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Abstract We prove a local splitting theorem for three-manifolds with mean con-
vex boundary and scalar curvature bounded from below that contain certain locally
area-minimizing free boundary surfaces. Our methods are based on those of Mi-
callef and Moraru (Splitting of 3-manifolds and rigidity of area-minimizing surfaces,
arXiv:1107.5346, 2011). We use this local result to establish a global rigidity theo-
rem for area-minimizing free boundary disks. In the negative scalar curvature case,
this global result implies a rigidity theorem for solutions of the Plateau problem with
length-minimizing boundary.

Keywords Free boudary minimal surfaces · Scalar curvature · Mean curvature ·
Rigidity

Mathematics Subject Classification 53A10 · 53C24

1 Introduction and Statements of the Results

Let M be a Riemannian manifold with boundary ∂M . Free boundary minimal sub-
manifolds arise as critical points of the area functional when one restricts to variations
that preserve ∂M (but do not necessarily leave it fixed). Many beautiful known results
about closed minimal surfaces could guide the formulation of analogous interesting
questions about free boundary minimal surfaces. In this paper, inspired by the rigid-
ity theorems for area-minimizing closed surfaces proved in [2, 3, 12], and [13], we
investigate rigidity of area-minimizing free boundary surfaces in Riemannian three-
manifolds.
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Schoen and Yau, in their celebrated joint work, discovered interesting relations
between the scalar curvature of a three-dimensional manifold and the topology of
stable minimal surfaces inside it, which emerge when one uses the second variation
formula for the area, the Gauss equation, and the Gauss–Bonnet theorem. An example
is given by the following result.

Theorem 1 (Schoen and Yau) Let M be an oriented Riemannian three-manifold with
positive scalar curvature. Then M has no immersed orientable closed stable minimal
surface of positive genus.

Schoen and Yau used this to prove that any Riemannian metric with non-negative
scalar curvature on the three-torus must be flat. More generally, they proved the fol-
lowing theorem (see [14]).

Theorem 2 Schoen and Yau Let M be a closed oriented three-manifold. If the fun-
damental group of M contains a subgroup isomorphic to the fundamental group of
the two-torus, then any Riemannian metric on M with nonnegative scalar curvature
must be flat.

The hypothesis on the fundamental group implies that there exists a continuous
map f from the two-torus to M that induces an injective homomorphism f∗ on the
fundamental groups. Then the idea is to apply a minimization procedure among maps
that induce the same homomorphism f∗ in order to obtain an immersed stable mini-
mal two-torus in (M,g) for any Riemannian metric g. Since any non-flat Riemannian
metric with nonnegative scalar curvature on a closed three-manifold can be deformed
to a metric with positive scalar curvature (see [7]), the theorem follows.

In [5], Fischer-Colbrie and Schoen observed that an immersed, two-sided, stable
minimal two-torus in a Riemannian three-manifold with nonnegative scalar curva-
ture must be flat and totally geodesic, and conjectured that Theorem 2 would hold if
one merely assumes the existence of an area-minimizing two-torus. This conjecture
was established by Cai and Galloway [3]. More precisely, they proved that if M is a
closed Riemannian three-manifold which contains a two-sided embedded two-torus
that minimizes the area in its isotopy class, then M is flat. The fundamental step was
the following local result.

Theorem 3 (Cai and Galloway) If a Riemannian three-manifold with nonnegative
scalar curvature contains an embedded, two-sided, locally area-minimizing two-
torus Σ , then the metric is flat in some neighborhood of Σ .

In recent years, some similar results were proven for closed surfaces other than tori
under different scalar curvature hypotheses. In particular, we mention the theorems
of Bray, Brendle, and Neves [2] and Nunes [13].

Theorem 4 (Bray, Brendle, and Neves) Let (M,g) be a three-manifold with scalar
curvature greater than or equal to 2. If Σ is an embedded two-sphere that is locally
area-minimizing, then Σ has area less than or equal to 4π . Moreover, if equality
holds, then Σ with the induced metric gΣ has constant Gaussian curvature equal to
1 and there is a neighborhood of Σ in M that is isometric to ((−ε, ε)×Σ,dt2 +gΣ).
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Theorem 5 (Nunes) Let (M,g) be a three-manifold with scalar curvature greater
than or equal to −2. If Σ is an embedded, two-sided, locally area-minimizing closed
surface with genus g(Σ) greater than 1, then Σ has area greater than or equal to
4π(g(Σ) − 1). Moreover, if equality holds, then Σ with the induced metric gΣ has
constant Gaussian curvature equal to −1 and there is a neighborhood of Σ in M

that is isometric to ((−ε, ε) × Σ,dt2 + gΣ).

These local splitting theorems also imply interesting global theorems (see [2] and
[13]).

Let us give a sketch of the proof of Theorems 4 and 5. In order to prove the
inequalities for the area of the respective Σ in the statements above, one can follow
Schoen and Yau, using the stability of Σ , the Gauss equation, and the Gauss–Bonnet
theorem. These inequalities also appeared in the work of Shen and Zhu [15]. When
the area of Σ achieves the equality stated in the respective theorems, there are more
restrictions on the intrinsic and extrinsic geometries of Σ (recall the Fischer-Colbrie
and Schoen remark), which allowed them to construct a foliation of M around Σ by
constant mean curvature surfaces (by using the implicit function theorem). The use of
foliations by constant mean curvature surfaces in relation to scalar curvature problems
has already appeared in the work of Huisken and Yau [6] and Bray [1]. After this
point, they prove that the leaves of the foliation have area not greater than that of Σ .
This is achieved by very different means in [2] and [13]. Since Σ is area-minimizing,
it follows that each leaf is area-minimizing and its area satisfies the equality stated in
the respective theorems, information that can be used to conclude the local splitting
of (M,g) around Σ .

An interesting unified approach to Theorems 3, 4, and 5 was provided by Micallef
and Moraru [12], also based on foliations by constant mean curvature surfaces. In
our paper, we prove an analogous local rigidity theorem for free boundary surfaces,
based on their methods.

Our setting is the following. Let (M,g) be a Riemannian three-manifold with
boundary ∂M . Let RM denote the scalar curvature of M and H∂M denote the mean
curvature of ∂M (we follow the convention that a unit sphere in R

3 has mean cur-
vature 2 with respect to the outward normal). Let Σ be a compact, connected sur-
face with boundary ∂Σ . We say that Σ is properly embedded (or immersed) in M

if it is embedded (or immersed) in M and Σ ∩ ∂M = ∂Σ . We say that such Σ is
locally area-minimizing in M if every nearby properly immersed surface has area
greater than or equal to the area of Σ . The first variation formula for the area (see the
Appendix) implies that an area-minimizing properly immersed surface Σ is minimal
and free boundary, i.e., Σ meets ∂M orthogonally along ∂Σ . Furthermore Σ is free
boundary stable, i.e., the second variation of area is nonnegative for every variation
that preserves the boundary ∂M .

When RM and H∂M are bounded from below, one can consider the following
functional in the space of properly immersed surfaces:

I (Σ) = 1

2
infRM |Σ | + infH∂M |∂Σ |,

where |Σ | denotes the area of Σ and |∂Σ | denotes the length of ∂Σ .
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The next proposition gives an upper bound to I (Σ) when one assumes that Σ is a
free boundary stable minimal surface.

Proposition 6 Let (M,g) be a Riemannian three-manifold with boundary ∂M . As-
sume RM and H∂M are bounded from below. If Σ is a properly immersed, two-sided,
free boundary stable minimal surface, then

I (Σ) ≤ 2πχ(Σ), (1)

where χ(Σ) is the Euler characteristic of Σ . Moreover, the equality holds if, and
only if, Σ satisfies the following properties:

(a) Σ is totally geodesic in M and ∂Σ consists of geodesics of ∂M ;
(b) The scalar curvature RM is constant along Σ and equal to infRM , and the mean

curvature H∂M is constant along ∂Σ and equal to infH∂M ;
(c) Ric(N,N) = 0, and N is in the kernel of the shape operator of ∂M along ∂Σ ,

where N is the unit normal vector field of Σ .

In particular, (a), (b), and (c) imply that Σ has constant Gaussian curvature
infRM/2 and ∂Σ has constant geodesic curvature infH∂M in Σ .

Inequality (1) relates the scalar curvature of M , the mean curvature of ∂M , and
the topology of the free boundary stable Σ , as in Schoen and Yau’s Theorem 1. This
connection has also been studied by Chen, Fraser, and Pang [4].

For further reference, we will call infinitesimally rigid any properly embedded,
two-sided, free boundary surface Σ in M that satisfies properties (a), (b), and (c).

It is interesting to have in mind the following model situation. In Riemannian
three-manifolds of the form (R× Σ,dt2 + g0), where (Σ,g0) is a compact Rieman-
nian surface with constant Gaussian curvature whose boundary has constant geodesic
curvature, all the slices {t} × Σ satisfy the hypotheses of Proposition 6 and are in-
finitesimally rigid. They also have two additional properties: they are in fact area-
minimizing and each connected component of their boundary has the shortest possi-
ble length in its homotopy class inside the boundary of R× Σ .

Given an infinitesimally rigid surface Σ0, we construct a foliation {Σt }t∈I around
Σ0 by constant mean curvature free boundary surfaces and then analyze the behav-
ior of the area of the surfaces Σt following the unified approach of [12]. When
infH∂M > 0 and each component of ∂Σ is locally length-minimizing, or when
infH∂M = 0, we prove that |Σ0| ≥ |Σt | for every t ∈ I (maybe for some smaller
interval I ). As a consequence, we obtain a local rigidity theorem for area-minimizing
free boundary surfaces in Riemannian three-manifolds with mean convex boundary
(i.e., H∂M ≥ 0):

Theorem 7 Let (M,g) be a Riemannian three-manifold with mean convex boundary.
Assume that RM is bounded from below.

Let Σ be a properly embedded, two-sided, locally area-minimizing free boundary
surface such that I (Σ) = 2πχ(Σ). Assume that one of the following hypotheses
holds:
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(i) each component of ∂Σ is locally length-minimizing in ∂M ; or
(ii) infH∂M = 0.

Then there exists a neighborhood of Σ in (M,g) that is isometric to ((−ε, ε) ×
Σ,dt2 +gΣ), where (Σ,gΣ) has constant Gaussian curvature 1

2 infRM and ∂Σ has
constant geodesic curvature infH∂M in Σ .

We use this local result to prove some global rigidity theorems.
Let FM be the set of all immersed disks in M whose boundaries are curves in ∂M

that are homotopically non-trivial in ∂M . If FM is non-empty, we define

A(M,g) = inf
Σ∈FM

|Σ | and L(M,g) = inf
Σ∈FM

|∂Σ |.

Our first global rigidity theorem involves a combination of these geometric invari-
ants.

Theorem 8 Let (M,g) be a compact Riemannian three-manifold with mean convex
boundary. Assume that FM is non-empty. Then

1

2
infRMA(M,g) + infH∂ML(M,g) ≤ 2π. (2)

Moreover, if equality holds, then the universal covering of (M,g) is isometric to (R×
Σ0, dt2 + g0), where (Σ0, g0) is a disk with constant Gaussian curvature infRM/2
and ∂Σ0 has constant geodesic curvature infH∂M in (Σ0, g0).

The case infRM = 0 and infH∂M > 0, which includes in particular mean convex
domains of the Euclidean space, was treated by M. Li (see his preprint [9]). His
approach is similar to the one in [2].

Our proof relies on the fact that A(M,g) can be realized as the area of a properly
embedded free boundary minimal disk Σ0, by a classical result of Meeks and Yau
[10]. Since H∂M ≥ 0, we can compare the invariant and I (Σ0), and hence inequal-
ity (2) follows from Proposition 6. When equality holds, Σ0 must be infinitesimally
rigid, and then we use the local splitting around Σ0 given by Theorem 7 and a stan-
dard continuation argument to obtain the global splitting of the universal covering.

When infRM is negative, we also prove a rigidity theorem for solutions of the
Plateau problem, which is an immediate consequence of Theorem 8.

As before, assume that (M,g) is a compact Riemannian three-manifold with mean
convex boundary. Another classical result of Meeks and Yau [11] says that the Plateau
problem has a properly embedded solution in M for any given closed embedded curve
in ∂M that bounds a disk.

In particular, by considering solutions of the Plateau problem for homotopically
non-trivial curves in ∂M that bound disks and have the shortest possible length among
such curves, we prove the following.

Theorem 9 Let (M,g) be a compact Riemannian three-manifold with mean convex
boundary such that infRM = −2. Assume that FM is non-empty.
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If Σ̂ is a solution to the Plateau problem for a homotopically non-trivial embedded
curve in ∂M that bounds a disk and has length L(M,g), then

|Σ̂ | ≥ infH∂ML(M,g) − 2π. (3)

Moreover, if equality holds in (3) for some Σ̂ , then the universal covering of (M,g)

is isometric to (R × Σ0, dt2 + g0), where (Σ0, g0) is a disk with constant Gaussian
curvature −1 and ∂Σ0 has constant geodesic curvature infH∂M in Σ0.

2 Infinitesimal Rigidity

Inequality (1) follows from the second variation formula of area for free boundary
minimal surfaces, the Gauss equation, and the Gauss–Bonnet theorem.

Proof of Proposition 6 Let Σ be a properly immersed, two-sided, free boundary
stable minimal surface. Since Σ is two-sided, there exists a unit vector field N along
Σ that is normal to Σ . Let X be the unit vector field on ∂M that is normal to ∂M and
points outside M . Since Σ is free boundary, the unit conormal ν of ∂Σ that points
outside Σ coincides with X along ∂Σ .

Recall that H∂M is the trace of the shape operator ∇X, under our convention. The
free boundary hypothesis implies that k, the geodesic curvature of ∂Σ in Σ , can be
computed as k = g(T ,∇T ν) = g(T ,∇T X), where T is a unit vector field tangent to
∂Σ . In particular,

H∂M = k + g(N,∇NX). (4)

The free boundary stability hypothesis means that, for every φ ∈ C∞(Σ),

Q(φ,φ) =
∫

Σ

|∇φ|2 − (Ric(N,N) + |B|2)φ2dA −
∫

∂Σ

g(N,∇NX)φ2dL ≥ 0,

where B denotes the second fundamental form of Σ . Q(φ,φ) is the second variation
of area for variations with variational vector field φN along Σ (for the general second
variation formula, see [16]).

By evaluating Q on the constant function 1, we have the inequalities

0 ≥
∫

Σ

(Ric(N,N) + |B|2)dA +
∫

∂Σ

g(N,∇NX)dL

= 1

2

∫
Σ

(RM + H 2 + |B|2)dA −
∫

Σ

KdA −
∫

∂Σ

kdL +
∫

∂Σ

H∂MdL

≥ 1

2
infRM |Σ | + infH∂M |∂Σ | − 2πχ(Σ),

where we used the Gauss equation, (4), and the Gauss–Bonnet theorem. This proves
inequality (1).

When the equality holds in (1), every inequality above is in fact an equality. One
immediately sees that Σ must be totally geodesic, (b) holds and Q(1,1) = 0. By
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elementary considerations about bilinear forms, Q(1,1) = 0 and Q(φ,φ) ≥ 0 for
every φ ∈ C∞(Σ) implies Q(1, φ) = 0 for every φ ∈ C∞(Σ). Hence, by appropri-
ately choosing the arbitrary test function φ, we conclude that Ric(N,N) = 0 and
g(N,∇NX) = 0.

Since Σ is totally geodesic, ∇T T and ∇T X = ∇T ν are tangent to Σ . Hence, the
geodesic curvature of ∂Σ in ∂M given by g(N,∇T T ) vanishes, and since ∇T X is
also orthogonal to X we conclude that ∇T X is proportional to T , which means that
T and therefore N are eigenvectors of ∇X on ∂Σ . The second parts of (a) and (c)
follow.

The final statement is just a consequence of the Gauss equation and (4). The con-
verse is immediate from the Gauss–Bonnet theorem. �

3 Construction of the Foliation

Given a properly embedded infinitesimally rigid surface Σ in M , there are smooth
vector fields Z on M such that Z(p) = N(p) ∀p ∈ Σ and Z(p) ∈ Tp∂M ∀p ∈ ∂M .
We fix φ = φ(x, t) the flow of one of these vector fields and α a real number between
zero and one.

The next proposition gives a family of constant mean curvature free boundary
surfaces around an infinitesimally rigid surface.

Proposition 10 Let (M,g) be a Riemannian three-manifold with boundary ∂M . As-
sume RM and H∂M are bounded from below. Let Σ be a properly embedded, two-
sided, free boundary surface.

If Σ is infinitesimally rigid, then there exists ε > 0 and a function w : Σ ×
(−ε, ε) →R such that, for every t ∈ (−ε, ε), the set

Σt = {φ(x,w(x, t));x ∈ Σ}
is a free boundary surface with constant mean curvature H(t). Moreover, for every
x ∈ Σ and every t ∈ (−ε, ε),

w(x,0) = 0,

∫
Σ

(w(x, t) − t) dA = 0 and
∂

∂t
w(x, t)

∣∣∣
t=0

= 1.

In particular, for some smaller ε, {Σt }t∈(−ε,ε) is a foliation of a neighborhood of
Σ0 = Σ in M .

Proof As in the proof of Proposition 6, let N denote the unit normal vector field
of Σ , and let X denote the unit normal vector field of ∂M that coincides with the
exterior conormal ν of ∂Σ . Let dA be the area element of Σ and let dL be the length
element of ∂Σ .

Given a function u in the Hölder space C2,α(Σ), 0 < α < 1, we consider Σu =
{φ(x,u(x));x ∈ Σ}, which is a properly embedded surface if the norm of u is small
enough. We use the subscript u to denote the quantities associated with Σu. For
example, Hu will denote the mean curvature of Σu, Nu will denote the unit normal
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vector field of Σu, and Xu will denote the restriction of X to ∂Σu. In particular,
Σ0 = Σ , H0 = 0 (since Σ is totally geodesic) and g(N0,X0) = 0 (since Σ0 is free
boundary).

Consider the Banach spaces E = {u ∈ C2,α; ∫
Σ

udA = 0} and F = {u ∈
C0,α; ∫

Σ
udA = 0}. Given small δ > 0 and ε > 0, we can define the map Φ :

(−ε, ε) × (B(0, δ) ⊂ E) → F × C1,α(∂Σ) given by

Φ(t,u) =
(

Ht+u − 1

|Σ |
∫

Σ

Ht+udA,g(Nt+u,Xt+u)

)
.

We claim that DΦ(0,0) is an isomorphism when restricted to 0 × E.
In fact, for each v ∈ E, the map f : (x, s) ∈ Σ × (−ε, ε) �→ φ(x, sv(x)) ∈ M

gives a variation with variational vector field ∂f
∂s

|s=0 = vZ = vN on Σ . Since Σ is
infinitesimally rigid we obtain (see Proposition 17 in the Appendix):

DΦ(0,0)(0, v) = d

ds

∣∣∣
s=0

Φ(0, sv) =
(

−�Σv + 1

|Σ |
∫

∂Σ

∂v

∂ν
dL,−∂v

∂ν

)
.

The claim follows from classical results for Neumann type boundary conditions
for the Laplace operator (see, for example, [8], p. 137).

Now we apply the implicit function theorem: For some smaller ε, there exists
a function t ∈ (−ε, ε) �→ u(t) ∈ B(0, δ) ⊂ E such that u(0) = 0 and Φ(t,u(t)) =
Φ(0,0) = (0,0) for every t . In other words, the surfaces

Σt+u(t) = {φ(x, t + u(t)(x));x ∈ Σ}

are free boundary constant mean curvature surfaces.
Let w : (x, t) ∈ Σ × (−ε, ε) �→ t + u(t)(x) ∈ R. By definition, w(x,0) =

u(0)(x) = 0 for every x ∈ Σ and w(−, t) − t = u(t) belongs to B(0, δ) ⊂ E for ev-
ery t ∈ (−ε, ε). Observe that the map G : (x, s) ∈ Σ × (−ε, ε) �→ φ(x,w(x, s)) ∈ M

gives a variation of Σ with variational vector field on Σ given by ( ∂w
∂t

|t=0)N . Since
for every t we have

0 = Φ(t,u(t)) =
(

Hw(−,t) − 1

|Σ |
∫

Σ

Hw(−,t)dA,g(Nw(−,t),Xw(−,t))

)
,

by taking the derivative at t = 0 we conclude that ∂w
∂t

|t=0 satisfies the homogeneous
Neumann problem. Therefore, it must be constant on Σ . Since

∫
Σ

(w(x, t) − t)dA =∫
Σ

u(t)(x)dA = 0 for every t , by again taking a derivative at t = 0 we conclude that∫
Σ

(∂w
∂t

|t=0)dA = |Σ |. Hence, ∂w
∂t

|t=0 = 1, as claimed.
Since G0(x) = φ(x,0) = x, ∂tG(x,0) = ∂w

∂t
|t=0N0(x) = N0(x) for every x in Σ0

and Σ0 is properly embedded, by taking a smaller ε, if necessary, we can assume that
G parameterizes a foliation of M around Σ0. This finishes the proof of the proposi-
tion. �
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4 Local Rigidity

We consider a Riemannian three-manifold with mean convex boundary and scalar
curvature bounded from below. First we analyze the behavior of the area of surfaces
in the family constructed in Sect. 3. This analysis is based on [12].

Proposition 11 Let (M,g) be a Riemannian three-manifold with mean convex
boundary and scalar curvature bounded from below. Let Σ0 be a properly embed-
ded, two-sided, free boundary, infinitesimally rigid surface.

Assume that one of the following hypotheses holds:

(i) each component of ∂Σ0 is locally length-minimizing in ∂M ; or
(ii) infH∂M = 0.

Let {Σt }t∈(−ε,ε) be as in Proposition 10. Then |Σ0| ≥ |Σt | for every t ∈ (−ε, ε)

(maybe for some smaller ε).

Proof Following the notation of Proposition 10, let G : Σ0 × (−ε, ε) → M given by
Gt(x) = φ(x,w(x, t)) parameterize the foliation {Σt }t∈(−ε,ε) around the infinitesi-
mally rigid Σ0. After this point, we will use the subscript t to denote the quantities
associated with Σt = Gt(Σ0).

For each t ∈ (−ε, ε), the lapse function on Σt given by ρt = g(∂tG,Nt ) satisfies
the equations (see Proposition 18 in the Appendix)

−H ′(t) = �tρt + (Ric(Nt ,Nt ) + |Bt |2)ρt , (5)

∂ρt

∂νt

= g(Nt ,∇Nt X)ρt . (6)

Furthermore, ρ0 = 1, since ∂tG(x,0) = N0(x) for every x ∈ Σ . Hence, we can
assume ρt > 0 for all t ∈ (−ε, ε). From (5) we have

H ′(t) 1

ρt

= −(�tρt )
1

ρt

− (Ric(Nt ,Nt ) + |Bt |2).

Using the Gauss equation, we rewrite

H ′(t) 1

ρt

= −(�tρt )
1

ρt

+ Kt − 1

2
(RM

t + H(t)2 + |Bt |2).

Recalling that H(t) is constant on Σt , we integrate by parts using (6) in order to
get

H ′(t)
∫

Σ

1

ρt

dAt = −
∫

Σ

|∇tpt |2
ρ2

t

dAt −
∫

∂Σ

g(Nt ,∇Nt X)dLt

+
∫

Σ

KtdAt − 1

2

∫
Σ

(RM
t + H(t)2 + |Bt |2)dAt .
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Since each Σt is free boundary, (4) and the Gauss–Bonnet theorem imply

H ′(t)
∫

Σ

1

ρt

dAt = −
∫

Σ

|∇tpt |2
ρ2

t

dAt − 1

2

∫
Σ

(RM
t + H(t)2 + |Bt |2)dAt

−
∫

∂Σ

H∂M
t dLt + 2πχ(Σ0).

Finally, since Σ0 is infinitesimally rigid, the Gauss–Bonnet theorem implies that
I (Σ0) = 2πχ(Σ0). Hence, we have the following inequality:

H ′(t)
∫

Σ

1

ρt

dAt ≤ I (Σ0) − I (Σt )

= 1

2
infRM(|Σ0| − |Σt |) + infH∂M(|∂Σ0| − |∂Σt |).

By hypothesis, infH∂M ≥ 0. If each boundary component is locally length-
minimizing, the second term in the right-hand side is less than or equal to zero, and
in case infH∂M = 0, it is obviously zero. Therefore,

H ′(t)
∫

Σ

1

ρt

dAt ≤ 1

2
infRM(|Σ0| − |Σt |) = −1

2
infRM

∫ t

0

d

ds
|Σs |ds.

Since each Σt is free boundary, the first variation formula of area gives

d

dt
|Σt | =

∫
Σ

ρtH(t)dAt = H(t)

∫
Σ

ρtdAt . (7)

Therefore,

H ′(t)
∫

Σ

1

ρt

dAt ≤ −1

2
infRM

∫ t

0
H(s)

(∫
Σ

ρsdAs

)
ds. (8)

Claim There exists ε > 0 such that H(t) ≤ 0 for every t ∈ [0, ε).

We consider three cases:

(a) infRM = 0.

Then it follows immediately from (8) that H ′(t) ≤ 0 for every t ∈ [0, ε). Since
H(0) = 0, the claim follows.

(b) infRM > 0.

Let ϕ(t) = ∫
Σ

1
ρt

dAt and ξ(t) = ∫
Σ

ρtdAt . Inequality (8) can be rewritten as

H ′(t) ≤ −1

2
infRM 1

ϕ(t)

∫ t

0
H(s)ξ(s)ds. (9)

By continuity, we can assume that there exists a constant C > 0 such that
1

ϕ(t)

∫ t

0 ξ(s)ds ≤ 2C for every t ∈ [0, ε].
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Choose ε > 0 such that C infRMε < 1. Then H(t) ≤ 0 for every t ∈ [0, ε). In
fact, suppose that there exists t+ ∈ (0, ε) such that H(t+) > 0. By continuity, there
exists t− ∈ [0, t+] such that H(t) ≥ H(t−) for every t ∈ [0, t+]. Notice that H(t−) ≤
H(0) = 0. By the mean value theorem, there exists t1 ∈ (t−, t+) such that H(t+) −
H(t−) = H ′(t1)(t+ − t−). Hence, since infRM > 0, inequality (9) gives

H(t+) − H(t−)

t+ − t−
= H ′(t1) ≤ 1

2
infRM 1

ϕ(t1)

∫ t1

0
(−H(s))ξ(s)ds

≤ 1

2
infRM(−H(t−))

(
1

ϕ(t1)

∫ t1

0
ξ(s)ds

)

≤ infRM(−H(t−))C.

It follows that H(t+) ≤ H(t−)(1 − C infRMε), which is a contradiction since
H(t+) > 0 and H(t−) ≤ 0.

(c) infRM < 0.

Choose ε > 0 such that −C infRMε < 1, where C > 0 is the same constant that
appears in case (b). Then H(t) ≤ 0 for every t ∈ [0, ε). In fact, suppose that there
exists t0 ∈ (0, ε) such that H(t0) > 0. Let

R = {t ∈ [0, t0];H(t) ≥ H(t0)}.
Let t∗ ∈ [0, ε] be the infimum of R. Observe that, by the definition of t∗, H(t) ≤

H(t0) = H(t∗) for every t ∈ [0, t∗].
If t∗ > 0, then the mean value theorem implies that there exists t1 ∈ (0, t∗) such

that H(t∗) = H ′(t1)t∗, since H(0) = 0. Hence, since infRM < 0, inequality (9) gives

H(t∗)
t∗

= H ′(t1) ≤ −1

2
infRM 1

ϕ(t1)

∫ t1

0
H(s)ξ(s)ds

≤ −1

2
infRMH(t∗)

(
1

ϕ(t1)

∫ t1

0
ξ(s)ds

)

≤ − infRMH(t∗)C.

It follows that H(t∗)(1 + C infRMH(t∗)ε) ≤ 0. This is a contradiction since
H(t∗) = H(t0) > 0.

Hence, t∗ = 0, which is again a contradiction since 0 = H(0) ≥ H(t0) > 0.
This proves the claim. By (7), we conclude that |Σ0| ≥ |Σt | for every t ∈ [0, ε).

The proof that |Σ0| ≥ |Σt | for every t ∈ (−ε,0] is analogous. �

We are now ready to prove the local splitting result, Theorem 7.

Proof of Theorem 7 Since Σ is locally area-minimizing and I (Σ) = 2πχ(Σ), Σ is
infinitesimally rigid. From Propositions 10 and 11 we obtain a foliation {Σt }t∈(−ε,ε)

around Σ0 = Σ such that |Σt | ≤ |Σ0| for every t ∈ (−ε, ε). Since Σ is locally area-
minimizing, each Σt is also locally area-minimizing, with |Σt | = |Σ0|.
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One immediately sees that when infH∂M = 0 or when the components of ∂Σ0 are
locally length-minimizing,

2π = I (Σ0) ≤ I (Σt ) ≤ 2π,

which implies that each Σt is infinitesimally rigid. From (5) and (6) in Proposition 11,
one sees that for each t the lapse function ρt satisfies the homogeneous Neumann
problem. Therefore, ρt is a constant function on Σt .

Since we have a foliation, the normal fields of Σt locally define a vector field
on M . This field is parallel (see [2, 12], or [13]). In particular, its flow is a flow by
isometries and therefore provides the local splitting: a neighborhood of Σ0 is in fact
isometric to the product ((−ε, ε) × Σ0, dt2 + gΣ0). Since Σ0 is infinitesimally rigid,
(Σ0, gΣ0) has constant Gaussian curvature infRM/2 and ∂Σ0 has constant geodesic
curvature infHM in Σ0. �

5 Global Rigidity

Before we begin the proofs, we state precisely the result of Meeks and Yau about the
existence of area-minimizing free boundary disks that we will use in the sequel (see
[10]).

Theorem 12 (Meeks and Yau) Let (M,g) be a compact Riemannian three-manifold
with mean convex boundary. If FM is non-empty, then

(1) There exists an immersed minimal disk Σ0 in M such that ∂Σ0 represents a
homotopically non-trivial curve on ∂M and |Σ0| = A(M,g).

(2) Any such least area immersed disk is in fact a properly embedded free boundary
disk.

We are now ready to prove our main theorems.

Proof of Theorem 8 Since FM is non-empty, Theorem 12 says that there exists a
properly embedded free boundary minimal disk Σ0 ∈FM such that |Σ0| = A(M,g).
Since Σ0 is two-sided and free boundary stable, the inequality follows from Proposi-
tion 6:

1

2
infRMA(M,g) + infH∂ML(M,g) ≤ I (Σ0) ≤ 2π.

Assume that the equality holds. In case infH∂M is not zero, ∂Σ0 must have length
L(M,g), hence it is length-minimizing. In any case, we can apply Theorem 7 to get
a local splitting of (M,g) around Σ0.

Let exp denote the exponential map of (M,g). Let S be the set all t > 0 such that
the map Ψ : [−t, t] × Σ0 → M given by Ψ (s, x) = expx(sN0(x)) is well defined,
Ψ ([−t, t] × ∂Σ0) is contained in ∂M , and Ψ : ((−t, t) × Σ0, ds2 + gΣ0) → (M,g)

is a local isometry.
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S is non-empty because of the local splitting. Standard arguments imply that S =
[0,+∞). Therefore, we have a well-defined local isometry

Ψ : (t, x) ∈ (R× Σ0, dt2 + gΣ0) �→ expx(tN0(x)) ∈ (M,g),

such that Ψ (R× ∂Σ0) is contained in ∂M . Such Ψ is a covering map. This finishes
the proof of Theorem 8. �

In order to prove Theorem 9, consider any Σ̂ as in its statement. Σ̂ has area at
least A(M,g) and ∂Σ̂ has length L(M,g). When infRM is negative,

I (Σ̂) = 1

2
infRM |Σ̂ | + infH∂M |∂Σ̂ | ≤ 1

2
infRMA(M,g) + infH∂ML(M,g),

and therefore Theorem 9 is an immediate corollary of Theorem 8.
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Appendix

For completeness we include some general formulae for the infinitesimal variation
of some geometric quantities of properly immersed hypersurfaces under variations of
the ambient manifold (Mn+1, g) that leave the boundary of the hypersurface inside
∂M .

We begin by fixing some notation. Let (Mn+1, g) be a Riemannian manifold with
boundary ∂M . Let X denote the unit normal vector field along ∂M that points outside
∂M .

Let Σn be a manifold with boundary ∂Σ and assume Σ is immersed in M in
such way that ∂Σ is contained in ∂M . The unit conormal of ∂Σ that points outside
Σ will be denoted by ν. Given N a local unit normal vector field to Σ , the second
fundamental form is the symmetric tensor B on Σ given by B(U,W) = g(∇UN,W)

for every U , W tangent to Σ . The mean curvature H is the trace of B . Σ is called
minimal when H = 0 on Σ and free boundary when ν = X on ∂Σ .

We consider variations of Σ given by smooth maps f : Σ × (−ε, ε) → M such
that, for every t ∈ (−ε, ε), the map ft : x ∈ Σ �→ f (x, t) ∈ M is an immersion of Σ

in M such that ft (∂Σ) is contained in ∂M .
The subscript t will be used to denote quantities associated with Σt = ft (Σ). For

example, Nt will denote a local unit vector field normal to Σt and Ht will denote the
mean curvature of Σt .

It will be useful for the computations to introduce local coordinates x1, . . . , xn

in Σ . We will also use the simplified notation

∂t = ∂f

∂t
and ∂i = ∂f

∂xi

,
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where i runs from 1 to n. ∂t is called the variational vector field. We decompose it in
its tangent and normal components:

∂t = ∂T
t + vtNt ,

where vt is the function on Σt defined by vt = g(∂t ,Nt ).
First, we look at the variation of the metric tensor gij = g(∂i, ∂j ).

Proposition 13

∂tgij = g(∇∂i
∂t , ∂j ) + g(∂i,∇∂j

∂t ),

∂tg
ij = −2gikgjlg(∇∂k

∂t , ∂l).

Proof The first equation is straightforward. The second follows from differentiating
gikgkl = δil . �

From the well-known formula for the derivative of the determinant,

(detU)′ = det(U)tr(U ′),

we deduce:

Proposition 14 The first variation of area is given by

d

dt
|Σt | =

∫
Σ

HtvtdAt +
∫

∂Σ

g

(
νt ,

∂f

∂t

)
dLt .

Proof Observe that

∂t

√
det[gij ] = 1

2
gij ∂tgij

√
det[gij ]

= gij g(∇∂i
∂t , ∂j )

√
det[gij ]

= (gij g(∇∂i
∂T
t , ∂j ) + gij g(∇∂i

Nt , ∂j )vt )
√

det[gij ]
= (divΣt ∂

T
t + Htvt )

√
det[gij ].

The first variation formula of area follows. �

Next, we look at the variations of the normal field.

Proposition 15

∇∂i
Nt = gklBil∂k,

∇∂t Nt = ∇(∂t )T
Nt − ∇Σt vt ,

where ∇Σvt is the gradient of the function vt on Σt .
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Proof Since g(Nt ,Nt ) = 1, ∇∂i
Nt and ∇∂t Nt are tangent to Σt . The first equation is

just the expression of ∂iNt in the basis {∂k}. On the other hand, since g(Nt , ∂i) = 0,
we have

∇∂t Nt = gikg(∇∂t Nt , ∂k)∂i = −gikg(Nt ,∇∂t ∂k)∂i = −gikg(Nt ,∇∂k
∂t )∂i .

In local coordinates, the gradient of vt in Σt is given by ∇Σt vt = (gij ∂j vt )∂i .
Then we have

gikg(Nt ,∇∂k
(vtNt ))∂i = (gik∂kvt )∂i = ∇Σt vt .

Therefore,

∇∂t Nt = ∇(∂t )T
Nt − ∇Σt vt .

�

Before we compute the variation of the mean curvature, let us recall the Codazzi
equation:

g(R(U,V )Nt ,W) = (∇Σt

U B)(V,W) − (∇Σt

V B)(U,W).

In this equation, R denotes the Riemann curvature tensor of (M,g) and U , V , and
W are tangent to Σt .

Taking U = ∂i , W = ∂k , and contracting, we obtain

Ric(V ,Nt ) = gik(∇Σt

∂i
B)(V, ∂k) − dHt(V ),

for every V tangent to Σt .

Proposition 16 The variation of the mean curvature is given by

∂tHt = dHt(∂
T
t ) − LΣt vt ,

where LΣt = �Σt + Ric(Nt ,Nt ) + |Bt |2 is the Jacobi operator.

Proof Since Ht = gij g(∇∂i
Nt , ∂j ),

∂tHt = ∂tg
ij g(∇∂i

Nt , ∂j ) + gij g(∇∂t ∇∂i
Nt , ∂j ) + gij g(∇∂i

Nt ,∇∂t ∂j )

= −2gikgjlg(∇∂k
∂t , ∂l)g(∇∂i

Nt , ∂j ) + gij g(R(∂t , ∂i)Nt , ∂j )

+ gij g(∇∂i
∇∂t Nt , ∂j ) + gij g(∇∂i

Nt ,∇∂j
∂t )

= −2gikg(∇∂k
∂t ,∇∂i

Nt ) − Ric(∂t ,Nt )

+ gij g(∇∂i
∇∂t Nt , ∂j ) + gij g(∇∂i

Nt ,∇∂j
∂t )

= −gij g(∇∂i
Nt ,∇∂j

∂t ) − Ric(∂t ,Nt )

+ gij g(∇∂i
(∇∂T

t
Nt ), ∂j ) − gij g(∇∂i

(∇Σt v), ∂j ).
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Now we use the contracted Codazzi equation:

Ric(∂T
t ,Nt ) = gij (∇Σt

∂i
B)(∂T

t , ∂j ) − dH(∂T
t )

= gij ∂ig(∇∂T
t
Nt , ∂j ) − gij g(∇(∇∂i

∂T
t )T Nt , ∂j )

− gij g(∇∂T
t
Nt , (∇∂i

∂j )
T ) − dH(∂T

t )

= gij (∂ig(∇∂T
t
Nt , ∂j ) − g(∇∂T

t
Nt ,∇∂i

∂j ))

− gij g(∇∂j
Nt , (∇∂i

∂T
t )T ) − dH(∂T

t )

= gij g(∇∂i
(∇∂T

t
Nt ), ∂j ) − gij g(∇∂j

Nt ,∇∂i
∂T
t ) − dH(∂T

t ).

Hence, canceling out the corresponding terms, we have

∂tHt = −gij g(∇∂i
Nt ,∇∂j

Nt )vt − Ric(Nt ,Nt )vt

+ dH(∂T
t ) − gij g(∇∂i

(∇Σt vt ), ∂j ).

The formula follows. �

Finally, we specialize the formulae above in the two particular cases we used in
this paper. The proofs are immediate.

Proposition 17 If Σ0 is free boundary and (∂t )
T = 0 at t = 0, then

(∂tHt )|t=0 = −LΣ0v0 and ∂tg(Nt ,X)|t=0 = −∂v0

∂ν0
+ g(N0,∇N0X)v0.

Proposition 18 If each Σt is a constant mean curvature free boundary surface, then

∂tHt = −LΣt vt and
∂vt

∂νt

= g(Nt ,∇Nt X)vt .
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