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Abstract In this paper we propose a numerically realizable method for reconstruction
of a complex curvewith knownboundary andwithout compact components in complex
projective space.
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1 Introduction

Let us denote by CP2 the complex projective space with homogeneous coordinates
(w0 : w1 : w2). Let a real closed rectifiable, oriented curve γ in CP2 be the boundary
of a complex curve X ⊂ CP2 with notation γ = bX . Without restriction of generality
we suppose that the following conditions of general position hold:

(0 : 1 : 0) /∈ X, w0|γ �= 0.

Put C2 = {w ∈ CP2 : w0 �= 0} with coordinates z1 = w1
w0

, z2 = w2
w0

. For almost all

ξ = (ξ0, ξ1) ∈ (C2)∗ the points of intersection of X with complex line C
1
ξ = {z ∈

C
2 : ξ0 + ξ1z1 + z2 = 0} form a finite set of points
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(
z( j)1 (ξ), z( j)2 (ξ)

) = (
h j (ξ0, ξ1),−ξ0 − ξ1h j (ξ0, ξ1)

)
, j = 1, . . . , N+(ξ).

By Darboux’s lemma [3,5] functions {h j } satisfy the equations

∂h j (ξ0, ξ1)

∂ξ1
= h j (ξ0, ξ1)

∂h j (ξ0, ξ1)

∂ξ0
, j = 1, . . . , N+(ξ), (1)

which are often called shock-wave equations or Riemann–Burgers equations. In this
interpretation ξ1 is the time variable and ξ0 is the space variable.

The following Cauchy-type formula from [5] plays the essential role in reconstruc-
tion of X through γ :

Gm(ξ0, ξ1)
def= 1

2π i

∫

γ

zm1 (ξ0 + ξ1z1 + z2)
−1d(ξ0 + ξ1z1 + z2)

=
N+(ξ)∑

j=1

hmj (ξ0, ξ1) + Pm(ξ0, ξ1), m = 0, 1, . . . , (2)

where N+(ξ) = N+(ξ0, ξ1) is the number of points of intersection (multiplicities
taken into account) of X with complex line C1

ξ , Pm(ξ0, ξ1) is a polynomial of degree
at mostm with respect to ξ0. In addition, P0(ξ0, ξ1) = −N−, where N− is the number
of points of intersection of X with infinity {w ∈ CP2 : w0 = 0},

P1(ξ0, ξ1) =
∑N−(ξ)

k=1

akξ0 − bk
akξ1 + 1

, (3)

ak = w2(qk), bk = dw2
dw0

(qk), where qk , k = 1, …, N−, are the points of intersection
of X with infinity {w ∈ CP2 : w0 = 0}. In particular, the following corollary of (2)
holds:

G0(ξ0, ξ1) = 1

2π i

∫

γ

d(ξ0 + ξ1z1 + z2)

ξ0 + ξ1z1 + z2
= N+(ξ) − N−. (4)

Let further ξ1 = 0 and let π2 : C2 → C be the projection on the second factor:
π2(z1, z2) = −z2. We have π2γ ⊂ C, C \ π2γ = ∪L

l=0�l , where {�l} are the
connected components of C \ π2γ . For every component �l the number of points
of intersection of X with line z2 = −ξ0, ξ0 ∈ �l , multiplicities taken into account,
will be denoted by μl = N+(ξ0, 0). Let �0 denote the unbounded component of set
C \ π2γ . From the definition of N± it follows that

μ0 = N+(ξ0, 0) = N−, ξ0 ∈ �0. (5)

Assume that complex curve X does not contain compact components, or equiva-
lently, satisfies the following condition of minimality:
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For arbitrary complex curveX̃ ⊂ CP2with condition

bX̃ = bX = γ and for almost all ξ ∈ (C2)∗ the number of points of (*)
intersection Ñ+(ξ) of X̃ with line C1

ξ , multiplicities taken into

account, is not less than the number N+(ξ) for curve X.

Condition of minimality (*) is a condition of general position and is fulfilled for
X if, for example, every irreducible component of X is a transcendental complex
curve. Note that from theorems of Chow [2] and Harvey, Shiffman [7] it follows that
an arbitrary complex curve X̃ ⊂ CP2 with condition bX̃ = bX admits the unique
representation X̃ = X ∪ V , where X is a curve with condition of minimality (*), and
V is a compact algebraic curve, possibly with multiple components.

The main result of [4] gives a solution of the important problem of J.King [9],
when a real curve γ ⊂ CP2 is the boundary of a complex curve X ⊂ CP2. Let
γ ⊂ C

2 ⊂ CP2. Then γ = bX for some open connected complex curve X in CP2 if
and only if on a neighborhood Wξ∗ of some point ξ∗ ∈ (C2)∗ one can find mutually
distinct holomorphic functions h1, …, h p satisfying shock-wave Eq. (1) and also the
equation

∂2

∂ξ20

(
G1(ξ0, ξ1) −

∑p

j=1
h j (ξ0, ξ1)

) = 0, ξ = (ξ0, ξ1) ∈ Wξ∗ .

In this work in development of [4,5] we obtained a numerically realizable algorithm
for reconstruction of complex curve X ⊂ CP2 with known boundary and with condi-
tion of minimality. This algorithm permits, in particular, making applicable the result
of [8] about the principal possibility to reconstruct topology and conformal structure
of a two-dimensional bordered surface X inR3 with constant scalar conductivity from
measurements on bX of electric current densities, being created by three potentials in
general position.

Our algorithm depends on parameter μ0 = N±(ξ0, 0), ξ0 ∈ �0. It was tested
on many examples and admits simple and complete justification for μ0 = 0, 1, 2.
Despite a cumbersome description for μ0 ≥ 3, the algorithm shows that there are no
obstacles for its justification and numerical realization for any μ0 ≥ 0. Moreover, in
Theorem 3.2 we propose a method for finding parameterμ0 in terms of γ . This makes
the algorithm much more applicable.

Thepreliminary version [1] of thiswork appeared inHAL(http://hal.archives-ouver
tes.fr/hal-00912925) 2013, 2014.

2 Cauchy-Type Formulas and Riemann–Burgers Equations

Let us give at first a new proof of the Cauchy-type formula (2) from [5], permitting us
to obtain explicit expressions for functions Pm(ξ0, ξ1).

Theorem 2.1 Let X ⊂ CP2 \ [0 : 1 : 0] be a complex curve without compact
components, γ = bX ⊂ C

2 be a real rectifiable oriented curve. Suppose that for
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almost all ξ ∈ (C2)∗ all the points of intersection of X with CP1ξ have multiplicity at
most one. Then the following equalities are fulfilled:

Gm(ξ0, ξ1) =
∑N+(ξ)

j=1
hmj (ξ0, ξ1) + Pm(ξ0, ξ1), ξ = (ξ0, ξ1) ∈ (C2)∗, m ≥ 1,

(6)
where Pm(ξ0, ξ1) is a polynomial of degree at most m with respect to ξ0 of the following
form:

Pm(ξ0, ξ1) =
∑μ0

s=1

∑m−1

k=0

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · dimw1

dw
im
0

(qs)

(m − k − 1)

dm−k

dwm−k
0

× ln(ξ0w0 + ξ1w1 + w2)|qs
−

∑μ0

s=1

∑

i1+···+im=m

di1w1

dw
i1
0

(qs) · · · d
imw1

dw
im
0

(qs),

where qs ∈ X ∩ {w ∈ CP2 : w0 = 0}. In particular, if μ0 = 0 then Pm ≡ 0.

Remark 2.1 In the exceptional case, when [0 : 1 : 0] ∈ X , the term Pm(ξ0, ξ1) in (6)
need not be a polynomial with respect to ξ0 in general.

Proof Put g̃ = ξ0w0+ξ1w1+w2 and g = g̃
w0

= ξ0+ξ1z1+ z2. Consider differential
forms

ωm
def==zm1

dg

g
= wm

1

wm
0

w0

g̃
d

(
g̃

w0

)
= wm

1

wm
0

dg̃

g̃
− wm

1

wm+1
0

dw0, m = 0, 1, . . .

Then Gm(ξ) = 1
2π i

∫
γ

ωm . Let us compute this integral explicitly. Denote by p j ,

j = 1, …, N+(ξ) the points of intersection of X with CP1ξ , and by qs , s = 1, …,

μ0 the points of intersection of X with infinity {w ∈ CP2 : w0 = 0}. Denote by Bε
j

the intersection of X with the ball of radius ε in CP2 centered at p j and by Dε
s the

intersection of X with the ball of radius ε centered at qs . The restriction of form ωm

on X is meromorphic with poles at points p j and qs . Thus the following equality is
valid:

Gm(ξ) = 1

2π i

∫

γ

ωm =
∑N+(ξ)

j=1

1

2π i

∫

bBε
j

ωm +
∑μ0

s=1

1

2π i

∫

bDε
s

ωm .

If μ0 = 0, then the second group of terms is absent. The integral
∫
bBε

j
ωm can be

calculated as a residue at the first order pole:

∫

bBε
j

ωm =
∫

bBε
j

zm1
dg̃

g̃
−

∫

bBε
j

wm
1

wm+1
0

dw0 =
∫

bBε
j

zm1
dg̃

g̃
= 2π i hmj (ξ).
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Letμ0 > 0. Computation of integral
∫
bDε

s
ω1 will be done in two steps. Let us calculate

first
∫
bDε

s

wm
1

wm+1
0

dw0. Consider the expansion of w1(w0) into power series in w0 in the

neighborhood of point qs :

w1(w0) = w1(qs) + dw1

dw0
(qs)w0 + d2w1

dw2
0

(qs)w
2
0 + · · · .

Note further that

wm
1 (w0) =

∑∞
k=0

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · d
imw1

dw
im
0

(qs)w
k
0 .

The coefficient near wm
0 can be presented in the form

∫

bDε
s

wm
1

wm+1
0

dw0 = 2π i
∑

i1+···+im=m

di1w1

dw
i1
0

(qs) · · · d
imw1

dw
im
0

(qs).

Now we can calculate the integral
∫
bDε

s

wm
1

wm
0

dg̃
g̃ . Using relation dg̃ = dg̃

dw0
dw0 and

expansion of w1(w0) into power series in w0 we obtain:

∫

bDε
s

wm
1

wm
0

dg̃

g̃
=

∫

bDε
s

1

wm
0

(
w1(qs)+ dw1

dw0
(qs)w0 + d2w1

dw2
0

(qs)w
2
0 + · · ·

)m dg̃

dw0

1

g̃
dw0

=
∑∞

k=0

∫

bDε
s

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · d
imw1

dw
im
0

(qs)w
k−m
0

dg̃

dw0

1

g̃
dw0

=
∑m−1

k=0

∫

bDε
s

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · d
imw1

dw
im
0

(qs)w
k−m
0

dg̃

dw0

1

g̃
dw0

=
∑m−1

k=0

2π i

(m − k − 1)

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · d
imw1

dw
im
0

(qs)

× lim
w0→0

dm−k−1

dwm−k−1
0

(
dg̃

dw0

1

g̃

)
.

From here, taking into account the relation dg̃
dw0

1
g̃ = d ln g̃

dw0
, we obtain, finally

∫

bDε
s

wm
1

wm
0

dg̃

g̃
= 2π i

∑m−1

k=0

∑

i1+···+im=k

di1w1

dw
i1
0

(qs) · · · dimw1

dw
im
0

(qs)

(m − k − 1)

dm−k

dwm−k
0

× ln(ξ0w0 + ξ1w1 + w2)|qs .

It is a polynomial of degree at most m with respect to ξ0. �
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We will also use the following result, giving the effective characterization of func-
tions {h j (ξ0, ξ1)} and {Pm(ξ0, ξ1)} satisfying Riemann–Burgers equations for {h j }
and system (6) for {h j } and {Pm}. Denote by �

(k)
l the infinitesimal neighborhood of

order k of the set �l in {(z1, z2) : z1 ∈ �l , z2 ∈ C}.
Theorem 2.2 Let X ⊂ CP2 \ [0 : 1 : 0] be a complex curve without compact
components, γ = bX ⊂ C

2. Fix l ∈ {0, . . . , L}. Suppose that functions ĥ j , j = 1,

…, μl , are mutually distinct and analytic in �
(1)
l and satisfy the Riemann–Burgers

equation in ξ ∈ �
(1)
l :

∂ ĥ j

∂ξ1
(ξ) = ĥ j (ξ)

∂ ĥ j

∂ξ0
(ξ), j = 1, . . . , μl . (7)

Then the functions ĥ j , j = 1, . . ., μl , satisfy the system

Gm(ξ) =
∑μl

j=1
ĥmj (ξ) + P̂m(ξ), ξ ∈ �

(1)
l , m = 1, 2, . . . , (8)

where P̂m, m = 1, 2, …, are some analytic functions in �
(1)
l , being polynomials of

degree at most m with respect to ξ0, if and only if the functions ĥ j , j = 1, …, μl ,
satisfy the equation

0 = ∂2

∂ξ20

(
G1(ξ) −

∑μl

j=0
ĥ j (ξ)

)
, ξ ∈ �

(1)
l . (9)

Moreover, for minimal {μl} with properties (7)–(9) there exists the unique set of func-
tions ĥ j , j = 1, …, μl , satisfying the equivalent conditions (8)–(9) and the unique set
of functions P̂m, m = 1, 2, …, from condition (8). Furthermore, ĥ j = h j , P̂m = Pm
for j = 1, …, μl , m = 1, …, where functions h j and Pm are defined in Theorem (2.1).

Proof Necessity. From (8) it follows that

G1(ξ) −
∑μl

j=1
ĥ j (ξ) = P̂1(ξ), ξ ∈ �

(1)
l .

Differentiating the latter equality two times with respect to ξ0 and taking into account
that P̂1 is a polynomial in ξ0 of degree at most 1 we obtain (9).

Sufficiency. Suppose that mutually distinct functions {̂h j (ξ)} on �
(1)
l , l = 0, 1, …,

L , are holomorphic and satisfy the Eqs. (7), (9). In particular, for any ξ0 ∈ �
(0)
l we

have
∂ ĥ j

∂ξ1
(ξ0, 0) = ĥ j (ξ0, 0)

∂ ĥ j

∂ξ0
(ξ0, 0).

ByCauchy–Kowalewski’s theorem in aneighborhoodof arbitrary ξ∗ ∈ �
(1)
l there exist

unique holomorphic functions {̃h j (ξ0, ξ1)}, satisfying the Riemann–Burgers equa-
tion (7) and such that h̃ j |�(1)

l
= ĥ j .
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2456 A. D. Agaltsov, G. M. Henkin

From here and from Proposition 3.3.3 of [5] we obtain existence and uniqueness
of holomorphic functions {P̂m(ξ)}, being polynomials of degree at most m in ξ0, such
that {̂h j (ξ)} and {P̂m(ξ)} satisfy the system (8) for m = 1, 2, …, j = 1, …, μl ,

ξ ∈ �
(1)
l .

Existence and uniqueness. Existence of functions {̂h j } and {P̂m} with necessary
properties follows from Theorem 2.1. More precisely, ĥ j = h j and P̂m = Pm , j = 1,
…, μl , m ≥ 1. Uniqueness of functions {̂h j } for minimal {μl} with properties (8)–(9)
follows from Theorem II of [5] and from Theorem 3 of [8]. Uniqueness of polynomi-
als {P̂m} forminimal {μl}with properties (8)–(9) follows from the proof of sufficiency.

�

3 Reconstruction Algorithm

Consider now the reconstruction algorithm of complex curve X ⊆ CP2 with given
boundary bX and with condition of minimality (*). Let us consider the cases μ0 = 0,
1, 2.

The reconstruction algorithm is based on formulas (6)with polynomials Pm ,m = 0,
1, …. The next theorem permits calculating these polynomials. If i , j , k, l are non-
negative integers we will use the notation

æi j
kl = 1

2π i

∫

γ

(
zi1z

j
2 dz1 + zk1z

l
2 dz2

)
. (10)

Theorem 3.1 Let X ⊂ CP2 be a complex curve without algebraic subdomains,
γ ⊂ C

2 be its boundary. Let mutually distinct holomorphic in ξ ∈ �
(1)
l , l = 0, 1, …,

L, functions {h j (ξ)} and holomorphic in ξ ∈ �
(1)
l , l = 0, …, L, functions Pm(ξ0, ξ1),

being polynomials of degree at most m in ξ0, satisfy the system (1), (6) for ξ ∈ �
(1)
l ,

j = 1, …, N+(ξ) with minimal N+(ξ) (existence and uniqueness of such functions
follow from Theorem 2.2). Then the following statements are valid:

1. If μ0 = 0, then Pm(ξ0, 0) ≡ 0 for all m. Besides, G1(ξ0, ξ1) = 0, if |ξ0| ≥
const(X)(1 + |ξ1|).

2. If μ0 = 1, then P1(ξ0, 0) = c11 + c12ξ0, where constants c11 and c12 satisfy the
identity in ξ0 ∈ �0:

c11
∂G1

∂ξ0
(ξ0, 0) + c12

(
ξ0

∂G1

∂ξ0
(ξ0, 0) + G1(ξ0, 0)

)

= G1(ξ0, 0)
∂G1

∂ξ0
(ξ0, 0) − ∂G1

∂ξ1
(ξ0, 0). (11)

3. If μ0 = 2, then P1(ξ0, 0) = c11 + c12ξ0, P2(ξ0, 0) = c21 + c22ξ0 + c23ξ20 , where
constants c11, c12, c21, c22, c23 satisfy the identity in ξ0 ∈ �0:

æ00
10(c

2
12 + c23) = ∂G2

∂ξ1
− 2

∂G1

∂ξ1
(G1 − c11 − c12ξ0) + G1(c22 + 2c23ξ0)
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Explicit Reconstruction of Riemann Surface 2457

+∂G1

∂ξ0
· (

(G1 − c11 − c12ξ0)
2 − G2 + c21 + c22ξ0 + c23ξ

2
0

)

+(
G2

1 − 2c11G1 − 2c12G1ξ0 − G2
) · (−c12), (12)

where all the functions are evaluated at point (ξ0, 0).

Proof By Theorem 2.2 functions Pm from the condition of this theorem are defined
in Theorem 2.1.

1. By Theorem 2.1 Pm ≡ 0, if μ0 = 0.
2. For ξ ∈ �

(1)
l we have equality P1(ξ0, ξ1) = C11(ξ1)+C12(ξ1)ξ0. We need to find

constants c11 = C11(0) and c12 = C12(0).
Differentiate equation (6) with respect to ξ0, ξ1 and restrict this equation and its
differentiated versions to ξ ∈ �

(0)
l :

h1(ξ0, 0) = G1(ξ0, 0) − c11 − c12ξ0,

∂h1
∂ξ1

(ξ0, 0) = ∂G1

∂ξ1
(ξ0, 0) − Ċ11(0) − Ċ12(0)ξ0,

∂h1
∂ξ0

(ξ0, 0) = ∂G1

∂ξ0
(ξ0, 0) − c12,

where ξ0 ∈ �0. By (1) for ξ0 ∈ �0 function h1(ξ0, 0) satisfies the equality
∂h1
∂ξ1

(ξ0, 0) = h1(ξ0, 0)
∂h1
∂ξ0

(ξ0, 0). If we substitute in this equality the expressions

for h1(ξ0, 0),
∂h1
∂ξ1

(ξ0, 0) and
∂h1
∂ξ0

(ξ0, 0), we will obtain the equation

∂G1

∂ξ1
(ξ0, 0) − Ċ11(0) − Ċ12(0)ξ0

=
(
G1(ξ0, 0) − c11 − c12ξ0

)(
∂G1

∂ξ0
(ξ0, 0) − c12

)
. (13)

This equation is valid for ξ0 ∈ �0. Let us divide it into ξ0 and tend ξ0 → ∞. We
obtain equality Ċ12(0) = −c212. Taking into account this equality, we can rewrite
the Eq. (13) in the form

∂G1

∂ξ1
(ξ0, 0) − Ċ11(0)

=
(
G1(ξ0, 0) − c11 − c12ξ0

)
∂G1

∂ξ0
(ξ0, 0) −

(
G1(ξ0, 0) − c11

)
c12. (14)

Taking into account that ξ0
∂G1
∂ξ0

(ξ0, 0) → 0 as ξ0 → ∞ and passing ξ0 → ∞
in (14),weobtain the equality Ċ11(0) = −c11c12.Due to the just-obtained equality,
Eq. (14) takes the desired form.
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2458 A. D. Agaltsov, G. M. Henkin

3. By (1) functions h1(ξ) and h2(ξ) satisfy the Riemann–Burgers equation for ξ ∈
�

(1)
l . So, the following equalities are valid:

∂(h1h2)

∂ξ1
= h1

∂h2
∂ξ1

+ ∂h1
∂ξ1

h2 = h1h2
∂(h1 + h2)

∂ξ0
, (15)

∂(h21 + h22)

∂ξ0
= 2h1

∂h1
∂ξ0

+ 2h2
∂h2
∂ξ0

= 2
∂(h1 + h2)

∂ξ1
. (16)

Note that h1h2 = 1
2

(
h1 + h2

)2 − 1
2

(
h21 + h22

)
. Therefore the system (15)–(16) is

equivalent to the system

∂(h1 + h2)2

∂ξ1
− ∂(h21 + h22)

∂ξ1
=

(
(
h1 + h2

)2 − (
h21 + h22

)
)

∂(h1 + h2)

∂ξ0
, (17)

∂(h21 + h22)

∂ξ0
= 2

∂(h1 + h2)

∂ξ1
. (18)

We substitute into this system h21 + h22 and h1 + h2 from Eq. (6), using the notation
P1(ξ0, ξ1) = C11(ξ1) + C12(ξ1)ξ0, P2(ξ0, ξ1) = C21(ξ1) + C22(ξ1)ξ0 + C23(ξ1)ξ

2
0 .

Equation (18) restricted to �
(0)
l takes the form

∂G2

∂ξ0
(ξ0, 0) − c22 − 2c23ξ0 = 2

(
∂G1

∂ξ1
(ξ0, 0) − Ċ11(0) − Ċ12(0)ξ0

)
. (19)

Divide this equation into ξ0 and tend ξ0 → ∞. We obtain the equality Ċ12(0) = c23.
Taking this equality into account and passing ξ0 → ∞ in (19) we obtain the equality
Ċ11(0) = 1

2c22.
Now substitute the expressions for h21 + h22 and h1 + h2 into (17) and restrict the

obtained formula to �
(0)
l . We obtain the equality

2
(
G1 − c11 − c12ξ0

)(∂G1

∂ξ1
− Ċ11(0) − Ċ12(0)ξ0

)

−∂G2

∂ξ1
+ Ċ21(0) + Ċ22(0)ξ0 + Ċ23(0)ξ

2
0

=
((

G1 − c11 − c12ξ0
)2 − G2 + c21 + c22ξ0 + c23ξ

2
0

)(
∂G1

∂ξ0
− c12

)
. (20)

Divide this equation into ξ20 and pass ξ0 → ∞. This leads to the equality

2c12Ċ12(0) + Ċ23(0) = −(
c212 + c23

)
c12.

Using the latter equality, divide (20) into ξ0 and pass ξ0 → ∞ to obtain the equality

2c11Ċ12(0) + 2c12Ċ11(0) + Ċ22(0) = −(
2c11c12 + c22

)
c12.
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Taking into account the obtained equalities one can rewrite (20) in the form

2
(
G1 − c11 − c12ξ0

)∂G1

∂ξ1
− 2G1

(
Ċ11(0) + Ċ12(0)ξ0

)

+2c11Ċ11(0) − ∂G2

∂ξ1
+ Ċ21(0)

=
((

G1 − c11 − c12ξ0
)2 − G2 + c21 + c22ξ0 + c23ξ

2
0

)
∂G1

∂ξ0

+
((

G1 − c11
)2 − 2G1c12ξ0 − G2 + c21

)
(−c12). (21)

Pass ξ0 → ∞ in this equality and note that the following relations are valid:

limξ0→∞ ξ0
∂G1

∂ξ1
= limξ0→∞ ξ0

1

2π i

∫

γ

z1 dz1
ξ0 + z2

= 1

2π i

∫

γ

z1 dz1 = 〈bγ,
1

4π i
z21〉=0,

limξ0→∞ ξ0G1 = limξ0→∞ ξ0
1

2π i

∫

γ

z1 dz2
ξ0 + z2

= 1

2π i

∫

γ

z1 dz2 = æ00
10,

limξ0→∞ ξ20
∂G1

∂ξ0
= − limξ0→∞ ξ20

1

2π i

∫

γ

z1 dz2
(ξ0 + z2)2

= − 1

2π i

∫

γ

z1 dz2 = −æ00
10.

We obtain

−2æ00
10Ċ12(0)+2c11Ċ11(0)+ Ċ21(0) = −(

c212+c23
)
æ00
10−(

c211−2c12æ
00
10+c21

)
c12.

Express constants Ċi j (0) through ci j in the obtained equations:

Ċ11(0) = 1

2
c22,

Ċ12(0) = c23,

Ċ23(0) = −c312 − 3c12c23,

Ċ22(0) = −2
(
c11c

2
12 + c12c22 + c11c23

)
,

Ċ21(0) = æ00
10(c

2
12 + c23) − c12(c

2
11 + c21) − c11c22.

(22)

Substituting these constants into (21), we obtain the third statement of Theorem 3.1.

Complement 3.1 Statement of Theorem 3.1 admits a development for the case μ0 ≥
3. In this case

Pk(ξ0, ξ1) = Ck1(ξ1) + Ck2(ξ1)ξ0 + · · · + Ck,k+1(ξ1)ξ
k
0 , k = 1, . . . , μ0.

Define Ċi j (0) = ∂Ci j
∂ξ1

(0) and ci j = Ci j (0) for i = 1, …, μ0 and j = 1, …, i + 1.
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2460 A. D. Agaltsov, G. M. Henkin

Let us indicate the following general procedure for finding constants ci j . Due to
the Riemann–Burgers equations (1) the following identities in ξ0 ∈ �0 hold for
k = 1, . . . , μ0 − 1:

−∂Gk

∂ξ1
(ξ0, 0) + Ċk1(0) + Ċk2(0)ξ0 + · · · + Ċk,k+1(0)ξ

k
0

= k

k + 1

(
−∂Gk+1

∂ξ0
(ξ0, 0) + ck+1,2 + 2ck+1,3ξ0 + · · · + (k + 1)ck+1,k+2ξ

k
0

)
.

Taking into account that ∂Gk
∂ξ1

(ξ0, 0) → 0 and ∂Gk+1
∂ξ0

(ξ0, 0) → 0 as ξ0 → +∞ we
obtain the equalities

Ċk,m(0) = km

k + 1
ck+1,m+1, k = 1, . . . , μ0 − 1, m = 1, . . . , k + 1.

Due to the Riemann–Burgers equations (1) the following identity in ξ0 ∈ �0 holds:

∂eμ0

∂ξ1
(ξ0, 0) = eμ0(ξ0, 0)

∂p1
∂ξ0

(ξ0, 0), (23)

where functions ek are given by the following formulas:

kek(ξ0, ξ1) =
∑k−1

i=1
(−1)i+1ek−i (ξ0, ξ1)pi (ξ0, ξ1) + (−1)k+1 pk(ξ0, ξ1),

pk(ξ0, ξ1) = Gk(ξ0, ξ1) − Ck1(ξ1) − Ck2(ξ1)ξ0 − · · · − Ck,k+1(ξ1)ξ
k
0 ,

(24)

where k = 1, …, μ0.
Equality (23) allows us to represent constants {Ċμ0, j (0)} as functions of constants

{ci j }. Finally, substituting the obtained expressions for constants {Ċi j (0)} via constants
{ci j } into Eq. (23) we obtain the identity in ξ0 ∈ �0 for computation of constants {ci j }.

For example, in the case μ0 = 3 the identity (23) in ξ0 ∈ �0 for finding constants
ci j takes the form

Ċ31(0) + Ċ32(0)ξ0 + Ċ33(0)ξ
2
0 + Ċ34(0)ξ

3
0

= ∂G3

∂ξ1
+ 3

4
(p21 − p2)

∂p2
∂ξ0

− p1
∂p3
∂ξ0

− 1

2

(
p31 − 3p1 p2 + 2p3

)∂p1
∂ξ0

,

where all functions are evaluated at point (ξ0, 0), the functions pk are defined in
formula (24) and the constants Ċ31(0), Ċ32(0), Ċ33(0), Ċ34(0) are given by formulas

Ċ31(0) = 1

2
æ00
10

(
3c11c

2
12 + 3c12c22 + 3c11c23 + 2c33

)

− 1

2
æ00
11

(
c312 + 3c12c23 + 2c34

) − 3

2
æ11
00

(
c212 + c23

)

− 1

2
c311c12 − 3

2
c11c12c21 − 3

4
c211c22 − 3

4
c21c22 − c12c31 − c11c32,
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Ċ32(0) = æ00
10

(
c312 + 3c12c23 + 2c34

) − 3

2
c211c

2
12 − 3

2
c212c21 − 3c11c12c22

− 3

4
c222 − 3

2
c211c23 − 3

2
c21c23 − 2c12c32 − 2c11c33,

Ċ33(0) = −3

2
c11c

3
12 − 9

4
c212c22 − 9

2
c11c12c23 − 9

4
c22c23 − 3c12c33 − 3c11c34

Ċ34(0) = −1

2
c412 − 3c212c23 − 3

2
c223 − 4c12c34,

where æ00
10, æ

11
00 and æ00

11 are defined in formula (10).

The next theorem permits us to find μ0 through γ .

Theorem 3.2 Let X ⊂ CP2 \ [0 : 1 : 0] be a complex curve without algebraic
subdomains, γ = bX ⊂ C

2 be the boundary of X. Let functions Gm(ξ0, ξ1), m ≥ 1,
be defined by formula (2) and number μ0 defined by formula (5). Then the following
statements are valid:

1. If G1(ξ0, ξ1) = 0 for |ξ0| ≥ const(X)(1 + |ξ1|), then μ0 = 0.
2. If there exist such complex constants c11, c12 that for any ξ ∈ �

(1)
0 the following

equality is valid:

c11
∂G1

∂ξ0
(ξ) + c12

(
ξ0

∂G1

∂ξ0
(ξ) + G1(ξ)

)
= G1(ξ)

∂G1

∂ξ0
(ξ) − ∂G1

∂ξ1
(ξ), (25)

then μ0 ≤ 1.
3. If there exist such complex constants c11, c12, c21, c22, c23 that the following identity

in ξ = (ξ0, ξ1) ∈ �
(1)
0 is valid:

æ00
10(c

2
12 + c23) = ∂G2

∂ξ1
− 2

∂G1

∂ξ1
(G1 − c11 − c12ξ0) + G1(c22 + 2c23ξ0)

+∂G1

∂ξ0
· (

(G1 − c11 − c12ξ0)
2 − G2 + c21 + c22ξ0 + c23ξ

2
0

)

+(
G2

1 − 2c11G1 − 2c12G1ξ0 − G2
) · (−c12), (26)

where all functions are evaluated at point ξ , then μ0 ≤ 2.

Complement 3.2 The statement of Theorem 3.2 for μ0 ≥ 3 in the spirit of cases
μ0 ≤ 2 will be developed in a separate paper together with statement of Theorem 3.1
for μ0 ≥ 3, indicated in Complement 3.1.

Proof 1. Equality G1(ξ0, ξ1) = 0 for |ξ0| ≥ const(X)(1 + |ξ1|) implies according
to [5] the moment condition

∫

γ

zk11 zk22 dz2 = 0 for all k1, k2 ∈ N.
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From here according to [10] and [6] it follows that for an appropriate choice of
orientation γ is the boundary of a complex curve in C

2. Hence either μ0 = 0 or
X is a domain on an algebraic curve in CP2. But X cannot be a domain on an
algebraic curve in CP2 because X does not contain algebraic subdomains.

2. Let the conditions of general position be fulfilled. Put

h(ξ0, ξ1) = G1(ξ0, ξ1) − C11(ξ1) − C12(ξ1)ξ0,

C11(ξ1) = c11 − c11c12ξ1,

C12(ξ1) = c12 − c212ξ1,

(27)

where ξ = (ξ0, ξ1) ∈ �
(1)
0 .

Taking into account (27), we can rewrite equality (25) in the form

∂h

∂ξ1
(ξ0, ξ1) = h(ξ0, ξ1)

∂h

∂ξ0
(ξ0, ξ1), ξ = (ξ0, ξ1) ∈ �

(1)
0 . (28)

From definition (27) we obtain the following equality:

∂2

∂ξ20

(
G1(ξ0, ξ1) − h(ξ0, ξ1)

) = 0, ξ = (ξ0, ξ1) ∈ �
(1)
0 . (29)

From equalities (28), (29) due to Theorems 2.1, 2.2 and Theorem 3 from [8] we
obtain

X ∩ {
z2 = −ξ0

} = {(
h(ξ0, 0),−ξ0

)}
, ξ0 ∈ �0. (30)

From here it follows that μ0 ≤ 1.
3. Let the conditions of general position be fulfilled. Let us define functions h1 and

h2 by the following relations:

h1(ξ0, ξ1) + h2(ξ0, ξ1) = G1(ξ0, ξ1) − C11(ξ1) − C12(ξ1)ξ0,

h21(ξ0, ξ1) + h22(ξ0, ξ1) = G2(ξ0, ξ1) − C21(ξ1) − C22(ξ1)ξ0 − C23(ξ1)ξ
2
0 ,

(31)

Ci j (ξ1) = ci j + Ċi j (0)ξ1, i = 1, j = 1, 2 and i = 2, j = 1, 2, 3, (32)

where ξ = (ξ0, ξ1) ∈ �
(1)
0 and constants Ċi j (0) are defined by formulas (22).

Taking into account definitions (32), identity (26) is equivalent to identity (20),
where ξ = (ξ0, ξ1) ∈ �

(1)
0 .

Taking into account definitions (31), identity (20) for ξ = (ξ0, ξ1) ∈ �
(1)
0 is equiv-

alent to identity (17) for ξ ∈ �
(1)
0 .

By Lemma 3.2.1 from paper [4] for ξ = (ξ0, ξ1) ∈ �
(1)
0 the following equality is

valid:
∂G2

∂ξ0
(ξ0, ξ1) = 2

∂G1

∂ξ1
(ξ0, ξ1). (33)

From definitions (31), (32) and from equality (33) we obtain equality (18) for
ξ ∈ �

(1)
0 .
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Equalities (17), (18) mean that functions h1 and h2 satisfy the Riemann–Burgers
equations:

∂h j

∂ξ1
(ξ0, ξ1) = h j (ξ0, ξ1)

∂h j

∂ξ0
(ξ0, ξ1), ξ = (ξ0, ξ1) ∈ �

(1)
0 . (34)

Further, because of definition (31) the following equality is valid:

∂2

∂ξ0

(
G1(ξ0, ξ1) − h1(ξ0, ξ1) − h2(ξ0, ξ1)

) = 0. (35)

From equalities (34), (35) and using Theorems 2.1, 2.2 and Theorem 3 of the
paper [8] we obtain:

X ∩ {
z2 = −ξ0

} = {(
h j (ξ0, 0),−ξ0

) | j = 1, 2
}
, ξ0 ∈ �0.

From here it follows that μ0 ≤ 2. �
Let us describe the algorithmof reconstruction of a complex curve X inCP2 without

compact components (satisfying minimality condition (*)). As above, γ = bX is a
compact real curve.

The algorithm for reconstruction of curve X permits us to find a curve coinciding
with the original curve in the givenfinite number of points andobtainedby interpolation
in other points. Let {ξ k0 }Nk=1, ξ

k
0 ∈ C be an arbitrary grid on C, ξ i0 �= ξ

j
0 , i �= j , and

ξ k0 /∈ π2γ , k = 1, …, N . Complex curve X intersects complex line {z2 = −ξ k0 } in
N+(ξ k0 , 0) points. The algorithm allows us to find these points.

The algorithm takes as input points {ξ k0 }Nk=1 and a curve γ (for example, represented
as a finite number of points belonging to γ ). On the output of the algorithm we obtain
a set of points (hs(ξ k0 , 0),−ξ k0 ), k = 1, …, N ; s = 1, …, N+(ξ k0 , 0), belonging to the
complex curve X .

3.1 The Case of μ0 = 0

1. Calculation of μl . By formula (4) for every domain �l , l = 1, …, L , the number
μl is equal to the winding number of curve π2γ with respect to point ξ0 ∈ �l :

μl ≡ N+(ξ0, 0) = 1

2π i

∫

γ

dz2
z2 + ξ0

≡ 1

2π i

∫

π2γ

dz

z − ξ0
, ξ0 ∈ �l .

2. Computation of power sums. If μ0 = 0 then for every point ξ k0 ∈ �l , l = 1, …,
L , by Theorem 3.1 we have equalities Pm(ξ k0 , 0) ≡ 0. By formula (6) we have the
following formulas for the power sums:

sm(ξ k0 ) ≡ hm1 (ξ k0 , 0) + · · · + hmμl
(ξ k0 , 0) = 1

2π i

∫

γ

zm1 dz2

z2 + ξ k0

, m = 1, μl .
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By Theorem 2.1 the points (hs(ξ k0 , 0),−ξ k0 ), s = 1, …, N+(ξ k0 , 0); k = 1, …, N ,
are the desired points of X .

3. Computation of symmetric functions. For every point ξ k0 ∈ �l , l = 1, …, L , the
Newton identities

kσk(ξ
k
0 ) =

∑k

i=1
(−1)i−1σk−i (ξ

k
0 )si (ξ

k
0 ), k = 1, . . . , N+(ξ k0 , 0).

allow us to reconstruct the elementary symmetric functions:

σ1(ξ
k
0 ) = h1(ξ

k
0 , 0) + · · · + hμl (ξ

k
0 , 0),

· · · = · · ·
σμl (ξ

k
0 ) = h1(ξ

k
0 , 0) × · · · × hμl (ξ

k
0 , 0).

4. Desymmetrization. For every point ξ k0 ∈ �l using Vieta formulas one can find
complex numbers h1(ξ k0 , 0), …, hμl (ξ

k
0 , 0). The points

(
hs(ξ k0 , 0),−ξ k0 ), s = 1,

…, N+(ξ k0 , 0); k = 1, …, N , are the required points of complex curve X .

3.2 The Cases of μ0 = 1, 2

These cases are reduced to the case μ0 = 0 in the following way. Since π2γ ⊂ C is a
compact real curve, there exists such R > 0, such that the set Bc

R(0) = {z ∈ C | |z| �
R} belongs to �0. Without restriction of generality, one can suppose that |ξ k0 | < R for
all k = 1, …, N . Otherwise one can increase R.

Let us define the auxiliary complex curve XR = {(z1, z2) ∈ X | |z2| � R}. Its
boundary γR consists of two disjoint parts (possibly, multiconnected): the first part is γ

and the second is a real curve obtained by lifting the circle SR = {z ∈ C | |z| = R} on
surface X by inversion of projectionπ2 : X → C. Complex curve XR does not intersect
infinity and, as a consequence μ0(XR) = 0. Moreover, every point

(
z1(ξ k0 ),−ξ k0

)
,

k = 1, …, N , belongs to X if and only if it belongs to XR . Therefore, in order to
reconstruct the complex curve XR it is sufficient to reconstruct the real curve obtained
by lifting SR on X and to solve the reconstruction problem for surface XR , being in
the conditions of the case of μ0 = 0. Finally, we come to the following algorithm:

1. New boundary. Choose a sufficiently large constant R, so that the exterior of the
disk of radius R centered at origin belongs to �0 and all ξ k0 belong to this disk.
Denote the boundary of this disk by SR . In the case of μ0 = 1 by virtue of
formulas (6) the points ξ0 ∈ SR satisfy the equality

h1(ξ0, 0) = 1

2π i

∫

γ

z1 dz2
z2 + ξ0

− P1(ξ0, 0).
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In the case of μ0 = 2 we have two equalities:

h1(ξ0, 0) + h2(ξ0, 0) = 1

2π i

∫

γ

z1 dz2
z2 + ξ0

− P1(ξ0, 0),

h21(ξ0, 0) + h22(ξ0, 0) = 1

2π i

∫

γ

z21 dz2
z2 + ξ0

− P2(ξ0, 0),

where the polynomials can be found using Theorem 3.1. In the case of μ0 =
1 by lifting the curve SR on X we obtain at once the real curve of the form
{(h1(ξ0, 0),−ξ0) | ξ0 ∈ SR}. In the case of μ0 = 2 we have to apply Newton
identities and Vieta formulas in order to obtain h1 and h2 from functions h1 + h2
and h21 + h22.

2. Reduction. In order to find the complex curve XR with boundary bXR = γR we
apply the algorithm of reconstruction for the case ofμ0 = 0. The discussion before
the description of the algorithm shows that we will obtain the desired points.

4 Visualization

Let us describe in a fewwords the algorithm of visualization of complex curves that we
have used in our examples. Denote by π1 : C2 → C the projection into the first factor:
π1(z1, z2) = z1. Suppose that X is a complex curve in C

2 such that the covering
π1 : X \ {ramification points} → C has multiplicity L . Consider, for simplicity, a
rectangular grid 
 in C:


 = {
zi j1 : Re zi j1 = i

N
, Im zi j1 = j

N
, i, j = 0, . . . , N

}
,

where N is a natural number. Suppose now that we are given the set X
 = π−1
1 (
)∩X

and we need to visualize the part of X lying above the rectangle 0 ≤ Re z1 ≤ 1,
0 ≤ Im z1 ≤ 1.

Let us introduce some terminology.Wedefine apath in
 as amapγ : {1, . . . , M}→

 such that |γ (k + 1) − γ (k)| = 1

N for all admissible k, where M is some natural
number.

Let γ : {1, . . . , M} → 
 be a path in 
 and let i : {1, . . . , M} → [1, M] be the
inclusion map. Define the function i∗γ : [1, M] → C such that i∗γ (k) = γ (k) for
integer k and i∗γ |[k,k+1] is linear for all admissible k. It is clear that i∗γ is a continuous
function and hence it can be lifted to X by the map π1.

We define a path in X
 as a map � : {1, . . . , M} → X
 such that γ = π1 ◦ � is
a path in 
 and � = i∗L(i∗γ ), where i∗ is the pullback map with respect to i and
L(i∗γ ) is some lift of i∗γ to X by π1, i.e., L(i∗γ ) is a continuous map from [1, M] to
X such that π1 ◦ L(i∗γ ) = i∗γ . We also say that � is obtained by lifting γ .

We will call subsets of 
 and X
 path-connected if every two points of these sets
can be connected by a path in 
 and X
, respectively.
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Let us describe the practical way to lift paths in 
 to paths in X
. Suppose that
N is sufficiently large. Let γ : {1, . . . , M} → 
 be a path in 
 and let �(1) ∈
π−1
1 (γ (1)) ∩ X be an arbitrary point. We select �(k) ∈ π−1

1 (γ (k)) ∩ X in such a way
that

|�(k) − �(k − 1)| = min
{|z − �(k − 1)| : z ∈ π−1

1 (γ (k)) ∩ X
}
, k = 2, . . . , M.

Then � is a path in X
 obtained by lifting γ . All possible lifts of γ may be obtained
by varying �(1). Note that if γ is closed, i.e., γ (1) = γ (M), � need not to be closed.

Finding Ramification Points and Making Branch Cuts. The first step in the visualiza-
tion procedure consists in finding ramification points of X with respect to projection
π1. Since we have only a finite number of points on X we can find ramification points
only approximately. More precisely, we will localize them in small circles.

Without restriction of generality we suppose that all ramification points are pro-
jected by π1 into interior points of
. Take any interior point z1 ∈ 
 and select a small
closed path γ : {1, . . . , M} → 
 around z1 so that there is at most one ramification
point inside the polygon γ (1) . . . γ (M). For example, one can take as γ the following
path:

z1 + 1

N
→ z1 + 1 + i

N
→ z1 + i

N
→ · · · → z1 + 1 − i

N
→ z1 + 1

N
,

where i is the imaginary unit.
Now consider different lifts of γ to X
. If at least one lift is not closed, mark

z1 as a possible ramification point (meaning that it is situated near the projection of
some ramification point of X ). Now vary z1 and mark all possible ramification points.
The resulting set will consist of several path-connected components each of which
localizes the position of one ramification point of X with respect to π1.

Now connect each of the obtained connected components of possible ramification
points by path with boundary of the grid 
 in such a way that different paths do not
intersect. Denote the union of the set of possible ramification points with images of
these paths by
c. An important observation is that every closed path in
\
c always
lifts to a closed path in X
 since it does not contain π1-projections of ramification
points inside.

Visualization. Now denote
\
c = ∪S
s=1
s , where
s are different path-connected

components. Take any zs1 ∈ 
s and zs2 ∈ π−1
1 (zs1) ∩ X . Now take other z1 ∈ 
s and

connect zs1 with z1 by some path γ . Then γ lifts to a path � with �(1) = (zs1, z
s
2) and

�(2) = (z1, z2) for some z2 ∈ π−1
1 (z1) ∩ X and z2 does not depend on γ . Varying z1

we thus obtain the map �(zs1, z
s
2) : 
s → X
 which allows us to visualize the part of

X .
Varying zs2 ∈ π−1

1 (zs1) ∩ X (the latter is the finite set, namely, it consists of L
elements) we obtain the other maps �(zs1, z

s
2) which allow us to visualize other parts

of X . Clearly, the set of obtainedmaps does not depend on the choice of zs1 ∈ 
s . Hence
we can denote the obtained maps by �l

s , l = 1, …, L . It is clear that ∪L
l=1�

l
s(
s) =

π−1(
s) ∩ X . Now vary s to visualize
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Fig. 1 Riemann surface of function f (z) =
√
exp

( z
4
) +

√
z2 + 1, |z| � 2, obtained by the visualization

algorithm. Red and green curves represent two connected components of the surface boundary, colored
small balls represent ramification points (Color figure online)

Fig. 2 Riemann surfaces of functions f (z) = √
sin(z), |z| � 2 (left) and f (z) =

√
z4 + 1, |z| � 2 (right)

obtained by the visualization algorithm

∪S
s=1 ∪L

l=1 �l
s(
s) = π−1(∪S

s=1
s) ∩ X = X
 \ π−1(
c).

The part π−1(
c)∩X
 consists of cuts and preimages of possible ramification points.
The cuts can be visualized as the already-visualized part of the surface. The only
problem is the visualization of π1-preimages of possible ramification points. But the
latter take a little part of the surface when N is large and one can just forget about
their visualization. On the other hand, in our examples they were visualized using a
low-level graphics approach.

Examples of application of this algorithm are given in Figs. 1 and 2. The visualiza-
tion algorithm can be easily generalized to the case of general grids. For instance, in
our examples we have used a modification with periodic grid.
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Fig. 3 Boundary γ1 = bX1 of the surface X1

5 Examples

5.1 The Case of μ0 = 1

Consider an example of reconstruction of a Riemann surface with given boundary.
The simplest case is the case of μ0 = 0 but it follows from the discussion of the
reconstruction algorithm that this case is directly included in any other case. Therefore,
we begin with the next simplest case, namely, the case of μ0 = 1.

Let us reconstruct the surface

X1 =
{
(z1, z2) ∈ C

2 | (z1 − 1)z2 = exp(z21), |z1| � 2
}

.

We suppose that the boundary γ1 = bX1 is given in the form of a discrete number of
points (see further Fig. 3).

Note that if point (z1, z2) ∈ X1 is such that z1 approaches 1, then z2 approaches
infinity. Choose R large enough, e.g., R = 60, and reconstruct the real curve � =
{(z1, z2) ∈ X1 | |z2| = R}. At first, compute for two different points ξ10 , ξ20 , |ξ10 | =
|ξ20 | = R, the values of functions

G1(ξ0, 0) = 1

2π i

∫

γ1

z1dz2
z2 + ξ0

,

∂G1

∂ξ0
(ξ0, 0) = − 1

2π i

∫

γ1

z21dz2
(z2 + ξ0)2

,

∂G1

∂ξ1
(ξ0, 0) = 1

2π i

∫

γ1

(
z1dz1
z2 + ξ0

− z21dz2
(z2 + ξ0)2

)

and find from the linear system for c11 and c12
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Fig. 4 The contour of surface X1 (black), boundary γ1 of X1 (blue), reconstructed curve �, belonging to
X1 (red) (Color figure online)

c11
∂G1

∂ξ0
(ξ10 , 0) + c12

(
ξ10

∂G1

∂ξ0
(ξ10 , 0) + G1(ξ

1
0 , 0)

)

= G1(ξ
1
0 , 0)

∂G1

∂ξ0
(ξ10 , 0) − ∂G1

∂ξ1
(ξ10 , 0),

c11
∂G1

∂ξ0
(ξ20 , 0) + c12

(
ξ0

∂G1

∂ξ0
(ξ20 , 0) + G1(ξ

2
0 , 0)

)

= G1(ξ
2
0 , 0)

∂G1

∂ξ0
(ξ20 , 0) − ∂G1

∂ξ1
(ξ20 , 0)

values c11 = 1, c12 = 0. Now calculate the values of functions G1(ξ0, 0) on the circle
|ξ0| = R and find function h1(ξ0, 0) = G1(ξ0, 0)−c11 −c12ξ0, |ξ0| = R. This allows
us to reconstruct the real curve � = {(h1(ξ0, 0),−ξ0) | |ξ0| = R} ⊆ X1 (see Fig. 4).

We apply further the reconstruction algorithm for the case of μ0 = 0 to the surface
X R
1 = {z ∈ X1 | |z2| � 60} with boundary bX R

1 = γ1 + �. We can compute the
values of function

σ0(ξ0) = 1

2π i

∫

γ1+�

dz2
z2 + ξ0

.

The value of function σ0(ξ0) at point ξ0 is equal to the number N+(ξ0, 0) of points of
surface X R

1 projected onto the point ξ0 under projection (z1, z2) �→ −z2. Further, for
every point with N+(ξ0, 0) > 0 we compute functions

sk(ξ0) = 1

2π i

∫

γ1+�

zk1dz2
z2 + ξ0

, k = 1, . . . , N+(ξ0, 0).

From functions sk(ξ0) we can find functions σk(ξ0) using Newton identities:

kσk(ξ0) =
∑k

i=1
(−1)i−1σk−i (ξ0)si (ξ0), k = 1, . . . , N+(ξ0, 0).

After, we find roots h1(ξ0, 0), …, hσ0(ξ0)(ξ0, 0) of polynomial
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Fig. 5 The contour of surface X1 (black), boundary γ1 of X1 (blue), reconstructed curve �, belonging to
X1 (red), colored domains represent the reconstructed leaves of surface X1 (Color figure online)

t N+(ξ0) − σ1(ξ0)t
N+(ξ0)−1 + · · · + (−1)N+(ξ0)σN+(ξ0,0)(ξ0) = 0.

The points {(hk(ξ0, 0),−ξ0) | k = 1, . . . , N+(ξ0, 0)} represent the set of all points
of X R

1 projected onto ξ0 by projection (z1, z2) → −z2. Visualization of the obtained
set of points {(hk(ξ0, 0),−ξ0)} corresponding to varying ξ0 can be realized by the
visualization algorithm described in the previous section. The reconstructed surface
is represented in Fig. 5.

5.2 The Case of μ0 = 2

Consider an example of the reconstruction of the Riemann surface for the case of
μ0 = 2. We are going to reconstruct the surface

X2 =
{
(z1, z2) ∈ C

2 | z2(z21 − 1) = z1 exp(z
2
1), |z1| � 2

}

given its boundary γ2 represented as an array of a finite number of equidistributed
points on γ2 (see Fig. 6).

Choose R large enough, e.g., R = 60, and consider the circle CR of radius R in
the z2-plane centered at the origin. Compute for ξ0 ∈ CR the values of functions

G1(ξ0, 0) = 1

2π i

∫

γ2

z1dz2
z2 + ξ0

,

G2(ξ0, 0) = 1

2π i

∫

γ2

z21dz2
z2 + ξ0

,
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Fig. 6 Boundary γ2 of the surface X2
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Fig. 7 Graph of function ‖ ferror‖L2(CR )(c11, c21) in a neighborhood of the point of global minimum

∂G1

∂ξ0
(ξ0, 0) = − 1

2π i

∫

γ2

z1dz2
(z2 + ξ0)2

,

∂G1

∂ξ1
(ξ0, 0) = 1

2π i

∫

γ2

(
z1dz1
z2 + ξ0

− z21dz2
(z2 + ξ0)2

)

,

∂G2

∂ξ1
(ξ0, 0) = 1

2π i

∫

γ2

(
z21dz1
z2 + ξ0

− z31dz2
(z2 + ξ0)2

)

and the value of constant æ00
10 = 1

2π i

∫
γ2
z1dz2, for example, using the method of

rectangles.
In order to find constants c11, c12, c21, c22, c23 we solve numerically the problem

of minimization of the L2(CR)-norm of function

ferror(ξ0) = ∂G2

∂ξ1
− 2

∂G1

∂ξ1
(G1 − c11 − c12ξ0) + G1(c22 + 2c23ξ0)

+∂G1

∂ξ0
· (

(G1 − c11 − c12ξ0)
2 − G2 + c21 + c22ξ0 + c23ξ

2
0

)
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Fig. 8 The contour of surface X2 (black), boundary γ2 of X2 (blue), reconstructed curves �1,2, belonging
to X2 (red) (Color figure online)

Fig. 9 The contour of surface X2 (black), boundary γ2 of X2 (blue), reconstructed curves �1,2, belonging
to X2 (red), reconstructed leaves of the surface are represented by dark-blue, orange, red and blue domains
(Color figure online)

+(
G2

1 − 2c11G1 − 2c12G1ξ0 − G2
) · (−c12) − æ00

10(c
2
12 + c23),

in variables c11, c12, c21, c22, c23. As a result of solving of this minimization problem
we find c11 = 0, c12 = 0, c21 = 2, c22 = 0, c23 = 0 (see Fig. 7).

Then we compute the power sums s1 = G1 −c11 −c12ξ0, s2 = G2 −c21 −c22ξ0 −
c23ξ20 and symmetric functionsσ1,σ2 on the circleCR . Further, we desymmetrize func-
tions σ1, σ2 to obtain functions h1(ξ0, 0) and h2(ξ0, 0) on the circleCR , which perform
lifting of the circle CR to the surface X2. Denote by �1,2 = {(h1,2(z2, 0),−z2) | z2 ∈
CR} the curves, obtained by the corresponding lifting of CR to X2 (see Fig. 8).
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Nowwe consider the curve γ2+�1+�2 as a new initial curve andwe reconstruct the
surface X R

2 = {z ∈ X2 | |z2| � R}, bX R
2 = γ2 +�1 +�2. Further, our considerations

are similar to those for the case ofμ0 = 1. At first, we compute functions sk . Then, we
find symmetric functions σk . Further, we solve the algebraic equation (numerically)
and find functions hk(ξ0, 0), k = 1, …, N+(ξ0, 0). The reconstructed surface is given
by Fig. 9.
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