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Abstract The S-functional calculus is a functional calculus for (n + 1)-tuples of
not necessarily commuting operators that can be considered a higher-dimensional
version of the classical Riesz–Dunford functional calculus for a single operator. In
this last calculus, the resolvent equation plays an important role in the proof of several
results. Associated with the S-functional calculus there are two resolvent operators:
the left S−1

L (s, T ) and the right one S−1
R (s, T ), where s = (s0, s1, . . . , sn) ∈ R

n+1

and T = (T0, T1, . . . , Tn) is an (n+ 1)-tuple of noncommuting operators. The two S-
resolvent operators satisfy the S-resolvent equations S−1

L (s, T )s − T S−1
L (s, T ) = I,

and sS−1
R (s, T )−S−1

R (s, T )T = I, respectively,whereI denotes the identity operator.
These equations allow us to prove some properties of the S-functional calculus. In this
paper we prove a new resolvent equation which is the analog of the classical resolvent
equation. It is interesting to note that the equation involves both the left and the right
S-resolvent operators simultaneously.
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1 Introduction

The S-resolvent operators are a key tool in the definition of the higher-dimensional
version of the Riesz–Dunford functional calculus called S-functional calculus. This
calculus works for (n+1)-tuples (T0, T1, . . . , Tn) of not necessarily commuting oper-
ators and is based on the so-called S-spectrum; see [14,17]. In the case of a single
operator the S-functional calculus reduces to the Riesz–Dunford functional calculus
(see [21,33]).

When the operators (T0, T1, . . . , Tn) commute among themselves, this calculus
admits a commutative version called SC-functional calculus. In this case the S-
resolvent operator and the S-spectrum have a simpler expression; see [15].

The class of functions on which this calculus is based is the so-called set of slice
hyperholomorphic (or slice monogenic) functions which are defined on subsets of the
Euclidean space Rn+1 and have values in the Clifford algebra Rn .

For more details on the S-functional calculus and the function theory on which it
is based, see the monograph [19].

As it happens for the classical theory of monogenic functions (see [10,18,20,25]),
also in the class of slice hyperholomorphic functions there is the notion of left as
well as of right hyperholomorphicity. But despite what happens in the monogenic
case, for slice hyperholomorphic functions the Cauchy formulas for left and for right
slice hyperholomorphic functions have two different kernels; moreover, each of these
kernels can be written in two different ways.

The calculus admits a quaternionic version, which works for quaternionic linear
operators and is based on slice hyperholomorphic (or slice regular) functions defined
on subsets of the real algebra of quaternions H with values in the quaternions; see
[11,13]. To explain our new result and its consequences, let us focus, at the moment,
on the quaternionic setting which is simpler to illustrate.

Let us denote by V a two-sided quaternionic Banach space and let T : V → V be
a bounded right (or left) linear operator. We recall that the S-spectrum is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},

where s = s0 + s1i + s2 j + s3k is a quaternion, Re(s) = s0, |s|2 = s20 + s21 + s22 + s23 .
The left and the right S-resolvent operators are defined as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), s ∈ H \ σS(T ) (1.1)
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and

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1, s ∈ H \ σS(T ), (1.2)

respectively. The left S-resolvent operator satisfies the equation

S−1
L (s, T )s − T S−1

L (s, T ) = I, s ∈ H \ σS(T ), (1.3)

and the right S-resolvent operator satisfies

sS−1
R (s, T ) − S−1

R (s, T )T = I, s ∈ H \ σS(T ). (1.4)

Consider the complex plane CI := R + IR, for I ∈ S, where S is the unit sphere of
purely imaginary quaternions. Observe thatCI can be identified with a complex plane
since I 2 = −1 for every I ∈ S. Let U ⊂ H be a suitable domain that contains the
S-spectrum of T . We define for left slice hyperholomorphic functions f : U → H

(see the precise definition in the sequel) the quaternionic functional calculus as

f (T ) = 1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI f (s), (1.5)

where dsI = −ds I , and for right slice hyperholomorphic functions f : U → H, we
define

f (T ) = 1

2π

∫

∂(U∩CI )

f (s) dsI S
−1
R (s, T ). (1.6)

These definitions are well posed since the integrals do not depend neither on the open
setU nor on the complex planeCI and can be extended to the case of (n+1)-tuples of
operators, using slice hyperholomorphic functions with values in a Clifford algebra.
Using the S-spectrum in [23] the authors introduce the continuous functional calculus
in a quaternionic Hilbert space.

The S-resolvent equations (1.3), (1.4) are useful to prove several properties of the
S-functional calculus. However, it is natural to ask if it is possible to obtain an analog
of the classical resolvent equation

(λI − E)−1(μI − E)−1 = (λI − E)−1 − (μI − E)−1

μ − λ
, λ, μ ∈ C \ σ(E), (1.7)

where E is a complex operator on a Banach space, which might be useful to prove
other properties of the calculus. The main goal of this paper is to show that (1.7) can
be generalized in this noncommutative setting, but it involves both the left and the
right S-resolvent operators. Precisely, we will show that

S−1
R (s, T )S−1

L (p, T ) =
[
(S−1

R (s, T ) − S−1
L (p, T ))p − s(S−1

R (s, T ) − S−1
L (p, T ))

]

× (p2 − 2s0 p + |s|2)−1,
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for s, p ∈ H \ σS(T ).
It is also worthwhile to mention that the S-resolvent operator plays an important

role in the definition of the quaternionic version of the counterpart of the operator
(I − zA)−1 in the realization s(z) = D + zC(I − zA)−1B for Schur multipliers; see
[2]. The reader is referred to [2–4] for Schur analysis in the slice hyperholomorphic
setting and to [1,7] for an overview of Schur analysis in the complex setting.

It is interesting to note that in the literature there are other cases in which the authors
consider two resolvent operators. We mention in particular the case of Schur analysis
in the setting of upper triangular operators and in the setting of compact Riemann
surfaces. In the first case, the role of complex numbers is played by diagonal operators
and there are two “point evaluations” of an operator at a diagonal, one left and one right,
each corresponding to an associated resolvent operator; see [8, (2.4)–(2.6), p. 256],
but the resolvent equation is related with just one resolvent at a time; see [8, Corollary
2.9, p. 266]. In the setting of compact Riemann surfaces (see [30,35] for the general
setting) there is a resolvent operator associated with every meromorphic function on
the given Riemann surface X (see [9, (4.1), p. 307]), and one needs two such operators,
associated with a pair of functions which generate the field of meromorphic functions
on X , to study underlying spaces; see [9, §5]. The same resolvent equation is satisfied
by all the resolvent operators; see [9, Theorem 4.2, p. 309].

In this paper both S-resolvent operators enter the resolvent equation.
The plan of the paper is as follows.
In Sect. 2 we recall some preliminary results on slice hyperholomorphic functions.
In Sect. 3 we state and prove the new resolvent equation and we show that there are

two possible versions which are equivalent. We prove our results for the S-functional
calculus for (n+1)-tuples of not necessarily commuting operators and we show some
applications of the resolvent equation.

In Sect. 4 we consider the commutative version of the S-functional calculus, the so-
called SC-functional calculus, andwe reformulate ourmain results for the quaternionic
functional calculus. Since the proofs follow the lines of the corresponding proofs in
the case of (n+ 1)-tuples of not necessarily commuting operators, we will omit them.

2 Preliminary Results

In this section we recall the notion of slice hyperholomorphic functions and their
Cauchy formulas; see [19].

Let Rn be the real Clifford algebra over n imaginary units e1, . . . , en satisfying the
relations ei e j + e j ei = 0, i �= j , e2i = −1. An element in the Clifford algebra will
be denoted by

∑
A eAxA where A = {i1 . . . ir } ∈ P{1, 2, . . . , n}, i1 < · · · < ir is

a multi-index and eA = ei1ei2 . . . eir , e∅ = 1. An element (x0, x1, . . . , xn) ∈ R
n+1

will be identified with the element x = x0 + x = x0 + ∑n
j=1 x j e j ∈ Rn called

paravector and the real part x0 of x will also be denoted by Re(x). The norm of
x ∈ R

n+1 is defined as |x |2 = x20 + x21 + · · · + x2n . The conjugate of x is given by
x̄ = x0 − x = x0 − ∑n

j=1 x j e j .
Let

S = {x = e1x1 + · · · + enxn | x21 + · · · + x2n = 1};
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for I ∈ S we obviously have I 2 = −1. Given an element x = x0 + x ∈ R
n+1 let us

set Ix = x/|x | if x �= 0, and for any nonreal x ∈ R
n+1 the set

[x] := {y ∈ R
n+1 : y = x0 + I |x |, I ∈ S}

is an (n − 1)-dimensional sphere in Rn+1. The vector space R + IR passing through
1 and I ∈ S will be denoted by CI and an element belonging to CI will be indicated
by u + Iv, for u, v ∈ R. Thus, if U ⊆ R

n+1 is an open set, a function f : U ⊆
R
n+1 → Rn can be interpreted as a function of the paravector x .

Definition 2.1 (Slice hyperholomorphic functions) LetU ⊆ R
n+1 be an open set and

let f : U → Rn be a real differentiable function. Let I ∈ S and let f I be the restriction
of f to the complex plane CI .

The function f is said to be left slice hyperholomorphic (or slice monogenic) if,
for every I ∈ S, on U ∩ CI it satisfies

1

2

(
∂

∂u
fI (u + Iv) + I

∂

∂v
f I (u + Iv)

)
= 0.

We will denote by SM(U ) the set of left slice hyperholomorphic functions on the
open set U or by SML(U ) when confusion may arise.

The function f is said to be right slice hyperholomorphic (or right slice monogenic)
if, for every I ∈ S, on U ∩ CI , it satisfies

1

2

(
∂

∂u
fI (u + Iv) + ∂

∂v
f I (u + Iv)I

)
= 0.

We will denote by SMR(U ) the set of right slice hyperholomorphic functions on
the open set U .

Slice hyperholomorphic functions possess good properties when they are defined
on suitable domains which are introduced in the following definition. We refer the
reader to [19] for all the missing details.

Definition 2.2 (Axially symmetric slice domain) Let U be a domain in Rn+1. We say
thatU is a slice domain (s-domain for short) ifU ∩R is nonempty and ifU ∩CI is a
domain in CI for all I ∈ S. We say that U is axially symmetric if, for all x ∈ U , the
(n − 1)-sphere [x] is contained in U .

Definition 2.3 (Cauchy kernel for left slice hyperholomorphic functions) Let x , s ∈
R
n+1 be such that x �∈ [s]. Let S−1

L (s, x) be the function defined by

S−1
L (s, x) := −(x2 − 2xRe[s] + |s|2)−1(x − s). (2.1)

We say that S−1
L (s, x) is the Cauchy kernel (for left slice hyperholomorphic functions)

written in form I.
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Proposition 2.4 Suppose that x and s ∈ R
n+1 are such that x �∈ [s]. The following

identity holds:

− (x2 − 2Re(s)x + |s|2)−1(x − s̄) = (s − x̄)(s2 − 2Re(x)s + |s|2)−1. (2.2)

Remark 2.5 By Proposition 2.4 S−1
L (s, x) can also be written as

S−1
L (s, x) := (s − x̄)(s2 − 2Re(x)s + |x |2)−1. (2.3)

In this case, we will say S−1
L (s, x) is written in form II.

Proposition 2.6 The function S−1
L (s, x) is left slice hyperholomorphic in the variable

x and right slice hyperholomorphic in the variable s, for x �∈ [s].
The case of the Cauchy kernel for right slice hyperholomorphic functions is similar.

Definition 2.7 (Cauchy kernel for right slice hyperholomorphic functions) Let x ,
s ∈ R

n+1 be such that x �∈ [s]. The Cauchy kernel S−1
R (s, x) for right slice hyper-

holomorphic functions is defined by

S−1
R (s, x) := −(x − s̄)(x2 − 2Re(s)x + |s|2)−1. (2.4)

We say that S−1
R (s, x) is written in form I.

Remark 2.8 An analog of Proposition 2.4 holds. In fact,

− (x − s̄)(x2 − 2Re(s)x + |s|2)−1 = (s2 − 2Re(x)s + |x |2)−1(s − x̄), (2.5)

for x , s ∈ R
n+1 such that x �∈ [s].

Thus S−1
R (s, x) can be written as

S−1
R (s, x) = (s2 − 2Re(x)s + |x |2)−1(s − x̄),

and in this case we say that S−1
R (s, x) is written in form II.

Theorem 2.9 (The Cauchy formula with slice hyperholomorphic kernel) Let U ⊂
R
n+1 be an axially symmetric s-domain. Suppose that ∂(U ∩ CI ) is a finite union of

continuously differentiable Jordan curves for every I ∈ S. Set dsI = −ds I for I ∈ S.

• If f is a (left) slice hyperholomorphic function on an open set that contains U,
then

f (x) = 1

2π

∫

∂(U∩CI )

S−1
L (s, x)dsI f (s) (2.6)

and the integral does not depend on U and on the imaginary unit I ∈ S.
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• If f is a right slice hyperholomorphic function on an open set that contains U,
then

f (x) = 1

2π

∫

∂(U∩CI )

f (s)dsI S
−1
R (s, x) (2.7)

and the integral does not depend on U and on the imaginary unit I ∈ S.

The above Cauchy formulas are the starting point to define the S-functional calcu-
lus. A crucial fact of slice hyperholomorphic functions is the representation formula
(also called the structure formula). This formula will be used in the sequel to give
applications of the new resolvent equation.

Theorem 2.10 (Representation Formula) Let U be an axially symmetric s-domain in
H.

• Let f be a (left) slice hyperholomorphic function on U. Choose any J ∈ S. Then
the following equality holds for all x = u + Iv ∈ U:

f (u+ Iv) = 1

2

[
f (u+Jv)+ f (u−Jv)

]
+ I

1

2

[
J [ f (u−Jv)− f (u+Jv)]

]
. (2.8)

Moreover, for all u, v ∈ R such that [u+ Iv] ⊆ U, there existRn-valued functions
α, β depending on u, v only such that for all K ∈ S

1

2

[
f (u + Kv)+ f (u − Kv)

]
= α(u, v) and

1

2

[
K [ f (u − Kv) − f (u + Kv)]

]
= β(u, v). (2.9)

• Let f be a right slice hyperholomorphic function on U. Choose any J ∈ S. Then
the following equality holds for all x = u + Iv ∈ U:

f (u+Iv) = 1

2

[
f (u+Jv)+ f (u−Jv)

]
+1

2

[
[ f (u−Jv)− f (u+Jv)]J

]
I. (2.10)

Moreover, for all u, v ∈ R such that [u+ Iv] ⊆ U, there existRn-valued functions
α, β depending on u, v only such that for all K ∈ S

1

2

[
f (u + Kv) + f (u − Kv)

]
= α(u, v) and

1

2

[
[ f (u − Kv) − f (u + Kv)]K

]
= β(u, v). (2.11)

3 The Case of Several Noncommuting Operators

In the sequel, we will consider a Banach space V over R with norm ‖ · ‖. It is possible
to endow V with an operation of multiplication by elements of Rn which gives a two-
sided module overRn . A two-sided module V overRn is called a Banach module over

123



1946 D. Alpay et al.

Rn , if there exists a constant C ≥ 1 such that ‖va‖ ≤ C‖v‖|a| and ‖av‖ ≤ C |a|‖v‖
for all v ∈ V and a ∈ Rn . By Vn we denote V ⊗ Rn ; Vn turns out to be a two-sided
Banach module over Rn .

An element in Vn is of the type
∑

A vA⊗eA (where A = i1 . . . ir , i� ∈ {1, 2, . . . , n},
i1 < · · · < ir is a multi-index). The multiplications of an element v ∈ Vn with a
scalar a ∈ Rn are defined by va = ∑

A vA ⊗ (eAa) and av = ∑
A vA ⊗ (aeA).

For simplicity, we will write
∑

A vAeA instead of
∑

A vA ⊗ eA. Finally, we define
‖v‖2Vn = ∑

A ‖vA‖2V . We denote by B(V ) the space of bounded R-homomorphisms
of the Banach space V to itself endowed with the natural norm denoted by ‖ · ‖B(V ).
Given TA ∈ B(V ), we can introduce the operator T = ∑

A TAeA and its action on
v = ∑

vBeB ∈ Vn as T (v) = ∑
A,B TA(vB)eAeB . The operator T is a module

homomorphism which is a bounded linear map on Vn .
In the sequel, we will consider operators of the form T = T0 + ∑n

j=1 e j Tj where
Tj ∈ B(V ) for j = 0, 1, . . . , n. The subset of such operators in B(Vn) will be
denoted by B0,1(Vn). We define ‖T ‖B0,1(Vn) = ∑n

j=0 ‖Tj‖B(V ). Note that, in the

sequel, we will omit the subscript B0,1(Vn) in the norm of an operator. Note also that
‖T S‖ ≤ ‖T ‖‖S‖.
Definition 3.1 Let T ∈ B0,1(Vn). We define the left Cauchy kernel operator series or
S-resolvent operator series as

S−1
L (s, T ) =

∑
n≥0

T ns−1−n, (3.1)

and the right Cauchy kernel operator series as

S−1
R (s, T ) =

∑
n≥0

s−1−nT n, (3.2)

for ‖T ‖ < |s|.
The Cauchy kernel operator series are the power series expansion of the S-resolvent
operators. Their sum is computed in the following result:

Theorem 3.2 Let T ∈ B0,1(Vn) and let s ∈ H. Then, for ‖T ‖ < |s|, we have
∑
m≥0

Tms−1−m = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (3.3)

∑
m≥0

s−1−mTm = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (3.4)

We observe that the sum of the above series is independent of the fact that the
components of the paravector operator T commute. Moreover, the operators on the
right-hand sides of (3.3) and (3.4) are defined on a subset of Rn+1 that is larger
than {s ∈ R

n+1 : ‖T ‖ < |s|}. This fact suggests the definition of S-spectrum, of
S-resolvent set and of S-resolvent operators.
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Definition 3.3 (The S-spectrum and the S-resolvent set) Let T ∈ B0,1(Vn).We define
the S-spectrum σS(T ) of T as:

σS(T ) = {s ∈ R
n+1 : T 2 − 2 Re(s)T + |s|2I is not invertible}.

The S-resolvent set ρS(T ) is defined by

ρS(T ) = R
n+1 \ σS(T ).

Definition 3.4 (The S-resolvent operators) Let T ∈ B0,1(Vn) and s ∈ ρS(T ). We
define the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (3.5)

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (3.6)

The operators S−1
L (s, T ) and S−1

R (s, T ) satisfy the equations below; see [19]:

Theorem 3.5 Let T ∈ B0,1(Vn) and let s ∈ ρS(T ). Then, the left S-resolvent operator
satisfies the equation

S−1
L (s, T )s − T S−1

L (s, T ) = I, (3.7)

and the right S-resolvent operator satisfies the equation

sS−1
R (s, T ) − S−1

R (s, T )T = I. (3.8)

Our goal is to establish the analog of the classical resolvent equation. To this end,
we need some preliminary results. A crucial fact is the following Theorem 3.6 that
will give us the hint to discover what is the structure of the resolvent equation in
this noncommutative setting, at least in the case where the S-resolvent operators are
expressed in power series, see also [6].

Theorem 3.6 Let A, B ∈ B(Vn) and let s, p ∈ R
n+1. Then, for |p| < |s|, we have

∑
m≥0

pm As−1−m = −(p2 − 2Re(s)p + |s|2)−1(pA − As), (3.9)

and ∑
m≥0

s−1−mBpm = −(Bp − sB)(p2 − 2Re(s)p + |s|2)−1. (3.10)

Moreover, (3.10) can be written as

∑
m≥0

s−1−mBpm = (s2 − 2Re(p)s + |p|2)−1(sB − B p). (3.11)
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Proof To verify (3.9) define

X := (p2 − 2Re(s)p + |s|2)
∑
m≥0

pm As−1−m

and observe that

X =
∑
m≥0

(p2 − 2Re(s)p + |s|2)pm As−1−m

= p2As−1 − 2Re(s)pAs−1 + |s|2As−1

+ p3As−2 − 2Re(s)p2As−2 + |s|2 pAs−2

+ p4As−3 − 2Re(s)p3As−3 + |s|2 p2As−3 + · · ·
= −(pA − As) +

∑
m≥2

pm A(s2 − 2Re(s)s + |s|2)s−1−m . (3.12)

Since any paravector s satisfies

s2 − 2Re(s)s + |s|2 = 0

we deduce that

X = (p2 − 2Re(s)p + |s|2)
∑
m≥0

pm As−1−m = −(pA − As)

and the statement follows. The equality in (3.10) can be verified by setting

Y :=
∑
m≥0

s−1−mBpm(p2 − 2Re(s)p + |s|2)

and observing that

Y = −(Bp − sB) +
∑
m≥0

s−1−mBpm(p2 − 2Re(p)p + |p|2) = −(Bp − sB).

With similar computations one can verify equality (3.11). 
�
Corollary 3.7 Let A, B ∈ B(Vn) and let s, p be paravectors. Then, for |p| < |s|, the
following equations hold:

m∑
j=0

p j As−1− j = −(p2 − 2Re(s)p + |s|2)−1(pA − As)

+ pm+1(p2 − 2Re(s)p + |s|2)−1(pA − As)s−1−m, (3.13)
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and

m∑
j=0

s−1− j Bp j = −(Bp − sB)(p2 − 2Re(s)p + |s|2)−1

+ s−1−m(Bp − sB)(p2 − 2Re(s)p + |s|2)−1 pm+1. (3.14)

Moreover, (3.14) can also be written as

m∑
j=0

s−1− j Bp j = (s2 − 2Re(p)s + |p|2)−1(sB − B p)

− s−1−m(s2 − 2Re(p)s + |p|2)−1(sB − B p)pm+1. (3.15)

Proof Identity (3.13) follows from

m∑
j=0

p j As−1− j =
∞∑
j=0

p j As−1− j −
∞∑

j=m+1

p j As−1− j ,

which can be written as

m∑
j=0

p j As−1− j =
∞∑
j=0

p j As−1− j − pm+1

⎛
⎝ ∞∑

j=0

p j As−1− j

⎞
⎠ s−1−m,

but now we use (3.9) to get the result. Identities (3.14) and (3.15) follow with similar
computations. 
�

We now prove the new S-resolvent equation. In the proof we first consider the case
in which the S-resolvent operators admit the power series expansion

S−1
L (s, T ) =

∑
m≥0

Tms−1−m, S−1
R (s, T ) =

∑
m≥0

s−1−mTm,

which is for ‖T ‖ < |s|. Then, we verify that the equation holds in general.

Theorem 3.8 Let T ∈ B0,1(Vn) and let s and p ∈ ρS(T ). Then we have the resolvent
equation

S−1
R (s, T )S−1

L (p, T ) = ((S−1
R (s, T )− S−1

L (p, T ))p− s(S−1
R (s, T )− S−1

L (p, T )))(p2 −2s0 p+|s|2)−1.

(3.16)
Moreover, the resolvent equation can also be written as

S−1
R (s, T )S−1

L (p, T ) = (s2 −2p0s+|p|2)−1(s(S−1
R (s, T )− S−1

L (p, T ))− (S−1
R (s, T )− S−1

L (p, T ))p).
(3.17)
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Proof We prove the theorem in two steps.
Step I First we assume that the S-resolvent operators are expressed in power series.
If ‖T ‖ < |p| < |s| then the S-resolvent operators have power series expansion and so

S−1
R (s, T )S−1

L (p, T ) =
⎛
⎝∑

j≥0

s−1− j T j

⎞
⎠

⎛
⎝∑

j≥0

T j p−1− j

⎞
⎠ . (3.18)

By setting


m(s, p; T ) :=
m∑
j=0

s−1− j
(
Tm p−1−m

)
p j

(3.18) can be written as

S−1
R (s, T )S−1

L (p, T ) =
∑
m≥0


m(s, p; T ).

Formula (3.14) with B = Tm p−1−m and some computations give


m(s, p; T )

= −
(
(Tm p−1−m)p − s(Tm p−1−m)

) (
p2 − 2Re(s)p + |s|2

)−1

+ s−1−m
(
(Tm p−1−m)p − s(Tm p−1−m)

) (
p2 − 2Re(s)p + |s|2

)−1
pm+1

= −
[
(Tm p−1−m)p − s(Tm p−1−m) + (s−1−mTm)p − s(s−1−mTm)

]

×
(
p2 − 2Re(s)p + |s|2

)−1
. (3.19)

From the chain of equalities

S−1
R (s, T )S−1

L (p, T ) =
∑
m≥0


m(s, p; T )

= −
⎡
⎣

⎛
⎝∑

m≥0

(Tm p−1−m)p − s
∑
m≥0

(Tm p−1−m)

⎞
⎠

⎤
⎦

+
⎡
⎣

⎛
⎝∑

m≥0

s−1−mTm

⎞
⎠ p − s

∑
m≥0

(s−1−mTm)

⎤
⎦

×
(
p2 − 2Re(s)p + |s|2

)−1
(3.20)

(3.16) follows.
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To prove that the resolvent equation can bewritten in the second form (3.17) observe
that 
m(s, p; T ) can also be written using (3.11) as


m(s, p; T ) = (s2 − 2Re(p)s + |p|2)−1(s(Tm p−1−m) − (Tm p−1−m)p)

− s−1−m(s2 − 2Re(p)s + |p|2)−1(s(Tm p−1−m)

− (Tm p−1−m)p)pm+1, (3.21)

so taking the sum
∑

m≥0 
m(s, p; T ) we get the second version of the resolvent
equation.
Step II We prove that, for s and p ∈ ρS(T ), (3.16) and (3.17) hold with S−1

R (s, T )

and S−1
L (p, T ) defined in (3.5) and (3.6), respectively.

Let us verify (3.16). Since s and p ∈ ρS(T ) the left and right S-resolvent operators
defined by (3.5) and (3.6) satisfy the left and the right resolvent equations (3.7) and
(3.8), respectively. To verify (3.16) we have to show that S−1

R (s, T )S−1
L (p, T )(p2 −

2s0 p + |s|2) equals

(S−1
R (s, T ) − S−1

L (p, T ))p − s(S−1
R (s, T ) − S−1

L (p, T )).

To do this we use the left and the right S-resolvent equations (3.7), (3.8). Indeed, using
the left S-resolvent equation, written as

S−1
L (p, T )p = T S−1

L (p, T ) + I,

we have

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0 p + |s|2) = S−1
R (s, T )[S−1

L (p, T )p]p
− 2s0S

−1
R (s, T )S−1

L (p, T )p + |s|2S−1
R (s, T )S−1

L (p, T )

= S−1
R (s, T )[T S−1

L (p, T ) + I]p − 2s0S
−1
R (s, T )[T S−1

L (p, T ) + I]
+ |s|2S−1

R (s, T )S−1
L (p, T ) (3.22)

and using again the left S-resolvent equation

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0 p + |s|2)
= S−1

R (s, T )T [T S−1
L (p, T ) + I] + S−1

R (s, T )p

−2s0S
−1
R (s, T )[T S−1

L (p, T ) + I]
+|s|2S−1

R (s, T )S−1
L (p, T ) (3.23)
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we obtain

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0 p + |s|2)
= [S−1

R (s, T )T ]T S−1
L (p, T ) + S−1

R (s, T )T + S−1
R (s, T )p

−2s0
[
[S−1

R (s, T )T ]S−1
L (p, T ) + S−1

R (s, T )
]

+|s|2S−1
R (s, T )S−1

L (p, T ). (3.24)

Now we use the right S-resolvent equation

S−1
R (s, T )T = sS−1

R (s, T ) − I

and we obtain

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0 p + |s|2)
= [sS−1

R (s, T ) − I]T S−1
L (p, T ) + sS−1

R (s, T ) − I + S−1
R (s, T )p

−2s0[[sS−1
R (s, T ) − I]S−1

L (p, T ) + S−1
R (s, T )]

+|s|2S−1
R (s, T )S−1

L (p, T ). (3.25)

Iterating the use of the above right S-resolvent equation we get

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0 p + |s|2)
= s[sS−1

R (s, T ) − I]S−1
L (p, T )

− T S−1
L (p, T ) + sS−1

R (s, T ) − I + S−1
R (s, T )p

−2s0[sS−1
R (s, T )S−1

L (p, T ) − S−1
L (p, T ) + S−1

R (s, T )]
+|s|2S−1

R (s, T )S−1
L (p, T ), (3.26)

which leads to

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0 p + |s|2)
= (s2 − 2s0s + |s|2)S−1

R (s, T )S−1
L (p, T )

+[S−1
R (s, T ) − S−1

L (p, T )]p − s[S−1
R (s, T ) − S−1

L (p, T )], (3.27)

and since s2 − 2s0s + |s|2 = 0 we obtain (3.16). With similar computations we can
show that also (3.17) holds. 
�

In the commutative case besides the resolvent equation, we have also the validity
of the following relation between the resolvent operators:

(λI − E)−1(μI − E)−1 = (μI − E)−1(λI − E)−1, for λ,μ ∈ ρ(E).
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In the noncommutative case we cannot expect the validity of such a relation; however,
we will show that an analogous equation holds for the so-called pseudo S-resolvent
operators defined below.

Definition 3.9 Let T ∈ B0,1(Vn). For s ∈ ρS(T ), the pseudo S-resolvent operator of
T is defined as

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1.

With the above definition the resolvents S−1
L (s, T ) and S−1

R (s, T ) can be written as

S−1
L (s, T ) := −Qs(T )(T − sI), s ∈ ρS(T ), (3.28)

and
S−1
R (s, T ) := −(T − sI)Qs(T ), s ∈ ρS(T ). (3.29)

We now prove the following:

Theorem 3.10 Let T ∈ B0,1(Vn) and let s, p ∈ ρS(T ). Then

(T − sI)Qs(T )Qp(T )(T − pI) = (T − sI)Qp(T )Qs(T )(T − pI).

Proof It follows from the fact that

(T 2 − 2Re(s)T + |s|2I)(T 2 − 2Re(p)T + |p|2I) = (T 2 − 2Re(p)T + |p|2I)

(T 2 − 2Re(s)T + |s|2I). (3.30)

Since s, p ∈ ρS(T ) we can take the inverse and the statement follows. 
�
Remark 3.11 Observe that the function FT (s, p) defined by

FT (s, p) := S−1
R (s, T )S−1

L (p, T )

is left slice hyperholomorphic in s and right slice hyperholomorphic in p with values
in B(Vn). The function

GT (s, p) := S−1
L (p, T )S−1

R (s, T )

is not slice hyperholomorphic neither in p nor in s.

Remark 3.12 Using the star products left and right in the variables s, p, which will
be denoted by �s,le f t , �p,right respectively, see [6], the resolvent equation (3.16) can
be written as

S−1
R (s, T )S−1

L (p, T ) = [S−1
R (s, T ) − S−1

L (p, T )] �s,le f t

×(p − s)(p2 − 2Re(s)p + |s|2)−1I,
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or

S−1
R (s, T )S−1

L (p, T ) = (s − p)(s2 − 2Re(p)s + |p|2)−1I �p,right

×[S−1
R (s, T ) − S−1

L (p, T )].

3.1 Some Applications

Here we recall the formulations of the S-functional calculus, and then we use the
resolvent equation to deduce some results. We first recall two important properties of
the S-spectrum.

Theorem 3.13 (Structure of the S-spectrum) Let T ∈ B0,1(Vn) and suppose that
p = p0 + p belongs σS(T ) with p �= 0. Then all the elements of the (n − 1)-sphere
[p] belong to σS(T ).

This result implies that if p ∈ σS(T ) then either p is a real point or the whole (n− 1)-
sphere [p] belongs to σS(T ).

Theorem 3.14 (Compactness of the S-spectrum) Let T ∈ B0,1(Vn). Then the S-
spectrum σS(T ) is a compact nonempty set. Moreover, σS(T ) is contained in {s ∈
R
n+1 : |s| ≤ ‖T ‖}.

Definition 3.15 Let Vn be a two-sided Banach module, T ∈ B0,1(Vn) and let U ⊂
R
n+1 be an axially symmetric s-domain that contains the S-spectrum σS(T ) such that

∂(U ∩CI ) is the union of a finite number of continuously differentiable Jordan curves
for every I ∈ S. In this case we say that U is a T -admissible open set.

We now introduce the class of functions for which we can define the two versions
of the S-functional calculus.

Definition 3.16 Let Vn be a two-sided Banach module, T ∈ B0,1(Vn) and let W be
an open set in R

n+1.

(i) A function f ∈ SML(W ) is said to be locally left hyperholomorphic on σS(T )

if there exists a T -admissible domain U ⊂ R
n+1 such that U ⊂ W , on which f

is left slice hyperholomorphic. We will denote by SML
σS(T ) the set of locally left

hyperholomorphic functions on σS(T ).
(ii) A function f ∈ SMR(W ) is said to be locally right regular on σS(T ) if there

exists a T -admissible domain U ⊂ R
n+1 such that U ⊂ W , on which f is right

slice hyperholomorphic. We will denote by SMR
σS(T ) the set of locally right slice

hyperholomorphic functions on σS(T ).

Definition 3.17 (The S-functional calculus) Let Vn be a two-sided Banach module
and T ∈ B0,1(Vn). Let U ⊂ R

n+1 be a T -admissible domain and set dsI = −ds I .
We define

f (T ) = 1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI f (s), for f ∈ SML

σS(T ), (3.31)
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and

f (T ) = 1

2π

∫

∂(U∩CI )

f (s) dsI S
−1
R (s, T ), for f ∈ SMR

σS(T ). (3.32)

We now define the Riesz projectors for the S-functional calculus. We begin with a
preliminary lemma.

Lemma 3.18 Let B ∈ B(Vn) and let G be an axially symmetric s-domain such that
p ∈ G. Then

(sB−Bp)(p2−2s0 p+|s|2)−1 = (s2−2p0s+|p|2)−1(sB−B p), p �∈ [s], (3.33)

and
1

2π

∫

∂(G∩CI )

dsI (sB − Bp)(p2 − 2s0 p + |s|2)−1 = B. (3.34)

Proof Formula (3.33) is obtained by direct computation. Let us prove (3.34). So we
write

1

2π

∫

∂(G∩CI )

dsI (sB − Bp)(p2 − 2s0 p + |s|2)−1

= 1

2π

∫

∂(G∩CI )

dsI (s
2 − 2p0s + |p|2)−1(sB − B p)

= 1

2π

∫

∂(G∩CI )

dsI (s
2 − 2p0s + |p|2)−1(s − p)B

+ 1

2π

∫

∂(G∩CI )

dsI (s
2 − 2p0s + |p|2)−1(pB − B p)

but observe that

1

2π

∫

∂(G∩CI )

dsI (s
2 − 2p0s + |p|2)−1(s − p)B = 1

2π

∫

∂(G∩CI )

dsI S
−1
R (s, p)B = B

and moreover by the residue theorem it is

1

2π

∫

∂(G∩CI )

dsI (s
2 − 2p0s + |p|2)−1 = 0

so we get the statement. 
�
Theorem 3.19 Let T ∈ B0,1(Vn) and let σS(T ) = σ1S(T ) ∪ σ2S(T ), with

dist (σ1S(T ), σ2S(T )) > 0.
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Let U1 and U2 be two axially symmetric s-domains such that σ1S(T ) ⊂ U1 and
σ2S(T ) ⊂ U2, with U 1 ∩U2 = ∅. Set

Pj := 1

2π

∫

∂(Uj∩CI )

S−1
L (s, T ) dsI , j = 1, 2, (3.35)

Tj := 1

2π

∫

∂(Uj∩CI )

S−1
L (s, T ) dsI s, j = 1, 2. (3.36)

Then Pj are projectors and Tj = T Pj = Pj T for j = 1, 2.

Proof Let σ j S(T ) ⊂ G1 andG2 be two T -admissible open sets such thatG1∪∂G1 ⊂
G2 and G2 ∪ ∂G2 ⊂ Uj , for j = 1 or 2. Thanks to the structure of the S-spectrum
we will assume that G1 and G2 are axially symmetric and s-domains.

Take p ∈ ∂(G1 ∩ CI ) and s ∈ ∂(G2 ∩ CI ) and observe that, for I ∈ S, we have

Pj := 1

2π

∫

∂(G2∩CI )

dsI S
−1
R (s, T )

but we can also write Pj as

Pj = 1

2π

∫

∂(G1∩CI )

S−1
L (p, T )dpI .

Now consider P2
j written as

P2
j = 1

(2π)2

∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

S−1
R (s, T )S−1

L (p, T )dpI .

Using the resolvent equation we write:

P2 = 1

(2π)2

∫

∂(G2∩CI )

dsI

×
∫

∂(G1∩CI )

[S−1
R (s, T ) − S−1

L (p, T )]p(p2 − 2s0 p + |s|2)−1dpI

− 1

(2π)2

∫

∂(G2∩CI )

dsI

×
∫

∂(G1∩CI )

s[S−1
R (s, T ) − S−1

L (p, T )](p2 − 2s0 p + |s|2)−1dpI .
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Now observe that

1

(2π)2

∫

∂(G2∩CI )

dsI S
−1
R (s, T )

∫

∂(G1∩CI )

p(p2 − 2s0 p + |s|2)−1dpI = 0

and

− 1

(2π)2

∫

∂(G2∩CI )

dsI sS
−1
R (s, T )

∫

∂(G1∩CI )

(p2 − 2s0 p + |s|2)−1dpI = 0

since the functions

p �→ p(p2 − 2s0 p + |s|2)−1, p �→ (p2 − 2s0 p + |s|2)−1

are slice hyperholomorphic and do not have singularities inside ∂(G1 ∩ CI ). So P2
j

can be written as

P2
j = 1

(2π)2

∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

−S−1
L (p, T )p(p2 − 2s0 p + |s|2)−1dpI

− 1

(2π)2

∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

−sS−1
L (p, T )(p2 − 2s0 p + |s|2)−1dpI ,

= 1

(2π)2

∫

∂(G2∩CI )

∫

∂(G1∩CI )

dsI

× (sS−1
L (p, T ) − S−1

L (p, T )p)(p2 − 2s0 p + |s|2)−1dpI .

Applying now Lemma 3.18 with B := S−1
L (p, T ) and observing that p ∈ G2, we

finally have

P2
j = 1

2π

∫

∂(G1∩CI )

S−1
L (p, T )dpI = Pj .

Let us now prove that T Pj = Pj T . Observe that the functions f (s) = sm , form ∈ N0
are both right and left slice hyperholomorphic. So the operator T can be written as

T = 1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI s = 1

2π

∫

∂(U∩CI )

s dsI S
−1
R (s, T );

analogously, as already observed, for the projectors Pj we have

Pj = 1

2π

∫

∂(Uj∩CI )

S−1
L (s, T ) dsI = 1

2π

∫

∂(Uj∩CI )

dsI S
−1
R (s, T ).
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From the identity

Tj = 1

2π

∫

∂(Uj∩CI )

S−1
L (s, T ) dsI s = 1

2π

∫

∂(Uj∩CI )

s dsI S
−1
R (s, T )

we can compute T Pj as:

T Pj = 1

2π

∫

∂(Uj∩CI )

T S−1
L (s, T ) dsI

and using the resolvent equation (3.7) it follows that

T Pj = 1

2π

∫

∂(Uj∩CI )

[S−1
L (s, T ) s − I] dsI

= 1

2π

∫

∂(Uj∩CI )

S−1
L (s, T ) s dsI

= 1

2π

∫

∂(Uj∩CI )

S−1
L (s, T ) dsI s

= Tj . (3.37)

Now consider

Pj T = 1

2π

∫

∂(Uj∩CI )

dsI S
−1
R (s, T )T

and using the resolvent equation (3.8) we obtain

Pj T = 1

2π

∫

∂(Uj∩CI )

dsI [s S−1
R (s, T ) − I]

= 1

2π

∫

∂(Uj∩CI )

dsI s S
−1
R (s, T )

= Tj ,

so the equality Pj T = T Pj holds. 
�
Remark 3.20 The property that the Riesz projectors commute with the operator T has
been proved for the quaternionic version of the S-functional calculus in [4], while
the property that P2 = P given in [19] is obtained heuristically. The new resolvent
equation allows us to prove this last property rigorously.
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As is well known, the pointwise product of two hyperholomorphic functions is not
in general hyperholomorphic, but for the class of functions defined below this property
holds.

Definition 3.21 Let f : U → Rn be a slice hyperholomorphic function, where U is
an open set in Rn+1. We define

N (U ) = { f ∈ SM(U ) : f (U ∩ CI ) ⊆ CI , ∀I ∈ S}.

Proposition 3.22 Let U be an open set in Rn+1. Let f ∈ N (U ), g ∈ SM(U ). Then
f g ∈ SM(U ).

Let us observe that functions in the subclass N (U ) are both left and right slice
hyperholomorphic.When we take the power series expansion of this class of functions
at a point on the real line the coefficients of the expansion are real numbers.

Now observe that for functions in f ∈ N (U ) we can define f (T ) using the left but
also the right S-functional calculus. It is

f (T ) = 1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI f (s)

= 1

2π

∫

∂(U∩CI )

f (s) dsI S
−1
R (s, T ).

Lemma 3.23 Let B ∈ B(Vn). Let G be an axially symmetric s-domain and assume
that f ∈ N (G). Then, for p ∈ G, we have

1

2π

∫

∂(G∩CI )

f (s)dsI (sB − Bp)(p2 − 2s0 p + |s|2)−1 = B f (p). (3.38)

Proof Recalling formula (3.33) we write

1

2π

∫

∂(G∩CI )

f (s)dsI (sB − Bp)(p2 − 2s0 p + |s|2)−1

= 1

2π

∫

∂(G∩CI )

f (s)dsI (s
2 − 2p0s + |p|2)−1(sB − B p)

= 1

2π

∫

∂(G∩CI )

f (s)dsI (s
2 − 2p0s + |p|2)−1(s − p)B

+ 1

2π

∫

∂(G∩CI )

f (s)dsI (s
2 − 2p0s + |p|2)−1(pB − B p)

:= J1 + J2
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but observe that

J1 = 1

2π

∫

∂(G∩CI )

f (s)dsI (s
2 − 2p0s + |p|2)−1(s − p)B

= 1

2π

∫

∂(G∩CI )

f (s)dsI S
−1
R (s, p)B = f (p)B.

Consider now the second integral. Taking s = u+ Iv then the solutions of the equation
s2 − 2p0s + |p|2 = 0 are s1 = α and s2 = α where α = p0 + I |p|, so

J2 = 1

2π

∫

∂(G∩CI )

f (s)dsI (s
2 − 2p0s + |p|2)−1(pB − B p)

= 1

2π

∫

∂(G∩CI )

f (s)

(s − α)(s − α)
dsI (pB − B p),

by the residue theorem we get

J2 = 1

2π

∫

∂(G∩CI )

f (s)dsI (s
2 − 2p0s + |p|2)−1(pB − B p)

= I

2|p| [ f (p0 − I |p|) − f (p0 + I |p|)](pB − B p).

Nowwe recall the structure formula that shows that a slice hyperholomorphic function
can be written as

f (p) = α(p0, |p|) + Ipβ(p0, |p|)

where

α(p0, |p|) = 1

2
[ f (p0 − I |p|) + f (p0 + I |p|)],

β(p0, |p|) = I

2
[ f (p0 − I |p|) − f (p0 + I |p|)]

and in the case of functions f ∈ N (G) the functions α and β are real valued. Observe
that

J1 + J2 = f (p)B + I

2|p| [ f (p0 − I |p|) − f (p0 + I |p|)](pB − B p)

= α(p0, |p|)B + Ipβ(p0, |p|)B + β(p0, |p|)
|p| (pB − B p)

= α(p0, |p|)B + Ipβ(p0, |p|)B
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+ β(p0, |p|)
|p| ((p0 − Ip|p|)B − B(p0 − Ip|p|))

= B(α(p0, |p|) + Ipβ(p0, |p|))
= B f (p),

so we get the statement. 
�

Remark 3.24 If we assume that f ∈ N (B(0, r)) where B(0, r) is the open ball in
R
n+1 centered at 0 and of radius r > 0 and s ∈ B(0, r), then the proof of the above

theorem follows in a shorter way. Indeed, we have

(sB − Bp)(p2 − 2s0 p + |s|2)−1 =
∑
m≥0

s−1−mBpm, |p| < |s|.

So the left-hand side of (3.38) rewrites as

1

2π

∫

∂(G∩CI )

f (s)dsI
∑
m≥0

s−1−mBpm, |p| < |s|,

but

∑
m≥0

1

2π

∫

∂(G∩CI )

f (s)dsI s
−1−mBpm =

∑
m≥0

1

m! f
(m)(0)Bpm

and for functions in N (B(0, r)) the derivatives f (m)(0) are real numbers and so they
commute with B. We get

∑
m≥0

1

m! f
(m)(0)Bpm = B

∑
m≥0

1

m! f
(m)(0)pm = B f (p).

Wenowoffer a different proof of the theorem that shows that ( f g)(T ) = f (T )g(T ),
under suitable assumptions of f, g. Originally, see [19], the proof was based on the
Cauchy formula and the resolvent equations (3.7), (3.8).

Theorem 3.25 Let T ∈ B0,1(Vn) and assume f ∈ NσS(T ) and g ∈ SMσS(T ). Then
we have

( f g)(T ) = f (T )g(T ).

Proof Let σS(T ) ⊂ G1 and G2 be two T -admissible open sets such that G1 ∪ ∂G1 ⊂
G2 and G2 ∪ ∂G2 ⊂ U . Take p ∈ ∂(G1 ∩CI ) and s ∈ ∂(G2 ∩CI ) and observe that,
for I ∈ S, we have
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f (T )g(T ) = 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI S
−1
R (s, T )

×
∫

∂(G1∩CI )

S−1
L (p, T ) dpI g(p)

= 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

×
∫

∂(G1∩CI )

S−1
R (s, T )p(p2 − 2s0 p + |s|2)−1dpI g(p)

− 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

×
∫

∂(G1∩CI )

S−1
L (p, T )p(p2 − 2s0 p + |s|2)−1dpI g(p)

− 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

×
∫

∂(G1∩CI )

sS−1
R (s, T )(p2 − 2s0 p + |s|2)−1dpI g(p)

+ 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

×
∫

∂(G1∩CI )

sS−1
L (p, T )(p2 − 2s0 p + |s|2)−1dpI g(p)

where we have used the resolvent equation. But now observe that

1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

∫

∂(G1∩CI )

S−1
R (s, T )p(p2 − 2s0 p + |s|2)−1dpI g(p) = 0

and

− 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

∫

∂(G1∩CI )

sS−1
R (s, T )(p2 − 2s0 p + |s|2)−1dpI g(p) = 0.
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So it follows that

f (T )g(T ) = − 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

×
∫

∂(G1∩CI )

S−1
L (p, T )p(p2 − 2s0 p + |s|2)−1dpI g(p)

+ 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

×
∫

∂(G1∩CI )

sS−1
L (p, T )(p2 − 2s0 p + |s|2)−1dpI g(p)

which can be written as

f (T )g(T ) = 1

(2π)2

∫

∂(G2∩CI )

f (s) dsI

∫

∂(G1∩CI )

[
sS−1

L (p, T ) − S−1
L (p, T )p

]

× (p2 − 2s0 p + |s|2)−1dpI g(p).

Using Lemma 3.23 we get

f (T )g(T ) = 1

2π

∫

∂(G1∩CI )

S−1
L (p, T )dpI f (p) g(p)

which gives the statement. 
�
In the original proof of the above theorem we have used the fact that for functions

f ∈ NσS(T ) the left S-resolvent equation gives

f (T )Tm = 1

2π

∫

∂(U∩CI )

S−1
L (p, T )dpI f (p)pm

from which one obtains

f (T )Tmt−1−m = 1

2π

∫

∂(U∩CI )

S−1
L (p, T )dpI f (p)pmt−1−m .

By taking the sum and considering t ∈ ρS(T ), we have

f (T )S−1
L (t, T ) = 1

2π

∫

∂(U∩CI )

S−1
L (p, T )dpI f (p)S−1

L (t, p).

Using this equality and the Cauchy formula we obtain the statement.
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4 The Case of Commuting Operators and the Quaternionic Case

In this last section we state the resolvent equation in the case of commuting operators
and for the quaternionic functional calculus. We also take the occasion to make some
comments that show how the S-functional calculus turns out to be a natural extension
of the Riesz–Dunford functional calculus.

4.1 The Case of Several Commuting Operators

We denote by BC0,1(Vn) the subset of B0,1(Vn) consisting of operators in paravector
form T = T0 + e1T1 +· · ·+ enTn with commuting components Tj . Given an operator
T in paravector form, its so-called conjugateT is definedbyT = T0−e1T1−· · ·−enTn .
When T ∈ BC0,1(Vn) the operator T T is well defined and T T = T T = T 2

0 + T 2
1 +

· · · + T 2
n and T + T = 2T0.

Theorem 4.1 Let T ∈ BC0,1(Vn) and s ∈ R
n+1 be such that |s| < ‖T ‖. Then

∑
m≥0

Tms−1−m = (sI − T )(s2I − s(T + T ) + T T )−1, (4.1)

∑
m≥0

s−1−mTm = (s2I − s(T + T ) + T T )−1(sI − T ). (4.2)

The above theorem follows from the fact that the Cauchy kernels for slice hyper-
holomorphic functions can be written in two possible ways; see Sect. 2 and [15]. In
the case of commuting operators the two expressions are equivalent. The advantage
of this approach is that one can work with the so-called F-spectrum which is easier
to compute than the S-spectrum. In fact it can be computed over a complex plane CI ,
taking s = u+ Iv, and then extended toRn+1. This is a consequence of the fact that the
F-spectrum takes into account the commutativity of the operators Tj , j = 0, 1, ..., n.
The F-spectrum is suggested by Theorem 4.1 and it is described below.

Definition 4.2 (The F-spectrum and the F-resolvent sets) Let T ∈ BC0,1(Vn). We
define the F-spectrum of T as:

σF (T ) = {s ∈ R
n+1 : s2I − s(T + T ) + T T is not invertible}.

The F-resolvent set of T is defined by

ρF (T ) = R
n+1 \ σF (T ).

The main properties of the F-spectrum are similar to those of the S-spectrum as is
proved in the next results:

Theorem 4.3 (Structure of the F-spectrum) Let T ∈ BC0,1(Vn) and let p = p0 +
p1 I ∈ [p0 + p1 I ] ⊂ R

n+1 \ R, such that p ∈ σF (T ). Then all the elements of the
(n − 1)-sphere [p0 + p1 I ] belong to σF (T ).
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Theorem 4.4 (Compactness of the F-spectrum) Let T ∈ BC0,1(Vn). Then the F-
spectrum σF (T ) is a compact nonempty set. Moreover, σF (T ) is contained in {s ∈
R
n+1 : |s| ≤ ‖T ‖ }.
The relation between the S-spectrum and the F-spectrum is contained in the fol-

lowing result:

Proposition 4.5 Let T ∈ BC0,1(Vn). Then σF (T ) = σS(T ).

Definition 4.6 (The SC -resolvent operator) Let T ∈ BC0,1(V ) and s ∈ ρF (T ). We
define the SC -resolvent operator as

S−1
C,L(s, T ) := (sI − T )(s2I − s(T + T ) + T T )−1. (4.3)

S−1
C,R(s, T ) := (s2I − s(T + T ) + T T )−1(sI − T ). (4.4)

Theorem 4.7 Let T ∈ BC0,1(Vn) and s, p ∈ ρF (T ). Then S−1
C,L(s, T ) satisfies the

left S-resolvent equation

S−1
C,L(s, T )s − T S−1

C,L(s, T ) = I, (4.5)

and S−1
C,R(s, T ) satisfies the right S-resolvent equation

sS−1
C,R(s, T ) − S−1

C,R(s, T )T = I.

Moreover, for p �∈ [s], we have the resolvent equation

S−1
C,R(s, T )S−1

C,L(p, T ) = ((S−1
C,R(s, T ) − S−1

C,L(p, T ))p

− s(S−1
C,R(s, T ) − S−1

C,L(p, T )))(p2 − 2s0 p + |s|2)−1,

which can be written as

S−1
C,R(s, T )S−1

C,L(p, T ) = (s2 − 2p0s + |p|2)−1(s(S−1
C,R(s, T ) − S−1

C,L(p, T ))

− (S−1
C,R(s, T ) − S−1

C,L(p, T ))p). (4.6)

We conclude this subsection with a couple of considerations on the case of
unbounded operators.

(I) Suppose that T is a closed operator with domain D(T ). As one can clearly see,
the noncommutative version of S−1

L (s, T ), which is

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI),

is defined on the domain of T , and not on Vn as it is in the classical case. So we
have to consider the extension to Vn , writing S−1

L (s, T ) as follows:

Ŝ−1
L (s, T ) := −(T (T 2 − 2Re(s)T + |s|2I)−1 − (T 2 − 2Re(s)T + |s|2I)−1sI).

123



1966 D. Alpay et al.

In this case Ŝ−1
L (s, T ) turns out to be defined on Vn . Observe now that if T

is a closed operator with domain D(T ) and with commuting components, the
left S-resolvent operator S−1

C,L(s, T ) turns out to be already defined on Vn . For a
more detailed discussion, see the original papers [13,15]. In the case of the right
S-resolvent we have the opposite situation. With the above consideration the new
resolvent equation remains the same also for unbounded operators.

(II) The F-spectrum is also useful to define the so-called F-functional calculus; see
[5,16]. This calculus is defined using the Fueter–Sce–Qian mapping theorem in
integral form; see [22,32,34]. It is a hyperholomorphic functional calculus in
the spirit of the works of A. McIntosh, B. Jefferies and their coauthors who first
used the theory of hyperholomorphic functions, see [10,18,20,25], to define a
hyperholomorphic functional calculus for n-tuples of operators; see [27–29,31],
the monograph [26] and the references therein.

4.2 The Quaternionic Setting

The results proved in the paper can be rephrased also for the quaternionic functional
calculus. We point out that, in this case, slice hyperholomorphic functions are defined
on an open set U ⊆ H and have values in the quaternions H. The resolvent operators
are defined as in the Introduction of this paper. Here it is important to consider right
linear operators as well as left linear operators T . The possible formulations of the
quaternionic functional calculus have been carried out in [13]. The resolvent equations
in Theorem 3.8 hold in this setting, where instead of the paravector operator T =
T0 + T1e1 + · · · + Tnen we replace a quaternionic linear operator. We finally mention
one more analogy with the classical case. As is well known, the Laplace transform
of a semigroup et E (where for simplicity we take a bounded operator E defined on
a Banach space X ) is the resolvent operator (λI − E)−1. In the quaternionic case,
we have the analog result for the two S-resolvent operators. Let T ∈ B(V ) where V
is two-sided quaternionic Banach space and let s0 > ‖T ‖. Then the left S-resolvent
operator S−1

L (s, T ) is given by

S−1
L (s, T ) =

+∞∫

0

etT e−ts dt,

and S−1
R (s, T ) is given by

S−1
R (s, T ) =

+∞∫

0

e−tset T dt.

The theory of the quaternionic evolution operators is developed in [12] where is also
studied the case in which the generator is unbounded. Recently, the case of sectorial
operators has been treated in [24].
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