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Abstract On non-compact harmonic manifolds we prove that functions satisfying
the mean value property for two generic radii must be harmonic. Moreover, func-
tions with vanishing integrals over all spheres (or balls) of two generic radii must be
identically zero. We also prove results about the Cheeger constant and the heat kernel.
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1 Introduction

A complete Riemannian manifold (X,g) of dimension n+1 is called harmonic if the
volume density function in normal coordinates around a point depends only on the
distance from this point. Rank one symmetric spaces are harmonic, and Lichnerowicz
conjectured that a simply connected harmonic space must be flat or rank one sym-
metric. For compact simply connected spaces this is true by a theorem of Szabo [22].
However, certain 3-step solvmanifolds, constructed by Damek and Ricci [6], provide
examples of non-compact non-symmetric homogeneous harmonic spaces. Heber [11]
proved that there exist no other simply connected homogeneous harmonic spaces.
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Recently, Knieper [14] showed for non-compact simply connected harmonic spaces
that (i) having a purely exponential volume density function, (ii) being Gromov-
hyperbolic, and (iii) having an Anosov geodesic flow, are all equivalent conditions.

Non-compact harmonic spaces have no conjugate points. Moreover, they are Ein-
stein and therefore analytic by the Kazdan–De Turck theorem. It was shown by Will-
more [26] that harmonic manifolds can also be characterized as those analytic spaces
for which all harmonic functions f satisfy the mean value property, namely, that the
average of f over any geodesic sphere equals the value of f at its center. It is well
known that in a harmonic space every function satisfying the mean value property at
all points for all radii must be harmonic. This is no longer true if a function only satis-
fies the mean value property at all points for a single radius r1 > 0. A simple example
of a non-harmonic function satisfying the mean value property for the radius r1 = 2π

is the cosine function on the real line X = R. We will show in Theorem 4.3 that in
arbitrary non-compact harmonic spaces, the mean value property for two generically
chosen radii r1, r2 implies harmonicity of the function. Similarly, by Theorem 4.2, the
vanishing of the integral of a function over all spheres, or over all balls, of radii r1, r2

implies vanishing of the function, if and only if the pair (r1, r2) lies in the generic
subset of R

+ × R
+ given in Proposition 4.1. In the example of the real line, this set

is the set of pairs with irrational quotient.
The paper is organized as follows. In Sect. 2, we introduce basic notions and define

convolutions in harmonic spaces following ideas of Szabo [22], and prove useful
properties of them.

In Sect. 3, we derive fundamental results for the Abel transform and the spherical
Fourier transform, in particular, that the Abel transform and its dual are topological
isomorphisms (Theorem 3.8), using finite propagation speed of the wave equation
and a D’Alembert type formula for the Klein–Gordon equation.

In Sect. 4, we prove the above-mentioned integral geometric results for all non-
compact harmonic manifolds. The arguments there are analogous to our earlier paper
[20], where we studied two radius results for Damek–Ricci spaces. This realizes the
proposed research direction indicated in [2, Sect. 10]. A crucial step is the reduction
of the problem to a classical result of L. Schwartz [21] on mean periodic functions.
For a modern treatment of mean periodic functions in symmetric spaces, see [25].

Finally, in Sect. 5, we present some results related to the Cheeger constant (Theo-
rem 5.1) and to the heat kernel (Theorem 5.6) of non-compact harmonic manifolds.

2 Radial Eigenfunctions and Convolutions

Henceforth, (X,g) denotes a non-compact, complete, simply connected harmonic
space, θ(r) the density function of a geodesic sphere of radius r > 0, H ≥ 0 the mean
curvature of all horospheres, and x0 ∈ X a particular reference point. Let r(x) :=
d(x0, x). The closed ball of radius r > 0 around x ∈ X is denoted by Br(x) ⊂ X. For
the inner product, we use the notation

〈f,g〉 =
∫

X

f (x)g(x)dx.
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Let E (X), resp., D(X) denote the vector space of smooth functions on X, resp.,
smooth functions with compact support, equipped with the topology of uniform con-
vergence of all derivatives on compact sets, see [12, Chap. II Sect. 2], for instance.

Definition 2.1 For every x ∈ X, the spherical projector πx : E (X) → E (X) is defined
by

(πxf )(y) := 1

vol(Sr(x))

∫
Sr (x)

f with r = d(x, y),

where Sr(x) denotes the geodesic sphere around x with radius r .
Let E0(X,x) := πx(E (X)) and D0(X,x) := πx(D(X)). Functions in these

spaces are called radial functions about x. We simply write π, E0(X), D0(X) for
πx0 , E0(X,x0), D0(X,x0). A radial function f ∈ E0(X) is of the form

f (x) = f̃
(
r(x)

) = f̃
(
d(x, x0)

)
(1)

with some even function f̃ ∈ E0(R). We often do not distinguish between f and f̃ in
our notation, i.e., we simply write f (x) = f (r(x)).

We now present basic properties of the spherical projector. The first property be-
low is obvious, and the second identity can be found, e.g., in [17, Lemma 2].

Lemma 2.2 For x ∈ X, the operator πx has the following properties:

π2
x = πx, (2)

〈πxf,g〉 = 〈f,πxg〉. (3)

The Laplacian � = div ◦ grad, applied to a radial function f ∈ E0(X), can be
written as

(�f )
(
r(x)

) = f ′′(r(x)
) + θ ′(r(x))

θ(r(x))
f ′(r(x)

)
. (4)

It is well known that θ ′(r)/θ(r) is the mean curvature of a geodesic sphere Sr(x),
and that θ ′(r)/θ(r) is a monotone decreasing function converging to H (see [16,
Cor. 2.1]).

Concerning eigenvalues, we follow the sign convention in [4], and call f ∈ E (X)

an eigenfunction to the eigenvalue μ ∈ C if �f + μf = 0.
We now prove uniqueness and existence of radial eigenfunctions of the Laplacian.

For positive eigenvalues this is shown in [22].

Proposition 2.3 For each λ ∈ C there is a unique smooth function ϕλ ∈ E0(X) such
that

�ϕλ +
(

λ2 + H 2

4

)
ϕλ = 0, and ϕλ(x0) = 1. (5)

We obviously have ϕ−λ = ϕλ and ϕiH/2 = ϕ−iH/2 = 1. Also ϕλ(r) is holomorphic
in λ.
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Proof We fix λ ∈ C and abbreviate L := −(λ2 + H 2

4 ). The eigenvalue equation (5)
translates to

ϕ′′
λ + θ ′

θ
ϕ′

λ = (θϕ′
λ)

′

θ
= Lϕλ and ϕλ(0) = 1. (6)

Integrating twice we get that this is equivalent to

ϕλ(r) = ϕλ(0) + L

∫ r

0

1

θ(r2)

∫ r2

0
θ(r1)ϕλ(r1)dr1dr2

= 1 + L

∫ r

0
q(r, r1)ϕλ(r1)dr1, (7)

where

q(r, r1) =
∫ r

r1

θ(r1)

θ(r2)
dr2.

By [16, Prop. 2.2] the function θ ≥ 0 increases, hence 0 ≤ q(r, r1) ≤ r − r1, and
the Volterra integral equation of the second kind (7) has a unique solution (see [13,
Thm. 5]). In order to obtain a power series in L for ϕλ, we use (7) iteratively, starting
with the constant function 1, and obtain

ϕλ(r) = 1 +
∞∑

k=1

ak(r)L
k

with coefficients

ak(r) =
∫

r≥r1≥r2≥···rk≥0
q(r, r1)q(r1, r2) · · ·q(rk−1, rk)dr1 · · ·drk.

Since

0 ≤ ak(r) ≤
∫

r≥r1≥r2≥···rk≥0
(r − r1)(r1 − r2) · · · (rk−1 − rk)dr1 · · ·drk = r2k

(2k)! ,

the power series above converges for all L ∈ C. �

The following lemma can be found in [22, Lemma 1.1]:

Lemma 2.4 We have

πx ◦ � = � ◦ πx.

An immediate consequence of Lemma 2.4 is the fact that if �f + μf = 0, then
g := πxf ∈ E (X,x) is also an eigenfunction of � with eigenvalue μ.

The displacement of a radial function f ∈ E0(X,x) at a point y ∈ X is denoted by
fy ∈ E0(X,y) and defined by

fy(z) := f̃
(
d(y, z)

)
,

with f̃ (d(x, y)) = f (y). We have fy(z) = fz(y).
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Lemma 2.5 The displacement (ϕλ)x of an eigenfunction ϕλ is again an eigenfunction
to the same eigenvalue and

π
(
(ϕλ)x

) = ϕλ(x)ϕλ.

Proof Because of the representation (4) of the Laplacian in polar coordinates, which
is independent of the center, the displacement (ϕλ)x is also an eigenfunction to the
eigenvalue μ = (λ2 + H 2/4). From � ◦ π = π ◦ � (Lemma 2.4) we conclude that
π((ϕλ)x) is a radial eigenfunction about x0 to the eigenvalue μ and, by uniqueness,
a multiple of ϕλ. We have

(
π
(
(ϕλ)x

))
(x0) = (ϕλ)x(x0) = (ϕλ)x0(x) = ϕλ(x). �

A smooth function F : X × X → C is called a radial kernel function if there is a
function f̃ : [0,∞) → C such that

F(x, y) = f̃
(
d(x, y)

)
for all x, y ∈ X.

F is called of compact support if there is a radius R > 0 such that F(x, y) = 0 for all
d(x, y) ≥ R.

Proposition 2.6 (See [22, Prop. 2.1]) Let F,G : X × X → C be two radial kernel
functions, one of them of compact support. Then the convolution

F ∗ G(x,y) :=
∫

X

F(x, z)G(z, y)dy

is, again, a radial kernel function, i.e., F ∗ G(x,y) depends only on the distance
d(x, y).

Radial functions f ∈ E0(X) are in one-one correspondence with radial kernel
functions F : C∞(X × X) via

F(y, z) = f̃
(
d(y, z)

)
,

f (x) = F(x0, x),

where f̃ was introduced in (1). This correspondence leads to a natural convolution
f ∗ g of radial functions f,g ∈ E0(X), and even to an extension of this notion if only
one of the two functions is radial:

Definition 2.7 Let f,g ∈ E (X), one of them with compact support, and one of them
radial about x0. If f is the radial function, the convolution f ∗ g ∈ E (X) is defined as

f ∗ g(y) := 〈fy, g〉 =
∫

X

fy(z)g(z)dz.

Similarly, if g is the radial function, we define

f ∗ g(y) := 〈f,gy〉 =
∫

X

f (z)gy(z)dz.
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Remark 1 The convolution f ∗g is well defined, since if both f,g are radial, we have
∫

X

fy(z)g(z)dz = F ∗ G(y,x0) and
∫

X

f (z)gy(z)dz = F ∗ G(x0, y),

where F and G are the radial kernel functions associated with f,g. By Proposi-
tion 2.6, we have F ∗G(y,x0) = F ∗G(x0, y). Moreover, the definition immediately
implies commutativity of the convolution.

The following two lemmas are further consequences of Proposition 2.6. The
proofs are straightforward, once the statements are reformulated in terms of radial
kernel functions.

Lemma 2.8 Let f,g ∈ D0(X). Then f ∗ g ∈ D0(X).

Lemma 2.9 Let f ∈ D(X) and g,h ∈ D0(X). Then we have

f ∗ (g ∗ h) = (f ∗ g) ∗ h. (8)

Let D′(X) and E ′(X) be the dual spaces of E (X) and D(X), the space of dis-
tributions and the space of distributions with compact support. For their topolo-
gies we refer, again, to [12, Chap. II Sect. 2]. Let E ′

0(X) and D′
0(X) be the corre-

sponding subspaces of radial distributions. The spherical projector and the convolu-
tion are continuous and D0(X) embeds canonically into E ′

0(X) via f → Tf , where
〈Tf , g〉 := ∫

X
f (x)g(x)dx. For T ∈ E ′(X) and f ∈ E0(X), T ∗ f can be interpreted

as a function in E (X), i.e.,

T ∗ f (x) = 〈T ,fx〉.
Since D0(X) lies dense in E ′

0(X) (this follows by using a Dirac sequence ρε ∈ D0(X)

and T ∗ρε → T ), all the above properties for functions carry over to distributions (as,
for instance, the fact that the convolution of two radial distributions is radial, or the
associativity of the convolution of radial distributions).

Since
∫
X

gy(z)f (z)dz = ∫
X

g(z)(πyf )x0(z) for g ∈ D0(X) and f ∈ E (X), the
convolution of T ∈ E ′

0(X) and f ∈ E (X) is given by

T ∗ f (y) := 〈
T , (πyf )x0

〉 =
〈
T , z → 1

vol(Sr(z)(y))

∫
Sr(z)(y)

f (x)dx

〉
. (9)

As an example, consider the distribution Tr ∈ E ′
0(X), given by 〈Tr, f 〉 = ∫

Sr
f . If

f ∈ E (X) we obtain

Tr ∗ f (y) =
〈
Tr, z → 1

vol(Sr(z)(y))

∫
Sr(z)(y)

f

〉
=

∫
Sr (y)

f. (10)

The convolution of two radial distributions S,T ∈ E ′
0(X) lies in E ′

0(X) and can be
written as follows: If f ∈ E0(X), we have

〈S ∗ T ,f 〉 = 〈
S,x → 〈T ,fx〉

〉
.
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For general f ∈ E (X), we have

〈S ∗ T ,f 〉 = 〈S ∗ T ,πf 〉 (= 〈
S,x → 〈

T , (πf )x
〉〉)

.

Proposition 2.10 For T ∈ E ′
0(X) and f ∈ E (X) we have

π(T ∗ f ) = T ∗ (πf ).

Proof In view of (9), the claim means that

[
π(T ∗ f )

]
(y) = π

[
u → 〈

T , z → (πuf )x0(z)
〉]
(y)

= 〈
T , z → π

[
u → (πuf )x0(z)

]
(y)

〉

is equal to
[
T ∗ (πf )

]
(y) = 〈

T , (πyπf )x0

〉

for all y ∈ X. To see this, we show that for all y, z ∈ X we have

π
[
u → (πuf )x0(z)

]
(y) = [

(πyπf )x0

]
(z). (11)

We first show (11) if f is an eigenfunction of the Laplacian. So assume

f ∈ E (X) with �f + μf = 0.

Then �πuf + μπuf = 0 and πuf ∈ E (X,u) is radial. Choose λ ∈ C such that μ =
λ2 + H 2/4. By the uniqueness of the radial eigenfunctions we get

(πuf )x0 = f (u)
(
(ϕλ)u

)
x0

= f (u)ϕλ.

Therefore,

π
[
u → (πuf )x0(z)

]
(y) = π

[
u → f (u)ϕλ(z)

]
(y)

= ϕλ(z)[πf ](y) = ϕλ(z)ϕλ(y)f (x0)

and
[
(πyπf )x0

]
(z) = [(

πy

[
f (x0)ϕλ

])
x0

]
(z) = f (x0)ϕλ(y)ϕλ(z).

In order to show (11) for arbitrary functions f , note that for fixed y, z ∈ X the values
of both sides of (11) depend on the restriction of f to a compact subset K ⊂ X

only. Let K ′ be a compact subset of X with smooth boundary containing K in its
interior. Since f is smooth, we find linear combinations of Dirichlet eigenfunctions
of the Laplacian on K ′ approximating f uniformly on K . Since both sides of (11)
are continuous in f with respect to uniform convergence, this establishes (11) for all
functions f . �
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3 Abel and Spherical Fourier Transformation

We first introduce some fundamental notions. Let SX be the unit tangent bundle of
(X,g). The Busemann function associated with a unit tangent vector v0 ∈ Sx0X is
defined by

b(x) = bv0(x) := lim
s→∞

(
d
(
c(s), x

)− s
)
,

where c : R → X is the geodesic with c(0) = x0, c′(0) = v0. �b = H implies that b

is an analytic function. The level sets of b are smooth hypersurfaces and are called
horospheres. They are denoted by

Hs := b−1(s).

These horospheres foliate X and we have x0 ∈ H0. We also need the smooth unit
vector field

N(x) = −gradb(x),

orthogonal to the horospheres Hs and satisfying N(x0) = v0. We choose an orienta-
tion of H0 and orientations of Hs such that the diffeomorphisms

Ψs : H0 → Hs , Ψs(x) := expx

(−sN(x)
)
,

are orientation preserving. Since HN is the mean curvature vector of the horospheres
and thus the variation field of the area functional we have

Proposition 3.1

(Ψs)
∗ωs = esH ω0.

We combine the diffeomorphisms Ψs : H0 → Hs to construct a global diffeomor-
phism

Ψ : R × H0 → X, Ψ (s, x) := Ψs(x).

We have DΨ ( ∂
∂s

) = −N .
We choose an orientation on R × H0 such that every oriented base v1, . . . , vn of

H0 induces an oriented base ∂
∂s

, v1, . . . , vn on R× H0. This yields also an orientation
on X by requiring that Ψ is orientation preserving. An immediate consequence of
Proposition 3.1 is

Corollary 3.2 Let ω denote the volume form of the harmonic space (X,g). Then we
have

Ψ ∗ω = esH ds ∧ ω0.

Next, we fix a unit vector v0 ∈ Sx0X, and denote the associated Busemann function
bv0 by b, for simplicity. We first consider the following important transform:
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Definition 3.3 Let j : E0(R) → E (X) be defined as

(jf )(x) = e− H
2 b(x)f

(
b(x)

)
.

The transformation a : E0(R) → E0(X) is then defined as

a = π ◦ j.

The Abel transform A : E ′
0(X) → E ′

0(R) is defined as the dual of a, i.e., we have for
all T ∈ E ′

0(X) and f ∈ E0(R):

〈AT ,f 〉R = 〈T ,af 〉X.

The functions ψλ(s) = 1
2 (eiλs + e−iλs) = cos(λs) are the radial eigenfunctions of

the Laplacian �f = f ′′ on the real line.

Lemma 3.4 We have

aψλ = ϕλ.

Proof We first observe that, under the diffeomorphism Ψ : R × H0 → X, the Lapla-
cian has the form

� = ∂2

∂2s
+ H

∂

∂s
+ As, (12)

where As is a differential operator with derivatives tangent to H0. Consequently, the
functions fα = e−αb are eigenfunctions of � with

�fα = −α(H − α)fα.

Choosing α = H
2 ± iλ, we obtain

�fα = −
(

λ2 + H 2

4

)
fα,

and, by uniqueness, πfα must be a multiple of ϕλ. Since fα(x0) = 1, we conclude
that ϕλ = πfα . Let α± = H

2 ± iλ. Then one easily checks that

jψλ = 1

2

(
e−α−b + e−α+b

)
,

and, consequently,

aψλ = 1

2
(πfα− + πfα+) = ϕλ. �

Let ψλ,k(s) = dk

dλk ψλ(s) = sk

2 (ikeiλs + (−i)ke−iλs) and ϕλ,k = dk

dλk ϕλ. Lemma 3.4
implies that we also have

aψλ,k = ϕλ,k, (13)

for all k ≥ 1.
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Proposition 3.5 The Abel transform of a function f ∈ D0(X) ⊂ E ′
0(X) is Af ∈

D0(R) ⊂ E ′
0(R) given by

(Af )(s) = e− H
2 s

∫
Hs

f (z)ωs(z) = e
H
2 s

∫
H0

f
(
Ψs(z)

)
ω0(z). (14)

Proof Let f ∈ D0(X) and

g(s) = e− H
2 s

∫
Hs

f (z)ωs(z).

Since f has compact support, there is T > 0 such that Hs ∩suppf = ∅ for all |s| ≥ T ,
i.e., g also has compact support. Moreover, by Proposition 3.1, we obtain

g(s) = e− H
2 s

∫
Ψs(H0)

f (z)ωs(z) = e− H
2 s

∫
H0

f
(
Ψs(z)

)(
Ψ ∗

s ωs

)
(z)

= e
H
2 s

∫
H0

f
(
Ψs(z)

)
ω0(z).

Next, we show 〈g,h〉 = 〈f,ah〉 for all h ∈ E0(R):

〈g,h〉 =
∫ ∞

−∞
g(s)h(s)ds =

∫ ∞

−∞
e− H

2 sh(s)

∫
Hs

f (z)ωs(z)ds

=
∫ ∞

−∞

∫
Hs

f (z)e− H
2 b(z)h

(
b(z)

)
ωs(z)ds =

∫
X

f (z)e− H
2 b(z)h

(
b(z)

)
dz

= 〈f, jh〉 = 〈πf, jh〉 = 〈f,ah〉.

Finally, we show that g is an even function: Using 〈g,h〉 = 〈f,ah〉 and Lemma 3.4,
we derive ∫ ∞

−∞
g(s)e±iλsds = 〈f,ϕλ〉,

which implies that
∫ ∞

−∞
eiλs

(
g(s) − g(−s)

)
ds = 0,

for all λ ∈ C. This yields g(s) = g(−s), i.e., g is an even function. This finishes the
proof of the proposition. �

Lemma 3.6 For f ∈ E ′
0(X), we have

A(�f ) =
(

d2

ds2
− H 2

4

)
Af.
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Proof Let u ∈ E0(R). Since ju ∈ E (X) is constant on the horospheres, from (12) we
compute

[�ju](x) =
(

∂2

∂s2
+ H

∂

∂s

)
e−sH/2u(s)

∣∣∣∣
s=b(x)

=
[
j

(
d2

ds2
− H 2

4

)
u

]
(x);

hence,
〈

A(�f ),u
〉 = 〈�f,au〉 = 〈f,�πju〉 = 〈f,π�ju〉

=
〈
f,πj

(
d2

ds2
− H 2

4

)
u

〉
=

〈
f,a

(
d2

ds2
− H 2

4

)
u

〉

=
〈

Af,

(
d2

ds2
− H 2

4

)
u

〉
=

〈(
d2

ds2
− H 2

4

)
Af,u

〉
. �

The next result will be used in the proof of Theorem 3.8 below; namely, to estab-
lish the local injectivity of a : E0(R) → E0(X).

Lemma 3.7 Let g ∈ D(R). Then the Klein–Gordon equation

∂2

∂t2
v(t, s) = ∂2

∂s2
v(t, s) − H 2

4
v(t, s) (15)

v(0, s) = g(s) and
∂

∂t
v(0, s) = 0 (16)

has a solution of the form

v(t, s) = g(s − t) + g(s + t)

2
+

∫ s+t

s−t

W
(
t, s − s′)g(s′)ds′, (17)

with W ∈ E (R2). This solution is unique in the sense that if ṽ is another solution of
(15) and (16) and so that for all t the function ṽt : s → ṽ(t, s) has compact support,
then ṽ = v.

Proof The function W is explicitly given by

W(t, s) = t

∞∑
k=0

(−H 2

16

)k+1
(t2 − s2)k

k!(k + 1)! , (18)

but we will only need that W is smooth. A straightforward computation shows that
(17) actually solves (15) and (16). The function W is even in the second argument s,
and solves the equations

W(t, t) = −H 2

16
t, Wtt = Wss − H 2

4
W.

Uniqueness of the solution follows from conservation of energy as, for instance, in
[23, p. 145]. To see this, assume that ṽ is another solution of (15) and (16). Then the
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difference ω = v − ṽ solves (15) and (16) with g replaced by 0. We now look at the
energy

Eω(t) :=
∫ ∞

−∞
ωs(t, s)

2 + ωt(t, s)
2 + H 2

4
ω(t, s)2ds,

and compute, integrating by parts,

d

dt
Eω(t) = 2

∫ ∞

−∞
ωsωst + ωttωt + H 2

4
ωtωds

= 2
∫ ∞

−∞
−ωssωt + ωttωt + H 2

4
ωωtds

= 2
∫ ∞

−∞

(
−ωss + ωtt + H 2

4
ω

)
ωtds = 0,

because ω satisfies (15). Since Eω(0) = 0 we have Eω(t) = 0 for all t , which forces
ω = 0. �

Theorem 3.8 The maps a : E0(R) → E0(X) and A = a′ are topological isomor-
phisms.

Proof We first show local injectivity of a. For all R ≥ 0 the map a induces a well-
defined map

aR : E0
([−R,R]) → E0

(
BR(x0)

)
,

i.e., for x ∈ X the value of au(x) depends only on the restriction of u to [−r(x), r(x)].
Local injectivity now is the fact that for all R ≥ 0, the maps aR are injective. Thus
for u ∈ E0(R) we have

au|BR(x0) = 0 =⇒ u|[−R,R] = 0.

The proof is based on the fact that A : E ′
0(X) → E ′

0(R) transforms the fundamental
solution of the radial wave equation to the fundamental solution of the Klein–Gordon
equation. Since we need A on compactly supported distributions, finite propagation
speed of the solution of the wave equation is essential here.

For all ε > 0 we choose a function qε ∈ E0(X) so that

qε(x) = 0 if r(x) > ε and
∫

X

qε = 1.

Let w ∈ E0(R×X), w = w(t, r(x)) = wt(r(x)), be the solution of the wave equation
starting with qε , i.e.,

∂2

∂t2
w
(
t, r(x)

) = �xwt

(
r(x)

) = ∂2

∂r2
w
(
t, r(x)

) + θ ′

θ

(
r(x)

) ∂

∂r
w
(
t, r(x)

)
,

w(0, r) = qε(r),

∂

∂t
w(0, r) = 0.
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By the finite propagation speed of the wave equation, the support of wt is compact
(in fact, contained in Bε+t (0)).

Let v ∈ E (R2) be so that vt := Awt , i.e.,

v(t, s) = e−sH/2
∫

Hs

w
(
t, r(x)

)
dωs(x).

Then by Lemma 3.6

∂2

∂t2
vt = ∂2

∂t2
Awt = A ∂2

∂t2
wt = A�wt =

(
∂2

∂s2
− H 2

4

)
vt .

It follows that v solves the Klein–Gordon equation (15) with initial conditions (in
place of (16))

v0 = gε := Aqε and
∂

∂t
v(0, s) = 0.

If |s| > ε then v(0, s) = gε(s) = 0. Also

∫ ∞

−∞
esH/2gε(s)ds =

∫ ∞

−∞

∫
Hs

qε

(
r(x)

)
dωsds =

∫
X

qε = 1.

Now, to prove local injectivity of a, let R ≥ 0 and u ∈ E0(R) with au|BR(x0) = 0.
For all t ∈ [−(R − ε),R − ε] we then have from (17)

0 = 〈wt, au〉 = 〈Awt,u〉 = 〈vt , u〉

=
∫ ∞

−∞
gε(s − t) + gε(s + t)

2
u(s)ds +

∫ ∞

−∞

∫ s+t

s−t

W
(
t, s − s′)gε

(
s′)ds′u(s)ds.

Since W,u and gε are smooth, we can take the limit ε → 0 here to get the identity

u(t) + u(−t)

2
= −

∫ t

−t

W(t, s)u(s)ds.

Since u and W are even (in s), we can write this as a fixed-point equation,

u(t) = −2
∫ t

0
W(t, s)u(s)ds.

Since πf (x0) = f (x0) for all f ∈ E (X) we have u(0) = 0. Let

M := max
t∈[0,R],s∈[0,t]

∣∣W(t, s)
∣∣.

Hence, if u|[0,R] �= 0 there is some T ∈ [0,R] with the following properties:
(i) u(T ) �= 0 and (ii) T < 1

4M
or u|[0,T − 1

4M
] = 0. Now for all t ∈ [0, T ] we estimate
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∣∣u(t)
∣∣ ≤ 2

∫ t

0

∣∣W(t, s)
∣∣∣∣u(s)

∣∣ds

≤ 2
∫ t

max{0,t− 1
4M

}
∣∣W(t, s)

∣∣∣∣u(s)
∣∣ds ≤ 1

2
sup

t ′∈[0,T ]

∣∣u(t ′)∣∣,

contradicting our assumption about T and u(T ) �= 0.
Now we prove surjectivity of a: Let f ∈ E0(X) and R > 0 be fixed. Choose a func-

tion φ ∈ D0(X) with φ = 1 on BR(x0), 0 ≤ φ ≤ 1 on X, and φ = 0 on X\BR+1(x0).
We will first show that φf |BR(x0) is in a(E0(R))|BR(x0).

Let ϕk be an orthonormal basis of Dirichlet eigenfunctions of the Laplacian
on BR+1(x0) ⊂ X with corresponding eigenvalues 0 ≤ μk ↗ ∞. We have πϕk =
ϕk(x0)ϕλk

with λk ∈ C such that μk = λ2
k + H 2

4 . Let

φf =
∞∑

k=0

akϕk

be the Fourier expansion of φf . Therefore,

φf = π(φf ) =
∞∑

k=0

akϕk(x0)ϕλk
.

Our first goal is to show that the series

gR(s) =
∞∑

k=0

akϕk(x0) cos(λks)

converges uniformly with all its derivatives to a smooth function gR ∈ E0([−R,R]).
Then we have aR(gR) = φf |BR(x0), by the continuity of a. We prove this by showing
that

∞∑
k=0

∣∣ak

∣∣∣∣ϕk(x0)
∣∣|λk|m < ∞ for all m ∈ N. (19)

By the Sobolev imbedding theorem, there is a constant C0 such that for all u ∈
C(BR+1(x0)) we have

‖u‖∞ ≤ C0
(‖u‖2 + ∥∥�n+1u

∥∥
2

)
,

where ‖ · ‖∞ denotes the supremum norm and ‖ · ‖2 denotes the L2-norm, and n + 1
is the dimension of X. This implies that

∥∥ϕk(x0)
∣∣ ≤ ‖ϕk‖∞ ≤ C0

(
1 + μn+1

k

)
.

By Weyl’s law, the eigenvalues μk grow with an exponent 2/(n + 1), which implies
that there is a k0 ∈ N and a C1 > 0 such that, for all k ≥ k0:

∣∣ϕk(x0)
∣∣ ≤ ‖ϕk‖∞ ≤ C1k

2. (20)
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The Fourier expansion of �ν(φf ) is given by

�ν(φf ) =
∞∑

k=0

akμ
ν
kϕk,

and, since �ν(φf ) ∈ L2(BR+1(x0)), we have

∞∑
k=1

|ak|2|μk|2ν < ∞,

which implies that

∞∑
k=1

|ak|2|λk|4ν < ∞, (21)

for every ν ∈ N. We have

∞∑
k=0

|ak||ϕk(x0)||λk|m
(20)≤ C1

∞∑
k=0

|ak| k2 |λk|m

= C1

∞∑
k=0

(|ak| k2 |λk|m+l
) |λk|−l

≤ C1

( ∞∑
k=0

|ak|2k4 |λk|2m+2l

)1/2( ∞∑
k=0

|λk|−2l

)1/2

Weyl≤ C2

( ∞∑
k=0

|ak|2 |λk|2(m+l+2n+2)

)1/2( ∞∑
k=0

|λk|−2l

)1/2

.

The required finiteness (19) now follows from (21) and Weyl’s law, for the choice
l = n + 1.

Hence gR defines a smooth function with aRgR = f on BR(x0). Now for a given
f ∈ E0(X) and each N ∈ N, construct a function gN ∈ E0([−N,N ]) as above. We
will have aN(gN) = f |BN(x0). By local injectivity of a, gN+1|[−N,N ] = gN , and the
functions gN patch together to define a function g ∈ E0(R) with a(g) = f .

This shows that a is a bijective linear continuous map. By the open mapping the-
orem [24, Thm. 17.1], a is a topological isomorphism. Using the corollary of Propo-
sition 19.5 in [24], we conclude that its dual A : E ′

0(X) → E ′
0(R) is also a topological

isomorphism. �

Definition 3.9 The spherical Fourier transformation F T of a radial distribution
T ∈ E ′

0(X) is the function F T : C → C with

F T (λ) = 〈T ,ϕλ〉 for all λ ∈ C.
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Next, we will see that there is a close relationship between the Abel trans-
form A and the spherical Fourier transform F . By the classical Paley–Wiener the-
orem for distributions (see, e.g., [8, p. 211] and [9, Thm. 5.19]), the Euclidean
Fourier transform E ′

0(R) � S → Ŝ, with Ŝ(λ) := 〈S,ψλ〉 is a topological isomor-
phism E ′

0(R) → E′
0, where E′

0 is the space of all even entire functions f : C → C

of exponential type which are polynomially bounded on R, endowed with a suitable
topology.

Proposition 3.10 We have

ÂT = F T .

Proof We have for λ ∈ C,

ÂT (λ) = 〈AT ,ψλ〉 = 〈T ,aψλ〉 = 〈T ,ϕλ〉 = F T (λ). �

Proposition 3.11 For S,T ∈ E ′
0(X) we have

A(S ∗ T ) = AS ∗ AT .

Proof Note that AS, AT , A(S ∗ T ) ∈ E ′
0(R). It was shown in [24, formula (30.1)]

that we have, for these distributions on the real line,

ÂS · ÂT = ̂AS ∗ AT .

We now show that ̂A(S ∗ T ) = ÂS · ÂT :

̂A(S ∗ T )(λ) = 〈
A(S ∗ T ),ψλ

〉 = 〈S ∗ T ,ϕλ〉

= 〈
S,x → 〈

T , (ϕλ)x
〉〉 = 〈

S,x → 〈
T ,π

(
(ϕλ)x

)〉〉

= 〈
S,x → 〈

T ,ϕλ(x)ϕλ

〉〉 = 〈
S, 〈T ,ϕλϕλ〉

〉

= 〈S,aψλ〉〈T ,aψλ〉 = 〈AS,ψλ〉 · 〈AT ,ψλ〉

= ÂS(λ) · ÂT (λ).

Putting both results together, we conclude that

̂A(S ∗ T ) = ̂AS ∗ AT .

Since the Euclidean Fourier transform E ′
0(R) → E′

0, T → T̂ , is a topological isomor-
phism, we finally obtain

A(S ∗ T ) = AS ∗ AT ,

finishing the proof. �

An immediate consequence of Paley–Wiener for radial distributions in Euclidean
space, Theorem 3.8, and Propositions 3.10 and 3.11 is the following:
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Theorem 3.12 (Paley–Wiener for radial distributions) The spherical Fourier trans-
form

F T (λ) = 〈T ,ϕλ〉
defines a topological isomorphism

F : E ′
0(X) → E′

0.

Furthermore, for radial distributions S,T ∈ E ′
0(X), we have

F (S ∗ T ) = F S · F T .

Proposition 3.13 The following diagram commutes:

E ′
0(X) × E0(X)

∗X−−−−→ E0(X)⏐⏐�A×a−1

⏐⏐�a−1

E ′
0(R) × E0(R)

∗R−−−−→ E0(R)

(22)

Proof Since a : E0(R) → E0(X) and A : E ′
0(X) → E ′

0(R) are topological isomor-
phisms, in view of Proposition 3.11, it only remains to show that a(AT ∗R f ) =
T ∗X af : For g,h ∈ D0(X) we obtain

〈g ∗ af,h〉 = (
(g ∗ af ) ∗ h

)
(x0) = (

(af ∗ g) ∗ h
)
(x0)

= (
af ∗ (g ∗ h)

)
(x0) = 〈af,g ∗ h〉 = 〈f, Ag ∗ Ah〉

= (
f ∗ (Ag ∗ Ah)

)
(x0) = (

(Ag ∗ f ) ∗ Ah
)
(x0)

= 〈Ag ∗ f, Ah〉 = 〈
a(Ag ∗ f ),h

〉
.

Since D0(X) is dense in E ′
0(X) and a, A are continuous, we conclude the required

identity. �

4 Spectral Analysis/Synthesis and Two Radius Theorems

In this section, we discuss the proofs of the integral geometric results mentioned
in the Introduction. Since the proofs are very similar to the ones given in [20] for
Damek–Ricci spaces, we give the ideas and outlines of the proofs, and refer to that
paper for more details.

The following proposition is a consequence of the holomorphicity of the map
λ → ϕλ(r), and guarantees that the integral geometric results hold for two generic
radii, as claimed in the Introduction.
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Proposition 4.1 For each r1 > 0 there is an at most countable set of r2 > 0 such that
there exists λ ∈ C with ϕλ(r1) = ϕλ(r2) = 0. In particular, the set

{
(r1, r2) ∈ R

+ × R
+ | ∀λ ∈ C : φλ(r1) �= 0 or φλ(r2) �= 0

}

is generic.

Proof Let r1 > 0. By Proposition 2.3, the set Sr1 = {λ ∈ C | ϕλ(r1) = 0} is at most
countable. The zero set ϕ−1

λ (0) of ϕλ, is also at most countable because ϕλ satisfies

the differential equation (6) ϕ′′
λ = −(λ2 + H 2

4 )ϕλ − θ ′
θ
ϕλ, the solution of which is

determined by the values of ϕλ(r0) and ϕ′
λ(r0) for any r0 > 0. Thus ϕλ cannot have a

limit point of zeros. It follows that the set

{
r2 > 0 | ∃λ ∈ C : ϕλ(r1) = ϕλ(r2) = 0

} =
⋃

λ∈Sr1

ϕ−1
λ (0)

is an at most countable union of at most countable sets, hence itself at most count-
able. �

The same reasoning applies to the function ϕλ − 1 (we must exclude here λ =
±i H

2 , since then ϕλ ≡ 1), and the function Φλ given by

Φλ(r) =
∫ r

0
θ(ρ)ϕλ(ρ)dρ (23)

where θ denotes the volume density function.
Analogously to [20], we have spectral analysis and spectral synthesis in E0(X).

Let us briefly explain this.
A variety V ⊂ E0(X) is a closed subspace satisfying E ′

0(X) ∗ V ⊂ V , which is
proper (V �= E0(X)) and contains a non-zero function.

It follows from Propositions 3.13 and 3.11, together with the isomorphism The-
orem 3.8, that the transformation a maps varieties of E0(R) to varieties of E0(X),
and that every variety in E0(X) is of the form a(W) with a variety W ⊂ E0(R). By
Schwartz’s theorem on varieties in E0(R) (see Thm. 2.4 in [20]), we have

W = span{ψλ,k ∈ W },
that is, each variety is the closure of the span of its spectrum, where the spectrum of
a variety is the set of all those ψλ,k contained in V . Because of (13) this carries over
to X, i.e., we have for any variety V ⊂ E0(X) that

V = span{φλ,k ∈ V }.
This property is called spectral synthesis. For varieties V ⊂ E0(X), it was shown in
[20, Lemma 4.2] that ϕλ,k ∈ V implies ϕλ,l ∈ V , for all 0 ≤ l ≤ k. There X was
a Damek–Ricci space, but the arguments carry over verbatim for general harmonic
manifolds. Therefore, spectral synthesis implies that every variety V ⊂ E0(X) con-
tains a radial eigenfunction ϕλ. This latter property is called spectral analysis.
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As an immediate application, we can prove the analogues of the Two-Radius the-
orems in [20] for general non-compact harmonic spaces.

Theorem 4.2 Let (X,g) be a simply connected, non-compact harmonic manifold.
Then we have the following facts.

(1) Let r1, r2 > 0 be such that the equations

ϕλ(rj ) = 0, j = 1,2,

have no common solution λ ∈ C. Suppose f ∈ C(X) and
∫

Sr (x)

f = 0

for r = r1, r2 and all x ∈ X. Then f = 0.
(2) For λ ∈ C, let Φλ be given by (23). Let r1, r2 > 0 be such that the equations

Φλ(rj ) = 0, j = 1,2,

have no common solution λ ∈ C. Suppose f ∈ C(X) and
∫

Br (x)

f = 0

for r = r1, r2 and all x ∈ X. Then f = 0.

Proof Let us start with the proof of the first assertion. Let g ∈ C(X) be a non-zero
function, satisfying

∫
Sri

(x)
g = 0 for all x ∈ X and i = 1,2. We choose our reference

point x0 ∈ X such that g(x0) �= 0. Consider the distributions Tr ∈ E ′
0(X), given by

Trf = ∫
Sr (x0)

f . First recall (10), namely,
∫
Sr (x)

f = (Tr ∗ f )(x). This implies that
we have Tr1 ∗ g = Tr2 ∗ g = 0. Using the extension of Proposition 2.10 to continuous
functions f ∈ C(X), we conclude that g0 := πg also satisfies Tr1 ∗ g0 = Tr2 ∗ g0 = 0.
Without loss of generality, we can assume that g0 is a smooth radial function, since
every continuous radial function g0 can be approximated, uniformly on compact sets,
by functions gε

0 := g0 ∗ ρε ∈ E0(X) (via a Dirac sequence ρε ∈ D0(X)), such that we
still have Tr1 ∗ gε

0 = Tr2 ∗ gε
0 = 0. Therefore, we can now assume that g0 ∈ E0(X).

Then

V =
{
f ∈ E0(X)

∣∣∣
∫

Sr1 (x)

f = 0 =
∫

Sr2 (x)

f for all x ∈ X

}

= {
f ∈ E0(X) | Tr1 ∗ f = 0 = Tr2 ∗ f

}

contains g0 and is a variety in E0(X), since for all T ∈ E ′
0(X) and all f ∈ V :

Tri ∗ (T ∗ f ) = T ∗ (Tri ∗ f ) = 0, with i = 1,2,

by commutativity and associativity of the convolution for radial distributions. By
spectral analysis, V must contain a ϕλ. But Tr(ϕλ) = vol(Sr(x0))ϕλ(r), hence we
have ϕλ(r1) = 0 = ϕλ(r2).
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For the second assertion we work with the distributions Tr ∈ E ′
0(X) given by

Trf = ∫
Br (x0)

f . As before, Tr ∗ f (x) = ∫
Br (x)

f for all x ∈ X. Now, the proof pro-
ceeds as above, with the variety

V =
{
f ∈ E0(X)

∣∣∣
∫

Br1 (x)

f = 0 =
∫

Br2 (x)

f for all x ∈ X

}

= {
f ∈ E0(X) | Tr1 ∗ f = 0 = Tr2 ∗ f

}
.

Again, we conclude the existence of a ϕλ satisfying

0 =
∫

Bri
(x)

ϕλ(x)dx = ωn

∫ ri

0
ϕλ(ρ)θ(ρ)dρ = ωnΦλ(ri),

where dim(X) = n+1 and ωn is the volume of the standard unit sphere of dimension
n. As before, this contradicts the choice of the ri . �

Also, harmonicity of a function follows from the mean value property for two
suitably chosen radii:

Theorem 4.3 Let r1, r2 > 0 be such that the equations

ϕλ(rj ) = 1, j = 1,2,

have no common solution λ ∈ C\{±iH/2}.
Then f ∈ C∞(X) is harmonic if and only if

1

vol(Sr(x))

∫
Sr (x)

f = f (x)

for r = r1, r2 and all x ∈ X.

Proof We now use the distributions Trf = 1
vol(Sr (x0))

(
∫
Sr (x0)

f )−f (x0) and assume,
as above, the existence of a function g ∈ E0(X) with Tr1 ∗g = Tr2 ∗g = 0 and �g �= 0
(i.e., g not harmonic). As in the proof of Theorem 1.3 of [20], we consider the va-
riety V

g

0 = {T ∗ g | T ∈ E ′
0(X)} ⊂ E0(X), and show that the only non-zero functions

ϕλ,k ∈ V
g

0 are ϕ±iH/2 = 1. Therefore, V
g

0 consists only of constant functions, contra-
dicting that g ∈ V

g

0 and �g �= 0. �

5 Cheeger Constant and Heat Kernel

The Cheeger constant h(X) of a non-compact, complete n-dimensional Riemannian
manifold (X,g) is defined as

h(X) := inf
K⊂X

area(∂K)

vol(K)
, (24)
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where K ranges over all connected, open submanifolds of X with compact closure
and smooth boundary. The volume growth exponent of X is defined by

μ(X) := lim sup
r→∞

log vol(Br(x))

r
. (25)

One easily checks that μ(X) does not depend on the choice x ∈ X. The following re-
sult states that several fundamental constants of non-compact harmonic spaces agree.

Theorem 5.1 Let (X,g) be a non-compact, simply connected harmonic space and
H ≥ 0 be the mean curvature of its horospheres. Then we have the equalities

h(X) = H = μ(X) = lim
r→∞

log vol(Br(x))

r
.

Proof Our first goal is to prove h(X) ≥ H . The proof is very similar to the proof
of Theorem 3 in [19]. We refer the reader to this reference for more details. Let Ψ :
R× H0 → X be the diffeomorphism introduced in Sect. 3. We work in the space X′ =
R× H0 with the induced Riemannian metric g′ = Ψ ∗g. We know from Corollary 3.2
that the volume element on X′ is given by esH dt ∧ ω0.

Without loss of generality, we can assume H > 0, for otherwise there is nothing
to prove. Let P : X′ → H0 be the canonical projection and K ⊂ X′ be an admissible
set of (24). Let U be the projection of K without the critical points of P |∂K . By
Sard’s theorem, U has full measure in P(K). For x ∈ U , let f ±(x) be the maximum,
resp., minimum of the set {t ∈ R | (t, x) ∈ K}. Let K̃ := {(x, t) | x ∈ U,f −(x) ≤ t ≤
f +(x)}. Then

vol(K) ≤ vol(K̃) = 1

H

∫
U

(
ef +(x)H − ef −(x)H

)
ω0(x).

Now we introduce the sets ∂K± := {(u,f ±(u)) | u ∈ U}. Obviously, we have
area(∂K) ≥ area(∂K+) + area(∂K−) and, analogously as in [19], we obtain the es-
timate

area
(
∂K±) ≥

∫
U

ef ±(x)H ω0(x).

This yields the desired estimate

area(∂K)

vol(K)
≥ area(∂K+) + area(∂K−)

vol(K)
≥ H.

Let f (r) = log vol(Br(x)). Then, for all r > 0,

f ′(r) = area(Sr(x))

vol(Br(x))
≥ h(X).

It was shown in [16] that A(r) := area(Sr (x)) is strictly increasing in r and that A′
A

is
monotone decreasing with limit H ≥ 0. Applying l’Hôpital’s rule twice, we conclude
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that

lim
r→∞

f (r)

r
= lim

r→∞f ′(r) = lim
r→∞

A(r)

vol(Br(x))
= lim

r→∞
A′(r)
A(r)

= H.

Thus we have

h(X) ≤ μ(X) = H = lim
log vol(Br(x))

r
.

Both estimates together prove the theorem. �

Remark 2 C. Connell proved in [5] that the Cheeger constant and the exponential
volume growth of simply connected strictly negatively curved homogeneous spaces
agree. This fails without the curvature condition: horospheres H with barycentric nor-
mal directions in higher rank symmetric spaces of non-compact type are unimodular
solvable groups with h(H) = 0 and μ(H) > 0 (see [18]). The simplest example of
this type is Solv(3), the diagonal horosphere in the product of two hyperbolic planes.
Note that our Theorem 5.1 does not contain any curvature condition.

Applying Cheeger’s inequality and Brooks’s result λess
0 ≤ μ(X)2/4 (see [3]), we

obtain

Corollary 5.2 Let (X,g) be a non-compact, simply connected harmonic space and
H ≥ 0 be the mean curvature of its horospheres. Then the bottom of the spectrum and
of the essential spectrum agree, and

λ0(X) = λess
0 (X) = H 2

4
.

Applying [14, Prop. 2.4], we obtain

Corollary 5.3 Let (X,g) be a non-compact, simply connected harmonic space of
dimension n. If X has vanishing Cheeger constant, then X is isometric to the flat
Euclidean space R

n.

Finally, we consider the Abel transform of the heat kernel on non-compact har-
monic manifolds. We first state a useful lemma.

Lemma 5.4 Let H ⊂ X be a horosphere and x ∈ H. Then there is C > 0 so that

volH
(
Br(x) ∩ H

) ≤ CeCr

for all r ≥ 0.

Proof Without loss of generality, we can assume that x = x0 and H0 = H. We use
the diffeomorphisms Ψs : H → Hs , introduced earlier.

Let R > 0 be fixed. Let Ar = Br(x0) ∩ H and

GR,r =
⋃

s∈[−R,R]
Ψs(Ar).
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We compute

vol(GR,r ) =
∫ R

−R

volHs

(
Ψs(Ar)

)
ds

=
∫ R

−R

esH volH(Ar)ds = 2 sinh(RH)

H
volH(Ar).

By the triangle inequality, GR,r ⊂ Br+R(x0), and, since

vol
(
Br+R(x0)

) ≤ C′eC′(r+R)

with some constant C′ > 0, by Bishop’s volume comparison theorem, we have

volH(Ar) = H vol(GR,r )

2 sinh(RH)
≤ HC′eC′(r+R)

2 sinh(RH)
= HC′eC′R

2 sinh(RH)
eC′r . �

It is a well-known fact that a general complete Riemannian manifold (X,g) with
Ricci curvature bounded from below has a unique heat kernel pX

t (x, y) (see, e.g.,
[4, Thm. VIII.3]). In the case that (X,g) is harmonic, the heat kernel is a radial
kernel function (see, e.g., [22, Thm. 1.1]), and is therefore uniquely determined by the
function kX

t (x) := pX
t (x0, x), where x0 ∈ X is a fixed reference point. Our main result

states that the Abel transform of the heat kernel on a non-compact harmonic space
agrees, up to the factor e−H 2t/4, with the Euclidean heat kernel kR

t (s) = pR
t (0, s) =

1√
4πt

e−s2/(4t). Since the heat kernel of a non-compact harmonic manifold does not
have compact support, one has to guarantee that its Abel transform (centered at x0),
evaluated via the integral (14) over the horospheres Hs = Ψs(H0), is well defined.
This follows from the following result.

Lemma 5.5 Let t > 0 be fixed, x0 ∈ H0, and Ψs : H0 → Hs be the diffeomorphisms
introduced earlier. Let xs = Ψs(x0) ∈ Hs . For all ε > 0, there exists an r0 > 0 such
that we have for all s ∈ R:

0 ≤
∫

Hs\B|s|+r0 (xs )

kX
t (x)dωs(x) ≤ ε. (26)

Proof Since the Ricci curvature of the non-compact harmonic manifold (X,g) is
bounded below, there exist constants Ct ,αt > 0 such that

0 ≤ kX
t (x) ≤ Cte

−αt r(x)2
for all x ∈ X, (27)

by a classical result of Li and Yau [15]. Using Lemma 5.4, we derive for arbitrary
r = r0 + |s| > 0:
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∫
Hs\Br (xs)

kX
t (x)dωs(x) =

∞∑
j=0

∫
(Hs∩Br+j+1(xs ))\Br+j (xs )

kX
t (x)dωs(x)

≤
∞∑

j=0

volHs

(
Hs ∩ Br+j+1(xs)

)
Cte

−αt (r+j−|s|)2

≤ CCt

∞∑
j=0

eC(r+j+1)−αt (r+j−|s|)2

= CCt

∞∑
j=0

eC(r0+|s|+j+1)−αt (r0+j)2

≤ CCt

∞∑
j=0

eC(r0+|s|+j+1)−αt (r
2
0 +j2)

≤ CCt

( ∞∑
j=0

eCj−αt j
2

)
eC(|s|+1)eCr0−αt r

2
0 .

Since αt is positive, the sum over j converges. By choosing r0 sufficiently large, we
can make the rightmost factor and thus the whole expression as small as we wish. �

Theorem 5.6 Let (X,g) be a non-compact, simply connected harmonic space and
H ≥ 0 be the mean curvature of its horospheres. Then the Abel transform AkX

t of the
heat kernel kX

t (x) = pX
t (x0, x) is

(
AkX

t

)
(s) = e−H 2t/4 1√

4πt
e−s2/4t .

Proof In the case H = 0, (X,g) is the Euclidean space and there is nothing to prove.
So we can assume that H > 0.

Since AkX
t : R → R is an even function, we have

∫ ∞

−∞
AkX

t (s)ds = 2
∫ ∞

0
e− H

2 s

∫
Hs

kX
t (z)dωs(z)ds

≤ 2
∫ ∞

0

∫
Hs

kX
t (z)dωs(z)ds

≤ 2
∫

X

kX
t (x)dx = 2,

by the heat conservation property
∫
X

kX
t (x)dx = 1 for all t > 0 (see, e.g., [4,

Thm. 8.5]). This shows that AkX
t ∈ L1(R). Next, we show that AkX

t is continuous.
Let s0 ∈ R and ε > 0 be given. We conclude from Lemma 5.5 that there is an r0 > 0
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such that

e− H
2 s

∫
Hs\B2s+r0 (xs )

kX
t (x)dωs(x) ≤ ε/3,

for all s ∈ (s0 − 1, s0 + 1). Since the map

s → F(s) := e− H
2 s

∫
Hs∩Br0+2|s|(xs )

kX
t (x)dωs(x)

is obviously continuous, we can find 0 < δ < 1 such that
∣∣F(s) − F(s0)

∣∣ ≤ ε/3,

for all s ∈ (s0 − δ, s0 + δ). This implies that
∣∣AkX

t (s) − AkX
t (s0)

∣∣
≤

∣∣∣∣e− H
2 s

∫
Hs\B2s+r0 (xs )

kX
t (x)dωs(x)

∣∣∣∣ +
∣∣∣∣e− H

2 s0

∫
Hs0 \B2s0+r0 (xs0 )

kX
t (x)dωs0(x)

∣∣∣∣
+ ∣∣F(s) − F(s0)

∣∣ ≤ ε,

for all s ∈ (s0 − δ, s0 + δ). This shows that AkX
t ∈ C(R) ∩ L1(R).

For the proof of the theorem, it only remains to show that the Fourier transforms
of the L1-functions AkX

t and e−H 2t/4kR
t agree. To show this, we need some growth

information of kX
t and ϕλ and their derivatives.

Let us first consider ϕλ for λ ∈ R. An immediate consequence of ϕλ = aψλ is

∣∣ϕλ(r)
∣∣ ≤ Ce

H
2 r ,

with a suitable constant C > 0. Moreover, ϕ′′ + θ ′
θ
ϕ′ = Lϕ with L = −(λ2 + H 2/4)

implies that

∥∥∇ϕλ(r)
∥∥ ≤ |L|

∫ r

0

∣∣∣∣ θ(t)

θ(r)

∣∣∣∣︸ ︷︷ ︸
≤1

∣∣ϕλ(t)
∣∣dt,

which shows that ‖∇ϕλ‖ grows also at most exponentially in the radius.
Next, we derive superexponential decay of the derivatives ∂

∂t
kX
t and ‖∇kX

t ‖. Since
the Ricci curvature of (X,g) is bounded from below and all balls of the same radius
have the same volume, we conclude from [10, Prop. 1.1] that

p(x, x, t) ≤ C

{
e−λ0(X)t , if t ≥ 1,

t−n/2, if t ≤ 1,

with a suitable constant C > 0. Since we have λ0(X) = H 2/4 > 0, we can find an-
other constant C′ > 0 such that

p(x, x, t) ≤ C′

tn/2
,
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for all x ∈ X and t > 0. Then we are in Case 1 of [7], and Theorems 2 and 6 in [7]
imply that, for any fixed time t > 0, the above heat kernel derivatives decay at the
rate q(r)e−r2/4t , with a suitable polynomial q .

To finish the proof, let λ ∈ R. We need to show that

f (t) := ÂkX
t (λ) = 〈

AkX
t ,ψλ

〉 = 〈
kX
t , aψλ

〉 =
∫

X

pX
t (x0, x)ϕλ(x)dx

and

g(t) := e− H2
4 t k̂R

t (λ) = e− H2
4 t e−λ2t

agree.
Obviously, both functions satisfy limt→0 f (t) = limt→0 g(t) = 1. So it only re-

mains to show that we have f ′(t) = g′(t) for all t > 0. Now,

d

dt

∫
X

pX
t (x0, x)ϕλ(x)dx =

∫
X

(
∂

∂t
pX

t (x0, x)

)
ϕλ(x)dx

=
∫

X

(
�xp

X
t (x0, x)

)
ϕλ(x)dx

= −
∫

X

〈∇kX
t (x),∇ϕλ(x)

〉
dx

=
∫

X

pX
t (x0, x)�ϕλ(x)dx

= −
(

λ2 + H 2

4

)
ϕλ(x0) = g′(t).

All steps in this calculation are justified by the growth properties derived above. �

The result corresponding to Theorem 5.6 in the special case of Damek–Ricci
spaces can be found, e.g., in [1, (5.6)].
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