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Abstract We first extend Cheeger–Colding’s Almost Splitting Theorem (Ann Math
144:189–237, 1996) to smooth metric measure spaces. Arguments utilizing this exten-
sion show that if a smoothmetricmeasure space has almost nonnegative Bakry–Emery
Ricci curvature and a lower bound on volume, then its fundamental group is almost
abelian. Second, if the smoothmetricmeasure space has Bakry–EmeryRicci curvature
bounded from below then the number of generators of the fundamental group is uni-
formly bounded. These results are extensions of theorems which hold for Riemannian
manifolds with Ricci curvature bounded from below. The first result extends a result of
Yun (Proc Amer Math Soc 125:1517–1522, 1997), while the second extends a result
of Kapovitch and Wilking (Structure of fundamental groups of manifolds with Ricci
curvature bounded below, 2011).

Keywords Bakry–Emery Ricci curvature · Fundamental groups · Smooth metric
measure spaces
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1 Introduction

A smooth metric measure space is a triple (Mn, g, e− f dvolg), where Mn is a com-
plete n-dimensional Riemannian manifold equipped with metric g and volume den-
sity dvolg . The potential function f : Mn → R is smooth. Smooth metric measure
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spaces occur naturally as collapsed measured Gromov–Hausdorff limits of sequences

of warped products (Mn×Fm, gε, d̃volgε ) as ε → 0, where d̃volgε is the renormalized

Riemannian measure and gε = gM + (εe
− f
m )2gF is the warped product metric with

gM and gF the metrics on M and F , respectively. The Ricci curvature of the warped
product metric gε in the M direction is given by

Ricmf = Ric + Hess f − 1

m
d f ⊗ d f.

This leads to the definition of the m-Bakry–Emery Ricci tensor on the limit space as

Ricmf = Ric + Hess f − 1

m
d f ⊗ d f, 0 < m ≤ ∞.

When m = ∞, we have the Bakry–Emery Ricci tensor on (Mn, g, e− f dvolg) given
by

Ric f = Ric + Hess f.

Thus, the Bakry–Emery Ricci tensor is a natural analogue to Ricci curvature on
(Mn, g, e− f dvolg). This tensor has appeared in the work on diffusion processes by
Dominique Bakry and Michel Emery. Moreover, it occurs in the study of Ricci flow,
which was utilized most notably by Grigori Perelman in his proof of the Poincaré
conjecture.

Since topological and geometric information can be obtained for manifolds with
Ricci curvature bounded from below and Ric f = Ric when f is constant, it is natural
to ask if the same information holds true for smooth metric measure spaces with
Bakry–Emery Ricci tensor bounded from below. Indeed, this very question has been
at the center of an active field of research studied by many. In particular, GuofangWei
and Will Wylie have shown that when Ric f is bounded from below and, in addition,
either f is bounded or ∂r f ≥ −a for a ≥ 0 along minimal geodesics from a fixed
p ∈ M , then the mean curvature and volume comparison theorems can be extended
to the smooth metric measure space setting [19].

One important result which has already been extended to the smoothmetricmeasure
space setting is the Cheeger–Gromoll Splitting Theorem. Lichnerowicz [14] showed
that if Ric f ≥ 0 on M for bounded f , and M contains a line, then M = Nn−1 × R

and f is constant along the line. See also Wei–Wylie [19]. In fact, Fang et al. [9] have
shown that this holds when f is only bounded from above.

In this paper, we discuss the extension of the quantitative version of this theorem,
the Cheeger–Colding Almost Splitting Theorem, to the smooth metric measure space
setting.

A crucial step in the proof of theCheeger–Gromoll Splitting Theorem is to construct
a function b such that |∇b| = 1 and Hess b ≡ 0. In the proof of the Cheeger–Colding
Almost Splitting Theorem, one constructs a harmonic function b whose Hessian is
small in the L2-sense ([4, Proposition 6.60]). In order to extend the Almost Splitting
Theorem to smooth metric measure spaces following Cheeger–Colding’s proof, we
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also construct f -harmonic functions b± and obtain for these functions an L2-Hessian
estimate with respect to the conformally changed volume density e− f dvolg .

Theorem 1.1 Given R > 0, L > 2R + 1 and ε > 0, let p, q+, q− ∈ Mn. If
(Mn, g, e− f dvolg) satisfies

| f | ≤ k, (1.1)

Ric f ≥ −(n − 1)H (H ≥ 0), (1.2)

min{d(p, q+), d(p, q−)} ≥ L , (1.3)

e(p) = d(p, q+) + d(p, q−) − d(q+, q−) ≤ ε, (1.4)

then

−
∫

B(p, R2 )

|Hess b±|2e− f dvolg ≤ �(H, L−1, ε|k, n, R). (1.5)

The functions � and b± in Theorem 1.1 are defined in (2.11), and (2.12), respec-
tively. With the L2-Hessian estimate (1.5), one may then obtain a type of Pythagorean
Theorem from which the Almost Splitting Theorem will follow.

Feng Wang and Xiaohua Zhu also have an L2-Hessian estimate and Almost Split-
ting Theorem for Bakry–Emery Ricci curvature bounded from below [20]. In Wang
and Zhu’s version, the Hessian estimate assumes that the gradient of the potential
function, rather than the potential function itself, is bounded. Wang and Zhu’s Almost
Splitting Theorem [20, Theorem 3.1] assumes that both the potential functions and
their gradients are bounded, whereas our Theorem 2.10 assumes only that the potential
functions are bounded.

The hypotheses for the Hessian estimates and Almost Splitting Theorem of these
two papers differ due in part to the gradient estimates used by the authors. In Cheeger–
Colding’s proof of the L2-Hessian estimate in theRiemannian setting, a cutoff function
φ is used. This cutoff function φ has the property that |∇φ| and |�φ| are bounded
by constants depending only on n, H, R. The construction of this cutoff function in
the Riemannian case relies on the gradient of a function being bounded away from
the boundary of a ball. This boundedness is guaranteed by the Cheng–Yau gradient
estimate. The gradient estimate obtained by Wang and Zhu requires that the gradient
of the potential function is bounded. The gradient estimate obtained here requires that
the potential function itself is bounded. More precisely, we prove:

Theorem 1.2 Let (Mn, g, e− f dvol) be a complete smoothmetric measure space with
| f | ≤ k and Ric f ≥ −(n − 1)H2 where H ≥ 0. If u is a positive function defined on
B(q, 2R) with � f u = c, for a constant c ≥ 0, then for any q0 ∈ B(q, R), we have

|∇u| ≤
√
c1(n, k, H, R) sup

p∈B(q;2R)

u(p)2 + c2(c, n) sup
p∈B(q;2R)

u(p).
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Theorem 1.2 follows directly from Theorem 2.2, which is an extension of Kevin
Brighton’s gradient estimate for f -harmonic functions in [3] to functions u such that
� f u = c for any nonnegative constant c. We are not sure if the estimate holds true
when c < 0.

The Almost Splitting theorem will allow us to generalize the arguments in the
proofs of two results on the fundamental group of Riemannianmanifolds to the smooth
metric measure space setting. The first result is an extension of a theorem of Yun [21].
Yun’s result asserts that the fundamental group of a Riemannian manifold with almost
nonnegative Ricci curvature, diameter bounded from above, and volume bounded
from below is almost abelian. This result is a strengthening of a theorem of Wei [16]
which shows that under the same conditions π1(M) has polynomial growth. In order
to extend Yun’s theorem, we first develop an absolute volume comparison, Proposition
3.2, which allows us to extend Wei’s theorem to smooth metric measure spaces. We
then follow Yun’s argument, utilizing the Almost Splitting Theorem, to obtain the
following result.

Theorem 1.3 For any constants D, k, v > 0, there exists ε = ε(D, k, n, v) > 0
such that if a smooth metric measure space (Mn, g, e− f dvolg) with | f | ≤ k admits
a metric under which it satisfies the conditions

Ric f ≥ −ε, (1.6)

diam(M) ≤ D, (1.7)

Vol f (M) ≥ v, (1.8)

thenπ1(M) is almost abelian, i.e.,π1(M) contains an abelian subgroup of finite index.

The next result is an extension of Kapovitch and Wilking’s Theorem 3 of [13]
which gives a uniform bound on the number of generators of π1(M) for the class of
n-dimensional manifolds Mn with Ric ≥ −(n − 1) and diam(M, g) ≤ D, for given
n and D. A uniform bound had been given previously in the case when the conjugate
radius is bounded from below [17]. An extension of this theorem to the smooth metric
measure space setting is as follows.

Theorem 1.4 Given n, D, and k, there is a constant C = C(n, D, k) > 0 such that
the following holds. Let (Mn, g, e− f dvolg) be a smooth metric measure space with

| f | ≤ k, (1.9)

diam M ≤ D, (1.10)

Ric f ≥ −(n − 1). (1.11)

Then π1(M) is generated by at most C elements.

Remark When m 
= ∞ and Ricmf is bounded from below, comparison theorems hold
with no additional assumptions on f ; see Qian [15]; see also Wei–Wylie [18]. Due
to this fact, there are versions of our theorems for Ricmf bounded from below with no
additional assumptions on f .
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The remaining sections of this paper are structured as follows. In Sect. 2, we discuss
the extension of the Almost Splitting Theorem, along with the essential tools which
allow one to extend to the smooth metric measure space setting. These essential tools
include the f -Laplacian Comparison, Gradient Estimate, Segment Inequality, and the
Quantitative Maximum Principle for smooth metric measure spaces. We will also
provide a proof of the key Hessian estimate, Theorem 1.1. In Sect. 3, we develop an
absolute volume comparison which is used to extend Wei’s theorem to the smooth
metric measure space setting. In Sects. 4 and 5 we discuss the proofs of Theorems 1.3
and 1.4, respectively.

2 The Almost Splitting Theorem for Smooth Metric Measure Spaces

As indicated in the Introduction, an essential tool in establishing the Almost Splitting
Theorem for smoothmetricmeasure spaces will be theHessian estimate, Theorem 1.1.
In order to obtain the original estimate, other essential tools, including the Laplacian
Comparison, Cheng–Yau Gradient Estimate [8], and Abresch–Gromoll Inequality [1],
were utilized. Cheeger and Colding also developed key tools, such as the Segment
Inequality [4, Theorem 2.11]. With the extension of such tools to the smooth metric
measure space setting, we can generalize the arguments of Cheeger and Colding [4];
see also [7].

In order to extend the essential tools mentioned above, one must integrate with
respect to the measure e− f dvolg . In addition, one must replace the Laplace–Beltrami
operator on Riemannian manifolds with its natural analog on smooth metric measure
spaces. This analog is the f -Laplacian, defined for functions u ∈ C2(M) by

� f (u) = �(u) − 〈∇u,∇ f 〉.

This operator is natural in the sense that it is self-adjoint with respect to the measure
e− f dvolg .

From theWei–WylieMeanCurvature Comparison [19, Theorem 1.1] and definition
of the f -Laplacian, one immediately obtains the following f -Laplacian comparison.

Proposition 2.1 ( f -Laplacian Comparison) Suppose Ric f ≥ (n−1)H with | f | ≤ k.
Let �n+4k

H denote the Laplacian of the simply connected model space of dimension
n + 4k with constant sectional curvature H. Then for radial functions u,

(1) � f (u) ≤ �n+4k
H u if u′ ≥ 0,

(2) � f (u) ≥ �n+4k
H u if u′ ≤ 0.

Using the definition of the f -Laplacian and the classical Bochner formula on Rie-
mannian manifolds, one also immediately obtains a Bochner formula for smooth met-
ric measure spaces

1

2
� f (|∇u|2) = |Hess u|2 + 〈∇u,∇� f u〉 + Ric f (∇u,∇u), (2.1)
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for any u ∈ C3(M). This Bochner formula allows us to obtain the following gradient
estimate.

Proposition 2.2 (Gradient Estimate) Let (Mn, g, e− f dvol) be a complete smooth
metric measure space with Ric f ≥ −(n − 1)H2 where H ≥ 0. If u is a positive
function defined on B(q, 2R) with � f u = c, c ≥ 0, then for any q0 ∈ B(q, R), we
have

|∇u| ≤
√
c1(α, n, H, R) sup

p∈B(q;2R)

u(p)2 + c2(c, n) sup
p∈B(q;2R)

u(p)

where α = maxp∈p:d(p,q)=r0 � f r(p) for any r0 ≤ R and r(p) = d(p, q).

Note that in the above gradient estimate we make no assumption on the potential
function f . We include a sketch of the proof below, which modifies the proof of
Brighton’s gradient estimate for f -harmonic functions in [3] to consider the case of
� f u = c, for a positive constant c.

Proof Let h = uε where ε ∈ (0, 1). Applying (2.1) to h gives

1

2
� f |∇h|2 = |Hess h|2 + 〈∇h,∇(� f h)〉 + Ric f (∇h,∇h).

Using the Schwarz inequality, we have

|Hess h|2 ≥ |�h|2
n

= 1

n
(� f h + 〈∇ f,∇h〉)2

= 1

n

(
εuε−1� f u + (ε − 1)|∇h|2

εh
+ 〈∇ f,∇h〉

)2

= 1

n

(
εuε−1c + (ε − 1)|∇h|2

εh
+ 〈∇ f,∇h〉

)2

where in the last equality we used the fact that� f u = c. This, together with the lower
bound on the Bakry–Emery Ricci tensor, gives

1

2
� f |∇h|2 ≥ (ε − 1)2

ε2h2n
|∇h|4 + 2c(ε − 1)

h1/εn
|∇h|2 + 2(ε − 1)

εhn
|∇h|2〈∇ f,∇h〉

+ ε2c2

n
(h2−2/ε) + 2cε

n
(h1−1/ε)〈∇ f,∇h〉 + 1

n
〈∇ f,∇h〉2

+ (ε − 1)

εh
〈∇h,∇|∇h|2〉 − (ε − 1)

εh2
|∇h|4 + c(ε − 1)

h1/ε
|∇h|2

− (n − 1)H2|∇h|2. (2.2)

In order to control the mixed term 2 (ε−1)
εhn |∇h|2〈∇ f,∇h〉 in (2.2), we consider two

cases according to whether |∇h|2 dominates over〈∇h,∇ f 〉, or vice versa. In the first
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case, suppose that p ∈ B(q, 2R) such that 〈∇h,∇ f 〉 ≤ a |∇h|2
h for some a > 0 to be

determined. At this point we have

1

2
� f |∇h|2a ≥

[
(ε − 1)2 + 2ε(ε − 1)a − ε(ε − 1)n

ε2n

] |∇h|4
h2

+
[
c(ε − 1)(2 + n)

n

] |∇h|2
h1/ε

+1

n
(εch1−1/ε +〈∇ f,∇h〉)2+ ε − 1

εh
〈∇h,∇|∇h|2〉−(n−1)H2|∇h|2

≥
[
(ε − 1)2+2ε(ε − 1)a − ε(ε − 1)n

ε2n

] |∇h|4
h2

+
[
c(ε − 1)(2 + n)

n

] |∇h|2
h1/ε

+ε − 1

εh
〈∇h,∇|∇h|2〉 − (n − 1)H2|∇h|2. (2.3)

In the case that p ∈ B(q, 2R) such that 〈∇h,∇ f 〉 ≥ a |∇h|2
h , we have

1

2
� f |∇h|2 ≥

[
(ε − 1)2 − ε(ε − 1)n

ε2n

] |∇h|4
h2

+
[
c(ε − 1)(2 + n)

n

] |∇h|2
h1/ε

+
[
2(ε − 1) + εa

εna

]
〈∇ f,∇h〉2 + ε2c2

n
(h2−2/ε) + 2cεa

nh1/ε
|∇h|2

+ ε − 1

εh
〈∇h,∇|∇h|2〉 − (n − 1)H2|∇h|2

≥
[
(ε − 1)2 − ε(ε − 1)n

ε2n

] |∇h|4
h2

+
[
c(ε − 1)(2 + n)

n

] |∇h|2
h1/ε

+
[
2(ε−1)+ εa

εna

]
〈∇ f,∇h〉2+ ε−1

εh
〈∇h,∇|∇h|2〉 − (n−1)H2|∇h|2.

(2.4)

Note that in (2.4) the assumption that c ≥ 0 is necessary to have 2cεa
nh1/ε

|∇h|2 ≥ 0
which allows us to obtain the second inequality.

As in Brighton’s proof, we see that choosing ε = 7
8 and a = 1

2 will make the

coefficient of the |∇h|4
h2

term positive in both cases. This choice also gives a positive

coefficient of the 〈∇ f,∇h〉2 term in the second case. With this choice of ε and a, we
see that for every p ∈ B(q, 2R), we have

1

2
� f |∇h|2 ≥ 7n − 6

49n

|∇h|4
h2

− c(2 + n)

8n

|∇h|2
h8/7

− 1

7h
〈∇h,∇|∇h|2〉

−(n − 1)H2|∇h|2. (2.5)
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Let g : [0, 2R] → [0, 1] have the properties
• g|[0,R] = 1
• supp(g) ⊆ [0, 2R)

• −K
R

√
g ≤ g′ ≤ 0

• |g′′| ≤ K
R2

where the last two properties hold for some K > 0. Define φ : B(q, 2R) → [0, 1] by
φ(x) = g(d(x, q)). Set G = φ|∇h|2. Then (2.5) can be written as

1

φ
� f G ≥ G

φ2� f φ + 2〈∇φ

φ
,
∇G

φ
− ∇φ

φ2 G〉 + 14n − 12

49nh2
G2

φ2

− c(2 + n)

4nh8/7
G

φ
− 2

7h
〈∇h,

∇G

φ
− ∇φ

φ2 G〉 − 2(n − 1)H2G

φ
. (2.6)

Next, we consider the point q0 ∈ B(q, 2R) at whichG achieves its maximum. At such
a point, (2.6) can be rewritten as

14n − 12

49nh2
G≤−� f φ + 2〈∇φ

φ
,∇φ〉+ c(2 + n)

4nh8/7
φ − 2

7h
〈∇h,∇φ〉 + 2(n − 1)H2φ.

(2.7)

If q0 ∈ B(q, R), then (2.7) can be rewritten as

|∇u|2 ≤ 8c(2 + n)

7n − 6
u + 64n(n − 1)

7n − 6
H2u2 (2.8)

when evaluated at q0.
If q0 ∈ B(q, 2R)\ B(q, R), one uses the mean curvature comparison [19, Theorem

2.1], the properties of φ, and (2.7) to obtain

|∇u|2 ≤ 64

13n − 12

[
KαR + K + 3K 2

R2 + 2(K + 1)(n − 1)H2
]
u2+ 16c(2 + n)

n(13n − 12)
u

(2.9)

at the point q0.
Taking the supremumof u and u2 over B(q, 2R) in (2.8) and (2.9) yields the desired

form of the gradient estimate. ��
Remark Since for our purposes the potential function is bounded, that is | f | ≤ k, we
may use the f -Laplacian comparison, Proposition 2.1, to modify the above gradient
estimate, Proposition 2.2, slightly. By setting r0 = R/2wemay apply the f -Laplacian
comparison directly to α to obtain

α ≤ (n + 4k − 1)H coth(HR/2).
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Alternatively, we may use Proposition 2.1 in place of the Wei–Wylie mean curvature
comparison [19, Theorem 2.1] when obtaining (2.9). In that case,

� f r(q0) ≤ (n + 4k − 1)H coth(Hr(q0)) ≤ (n + 4k − 1)H coth(HR)

since R ≤ r(q0) ≤ 2R. In either case, one will obtain a gradient estimate as in
Theorem 1.2 which is no longer dependent upon α.

Note that Proposition 2.2 only holds for nonnegative c. If we consider the case
c < 0, the term 2cε

n (h1−1/ε)〈∇ f,∇h〉 in (2.2) becomes problematic. In particular,
when p ∈ B(q, 2R) is such that 〈∇h,∇ f 〉 dominates over |∇h|2, we replace the term
2(ε−1)

εhn |∇h|2〈∇ f,∇h〉 by 2(ε−1)
εhna 〈∇ f,∇h〉2. In order to control this term, we group it

with 1
n 〈∇ f,∇h〉2. Then we can no longer group the 〈∇ f,∇h〉 term with other terms

to create a perfect square, as in (2.3). Moreover, since its coefficient is negative, we
must keep this term in the estimate. Thus, without any additional assumptions, such
as a bound on |∇ f |, there is no way to control this term. As noted in the Introduction,
the assumption of a bound on | f | rather than a bound on |∇ f | in this gradient estimate
is one of the reasons for the difference in hypotheses of the Almost Splitting Theorem
of Wang and Zhu [20, Theorem 3.1] and Theorem 2.10.

Finally, in order to convert estimates of integrals of functions over a ball to estimates
of integrals of functions along a geodesic segment, we need a Segment Inequality
similar to that developed by Cheeger and Colding in [4, Theorem 2.11].

Proposition 2.3 (Segment Inequality) Let (Mn, g, e− f dvolg) be a smooth metric
measure space with Ric f ≥ (n − 1)H and | f (x)| ≤ k. Let A1, A2 ∈ Mn be open
sets and assume for all y1 ∈ A1, y2 ∈ A2, there is a minimal geodesic, γy1,y2 from y1
to y2, such that for some open set, W ,

⋃
y1,y2

γy1,y2 ⊂ W.

If vi is a tangent vector at yi , i = 1, 2, and |vi | = 1, set

I (yi , vi ) = {t |γ (t) ∈ Ai+1, γ |[0, t] is minimal, γ ′(0) = vi }.

Let |I (yi , vi )| denote the measure of I (yi , vi ) and put

D(Ai , Ai+1) = sup
y1,y2

|I (yi , vi )|.

Here A2+1 := A1. Let h be a nonnegative integrable function on M. Let D =
max d(y1, y2). Then

∫

A1×A2

d(y1,y2)∫

0

h(γy1,y2(s))ds(e
− f dvolg)

2 ≤ c(n + 4k, H, D)[D(A1, A2)Vol f (A1)
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+ D(A2, A1)Vol f (A2)] ×
∫

W

he− f dvolg

where c(n+4k, H, D) = sup0<s/2≤u≤s An+4k
H (s)/An+4k

H (u), whereAn+4k
H (r)denotes

the area element on ∂B(r) in themodel spacewith constant curvature H anddimension
n + 4k.

To obtain this result for smooth metric measure spaces one may follow the argu-
ments of the proof in the original setting as given by Cheeger and Colding in [4,
Theorem 2.11]. In the smooth metric measure space setting, integrals are computed
with respect to the conformally changed volume element, e− f dvolg , and we useWei–
Wylie’s volume element comparison which follows from [19, Theorem 1.1].

Finally, the Abresch–Gromoll QuantitativeMaximal Principle was necessary in the
proof of the Abresch–Gromoll inequality and also in obtaining an appropriate cutoff
function needed to prove the Hessian estimate. Since this proof varies slightly from
the exposition contained in Abresch–Gromoll [1] or Cheeger’s [7] works, we retain
the proof here.

Proposition 2.4 (Quantitative Maximal Principle) If Ric f ≥ (n − 1)H, (H ≤
0), | f | ≤ k and U : B(y, R) ⊂ Mn → R is a Lipschitz function with

(1) Lip(U ) ≤ a,U (y0) = 0 for some y0 ∈ B(y, R),
(2) � f U ≤ b in the barrier sense, U |∂B(y,R) ≥ 0.

ThenU (y) ≤ ac+bGR(c) for all 0 < c < R, where GR(r(x)) is the smallest function
on the model space Mn+4k

H such that:

(1) GR(r) > 0,G ′
R(r) < 0 for 0 < r < R

(2) �HGR ≡ 1 and GR(R) = 0.

Proof Let GR(r) be the comparison function in the model space Mn+4k
H as given in

the statement of the theorem. By the f -Laplacian Comparison, one has

� f GR ≥ �n+4k
H GR = 1.

Consider the function V = bGR −U . Then

� f V = b� f GR − � f U ≥ b�n+4k
H GR − � f U = b − � f U ≥ 0.

Then the maximal principle on V : A(y, c, R) → R gives

V (x) ≤ max{V |∂B(y,R), V |∂B(y,c)}

for all x ∈ A(y, c, R). By assumption, we have

V |∂B(y,R) = bGR |∂B(y,R) −U |∂B(y,R) ≤ 0
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and

V (y0) = bGR(y0) −U (y0) = bGR(y0) > 0.

Then there are two cases.
If y0 ∈ A(y, c, R), then max V |∂B(y,c) > 0 so V (y′) > 0 for some y′ ∈ ∂B(y, c).

Since

U (y) −U (y′) ≤ a · d(y, y′) = ac

and

bGR(c) −U (y′) = V (y′) > 0,

it follows that

U (y) ≤ ac +U (y′) ≤ ac + bGR(c).

On the other hand, if d(y, y0) ≤ c, we may use the Lipschitz condition directly:

U (y) = U (y) −U (y0) ≤ a · d(y, y0) ≤ ac ≤ ac + bGR(c).

In either case, we have U (y) ≤ ac + bGR(c) for all 0 < c < R, as desired. ��
For any point x ∈ M , the excess function at x is given by

e(x) = d(x, q+) + d(x, q−) − d(q+, q−), (2.10)

where q+, q− ∈ M are fixed. For the excess function, we have the following Abresch–
Gromoll Inequality, which gives an upper bound on the excess function in terms of a
function

� = �(ε1, . . . , εk |c1, . . . , cN ) (2.11)

such that � ≥ 0 and for any fixed c1, . . . , cN ,

lim
ε1,...,εk→0

� = 0.

Such εi , ci will be given explicitly below.

Proposition 2.5 (Abresch–Gromoll Inequality)Given R > 0, L > 2R+1 and ε > 0,
for any p, q+, q− ∈ Mn, if (1.1)–(1.4) hold, then

e(x) ≤ �(H, L−1, ε|n, k, R)

on B(p, R).
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Proof Theproof of theAbresch–Gromoll Inequality for smoothmetricmeasure spaces
runs parallel to the proof one finds in Cheeger [7, Theorem 9.1], with the modification
that one uses the Quantitative Maximal Principle 2.4 together with the f -Laplacian
Comparison 2.1 in place of their Riemannian counterparts. ��

We note that an excess estimate for smooth metric measure spaces with Ric f ≥ 0
and | f | ≤ k is given in Theorem 6.1 of Wei–Wylie [19].

For fixed p, q+, q− ∈ M , define the function b± : M → R by

b±(x) = d(x, q±) − d(p, q±).

Let b± : M → R be the function such that

� f b± = 0 and b±
∣∣
∂B(p,R)

= b±
∣∣
∂B(p,R)

. (2.12)

Lemma 2.6 Given R > 0, L > 2R + 1 and ε > 0, for any p, q+, q− ∈ Mn, if
(1.1)–(1.4) hold then on B(p, R),

|b± − b±| ≤ �(H, L−1, ε|n, k, R). (2.13)

Proof The Abresch–Gromoll Inequality 2.5 along with the f -Laplacian Comparison
2.1 and the Maximal Principle 2.4 allow one to follow the proof of [4, Lemma 6.15]
to obtain the above. ��
Lemma 2.7 Given R > 0, L > 2R + 1 and ε > 0, for any p, q+, q− ∈ Mn, if
(1.1)–(1.4) hold then

−
∫

B(p,R)

|∇b± − ∇b±|2 e− f dvol ≤ �(H, L−1, ε|n, k, R). (2.14)

Proof Use the above pointwise estimate on b±, Lemma 2.6, along with the Gradient
Estimate, Theorem 2.2, and integration by parts to obtain (2.14). ��

Lemmas 2.6 and 2.7 now allow one to obtain the key estimate for Hess b±. The
proof of the Hessian estimate is retained below for completeness. We will now prove
Theorem 1.1.

Proof of Theorem 1.1Applying the Bochner formula (2.1) to the f -harmonic function
b± yields

1

2
� f |∇b±|2 = |Hess b±|2 + Ric f (∇b±,∇b±).

Multiply by a cutoff function φ that has the following properties:

• φ
∣∣
B(p, R2 )

≡ 1,

• supp(φ) ⊂ B(p, R),
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• |∇φ| ≤ C(n, H, R, k),
• |� f φ| ≤ C(n, H, R, k).

To construct such a cutoff function, one begins with a function h : A(p, R
2 , R) → R

such that � f h ≡ 1, h|
∂B(p, R2 )

= GR(R/2), h|∂B(p,R) = 0, where GR is as specified

in Proposition 2.4. Then letψ : [0,GR(R/2)] → [0, 1] such thatψ is 1 nearGR(R/2)
andψ is 0 near 0. The function φ = ψ(h) extended to all of M by setting φ = 1 inside
B(p, R/2) and φ = 0 outside of B(p, R), is the cutoff function desired. The gradient
estimate 1.2 guarantees that |∇φ| and |� f φ| are bounded away from the boundary of
the annulus on which h was originally defined.

Then the above equation may be rewritten as

φ|Hess b±|2 = 1

2
φ� f |∇b±|2 − φRic f (∇b±,∇b±).

Integrating both sides of this equality over B(p, R) gives

∫

B(p,R)

φ|Hess b±|2e− f dvolg =
∫

B(p,R)

(
1

2
φ� f |∇b±|2−φRic f (∇b±,∇b±)

)
e− f dvolg

≤
∫

B(p,R)

(
1

2
φ� f |∇b±|2+(n − 1)H |∇b±|2

)
e− f dvolg

= 1

2

∫

B(p,R)

φ� f |∇b±|2e− f dvolg

+
∫

B(p,R)

(n − 1)H |∇b±|2e− f dvolg.

For the first integrand, we have

∫

B(p,R)

φ� f |∇b±|2e− f dvolg =
∫

B(p,R)

φ� f (|∇b±|2 − 1)e− f dvolg

=
∫

B(p,R)

� f φ(|∇b±|2 − 1)e− f dvolg.

Thus
∫

B(p,R)

φ|Hess b±|2e− f dvolg ≤
∫

B(p,R)

[
1

2
� f φ(|∇b±|2−1)+(n−1)H |∇b±|2

]
e− f dvolg

e− f dvolg

≤
∫

B(p,R)

[
1

2
|� f φ|||∇b±|2−1|+(n−1)H |∇b±|2

]
e− f dvolg .
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Since |∇b±| = 1,

||∇b±|2 − 1| = ||∇b±| − |∇b±||(|∇b±| + 1) ≤ |∇b± − ∇b±|(|∇b±| + 1),

we have

−
∫

B(p,R)

φ|Hess b±|2e− f dvolg ≤ �.

��
This Hessian estimate is important because it, together with the Segment Inequality,

Proposition 2.3, allows us to extend the Quantitative Pythagorean Theorem, stated as
Lemma 9.16 in Cheeger [7], to the smooth metric measure space setting as follows.

Proposition 2.8 (Quantitative Pythagorean Theorem)Given R > 0, L > 2R+1 and
ε > 0, for any p, q+, q− ∈ Mn, assume (1.1)–(1.4) hold. Let x, z, w ∈ B(p, R

8 ),

with x ∈ b
−1
+ (a), and z a point on b

−1
+ (a) closest to w. Then |d(x, z)2 + d(z, w)2 −

d(x, w)2| ≤ �.

From this Quantitative Pythagorean Theorem for smooth metric measure spaces,
one may establish the following Almost Splitting Theorem.

Theorem 2.9 (Almost Splitting Theorem) Given R > 0, L > 2R + 1 and ε > 0,
let p, q+, q− ∈ Mn. If (Mn, g, e− f dvolg) satisfies (1.1)–(1.4), then there is a length
space X such that for some ball B((0, x), R

4 ) ⊂ R × X with the product metric, we
have

dGH

(
B

(
p,

R

4

)
, B

(
(0, x),

R

4

))
≤ �(H, L−1, ε|k, n, R).

From this Almost Splitting Theorem for smooth metric measure spaces, it follows
that the splitting theorem extends to the limit of a sequence of smooth metric measure
spaces in the following manner.

Theorem 2.10 Let (Mn
i , gi , e− fi dvolgi ) be a sequence satisfying the following:

Mn
i → Y,Ric fi Mi ≥ −(n − 1)δi , where δi → 0, | fi | ≤ k. If Y contains a line,

then Y splits as an isometric product, Y = R × X for some length space X.

Again, we note that a splitting theorem for limit spaces of sequences of smooth
metric measure spaces has been proven by Wang–Zhu; see [20, Theorem 3.1]. The
gradient estimate, Proposition 2.2, used for the proof of our Theorem 2.10 allows us
to relax the conditions on the potential functions in the sequence, requiring only that
the | fi | for each i are bounded, rather than both | fi | and |∇ fi | as in Theorem 3.1 of
Wang–Zhu.
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3 Polynomial Growth of the Fundamental Group

Asmentioned in the Introduction, the first theoremwhich we wish to extend to smooth
metric measure spaces, Yun’s theorem [21,Main Theorem], is actually a strengthening
of Wei’s theorem [16].

Theorem 3.1 [16, Theorem 1] For any constant v > 0, there exists ε = ε(n, v) > 0
such that if a complete manifold Mn admits a metric satisfying the conditions
Ric ≥ −ε, diam(M) = 1, and Vol(M) ≥ v, then the fundamental group of M is
of polynomial growth with degree ≤ n.

Yun uses the existence of such ε to construct a contradicting sequence of Rie-
mannian manifolds Mi such that Ric(Mi ) ≥ −εi → 0, where εi ≤ ε,Vol(Mi ) ≥ v,
and diam(Mi ) ≤ D but π1(Mi ) is not almost abelian. It is with this sequence that Yun
utilizes the Almost Splitting Theorem. If we wish to generalize his arguments to the
smooth metric measure space setting, we should also establish the existence of such
an ε for smooth metric measure spaces.

Wei’s proof of Theorem 3.1 requires use of the Bishop–Gromov absolute volume
comparison. The relative volume comparison on smooth metric measure spaces for-
mulated in [19, Theorem 1.2b] only yields a volume growth estimate for R > 1 since,
as noted by Wei and Wylie, the right-hand side of

Vol f (B(p, R))

V n+4k
H (R)

≤ Vol f (B(p, r))

V n+4k
H (r)

blows up as r → 0. Using this type of estimate to extend Wei’s proof methods
to the smooth metric measure space setting would require additional assumptions.
Moreover, using this comparison will yield polynomial growth of degree n + 4k. In
order to improve the degree with only the additional assumption that | f | ≤ k, we
formulate the following volume estimate.

Proposition 3.2 Let (Mn, g, e− f dvolg) be a smooth metric measure space with
Ric f ≥ (n − 1)H, H < 0, and | f | ≤ k. Let p ∈ M. Then

Vol f (B(p, R)) ≤ k

R∫

0

AH (r)e2k[cosh(2
√−Hr)+1]dr, (3.1)

whereAH (r)dr denotes the volume element on the model space with constant curva-
ture H.

Proof Let snH (r) be the solution to sn′′
H + HsnH = 0 such that snH (0) = 0 and

sn′
H (0) = 1. When H < 0, this solution is given by

1√−H
sinh

√−Hr. (3.2)
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From the proof [Theorem 1.1, inequality (2.17)] [19] we get

sn2H (r)m f (r) ≤ sn2H (r)mH (r) − f (r)(sn2H (r))′ +
r∫

0

f (t)(sn2H )′′(t)dt. (3.3)

Then integrating both sides of (3.3) from r = r1 to r2 gives

r2∫

r1

m f (r)dr ≤
r2∫

r1

mH (r)dr −
r2∫

r1

f (r)
(sn2H (r))′

sn2H (r)
dr

+
r2∫

r1

1

sn2H (r)

⎧⎨
⎩

r∫

0

f (t)(sn2H )′′(t)dt

⎫⎬
⎭ dr

=
r2∫

r1

mH (r)dr − 2
√−H

r2∫

r1

f (r) coth
√−Hrdr

+2(−H)

r2∫

r1

csch2
√−Hr

⎧⎨
⎩

r∫

0

f (t)[sinh2 √−Ht

+ cosh2
√−Ht]dt

}
dr

=
r2∫

r1

mH (r)dr − 2
√−H

r2∫

r1

f (r) coth
√−Hrdr

+2(−H)

r2∫

r1

csch2
√−Hr

⎧⎨
⎩

r∫

0

f (t) cosh 2
√−Htdt

⎫⎬
⎭ dr

=
r2∫

r1

mH (r)dr − 2
√−H

r2∫

r1

f (r) coth
√−Hrdr

+2(−H)

⎡
⎣−coth

√−Hr√−H

r∫

0

f (t) cosh 2
√−Htdt

⎤
⎦
r2

r1

+4(−H)

r2∫

r1

coth
√−Hr√−H

f (r) sinh2
√−Hrdr

+2(−H)

r2∫

r1

coth
√−Hr√−H

f (r)dr
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≤
r2∫

r1

mH (r)dr + k coth
√−Hr2 sinh 2

√−Hr2

+k coth
√−Hr1 sinh 2

√−Hr1
+2k[sinh2 √−Hr2 − sinh2

√−Hr1]

=
r2∫

r1

mH (r)dr + 2k[cosh(2√−Hr2) + 1],

where the first equality is obtained by substituting (3.2) for snH , and the third equality
is obtained through integration by parts.

Using exponential polar coordinates around p, wemaywrite the volume element of
M asA(r, θ) ∧ dθn−1 where dθn−1 is the standard volume element of the unit sphere
S
n−1. Let A f (r, θ) = e− fA(r, θ) and AH (r) denotes the volume element for the

model space with constant curvature H . The mean curvatures on the smooth metric
measure space and on the model space can be written, respectively, as

m f (r) = (ln(A f (r, θ))′ and mH (r) = (ln(AH (r))′.

Then we may rewrite the above inequality as

ln

(A f (r2, θ)

A f (r1, θ)

)
≤ ln

(AH (r2)

AH (r1)

)
+ 2k[cosh(2√−Hr2) + 1].

Hence

A f (r2, θ)

A f (r1, θ)
≤ AH (r2)

AH (r1)
e2k[cosh(2

√−Hr2)+1].

Then

A f (r2, θ)AH (r1) ≤ AH (r2)A f (r1, θ)e2k[cosh(2
√−Hr2)+1].

Integrating both sides of the inequality over S
n−1 with respect to θ yields

AH (r1)
∫

Sn−1

A f (r2, θ)dθ ≤ AH (r2)e
2k[cosh(2√−Hr2)+1]

∫

Sn−1

A f (r1, θ)dθ.

Then we integrate both sides of the inequality with respect to r1 from r1 = 0 to
r1 = R1:

VolH (B(R1))

∫

Sn−1

A f (r2, θ)dθ ≤ Vol f (B(p, R1))AH (r2)e
2k[cosh(2√−Hr2)+1].

Finally, we integrate both sides of the inequality with respect to r2 from r2 = 0 to
r2 = R2:
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VolH (B(R1))Vol f (B(p, R2)) ≤ Vol f (B(p, R1))

R2∫

0

AH (r2)e
2k[cosh(2√−Hr2)+1]dr2,

thus yielding a new volume inequality:

VolH (B(R1))

Vol f (B(p, R1)
≤
∫ R2
0 AH (r2)e2k[cosh(2

√−Hr2)+1]dr
Vol f (B(p, R2))

.

Note that the left-hand side of the inequality tends to 1
f (p) as R1 → 0. Then

Vol f (B(p, R2)) ≤ f (p)

R2∫

0

AH (r2)e
2k[cosh(2√−Hr2)+1]dr2.

��
Using Prop 3.2, we may extend M. Anderson’s Theorem 2.1 and Theorem 2.2 of

[2] to the smooth metric measure space setting.

Proposition 3.3 Let (Mn, g, e− f dvolg)be a smoothmetricmeasure spacewith | f | ≤
k satisfying the bounds Ric f ≥ (n − 1)H, diam(M) ≤ D and Vol f (M) ≥ v. If γ is a

loop in M such that [γ ]p 
= 0 for p ≤ N = k
v

∫ 2D
0 AHe2k[cosh(2

√−Hr)+1]dr, then

l(γ ) ≥ D

N
.

The proof of Proposition 3.3 follows Anderson’s proof of [2, Theorem 2.1], where
in place of the absolute volume comparison of Bishop and Gromov, one uses the
volume comparison (3.1). A sketch of the proof is provided below.

Proof Consider the subgroup 
 = 〈γ 〉 of π1(M) = π1(M, x0) where elements act
as deck transformations on the universal cover M̃ of M . Choose x̃0 ∈ M̃ such that
x̃0 → x0 under the covering map. Then, choose F ⊆ M̃ to be a fundamental domain
of π1(M) containing x̃0.

Let U (r) = {
g ∈ 
|g = γ i , |i | ≤ r

}
. Since [γ ]p 
= 0 in π1(M) for p ≤ N , we

have |
| ≥ N and we may choose the smallest r = r0 such #U (r0) > N . Note now
that

⋃
g∈U (r0)

g(B(x̃0, D) ∩ F) ⊆ B(x̃0, Nl(γ ) + D).

Then, by (3.1), we have

N · Vol f M ≤ Vol f (B(x̃0, Nl(γ ) + D)) ≤ k

Nl(γ )+D∫

0

AH (r)e2k[cosh(2
√−Hr)+1]dr.

(3.4)

123



1846 M. Jaramillo

Seeking contradiction, suppose that l(γ ) ≤ D
N . Then by (3.4), we have

N <
k

v

2D∫

0

AH (r)e2k[cosh(2
√−Hr)+1]dr,

contradicting the definition of N . ��
Proposition 3.3 is used directly in the proof of Theorem 1.3. It is also used to prove

the extension of Anderson’s theorem [2, Theorem 2.2] to the smooth metric measure
space setting.

Proposition 3.4 For the class of manifolds Mn with Ric f ≥ (n − 1)H,Vol f ≥
v, diam(M) ≤ D and | f | ≤ k, there are only finitely many isomorphism types of
π1(M).

Just as in Anderson’s proof of [2, Theorem 2.2], we use Proposition 3.3 to show
that there is a bound on the number of generators of π1(M). This is sufficient due
to a theorem of Gromov [12, Proposition 5.28] which guarantees a set of generators
g1, . . . , gl of π1(M) such that d(gi (x̃0), x̃0) ≤ 3D and every relation is of the form
gi g j = gk . Proposition 3.4 is also stated in Wei and Wylie’s work without proof; see
[19, Theorem 4.7].

Now, with Proposition 3.2 and Proposition 3.4, wemay extendWei’s theorem about
polynomial growth of the fundamental group [16] to smooth metric measure spaces.

Theorem 3.5 For any constant v ≥ 0, there exists ε = ε(n, v, k, H, D) > 0 such
that if a smooth metric measure space (Mn, g, e− f dvolg) with | f | ≤ k satisfies the
conditions (1.6)–(1.8), then the fundamental group of M is of polynomial growth of
degree ≤ n.

Proof Let 
(s) = {distinct words in π1(M) of length ≤ s}. Let us assume by means
of contradiction that π1(M) is not of polynomial growth with degree ≤ n. It follows
that for any set of generators of π1(M), we can find real numbers si for all i , such that

#
(si ) > isni . (3.5)

Choose a base point x̃0 in the universal covering p : M̃ → M , and let x0 = p(x̃0).
By Proposition 3.4, there are only finitely many isomorphism types of π1(M). For
each isomorphism type, choose a set of generators g1, . . . , gN of π1(M) such that
d(gi (x̃0), x̃0) ≤ 3D and every relation is of the form gi g j = gk . Again, such a set of
generators is guaranteed by a theorem of Gromov [12, Proposition 5.28]. By the proof
of Proposition 3.4, we know that N is uniformly bounded. Having chosen generators
in this manner, we are guaranteed that (3.5) is independent of ε. View this set of
generators of the fundamental group π1(M) as deck transformations in the isometry
group of M̃ .

Now, choose a fundamental domain F of π1(M) containing x̃0. Then

⋃
g∈
(s)

g(F) ⊆ B(x̃0, D(3s + 1)),
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which implies

#
(s) ≤ 1

v
Vol f (B(x̃0, D(3s + 1))).

Then, by Proposition 3.2, it follows that

#
(s) ≤ k

v

D(3s+1)∫

0

sinh
√

εr

ε
e2k[cosh(2

√
εr)+1]dr.

For any fixed, sufficiently large s0, there exists ε0 = ε(s0) such that for all ε ≤ ε0, we
have

#
(s) ≤ 23ne4k

nv
sn . (3.6)

Let i0 > 23ne4k
nv

. Then ε < ε(si0) together with (3.5) and (3.6) yields a contradiction.
��

4 Proof of Theorem 1.3

With Theorems 2.10, 3.5, and Proposition 3.3, one may generalize the arguments
in [21] to the smooth metric measure space setting. Before continuing to the proof,
which we retain here for completeness, we review the notion of equivariant Hausdorff
convergence, which is instrumental in the proof of Theorem 1.3 as well as Theorem
5.9.

Definition 4.1 [10, Definition 3.1] Let M denote the set of all isometry classes of
pointed metric spaces (X, p) such that for each D, the ball B(p, D, X) is relatively
compact and such that X is a length space.

Let Meq denote the set of triples (X, 
, p) where (X, p) ∈ M and 
 is a closed
group of isometries of X . Set


(D) = {γ ∈ 
|d(γ p, p) < D}.

Definition 4.2 [10, Definition 3.3] Let (X, 
, p), (Y,�, q) ∈ Meq . An ε-equivariant
pointed Hausdorff approximation is a triple of maps ( f, φ, ψ)

f : B(p, 1/ε) → Y,

φ : 
(1/ε) → �(1/ε),

ψ : �(1/ε) → 
(1/ε),

such that

(1) f (p) = q;
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(2) the ε-neighborhood of f (B(p, 1/ε)) contains B(q, 1/ε);
(3) x, y ∈ B(p, 1/ε) ⇒ |d( f (x), f (y)) − d(x, y)| < ε;
(4) γ ∈ 
(1/ε), x ∈ B(p, 1/ε), γ x ∈ B(p, 1/ε) ⇒ d( f (γ x), φ(γ )( f (x))) < ε;
(5) μ ∈ �(1/ε), x ∈ B(p, 1/ε), ψ(μ)(x) ∈ B(p, 1/ε) ⇒ d( f (ψ(μ)(x)), μ( f (x)))

< ε.

Then, a sequence of pointed triples (Xi , 
i , pi ) ∈ Meq converges in the equivariant
Hausdorff sense to (X∞, 
∞, p∞) if there exist εi -equivariant pointed Hausdorff
approximations between (Xi , 
i , pi ) and (X∞, 
∞, p∞) with εi → 0 as i → ∞.

Proof of Theorem 1.3 By Theorem 3.5, there exists ε0 = ε0(n, v, k, H, D) > 0 such
that if a smooth metric measure space (M, g, e− f dvolg) with | f | < k, satisfies (1.6)–
(1.8), then π1(M) is a finitely generated group of polynomial growth of order ≤ n.

Assume Theorem 1.3 is not true. Then there exists a contradicting sequence of
smooth metric measure spaces (Mi , gi , e− fi dvolgi ) with | fi | ≤ k and

Ric fi (Mi ) ≥ −εi → 0, εi ≤ ε0, Vol fi (Mi ) ≥ v, diam(Mi ) ≤ D,

such that π1(Mi ) is not almost abelian for each i . Note, however, π1(Mi ) is of poly-
nomial growth for each i .

Sinceπ1(Mi ) is of polynomial growth, [21, Lemma 1.3] implies it contains a torsion
free nilpotent subgroup 
i of finite index. Since 
i has finite index in π1(M), it must
be nontrivial. Furthermore, 
i cannot be almost abelian.

Consider the action
i on the universal cover M̃i . For pi ∈ M̃i consider the sequence
(M̃i , 
i , pi ). There exists a length space (Y, q) and a closed subgroup G of I som(Y )

such that (M̃i , 
i , pi ) subconverges to a triple (Y,G, q) with respect to the pointed
equivariant Gromov–Hausdorff distance [10, Theorem 3.6].

Using the Almost Splitting Theorem 2.10, we know Y splits as an isometric product
Y = R

k × Y0 for some k and length space Y0 which contains no lines. By Proposition
3.4 it follows [π1(Mi ) : 
i ] is uniformly bounded, say [π1(Mi ) : 
i ] ≤ m. Hence
diam(M̃i/
i ) ≤ Dm. Then since (M̃i , 
i , pi ) → (Rk × Y0,G, q), it follows that
diam(Rk × Y0/G) ≤ Dm. Then Y0 must be compact. Otherwise, it would contain a
line. Thus we may consider the projection

φ : G → I som(Rk).

By [10, Theorem 6.1], for every δ > 0 there exists a normal subgroup Gδ of G
such that G/Gδ contains a finite index, free abelian group of rank not greater than
dim(Rk/φ(G)). Since 
i is torsion free, Proposition 3.3 gives that for all nontrivial
γ ∈ 
i , we have l(γ ) ≥ D

N where N = k
v

∫ 2D
0 Aε0e

2k[cosh(2√ε0r)+1]dr . Choose δ = D
N

and set δ0 = δ/2.
Define


i (δ) = {γ ∈ 
i : d(pi , γ (pi )) < δ}.
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Similarly, define

G(δ) = {γ ∈ G : d(q, γ (q)) < δ}.

Then


i (δ) = {1}.

Since (M̃i , γi , pi ) → (Rk × Y0,G, q), it follows that

G(δ0) = {1}.

Let K denote the kernel of φ. Since δ0 > 0 was chosen so that G(δ0) = {1}, it follows
that

{γ ∈ K |d(γ (x), x) < δ0 for all x ∈ Y } = {1}.

Thus the subgroup generated by this set is trivial. That is,

Kδ0 = 〈{γ ∈ K |d(γ (x), x) < δ for all x ∈ Y }〉 = {1}.

Then, the quotient map

π : G → G/Kδ0

is simply the identity map. The subgroup Gδ0 of G which has the properties we seek
is defined by

Gδ0 = π−1([1]),

where [1] denotes the coset containing the identity element of G/Kδ0 . But since Kδ0

is trivial and π is the identity map, it follows that Gδ0 = {1}. Thus by [10, Lemma
6.1], G/Gδ0 = G contains a finite index free abelian subgroup of rank ≤ k; that is, G
is almost abelian. Moreover, by [10, Theorem 3.10] we have that 
i is isomorphic to
G for i sufficiently large. But this contradicts the fact that 
i is not almost abelian for
each i . ��

5 Bound on Number of Generators of the Fundamental Group

In order to obtain a uniform bound on the number of generators of the fundamental
group, Kapovitch and Wilking require two results closely related to the Almost Split-
ting Theorem. The first of these results is due to Cheeger and Colding [6, see Sect. 1];
see also [7, Theorem 9.29].
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Theorem 5.1 Given R > 0 and L > 2R + 1, let RicMn ≥ −(n − 1)δ and
dGH (B(p, L), B(0, L)) ≤ δ, where B(0, L) ⊂ R

n. Then there exist harmonic func-
tions b1, . . . , bn on B(p, R) such that in the Gromov–Hausdorff sense d(ei , bi ) ≤ �,
where {ei } denote the standard coordinate functions on R

n and

−
∫

B(p,R)

∑
i

|∇bi − 1|2 +
∑
i 
= j

|〈∇bi ,∇b j 〉| +
∑
i

|Hess bi |2 ≤ �. (5.1)

In the smooth metric measure space setting, a similar statement may be made:

Theorem 5.2 Given R > 0 and L > 2R + 1, let Ric f ≥ −(n − 1)δ, with | f | ≤ k
and dGH (B(p, L), B(0, L)) ≤ δ, where B(0, L) ⊂ R

n. Then there exist f -harmonic
functions b1, . . . , bn on B(p, R) such that in the Gromov–Hausdorff sense d(ei , bi ) ≤
�, where {ei } denote the standard coordinate functions on R

n and

−
∫

B(p,R)

⎛
⎝∑

i

|∇bi − 1|2 +
∑
i 
= j

|〈∇bi ,∇b j 〉| +
∑
i

|Hess bi |2
⎞
⎠ e− f dvolg ≤ �.

(5.2)

Proof The manner in which the harmonic functions bi are constructed for Theorems
5.1 and 5.2 is similar to themanner inwhich the harmonic functions b± are constructed
in the proof of theAlmost SplittingTheorem in both theRiemannian and smoothmetric
measure space settings. Since the two L-balls are δ-close in the Gromov–Hausdorff
sense, there exists a δ-Gromov–Hausdorff approximation

F : B(0, L) → B(p, L).

For each i = 1, . . . , n, set

qi = F(Lei )

and define bi : M → R by

bi (x) = d(x, qi ) − d(p, qi ).

For the smooth metric measure space version, let bi be the f -harmonic function such
that bi

∣∣
∂B(p,L)

= bi
∣∣
∂B(p,L)

. Integrating each term separately, we see that the first
term can be controlled by (2.14) and the third term by (1.5). One can show a �-upper
bound for the middle term of the integrand (5.2) by noting that

〈∇bi ,∇b j 〉 = 〈∇bi − ∇bi + ∇bi ,∇b j − ∇b j + ∇b j 〉
= 〈∇bi − ∇bi ,∇b j 〉 + 〈∇b j − ∇b j ,∇bi 〉 + 〈∇bi ,∇b j 〉.
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Using integration by parts and (2.13), one can show that the average value of each of the
first two terms of the summand is bounded from above by�.Moreover, 〈∇bi ,∇b j 〉 →
0 when L → ∞. ��

The Product Lemma of Kapovitch and Wilking, stated below, can be viewed as
another type of splitting result.

Theorem 5.3 [13, Lemma 2.1] Let Mi be a sequence of manifolds with RicMi >

−εi → 0 satisfying

• B(pi , ri ) compact for all i with ri → ∞, pi ∈ Mi ,

• for all i and j = 1, . . . , k there exist harmonic functions b
i
j : B(pi , ri ) → Rwhich

are L-Lipschitz and fulfill

−
∫

B(pi ,R)

⎛
⎝ k∑

j,l=1

|〈∇b
i
j ,∇b

i
l 〉 − δ jl | +

k∑
j=1

|Hess bij |2
⎞
⎠ dμi → 0 for all R > 0,

then (B(pi , ri ), pi ) subconverges in the pointed Gromov–Hausdorff topology to a
metric product (Rk × X, p∞), for some metric space X.

Without the assumption that a line exists in the limit space, Kapovitch and Wilking

instead show that each of the functions b
i
j , as in the hypothesis of Theorem 5.3, limit

to a submetry b
∞
j as i → ∞. The submetry b

∞
j then lifts lines to lines, which allows

one to apply the Almost Splitting Theorem to show that the limit indeed splits. Their
argument may be modified to the smooth metric measure space setting by using the
volume comparison [19, Theorem 1.2], the Segment Inequality 2.3, and the fact that
gradient flow of an f -harmonic function is measure preserving with respect to the
measure e− f dvolg . Augmenting their arguments in this manner yields the following
extension.

Theorem 5.4 Let (Mi , gi , e− fi dvolgi ) be a sequence of smooth metric measure
spaces with | fi | ≤ k and Ric fi > −εi → 0. Suppose that ri → ∞ and for every

i and j = 1, . . . ,m, there are harmonic functions b
i
j : B(pi , ri ) → R which are

L-Lipschitz and fulfill

−
∫

B(pi ,R)

⎛
⎝ m∑

j,l=1

|〈∇b
i
j ,∇b

i
l 〉 − δ jl | +

m∑
j=1

|Hess bij |2
⎞
⎠ e− fi dvolgi → 0 for all R > 0.

Then (B(pi , ri ), pi ) subconverges in the pointed Gromov–Hausdorff topology to a
metric product (Rm × X, p∞) for some metric space X.

The following lemma of Kapovitch andWilking requires only an inner metric space
structure and hence may be applied to smooth metric measure spaces.
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Lemma 5.5 [13, Lemma 2.2] Let (Yi , p̃i ) be an inner metric space endowed with
an action of a closed subgroup Gi of its isometry group, i ∈ N ∪ {∞}. Suppose
(Yi ,Gi , p̃i ) → (Y∞,G∞, p̃∞) in the equivariant Gromov–Hausdorff topology. Let
Gi (r) denote the subgroup generated by those elements that displace p̃i by at most
r , i ∈ N ∪ {∞}. Suppose there are 0 ≤ a < b with G∞(r) = G∞( a+b

2 ) for all
r ∈ (a, b). Then there is some sequence εi → 0 such that Gi (r) = Gi (

a+b
2 ) for all

r ∈ (a + εi , b − εi ).

For more on equivariant Gromov–Hausdorff convergence, see [10]. Lemma 5.5 and
the Almost Splitting Theorem 2.10 allow us to modify arguments of the proof of [13,
Lemma 2.3] to show that the following holds for smooth metric measure spaces.

Lemma 5.6 Suppose (Mn
i , qi ) is a pointed sequence of smoothmetricmeasure spaces

where (Mn
i , gi , e− fi dvolgi ) has | fi | ≤ k and Ric fi (Mi ) ≥ −1/ i . Moreover, assume

(Mn
i , qi ) → (Rm × K , q∞) where K is compact, and the action of π1(Mi ) on the

universal cover (M̃i , q̃i ) converges to a limit action of a group G on some limit space
(Y, q̃∞). Then G(r) = G(r ′) for all r, r ′ > 2diam(K ).

We will also need the following result on the dimension of the limit space.

Lemma 5.7 Let (Mn
i , gi , e− fi dvolg) be a sequence of smooth metric measure spaces

such that | fi | ≤ k, diam(Mn
i ) ≤ D, and Ric f ≥ −(n − 1)H, H > 0. If Mn

i con-
verges to the length space Ym in the Gromov–Hausdorff sense, then for the Hausdorff
dimension we have m ≤ n + 4k.

Proof Begin by noting that for any (Mn, g, e− f dvolg)with Ric f ≥ −(n−1)H, H >

0, and fixed x ∈ M and R > 0, the f -volume comparison [19, Theorem
1.2b] gives a bound on the number of disjoint ε-balls contained in B(x, R): Let
B(x1, ε), . . . , B(xl , ε) ⊂ B(x, R) be disjoint. Let B(xi , ε) denote the ball with the
smallest f -volume. Then

l ≤ Vol f B(x, R)

Vol f B(xi , ε)
≤ Vol f B(xi , 2R)

Vol f B(xi , ε)
≤ Voln+4k

H B(2R)

Voln+4k
H B(ε)

= C(n + 4k, H, R, ε).

Thus CapMi
(ε), the maximum number of disjoint ε/2-balls which can be contained in

Mn
i , is bounded above by C = C(n + 4k, H, D, ε

2 ) for each i . Moreover, CovMi (ε),
the minimum number of ε-balls covering Mn

i less than or equal to CapMi
(ε), so

CovMi ≤ C .
Since Mn

i → Y in the Gromov–Hausdorff sense, there exists a sequence δi > 0
such that dGH (Mi ,Y ) < δi → 0 as i → ∞. Then CovY (ε) ≤ CovMi (ε − 2δi ) ≤ C .
As i → ∞, we have CovY (ε) ≤ C .

To see that the Hausdorff dimension is bounded above by n + 4k, recall that the
d-dimension Hausdorff measure of Y is defined by

Hd(Y ) = lim
ε→0

Hd
ε (Y ),
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where

Hd
ε (Y ) = inf

{ ∞∑
i=1

(diamUi )
d
∣∣∣∣

∞⋃
i=1

Ui ⊃ Y, diamUi ≤ ε

}
.

Since CovY (ε) ≤ C , it follows that Hd
ε (Y ) ≤ ∑C

i=1(2ε)
d . Notice

C = Voln+4k
H B(D)

Voln+4k
H B(ε/2)

∼ (ε/2)−(n+4k)

as ε → 0. Thus as ε → 0

C∑
i=1

(2ε)d = C(2ε)d → 0

for all d > n + 4k. Thus the Hausdorff dimension of Y , defined by dimH (Y ) =
inf{d ≥ 0|Hd(Y ) = 0} is at most n + 4k. ��

The final tool we will use to extend [13, Theorem 2.5] to smooth metric measure
spaces is a type of Hardy–Littlewood maximal inequality for smooth metric measure
spaces.

Proposition 5.8 (Weak 1-1 Inequality) Suppose (Mn, g, e− f dvolg)with | f | < k has
Ric f ≥ −(n − 1)H and h : M → R is a nonnegative function. Define Mxρh(p) =
supr≤ρ −

∫
B(p,r) he

− f dvolg for ρ ∈ (0, 1]. Then if h ∈ L1(M), we have

Vol f {x |Mxρh(x) > c} ≤ C(n + 4k, H)

c

∫

M

he− f dvolg

for any c > 0.

As in the proof of the Hardy–Littlewood maximal inequality for Euclidean spaces,
one utilizes the Vitali Covering Lemma which states that for an arbitrary collection
of balls {B(x j , r j ) : j ∈ J } in a metric space, there exists a subcollection of balls
{B(x j , r j ) : j ∈ J ′} with J ′ ⊆ J from the original collection which are disjoint and
satisfy

⋃
j∈J

B(x j , r j ) ⊆
⋃
j∈J ′

B(x j , 5r j ).

Wealso note that the f -VolumeComparison [19, Theorem1.2] gives a type of doubling
estimate. In particular, for all r ≤ 1, we have

Vol f (B(x, 5r)) ≤ C(n + 4k, H)Vol f (B(x, r)).
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Proof Let J = {x |Mxρh(x) > c}. For all x ∈ J there exists a ball B(x, rx ) centered
at x with radius rx ≤ 1 such that

∫

B(x,rx )

he− f dvolg ≥ cVol f B(x, rx ). (5.3)

Then by the Vitali Covering Lemma, we have

J ⊆
⋃
x∈J

B(x, rx ) ⊆
⋃
x∈J ′

B(x, 5rx )

where J ′ ⊆ J . Then

Vol f {x |Mxρh(x)>c}≤Vol f

(⋃
x∈J ′

B(x, 5rx )

)
≤ C(n + 4k, H)

∑
x∈J ′

Vol f B(x, rx ).

(5.4)

Combining (5.3) and (5.4) yields the desired result. ��
Before continuing to the proof of the theorem, we take amoment to recall Gromov’s

short generator system and the notion of a regular point. As in Gromov [11, 2.1], to
construct a Gromov short generator system of the fundamental group π1(p, M), we
represent each element of π1(p, M) by a shortest geodesic loop γ in that homotopy
class. A minimal γ1 is chosen so that it represents a nontrivial homotopy class of
π1(M). If 〈γ1〉 = π1(M), then {γ1} is a Gromov short generator system of π1(M).
If not, consider π1(M) \ 〈γ1〉. Choose γ2 ∈ π1(M) \ 〈γ1〉 to be of minimal length.
If 〈γ1, γ2〉 = π1(M), then {γ1, γ2} is a Gromov short generator system of π1(M).
If not, choose γ3 ∈ π1(M) \ 〈γ1, γ2〉 such that γ3 is of minimal length. Continue in
this manner until π1(M) is generated. By this construction, we obtain a sequence of
generators {γ1, γ2, . . . } such that |γi | ≤ |γi+1| for all i . The short generators have the
property |γi | ≤ |γ −1

j γi | for i > j . Although this sequence of generators is not unique,
the sequence of lengths of generators {|γ1|, |γ2|, . . . } is unique.

To review the notion of a regular point, we first recall that for aRiemannianmanifold
(Mn, g) a tangent cone CpM at p ∈ M is a pointed Gromov–Hausdorff limit of
rescaled spaces (M, p, ri g) for ri → ∞. Note that tangent cones may depend on
the choice of convergent subsequence and hence may not be unique. As defined in
Cheeger–Colding [5, Definition 0.1], a point p ∈ M is regular if for some k, every
tangent cone at p is isometric toR

k .We note that in the case ofRicci curvature bounded
from below, Cheeger and Colding have shown that the set of regular points has full
measure [5, Theorem 2.1].

We now have the necessary tools which will allow us to modify the argument of
Kapovitch andWilking to obtain a bound for the number of generators of π1(M) in the
smooth metric measure space setting. As in [13], we prove a more general statement
fromwhich Theorem 1.4 is a consequence. This general statement, as well as its proof,
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is parallel to the statement and proof of [13, Theorem 2.5]. The argument is included
in its entirety below for completeness.

Theorem 5.9 Given n, k, and R, there is a constant C such that the following holds.
Suppose (Mn, g, e− f dvolg) is a smooth metric measure space with | f | ≤ k, p ∈ M
and Ric f ≥ −(n−1) on B(p, 2R). Suppose also that π1(M, p) is generated by loops
of length ≤ R. Then π1(M, p) can be generated by C loops of length ≤ R.

Proof of Theorem 5.9 In order to prove Theorem 5.9 we begin, as in Kapovitch and
Wilking’s argument, by showing that there is a point q ∈ B(p, R

4 ) such that any
Gromov short generator system of π1(M, q) has at most C elements.

For q ∈ B(p, R
4 ) consider a Gromov short generator system {γ1, γ2, . . . } of

π1(M, q). By assumption, π1(M, p) is generated by loops of length≤ R. In choosing
generators for any Gromov short generator system of π1(M, q), loops of the form
σ ◦ g ◦ σ−1, where σ is a minimal geodesic from q to p and g is a generator of length
≤ R of π1(M, p), are contained in each of the homotopy classes of π1(M, q). Such
a loop has length ≤ 3R

2 and hence the minimal length representative of that class, γi
must have the property that |γi | ≤ 3R

2 . Moreover, there are a priori bounds on the
number of short generators of length ≥ r . To see this, let us only consider the short
generators such that |γi | ≥ r . In the universal cover M̃ of M , if q̃ ∈ π−1

1 (q), we have

r ≤ d(γi q̃, q̃) ≤ d(γ −1
j γi q̃, q̃) = d(γi q̃, γ j q̃)

for i > j . Thus the balls B(γi q̃, r/2) are pairwise disjoint for all γi such that |γi | ≥ r .
Then,

⋃
{γi :|γi |≥r}

B(γi q̃,
r

2
) ⊂ B(q̃, 2R + r

2
)

implies that

#{γi : |γi | ≥ r}Vol f B(q,
r

2
) ≤ Vol f B(q, 2R + r

2
).

Andhence by the volume comparison [19, Theorem1.2(a)], it follows that #{γi : |γi | ≥
r} ≤ C(n, k, r, R). Since one can control the number of short generators of length
between r and 3R

2 for r < R, one need only show that the number of short generators
of π1(M, q) with length < r can also be controlled. This argument proceeds by
contradiction. We assume the existence of a contradicting pointed sequence of smooth
metric measure spaces (Mi , pi ) such that (Mi , gi , e− fi dvolg) has the property that

• | fi | ≤ k
• Ric fi ≥ −(n − 1) on B(pi , 3)
• for all qi ∈ B(pi , 1) the number of short generators of π1(Mi , qi ) of length ≤ 4 is
larger than 2i .
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By the Gromov compactness theorem, we may assume that (B(pi , 3), pi ) converges
to a limit space (X, p∞). Set

dim(X) = max{k : there is a regular x ∈ B(p∞, 1/4) with Cx X � R
k}

where Cx X denotes a tangent cone of X at x .
We prove that there is no such contradicting sequence by reverse induction on

dim(X). For the base case, letm > n+4k+1. By Lemma 5.7, dim(X) ≤ n+4k+1,
so there is nothing to prove here. Suppose then that there is no contradicting sequence
with dim(X) = j where j ∈ {m + 1, . . . , n + 4k} but that there exists a contradicting
sequence with dim(X) = m. The induction step is divided into two substeps.

Step 1 For any contradicting sequence (Mi , pi ) converging to (X, p∞) there is a
new contradicting sequence converging to (Rdim X , 0).

Suppose (Mi , pi ) is a contradicting sequence converging to (X, p∞). By definition
of dim(X), there exists q∞ ∈ B(p∞, 1

4 ) such that Cq∞ X � R
m . Let qi ∈ B(pi ,

1
2 )

such that qi → q∞ as i → ∞. Since this is a contradicting sequence, it follows that
the Gromov short generator systems ofπ1(Mi , xi ) for all xi ∈ B(qi ,

1
4 ) contain at least

2i generators of length≤ 4. As noted earlier, for each fixed ε < 4, the number of short
generators of π1(Mi , x) of length∈ [ε, 4] is bounded by a constantC(n, k, ε, 4). Then
we can find a rescaling λi → ∞ such that for every xi ∈ B(qi ,

1
λi

), the number of gen-

erators of π1(Mi , x) of length ≤ 4/λi is at least 2i . Moreover, (λi Mi , qi ) → (Rm, 0),
where λi Mi denotes the smooth metric measure space (Mi , λi gi , e− fi dvolλi gi ). Thus
the sequence (λi Mi , qi ) is the new contradicting sequence desired.

Step 2 If there is a contradicting sequence converging to (Rm, 0), then we can find
a contradicting sequence converging to a space whose dimension is larger than m.

Let (Mi , qi ) denote the contradicting sequence converging to (Rm, 0) as obtained
in Step 1 above. Without loss of generality, assume that for some ri → ∞ and
εi → 0,Ric f ≥ −εi on B(pi , ri ). By Theorem 5.2 there exist f -harmonic functions

(b
i
1, . . . , b

i
m) : B(qi , 1) → R

m such that

−
∫

B(qi ,1)

⎛
⎝ m∑

j,l=1

|〈∇b
i
l ,∇b

i
j 〉 − δl j | + ||Hess (b

i
l )||2

⎞
⎠ e− f dvolg < δi → 0.

Claim There exists zi ∈ B(qi ,
1
2 ), c > 0 such that for any r ≤ 1

4 ,

−
∫

B(zi ,r)

⎛
⎝ m∑

j,l=1

|〈∇b
i
l ,∇b

i
j 〉 − δl j | + ||Hess (b

i
l )||2

⎞
⎠ e− f dvolg ≤ cδi → 0.

Let h(x) denote
∑m

j,l=1 |〈∇b
i
l ,∇b

i
j 〉 − δl j | + ||Hess (b

i
l )||2 evaluated at x . Seeking

contradiction, suppose that for all c > 0, r ≤ 1/2, and z ∈ B(qi ,
1
2 )
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−
∫

B(z,r)

he− f dvolg > cδi ,

then it follows that Mx1/2h(z) = supr≤1/2 −
∫
B(z,r) he

− f dvolg ≥ cδi . Hence

Vol f {x |Mx1/2h(x) ≥ cδi } ≥ Vol f (B(qi ,
1

2
)). (5.5)

By Proposition 5.8, we also have that for all c ≥ 0,

Vol f {x |Mx1/2h(x) ≥ cδi } ≤ C(n + 4k,−1)

c
. (5.6)

Combining (5.5) and (5.6), we have

1 ≤ Vol f {x |Mx1/2h(x) ≥ cδi }
Vol f (B(qi ,

1
2 ))

≤ C(n + 4k,−1)

c · Vol f (B(qi ,
1
2 ))

.

Choosing c > C(n + 4k,−1)/Vol f (B(qi ,
1
2 )) yields a contradiction and hence the

claim is proven.
By Lemmas 5.5 and 5.6, there exists a sequence δi → 0 such that for all

zi ∈ B(pi , 2) the Gromov short generator system of π1(Mi , zi ) does not contain
any elements of length in [δi , 4]. Choose ri ≤ 1 maximal with the property that there
is yi ∈ B(zi , ri ) such that the short generators of π1(Mi , yi ) contain a generator of
length ri . Then ri < δi → 0.

Rescaling by 1
ri

gives that π1(
1
ri
Mi , yi ) has at least 2i short generators of length

≤ 1 for all yi ∈ B(zi , 1). By the choice of rescaling, there is at least one yi ∈
B(zi , ri ) such that the Gromov short generator system at that yi contains a generator
of length 1. Moreover, the above claim together with the Product Lemma 5.4 gives
( 1
ri
Mi , zi ) → (Rk × Z , z∞). Moreover, by Lemmas 5.5 and 5.6, Z is nontrivial and

thus dim(Rm × Z) ≥ m + 1, a contradiction. So, we have completed the induction
step.

Thus there exists q ∈ B(p, R
4 ) such that number of generators of π1(M, q) has

at most C elements. Thus the subgroup of π1(M, p) generated by loops of length
< 3R/5 can be generated by C elements. Moreover, the number of short generators
of π1(M, p) with length in [3R/5, R] is bounded by some a priori constant. ��
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