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Abstract We prove that any complete surface with constant mean curvature in a
homogeneous space E(κ, τ ) which is transversal to the vertical Killing vector field
is, in fact, a vertical graph. As a consequence we get that any orientable, parabolic,
complete, immersed surface with constant mean curvature H in E(κ, τ ) (different
from a horizontal slice in S

2 × R) is either a vertical cylinder or a vertical graph (in
both cases, it must be 4H 2 + κ ≤ 0).
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1 Introduction

The classical theory of constant mean curvature surfaces in 3-manifolds is still an
active field of research nowadays. Among all ambient 3-manifolds, the most studied
subclass consists of those simply connected with constant sectional curvature, the so-
called space forms (R3, S3, or H3). Their isometry group has dimension 6 and acts
transitively on their tangent bundle. Apart from the space forms, the most symmet-
ric ones are those simply connected whose isometry group has dimension 4. They
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are usually denoted by E(κ, τ ), where κ, τ ∈ R satisfy κ − 4τ 2 �= 0, and include the
Riemannian product manifolds S2(κ) ×R and H

2(κ) ×R (when τ = 0), the Heisen-
berg space Nil3 (for κ = 0), the universal cover ˜SL2(R) of the special linear group
SL2(R) endowed with some special left-invariant metrics (for κ < 0 and τ �= 0), and
the Berger spheres (for κ > 0 and τ �= 0). See [3] for more details.

The spaces E(κ, τ ) are characterized by admitting a Riemannian submersion
π : E(κ, τ ) → M

2(κ) with constant bundle curvature τ , where M
2(κ) stands for the

simply connected Riemannian surface with constant curvature κ , such that the fibers
of π are the integral curves of a unit Killing vector field in E(κ, τ ) (see [12]). In what
follows, we will refer to this field as the vertical Killing vector field and it will be
denoted by ξ .

In the theory of constant mean curvature surfaces (H -surfaces in the sequel)
in E(κ, τ ), vertical multigraphs play an important role. A surface Σ immersed in
E(κ, τ ) is said to be a vertical multigraph if any of the following equivalent condi-
tions hold:

(a) Σ is transversal to the vertical Killing vector field ξ .
(b) The surface Σ is orientable and the angle function ν = 〈N,ξ 〉 has no zeros in Σ ,

where N is a global unit normal vector field of Σ .
(c) The projection π|Σ : Σ →M

2(κ) is a local diffeomorphism.

Conditions (a) and (b) are trivially equivalent, whereas (c) can be deduced from the
fact that the absolute value of the Jacobian of π|Σ equals |ν|.

The need to know whether a vertical H -multigraph is embedded or not often arises
in the study of such surfaces. In this paper we solve this problem by proving that
they are always vertical graphs (i.e., they intersect at most once each integral curve
of ξ ), and in particular are embedded, when we additionally assume that the vertical
H -multigraph is complete. (We observe that the completeness assumption is needed:
A counterexample is given, for example, by the helicoid of H2 × R constructed by
Nelli and Rosenberg in [17] minus a neighborhood of its axis.) Along these lines, we
recall the following known results:

• Hauswirth, Rosenberg, and Spruck proved a half-space theorem for properly em-
bedded 1

2 -surfaces in H
2 ×R and concluded that a complete vertical 1

2 -multigraph
in H

2 × R is always an entire vertical graph (see [10]), i.e., it intersects exactly
once each integral curve of ξ . Later on, by using another half-space theorem for
properly immersed surfaces in Nil3, Daniel and Hauswirth [4] proved the same re-
sult for minimal vertical multigraphs in Nil3. Finally, using this theorem by Daniel
and Hauswirth, the classification theorem by Fernández and Mira in [7] and the
Daniel correspondence [3], it is possible to extend the aforementioned results to
prove that a complete vertical H -multigraph in E(κ, τ ) satisfying 4H 2 + κ = 0 is
an entire vertical graph (see also Corollary 4.6.3 in [5] for a complete reference).

• Espinar and Rosenberg proved in [6] that there are no complete vertical
H -multigraphs in H

2 × R for H > 1
2 . In a joint work with Joaquín Pérez (see

the proof of Theorem 2 in [13]), the authors proved using a different approach that
the only complete vertical H -multigraphs in E(κ, τ ) with 4H 2 + κ > 0 are the
horizontal slices S

2(κ) × {t0} in S
2(κ) × R, for any κ > 0 (and τ = H = 0). The

latter result has also been proved in [19].
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To obtain the general result stated below, it only remains to study the case
4H 2 + κ < 0. We highlight that the geometry of an H -surface in the homogeneous
spaces E(κ, τ ) varies essentially depending on the sign of 4H 2 + κ . For instance, it
is known that constant mean curvature spheres exist if, and only if, 4H 2 + κ > 0; see
Theorem 2.5.3 in [5].

Theorem 1 Let Σ be a complete vertical H -multigraph in E(κ, τ ). Then, one of the
following statements hold:

(a) E(κ, τ ) = S
2(κ) ×R, H = 0, and Σ = S

2(κ) × {t0}, for some t0 ∈R.
(b) 4H 2 + κ ≤ 0 and Σ is a vertical graph over a domain in H

2(κ) whose bound-
ary, if any, consists of complete constant curvature ±2H curves along which the
graph takes infinite values. Moreover, if 4H 2 + κ = 0 then the graph is entire.

We remark that the condition 4H 2 + κ = 0 in Theorem 1 is not necessary in or-
der to obtain entire vertical H -graphs: Besides horizontal slices, other entire minimal
vertical graphs in H

2 × R have been constructed by Nelli and Rosenberg in [17],
by Collin and Rosenberg in [2], and by Mazet, Rosenberg, and the second author
in [14]. The reader can also find some examples of rotationally invariant entire ver-
tical H -graphs in H

2 × R for any 0 < H ≤ 1
2 in [18]. We also emphasize that there

exist many complete vertical H -graphs in H
2 ×R which are not entire:

• On the one hand, Sa Earp [21] and Abresch gave an explicit complete minimal
vertical graph defined on half of a hyperbolic plane. In [2, 14], some complete
minimal examples in H

2 × R (which are vertical graphs over simply connected
domains bounded by finitely many complete geodesics where the graph has non-
bounded boundary data, and/or finitely many arcs at the infinite boundary of H2)
are given. Melo constructed in [16] minimal examples in ˜SL2(R) similar to those
in [2].

• On the other hand, Folha and Melo obtained in [9] vertical H -graphs in H
2 × R,

with 0 < H < 1
2 , over simply connected domains bounded by an even number of

curves of geodesic curvature ±2H (disposed alternately) over which the graphs go
to ±∞.

Let us now explain a consequence of Theorem 1. We consider the stability opera-
tor of an orientable H -surface immersed in E(κ, τ ), given by

L = � + |A|2 + Ric(N), (1.1)

where � stands for the Laplacian with respect to the induced metric on Σ , and A

and N denote respectively the shape operator and a unit normal vector field of Σ .
The surface Σ is said to be stable when −L is a non-negative operator (see [15] for
more details on stable H -surfaces). Rosenberg proved in [20] the non-existence of
stable H -surfaces in E(κ, τ ) provided that 3H 2 + κ > τ 2, other than S

2(κ) × {t0} in
S

2(κ) × R. It is conjectured that the optimal condition for such non-existence result
is 4H 2 + κ > 0. In a joint work with Pérez [13], the authors slightly improve Rosen-
berg’s bound in the general case and obtain the expected bound under the additional
assumption of parabolicity. We recall that a Riemannian manifold Σ is said to be
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parabolic when the only positive superharmonic functions defined on M are the con-
stant functions. As a direct consequence of Theorem 1 above and Theorem 2 in [13],
we get the following nice classification result:

Corollary 2 Let Σ be an orientable, parabolic, complete, stable H -surface in
E(κ, τ ). Then, one of the following statements hold:

(a) E(κ, τ ) = S
2(κ) ×R, H = 0, and Σ = S

2(κ) × {t0}, for some t0 ∈R.
(b) 4H 2 + κ ≤ 0 and Σ is either a vertical graph or a vertical cylinder over a com-

plete curve of geodesic curvature 2H in M
2(κ).

2 Preliminaries

From now on, Σ will denote a complete vertical H -multigraph in E(κ, τ ), with
4H 2 + κ < 0. Let us remark that the latter condition implies κ < 0, so E(κ, τ ) ad-
mits a fibration over H2(κ). By applying a convenient homothety in the metric, there
is no loss of generality in supposing that κ = −1. Hence, we can consider the disk
D(2) = {(x, y) ∈ R

2 : x2 + y2 < 4} and the model E(−1, τ ) = D(2) × R, endowed
with the Riemannian metric

ds2 = λ2(dx2 + dy2) + (

dz + τλ(y dx − x dy)
)2

,

where λ : D(2) → R is given by λ(x, y) = (1 − 1
4 (x2 + y2))−1. In this model, the

Riemannian fibration is nothing but π : E(−1, τ ) → H
2, π(x, y, z) = (x, y), when

we identify H
2 ≡ (D(2), λ2(dx2 + dy)2).

Given an open set Ω ⊂ H
2 and a function u ∈ C∞(Ω), the graph associated with

u is defined as the surface parameterized by

Fu : Ω → E(−1, τ ), Fu(x, y) = (

x, y,u(x, y)
)

.

Let us also fix the following notation, for any R > 0:

• Given x0 ∈ H
2, we denote by B(x0,R) the ball in H

2 of center x0 and radius R.
• Given p0 ∈ Σ , we denote by BΣ(p0,R) the intrinsic ball in Σ of center p0 and

radius R.

The proof of Theorem 1 relies on some technical results given originally by
Hauswirth, Rosenberg, and Spruck in [10]. Although they treat the case H = 1

2 in
H

2 × R, their arguments can be directly generalized to H -surfaces in E(κ, τ ) with
4H 2 + κ ≤ 0, giving rise to Lemma 3 below.

Take x0 ∈ H
2 and R > 0 such that there exists u ∈ C∞(B(x0,R)) with

Fu(B(x0,R)) ⊂ Σ . (As π|Σ is a local diffeomorphism, this can be done for any
x0 ∈ π(Σ).) We also fix a unit normal vector field N of Σ so that the angle function
ν = 〈N,ξ 〉 is positive. We observe that ν lies in the kernel of the stability operator of
Σ , defined in (1.1); see [1]. Since ν has no zeros, we deduce by a theorem given by
Fischer–Colbrie [8] (see Lemma 2.1 in [15]) that Σ is stable. This provides curvature
estimates, playing an important role in the proof of Lemma 3.
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Suppose that x̂ ∈ ∂B(x0,R) satisfies that u cannot be extended to any neighbor-
hood of x̂ in H

2 as a vertical H -graph. Given a sequence {xn} ⊂ B(x0,R) converging
to x̂ and calling pn = Fu(xn), the arguments in [10] can be extended to show that
the sequence of surfaces {Σn} (where Σn results from translating Σ vertically so that
pn is at height zero), converges in the C2-topology to a vertical cylinder π−1(Γ ),
for a curve Γ ⊂ H

2 of constant geodesic curvature 2H or −2H which is tangent to
∂B(x0,R) at x̂. Note that the condition 4H 2 − 1 < 0 implies that Γ is non-compact.

We denote by Nδ(Γ ) the open tubular neighborhood of Γ in H
2 of radius δ. More-

over, given x ∈ H
2
� Γ , we call Nδ(Γ,x) = Nδ(Γ ) ∩ U , where U is the connected

component of H2
� Γ containing x. By coherence, we denote U = N∞(Γ, x).

Lemma 3 ([10]) In the setting above, suppose that x̂ ∈ ∂B(x0,R) satisfies that u

cannot be extended to any neighborhood of x̂ in H
2 as a vertical H -graph. Then,

there exist a complete curve Γ ⊂ H
2 of constant geodesic curvature 2H or −2H ,

tangent to ∂B(x0,R) at x̂, and an open neighborhood N of Γ such that u extends as
a vertical H -graph to B(x0,R) ∪ (N ∩ N∞(Γ, x0)) with infinite constant boundary
values along Γ .

Remark 4 In general, Lemma 3 does not hold when N = Nδ(Γ,x0) for some constant
δ > 0 (e.g., see the Jenkins–Serrin type H -graphs [2, 9]). Nevertheless, all the argu-
ments below can be thought of in a sufficiently large compact ball, so in the sequel we
can consider N to be equal to Nδ(Γ,x0) by restricting N to a tubular neighborhood
of Γ of constant radius if necessary.

Remark 5 In our study, we will always find a dichotomy between geodesic curvature
2H or −2H , as well as boundary values +∞ or −∞. Although the arguments below
do not depend on these signs, it is worth saying something about the relation between
them in order to describe the complete vertical graphs. As mentioned above, it can
be shown that the H -multigraphs Σn converge uniformly on compact subsets to a
vertical cylinder and we are considering the unit normal vector field of Σ which
points upwards. By analyzing the normals of Γ in H

2 and of π−1(Γ ) in E(−1, τ ),
it is not difficult to realize that if u tends to +∞ (resp. −∞) along Γ , the geodesic
curvature of Γ will be 2H (resp. −2H ) with respect to the normal vector pointing to
the domain of definition of the graph. This fact was proved for minimal surfaces in
H

2 ×R by Nelli and Rosenberg in [17]; for H -surfaces in H
2 ×R, for 0 < H ≤ 1/2,

by Hauswirth, Rosenberg, and Spruck in [11]; and for minimal surfaces in ˜SL2(R)

by Younes in [22].

3 The Proof of Theorem 1

As explained above, we will suppose that Σ is a complete vertical H -multigraph in
E(−1, τ ) with 0 ≤ H < 1

2 , and show that Σ is a vertical graph. The proof relies on
the following result.

Proposition 6 Let Σ be a complete vertical H -multigraph in E(−1, τ ). Given p ∈ Σ

and R > 0, there exist an open set Ω ⊆ H
2 and a function u ∈ C∞(Ω) such that

BΣ(p,R) ⊆ Fu(Ω).
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Note that the fact that Σ is indeed a graph follows from Proposition 6: Reasoning
by contradiction, if there existed p,q ∈ Σ , p �= q , which project by π : E(−1, τ ) →
H

2 on the same point, then we could take R bigger than the intrinsic distance from p

to q to reach a contradiction. Thus, the rest of this section will be devoted to proving
Proposition 6.

From now on, we fix a point p ∈ Σ and denote x0 = π(p). The following defini-
tion will be useful in the sequel.

Definition 7 We say that Ω ⊂ H
2 is admissible if it is a connected open set contain-

ing x0 for which there exists u ∈ C∞(Ω) such that Fu(Ω) ⊂ Σ and Fu(x0) = p.

If Ω ⊂ H
2 is admissible, then the function u in the definition above is unique,

and we will call it the function associated with Ω . The technique we will use to
prove Proposition 6 consists of enlarging gradually an initial admissible domain until
it eventually contains the projection of an arbitrarily large intrinsic ball.

As ν > 0, there exists a neighborhood of p in Σ which projects one-to-one to a
ball B(x0, ρ), for some ρ > 0. In other words, there exists ρ > 0 such that B(x0, ρ)

is admissible. Let us consider

R0 = sup
{

ρ > 0 : B(x0, ρ) is admissible
}

. (3.1)

If R0 = +∞, Proposition 6 follows trivially for such a point p, so we assume
R0 < +∞. This implies that B(x0,R0) is a maximal admissible ball, and it will play
the role of our initial domain.

Lemma 8 Let Ω be an admissible domain such that ∂Ω is a piecewise C2-embedded
curve. Suppose that there exists x̂ in a regular arc of ∂Ω such that Ω cannot be
extended as an admissible domain to any neighborhood of x̂. Then:

(i) The geodesic curvature of ∂Ω at x̂ with respect to its inner normal vector is at
least −2H .

(ii) There exists a curve Γ ⊂ H
2 with constant geodesic curvature 2H or −2H , tan-

gent to ∂Ω at x̂, and there exist δ > 0, y ∈ Ω , and a function v ∈ C∞(Nδ(Γ, y))

such that:
(a) The function v has constant boundary values +∞ or −∞ along Γ .
(b) Given r > 0, we have Ur = Nδ(Γ,y) ∩ B(x̂, r) ∩ Ω �= ∅ and there exists

r0 > 0 such that u = v in Ur for 0 < r < r0.

Proof of Lemma 8 Let us consider a geodesic ball B(y,ρ) ⊂ H
2 contained in Ω and

tangent to ∂Ω at x̂. Lemma 3 guarantees the existence of a curve Γ ⊂ H
2 with con-

stant geodesic curvature 2H or −2H , tangent to ∂B(y,ρ) at x̂, and δ > 0 such that
the H -graph over B(y,ρ) can be extended to an H -graph over B(y,ρ) ∪ Nδ(Γ,y).
Let us define v as the restriction of such an extension to Nδ(Γ,y). It can be easily
shown that Γ , δ, y, and v satisfy the conditions in item (ii). The uniqueness of pro-
longation ensures that Ω must be contained in N∞(Γ, y), from where the estimation
for the geodesic curvature of ∂Ω given in item (i) follows. �
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Fig. 1 Three families of four curves in H
2. The associated domain ΩC with respect to the disk (in light

gray) has been colored in darker gray. The family on the left is in general position with respect to the disk
whereas conditions (a) and (c) in the definition fail for the one in the middle, and condition (b) does not
hold for the one on the right

We will prove (see Lemma 11 for R = R0 and C = ∅) that the set of points in
∂B(x0,R0) such that u cannot be extended to any neighborhood of them as a ver-
tical H -graph is finite. So we can denote them as x1, . . . , xr . Lemma 8 guarantees
that, given j ∈ {1, . . . , r}, there exists a curve Γj ⊂ H

2 of constant geodesic cur-
vature 2H or −2H which is tangent to ∂B(x0,R0) at xj , such that u can be ex-
tended to B(x0,R0) ∪ Nδj

(Γj , x0), for some δj > 0. The next step in the proof of
Proposition 6 will consist of showing that the curves Γ1, . . . ,Γr are disjoint. Then
we will be able to extend the initial ball B(x0,R0) to a new admissible domain
Ω = B(x0,R0)∪ (

⋃r
j=1 Nδ(Γj , x0)), for some δ ≤ min{δj : j = 1, . . . , r}. The func-

tion associated with such Ω will have boundary values +∞ or −∞ along each of the
Γj (depending on the sign of its geodesic curvature). Therefore, for a further exten-
sion of Ω we will work in

⋂r
j=1 N∞(Γj , x0), i.e., we will extend Ω in the direction

of ∂Ω ∩ ∂B(x0,R0). As this process will be iterated, we describe a general situation
for the extension procedure.

Definition 9 Let C be a finite family of curves in H
2, each one with constant geodesic

curvature 2H or −2H . We will say that C is in general position for some radius R > 0
when the following three conditions are satisfied:

(a) Each Γ ∈ C intersects the closed ball B(x0,R) and x0 /∈ Γ .
(b) ∂ΩC ∩ Γ �= ∅ for every Γ ∈ C, where

ΩC = B(x0,R) ∩
(

⋂

Γ ∈C
N∞(Γ, x0)

)

. (3.2)

(c) No intersection point of curves in C lies on B(x0,R).

(We recall that N∞(Γ, x0) is the open connected component of H2
� Γ contain-

ing x0.) See Fig. 1, which depicts some examples. It is clear that the family of curves
{Γ1, . . . ,Γr } in the discussion above is in general position for the radius R0. This
condition will be preserved under the successive steps for enlarging the admissible
domain. The next lemma gives some information about a family of curves in general
position.
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Fig. 2 Left: Three curves in
general position, two of which
intersect at x̃ /∈ B(x0,R). Right:
ΩC ∪ T have been magnified (T
in darker gray) and some of the
curves Λt which cover T up to
x̃ are shown

Lemma 10 Let C be a finite family of curves in general position for a radius R > 0.
Suppose that ΩC , defined by (3.2), is an admissible domain and that, for any Γ ∈ C,
there exists a vertical H -graph v over Nδ(Γ,x0), for some δ > 0, with constant in-
finite boundary values along Γ , which coincides with the function u associated with
ΩC on ΩC ∩ Nδ(Γ,x0). Then:

(a) Any two curves in C are disjoint.
(b) There exists δ′ > 0 so that ΩC ∪ (

⋃

Γ ∈C Nδ′(Γ, x0)) is admissible.

Proof of Lemma 10 Reasoning by contradiction, let us suppose that there exists a
point x̃ ∈ Γ1 ∩ Γ2 for some Γ1,Γ2 ∈ C. Condition (c) in Definition 9 tells us that
x̃ /∈ B(x0,R). We can take a continuous family {Dt }t∈[0,�) of geodesic balls in H

2

satisfying the following three conditions:

(1) D0 ⊂ B(x0,R).
(2) ∂Dt is tangent to Γ1 and Γ2, for any t ∈ [0, �).
(3) The radius of Dt strictly decreases with respect to t , and Dt converges to the

point x̃ when t → �.

Let us call, respectively, x1 and x2 the points in Γ1 and Γ2 which are closest to x0.
Denote by T an open triangle with vertices x̃, x1, and x2, which has two sides lying
on Γ1 and Γ2 and the third one is a curve interior to ΩC joining x1 and x2. Let us
denote by Λt ⊂ ∂Dt the intersection of ΩC ∪ T with the longest of the two curves in
which ∂Dt is divided by Γ1 and Γ2. Then ΩC ∪ T = ΩC ∪ (

⋃

[0,�) Λt ) (see Fig. 2).
Let r ∈ [0, �] be the supreme of the values of t ∈ [0, �) for which the function u

associated with ΩC can be extended as an H -graph on ΩC ∪ (
⋃

s∈[0,t] Λs). Note that
r > 0 since the graph can be extended to ΩC ∪ Nε(Γi, x0), for i ∈ {1,2} and some
ε > 0, and the curves Λs lie on the union of these two open sets for small values of s.
Moreover, it must be r = �: Otherwise there would exist a point in Λr such that u

cannot be extended to any neighborhood of it as an H -graph. But Λr has constant
geodesic curvature smaller than −1 < −2H with respect to the normal pointing to
ΩC ∪ (

⋃

s∈[0,r] Λs), contradicting Lemma 8.
Hence we have proved that Ω1 = ΩC ∪ T is admissible, and the extension u1 of u

over Ω1 has non-bounded values in the part of ∂Ω1 lying on Γ1 ∪ Γ2. Nonetheless,
the graph u can also be extended to u2 defined over Ω2 = ΩC ∪ Nε(Γ1, x0). Thus
u1 = u2 in Ω1 ∩ Ω2, by uniqueness of the analytic prolongation. This is a contra-
diction because u2 has bounded values in Γ2 ∩ Nε(Γ1, x0) ⊂ ∂(Ω1 ∩ Ω2) whereas
u1 does not. Such a contradiction proves (a). Item (b) also follows from the previous
argument. �
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Let us now prove that, apart from the curves along which the graph takes infinite
boundary values, the number of points in the boundary of the corresponding domain
which do not admit an extension to any neighborhood of them is finite at any step of
the extension procedure.

Lemma 11 Let C be a finite family of curves in general position for some radius
R > 0. Suppose that ΩC is admissible and the function u associated with ΩC takes
constant infinite boundary values along the curves in C. Then the set A(R) of points
in ∂ΩC ∩ ∂B(x0,R) such that u cannot be extended to any neighborhood of them as
an H -graph is finite.

Proof of Lemma 11 Since C is finite, ∂ΩC ∩ ∂B(x0,R) consists of finitely many
regular arcs. Their endpoints belong to A(R), but they are finitely many and, by
Lemma 8, it is known that the graph can be extended as an H -graph to a neighborhood
in H

2 of any point in a neighborhood in ∂ΩC ∩ ∂B(x0,R) of any of them. Thus we
will not consider such endpoints.

Lemma 8 also says that the rest of the points in A(R) are isolated. On the other
hand, it is easy to check that A(R) is closed: We suppose there exists a sequence
{xn} in A(R) converging to x∞ /∈ A(R). Such a point x∞ must be interior to one
of the arcs in ∂ΩC ∩ ∂B(x0,R) because of the discussion above. Then u admits an
extension to a neighborhood of x∞ in H

2. But xn lies in such a neighborhood for n

large enough, a contradiction.
Hence A(R) is closed, consists of isolated points, and is contained in the compact

set ∂B(x0,R), so it is finite. �

We now have all the ingredients to prove the desired result.

Proof of Proposition 6 Repeating the argument leading to Eq. (3.1) and provided that
R0 < +∞ (otherwise we would be done), we can consider the maximal admissible
ball B(x0,R0). Lemma 11 guarantees the existence of a finite collection of points
in ∂B(x0,R0) such that B(x0,R0) cannot be extended in an admissible way to any
neighborhood of any of them. Hence, there exists a finite family C0 of complete curves
with constant geodesic curvature 2H or −2H , each one tangent to ∂B(x0,R0) at one
of those points, under the conditions of Lemma 8. The family C0 is in general position.
Then Lemma 10 says that the curves in C0 are disjoint and that there exists δ > 0 such
that the domain Ω ′ = ΩC0 ∪ (

⋃

Γ ∈C0
Nδ(Γ,x0)) is admissible.

Moreover, the initial graph can be extended to a neighborhood of any point inte-
rior to ∂Ω ′ ∩ ∂B(x0,R0), so we can define the supremum of R > R0 satisfying that
B(x0,R) ∩ (

⋂

Γ ∈C0
N∞(Γ, x0)) is admissible, called R1. If R1 < +∞, then let us

consider the admissible domain Ω1 = B(x0,R1) ∩ (
⋂

Γ ∈C0
N∞(Γ, x0)). By the def-

inition of R1, there will be points in the interior of ∂Ω1 ∩ ∂B(x0,R1) for which Ω1
cannot be extended in an admissible way to any neighborhood of any of them. By
Lemma 11, these points are finitely many, and we can apply Lemma 8 to obtain a
new family C1 ⊃ C0 in general position for the radius R1. Note that C1 − C0 �= ∅.

This procedure can be iterated to get a strictly increasing sequence (possibly finite)
of radii {Rn} in such a way that, for any n, there exists Cn, a family of curves in general
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position for Rn, with Cn−1 � Cn. Besides, the arguments above show that the domain

ΩCn
= B(x0,Rn) ∩

(

⋂

Γ ∈Cn

N∞(Γ, x0)

)

,

is admissible, ΩCn−1 ⊂ ΩCn
, and the associate function un extends un−1. Note that

there exists δn > 0 such that ΩCn
can be extended to the admissible domain ΩCn

∪
(
⋃

Γ ∈Cn
Nδn(Γ, x0)), by item (b) of Lemma 10.

In this situation, there are two possibilities: Either Rn0 = +∞ for some n0 ≥ 0
(and we would be done since Σ would be a complete vertical graph), or the sequence
{Rn} has infinitely many terms. Suppose we are in the latter case. Then we claim
that lim{Rn} = +∞. In order to prove this, we observe that the curves in Cn are all
disjoint by Lemma 10. If R∞ = lim{Rn} < +∞, we would have an infinite family
of disjoint curves (infinite, as each Cn strictly contains Cn−1), each one with constant
geodesic curvature 2H or −2H and intersecting the compact ball B(x0,R∞). But
this situation is impossible by condition (b) in Definition 9 (it tells us that, when we
fix one of such curves, Γ , the rest of them must lie in one of the two components of
H

2
� Γ ).
Given n ∈ N, the open set On = Fun(ΩCn

) ⊂ Σ satisfies that π(∂On) ⊂
∂B(x0,Rn), since un has boundary values ±∞ on the curves of Cn. Then we get
that the length of any piecewise regular curve α : [a, b] → Σ with α(a) = p and
α(b) ∈ ∂On is bigger than Rn, as the projected curve π ◦ α in H

2 is shorter than α.
Thus, the distance in Σ from p to ∂On is at least Rn, so BΣ(p,Rn) ⊂ Fu(ΩCn

) and
we are done since Rn is arbitrarily large. �
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