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Abstract We prove an index formula for a class of Dirac operators coupled with
unbounded potentials, also called “Callias-type operators”. More precisely, we study
operators of the form P := /D + V , where /D is a Dirac operator and V is an un-
bounded potential at infinity on a non-compact manifold M0. We assume that M0 is
a Lie manifold with compactification denoted by M . Examples of Lie manifolds are
provided by asymptotically Euclidean or asymptotically hyperbolic spaces and many
others. The potential V is required to be such that V is invertible outside a compact
set K and V −1 extends to a smooth vector bundle endomorphism over M � K that
vanishes on all faces of M in a controlled way. Using tools from analysis on non-
compact Riemannian manifolds, we show that the computation of the index of P

reduces to the computation of the index of an elliptic pseudodifferential operator of
order zero on M0 that is a multiplication operator at infinity. The index formula for P

can then be obtained from the results of Carvalho (in K-theory 36(1–2):1–31, 2005).
As a first step in the proof, we obtain a similar index formula for general pseudodif-
ferential operators coupled with bounded potentials that are invertible at infinity on
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a restricted class of Lie manifolds, so-called asymptotically commutative, which in-
cludes, for instance, the scattering and double-edge calculi. Our results extend many
earlier, particular results on Callias-type operators.

Keywords Perturbed Dirac and Callias-type operators · Lie manifolds · Fredholm
index · Atiyah–Singer index theorem · Pseudodifferential operators on groupoids ·
Weighted Sobolev spaces

Mathematics Subject Classification (2010) Primary 58J20 · 19K56 · Secondary
58H05 · 6L804

1 Introduction

Perturbed Dirac operators /D + V and operators Δ + V of Schrödinger type on non-
compact manifolds play an important role in quantum mechanics, conformal field
theory, and in other areas. Partly for this reason, the index theory for these kinds of
operators has been the subject of extensive research [5, 6, 13–15, 18, 29–31, 40, 59].

The purpose of this paper is to give an index formula for /D + V , that is, for
a Dirac operator /D coupled with unbounded potential V on an even-dimensional
Lie manifold M0, a class of non-compact manifolds whose structure at infinity is
controlled by a Lie algebra of vector fields tangent to the boundary of a suitable
given compactification M of M0 (see Sect. 3 and below). We also find an index
formula for operators /D + V0 coupled with bounded potentials V0 on a subclass of
Lie manifolds that are “commutative at infinity” (as in Definition 3.6). One of the
points of the calculation is, as in [13], to express the index as the product of two
K-classes, one defined by the Dirac operator and the other defined by the potential
V using the difference construction as in [7, 39]. See [12, 57, 58] for some recent
results on similar problems. See also [33, 46, 63] for applications of these types of
index formulas.

Lie manifolds, or manifolds with a Lie structure at infinity, were introduced and
studied in [2, 4], extending work by Melrose, Schrohe, Schulze, Vasy, and their col-
laborators, which in turn build on earlier results by Cordes, Parenti, and others [23,
25, 47, 56, 61]. Many known classes of non-compact manifolds can be given a Lie
structure, such as manifolds with cylindrical ends, with conical singularities, asymp-
totically Euclidean space, hyperbolic space, and manifolds with fibered boundary.
There is a natural algebra of differential operators associated with any such mani-
fold that contains all the classical geometric operators, such as the Dirac operator
[2]. There is also a well-behaved algebra of pseudodifferential operators on any Lie
manifold, which is related to an algebra of pseudodifferential operators on a differen-
tiable groupoid. For manifolds with cylindrical ends, for instance, we have Melrose’s
b-calculus [45] and the calculus of Fuchs differential operators. For many of these
algebras Ψ ∗ of pseudodifferential operators on manifolds with corners, the Fred-
holmness of P ∈ Mn(Ψ

∗) can be characterized by the invertibility of a symbol class
that consists of two components: the principal symbol σ0(P ) and a symbol at the
boundary σ∂(P ), also called the indicial operator associated with P . Thus a pseu-
dodifferential operator compatible with the Lie manifold structure is Fredholm if,
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and only if, the following two conditions are satisfied: the usual ellipticity and the in-
vertibility in the so-called indicial algebra at the boundary. The Fredholm conditions
relevant for our case are discussed in Propositions 3.4 and 3.8.

Let M0 be an even-dimensional Riemannian Lie manifold, with compactification
to a manifold with corners M , and V be the Lie algebra of vector fields tangent to
the faces of M and defining the structure at infinity of M0 (for precise definitions,
see Sect. 3.1). Let W be a Clifford module over M endowed with an admissible
connection and let /D : C∞(M;W) → C∞(M;W) be the associated generalized Dirac
operator. Let us denote by {xk} the boundary-defining functions of the hyperfaces
of M . Also, let E be a Hermitian bundle endowed with a suitable, compatible (metric-
preserving) connection. We shall consider operators of the form

T ′ = /D + V := /D̂⊗1 + 1̂⊗V : C∞
c (M0;W ⊗ E) → C∞

c (M0;W ⊗ E), (1)

where the potential V ∈ End(E) is of the form V = f −1V0 with

f :=
∏

x
ak

k , ak ∈ Z, ak > 0, (2)

and V0 smooth on M and invertible at infinity (that is, on ∂M). We prove that T ′ is
essentially self-adjoint acting on L2(M0;W ⊗ E). We shall denote by T the closure
of T ′, which is hence a self-adjoint operator (odd with respect to the natural spinor
grading). Let D(T ) denote the domain of T and D(T ) = D(T )+ ⊕ D(T )− be its
grading. We shall still write T = /D + V , for simplicity. Let Ŵ⊗E be the tensor
product W ⊗ E endowed with the usual grading.

Our main result, Theorem 4.13, is an index formula for the chiral operator

T+ : D(T )+ → L2(M0;Ŵ⊗E)−

similar to the usual Atiyah–Singer index formula. The proof of this theorem is ob-
tained from a sequence of reductions, ultimately reducing our main result to the
Atiyah–Singer type theorem for operators that are asymptotically multiplication at
infinity [21]. Let us mention that our Theorem 4.13 is about as general as one can
hope for such that a classical index formula would still apply. For instance, if one re-
places V with a bounded potential V0, then one expects an index formula for /D + V0
to involve non-local invariants similar to the eta invariant [8]. These non-local in-
variants would be associated with the faces at infinity. Thus, if one wants to avoid
non-local invariants and have an index formula on an arbitrary Lie manifold just in
terms of classical Chern characters, then one needs to require V to be unbounded
at infinity. (Note, however, that on asymptotically commutative Lie manifolds, Def-
inition 3.6, we do allow bounded potentials, and the calculation in this case is an
important ingredient in the proof; see below for more details.) Moreover, imposing
some structure at infinity also seems to be necessary and is usually done in prac-
tice. This justifies why we consider Lie manifolds and not more general non-compact
manifolds. See [15] and [40] for some related approaches.

Most of the known results on the index of perturbed Dirac operators on non-
compact manifolds cited above make use of crucial properties of Dirac operators,
namely relative index theorems, trace formulas, or boundary conditions. In this paper,
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the index formula for /D +V , with V bounded, is obtained from a general index theo-
rem for a suitable class of pseudodifferential operators, and hence holds for perturbed
pseudodifferential operators. We need to assume, however, that our Lie manifold is
asymptotically commutative (or commutative at infinity), Definition 3.6. A similar
approach, in the bounded potentials case, is contained in [40], for odd-dimensional
manifolds, where Melrose’s index formula for (families of) scattering operators is
used to derive an index theorem for perturbed pseudodifferential operators, so-called
Callias-type operators, with bounded potentials. It is shown there that the index can
be computed from invariants at the corner S∗

∂MM . (Note that the scattering structure
is just a particular case of the asymptotically commutative Lie structures we consider
here. It is easily seen that Theorem 2.5 extends to the case of families, so our results
can also be formulated in this setting.) To get the result for unbounded potentials, we
need harder results from analysis, so we stick to differential operators, but this result
holds for arbitrary Lie manifolds.

Let us now review the sequence of reductions that lead to Theorem 4.13. At the
same time, we will review the contents of the paper (but in the reverse order of the
sections). The first step is to write

T = /D + V = f −1/2Qf −1/2, with Q := f 1/2 /Df 1/2 + V0,

which we show in Sect. 4 to have the same index as T . (See also [1, 50] and the com-
ments on the decay of the functions in the kernel of T in Sect. 4.) We then consider a
new Lie manifold structure (M, W ) on M0 using

W = f V :=
(
∏

x
ak

k

)

V . (3)

It turns out that Q ∈ DiffW (M), which justifies the introduction of the new Lie
manifold structure (M, W ). Moreover, Q itself is a Dirac operator coupled with the
bounded potential V0. What makes the index of such an operator computable is the
fact that the structural Lie algebra of vector fields W defining Q is commutative at
infinity, or, to put this in another way, the indicial algebra of W is commutative. A Lie
manifold with this property will be called asymptotically commutative. The analysis
on the new Lie manifold (M, W ) turns out to be much easier. The index of the opera-
tor Q = /D +V0 associated with (general) asymptotically commutative Lie manifolds
with V0 bounded, but invertible at infinity, is obtained in Theorem 4.7 using results
of Sect. 3.

The analytical properties of general, not necessarily even-dimensional, asymptoti-
cally commutative Lie manifolds (M, W ) and the index of operators on these spaces
are studied in Sect. 3. We show that fully elliptic operators in Ψ ∗(M; W ) can be
deformed continuously to operators in Ψ ∗(M; W ) that are asymptotically multipli-
cation on M0. We thus obtain an index theorem for fully elliptic pseudodifferential
operators on general asymptotically commutative Lie manifolds (that is, of the form
(M, W ) with W commutative at infinity), Theorem 3.9, generalizing known results
for the scattering and double-edge operators [42, 48]. Let us also mention that the
case of asymptotically commutative Lie manifolds includes the important case of
asymptotically Euclidean manifolds. The index formula for fully elliptic operators
on asymptotically commutative Lie manifolds follows then from the results of [21].
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This reduction is achieved in Sect. 2. We remark that all the results in Sects. 2 and 3
do not assume that our manifolds are even-dimensional.

It is a classical result that on a compact manifold M1, a pseudodifferential oper-
ator P of order m defines a Fredholm operator Hs(M1) → Hs−m(M1) if, and only
if, it is elliptic. In other words, on a compact manifold, ellipticity is equivalent to
Fredholmness. By contrast, on non-compact manifolds, ellipticity is typically only a
necessary, but not sufficient condition to ensure Fredholmness; stronger conditions on
an operator P are required to obtain that P is Fredholm. For example, on an asymp-
totically commutative Lie manifold, the Fredholm condition is still controlled by the
invertibility of a function, which this time is an extension of the principal symbol, and
hence is defined on an extension of the cosphere bundle. This phenomenon is studied
in Sect. 2, where an index theorem is proved for such operators by reducing to the
case of operators that are multiplication at infinity (which was studied in [21]). In par-
ticular, we obtain in that section an index theorem for asymptotically multiplication
operators.

We shall assume throughout most of this paper that M0 is a non-compact Lie
manifold with compactification M , although some of our results of the earlier sec-
tions may be true for more general non-compact manifolds. For instance, the index
theorem of [21] is valid without any assumption on M0.

2 Asymptotically Multiplication Operators

In this section, we review some basic concepts and results to be used in what follows,
leading to the Atiyah–Singer index theorem in the setting of non-compact manifolds
and operators that are multiplication outside a compact set (or asymptotically so).
Here, we keep the manifolds quite general, while we consider a class of operators
that naturally inherits the properties of the compact manifold case. For simplicity,
we assume that M0 is endowed with a metric g and that, as a topological space, it is
the interior of a compact manifold with corners M such that T M restricts to T M0
on M0. We let n be the dimension of M0, which in this and the following section may
be arbitrary, but in the last section will be assumed to be even.

2.1 General Calculus

We consider for now a smooth manifold M0 without boundary, not necessarily com-
pact, and a smooth vector bundle E over M0 that is trivial outside a compact set
in M0. We denote by d volg the volume form on M0 defined by the metric. We also
assume that E is endowed with a Hermitian metric, which is the trivial (product) met-
ric close to infinity. Typically, M0 will coincide with the interior of a given compact
manifold with corners M .

We first make a short review of main results of the theory of pseudodifferential
operators on M0 that we need in this paper, in the setting of operators that are multi-
plication by a smooth function outside a compact set. We closely follow the approach
of [21] (see also, however, [34, 38, 62] for general references).

Let us recall that a smooth function p : W ×R
n −→ C

N×N defines a symbol in the
class Sm(W × R

n) of symbols of order m if, and only if, for any compact set K ⊂ W
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and multi-indices α, β , there exists CK,α,β > 0 such that |∂α
x ∂

β
ξ p(x, ξ)| ≤ CK,α,β(1 +

|ξ |)m−|β|, for all x ∈ K and ξ ∈ R
n. An operator P : C∞

c (M0;E) → C∞(M0;E) is
said to be in the class Ψ m(M0;E) of pseudodifferential operators of order m on M0
if, for any (not necessarily connected) coordinate chart W of M0 trivializing E and
for any h1, h2 ∈ C∞

c (W), h1Ph2 : C∞
c (W)N → C∞

c (W)N is a matrix of pseudodif-
ferential operators of order m on W , that is, h1P(h2u) = p(x,D)u, with

h1P(h2u)(x) = p(x,D)u(x) := (2π)−n

∫

Rn

p(x, ξ )̂u(ξ)eix·ξ dξ, (4)

where û denotes the Fourier transform of u and p ∈ Sm(W × R
n).

We shall work only with classical symbols, that is, symbols that have asymptotic
expansions p ∼ ∑

pm−k with pm−k ∈ Sm−k(W × R
n) positively homogeneous of

degree m−k in ξ . Let us denote by π : T ∗M0 → M0 the cotangent bundle of M0. The
leading term pm in the expansion of p(x, ξ) as a classical symbol defines a smooth
section of the bundle End(E) over the cotangent bundle T ∗M0, the principal symbol
of P , which is a smooth bundle homomorphism σm(P ) : π∗E → π∗E, positively
homogeneous on the fibers of T ∗M0. By choosing a metric on T M0, the class of
principal symbols can be identified with C∞(S∗M0;End(E)) where S∗M0 is the unit
sphere bundle of the cotangent bundle. An operator P is said to be elliptic if σm(P )

is invertible on S∗M0. We shall regard the cosphere bundle S∗M0 as the boundary
of T ∗M0 using a radial compactification of each fiber. It is in this sense (using the
radial compactification) that we shall often extend the principal symbol of an order
zero pseudodifferential operator to T ∗M0.

Under certain assumptions that will be satisfied in our setting, we have that if P ∈
Ψ m(M0;E), then P0 := P(1 + P ∗P)−1/2 ∈ Ψ 0(M0;E), with P ∗ the formal adjoint,
and P is Fredholm, respectively, elliptic, if, and only if, P0 is, with ind(P ) = ind(P0).
Moreover, σm(P ) is homotopic to σ0(P0), as sections of S∗M0 (the unit sphere bundle
of T ∗M0). Hence, for the purposes of an index formula, we will mainly be concerned
with operators of order 0. (Here and below, the Fredholm condition is on the space
L2 for the natural metric on the underlying space. As is well known, this definition of
the Fredholm property for unbounded operators is equivalent to that of Fredholmness
between the suitable Sobolev spaces.)

We start by considering the class of pseudodifferential operators that are multipli-
cation outside a compact subset of M0, defined as

Ψ 0
mult(M0;E) := {

P = P1 + p, P1 ∈ Ψ 0(M0;E) has a compactly supported

distribution kernel and p ∈ End(E) is bounded
}

. (5)

(For m < 0, we consider Ψ m
mult(M0;E) := Ψ 0

mult(M0;E) ∩ Ψ m(M0;E)). We have
that any operator in Ψ 0

mult(M0;E) is properly supported and that Ψ 0
mult(M0;E) is a

∗-algebra (see [21] for details). Moreover, denoting by S0
mult(T

∗M0;E) the set of
bounded symbols in S0(T ∗M0;E) that are constant on the fibers of T ∗M0 → M0
outside a compact subset of M0, we have that there is a well-defined symbol map

σ0 : Ψ 0
mult(M0;E) → S0

mult(T
∗M0;E)/S−1

mult(T
∗M0;E), (6)
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which is a surjective ∗-homomorphism with ker(σ0) = Ψ −1
mult(M0;E), as is the case

if M0 is compact. Moreover, we have that P ∈ Ψ 0
mult(M0;E) is always bounded as an

operator on L2(M0;E), and that Ψ −1
mult(M0;E) consists of compact operators, again

as in the classical case of compact manifolds.
We endow the class of symbols S0

mult(T
∗M0;E) with the sup-norm, as a section

of End(E) over T ∗M0. Note that S0
mult(T

∗M0;E) can be identified with the class of
bounded sections in C∞(S∗M0;End(E)) that are constant on the fibers of S∗M0 out-
side a compact K ⊂ M0, and this is consistent with regarding S∗M0 as the boundary
of (the radial fiberwise compactification of) T ∗M0.

The class Ca(S
∗M0;E) of asymptotically multiplication symbols is defined as the

class of functions p = p(x, ξ) ∈ C(S∗M0;End(E)) such that p(x, ξ) is bounded in
the sup-norm and, for all ε > 0, there is a compact Kε ⊂ M0 such that, for all x /∈ Kε ,

sup
ξ1,ξ2∈S∗

xM0

‖p(x, ξ1) − p(x, ξ2)‖End(Ex) < ε. (7)

Roughly speaking, the elements of Ca(S
∗M0;E) are continuous sections of End(E)

over S∗M0 that are bounded and asymptotically independent of ξ on the fibers of
S∗M0. It is easily checked that it is a C∗-subalgebra of Cb(S

∗M0;End(E)), the class
of continuous, bounded sections of End(E).

We now define the class of asymptotically multiplication pseudodifferential oper-
ators as

Ψ 0
a (M0;E) := Ψ 0

mult(M0;E) ⊂ B(L2(M0;E)), (8)

that is, the closure of Ψ 0
a (M0;E) in the topology of bounded operators on L2(M0;E).

The point of the following lemma is that, once we consider completions, we will
need to replace operators that are multiplication at infinity with asymptotically mul-
tiplication operators.

Lemma 2.1 The principal symbol defines a natural map Ψ 0
mult(M0;E) → Ca(S

∗M0;
E), which extends by continuity to a surjective map Ψ 0

a (M0;E) → Ca(S
∗M0;E).

Proof We show that Ca(S
∗M0;E) coincides with the closure of

Ξ := {

p ∈ C∞
b (S∗M0;End(E)), there exists K ⊂ M0 compact

such that p(x, ξ) is independent of ξ if x /∈ K
}

, (9)

and the result then follows as in the compact case. It is readily checked that any
p in the closure of (9) is asymptotically multiplication. For the converse, let p ∈
Ca(S

∗M0;End(E)) and take p̃ ∈ C∞
b (S∗M0;End(E)) such that ‖p̃ − p‖sup < ε.

Let K ⊂ M0 be compact such that ‖p(x, ξ1) − p(x, ξ2)‖End(Ex) < ε, for all x /∈ K ,
ξ1, ξ2 ∈ S∗M0, and let φ ∈ C∞

c (S∗M0) be such that suppφ ⊂ M0 −K , 0 ≤ φ ≤ 1, and
φ(x, ξ) = 1, for x /∈ K ′, with K ′ compact such that K ⊂ int(K ′). Define

q(x, ξ) := (1 − φ(x, ξ)) p̃(x, ξ) + φ(x, ξ) p̃(s(x)),
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where s is a fixed smooth section of S∗M0 (which exists since every connected
non-compact manifold has a nowhere vanishing vector field). Then q(x, ξ) ∈
C∞

b (S∗M0;End(E)) and for x /∈ K ′, q(x, ξ) = p̃(s(x)) is independent of ξ . More-
over,

‖q − p‖sup ≤ sup
x∈K ′

ξ∈S∗M0

‖p̃(x, ξ) − p(x, ξ)‖End(Ex) + sup
x /∈K,

ξ∈S∗M0

‖p̃(s(x)) − p(x, ξ)‖End(Ex)

≤ 2‖p̃ − p‖sup + sup
x /∈K,

ξ∈S∗M0

‖p(s(x)) − p(x, ξ)‖End(Ex) ≤ 3ε.

Hence, p lies in the closure of Ξ defined in Eq. (9), and that concludes our proof. �

The following result can be proved much as in the compact case.

Proposition 2.2 The principal symbol map (6) is continuous and the following se-
quence of C∗-algebras is exact:

0 −−−−→ K(M0;E) −−−−→ Ψ 0
a (M0;E)

σ0−−−−→ Ca(S
∗M0;E) −−−−→ 0, (10)

where σ0 : Ψ 0
a (M0;E) → Ca(S

∗M0;E) now denotes the extension by continuity of
the classical principal symbol map σ0 : Ψ 0

mult(M0;E) → Ca(S
∗M0;E).

Proof The exactness at Ca(S
∗M0;E) follows from Lemma 2.1. Using a partition

of unity and the fact that our result is true in the compact case, we see that
Ψ −1

mult(M0;E) ⊂ K as a dense subset. This proves the exactness at K(M0;E) and
the fact that K(M0;E) is contained in the kernel of σ0.

As in the classical case of compact manifolds, the difficult case is to prove that if
an operator T ∈ Ψ 0

a (M0;E) is in the kernel of σ0, then it is compact. Let then

Tm ∈ Ψ 0
mult(M0;E), Tm → T and σ0(Tm) → 0.

Then we can replace the sequence Tm with a sequence of operators that are zero
in a neighborhood of infinity. Also, let ψ ∈ C∞

c (M0) have the support in a local
coordinate chart. Then ψTmψ → ψT ψ and σ0(ψTmψ) → 0. Using the case of a
compact manifold, we see that ψT ψ is a compact operator. From this we infer that
ψ1T ψ2 is also compact for any compactly supported functions ψ1 and ψ2. (One way
to prove this is to first consider the case when ψ1 and ψ2 have disjoint supports).
Let 0 ≤ · · · ≤ ψk ≤ ψk+1 ≤ · · · ≤ 1 be an increasing sequence of compactly sup-
ported functions such that ψk(x) → 1, for all x. (We are assuming here that M0 is
σ -compact, which is always the case if M0 has a compactification.)

We claim that ψkT ψk → T . Since ψkT ψk is compact for any k, it will follow that
T is also compact. To prove our claim, let ε > 0 and choose m such that ‖T − Tm‖ <

ε/3. Then we can find k0 such that ‖ψkTmψk − Tn‖ ≤ ε/3 for k ≥ k0 since Tm is
assumed to be zero outside a compact set. Then

‖T − ψkT ψk‖ ≤ ‖T − Tm‖ + ‖Tm − ψkTmψk‖ + ‖ψk(Tm − T )ψk‖ ≤ ε

for k ≥ k0. This completes our proof. �
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It follows from Proposition 2.2 that P ∈ Ψ 0
a (M0;E) is a Fredholm operator on

L2(M0) if, and only if, its full symbol is invertible in Ca(S
∗M0;E) or, equivalently, in

Cb(S
∗M0;E). See also [32] for a discussion of Fredholm operators on non-compact

manifolds.

2.2 The Atiyah–Singer Index Theorem

We now review the Atiyah–Singer index formula, applied to asymptotically multipli-
cation operators. (See, for instance, [9, 44] for the details on the constructions below).

First, we define operators acting between sections of two different vector bun-
dles. Let E,F be vector bundles over M0, and assume that we are given a fixed
isomorphism E ∼= F outside a compact subset of M0 (this assumption is satisfied
whenever there exists an elliptic operator acting between these bundles). We then
define Ψ 0

mult(M0;E,F) as the subclass of Ψ 0
mult(M0;E ⊕ F) given by those opera-

tors that induce P : C∞
c (M0;E) → C∞(M0;F). We have also S0

mult(T
∗M0;E,F) ⊂

S0
mult(T

∗M0;E ⊕ F) and all the results in the previous section hold, except that if
P ∈ Ψ 0

mult(M0;E,F) then P ∗ ∈ Ψ 0
mult(M0;F,E), so we leave the setting of C∗-

algebras. In any case, an analogue of the exact sequence given in Proposition 2.2
holds.

We now associate a K-theory class with an elliptic Fredholm operator in
Ψ 0

a (M0;E,F).

Lemma 2.3 For any elliptic, bounded Q ∈ Ψ 0
mult(M0;E,F) such that q := σ0(Q),

there is a natural class [σ0(Q)] := [π∗E,π∗F,q] in the compactly supported
K-theory of T ∗M0 obtained by extending q to an invertible map outside a compact
set of T M0 that is constant along the fibers of T M0 → M0 outside a compact set.
This K-theory class is such that the Fredholm index of Q depends only on [σ0(Q)].

Proof In order to associate a K-theory class with a Fredholm operator in Ψ 0
a (M0;

E,F), we start by noting that if Q ∈ Ψ 0
mult(M0;E,F) is such that q := σ0(Q) is

invertible, then q defines an isomorphism outside a compact subset of T ∗M0 by ho-
mogeneity and the fact that it is constant on the fibers outside a compact subset in M0.
Hence, regarding q(x, ξ) as a bundle map π∗E → π∗F , π : T ∗M0 → M0, we obtain
the desired definition of [σ0(Q)] := [π∗E,π∗F,q] as in [7, 39]. The dependence
of the index only on [σ0(Q)] follows as in the classical case by noticing that Q is
Fredholm as long as the principal symbol is invertible as in [21]. �

Given now a Fredholm operator P ∈ Ψ 0
a (M0;E,F) with invertible symbol

σ0(P ) ∈ Ca(S
∗M0;E,F), by Proposition 2.2, we can take q ∈ S0

mult(T
∗M0;E,F)

sufficiently close to σ0(P ) such that tσ0(P ) + (1 − t)q , t ∈ [0,1], is a homotopy
through invertible symbols. We define the symbol class of P as

[σ0(P )] := [π∗E,π∗F,q] ∈ K0(T ∗M0). (11)

This class is independent of q . If we take q = σ0(Q), with Q ∈ Ψ 0
mult(M0;E,F), we

have ind(P ) = ind(Q). Moreover, if two Fredholm operators have the same symbol
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class, then their indices coincide, and in fact there is a well-defined (analytic) index
map

ind : K0(T M0) → Z, [σ0(P )] �→ ind(P ), (12)

where P ∈ Ψ 0
a (M0;E,F) and we use the metric to canonically identify T ∗M0

with T M0. We summarize the above discussion in the following lemma extending
Lemma 2.3.

Lemma 2.4 For any elliptic, bounded Q ∈ Ψ 0
a (M0;E,F) such that q := σ0(Q),

there is a natural class [σ0(Q)] := [π∗E,π∗F,q] in the compactly supported K-
theory of T ∗M0 obtained by extending q to an invertible map outside a compact set
of T M0 that is asymptotically constant along the fibers of T M0 → M0. This K-theory
class is such that the Fredholm index of Q depends only on [σ0(Q)].

For a manifold X, we let H ∗(X), respectively H ∗
c (X), denote the cohomology,

respectively the compactly supported cohomology, with rational coefficients, of X.
Recall that throughout this section, we assume that M0 is the interior of a compact
manifold with corners M . Let T M be the radial compactification of the tangent bun-
dle to M . Then the pair (T M,∂T M) is homeomorphic to the similar pair associated
with a manifold with boundary. Hence the (even) Chern character yields a map

ch0 : K0(T M0) → H 2∗
c (T M0) = H 2∗(T M,∂T M).

(Later on, we will also consider the odd Chern character ch1 defined on K1.) Also,
let T d(TCM) ∈ H ∗(M) denote the Todd class of the complexified tangent bundle
T M ⊗ C. Note that since T M is oriented, there is a well-defined fundamental class
[T M0] ∈ H2n(T M,∂T M) (see, for instance, [44] for details on these constructions).

The following result is an immediate extension of a result in [21] from opera-
tors that are multiplication outside a compact subset of M0 to operators that are
only asymptotically so. Let π : T M → M denote the natural projection. We have
ch0[σ0(P )] ∈ H 2∗(T M,∂T M) and π∗T d(TCM) ∈ H 2∗(T M), so their product is in
H 2∗(T M,∂T M) = H 2∗

c (T M0).

Theorem 2.5 Let P ∈ Ψ 0
a (M0;E,F) be such that σ0(P ) is invertible in Ca(S

∗M0;
E,F). Then P is Fredholm and

ind(P ) = (−1)n ch0[σ0(P )]π∗T d(TCM)[T M0],
where [σ0(P )] is defined using Lemma 2.4.

Proof The fact that P is Fredholm follows from Proposition 2.2. The rest of the
proof follows from the discussion before the statement of this theorem. Indeed, let
P ∈ Ψ 0

a (M0;E,F) be elliptic. Then we can find P0 ∈ Ψ 0
mult(M0;E,F) that is close

enough to P such that the straight line joining P and P0 consists of invertible opera-
tors. Both the left-hand side and the right-hand side of our index formula are homo-
topy invariant. For P0 they are equal by [21]. For P , they will therefore be equal as
well, by homotopy invariance. �
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2.3 Comparison Spaces

In this subsection, we extend the index formula of Theorem 2.5 by deformation to cer-
tain pseudodifferential operators on non-compact manifolds that extend to the com-
pactification M of M0 in a suitable sense. More precisely, we require the principal
symbols of our operators to extend to a so-called “comparison space”, and there is an
invertible complete symbol at the boundary. We thus generalize the approach in [31,
48], using homotopy to asymptotically multiplication symbols.

Recall that M is a compactification of M0 to a manifold with corners. In this
section, we fix a vector bundle A over M such that A|M0

∼= T M0 (later, when we
consider Lie structures, such an A will be naturally associated with M0.) Denote by
A the fiber-wise radial compactification of A, so A is a manifold with corners that is
a fibration over M with fibers closed balls of dimension n. We identify A with A∗
using a fixed metric. Let (S∗A)∂M be the restriction of the cosphere bundle S∗A to
the boundary ∂M of M . Define

Ω := ∂(A) = (S∗A) ∪ A|∂M (13)

such that

C(Ω) = {(f, g) ∈ C(S∗A) ⊕ C(A|∂M) : f |(S∗A)∂M
= g(S∗A)|∂M

}.
The space Ω will play an important role in what follows. It is closely related to a
similar space introduced by Cordes and his collaborators in his work on Gelfand
theory for non-compact manifolds [23, 24].

Let ΨA(M0;E) ⊂ Ψ 0(M0;E) be a ∗-algebra of order 0, bounded, pseudodiffer-
ential operators. We say that Ω is a comparison space for ΨA(M0;E) if there is a
surjective homomorphism

σfull : ΨA(M0;E) → C(Ω;End(E)) (14)

such that σfull(P )|S∗M0 = σ0(P ), with kernel included in the algebra of compact op-
erators. We call σfull a full symbol and write σfull = (σ0, σ∂), where

σ∂ : ΨA(M0;E) → C(A|∂M ;End(E)|∂M)

is the boundary symbol morphism. An operator with invertible full symbol is called
fully elliptic. We shall give an index formula for fully elliptic operators in this setting,
reducing to asymptotically multiplication operators.

We see first that any function in C(Ω,End(E)) can be homotoped over the interior
to an asymptotically multiplication symbol. Since the fibers of A are isomorphic to
the n-dimensional half sphere S

n+ and hence contractible, we have that Ω is homotopy
equivalent to the space ˜Ω obtained from the cosphere bundle S∗A by collapsing the
fibers above points of the boundary. More precisely, ˜Ω := (S∗A)/ ∼, with (x, ξ) ∼
(x, ξ ′), for x ∈ ∂M , ξ, ξ ′ ∈ S∗Ax . Since

C( ˜Ω;End(E)) ∼= {f ∈ C(Ω;End(E)) : f constant on fibers over ∂M}
∼= {f ∈ C(S∗A;End(E)) : f constant on fibers over ∂M},
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we conclude that every f ∈ C(Ω;End(E)) is canonically homotopic to some ˜f ∈
C(Ω;End(E)) constant on the fibers of A|∂M → ∂M (this is achieved by a homotopy
equivalence between Ω and ˜Ω). Moreover, if f is invertible, the canonical homotopy
between f and ˜f is through invertible functions. We now have the following:

Lemma 2.6 If f ∈ C(Ω,End(E)) is constant on fibers of A|∂M → ∂M and f0 :=
f |S∗M0 , then f0 ∈ Ca(S

∗M0,End(E)). In particular, let f ∈ C(Ω,End(E)), then f

is homotopic to ˜f ∈ C( ˜Ω,End(E)) ⊂ C(Ω,End(E)) and hence it satisfies f0 :=
˜f |S∗M0 ∈ Ca(S

∗M0,End(E)).

Proof We consider only the scalar case (so E = C = End(E)) for simplicity. Let
p ∈ C(∂M) be such that f(S∗A)∂M

= p. It suffices to show that, given ε > 0, there is a
neighborhood U of ∂M in M such that for y ∈ M0 ∩ U , ξ, ξ ′ ∈ S∗

yM0,

‖f0(y, ξ) − f0(y, ξ ′)‖ < ε (15)

so that (7) follows with K = M \ U . We can do this locally, so assume Ux is a
neighborhood of x ∈ ∂M such that π−1(Ux) ∼= Ux × Sn−1, π : S∗A → M . Let

Vx := {(y, ξ) ∈ Ux × Sn−1 : ‖f (y, ξ) − p(x)‖ < ε/2}.
By the continuity of f in S∗A, we have that Vx is open in Ux × Sn−1. Moreover,
since f (y, ξ) = p(y), y ∈ ∂M , it contains Wx × Sn−1 for some Wx ⊂ ∂M open.
Hence, Vx can be taken as ˜Ux × Sn−1, for some open neighborhood ˜Ux of Wx in M

so that (15) holds if y ∈ ˜Ux . The last statement follows from the fact that Ω and ˜Ω

are homotopy equivalent. �

Let us notice that for f ∈ C( ˜Ω;End(E)), the restriction f |S∗M0 completely deter-

mines f since S∗M0 is dense in ˜Ω . Now let P ∈ Ψ 0
A(M;E) have invertible symbol

φ = (σ0(P ), σ∂(P )) ∈ C(Ω;End(E)).

(In the terminology introduced earlier, P is fully elliptic.) From the previous lemma,
there is an invertible ˜φ ∈ C( ˜Ω;End(E)) ⊂ C(Ω;End(E)) homotopic through invert-
ibles to φ, with σ̃ := ˜φ|S∗M0 ∈ Ca(S

∗M0;End(E)) and σ := σ0(P ) and σ̃ are homo-

topic (over M0). If we let σ̃ = σ0(˜P), for some ˜P ∈ Ψ 0
a (M0;E) ∩ Ψ 0

A(M;E), then
˜P is Fredholm, since σ̃ is invertible. Moreover, from the surjectivity of the complete

symbol map (14), there is a continuous family Pt ∈ Ψ 0
A(M;E), t ∈ [0,1], lifting the

homotopy between φ and ˜φ. Hence P0 = P and P1 = ˜P and ind(P ) = ind(˜P).

We also conclude that with any fully elliptic operator P ∈ Ψ 0
A(M;E,F) we can

associate a well-defined K-theory class [̃σfull(P )] extending the definition in Eq. (11)
by homotopy as follows. We know that P is homotopic to some ˜P ∈ Ψ 0

a (M0;E)

through Fredholm operators in Ψ 0
A(M0;E) and [̃σfull(P )] := [σ0(˜P )], so that

[̃σfull(P )] := [σ0(˜P)] = [π∗E,π∗F, p̃] ∈ K0(T M0), (16)
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where we assume p̃ is an extension of the principal symbol of ˜P to a function that is
multiplication at infinity and homotopic to σ0(P ) over the interior. In particular,

ind(P ) = ind(˜P ) = ind([σ0(˜P)]) = ind([̃σfull(P )]).

Now consider, for P ∈ Ψ 0
A(M;E,F) fully elliptic,

[σfull(P )] := [(σ0(P ), σ∂(P ))] ∈ K1(C(Ω)) ∼= K1(Ω), (17)

where σ∂(P ) ∈ C(A∂M ;Hom(E,F )|∂M) and σ0(P ) ∈ C(S∗A;Hom(E,F )) denote
the boundary and principal symbols, respectively. Let us consider the connecting map
∂ : K1(Ω) → K0(T M0) in the long exact sequence of the pair (A, ∂A) = (A,Ω). We
summarize the above discussion to the following generalization of Lemma 2.4.

Lemma 2.7 For any fully elliptic P ∈ Ψ 0
A(M;E,F) there is a natural class

[̃σfull(P )] := [π∗E,π∗F,p]

in the compactly supported K-theory of T ∗M0 obtained by extending σfull(P ) to a
continuous endomorphism p invertible outside a compact set of T M0. This K-theory
class is such that the Fredholm index of P depends only on [̃σfull(P )] and

[̃σfull(P )] = ∂[(σ0(P ), σ∂(P ))] = ∂[σfull(P )].

Let us also notice that Ω is homotopically equivalent to the boundary of an ori-
ented smooth manifold with boundary, obtained from A by smoothing the corners
(so the homotopy equivalence is not C∞). Hence it has a well-defined fundamen-
tal class [Ω] ∈ H2n−1(Ω). If [A] denotes the fundamental class of A in H2n(A,Ω),
then [Ω] = ∂[A]. Using the compatibility of the boundary maps in K-theory and
cohomology, that is, the fact that the Chern character is a natural transformation of
cohomology theories (see [55] for an extension of this result to non-commutative
algebras), we obtain the following result as a consequence of the Atiyah–Singer in-
dex formula extended to operators that are asymptotically multiplication operators
(Theorem 2.5).

As before, let T d(TCM) denote the Todd class of the complexified tangent bundle
of M , and π : T ∗M → M . Also, we denote by πΩ : Ω → M the natural projection.

Theorem 2.8 Let Ω be a comparison space for Ψ 0
A(M;E,F) and P ∈ Ψ 0

A(M;E,F)

be a fully elliptic operator (that is, an elliptic operator with σ∂(P ) invertible in
C(A|∂M ;Hom(E,F )|∂M)). Then P is Fredholm and

ind(P ) = (−1)n ch0 [̃σfull(P )]π∗T d(TCM)[T M0]
= (−1)n ch1[σfull(P )]π∗

ΩT d(TCM)[Ω],

where [̃σfull(P )] is defined using Lemma 2.7.
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Proof Again, the proof of the first equality follows from the discussion before
the statement of the theorem. Indeed, let us choose a homotopy between P and
˜P ∈ Ψ 0

a (M0;E,F) through Fredholm operators Ψ 0
A(M;E,F). Both the left-hand

side and the right-hand side(s) of the index formula of this theorem are homotopy
invariant. For ˜P they are equal in view of Theorem 2.5, by homotopy invariance,
they will be equal also for P . To prove the last equality, we just use the fact that the
Chern character is compatible with the boundary maps in K-theory and cohomology.
(A proof of a generalization of this result to non-commutative algebras can be found
in [55].) �

3 Index Formula on Asymptotically Commutative Lie Manifolds

From now on, we endow M0 with the structure of a Lie manifold with compactifica-
tion M and structural Lie algebra of vector fields V (see below for the definitions).
There is associated with (M, V ) a well-behaved pseudodifferential calculus and, for
operators in this calculus, Fredholm criteria follow from the pseudodifferential cal-
culus of operators on groupoids [2, 41]. See also [19, 20, 22, 27, 28, 49, 53] for more
index theory results involving groupoids.

We show that if we introduce the additional assumption on the structural Lie al-
gebra V that it be asymptotically commutative, then there will exist a (commutative)
complete symbol and hence we can apply the results in the previous section. Recall
that in this section n may be arbitrary (in the following section, it will be assumed to
be even).

3.1 Operators on Lie Manifolds

In this section, M will denote a compact manifold with corners and M0 = int(M), as
before. Also, let VM denote the Lie algebra of vector fields that are tangent to all faces
of M . We always assume that each hyperface H ⊂ M is an embedded submanifold
of M and hence that it has a defining function xH (recall that this means that xH is
smooth on M , xH ≥ 0, H = {xH = 0}, and dxH �= 0 on H ).

We recall the main definitions of [2, 4]. We say that a Lie subalgebra V ⊂ VM is
a structural Lie algebra of vector fields if it is a Lie algebra with respect to the Lie
bracket and it is also a finitely generated, projective, C∞(M)-module. By the Serre–
Swan theorem, we have that there exists a vector bundle A such that V ∼= Γ (A).
Moreover, there is a vector bundle morphism ρ : A → T M , called the anchor map,
which induces the inclusion map ρ : V = Γ (A) → Γ (T M). It thus follows that A

with the given structure is naturally a Lie algebroid.

Definition 3.1 A Lie manifold M0 is given by a pair (M, V ), where M0 = int(M)

and V is a structural Lie algebra of vector fields such that ρ|M0 : A|M0 → T M0 is an
isomorphism.

A metric on M0 that is obtained from a metric on A by restriction to A|M0
∼=

T M0 will be called a compatible metric on M0. Any two such metrics are Lipschitz
equivalent. We fix one of these metrics on M0 in what follows.
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With a Lie manifold (M, V ) we associate the algebra DiffV (M0) of V -differential
operators on M0, defined as the enveloping algebra of V (generated by V and
C∞(M)). It was shown in [4] that DiffV (M0) contains all geometric operators on
M0 associated with a compatible metric, such as the Dirac and generalized Dirac op-
erators. (This property of DiffV (M0) will be used in Sect. 4.) One defines differential
operators acting between sections of vector bundles E,F over M as

DiffV (M0;E,F) := eF MN(DiffV (M0))eE,

where eE, eF are projections onto E,F ⊂ M ×C
N . In [2], a class of pseudodifferen-

tial operators associated with a given Lie structure at infinity is defined by a process
of microlocalizing DiffV (M0;E,F). We outline this construction below.

Recall that we first define the class Sm(A∗) ⊂ C∞(A∗) as functions satisfying
the usual symbol estimates on coordinate patches trivializing A∗, which are more-
over classical symbols. By inverse Fourier transform on the fibers, each symbol
a ∈ Sm(A∗) defines a distribution F −1

fib (a) on A that is conormal to M . By restriction,
F −1

fib (a) defines a distribution on T M0 conormal to M0. We fix a metric on A which
then defines a compatible metric. We denote by exp the (geodesic) exponential map
associated with this metric (yielding expx : TxM0 → M0 for each x ∈ M0). Now for
some r > 0, let

Φ : (T M0)r → Vr ⊂ M0 × M0, v ∈ (TxM0)r �→ (x, expx(−v))

be the diffeomorphism given by the Riemann–Weyl fibration, where (T M0)r are
the vectors with norm less than r , Vr is an open neighborhood of the diagonal
M0 ∼= ΔM0 ⊂ M2

0 , and r > 0 is less than the injectivity radius of M0, which is known
to be positive. Fix a smooth function χ , with suppχ ⊂ Φ−1(Vr) and χ = 1 on a
neighborhood of the zero section of A, which is identified with M . For a ∈ Sm(A∗),
define a distribution on M2

0 , conormal to M0, by

qχ(a) := Φ∗(χ F −1
fib (a)). (18)

Let aχ(D) denote the operator on M0 with Schwartz kernel qχ . Then aχ(D) is a
properly supported (if r < ∞) pseudodifferential operator on M0.

For each X ∈ V = Γ (A), let ψX : C∞
c (M) → C∞

c (M) be the operator induced by
the global flow ΨX : R × M → M by evaluation at 1.

Definition 3.2 The space Ψ m
V (M0) of pseudodifferential operators generated by the

Lie structure at infinity (M, V ) is the linear space of operators C∞
c (M0) → C∞

c (M0)

generated by aχ(D), with a ∈ Sm(A∗) and bχ(D)ψX1 · · ·ψXk
, with b ∈ S−∞(A∗)

and X1, . . . ,Xk ∈ V = Γ (A).

We similarly define the space Ψ m
V (M0;E,F) of pseudodifferential operators act-

ing between sections of vector bundles E,F over M .
As for the usual algebras of pseudodifferential operators, we have the following

basic property of the principal symbol (Proposition 2.6 [2]): The principal symbol
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establishes isomorphisms

σm : Ψ m
V (M0)/Ψ m−1

V (M0) → Sm(A∗)/Sm−1(A∗) ∼= C∞(S∗A).

We note that the set of all aχ(D), with a ∈ S∞(A∗) is not closed under composi-
tion of operators, which is why we consider extra operators in Ψ −∞(M0). To show
that Ψ m

V (M0) is indeed closed under composition, results from the following section
are needed.

3.2 Operators on Groupoids

In order to obtain algebraic properties and, in particular, Fredholm criteria, an im-
portant result is that Ψ m

V (M0) can be recovered from an algebra of pseudodifferential
operators on a suitable groupoid integrating A. We review the main definitions of the
theory of pseudodifferential operators on groupoids, for the benefit of the reader (see
[41, 54]).

For a Lie groupoid G with the space of units given by a manifold with corners M ,
with d, r : G → M the domain and range maps, P = (Px) ∈ Ψ m(G) is defined as a
smooth family of pseudodifferential operators on the fibers Gx := d−1(x), x ∈ M ,
which is right-invariant, that is, UgPd(g) = Pr(g)Ug , where Ug : C∞(Gd(g)) →
C∞(Gr(g)),Ug(f )g′ := f (g′g). Recall that the definition of a Lie groupoid requires
the sets Gx := d−1(x) to be smooth manifolds (no corners). We also assume that this
family is uniformly supported in that

supp(P ) =
⋃

x

μ(supp(Kx)) ⊂ G

is compact, where μ(g,h) = gh−1 and Kx denotes the Schwartz kernel of Px (a dis-
tribution on Gx × Gx ). In this case, each Px is properly supported, so that the composi-
tion gh−1 is well defined. Moreover, P acts on C∞(G). Let T d G = kerd∗ = ⋃

Tx Gx

be the d-vertical tangent bundle and denote by A(G) := (

T d G
)

M
the Lie algebroid

of G and S∗A(G) := (A(G)∗ \ 0)/R
∗+ its cosphere bundle. Let us fix a metric on A.

This choice defines a principal symbol map σm : Ψ m(G) → C∞
c (S∗A(G)), which is

surjective, with kernel Ψ m−1(G). One can similarly define operators acting between
sections of vector bundles: If E is a vector bundle over the space of units M , then
Ψ m(G, r∗E) is well defined, as above.

For each x ∈ M , we consider the regular representation πx of Ψ ∞(G) on C∞(Gx)

defined as πx(P ) := Px . When restricted to order zero operators, this is a bounded
∗-representation, for all x. For P ∈ Ψ 0(G), let

‖P ‖r := sup
x∈M

‖πx(P )‖ (19)

be the reduced C∗-norm. We shall also need the full C∗-norm defined as

‖P ‖ := sup
ρ

‖ρ(P )‖,
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where ρ ranges through bounded ∗-representation of Ψ 0(G) such that for T ∈
Ψ −∞(G), ρ(T ) ≤ ‖T ‖1, with ‖ ‖1 defined by integrating the Schwartz kernels over
the fibers (see [41] for the precise definitions). Endowing Ψ 0(G) with the full norm
‖ ‖, we have that the principal symbol extends to a bounded ∗-homomorphism

σ0 : Ψ 0(G) → C0(S
∗A(G)), (20)

surjective, with kernel C∗(G) := Ψ −∞(G). (A similar result holds for the reduced
norm.)

If Y ⊂ M is an invariant subset of the units, in the sense that r−1(Y ) = d−1(Y ),
then GY := d−1(Y ) is also a continuous family groupoid, with units Y , and we can
define a restriction operator RY : Ψ m(G;E) → Ψ m(GY ;EY ) as

P = (Px)x∈M → RY (P ) = (Px)x∈Y . (21)

In this case, Lemma 3 in [41] gives that the following sequence is exact:

0 −→ C∗(GM\Y ) −→ Ψ 0(G)
(σ0,RY )−−−−−→ C(S∗A(G)) ×C(S∗A(G)Y ) Ψ 0(GY ) −→ 0,

(22)

where the fibered product Ψ 0(GY )×C0(S
∗A(G)Y ) C0(S

∗A(G)) is defined as the algebra

of pairs (Q,f ) ∈ Ψ 0(GY ) × C0(S
∗A(G)) such that σ0(Q) = f|S∗A(G)Y .

If M0 = int(M) is an invariant subset, one can define the so-called vector rep-
resentation πM0 , which associates with P ∈ Ψ 0(G) a pseudodifferential operator
πM0(P ) : C∞

c (M0) → C∞
c (M0) by the formula πM0(P )u = u0, with P(u◦ r) = u0 ◦ r

[43]. Recall that a Lie groupoid is called d-connected if all the sets Gx := d−1(x)

are connected. If A → M is a Lie algebroid on M , we say that G integrates A if
A(G) = A. We shall need Theorem 3.3 from [2], which gives that

Theorem 3.3 Let (M, V ) be a Lie manifold with Lie algebroid A and G be a
d-connected groupoid over M integrating A. Then Ψ m

V (M0) ∼= πM0(Ψ
m(G)).

The right-hand side is well defined since, as we shall see next, one can always
assume that M0 is an invariant subset of such G . In particular, it follows that the
classes Ψ m

V (M0) define a filtered algebra on Ψ ∞
V (M0).

The problem of integrating Lie algebroids was solved in [26], though for our pur-
poses, the results in [52] suffice. Namely, M0 and ∂M form an A-invariant stratifica-
tion of M , so it follows from the glueing theorem in [52] that it suffices to integrate
along these strata. Since the anchor map ρ is a diffeomorphism over the interior, we
can take the d-connected groupoid G integrating A to coincide with the pair groupoid
over the interior, meaning that GM0

∼= M0 × M0, in case M0 is connected. (The gen-
eral case of non-connected M0 can be reduced to the connected case by taking the
compactification of each connected component.) It then follows from [52] that, if
G∂M is a groupoid integrating A∂M , then

G = GM0 � G∂M
∼= (M0 × M0) ∪ G∂M (23)
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has the structure of a differentiable groupoid with Lie algebroid A. We see that M0

is indeed an invariant subset, and moreover, since GM0 is the pair groupoid, one has
that C∗(GM0)

∼= K(L2(M0)), the isomorphism being induced either by the vector
representation πM0 or by πx , x ∈ M0, noting that these representations are equiva-
lent through the isometry r : Gx → M0. In particular, the vector representation πM0

is bounded. Fredholm criteria now follow from the exact sequence (22) as in [41,
Theorem 4].

From now on we shall assume that G is a d-connected Lie groupoid integrating the
Lie algebroid A → M defined by a Lie manifold (M, V ). We shall also assume that
the vector representation πM0 is injective on Ψ 0(G). In particular, Ψ 0(G) ∼= Ψ 0

V (M0).

Moreover, since C∗(G) ⊂ Ψ 0(G) and πM0 factors through the reduced C∗-algebra of
G , so that πM0(C

∗
r (G)) = πM0(C

∗(G)), we hence obtain that G is amenable, in that
the reduced and full norms coincide.

We shall use the isomorphism above to carry to Ψ m
V (M0) all concepts defined for

Ψ m(G). At the level of symbols, we have σm(P ) = σm(πM0(Q)) = σm(Q) on M0,
for any P ∈ Ψ m

V (M0). We shall also need the map of restriction to the boundary for
operators on (M, V )

σ∂ : Ψ 0
V (M0) → Ψ 0(G∂M), P �→ R∂ (Q) = Q|∂M,

where πM0(Q) = P and R∂ : Ψ 0(G) → Ψ 0(G∂M) is restriction to the boundary, as in
Eq. (21).

Proposition 3.4 Let (M, V ) be a Lie manifold with Lie algebroid A and G be a
d-connected groupoid as in (23) satisfying A(G) � A. Assume that the representation
πM0 is injective on Ψ 0(G), as above. Then

Ψ 0(G)/K ∼= C(S∗A) ×C(S∗A∂M) Ψ 0(G∂M)

:= {(a,Q) ∈ C0(S
∗A) × Ψ 0(G∂M), a|∂M = σ0(Q) ∈ C(S∗A∂M)}

and P ∈ Ψ 0
V (M0) is Fredholm on L2(M0) if, and only if, it is elliptic and σ∂(P ) is

invertible in Ψ 0(G∂M).

Proof Since πM0 is injective and πM0C
∗(GM0)

∼= K(L2(M0)), we have the in-

duced representation π ′ : Ψ 0(G)/C∗(GM0) → B(L2(M0))/K, which is also injec-
tive. Hence, P = πM0(Q) is Fredholm if, and only if, the class of Q is invertible in

Ψ 0(G)/C∗(GM0). The result follows from (22). �

Moreover, the amenability of G yields that the restriction G∂M is also amenable
(see [60] Proposition 3.7). In this case, ρ := ∏

x∈∂M πx is an injective representation
of Ψ 0(G∂M) and σ∂(P ), as above, is invertible if, and only if, σ∂(P )x = Qx is invert-
ible for all x ∈ ∂M , with πM0(Q) = P . (The same is also true for Ψ ∞(G∂M), since if
ρ(P ) = 0, then ρ(P (1 + P ∗P)−1/2) = 0.)
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Elliptic operators P with invertible σ∂(P ) are sometimes called fully elliptic and
the algebra Ψ 0(G∂M) is the so-called indicial algebra. If πM0 is not injective for some
x ∈ M0, then we only have a sufficient condition for Fredholmness.

To finish this section, we prove a result that will later enable us to compute the
index of operators with order m > 0 from the index of order 0 operators.

Lemma 3.5 Let Q ∈ Ψ m
V (M0;E) and P := Q(1+Q∗Q)−1/2. Then P ∈ Ψ 0

V (M0;E).

Proof Let G be the canonical groupoid integrating (M, V ). It follows from groupoid
calculus applied to Ψ 0(G), more precisely from Theorem 7.2 in [43], that if L ∈
Ψ 2m(G) is such that L ≥ 1 and σ2m(L) > 0 then SL−1/2 ∈ Ψ 0(G), for any S ∈
Ψ m(G). From Theorem 3.3, let R ∈ Ψ m(G) be such that πM0(R) = Q, with πM0

the vector representation. Then

1 + Q∗Q = 1 + πM0(R)∗πM0(R) = πM0(1 + R∗R)

and we can apply the result above to 1 + R∗R to obtain R(1 + R∗R)−1/2 ∈ Ψ 0(G).

Hence πM0(R(1 + R∗R)−1/2) ∈ ΨV 0(M0). It follows from the definitions that

πM0((1 + R∗R)−1/2) = πM0(1 + R∗R)−1/2,

so that P = Q(1 + Q∗Q)−1/2 ∈ Ψ 0
V (M0). �

Note that if P and Q are as in the lemma above (Lemma 3.5), σm(Q) and σ0(P )

are homotopic as sections of S∗A. Moreover, if we define the map of restriction to the
boundary σ∂ : Ψ m

V (M0;E) → Ψ m(G∂M ; r∗E) given, as before, by σ∂(Q) := R∂ (R),
with πM0(R) = Q, then it follows from the proof that

σ∂(P ) = σ∂(Q(1 + Q∗Q)−1/2) = σ∂(Q)(1 + σ∂(Q)∗σ∂(Q))−1/2,

hence σ∂(P ) is invertible if, and only if, σ∂(Q) is. We say that Q ∈ Ψ m
V (M0;E) is

fully elliptic if, and only if, P is. In that case, P is Fredholm and Q will also be Fred-
holm, in the setting of unbounded operators, with ind(Q) = ind(P ) (see Sect. 4.1).

3.3 The Asymptotically Commutative Case

In this subsection, we prove an index formula for certain classes of pseudodifferential
operators on Lie manifolds whose associated groupoids are such that the restrictions
at the boundary yield bundles of commutative Lie groups. The main point is giving
conditions that yield commutativity of the algebra Ψ 0(G∂M), using the notation of
the previous section, so that Fredholmness depends on invertibility in an algebra of
functions, thus reducing to the setting considered in Sect. 2.3. This is known to hold
for the scattering and double-edge calculus [41–43, 48, 56]. The dimension of M is
denoted by n, as before. Recall that in this section, we do not assume n to be even.

Definition 3.6 Let (M, W ) be a connected Lie manifold with Lie algebroid π :
AW → M with the property that any X ∈ W vanishes at the boundary ∂M (that
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is, on any face of the boundary) and the resulting Lie algebras AW ,x := π−1(x) are
commutative. A Lie manifold (M, W ) with this property will be called an asymptot-
ically commutative Lie manifold, and W will be called commutative at infinity.

(We reserve the notation W for asymptotically commutative structural Lie alge-
bras of vector fields, whereas V will denote a general such structural Lie algebra of
vector fields.)

Let (M, W ) be an asymptotically commutative Lie manifold. Then a groupoid
integrating AW |∂M is AW |∂M itself (since the commutative Lie algebra R

n identifies
with itself via the exponential map). According to [52], there will be a unique Lie
manifold structure on the disjoint union

G := (M0 × M0) ∪ AW |∂M (24)

such that G is a Lie groupoid integrating A = AW . Thus any Lie algebroid associ-
ated with an asymptotically commutative Lie manifold has a canonical Lie groupoid
integrating it. Let A be the sphere bundle obtained by radial compactification of the
fibers of A.

Proposition 3.7 Assume (M, W ) is an asymptotically commutative Lie manifold and
let G be the canonical Lie algebroid integrating it, as in Eq. (24). Then Ψ 0(G∂M) is
commutative and

Ψ 0(G∂M) ∼= C(A|∂M).

Proof It follows from (24) that the algebra of pseudodifferential operators on G∂M

coincides with Ψ 0(A∂M), that is, with the algebra of continuous families of (Px) of
translation invariant pseudodifferential operators Px acting on the fibers (A∂M)x of
A∂M , x ∈ ∂M .

Now, the pseudodifferential operators of order zero on a vector space V that
are translation invariant coincide with convolution operators with functions whose
Fourier transform is in

˜S0(V ) = {p ∈ C∞(V ) : p(y, ξ) := p(ξ) ∈ S0(T ∗V )}
(symbols of order zero that are independent of y). The algebra of convolution op-
erators is commutative, so it follows straightaway that Ψ 0(A∂M) is commutative.
(In particular, the reduced and full C∗-norms coincide.) Moreover, one can check

that ˜S0(V ) ∼= C(V ), with V the radial compactification of V . Hence, Ψ 0(A∂M) ∼=
C(A|∂M), since there is an isomorphism between elements of Ψ 0(A∂M) and continu-
ous families in ˜S0(Ax), which is bounded with respect to the reduced, hence the full,
norm. This proves Ψ 0(G∂ ) ∼= C(A|∂M), as claimed. �

Note that it follows from the proof that the isomorphism above is really given by
the total symbol, as in (4), of the indicial boundary operator. For order m > 0 oper-
ators, we have Ψ m(G∂M) = Ψ m(A|∂M) ∼= ˜Sm(A|∂M) ⊂ C∞(A|∂M), the isomorphism
being again given by the total symbol, that is, including the lower-order terms of the
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symbol. (This total symbol is defined since the resulting operators on the fibers of
A → ∂M are translation invariant, and hence they are convolution operators. The to-
tal symbol is simply the Fourier transform of the resulting convolution distributions.)

As in Sect. 2.3, Eq. (13), consider Ω := ∂(A) = (S∗A) ∪ A|∂M such that C(Ω) =
{(f, g) ∈ C(S∗A) ⊕ C(A|∂M), f = g on S∗A∂M}.

Define the boundary symbol for operators on (M, W ) by

σ∂ : Ψ 0
W (M0;E) → C(A|∂M) (25)

as the map of restriction to the boundary composed with the isomorphism given by
the previous proposition. For P ∈ Ψ m

W (M0;E), the boundary symbol is just given
by the total symbol of R∂ (Q) = Q|∂M ∈ Ψ 0(A∂M), with R∂M : Ψ m(G, r∗E) →
Ψ m(A∂M, r∗E∂M) the restriction map and πM0(Q) = P .

Moreover, it follows from (22) that C(Ω) is the recipient of full symbols of pseu-
dodifferential operators on M , since C(A|∂M)×C0(S

∗A∂M) C0(S
∗A) = C(∂A) = C(Ω).

We then have a map

σfull := (σ0, σ∂) : Ψ 0
W (M;E) → C(Ω), (26)

which is surjective, continuous, and a ∗-algebra morphism. We will see in the next
proposition that K ⊂ kerσfull, so it follows that Ω = ∂(A) is a comparison space for

Ψ 0
W (M;E) (see Eq. (14)), and hence the results from Sect. 2.3 apply.

Proposition 3.8 Assume (M, W ) is an asymptotically commutative Lie manifold and
let G be the canonical Lie groupoid integrating it, as in Eq. (24). Then πM0 is injective

on Ψ 0(G), and hence the following sequence is exact.

0 −−−−→ K(M;E) −−−−→ Ψ 0
W (M;E)

(σ∂ ,σ0)−−−−→ C(Ω) −−−−→ 0. (27)

In particular, an operator P ∈ Ψ 0
W (M;E) is Fredholm if, and only if, it is fully ellip-

tic, meaning that σfull(P ) = (σ0(P ), σ∂(P )) ∈ C(Ω) is invertible.

Proof The second part will follow from the first part using Proposition 3.4, so we
concentrate on proving the injectivity of πM0 . Let I be the kernel of πM0 . We want
to show that I = {0}. We have that πM0 is injective on the subalgebra of compact
operators of Ψ 0

W (M,E), so I ∩ K = 0. It follows that (σ0, σ∂M) is injective on I ,
since it has kernel K.

Let P ∈ I ⊂ Ψ 0
W (M,E). We can recover the principal symbol of P from its ac-

tion on M0 [3, 38, 43], so we can assume P ∈ I ⊂ Ψ m
W (M,E), with m < 0. Next, we

replace P with (P ∗P)k , which, for k large, has arbitrarily small order. We can there-
fore assume that m < −n. (This is the usual “descent” argument in Hörmander’s
trick.) The Fourier transform (as in Eq. (18)) then allows us to recover the boundary
symbol of P since for x approaching the boundary, the exponential map increases its
radius of injectivity (so the cutoff χ will affect less and less the kernel of the resulting
operator). This shows that πM0 is injective on Ψ 0(G). �
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In this case, let [σ0(P )] ∈ K0(T M0) denote the K0-theory class associated with
P , as in (16), and [σfull(P )] := [(σ∂(P ), σ0(P ))] ∈ K1(C(Ω)) ∼= K1(Ω) denote the
class in K1. As before, let T d(TCM) denote the Todd class of the complexified tan-
gent bundle of M , and π : T ∗M → M . Also, we denote by πΩ : Ω = ∂(A) → M the
natural projection. From Theorem 2.8 it finally follows:

Theorem 3.9 Let (M, W ) be an asymptotically commutative Lie manifold with Lie

algebroid A, Ω := ∂(A), and let P ∈ Ψ 0
W (M;E) be an elliptic operator with σ∂(P )

invertible in C(A∂M). Then,

ind(P ) = (−1)n ch0 [̃σfull(P )]π∗T d(TCM)[T M0]
= (−1)n ch1[σfull(P )]π∗

ΩT d(TCM)[Ω],
where [̃σfull(P )] ∈ K0(T M0) is defined using Lemma 2.7.

Our main example of an asymptotically commutative Lie manifold (M, W ) is
obtained as follows. Let (M, V ) be a Lie manifold and let xk be boundary defining
functions of the hyperfaces of M . Choose ak ∈ N = {1,2, . . .}. Then, as in Eq. (3),
we introduce

W := f V , with f :=
∏

x
ak

k .

Then W is also a structural Lie algebra of vector fields, since it is closed for Lie
brackets, and a finitely generated, projective C∞(M)-module. Hence (M, W ) is a
Lie manifold that is easily seen to be asymptotically commutative.

The previous result extends the known index formulas for the scattering calculus
on manifolds with boundary, where Vsc := xVb , x is a boundary defining function
and Vb is the Lie algebra of vector fields tangent to the boundary, and for the double-
edge calculus, where Vde = xVe , with Ve the edge vector fields induced by a fibration
of the boundary [36, 40, 42, 48]. Moreover, the index formula above can be proved
in the same way considering families of pseudodifferential operators over a compact
base space B (the index now takes values in K0(B)) using a generalization of the
Atiyah–Singer index theorem for families of asymptotically multiplication operators.
In this sense, Theorem 3.9 yields the result in [40] for families of scattering pseudod-
ifferential operators.

In the next section, we will apply the index formula above to compute the index
of perturbed Dirac operators on general Lie manifolds.

4 Perturbed Dirac Operators

Throughout this section, we let M0 be a non-compact, even dimensional manifold
M0, which, as before, is assumed to be the interior of a Lie manifold (M, V ). We fix
a set {xk} of defining functions of M and let

f :=
∏

x
ak

k , ak ∈ N, (28)
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(so ak > 0). In this section, we consider a Dirac operator /D coupled with a poten-
tial V , that is, an operator of the form

T = /D + V := /D̂⊗1 + 1̂⊗V (29)

on compactly supported sections of some vector bundles defined on M0. By a poten-
tial we shall always mean an odd, self-adjoint endomorphism of a Z2-graded vector
bundle E over M0 and endowed with a compatible connection. An operator T of
this type will be called a Callias-type operator. (More precisely, T is the closure of
T ̂⊗1 + 1̂⊗V .) We assume the potential V to be of the form

V := f −1V0 =
∏

x
−ak

k V0,

where V0 extends to a smooth endomorphism of E on M , invertible at the boundary.
In particular, the potential V is unbounded.

We apply the results of the previous section to give a cohomological formula for
the index of T + := ( /D +V )+ on natural Sobolev spaces. The main point is to reduce
the calculation of the index of T + to the case of a Dirac operator coupled with a
bounded potential on the asymptotically commutative Lie manifold (M, W ) defined
by W := f V , and show that the index can be obtained from Theorem 3.9. More
precisely, we shall show that

ind(T +) = ind(Q+) for Q := f 1/2T +f 1/2 ∈ Ψ 1
W (M;F0,F1), W := f V , (30)

for suitable vector bundles F0 and F1. We then use that

P := Q(1 + Q∗Q)−1/2 ∈ Ψ 0
W (M;F0,F1)

also satisfies ind(P +) = ind(Q+). Finally, we show that ind(P +), and hence also
ind(T +) = ind(P +), can be computed using Theorem 3.9.

See also the results of Albin–Rochon [1] and Moroianu [50] for results on the
decay of the functions in the null spaces of T , Q, and Q∗, which also give a heuristic
explanation for our coincidence of the indices of P + and Q+.

4.1 Dirac and Callias Operators

Let W and E be Z2-graded, Hermitian vector bundles over M and assume that both
W and E are endowed with compatible connections. We also endow the tensor prod-
uct bundle W ⊗ E over M with the usual grading and denote by Ŵ⊗E the resulting
Z2-graded vector bundle, with the tensor product connection, namely,

(Ŵ⊗E)+ = (W+ ⊗ E+) ⊕ (W− ⊗ E−)

and

(Ŵ⊗E)− = (W− ⊗ E+) ⊕ (W+ ⊗ E−).

If V ∈ End(E) is an endomorphism, then it acts on C∞(E) as a (pseudo)differential
operator of order 0.
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Let D ∈ Ψ m
V (M,W). Then we define D̂⊗1 acting on C∞(Ŵ⊗E) as in [40]. (Note

that, since D is not C∞(M)-linear, extra conditions might be needed to assure that
D̂⊗1 is well defined as the tensor product of two endomorphisms, for instance, that
the connection on E be flat.) For D a Dirac operator—which is really the only case
we need to obtain our main result—this comes for free, since one recovers the usual
definition of D̂⊗1 as the Dirac operator on the tensor product bundle endowed with
the tensor product connection.

Definition 4.1 An operator T : C∞
c (M0;Ŵ⊗E) → C∞

c (M0;Ŵ⊗E) is said to be a
Callias-type pseudodifferential operator on the Lie manifold (M, V ) if

T := D + V := D̂⊗1 + 1̂⊗V =
(

D ⊗ 1 −1 ⊗ V

1 ⊗ V D ⊗ 1

)

,

where D ∈ Ψ m
V (M,W), m > 0, is an odd, symmetric elliptic operator and V ∈

End(E|M0) is odd and self-adjoint. We shall also assume V to be invertible outside a
compact subset of M0. We refer to V as a potential. The closure of an operator of the
form T = D + V will also be called a Callias-type operator.

When D̂⊗1 is the (generalized) Dirac operator associated with a given Clifford
bundle structure and connection on Ŵ⊗E, these operators are also called Dirac–
Schrödinger operators, and were first considered by Callias, in the odd-dimensional
Euclidean space [18]. See also [15, 17, 30, 31] and references therein for more
results on index theory of Dirac–Schrödinger and Callias-type operators on even-
dimensional manifolds. See also [16].

Remark 4.2 On odd-dimensional manifolds, the Callias-type operators are of the
form /D + iV , where V is self-adjoint and invertible at infinity. See [5, 6, 13, 14,
18, 29, 40, 59] for more on the index of Callias-type operators in the odd case.

Recall that a symmetric (hence closable) operator T is essentially self-adjoint
if its closure is self-adjoint, that is, if 〈T x,y〉 = 〈x,T y〉, for all x, y ∈ D(T ) =
D(T ∗). (We shall always denote the minimal closure of an operator by the same
letter.)

In the following lemma, we assume that the potential V0 extends to an endomor-
phism of E over M ; in particular, it is bounded. (We will prove such a result for an
unbounded potential in Sect. 4.4.)

Lemma 4.3 Let D ∈ Ψ m
V (M,W) be an odd, symmetric, elliptic operator. Assume

that V0 extends to an endomorphism of E over M , as before. Then the Callias-type
operator T = D + V0 ∈ Ψ m

V (M0;W ⊗ E) is elliptic and essentially self-adjoint on
C∞

c (M0;W ⊗ E).

Proof Ellipticity follows from σm(T ) = σm(D)̂⊗1. The fact that T is essentially self-
adjoint follows, for instance, from [43] (Theorem 7.1), which states that a (possibly
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unbounded) symmetric, elliptic operator in Ψ m
V (M;W ⊗ E), with m > 0, is essen-

tially self-adjoint, where we have identified Ψ m
V (M;W ⊗ E) = πM0(Ψ

1(G; r∗(W ⊗
E))), as in Theorem 3.3. �

We shall work with unbounded Fredholm operators. It will then be useful to recall
the way they are introduced. Let T be a possibly unbounded operator with domain
D(T ) and codomain H . We shall always replace T by its closure, so assume T is
closed and endow D(T ) with the graph norm. Then T is Fredholm if, by defini-
tion, the induced bounded operator T : D(T ) → H is Fredholm (in the usual sense
of having finite-dimensional kernel and cokernel). In particular, a pseudodifferential
operator T1 acting between sections of E0 with range sections of E1 is Fredholm
if, and only if, T2 := T1(1 + T ∗

1 T1)
−1/2 is a Fredholm operator and, in this case,

ind(T1) = ind(T2).
We are interested in computing the index of

T + = (D + V )+ : C∞
c (M0; (Ŵ⊗E)+) → C∞

c (M0; (Ŵ⊗E)−), (31)

which we shall prove to be Fredholm between suitable Sobolev spaces. Note that,
with respect to the grading, we can write

T + =
(

D+ ⊗ 1 −1 ⊗ V −
1 ⊗ V + D− ⊗ 1

)

. (32)

Most of our results work for general odd, elliptic, positive pseudodifferential op-
erators D ∈ Ψ m

V (M;W). However, for simplicity and because this is the most useful
case in applications, we shall mainly be interested in the case when D is a general-
ized Dirac operator. Recall that, in any case, the Dirac operators generate all classes
in K-homology, so we can always assume D to be a Dirac operator.

4.2 Dirac Operators on Lie Manifolds

We introduce here generalized Dirac operators on Lie manifolds following [4]. Let
(M, V ) be an even-dimensional Lie manifold endowed with a compatible metric g on
M0 and let W be a Clifford module over M endowed with an A∗-valued connection
∇W and a Clifford multiplication bundle map c : A ⊗ W → W . (Recall that a com-
patible metric on M0 is a metric on T M0 that extends to A → M .) The restrictions
of W , c, and ∇W to M0 reduce to the classical notions of a Clifford bundle together
with an admissible connection [35, 44, 48].

Definition 4.4 The generalized Dirac operator /D : C∞(M;W) → C∞(M;W) asso-
ciated with W is then defined as the composition

C∞(M;W)
∇W−−−−→ C∞(M;W ⊗ A∗) id⊗φ−−−−→ C∞(M;W ⊗ A)

c−−−−→ C∞(M;W),

(33)

where φ : A∗ → A is the isomorphism given by the metric.
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Since both the Clifford multiplication c and the A∗-valued connection are V -
differential operators, of order 0 and 1, respectively, we have that /D ∈ Diff1

V (M;W).
The principal symbol σ1( /D)ξ = ic(ξ) ∈ End(W) is invertible for any ξ �= 0,
and hence /D is elliptic. It follows from classical results that /D with domain
C∞

c (M0;W) ⊂ L2(M0;W) is essentially self-adjoint (i.e., its closure is self-adjoint),
since M0 is complete.

We can also define Dirac operators on groupoids: If G is a d-connected groupoid
integrating A = A(V ), then we can consider the Clifford module r∗W and endow G
with an admissible connection ∇G ∈ Diff(G;W,W ⊗ A∗) such that πM0( /DG ) = /D,
where /DG is the associated Dirac operator on G (see [43] for details).

Recall that M is even-dimensional and assume that W is Z2-graded, with the
grading given by the chirality operator. Also, let E be a Hermitian Z2-graded vec-
tor bundle over M and V ∈ End(E) a potential (so odd, self-adjoint, and invertible
outside a compact subset of M0). We assume as before that W and E are endowed
with compatible connections. Note that in this case, /D̂⊗1 can be defined directly
as e( /D ⊕ · · · ⊕ /D)e, where e is the projection corresponding to an embedding of E

in a trivial bundle and /D ⊕ · · · ⊕ /D coincides with the Dirac operator on W ⊗ C
n,

n = rk(E). In Sect. 4.4, we shall be computing the index of the chiral operator

T + = ( /D + V )+ = ( /D̂⊗1 + 1̂⊗V )+,

as in (31), with an unbounded potential V , on natural Sobolev spaces on the Lie
manifold (M, V ).

4.3 The Case of Bounded Potentials

Let (M, W ) be an asymptotically commutative Lie manifold. Recall that we assume
that n, the dimension of M , is even. In this subsection, we consider Callias-type
operators

Q := D + V0 = D̂⊗1 + 1̂⊗V0 with D ∈ Ψ m
W (M0;W ⊗ E), (34)

where D is an elliptic, symmetric, odd pseudodifferential operator, as in Defini-
tion 4.1. (Note that, in any case, to obtain our main result, we will only need the
case when D = /D, a Dirac operator, as in the previous section). We assume V0 to
be a bounded potential on M0 that extends to a smooth endomorphism of E over M

that is invertible on ∂M (so, in particular, V0 is odd and symmetric). It follows from
Lemma 4.3 that Q is elliptic and essentially self-adjoint on C∞

c (M0). We shall give a
K-theory formula for the index of Q+.

We define the total symbol K-theory classes σfull(Q) ∈ K1(Ω) and σ̃full(Q) ∈
K0(T M0) of Q in a way similar to the case of order zero symbols. First, recall that
the boundary symbol σ∂ : Ψ m

W (M0;E) → C(A|∂M) is given by

σ∂(P ) = σ tot
m (R∂ (S)) = σ tot

m (S|∂M),

with πM0(S) = P , R∂ : Ψ m(G) → Ψ m(G∂M) is restriction to the boundary and
σ tot

m (Sx), x ∈ ∂M , is the total symbol of the operator Sx on Ax (including lower-order
terms).
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Lemma 4.5 Let Q be as in Eq. (34) and P := Q(1 + Q2)−1/2. Then P ∈
Ψ 0

W (M0;W ⊗ E) is fully elliptic, in the sense that its principal symbol σ0(P ) and
the boundary symbol σ∂(P ), defined by continuity, are invertible.

Proof It follows from Lemma 3.5 that P ∈ Ψ 0
W (M0;W ⊗ E). We have that P is

elliptic, since Q is. To understand the boundary operators, since W is commuta-
tive at the boundary, hence G∂M = A∂M is amenable, we only need invertibility on
fibers Gx = Ax , x ∈ ∂M (see the remark after Theorem 3.4). Let S ∈ Ψ m(G; r∗W)

be such that πM0(S) = D. Therefore, we need to look at the symbol of the op-
erators Sx coupled with the constant potential V0(x) acting on the fiber Ax , for
each x ∈ ∂M . The invertibility of the boundary indicial operator σ∂(D + V0)x(ξ) =
σ tot(Sx)̂⊗1 + 1̂⊗V0(x), ξ ∈ Ax then follows from the fact that V0(x) is invertible
for each x ∈ ∂M (noting that α̂⊗1 + 1̂⊗β ∈ End(Wx̂⊗Ex) is invertible if α or β are
invertible.) �

Note that when D = /D is a Dirac operator on (M, W ) then, using the notation as
above, Sx = /Dx is a Dirac operator on Ax and σ∂( /D+V )x(ξ) = ic(ξ)̂⊗1+1̂⊗V0(x).
(This is due to the fact that the restriction of a Dirac operator to the boundary is again
a Dirac operator [43].)

The following lemma provides the definitions of the total symbol K-theory classes
σfull(Q) ∈ K1(Ω) and σ̃full(Q) ∈ K0(T M0). Let us introduce the K-theory class [V0]
defined by the endomorphism V0 as usual [7, 39]

[V0] := [E+,E−,V0] ∈ K0(M0) = K0(M; ∂M) ⊂ K0(M).

Recall that Ω := ∂(A) = (S∗A) ∪ A|∂M (as in Sect. 3.3).

Lemma 4.6 Let Q and P be as in Lemma 4.5 and define [σfull(Q)] := [σfull(P )] ∈
K1(Ω) and [̃σfull(Q)] := [̃σfull(P )] ∈ K0(T M0). Then

∂[σfull(Q)] = [̃σfull(Q)]

and [̃σfull(Q)] can be represented by the endomorphism σm(D)̂⊗1 + 1̂⊗V0. In par-
ticular,

[̃σfull(Q)] = [σm(D)] ⊗ π∗[V0],
where [σm(D)] ∈ K0(T M) and [V0] ∈ K0(M,∂M) are the classes defined by the
corresponding morphisms and π : T M → M is the natural projection.

Proof The relation ∂[σfull(Q)] = [̃σfull(Q)] follows from definitions and from
Lemma 2.7. Let us choose a smooth function σm ∈ Sm(A∗) such that σm rep-
resents σm(D) and on A∗|∂M it is equal to the total symbol of D. Then let
p = σm̂⊗1 + 1̂⊗V0 ∈ C∞(A∗) = C∞(A), where we have used a fixed metric on
A to identify A with A∗, as before. From the definition of P in terms of Q and from
the properties of the principal symbol, we have that
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σ0(P ) = σm(Q)/
√

1 + σm(Q)2

= σm(D)/
√

1 + σm(D)2

= p/

√

1 + p2 ∈ S0(A∗)/S−1(A∗).

On the other hand, at the boundary, we have

σ∂(P ) = σ∂(Q)/
√

1 + σ∂(Q)2 = p/

√

1 + p2.

Therefore, σfull(P ) = p/
√

1 + p2 on Ω . Hence the K-theory class [̃σfull(P )] is ob-
tained from the endomorphism p/

√

1 + p2 defined on T M0, which obviously ex-
tends p/

√

1 + p2 from Ω to the whole of A ⊃ T M0. We obtain that the endomor-
phism p, and hence also σm(D)̂⊗1 + 1̂⊗V0, represents [̃σfull(Q)].

From the definition of the tensor product in K-theory, we have that

[σm(D)] ⊗ π∗[V0] = [π∗(Ŵ⊗E)+,π∗(Ŵ⊗E)−, σm(D)̂⊗1 ⊕ 1̂⊗V0],
where

σm(D)̂⊗1 ⊕ 1̂⊗V0 =
(

σm(D+) ⊗ 1 −1 ⊗ V −
0

1 ⊗ V +
0 σm(D−) ⊗ 1

)

.

It follows that the K-theory class [̃σfull(Q)], where Q = D̂⊗1+1̂⊗V0, is represented
by the same morphism as [σm(D)] ⊗ π∗[V0]. So these two classes are equal. �

We shall need the Sobolev spaces Hm
W (M0) defined by W (more precisely by the

metric determined by W [2, 3]).

Hm
W (M0) := {u ∈ L2(M),Du ∈ L2(M0) for all D ∈ DiffmW (M0)}. (35)

The space Hm
W (M0) is the domain of any elliptic pseudodifferential operator in

Ψ m
W (M0), m > 0, acting on L2(M0). For m < 0 we use duality.

We now show that ind(Q+) can be computed using Theorem 3.9.

Theorem 4.7 Let Q = D + V0 be a Callias-type pseudodifferential operator with a
bounded potential V0 as in Lemmas 4.5 and 4.6. In particular, we assume that V0 is
a smooth potential on M that is invertible on ∂M . Then Q+ : Hm

W (M0) → L2(M0)

is Fredholm and

ind(Q+) = ch0 [̃σfull(Q
+)]π∗T d(TCM) [T M0]

= ch1[σfull(Q
+)]π∗

ΩT d(TCM)[Ω]
= ch0[σm(D+)] ch0 π∗[V0]π∗T d(TCM)[T M0].

Proof Let P := Q(1 + Q∗Q)−1/2, as before. Then P ∈ Ψ 0
W (M0;W ⊗ E) is fully

elliptic, by the previous lemma (Lemma 4.5). By Proposition 3.4, it follows that P
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is Fredholm on L2(M0) and hence Q is also Fredholm as an operator Hm
W (M0) →

L2(M0). Moreover, we now have

ind(Q+) = ind(P +)

= ch0 [̃σfull(P
+)]0T d(TCM0)[T M0]

= ch1[σfull(P
+)]π∗T d(TC)[Ω]

= ch0 [̃σfull(Q
+)]T d(TCM0)[T M0]

= ch1[σfull(Q
+)]T d(TC)[Ω]

= ch0[σm(D+)] ch0 π∗[V0]π∗T d(TCM)[T M0],
by Theorem 3.9 applied to P + and Lemma 4.6. �

We are mainly interested in the case when

Q = /D + V0 := /D̂⊗1 + 1̂⊗V0, (36)

where /D is a Dirac operator acting on the sections of some Clifford bundle W . As
before, we assume V0 is a potential (i.e., an odd, self-adjoint endomorphism of a
Z2-graded bundle E) that is invertible outside a compact subset of M0 such that V0
extends smoothly to M , to be invertible at ∂M . In particular, Q ∈ Ψ 1

W (M0;W ⊗ E).
To get an even more explicit formula for the index of the coupled Dirac operators

/D + V0, let us assume now that M has a spinc-structure, with canonical spinc-bundle
S and associated Dirac operator /DS . In particular, M is oriented, and we let [M] ∈
Hn(M,∂M) denote its fundamental class. Let W = Ŝ⊗F , with F a complex vector
bundle over M . Then /DF := /DS ⊗ F is the Dirac operator twisted with F .

Corollary 4.8 Let /DF be the Dirac operator twisted with F and Q = /DF +V0 be the
perturbed twisted Dirac operator associated with V0, where V0 is a bounded potential
invertible at ∂M on an asymptotically commutative spinc Lie manifold (M, W ). Then
Q+ is Fredholm and

ind(Q+) = ̂A(M) ch0([F ⊗ V0])[M].

Proof It is known classically that

p! ch0(σ ( /D+
F ))T d(TCM) = ̂A(M) ch0[F ],

where p! is integration over the fiber and ̂A(M) ∈ H ∗(M) is the ̂A-genus of M (see
[44]). The result then follows right away from Theorem 4.7. �

4.4 The Case of Unbounded Potentials

In this subsection, we are back to a general, even-dimensional, Lie manifold (M, V ).
Let

T := /D + V := /D̂⊗1 + 1̂⊗V, (37)
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where /D ∈ Diff1
V (M0;W) is a Dirac operator associated with V , and, as before, both

W and E are endowed with compatible connections (so in particular, /D̂⊗1 is well
defined). We will consider here unbounded potentials, in that we assume moreover
that, on M0,

V = f −1V0, f :=
∏

x
ak

k , (38)

where V0 is bounded and it extends to a smooth endomorphism of E over M that is
invertible on ∂M (at infinity) and xk are boundary defining functions of the hyper-
faces of M with ak ∈ N = {1,2, . . .}. This section contains the hard analysis needed
for our main result.

Our first goal is to show that T is essentially self-adjoint with domain a suitable
weighted Sobolev space. We want to prove a formula for the index of T + = ( /D +
V )+. Our strategy is to reduce this problem to a question on operators with bounded
potential by writing

T = f −1/2Qf −1/2, with Q := f 1/2 /Df 1/2 + V0. (39)

In fact, let W := f V and let g be the given metric compatible with V . Then g0 :=
f −2g is a metric compatible with W and hence

/DW := f 1/2 /Df 1/2

is the Dirac operator associated with the Lie manifold structure defined by W and
metric g0 [10, 11, 37, 44, 51]. Actually, to identify /DW with f 1/2 /Df 1/2, we need to
rescale the volume forms also, a fact that we ignore throughout, in order to simplify
the notation.

We then have that Q ∈ Diff1
W (M;W ⊗ E) is a Callias-type Dirac operator on

(M, W ) with a bounded, invertible potential. In particular, it is elliptic and essentially
self-adjoint on C∞

c (M0). As before, we still denote its self-adjoint closure by Q.
We now define weighted Sobolev spaces defined by W

Km
a (M0) := f aHm

W (M0), (40)

where a ∈ R and f = ∏

x
ak

k , as before. If E → M is a smooth vector bundle, then
the spaces Km

a (M0;E) are defined similarly. We remark that all the weighted Sobolev
spaces used below are with respect to W . (One can check that Km

a (M0;E; V ) =
Km

a−n/2(M0;E; W ).) We have the following elliptic regularity result from [2].

Theorem 4.9 Assume that Q0 ∈ Ψ k
W (M0;E) is elliptic and h ∈ Ks

a(M0;E) is such
that Q0h ∈ Km−k

a (M0;E). Then h ∈ Km
a (M0;E).

Applying this result to Q = f 1/2Tf 1/2 = /DW + V0, we obtain the following.

Lemma 4.10 Let h ∈ Ks
a(M0;E) be such that T h ∈ Km−1

a−1 (M0;E). Then h ∈
Km

a (M0;E).
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We shall also need the following lemma. Before, we remark that it follows from
the definitions that multiplication by f s defines an isomorphism f s : Km

a (M0;E0) →
Km

a+s(M0;E0), for any a, s. In particular, if P ∈ Ψ k
W (M0), with P : Hm

W (M0;E0) →
Hm−k

W (M0;E0), then f sPf −s : Km
s (M0;E0) → Km−k

s (M0;E0) is Fredholm if, and
only if, P is. Moreover, it is known that f sΨ k

W (M0;E0)f
−s = Ψ k

W (M0;E0) (Propo-
sition 4.3 [2]), so any such P is also defined as an operator, still denoted by P ,

P : Km
s (M0;E0) → Km−k

s (M0;E0),

for any s.

Lemma 4.11 Let Q0 ∈ Ψ k
W (M0;E0), k ∈ Z+, be fully elliptic. Then

Qa,b,c := f bQ0f
c : Km

a (M0;E0) → Km−k
a+b+c(M0;E0)

is Fredholm and its index is independent of m, a, b, and c, in the sense that

ind(Qa,b,c) = ind(Q0,0,0).

Proof Let us notice first that Q0,0,0 is Fredholm due to Proposition 3.8 (since we
assumed Q0 to be fully elliptic). It follows that f sQ0,0,0f

−s : Km
s (M0;E0) →

Km−k
s (M0;E0) is also Fredholm and ind(f sQ0,0,0f

−s) = ind(Q0,0,0). Note also that
Qa,b,c is indeed well defined, by the remarks above. Write Qa = Qa,0,0.

Next, we notice that f sPf −s − P = f s(Pf −s − f −sP ) ∈ f Ψ k−1
W (M0;E0) for

any P ∈ Ψ k
W (M0;E0) by the specific form of the Lie algebra of vector fields

W = f V . Moreover, f sQa−sf
−s − Qa : Km

a (M0;E0) → Km−k
a (M0;E0) is com-

pact, since f Km
a (M0;E0) → Km−k

a (M0;E0) is compact by [3]. With s = a, we con-
clude that Qa is Fredholm and also that Qa and f sQa−sf

−s have the same index for
any s.

If follows that the index of Qa : Km
a (M0;E0) → Km−k

a (M0;E0) is independent
of a. Using this with a replaced by a + c and using the fact that f s : Km

a (M0;E0) →
Km

a+s(M0;E0) is an isomorphism, we obtain the desired result. �

We shall use this lemma to prove the following crucial result.

Proposition 4.12 The operators

T ± iI = /D + V ± iI : K1
1(M0;W ⊗ E) → K0

0(M0;W ⊗ E) = L2(M0;W ⊗ E)

are invertible, and hence T is essentially self-adjoint with domain K1
1(M0;W ⊗ E),

where all the L2 and Sobolev spaces are associated with W .

Proof Let us denote by

Qa := f 1/2Tf 1/2 = /DW + V0 : K1/2
a (M0;W ⊗ E) → K−1/2

a (M0;W ⊗ E).

Then Q0 is fully elliptic (by Lemma 4.5 and the fact that /DW is the Dirac operator
associated with W = f V ), and hence it is Fredholm. It follows from Lemma 4.11
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that Qa is Fredholm for any a and that its index is independent of a. Since Q∗
0 = Q0,

we have ind(Qa) = 0 for all a. Hence

ind(Qa + λf ) = ind(Qa) = 0,

since multiplication by f is a compact operator K1/2
a (M0;W ⊗ E) → K−1/2

a (M0;
W ⊗ E) by [3]. Then

T ± iI = f −1/2(Qa ± if )f −1/2 : K1/2
1/2(M0;W ⊗ E) → K−1/2

1/2 (M0;W ⊗ E) (41)

is also Fredholm of index zero.
We recall that Km

a (M0;W ⊗ E) is the dual of K−m−a (M0;W ⊗ E), with the duality
pairing being obtained from the L2-inner product by continuous extension. Then the
“L2-estimate”

((T ± i)u,u) = (T u,u) ± i(u,u)

and (T u,u) ∈ R (since T is symmetric between the indicated spaces in Eq. (41))
show that T ± iI are injective for a = 0. Since they have index zero, they induce
isomorphisms

T ± iI : Km+1/2
a+1/2 (M0;W ⊗ E) → Km−1/2

a−1/2 (M0;W ⊗ E) (42)

for a = 0 and m = 0.
Now for an arbitrary a, the induced operator will still have index zero (by Lemma

4.11). Since for a ≥ 0 it will still be injective, it follows that it will be an isomorphism
for all a ≥ 0. Since for a < 0 the resulting map is dual to the one for −a, we obtain
that T ± iI of Eq. (42) are isomorphisms for all a and m = 0. We can extend this
isomorphism to any m ≥ 0 by elliptic regularity (Lemma 4.10) and this completes
the proof by taking a = m = 1/2. �

We shall extend T to a self-adjoint operator denoted by the same letter. We are
ready now to compute the index of

T + = ( /D + V )+ : K1
1(M0; (Ŵ⊗E)+) → K0

0(M0; (Ŵ⊗E)−),

where /D is the Dirac operator on the (arbitrary) even-dimensional Lie manifold
(M0, V ) and V = f −1V0 is an unbounded potential as in (38). Let π : T M → M

and πΩ : Ω = ∂AV → M be the natural projections and T d(TCM) be the Todd class
of the complexified tangent bundle of M .

Theorem 4.13 The operator T + = ( /D + V )+ is Fredholm and its index is given by

ind(T +) = ch0 [̃σfull(T
+)]π∗T d(TCM)[T M0]

= ch1[σfull(T
+)]π∗

ΩT d(TCM)[Ω]
= ch0[σ1( /D+)] ch0 π∗[V0]π∗T d(TCM)[T M0].
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Proof Let Q1 = T +f , where f = ∏

x
ak

k as above and is regarded as a multiplication
operator. Then Q1 = f −1/2Q+f 1/2, where

Q+ := f 1/2T +f 1/2 = ( /DW + V0)
+ : K1

0(M0; (Ŵ⊗E)+) → K0
0(M0; (Ŵ⊗E)−)

is fully elliptic (by Theorem 4.7 and the fact that /DW is the Dirac operator asso-
ciated with W := f V ). Then the operators Q1 and Q+ have the same index, by
Lemma 4.11. By ellipticity,

(1 + Q∗
1Q1)

1/2 : K1
0(M0; (Ŵ⊗E)+) → L2(M0; (Ŵ⊗E)+)

is an isomorphism since the domain of any elliptic operator P ∈ Ψ m
W (M;E) is

Hm
W (M0,E). Therefore, f (1+Q∗

1Q1)
−1/2 :L2(M0; (Ŵ⊗E)+)→K1

1(M0; (Ŵ⊗E)+)

is an isomorphism as well. Proposition 4.12 then yields that T + : K1
1(M0) → L2(M0)

has the same index as

T +f (1 + Q∗
1Q1)

−1/2 = Q1(1 + Q∗
1Q1)

−1/2 :
L2(M0; (Ŵ⊗E)+) → L2(M0; (Ŵ⊗E)−),

and, in particular, they are both Fredholm.
We have thus obtained that the operator T + = ( /D + V )+ is Fredholm and has the

same index as Q+ := f 1/2T +f 1/2. Moreover, the principal symbols of T + and Q+
define the same K-theory classes, by homotopy invariance, as do the symbols of /D

and /DW , and hence

ind(T +) = ind(Q+)

= ch0[σ(Q+)]π∗T d(TCM)[T M0]
= ch1[σ(Q+)]π∗

ΩT d(TCM)[Ω]
= ch0[σ(T +)]π∗T d(TCM)[T M0]
= ch1[σ(T +)]π∗

ΩT d(TCM)[Ω]
= ch0[σ( /D+)] ch0 π∗[V0]π∗T d(TCM)[T M0],

by Theorem 4.7 applied to Q+ and homotopy invariance. �

We also obtain the following more explicit calculation similar to Corollary 4.8.

Corollary 4.14 Let /DF be the Dirac operator twisted with F and T = /DF + V be
the perturbed twisted Dirac operator associated with V = f −1V0, where V0 is a
bounded potential on M invertible at ∂M for a spinc Lie manifold (M, V ). Then T +
is Fredholm and, using the notation of Corollary 4.14,

ind(T +) = ̂A(M) ch0([F ⊗ V0])[M] = ̂A(M) ch0([F ⊗ V ])[M].
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