ -psh function, i.e., θ + ddcϕ ≥ 0.
Here, d and dc are real differential operators, defined as

d := ∂ + ∂̄, dc := i

2π

(
∂̄ − ∂

)
.

The set of all psef classes forms a closed convex cone, and its interior is by definition
the set of all big cohomology classes:

Definition 2.1 We say that α is big if it can be represented by a Kähler current, i.e.,
there exists a positive closed (1, 1)-current T ∈ α that dominates a Kähler form.

2.1.1 Analytic and Minimal Singularities

A positive current T = θ + ddcϕ is said to have analytic singularities if there exists
c > 0 such that (locally on X ),

ϕ = c

2
log

N∑

j=1

| f j |2 + u,

where u is smooth and f1, . . . , fN are local holomorphic functions.

Definition 2.2 If α is a big class, we define its ample locus Amp (α) as the set of
points x ∈ X such that there exists a strictly positive current T ∈ α with analytic
singularities and smooth around x .

The ample locus Amp (α) is a Zariski open subset by definition, and it is nonempty
thanks to Demailly’s regularization result (see [8]).

If T and T ′ are two closed positive currents on X , then T is said to bemore singular
than T ′ if their local potentials satisfy ϕ ≤ ϕ′ + O(1).

Definition 2.3 A positive current T is said to have minimal singularities (inside its
cohomology class α) if it is less singular than any other positive current in α. Its θ -psh
potentials ϕ will correspondingly be said to have minimal singularities.

Such θ -psh functions with minimal singularities always exist; one can consider, for
example,

Vθ := sup {ϕ θ -psh, ϕ ≤ 0 on X} .
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Stability of Monge–Ampère Energy Classes 2569

Remark 2.4 Let us stress that the sum of currents with minimal singularities does
not necessarily have minimal singularities. For example, consider π : X → P

2 the
blow-up at one point p and set E := π−1(p). Take α = π�{ωFS} + {E} and β =
2π�{ωFS} − {E}, where ωFS denotes the Fubini–Study form on P

2. As we will see in
Remark 3.4, currents with minimal singularities in α are of the form Smin = π�Tmin +
[E], where Tmin is a current with minimal singularities in {ωFS} (i.e., its potential is
bounded) and so they have singularities along E . On the other hand, currents with
minimal singularities in the Kähler class β have bounded potentials, hence the sum of
currentswithminimal singularities inα and inβ is a currentwith unbounded potentials.
Butα+β = 3π�{ωFS} is semipositive, hence currents withminimal singularities have
bounded potentials.

2.1.2 Images of Big Classes

It is classical that big cohomology classes are invariant under pull-back and push-
forward (see, e.g., [7, Proposition 4.13]).

Lemma 2.5 Let f : X ��� Y be a bimeromorphic map and αX ∈ H1,1(X, R),
αY ∈ H1,1(Y, R) be big cohomology classes. Then f�αX and f �αY are still big
classes.

Note that this is not true in the case of Kähler classes.

2.1.3 Volume of Big Classes

Fix α ∈ H1,1
big (X, R). We introduce

Definition 2.6 Let Tmin be a current with minimal singularities in α and let � be a
Zariski open set on which the potentials of Tmin are locally bounded. Then

vol(α) :=
∫

�

T n
min > 0 (2.1)

is called the volume of α.

Note that the Monge–Ampère measure of Tmin is well defined in � by [1] and that
the volume is independent of the choice of Tmin and � ([5, Theorem 1.16]).

Let f : X → Y be a modification between compact Kähler manifolds and let
αY ∈ H1,1(Y, R) be a big class. The volume is preserved by pull-backs,

vol( f �αY ) = vol(αY )

(see [7]). On the other hand, it is in general not preserved by push-forwards:

Example 2.7 Let π : X → P
2 be the blow-up along P

2 at point p. The class
αX := {π�ωFS} − ε{E} is Kähler whenever 0 < ε < 1 and π�αX = {ωFS}. Now,
vol(αX ) = 1 − ε2, while vol(π�αX ) = 1.
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2.2 Finite Energy Classes

Fix X an n-dimensional compact Kähler manifold, and let α ∈ H1,1(X, R) be a big
class and θ ∈ α a smooth representative.

2.2.1 The Non-Pluripolar Product

Let us stress that since the non-pluripolar product does not charge pluripolar sets,

vol(α) =
∫

X
〈T n

min〉.

Definition 2.8 A closed positive (1, 1)-current T on X with cohomology class α is
said to have full Monge–Ampère mass if

∫

X
〈T n〉 = vol(α).

We denote by E(X, α) the set of such currents. If ϕ is a θ -psh function such that
T = θ + ddcϕ, the non-pluripolar Monge–Ampère measure of ϕ is

MA (ϕ) := 〈(θ + ddcϕ)n〉 = 〈T n〉.

We will say that ϕ has full Monge–Ampère mass if θ + ddcϕ has full Monge–Ampère
mass. We denote by E(X, θ) the set of corresponding functions.

Currents with full Monge–Ampère mass have mild singularities.

Proposition 2.9 Aclosedpositive (1, 1)-current T ∈ E(X, α)has zeroLelongnumber
at every point x ∈ Amp (α).

Proof This is an adaptation of [13, Corollary 1.8]. Let us denote � = Amp (α). We
claim that for any compact K ⊂⊂ � there exists a positive closed (1, 1)-current
TK ∈ α with minimal singularities and such that it is a smooth Kähler form near K .
Fix θ a smooth form in α and Tmin = θ +ddcϕmin a current withminimal singularities.
By Demailly’s regularization theorem [10], in the big class α we can find a strictly
positive current with analytic singularities T0 = θ + ddcϕ0 that is smooth on �. Then
we define

ϕC := max(ϕ0, ϕmin − C),

where C >> 1. Clearly, TC = θ + ddcϕC is the current we were looking for. For
any point x ∈ �, let K = B(x, r). Let χ be a smooth cut-off function on X such
that χ ≡ 1 on B(x, r) ⊂ K and χ ≡ 0 on X \ B(x, 2r), where r > 0 is small.
Consider a local coordinate system in a neighborhood of x and define the θ -psh
function ψε = εχ log ‖ · ‖ + ϕC for ε small enough. Now, if T = θ + ddcϕ has
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Stability of Monge–Ampère Energy Classes 2571

positive Lelong number at point x , then ϕ ≤ ψε. On the other hand Tε = θ + ddcψε

does not have full Monge–Ampère mass since

∫

{ψε≤ϕC−k}∩B(x,r)
MA (ψ(k)

ε )

does not converge to 0 as k goes to +∞, where ψ
(k)
ε := max(ψε, ϕC − k) are the

“canonical” approximants of ψε ([5, p. 229]). Therefore, by [5, Proposition 2.14], it
follows that T /∈ E(X, α). ��

We say that a positive closed (1, 1)-current T ∈ α is pluripolar if it is supported by
some closed pluripolar set: if T = θ + ddcϕ, T is pluripolar implies that supp T ⊂
{ϕ = −∞}.
Lemma 2.10 For j = 1, . . . , p, let α j ∈ H1,1(X, R) be a big class and Tj ∈ α j . If
T1 is pluripolar, then

〈T1 ∧ · · · ∧ Tp〉 = 0.

Proof First note that, since the non-pluripolar product does not put mass on pluripolar
sets, we have

1X\A 〈T1 ∧ · · · ∧ Tn〉 = 〈T1 ∧ · · · ∧ Tn〉,

with A the closed pluripolar set supporting T1. Now, let ω be a Kähler form on X . In
view of [5, Proposition 1.14], upon adding a large multiple of ω to the Tj ’s we may
assume that their cohomology classes are Kähler classes. We can thus find Kähler
forms ω j such that Tj = ω j +ddcϕ j . LetU be a small open subset of X \ A on which
ω j = ddcψ j , where ψ j ≤ 0 is a smooth psh function on U , so that Tj = ddcu j on
U . By definition, on the plurifine open subset

Ok :=
⋂

j

{u j > −k}

we must have 1Ok 〈ddcu1 ∧ · · · ∧ ddcu p〉 = 1Ok

∧
j dd

c max (u j ,−k). Since u1 is
a smooth potential on U , u1 > −k for k big enough, and furthermore, since T1 is
supported by A, we have that ddcu1 = 0. So, clearly

1Ok

∧

j

ddc max (u j ,−k) = 0

and hence the conclusion. ��

2.2.2 Weighted Energy Classes

By a weight function, we mean a smooth increasing function χ : R
− → R

− such that
χ(0) = 0 and χ(−∞) = −∞. We let
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W− := {
χ : R

− → R
− | χ convex increasing, χ(0) = 0, χ(−∞) = −∞}

and

W+ := {
χ : R

− → R
− | χ concave increasing, χ(0) = 0, χ(−∞) = −∞}

denote the sets of convex/concave weights. We say that χ ∈ W+
M if ∃M > 0

0 ≤ |tχ ′(t)| ≤ M |χ(t)| for all t ∈ R
−.

Definition 2.11 Let χ ∈ W := W− ∪ W+. We define the χ -energy of a θ -psh
function ϕ as

Eχ,θ (ϕ) := 1

n + 1

n∑

j=0

∫

X
(−χ)(ϕ − Vθ )〈T j ∧ θ

n− j
min 〉 ∈ ] − ∞,+∞]

with T = θ + ddcϕ and θmin = θ + ddcVθ . We set

Eχ (X, θ) := {ϕ ∈ E(X, θ) | Eχ,θ (ϕ) < +∞}.

Wedenote by Eχ (X, α) the set of positive currents in the classα whose global potential
has finite χ -energy.

When χ ∈ W−, [5, Proposition 2.8] ensures that the χ -energy is non-increasing and
for an arbitrary θ -psh function ϕ,

Eχ,θ (ϕ) := sup
ψ≥ϕ

Eχ,θ (ψ) ∈] − ∞,+∞]

over all ψ ≥ ϕ with minimal singularities. On the other hand, if χ ∈ W+
M , we lose

monotonicity of the χ -energy function, but it has been shown in [13, p. 465] that

ϕ ∈ Eχ (X, α) iff sup
ψ≥ϕ

Eχ,θ (ψ) < +∞

over all ψ with minimal singularities. Recall that for all weights χ ∈ W−, χ̃ ∈ W+,
we have

Eχ̃ (X, α) ⊂ E1(X, α) ⊂ Eχ (X, α) ⊂ E(X, α).

For any p > 0, we use the notation

E p(X, θ) := Eχ (X, θ), when χ(t) = −(−t)p.
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3 Bimeromorphic Images of Energy Classes

From now on, X and Y denote arbitrary n-dimensional compact Kähler manifolds.
We recall that a bimeromorphic map f : X −→ Y can be decomposed as

�
π1

����
��

��
�

π2

��
��

��
��

�

X Y

where π1, π2 are two holomorphic and bimeromorphic maps and � denotes a desin-
gularization of the graph of f . For any positive closed (1, 1)-current T on X we
set

f�T := (π2)� π�
1 T .

For any positive closed (p, p)-current S it is not always possible to define the push-
forward under a bimeromorphic map. However, we define f�〈S〉 in the usual sense in
the Zariski open set V , where f : U → V is a biholomorphism and extending to zero
in Y \ V .

3.1 Bimeromorphic Invariance of the Non-Pluripolar Product

The goal of this section is to show that the non-pluripolar product is a bimeromorphic
invariant.

Theorem 3.1 Let f : X −→ Y be a bimeromorphic map. Let α1, . . . , αp ∈
H1,1(Y, R) be big classes and fix Tj a positive closed (1, 1)-current in α j . Then

f�〈T1 ∧ · · · ∧ Tp〉 = 〈 f�T1 ∧ · · · ∧ f�Tp〉. (3.1)

Proof By the definition of a bimeromorphic map, f induces an isomorphism between
Zariski open subsets U and V of X and Y , respectively. By construction, the non-
pluripolar product does not charge pluripolar sets, thus it is enough to check (3.1) on
V . Since f induces an isomorphism between U and V , we have

(
f�〈T1 ∧ · · · ∧ Tp〉

) |V = f�
(〈T1 ∧ · · · ∧ Tp〉|U

) = f�〈T1|U ∧ · · · ∧ Tp|U 〉

and

〈 f�T1 ∧ · · · ∧ f�Tp〉|V = 〈 f�(T1|U ) ∧ · · · ∧ f�(Tp|U )〉.

Now, let ω be a Kähler form on X . Upon adding a multiple of ω to each Tj we can
assume that their cohomology classes are Kähler. Thus we can find Kähler forms
ω j such that Tj = ω j + ddcϕ j . Fix p ∈ U and take a small open set B such that
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p ∈ B ⊂ U . In the open set B we can write ω j = ddcψ j so that Tj = ddcu j on B
with u j := ψ j + ϕ j . We infer that

f�
〈

p∧

j=1

ddcu j 〉 = 〈 f�(ddcu1) ∧ · · · ∧ f�(dd
cu p)

〉
.

Indeed, on the plurifine open subset Ok := ⋂
j {u j > −k} we have

f�
(

1Ok

〈∧

j

ddcu j
〉) = f�

(
1Ok

∧

j

ddc max(u j ,−k)
)

= 1⋂
j {u j◦ f −1>−k}

∧

j

f�(dd
c max(u j ,−k)),

where the last equality follows from the fact that for any positive (1, 1)-current S with
locally bounded potential ( f�S)n = f�(Sn). ��

3.2 Condition (V)

Finite energy classes are in general not preserved by bimeromorphic maps (see Exam-
ple 2.7). We introduce a natural condition to circumvent this problem.

Definition 3.2 Fix α a big class on X . Let Tα(X) denote the set of positive closed
(1, 1)-currents in α. We say that Condition (V) is satisfied if

f�
(
Tα(X)

) = T f�α(Y ),

where T f�α(Y ) is the set of positive currents in the image class f�α.

Theorem A of the Introduction is a consequence of Theorem 3.1 and Proposition
3.3.

Proposition 3.3 Fix α ∈ H1,1
big (X, R). If Condition (V) holds, then

(i) vol(α) = vol( f�α),
(ii) f�(E(X, α)) = E(Y, f�α),
(iii) f�(Eχ (X, α)) = Eχ (Y, f�α) for any weight χ ∈ W− ∪ W+

M.

Observe that in general vol(α) ≤ vol( f�α) (see Example 2.7).

Proof Fix Tmin a current with minimal singularities in α. Observe that Condition (V)
implies that f�Tmin is still a current with minimal singularities; thus,

vol(α) =
∫

X
〈T n

min〉 =
∫

Y
〈( f�Tmin)

n〉 = vol( f�α).
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Stability of Monge–Ampère Energy Classes 2575

Fix T ∈ Tα(X). Using Theorem 3.1, the change of variables formula, and the fact that
the pluripolar product does not put mass on analytic sets, we get

∫

X
〈T n〉 =

∫

Y
〈( f�T )n〉.

Hence by (i) it follows that

T ∈ E(X, α) ⇐⇒ f�T ∈ E(Y, f�α).

We now want to prove (i i i). Let T = θ + ddcϕ and Tk = θ + ddcϕk , where ϕk

= max(ϕ, Vθ − k) are the canonical approximant (note they have minimal singular-
ities and decrease to ϕ). We recall that f induces an isomorphism between Zariski
opens subsets U and V ; thus, by (i i) and the change of variables we get that for any
j = 0, . . . , n

∫

X
(−χ)(ϕk − Vθ )〈T j

k ∧ θmin
n− j 〉 =

∫

U
(−χ)(ϕ − Vθ )〈T j

k ∧ θ
n− j
min 〉

=
∫

V
(−χ)(ϕk ◦ f −1 − Vθ ◦ f −1)〈( f�Tk) j ∧ ( f�θmin)

n− j 〉,

hence the conclusion. ��
Condition (V) is easy to understand when f is a blow-up with smooth center:

Remark 3.4 Let π : X → Y be a blow-up with smooth center Z , let E = π−1(Z)

be the exceptional divisor, and fix a big class αX on X . There exists a unique γ ∈ R

such that at the level of cohomology classes αX = π�π�αX + γ {E}. Furthermore,
for any (1, 1)-current S ∈ αX there exists a (1, 1)-current T ∈ π�αX such that S =
π�T + γ [E] and S is positive iff T is positive and γ ≥ −ν(T,Z) (consequence of
Proposition 8.16 in [11] together with Corollary 1.1.8 in [6]). If Condition (V) holds,
then any current Smin with minimal singularities in αX admits the decomposition

Smin = π�Tmin + γ [E],

where Tmin is a current with minimal singularities in π�αX . When γ ≥ 0, Condition
(V) is always satisfied. On the other hand, when γ < 0 this is not necessarily the case
since it could happen that for some positive current T in π�αX , ν(T,Z) < −γ (see
Example 2.7, where γ = −ε and ν(ωFS,Z) = 0).

We observe indeed that Condition (V) is equivalent to requiring that every current
TY ∈ π�αX is such that ν(TY ,Z) ≥ −γ .

As the first statement of Proposition 3.3 shows, there is a link between Condition
(V) and the invariance of the volume under push-forward. For example, if Z � X \
Amp (π�αX ) then

vol(αX ) = vol(π�αX ) ⇐⇒ π�

(
TαX (X)

) = Tπ�αX (Y ).
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Indeed, (�⇒) is an easy consequence of the fact that under the assumption on the
volumes we can decompose any current with minimal singularities Smin ∈ αX as
Smin = π�T + γ [E] with T ∈ E(Y, π�αX ). Proposition 2.9 implies ν(T,Z) = 0,
hence γ ≥ 0. Let us stress that the assumption on Z could be removed if we knew
that ν(T, y) = ν(Tmin, y) for any T with full Monge–Ampère mass, for any Tmin with
minimal singularities in π�αX and for any y ∈ Y . It is, however, quite delicate to get
such information at points y which lie outside the ample locus.

Proposition 3.5 Let f : X − − > Y be a bimeromorphic map between compact
Kähler manifolds of complex dimension 2. Then the following are equivalent:

(i) vol(α) = vol( f�α)

(ii) f�
(
Tα(X)

) = T f�α(Y ).

Proof Let us recall that (i i) always implies (i). Furthermore, by Noether’s factoriza-
tion theorem it suffices to consider the case of a blow-up at one point p. We write
α = π�π�α + γ {E}. We recall that if γ ≥ 0 there is nothing to prove; we can thus
assume γ < 0. Let S be a current with minimal singularities representing α and
T a current with minimal singularities representing π�α. By [5, Proposition 1.12],
π∗T ∈ π�π�α is also with minimal singularities. Note that π�T is cohomologous
to S − γ [E]. Since α is big, the Siu decomposition of S gives in cohomology the
Zariski decomposition of α, and similarly the Siu decomposition of π�T gives the
Zariski decomposition of π�π�α (see, e.g., [8]). Furthermore, since π�T is minimal
every divisor appearing in the singular part of the Siu decomposition of π�T also
appears in the singular part of the Siu decomposition of S− γ [E] with larger or equal
coefficients. Then we write the Siu decomposition of S and of π�T as

S = θ +
N∑

i=1

λi [Di ] + λ0[E], π�T = τ +
N∑

i=1

ηi [Di ] + η0[E]

with Di �= E for all i , λi > 0, λ0, ηi , η0 ≥ 0, where in particular η0 = ν(π�T, E)

= ν(T, p). Moreover, {θ}, {τ } are big and nef classes and ρi = λi − ηi ≥ 0, ρ0
= λ0 − γ − η0 ≥ 0. It follows that

{θ + A} = {τ }, (3.2)

where A = ∑N
i=1 ρi [Di ] + ρ0[E] is an effective R divisor. Observe that if we show

ρ0 = 0 then λ0 = η0 + γ = ν(T, p) + γ ≥ 0 and so we are done. Intersecting
first with θ and then with τ the relation (3.2), using the assumption on the volumes,
i.e., {θ}2 = {τ }2, the fact that A is effective, and that τ and θ are nef, we find
{τ } · {A} = {θ} · {A} = 0. If we develop the square of the left-hand side of (3.2)
we conclude {A}2 = 0. Since {θ}2 > 0, the Hodge index theorem shows that {A} = 0
and since A is effective, it is the zero divisor. Hence ρ0 = 0. ��

We expect that ν(T, x) = ν(Tmin, x) for all x ∈ X whenever T ∈ E(X, α). We
show the following partial result in this direction:
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Proposition 3.6 Let X be a compact Kähler surface, α be a big class on X and
T ∈ E(X, α). Then the set {x | ν(T, x) > ν(Tmin, x)} is at most countable.
Proof We write the Siu decomposition of the current T as T = R +∑N

j=1 λi [Di ].
Note that the set E+(T ) := {x ∈ X | ν(T, x) > 0} contains at most finitely many
divisors (Proposition 2.9).We claim that {R} is big and nef. Indeed, by construction the
current R has no positive Lelong number along curves and so any current withminimal
singularities Rmin ∈ {R} has the same property. Thus the Zariski decomposition of
{R} is of the type {R} = {R} + 0. Furthermore,

vol({R}) ≤ vol(α) =
∫

X
〈T 2〉 =

∫

X
〈R2〉 ≤ vol({R}),

which implies vol(α) = {R}2 > 0. Then T = R + ∑N
j=1 ρi [Di ] + ∑N

j=1 ηi [Di ],
where ηi = ν(Tmin, Di ) with Tmin ∈ α. Clearly ρi ≥ 0, for any i . We want to show
that ρi = 0. Set S := R + ∑N

j=1 ρi [Di ] and write the Zariski decomposition of

α as α = α1 + ∑N
j=1 ηi {Di }. Then α1 = {S}. This means that {S} is big and nef

and vol(α) = α2
1 = {S}2. Now, {R + A} = {S}, where A = ∑N

j=1 ρi [Di ] is an
effective R divisor. Using the same arguments as in the proof of Proposition 3.5, we
get {A} · {R} = {A} · {S} = {A}2 = 0, and using the Hodge index theorem we
conclude. ��

4 Sums of Finite Energy Currents

Let X be a compact Kähler manifold of complex dimension n and let α and β be big
classes on X . Given two positive currents T ∈ α and S ∈ β with full Monge–Ampère
mass, it is natural to wonder whether T + S has full Monge–Ampère mass in α + β,
and conversely.

4.1 Stability of Energy Classes

We start proving Theorem B of the Introduction.

Theorem 4.1 Fix T ∈ Tα(X), S ∈ Tβ(X) and χ ∈ W− ∪ W+
M. Then

(i) T + S ∈ E(X, α + β) implies T ∈ E(X, α) and S ∈ E(X, β),
(ii) T + S ∈ Eχ (X, α + β) implies T ∈ Eχ (X, α) and S ∈ Eχ (X, β).

If α, β are Kähler classes, then conversely

(iii) T ∈ E(X, α) and S ∈ E(X, β) implies T + S ∈ E(X, α + β),
(iv) T ∈ Eχ (X, α) and S ∈ Eχ (X, β) implies T + S ∈ Eχ (X, α + β).

Proof Pick θα and θβ smooth representatives in α and β, so that θ̃ := θα + θβ is a
smooth form representing α+β. We decompose T = θα +ddcϕ and S = θβ +ddcψ .
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We assume ϕ + ψ ∈ E(X, θ̃ ), and first prove that ϕ has full mass, which is equivalent
to showing

mk :=
∫

{ϕ≤ϕmin−k}
〈(θα + ddc max(ϕ, ϕmin − k))n〉 −→ 0 as k → +∞,

where Tmin = θα +ddcϕmin has minimal singularities in α ([5, p. 229]). First, observe
that on X \ {ψ = −∞} we have

{ϕ ≤ ϕmin − k} ⊆ {ϕ + ψ ≤ ϕmin + ψ − k} ⊆ {ϕ + ψ ≤ φmin − k},

where Smin = θ̃+ddcφmin hasminimal singularities inα+β. Since the non-pluripolar
product does not charge pluripolar sets, we infer

0 ≤ mk ≤
∫

{ϕ+ψ≤φmin−k}
〈(θα + ddc max(ϕ, ϕmin − k))n〉

≤
∫

{ϕ+ψ≤φmin−k}\{ψ=−∞}
〈(θ̃ + ddc max(ϕ + ψ, ϕmin + ψ − k))n〉

≤
∫

{ϕ+ψ≤φmin−k}
〈(θ̃ + ddc max(ϕ + ψ, φmin − k))n〉,

where the last inequality follows from the fact that φmin is less singular than ϕmin +ψ

(see [5, Proposition 2.14]). But, by assumption, the last term goes to 0 as k tends to
+∞, hence the conclusion. Changing the role of ϕ and ψ one can prove similarly that
also ψ is with full Monge–Ampère mass.

We now prove the second statement. By assumption, ϕ + ψ ∈ Eχ (X, θ̃ ) with χ

a convex weight, and so from above we know that ϕ and ψ both have full Monge–
Ampère mass. It suffices to check that ϕ ∈ Eχ (X, θα). By [5],

Eχ,θ (ϕ) < +∞ iff sup
k

∫

X
(−χ)(ϕk − ϕmin)MA(ϕk) < +∞,

for any sequence ϕk of θα-psh functions with full Monge–Ampère mass decreasing to
ϕ. Since T1 ≤ T2 implies 〈T n

1 〉 ≤ 〈T n
2 〉, we obtain

∫

X
(−χ)(ϕk−ϕmin)〈(θα + ddcϕk)

n〉

≤
∫

X\{ψ=−∞}
(−χ)(ϕk − ϕmin)〈(θ̃ + ddc(ϕk + ψ))n〉

≤
∫

X\{ψ=−∞}
(−χ)(ϕk + ψ − φmin)MA (ϕk + ψ),
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where the last inequality follows from the monotonicity of χ and the fact that on
X \ {ψ = −∞}

ϕk − ϕmin = (ϕk + ψ) − (ϕmin + ψ) ≥ (ϕk + ψ) − φmin.

Therefore, Eχ,θ̃ (ϕ + ψ) < +∞ implies Eχ,θα (ϕ) < +∞, as desired.
Assume now that α, β are both Kähler classes and choose Kähler forms ωα ∈ α,

ωβ ∈ β as smooth representatives. We want to prove that if ϕ ∈ E(X, ωα) and
ψ ∈ E(X, ωβ) then ϕ + ψ ∈ E(X, ωα + ωβ). Let ω be another Kähler form on X .
We first show that ϕ ∈ E(X, ωα) (resp., ϕ ∈ Eχ (X, ωα)) if and only if ϕ ∈ E(X, ω)

(resp., ϕ ∈ Eχ (X, ω)) whenever ϕ ∈ PSH(X, ω). We recall that, since ωα and ω are
Kähler forms, there exists a constant C > 0 such that 1

C ω ≤ ωα ≤ Cω. Thus,

∫

{ϕ≤−k}
(ωα + ddcϕk)

n ≤
∫

{ϕ≤−k}
(Cω + ddcϕk)

n

≤ C̃
n∑

j=0

∫

{ϕ≤−k}
ω j ∧ (ω + ddcϕk)

n− j ,

where ϕk := max(ϕ,−k). And so ϕ ∈ E(X, ω) implies ϕ ∈ E(X, ωα). Analogously,
one can prove the reverse. Similarly, for any weight χ ∈ W− ∪ W+

M ,

∫

X
−χ(ϕk)(ωα + ddcϕk)

n ≤ C̃
n∑

j=0

∫

X
−χ(ϕk)(ω + ddcϕk)

j ∧ ωn− j .

Thus, if ϕ ∈ Eχ (X, ω) then ϕ ∈ Eχ (X, ωα). With the same argument we get the
reverse. Now, let ω be a Kähler form such that ωα, ωβ ≤ ω. From above we have that
ϕ,ψ ∈ E(X, ω) (resp., ϕ,ψ ∈ Eχ (X, ω)) and since the energy classes are convex
([13, Propositions 1.6, 2.10 and 3.8]), it follows ϕ + ψ ∈ E(X, 2ω) (resp., ϕ + ψ ∈
Eχ (X, 2ω)). From the previous observation we can deduce ϕ +ψ ∈ E(X, ωα +ωβ).��

Examples 4.5 and 4.7 below show the reverse implication is not true in general.
This is particularly striking if the following condition is not satisfied:

Definition 4.2 We say that pseudoeffective classes α1, . . . , αp satisfy ConditionMS
if the sum T1 + · · · + Tp of positive currents Ti ∈ αi with minimal singularities has
minimal singularities in α1 + · · · + αp.

Note that if α1, . . . , αp satisfy Condition MS the positive intersection class
〈α1 · · ·αp〉 turns out to be multi-linear, while it is not so in general ([5, p. 219]).

Proposition 4.3 Let T ∈ Tα(X) and χ ∈ W− ∪W−
M. Assume that α is a Kähler class

and β is a semipositive class. Fix θβ ∈ β a semipositive form. Then

(i) T + θβ ∈ E(X, α + β) if and only if T ∈ E(X, α),
(ii) T + θβ ∈ Eχ (X, α + β) if and only if T ∈ Eχ (X, α).
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We will exhibit an Example 4.5 such that α is semipositive, β is Kähler, θβ is a
Kähler form in β, T ∈ E1(X, α) but T + θβ /∈ E1(X, α + β).

Proof Wewill first prove the second statement. Fix ω, θβ smooth representatives of α

and β, respectively, and denote ω̃ := ω + θβ . Note that ω can be chosen to be Kähler.
Let T := ω + ddcϕ ∈ Eχ (X, α). By [5] we have

Eχ,ω(ϕ) ⇐⇒ sup
k

Eχ,ω(ϕk) < +∞,

where ϕk := max(ϕ,−k). We now show that Eχ,ω̃(ϕk) is uniformly bounded from
above. Fix A such that ω̃ ≤ (A + 1)ω. Then

∫

X
−χ(ϕk)

(
ω̃ + ddcϕk

) j ∧ ω̃n− j

≤ (A + 1)n− j
∫

X
−χ(ϕk)

(
Aω + ω + ddcϕk

) j ∧ ωn− j

≤ C
j∑

l=0

∫

X
−χ(ϕk)

(
ω + ddcϕk

) j−l ∧ ωn− j+l ≤ C ′ Eχ,ω(ϕk).

The first statement is an easy consequence of the second one, recalling that

E(X, α) =
⋃

χ∈W−
Eχ (X, α).

The reverse inclusion is Theorem 4.1. ��
Remark 4.4 Let us stress that the first statement of Proposition 4.3 could be proved
in great generality (α, β big classes such that Condition MS holds, θβ current with
minimal singularities) if givenα1, . . . , αn big classes and T1 ∈ E(X, α1); the following
would hold

∫

X
〈T1 ∧ θ2,min ∧ · · · ∧ θn,min〉 =

∫

X
〈θ1,min ∧ · · · ∧ θn,min〉,

where θi,min := θi + ddcVθi ∈ αi .

4.2 Counterexamples

The following example shows that given two currents T ∈ E1(X, α) and S ∈ E1(X, β),
we cannot expect that T + S ∈ E1(X, α+β), even if α is semipositive and β is Kähler.

Example 4.5 Let π : X → P
2 be the blow-up at one point p and set E := π−1(p).

Fix α = π�{ωFS} and β = 2π�{ωFS} − {E} so that α + β = 3π�{ωFS} − {E}. We
pick ω̃ ∈ α + β a Kähler form of the type ω̃ = π�ωFS + ω, where ω ∈ β is a Kähler
form. We will show that
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E1(X, α) � E1(X, α + β) ∩ Tα(X).

The goal is to find a ωFS-psh function ϕ on P
2 such that π�ϕ ∈ E1(X, π�ωFS) but

π�ϕ /∈ E1(X, ω̃). Let U be a local chart of P
2 such that p → (0, 0) ∈ U . We define

ϕδ := 1

C
χ · uδ − Kδ,

where uδ := −(− log ‖z‖)δ , χ is a smooth cut-off function such that χ ≡ 1 on B and
χ ≡ 0 on U \ B(2), Kδ is a positive constant such that ϕδ ≤ 1 and C > 0. Choosing
C big enough ϕδ induces a ωFS-psh function on P

2, say ϕ̃δ . Note that by [9, Corollary
2.6] ϕ̃δ ∈ E(P2, ωFS) if 0 ≤ δ < 1. We let the reader check that ϕ̃δ ∈ W 1,2(P2, ωFS)

for all 0 ≤ δ < 1. Therefore, ϕ̃δ ∈ E1(P2, ωFS) iff

∫

P2
−ϕ̃δ(dd

cϕ̃δ)
2 < +∞.

We claim this is the case iff 0 ≤ δ < 2
3 .

Note that ϕ̃δ is smooth outside p; therefore, we have to check that

∫

B( 12 )

−uδ(dd
cuδ)

2 < +∞. (4.1)

Set χ(t) = −(−t)δ so that uδ = χ(log ‖z‖). Then (ddcuδ)
2 = C1

1
8‖z‖4 χ

′′ ·
χ

′
(log ‖z‖)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 on B( 12 ) \ {(0, 0)}, hence the convergence of the

integral in (4.1) is equivalent to the convergence of

∫

B( 12 )\{(0,0)}
−χ(log ‖z‖) · χ

′′
(log ‖z‖) · χ

′
(log ‖z‖)

‖z‖4 dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

=
∫ 1

2

0

−χ(log ρ) · χ
′′
(log ρ) · χ

′
(log ρ)

ρ
dρ = δ(1 − δ)

∫ +∞

− log 1
2

1

(s)3−3δ ds,

which is finite iff 0 ≤ δ < 2
3 , as claimed. Therefore, by Proposition 3.3 we get

π�ϕ̃δ ∈ E1(X, π�ωFS). But π�ϕ̃δ /∈ E1(X, ω̃) if 1
2 ≤ δ < 2

3 since

∣
∣∇(π�ϕ̃δ)

∣
∣ /∈ L2(X, (ω̃)2) if δ ≥ 1

2
.

Indeed, let z = (z1, z2) ∈ B and fix a coordinate chart in X ; then π(s, t) = (z1, z2) =
(s, st). Therefore, on π−1(B),

ϕδ ◦ π(s, t) = 1

C
uδ(s, st) = − 1

C

(
− log |s| − log

√
1 + |t |2

)δ

.
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Hence,

∫

π−1(B)

∣
∣
∣
∣
∂(ϕδ ◦ π)

∂s

∣
∣
∣
∣

2

ds ∧ ds̄ ∧ dt ∧ dt̄ ≥
(

δ

2C

)2 ∫

π−1(B)

ds ∧ ds̄ ∧ dt ∧ dt̄

|s|2(− log |s|)2−2δ ,

which is not finite if δ ≥ 1
2 . The conclusion follows from [13, Theorem 3.2].

Remark 4.6 Observe that α, β satisfy Condition MS in the previous example and
also that π�ϕ̃δ ∈ E(X, ω̃). Indeed, let T := π�ωFS + ddc(ϕ̃δ ◦ π); we need to check
that T + ω ∈ E(X, α + β). Since T ∈ E(X, α) and

〈(T + ω)2〉 = 〈T 2〉 + 2〈T 〉 ∧ ω + (ω)2,

it suffices to show that

{〈T 〉 ∧ ω} = {π�ωFS} · {ω},
which is equivalent to

{(T − 〈T 〉) ∧ ω} = 0.

Hence,whatwe need to show is that T−〈T 〉 = 0. The (1, 1)-current T−〈T 〉 is positive
and is supported by the exceptional divisor E . Therefore, using [11, Corollary 2.14],
it results that

T = 〈T 〉 + γ [E],

where γ = ν(T, E) = ν(π�T, p) = 0 since δ < 1. And so the conclusion.

The previous remark could let us think that whenever T ∈ E(X, α) and S ∈ E(X, β)

then T + S ∈ E(X, α +β), but this is not true either, as the following example shows:

Example 4.7 Let π : X → P
2 be the blow-up at one point p and set E := π−1(p).

Consider α = π�{ωFS} + {E} and β = 2π�{ωFS} − {E}. Thus α + β = 3π�{ωFS}.
Since β is a Kähler class we can choose S = ω with ω a Kähler form. Observe that
currents with minimal singularities in α are of the type π�Smin + [E], where Smin is
a current with minimal singularities in {ωFS} (Remark 3.4). By Lemma 2.10,

vol(α) =
∫

X
〈(π�Smin + [E])2〉 =

∫

X
〈(π�Smin)

2〉 =
∫

X
π�〈S2min〉 = 1,

while vol(α + β) = (α + β)2 = 9.
Let now T ∈ E(X, α) and recall that any positive (1, 1)-current in α is of the form

T = π�S + [E] with S ∈ T{ωFS}(P2). In particular, we choose T := π�ωFS + [E].
We want to show that T + ω /∈ E(X, α + β). Now, from the multilinearity of the
non-pluripolar product, we get

∫

X
〈(T + ω)2〉 =

∫

X
〈(π�ωFS + [E] + ω)2〉 =

∫

X
〈(π�ωFS + ω)2〉 = 8.
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Hence
∫
X 〈(T + ω)2〉 = 8 < 9 = vol(α + β).

The same type of computations show that if we pick T ∈ E(X, α), then, for any
0 < ε ≤ 1, T + εω /∈ E(X, α + εω).

Remark 4.8 Note that in the latter example α, β do not satisfy Condition MS .

5 Comparison of Capacities

Let X be a compact Kähler manifold of complex dimension n and let α be a big class
on X . Set θ ∈ α a smooth form and θmin := θ + ddcVθ the positive (1, 1)-current in
α with “canonical” minimal singularities.

5.1 Intrinsic Capacities

We introduce the space of “θmin-plurisubharmonic” functions

PSH(X, θmin) := {ψ | ψ + Vθ is a θ−psh function} .

Note that a θmin-psh function ψ is not upper-semi-continuous, but ψ + Vθ is.

5.1.1 Monge–Ampère Capacity

Following [5] we introduce the Monge–Ampère capacity with respect to a big class.

Definition 5.1 We define the capacity of a Borel set K ⊆ X as

Capθmin
(K ) := sup

{∫

K
〈(θmin + ddcψ)n〉, ψ ∈ PSH(X, θmin) | − 1 ≤ ψ ≤ 0

}

.

Observe that the above one is the same definition as [5, Definition 4.3], just taking
ψ = ϕ−Vθ , whereϕ is a θ -psh function.Herewe introduce this equivalent formulation
since we need the positivity of the reference current θmin.

5.1.2 The Relative Extremal Function

We introduce the notion of the relative extremal function with respect to θmin. If E is
a Borel subset of X , we set

hE,θmin(x) := sup
{
ψ(x) | ψ ∈ PSH(X, θmin), ψ ≤ 0 and ψ|E ≤ −1

}
,

and

h∗
E,θmin

:= (hE,θmin + Vθ )
∗ − Vθ .
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It is a standard matter to show that, as in the Kähler case (see [12]), the θmin-psh
function h∗

E,θmin
satisfies

Capθmin
(K ) =

∫

K
MA (Vθ + h∗

K ,θmin
) =

∫

X
(−h∗

K ,θmin
)MA (Vθ + h∗

K ,θmin
),

where K ⊂ X is a compact set (for details, see [4, Lemma 1.5]).

5.1.3 Capacities of Sublevel Sets

We now generalize [13, Lemma 5.1].

Lemma 5.2 Fix χ ∈ W− ∪ W+
M, M ≥ 1. If ϕ ∈ Eχ (X, θ), then

∃Cϕ > 0,∀t > 1, Capθmin
(ϕ < Vθ − t) ≤ Cϕ |t χ(−t)|−1.

Conversely, if there exists Cϕ, ε > 0 such that for all t > 1,

Capθmin
(ϕ < Vθ − t) ≤ Cϕ |tn+ε χ(−t)|−1,

then ϕ ∈ Eχ (X, θ).

Proof Fix ϕ ∈ Eχ (X, θ) and u ∈ PSH(X, θ) such that −1 ≤ u − Vθ ≤ 0. For t ≥ 1,
observe that by [5, Proposition 2.14], ϕ

t + (
1 − 1

t

)
Vθ ∈ E(X, θ) and

(ϕ − Vθ < −2t) ⊆
(

ϕ − Vθ

t
< −1 + u − Vθ

)

⊆ (ϕ − Vθ < −t).

It therefore follows from the generalized comparison principle and from the multilin-
earity of the non-pluripolar product ([5, Propositions 2.2 and 1.4]) that

∫

(ϕ−Vθ<−2t)
MA(u)

≤
∫

(ϕ−Vθ<−t)
MA

(
ϕ

t
+
(

1 − 1

t

)

Vθ

)

≤
(

1 − 1

t

)n ∫

(ϕ−Vθ<−t)
〈θnmin〉 + t−1

n∑

k=1

(
n

k

)∫

(ϕ−Vθ<−t)
〈T k ∧ θn−k

min 〉,

where T := θ + ddcϕ. Furthermore, since

MA(Vθ ) = 1{Vθ=0}θn

(see [3, Corollary 2.5]), we get

∫

(ϕ−Vθ<−t)
〈θnmin〉 =

∫

(ϕ−Vθ<−t)∩D
θn = 1Dθn(ϕ < −t) ≤ Cωn(ϕ < −t),
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where D := {Vθ = 0}, ω is a Kähler form on X and C > 0. We recall that volω(ϕ <

−t) decreases exponentially fast (see [12]) and observe that for all 1 ≤ k ≤ n,

∫

(ϕ−Vθ<−t)
〈T k ∧ θn−k

min 〉≤ 1

|χ(−t)|
∫

X
(−χ) ◦ (ϕ − Vθ )〈T k ∧ θn−k

min 〉≤ 1

|χ(−t)| Eχ (ϕ).

This yields the first assertion.
The second statement follows from similar arguments as in theKähler case,working

with the θ -psh function u := 1
t ϕt + (

1 − 1
t

)
Vθ , where ϕt := max(ϕ, Vθ − t) for any

ϕ ∈ PSH(X, θ). Let us stress that this is the only place where the assumption on the
weight, χ ∈ W− ∪ W+

M , is used. ��

5.1.4 Alexander Capacity

For K a Borel subset of X , we set

VK ,θ := sup{ϕ | ϕ ∈ PSH(X, θ), ϕ ≤ 0 on K }.
Note that

Vθ = VX,θ ≤ VK ,θ

by definition. It follows from standard arguments (see [12, Theorem 4.2]) that the
usc regularization V ∗

K ,θ of VK ,θ is either a θ -psh function with minimal singularities
(when K is non-pluripolar) or identically +∞ (when K is pluripolar).

Definition 5.3 (Alexander–Taylor capacity) Let K be a Borel subset of X . We set

Tθ (K ) := exp(− sup
X

V ∗
K ,θ ).

As in the Kähler case, the capacities Tθ and Capθmin
compare as follows:

Proposition 5.4 There exists A > 0 such that for all Borel subsets K ⊂ X,

exp

[

− A

Capθmin
(K )

]

≤ Tθ (K ) ≤ e · exp
⎡

⎣−
(

vol(α)

Capθmin
(K )

) 1
n
⎤

⎦

Proof It suffices to treat the case of compact sets. The second inequality is [5, Lemma
4.2]. We prove the first inequality. We can assume that M := Mθ (K ) ≥ 1; otherwise,
it is sufficient to adjust the value of A. Let ϕ be a θ -psh function such that ϕ ≤ 0 on
K . Then ϕ ≤ M on X , hence w := M−1 (ϕ − M − Vθ ) ∈ PSH(X, θmin) satisfies
supX w ≤ 0 and w ≤ −1 on K . We infer w ≤ h∗

K ,θmin
and

wK := V ∗
K ,θ − M − Vθ

M
≤ h∗

K ,θmin
≤ 0.
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Then we get

Capθmin
(K ) =

∫

X

(−h∗
K ,θmin

)
MA (Vθ + h∗

K ,θmin
)

≤ 1

M

∫

X
−(V ∗

K ,θ − M − Vθ )MA (Vθ + h∗
K ,θmin

)

≤ C1

M

with C1 > 0. The last estimate follows from the lemma below, together with [12,
Proposition 1.7], since supX (V ∗

K ,θ − M − Vθ ) = 0 and by [3, Corollary 2.5], 〈(θ +
ddcVθ )

n〉 = 1{Vθ=0}θn ≤ Cωn . ��
The following lemma is a straightforward generalization of [12, Corollary 2.3] (see

also [4, Lemma 3.2]).

Lemma 5.5 Letψ, ϕ be θ -psh functions with minimal singularities with ϕ normalized
in such a way that 0 ≤ ϕ − Vθ ≤ 1. Then we have

∫

X
−(ψ − Vθ )〈(θ + ddcϕ)n〉 ≤

∫

X
−(ψ − Vθ )〈(θ + ddcVθ )

n〉 + n vol(α).

5.2 Comparing Capacities

We introduce a slightly different notion of big capacity that is comparable with respect
to the usual one. For any Borel set K ⊂ X we define

Capλ
θmin

(K ) := sup

{∫

K
〈(θmin + ddcψ)n〉, ψ ∈ PSH(X, θmin) | − λ ≤ ψ ≤ 0

}

,

where λ ≥ 1. We let the reader check that

Capθmin
(K ) ≤ Capλ

θmin
(K ) ≤ λn Capθmin

(K ). (5.1)

We now compare the Monge–Ampère capacities with respect to different big classes
(Theorem D of the Introduction).

Theorem 5.6 Let α1 and α2 be big classes on X such that α1 ≤ α2. We assume that
{α1, α2 − α1} satisfies Condition MS and that there exists a positive (1, 1)-current
T0 ∈ α2 −α1 with bounded potentials. Then there exist C > 0 such that for any Borel
set K ⊂ X,

1

C
Capθ1,min

(K ) ≤ Capθ2,min
(K ) ≤ C

(
Capθ1,min

(K )
) 1

n
.

Note that in case of Kähler forms the result is stronger and the proof much simpler (see
[5, Proposition 2.5]) but we cannot expect better in the general case of big classes. The
following Example 5.7 shows that the exponent at the right-hand side is necessary.
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Proof Fix θ1 ∈ α1, θ2 ∈ α2 smooth forms.Write T0 = (θ2−θ1)+ddc f0, where f0 is a
bounded potential. Letϕ be a θ1-psh function such that−1 ≤ ϕ−Vθ1 ≤ 0. Then ϕ+ f0
is a θ2-psh function. Condition MS ensures that the potential Vθ1 + f0 has minimal
singularities, thus there exists a positive constant C such that |Vθ2 − Vθ1 − f0| ≤ C .
Therefore, −λ ≤ ϕ + f0 − C − Vθ2 ≤ 0, where λ = 1 + 2C . Now, using (5.1) and
the fact that T1 ≤ T2 implies 〈T n

1 〉 ≤ 〈T n
2 〉, we get

∫

K
〈(θ1 + ddcϕ)n〉 ≤

∫

K
〈(θ2 + ddc(ϕ + f0)

n〉,

namely, Capθ1,min
(K ) ≤ Capλ

θ2,min
(K ) ≤ λn Capθ2,min

(K ), hence the left inequality.
In order to prove the other inequality, we have to go through the Alexander capacity.
Since V ∗

θ1,K
+ f0 ≤ V ∗

θ2,K
,

sup
X

(V ∗
θ2,K ) ≥ sup

X
(V ∗

θ1,K ) + inf
X

f0,

and so
Tθ2(K ) ≤ Tθ1(K ) · e− infX f0 .

Furthermore, using Proposition 5.4 we get

exp

[

− A

Capθ2,min
(K )

]

≤ Tθ2(K )

≤ Tθ1(K ) · e− infX f0+1

≤ e− infX f0+1 · exp
⎡

⎣−
(

vol(α1)

Capθ1,min
(K )

) 1
n
⎤

⎦

with A a positive constant. Thus, there exists a constant C > 0 such that

Capθ2,min
(K ) ≤ A

⎡

⎣

(
vol(α1)

Capθ1,min
(K )

) 1
n

+ inf
X

f0 − 1

⎤

⎦

−1

≤ C Capθ1,min
(K )

1
n .

Hence the conclusion. ��
Example 5.7 Let π : X → P

2 be the blow-up at one point p and set E := π−1(p).
Consider α1 = {π�ωFS} and α2 = {ω̃}, where ω̃ is a Kähler form on X . Let �r be
the polydisc of radius r < 1 on P

2. By [12, Proposition 2.10] and [14, Lemma 4.5.8]
we know that

Capπ�ωFS
(π−1(�r )) = CapωFS

(�r ) ∼ 1

(− log r)2
.
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Fix now a local chart U ⊂ X such that p ∈ U and consider Kr ⊂ U , Kr := {(s, t) ∈
U | 0 < ‖s‖ < r, 0 < ‖t‖ < 1}. Then

Capω̃(π−1(�r )) ≥ Capω̃(Kr ) ∼ C
1

− log r
,

with C a positive constant.

5.3 Energy Classes with Homogeneous Weights

As Example 4.5 shows, we cannot hope to get stability of weighted energy classes Eχ

by only adding Condition MS. We nevertheless establish a partial stability property
with a gap for energy classes with respect to homogeneous weights χ(t) = −(−t)p.
We recall that the functions χ(t) = −(−t)p belong to W− if 0 < p ≤ 1, while they
belong toW+

M when p ≥ 1.

Proposition 5.8 Let α, β be big classes. Assume that S ∈ β has bounded potential
and the couple (α, β) satisfies Condition MS. If p > n2 − 1 then

T ∈ E p(X, α) �⇒ T + S ∈ Eq(X, α + β),

where 0 < q < p − n2 + 1.

Proof Fix θα, θβ smooth representatives of α, β, respectively, and set θ̃ := θα + θβ .
Write S = θβ + ddcψ and denote θα,min := θα + ddcVθα and θ̃min := θ̃ + ddcVθ̃ .
We want to show that there exists a positive number q < p such that given a θα-psh
function ϕ ∈ E p(X, θα) then ϕ + ψ ∈ Eq(X, θ̃ ). By the first claim of Lemma 5.2, for
any t > 1 there exists a constant Cϕ > 0 such that

Capθα,min
(ϕ − Vθα < −t) ≤ Cϕ t

−(p+1). (5.2)

The goal is to find a similar estimate from above of the quantity Capθ̃min
(ϕ+ψ −Vθ̃ <

−t). Set K := {ϕ−Vθα < −t} and K̃ := {ϕ+ψ −Vθ̃ < −t}. We infer that Condition
MS implies K̃ ⊆ K . ThusCapθ̃min

(K̃ ) ≤ Capθ̃min
(K ). Now, byTheorem5.6we know

that there exists A > 0 such that

Capθ̃min
(K̃ ) ≤ A Capθα,min

(K )
1
n ≤ C̃ϕ t−

p+1
n ,

where the last inequality follows from (5.2). This means that there exist Cϕ, ε > 0
such that

Capθ̃min
(K̃ ) ≤ Cϕ t

−(n+ε+q)

with 0 < q < p − n2 + 1 − nε. Hence by Lemma 5.2 we get ϕ + ψ ∈ Eq(X, θ̃ ). ��
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