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Abstract We prove several rearrangement theorems in the setting of a metric mea-
sure space. We adapt the general scheme of the argument to the Heisenberg group,
where we study Steiner and circular rearrangement for functions and sets having a
suitable symmetry.
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1 Introduction

Let X be a metric space with distance function d . We fix a Borel measure μ on X

that is nondegenerate, i.e.,

0 < μ
(
Br(x)

)
< ∞, for all x ∈ X and r > 0. (1.1)

Here, Br(x) = {y ∈ X : d(x, y) < r} is the ball centered at x with radius r . For any
Borel set B ⊂ X with positive and finite measure and for any function f ∈ L1(B,μ)

let ∫

B

f (x)dμ = 1

μ(B)

∫

B

f (x)dμ (1.2)

denote the averaged integral of f over B .
For 1 ≤ p < ∞ and f ∈ Lp(X,μ) we let

‖∇f ‖−
Lp(X,μ) = lim inf

r↓0

1

r

(∫

X

∫

Br(x)

∣∣f (x) − f (y)
∣∣pdμ(y)dμ(x)

)1/p

. (1.3)
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When X is R
n endowed with the Euclidean metric and μ = Ln is the Lebesgue mea-

sure, a function f ∈ Lp(Rn) satisfies the condition ‖∇f ‖−
Lp(Rn,Ln)

< ∞ if and only

if f ∈ W 1,p(Rn), 1 < p < ∞, the Sobolev space of functions with weak derivatives
in Lp(Rn). In this case, the limit inferior is a limit and there is a geometric constant
0 < Cn,p < ∞ depending on the dimension n ≥ 1 and p > 1 such that

lim
r↓0

1

r

(∫

Rn

∫

Br(x)

∣∣f (x) − f (y)
∣∣pdy dx

)1/p

= Cn,p

(∫

Rn

∣∣∇f (x)
∣∣pdx

)1/p

.

For these results, see [32] and [8]. When p = 1, the condition ‖∇f ‖−
L1(Rn,Ln)

< ∞
is equivalent to f ∈ BV (Rn), the space of functions with bounded variation in R

n.
Analogously, for any Borel set E ⊂ X with μ(E) < ∞ let us define the lower

perimeter of E in (X,μ)

P −(E;X,μ) = lim inf
r↓0

1

r

∫

X

∫

Br (x)

∣∣χE(x) − χE(y)
∣∣dμ(y)dμ(x), (1.4)

where χE(x) = 1 if x ∈ E and χE(x) = 0 if x ∈ X \ E is the characteristic function
of E. The condition P −(E;R

n, Ln) < ∞ holds if and only if the set E ⊂ R
n has

finite perimeter in the sense of De Giorgi. In this case, the limit inferior is a limit and
there exists a geometric constant 0 < Cn < ∞ depending on n ≥ 1 such that

lim
r↓0

1

r

∫

Rn

∫

Br(x)

∣∣χE(x) − χE(y)
∣∣dy dx = Cn|∂E|(Rn

)
,

where |∂E|(Rn) is the perimeter of E in R
n, i.e., the total variation of the character-

istic function of E. For this result, see [32] and [14]. In the sequel, we simplify the
notation and write P −(E) = P −(E;X,μ).

Integral differential quotients as in (1.3)–(1.4) are a possible definition for the
“Lp-length of the gradient” of functions and for the “area of the boundary” of sets
in metric measure spaces. Under weak assumptions, a function f in the Hajłasz
space M1,p(X), see [23], or in the Newtonian space N1,p(X), see [37], satisfies
‖∇f ‖−

Lp(X,μ) < ∞, also with limit superior in place of limit inferior. For a theory
of sets with finite perimeter in metric spaces we refer to [25].

Based on the previous observations, in this article we address the following prob-
lem. Construct transformations of functions f 
→ f � and of sets E 
→ E� such that

(i) The function f � and the set E� have some “symmetry”;
(ii) f and f � are μ-equimeasurable and μ(E�) = μ(E);

(iii) ‖∇f �‖−
Lp(X,μ) ≤ ‖∇f ‖−

Lp(X,μ) for all 1 ≤ p < ∞ and P −(E�) ≤ P −(E).

We study three situations of increasing complexity: the two-points rearrangement,
the Steiner rearrangement, and a kind of Schwarz-type rearrangement. In the last
two cases, we use the same notation with the superscript �. The existence of such
rearrangements depends on richness and structure of the isometries of X.

The two-points rearrangement, also known as polarization, relies upon the exis-
tence of an isometry � : X → X such that � ◦ � =Identity along with a partition
X = H− ∪H ∪H+ such that �H+ = H−. We call the 4-tuple R = {H−,H,H+, �}
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a reflection system of X (see Definition 2.1 and notice the key property (2.2)).
The two-points rearrangement of a function f : X → R is the function fR(x) =
max{f (x), f (�x)} for x ∈ H+ and fR(x) = min{f (x), f (�x)} for x ∈ H−. In
Sect. 2, we prove several inequalities relating f and fR. Inequalities as (2.12) in
Theorem 2.8 are called by Baernstein [2] “master inequalities”.

In Sect. 3, we introduce the notion of Steiner system in a metric space X. Roughly
speaking, a Steiner system is a pair (R, T ) where R = {H−,H,H+, �} is a reflection
system of X and T is a 1-parameter group of isometries such that X/T ⊂ H , i.e., the
quotient X/T is identified with a subset of H ; τ−1x = �τx for any x ∈ X/T and
τ ∈ T . For precise and complete statements, we refer to Definition 3.2.

If the measure μ is T -invariant, then it is disintegrable along the orbits Tx = {τx ∈
X : τ ∈ T }, x ∈ X/T (see Example 3.10). Namely, there exist measures μx on Tx and
μ̄ on X/T such that for any Borel set E ⊂ X we have

μ(E) =
∫

X/T

μx(E ∩ Tx)dμ̄(x).

It is then possible to rearrange the set E along the orbits Tx obtaining a new set E�

which is �-invariant and μ(E�) = μ(E). The construction carries over to functions,
yielding a transformation f 
→ f �. The procedure is described at the beginning of
Sect. 3 (see Definition 3.1). In Theorems 3.6 and 3.7, we prove Pólya-Szegő inequal-
ities of the type (iii) above. In the proof, we need several assumptions on the measure
μ and on the metric space X. In particular, X is assumed to be proper in order to have
a compactness theorem for functional spaces on X which is proved in Sect. 4.

The presentation of Sect. 3 is in fact more general as we consider Schwarz systems
(see Definition 3.3). The axioms (3.12) and (3.13) of a Schwarz system make possible
the “strict inequality argument” that is a crucial step in the theory of symmetrization
via polarization (see [3, p. 252] and Lemma 6.4 in [6]). This argument appears in
the proof of Theorem 3.6; see (3.32). Condition (3.12) requires the existence of a
reflection system separating, in a symmetric way, points in the same section. This
property automatically holds in Steiner systems. Condition (3.13) requires a certain
“metric coherence” between sections.

In the second part of the article, which has a more specific character, we prove
some rearrangement theorems in the Heisenberg group Hn = C

n × R. We refer to
Example 5.5 and Sect. 6 for the relevant definitions. Let Br(x) denote the Carnot–
Carathéodory ball in Hn centered at x ∈ Hn and having radius r > 0. The following
facts are proved in [32]. A function f ∈ Lp(Hn), 1 < p < ∞, belongs to the hori-
zontal Sobolev space W

1,p

H (Hn) if and only if

lim inf
r↓0

1

r

(∫

Hn

∫

Br(y)

∣∣f (x) − f (y)
∣∣pdx dy

)1/p

< ∞. (1.5)

In this case, the limit inferior is a limit and there exists a geometric constant 0 <

Kn,p < ∞ depending on p > 1 and n ≥ 1 such that

lim
r↓0

1

r

(∫

Hn

∫

Br(y)

∣∣f (x) − f (y)
∣∣pdx dy

)1/p

= Kn,p‖∇Hf ‖Lp(Hn), (1.6)
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where ∇Hf is the horizontal gradient of f .
Analogously, a Borel set E ⊂ Hn with finite measure has finite horizontal perime-

ter if and only if

lim inf
r↓0

1

r

∫

Hn

∫

Br(y)

∣∣χE(x) − χE(y)
∣∣dx dy < ∞. (1.7)

Moreover, if E has also finite Euclidean perimeter then we have

lim
r↓0

1

r

∫

Hn

∫

Br(y)

∣∣χE(x) − χE(y)
∣∣dx dy = Kn|∂HE|(Hn

)
, (1.8)

where 0 < Kn < ∞ is a geometric constant depending on n ≥ 1 and |∂HE|(Hn)

denotes the horizontal perimeter of E, i.e., the horizontal total variation of the char-
acteristic function of E.

We first study polarization in connection with formulae (1.6) and (1.8). In the
related master inequalities there is an error produced by the lack in Hn of reflection
systems satisfying (2.2). This error can be controlled assuming a suitable symmetry
(see the proof of Theorem 6.1). Then we prove inequalities for the Steiner and circular
rearrangement following the abstract scheme of Sect. 3; see Theorems 6.3 and 6.4.
We illustrate here the case of sets. Let E� denote the Steiner rearrangement of E in
the t-coordinate of Hn, i.e.,

E� = {
(z, t) ∈ C

n × R : 2|t | < L1(Ez)
}
, (1.9)

where Ez = {t ∈ R : (z, t) ∈ E}, z ∈ C
n. Let σ : Hn → Hn be the mapping σ(z, t) =

(z̄, t), where z̄ = x − iy is the complex conjugate of z = x + iy in C
n. A set E is

σ -symmetric if E = σE. In Sect. 6, Theorem 6.4, we prove that for a σ -symmetric
set E ⊂ Hn of finite measure and finite horizontal perimeter, it holds that

∣∣∂HE�
∣∣(Hn

) ≤ |∂HE|(Hn
)
.

The theorem fails if we drop the σ -symmetry (see Example 6.5). We also prove some
results on the circular rearrangement in a C component of Hn = C

n × R (see Theo-
rem 6.6).

These theorems seem to be the first results on symmetrization in the Heisenberg
group. The topic has a particular interest in connection with sharp functional and
geometric inequalities, such as Pansu’s conjecture on the Heisenberg isoperimetric
problem (see [29] and [33]). A theorem concerning a kind of vertical rearrangement
in Hn is also proved by Serra Cassano and Vittone in [34]. The problem of rear-
ranging sets and functions in the horizontal slices of Hn is more difficult. So far, the
only known result concerns the monotonicity of horizontal perimeter for the radial
nondecreasing Steiner rearrangement of sets of Hn which already have a cylindrical
symmetry (see [28]).

Let us briefly comment on the relevant literature. The principle underlying po-
larization can be envisaged in Chap. X of Inequalities by Hardy, Littlewood, and
Pólya [24]. The method was subsequently used by Wolontis [39, p. 598] to estimate a
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certain conformal invariant in the complex plane under circular symmetrization. Mo-
tivated by the study of subharmonicity, Baernstein and Taylor [3] used polarization in
connection with spherical rearrangement. The same ideas were employed by Beck-
ner [2] to establish several sharp functional inequalities on the sphere. Polarization
and symmetrization are also systematically studied by Dubinin [17] in the abstract
theory of capacity. We are particularly indebted to the articles [3] and [2], where the
authors develop a unified approach to symmetrization in space forms. We axiomatize
this approach in the setting of a metric measure space and we develop these ideas to
prove the results in the Heisenberg group.

Steiner rearrangement was introduced in [38] to prove the isoperimetric inequality
in the plane. Let E� be the Steiner rearrangement of E ⊂ R

n w.r.t. some hyperplane.
The inequality |∂E�|(Rn) ≤ |∂E|(Rn) for sets with finite perimeter was proved by
De Giorgi in [15] in his work on the isoperimetric inequality (see [12]). In [6, The-
orem 6.1], Brock and Solynin prove that the Steiner symmetrization in R

n can be
obtained as the limit in the natural topology of a suitable sequence of polarizations.
In fact, this sequence can be chosen in a “universal” way [35]. Steiner rearrangement
also fits hypersurface measures as Minkowski content (see [22] and [11, Chap. III.2]).
Recent progress on the isoperimetric inequality deals with its quantitative version
[19] and with the use of optimal transportation techniques to prove sharp and quanti-
tative inequalities (see, e.g., [20]).

The Schwarz rearrangement was used in the proof [36] of the isoperimetric in-
equality in R

3 and seems to originate in Weierstrass’s lectures. The general idea con-
sists in slicing the space in “parallel” sections and in rearranging sets and functions
section by section. This is the model for our notion of Schwarz system in Defini-
tion 3.3.

In this research, we do not address several important issues in the theory of rear-
rangement: the study of the equality case ([7] and [13]); the continuity problem in the
Sobolev setting (see [1] and [10]); rearrangement inequalities for multiple integrals
(see [9]); the connection with partial differential equations ([4, 31], and [30]).

A short overview of the paper is in order. In Sect. 2 we study polarization. Sect. 3
is devoted to Steiner and Schwarz rearrangement in the abstract setting. In Sect. 4
we prove a compactness theorem. Section 5 deals with examples, including finite-
dimensional Banach spaces and the hyperbolic space. In Sect. 6, we prove the rear-
rangement theorems in the Heisenberg group.

2 Two-Points Rearrangement in Metric Spaces

Let X be a metric space with distance function d . We say that X = H− ∪ H ∪ H+ is
a partition of X, if H−,H,H+ ⊂ X are pairwise disjoint subsets of X.

Definition 2.1 (Reflection system) A reflection system R = {H−,H,H+, �} of X

is a partition X = H− ∪ H ∪ H+, with H− and H+ open, together with a mapping
� : X → X such that

(i) � is an isometry of X such that �2 = Id, and �H+ = H−; (2.1)

(ii) for all x, y ∈ H ∪ H+ we have d(x, y) ≤ d(x,�y). (2.2)
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Here and henceforth, we write for brevity �x = �(x) and �E = �(E) for sets
E ⊂ X.

Example 2.2 Let X be a length space, X = H− ∪ H ∪ H+ be a partition of X such
that H = ∂H− = ∂H+, and let � : X → X be an isometry such that �2 = Id and
�H+ = H− and �|H =identity. Then condition (2.2) holds true.

In fact, let γ be a rectifiable curve joining x ∈ H+ to �y ∈ H−. The curve in-
tersects H at some point z ∈ H . We can split γ = γxz + γzy , where the sum is a
concatenation of curves, γxz is the segment joining x to z and γzy is the segment
joining z to �y. The curve γxz + �γzy is continuous, because � is the identity on
H , joins x to y, and has the same length as γ , because � is an isometry. The claim
d(x, y) ≤ d(x,�y) follows from the fact that X is a length space.

Example 2.3 Let (X,dX) be a metric space with a reflection system R and let (Y, dY )

be any metric space. On the product Z = X × Y we have the product metric dZ =√
d2
X + d2

Y . The reflection system R of X may be extended to a reflection system of
Z in the natural way: the reflection � is extended as the identity on the Y component;
H is extended to H × Y , etc.

Next, we introduce the notion of two-points rearrangement for functions and sets.

Definition 2.4 (Two-points rearrangement) Let R = {H−,H,H+, �} be a reflection
system of X and let f : X → R be a function. The function fR : X → R defined by

fR(x) =

⎧
⎪⎨

⎪⎩

min{f (x), f (�x)} if x ∈ H−,

f (x) if x ∈ H,

max{f (x), f (�x)} if x ∈ H+,

(2.3)

is called the two-points rearrangement of f with respect to R.

Example 2.5 The Lipschitz constant of a function f : X → R is

Lip(f ) = sup
x,y∈X,x �=y

|f (x) − f (y)|
d(x, y)

∈ [0,∞].

We claim that for any reflection system R of X we have

Lip(fR) ≤ Lip(f ). (2.4)

Indeed, let x, y ∈ X be such that d(x, y) > 0. We claim that

|fR(x) − fR(y)|
d(x, y)

≤ Lip(f ).

We have three cases:

(1) fR(x) = f (x) and fR(y) = f (y);
(2) fR(x) �= f (x) and fR(y) �= f (y);
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(3) fR(x) = f (x) and fR(y) �= f (y), or vice versa.

In the first case, the claim is clear. In the second one, we have:

|fR(x) − fR(y)|
d(x, y)

= |f (�x) − f (�y)|
d(x, y)

= |f (�x) − f (�y)|
d(�x,�y)

≤ Lip(f ), (2.5)

because � is an isometry. Consider the last case. We have three sub-cases:

(3a) x, y ∈ H+, or x, y ∈ H−;
(3b) x ∈ H+ and y ∈ H−, or vice versa;
(3c) x ∈ H or y ∈ H .

Assume that x, y ∈ H+. Then we have:

f (x) = fR(x) = max
{
f (x), f (�x)

}
, i.e., f (x) ≥ f (�x),

f (y) �= fR(y) = max
{
f (y), f (�y)

}
, i.e., f (y) < f (�y).

Thus we obtain

fR(x) − fR(y) = f (x) − f (�y) < f (x) − f (y) ≤ ∣∣f (x) − f (y)
∣∣ ≤ Lip(f )d(x, y),

fR(y) − fR(x) = f (�y) − f (x) ≤ f (�y) − f (�x) ≤ Lip(f )d(�x,�y)

= Lip(f )d(x, y),

and the claim is proved.
Assume that x ∈ H+ and y ∈ H−. Because fR(y) �= f (y) then fR(y) = f (�y)

and letting z = �y ∈ H+ we get, by (2.1) and (2.2),

|fR(x) − fR(y)|
d(x, y)

= |f (x) − f (�y)|
d(x, y)

= |f (x) − f (z)|
d(x,�z)

≤ |f (x) − f (z)|
d(x, z)

≤ Lip(f ).

The case (3c) is analogous and we leave the details to the reader.

The definition of two-points rearrangement for sets can be obtained by specializ-
ing (2.3) to the case of characteristic functions. Namely, for any E ⊂ X we can define
the set ER via the identity χER = (χE)R. This is equivalent with the following def-
inition.

Definition 2.6 Let R be a reflection system of X and let E ⊂ X be a set. The set

ER = (
E ∩ �E ∩ H−) ∪ (E ∩ H) ∪ (

(E ∪ �E) ∩ H+)
(2.6)

is called the two-points rearrangement of E with respect to R.

We are interested in the monotonicity of quantities as in (1.3) and (1.4) under
rearrangement. To this end, let φ : [0,+∞) → [0,+∞) be a function such that

(a) φ is strictly increasing; (2.7)

(b) φ is convex. (2.8)

In our case, we have φ(t) = tp with p ≥ 1. The basic inequality we need concerning
φ is described in the following lemma.



1680 R. Monti

Lemma 2.7 Let φ : [0,∞) → [0,∞) be a function satisfying (2.7) and (2.8). Then
for all real numbers α,β, γ, δ ∈ R such that γ < α and δ < β , it holds that

φ
(|α − β|) + φ

(|γ − δ|) ≤ φ
(|α − δ|) + φ

(|γ − β|). (2.9)

If, in addition, φ is strictly convex then the inequality in (2.9) is strict.

The proof of this lemma is an elementary exercise. When φ(t) = t2, inequality
(2.9) reduces to (α − γ )(β − δ) ≥ 0.

Let μ be a Borel measure on X and let B(X) denote the set of all Borel functions
from X to R. For any r > 0 let Qr : B(X) × B(X) → [0,∞] be the functional

Qr(f,g) =
∫

X

∫

Br(x)

φ
(∣∣f (x) − g(y)

∣
∣)dμ(y)dμ(x). (2.10)

We omit reference to φ in our notation Qr . When φ(t) = tp , 1 ≤ p < ∞, we let

Qr,p(f, g) =
∫

X

∫

Br(x)

∣∣f (x) − g(y)
∣∣pdμ(y)dμ(x). (2.11)

We also let Qr,p(f ) = Qr,p(f,f ).
In the sequel, � : X → X is an isometry such that �2 = Id. We say that a Borel

measure μ on X is �-invariant if �μ = μ, i.e., μ(�B) = μ(B) for any Borel set
B ⊂ X.

Theorem 2.8 Let R = {H−,H,H+, �} be a reflection system of X, let μ be a non-
degenerate, �-invariant Borel measure such that μ(H) = 0, and let φ satisfy (2.7)
and (2.8). For any r > 0 and for all functions f,g ∈ B(X) we have

Qr(fR, gR) ≤ Qr(f,g). (2.12)

Moreover, if φ is strictly convex,

μ
{
x ∈ H+ : f (x) > f (�x)

}
> 0, and μ

{
y ∈ H+ : g(y) < g(�y)

}
> 0, (2.13)

then the inequality (2.12) is strict, as soon as Qr(f,g) < ∞.

Proof Let χr : X × X → R be the function

χr(x, y) =
{

1
μ(Br (x))

if d(x, y) < r,

0 otherwise.

As μ is �-invariant, we have μ(Br(�x)) = μ(�Br(x)) = μ(Br(x)). Then, χr has the
following properties:
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χr(�x,�y) = χr(x, y) and χr(�x, y) = χr(x,�y). (2.14)

We are using here the fact that �2 = Id. We then have

Qr(f,g) =
∫

X×X

φ
(∣∣f (x) − g(y)

∣∣)χr(x, y)dμ ⊗ μ,

where we may replace the integration domain X × X with

(X \ H) × (X \ H) = H+ × H+ ∪ H+ × H− ∪ H− × H+ ∪ H− × H−.

In fact, we are assuming μ(H) = 0. By (2.14) and �μ = μ, we obtain

∫

H−×H−
φ
(∣∣f (x) − g(y)

∣∣)χr(x, y)dμ ⊗ μ

=
∫

H+×H+
φ
(∣∣f (�x) − g(�y)

∣∣)χr(x, y)dμ ⊗ μ,

∫

H+×H−
φ
(∣∣f (x) − g(y)

∣∣)χr(x, y)dμ ⊗ μ

=
∫

H+×H+
φ
(∣∣f (x) − g(�y)

∣∣)χr(x,�y)dμ ⊗ μ,

∫

H−×H+
φ
(∣∣f (x) − g(y)

∣∣)χr(x, y)dμ ⊗ μ

=
∫

H+×H+
φ
(∣∣f (�x) − g(y)

∣∣)χr(x,�y)dμ ⊗ μ.

Summing up, we obtain

Qr(f,g) =
∫ ∫

H+×H+
Q(f,g;x, y) dμ ⊗ μ,

where we let

Q(f,g;x, y) = {
φ
(∣∣f (x) − g(y)

∣∣) + φ
(∣∣f (�x) − g(�y)

∣∣)}χr(x, y)

+ {
φ
(∣∣f (x) − g(�y)

∣∣) + φ
(∣∣f (�x) − g(y)

∣∣)}χr(x,�y).

We claim that for all x, y ∈ H+ we have

Q(fR, gR;x, y) ≤ Q(f,g;x, y). (2.15)

By (2.2), there are only three cases:

(1) d(x, y) ≥ r ;
(2) d(x, y) ≤ d(x,�y) < r ;
(3) d(x, y) < r ≤ d(x,�y).
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In the first case, it also holds that d(x,�y) ≥ r , and thus Q(f,g;x, y) =
Q(fR, gR;x, y) = 0. In the second case, we have

Q(f,g;x, y) = 1

μ(Br(x))

{
φ
(∣∣f (x) − g(y)

∣∣) + φ
(∣∣f (�x) − g(�y)

∣∣)

+ φ
(∣∣f (�x) − g(y)

∣∣) + φ
(∣∣f (x) − g(�y)

∣∣)}

= Q(fR, gR;x, y).

In the third and last case, inequality (2.15) is equivalent to

φ
(∣∣fR(x) − gR(y)

∣∣) + φ
(∣∣fR(�x) − gR(�y)

∣∣)

≤ φ
(∣∣f (x) − g(y)

∣∣) + φ
(∣∣f (�x) − g(�y)

∣∣). (2.16)

If f (x) = f (�x) or g(y) = g(�y), inequality (2.16) holds as equality. Equality holds
in (2.16) also in the following two cases: (a) fR(x) = f (x) and gR(y) = g(y);
(b) fR(x) = f (�x) and gR(y) = g(�y).

We are left with the following two cases:

f (x) > f (�x) and g(y) < g(�y); or (2.17)

f (x) < f (�x) and g(y) > g(�y). (2.18)

Possibly interchanging f and g, it is enough to consider (2.17). In this case, inequality
(2.16) reduces to

φ
(|α − β|) + φ

(|γ − δ|) ≤ φ
(|α − δ|) + φ

(|γ − β|), (2.19)

with α = f (x), β = g(�y), γ = f (�x), and δ = g(y). By (2.17) we have γ < α and
δ < β , and inequality (2.19) holds by Lemma 2.7.

If φ is strictly convex, then the inequality (2.19) is strict. If, in addition, (2.13)
holds and Qr(f,g) < ∞, on integrating (2.15) we get a strict inequality. �

Remark 2.9 The condition (2.2) is used in the distinction of cases after (2.15). If we
drop (2.2) we have a fourth case: d(x, y) ≥ r and d(x,�y) < r . This produces an
error term in the inequality (2.12), that no longer holds true. In some situations, it is
possible to control this error term. See the proof of Theorem 6.1.

Remark 2.10 When φ(t) = t2, there is a precise version of inequality (2.12). Let

Σ+
f = {

x ∈ H+ : f (x) > f (�x)
}

and Σ−
f = {

x ∈ H+ : f (x) < f (�x)
}

(2.20)

denote the sets defined via the inequalities appearing in (2.17)–(2.18).
In the proof of Theorem 2.8, inequality (2.15) is an equality possibly but for the

case discussed in (2.17)–(2.19). When φ(t) = t2, we may replace inequality (2.19)
with the identity

(α − β)2 + (γ − δ)2 = (α − δ)2 + (β − γ )2 + 2(α − γ )(δ − β).
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Now, on integrating the resulting identity, we obtain

Qr,2(fR, gR) = Qr,2(f,p)

+ 2
∫ ∫

Σ+
f ×Σ−

g ∪Σ−
f ×Σ+

g ,d(x,�y)≥r

(
f (x) − f (�x)

)(
g(y) − g(�y)

)
χr(x, y)dμ ⊗ μ.

(2.21)

The following proposition is a simplified version of Theorem 2.8. Here, the map-
ping � does not need to be an isometry. The characterization of the strict inequality
plays an important role in the proof of Theorem 3.6.

Theorem 2.11 Let X = H− ∪ H ∪ H+ be a Borel partition of the metric space X,
let � : X → X be a Borel map such that �2 = Id and �H+ = H−, and let μ be
a �-invariant Borel measure on X such that μ(H) = 0. Finally, let φ satisfy (2.7)
and (2.8). Then for all f,g ∈ B(X) we have

∫

X

φ
(∣∣fR(x) − gR(x)

∣∣)dμ ≤
∫

X

φ
(∣∣f (x) − g(x)

∣∣)dμ. (2.22)

Moreover, if φ is strictly convex and

μ
{
x ∈ H+ : f (x) > f (�x) and g(x) < g(�x)

}
> 0, (2.23)

then the inequality (2.22) is strict, as soon as the right-hand side of (2.22) is finite.

Proof Using μ(H) = 0 and the �-invariance of μ, we obtain
∫

X

φ
(∣∣f (x) − g(x)

∣∣)dμ =
∫

H+

{
φ
(∣∣f (x) − g(x)

∣∣) + φ
(∣∣f (�x) − g(�x)

∣∣)}dμ.

It is then sufficient to establish the pointwise inequality for x ∈ H+

φ
(∣∣fR(x) − gR(x)

∣∣) + φ
(∣∣fR(�x) − gR(�x)

∣∣)

≤ φ
(∣∣f (x) − g(x)

∣∣) + φ
(∣∣f (�x) − g(�x)

∣∣).

This is inequality (2.16), and the argument is concluded as in the final part of the
proof of Theorem 2.8. In fact, if f (x) > f (�x) and g(x) < g(�x)—or vice versa—
the inequality is strict, provided that φ is strictly convex. �

Theorem 2.8 has the following corollaries.

Theorem 2.12 Let R = {H−,H,H+, �} be a reflection system of X, let μ be a
non-degenerate, �-invariant Borel measure such that μ(H) = 0. For any function
f ∈ B(X) and for any 1 ≤ p < ∞, it holds that

‖fR‖Lp(X,μ) = ‖f ‖Lp(X,μ) and ‖∇fR‖−
Lp(X,μ) ≤ ‖∇f ‖−

Lp(X,μ). (2.24)
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Moreover, if we have ‖∇fR‖L2(X,μ) = ‖∇f ‖L2(X,μ) < ∞ then

lim
r↓0

1

r2

∫

Σ+
f

∫

Σ−
f ∩Br(x)\Br (�x)

(f (x) − f (�x))(f (y) − f (�y))

μ(Br(x))
dμ(y)dμ(x) = 0,

(2.25)
where Σ+

f and Σ−
f are defined in (2.20).

Proof The equality of the Lp norms is a consequence of the �-invariance of μ. By
Theorem 2.8, we have r−pQr,p(fR) ≤ r−pQr,p(f ) for any r > 0. On taking the
liminf as r ↓ 0, we get the inequality in (2.24).

Assume that both ‖∇fR‖L2(X,μ) and ‖∇f ‖L2(X,μ) do exist (the limits exist), are
equal and finite. Our claim (2.25) follows from (2.21) with f = g. �

For the perimeter we have the following theorem.

Theorem 2.13 Let R = {H−,H,H+, �} be a reflection system of X, let μ be a non-
degenerate, �-invariant Borel measure such that μ(H) = 0. For any Borel set E ⊂ X

we have

μ(ER) = μ(E) and P −(ER) ≤ P −(E). (2.26)

Moreover, if P(ER) = P(E) < ∞, then

lim
r↓0

1

r

∫

H+∩E\�E

μ((�E \ E) ∩ H+ ∩ Br(x) \ Br(�x))

μ(Br(x))
dμ(x) = 0,

lim
r↓0

1

r

∫

H+∩�E\E
μ((E \ �E) ∩ H+ ∩ Br(x) \ Br(�x))

μ(Br(x))
dμ(x) = 0.

(2.27)

Proof We shortly discuss the equality case. When f = χE , we have

Σ+
f = H+ ∩ E \ �E and Σ−

f = H+ ∩ �E \ E.

Because of the identity |χE(x) − χE(y)| = |χE(x) − χE(y)|2, we may use (2.21)
with f = g = χE . The claim (2.27) follows. �

We may try to extend the definition of reflection system taking into account some
symmetry of the metric space, of the functions and sets (see Example 5.5 for a moti-
vation).

We say that {H−,H,H+, �, σ } is a reflection system with symmetry σ of X, if
X = H− ∪ H ∪ H+ is a partition, with H− and H+ open, and �,σ : X → X are
mappings such that

(i) � is an isometry such that �2 = Id and �H+ = H−; (2.28)

(ii) � and σ commute, �σ = σ�; (2.29)

(iii) H+ is σ -invariant, i.e., σH+ = H+; (2.30)

(iv) for all x, y ∈ H ∪ H+ we have d(x, y) ≤ d(x,�σy). (2.31)
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Notice, however, that the condition (2.31) fails to hold in the situations discussed in
Example 5.5.

Theorem 2.8 holds also in the setting of a reflection system with a symmetry σ ,
provided that the functions and sets involved are σ -symmetric. The theory developed
in Sect. 3 can be extended to this framework, as well.

3 Steiner and Schwarz Type Rearrangements

Let S(X,μ) denote the set of all Borel functions f : X → R such that f ≥ 0 and
μ{f > t} < ∞ for any t > 0. Here and henceforth, let {f > t} = {x ∈ X : f (x) > t}
denote the t-superlevel set of f . The function ψf : (0,∞) → [0,∞), ψf (t) = μ{f >

t}, t > 0, is called the distribution function of f . A function g ∈ S(X,μ) is said to be
a rearrangement of f ∈ S(X,μ), and we write g ∼ f , if ψg = ψf . Clearly, ∼ is an
equivalence relation on S(X,μ). The distribution function ψf is non-increasing and
lower semicontinuous. Indeed, for any s > 0 we have

lim
t↓s

ψf (t) = lim
t↓s

μ{f > t} = μ

(⋃

t>s

{f > t}
)

= μ{f > s} = ψf (s). (3.1)

For any f ∈ S(X,μ) we have the representation formula

f (x) =
∫ ∞

0
χ{f >t}(x) dt, x ∈ X, (3.2)

where χA denotes the characteristic function of A ⊂ X. A nonnegative function f ∈
Lp(X,μ) is in S(X,μ) and, for any 1 ≤ p < ∞, we have the identity

∫

X

f (x)pdμ =
∫ ∞

0
μ

{
f > t1/p

}
dt. (3.3)

Moreover, if g ∈ S(X,μ) is a rearrangement of f , g ∼ f , then g ∈ Lp(X,μ) and
‖g‖Lp(X,μ) = ‖f ‖Lp(X,μ), by (3.3).

Let π : X → X be a projection, i.e., π is the identity on π(X). The relation x ∼ y

if and only if π(x) = π(y) is an equivalence relation on X that we denote by Γ .
The quotient X/Γ can be identified with π(X) and the equivalence class of x ∈
X/Γ is denoted by Γx = π−1(x). We call Γ a foliation of X. In fact, we have X =⋃

x∈X/Γ Γx . For a set E ⊂ X, let

Ex = E ∩ Γx

denote the section of E with Γx .
We say that the Borel measure μ is disintegrable along Γ if there are Borel mea-

sures μx on Γx , x ∈ X/Γ , and a Borel measure μ̄ on X/Γ such that for any Borel
set E ⊂ X we have:

(i) The function x 
→ μx(Ex) is Borel measurable from X/Γ to [0,∞]; (3.4)

(ii) We have μ(E) =
∫

X/Γ

μx(Ex)dμ̄(x). (3.5)
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The existence of a disintegration satisfying (3.4)–(3.5) holds under general as-
sumptions. It is provided by some Fubini–Tonelli type theorem—as in R

n—or by the
disintegration theorem of measures. We discuss this issue at the end of the section.

Let μ be disintegrable along Γ . With abuse of notation, for any x ∈ X/Γ we
define the function μx(s) = μx(Bs(x)∩Γx) of the real variable s ≥ 0. In general, we
have s ∈ [0, s0(x)), where s0(x) > 0 is the minimum number, possibly +∞, such that
the sets Br(x)∩Γx are stable for r > s0(x). We say that the triple (Γ, (μx)x∈X/Γ , μ̄)

is a rearrangement system of (X,μ) if the function s 
→ μx(s) is strictly increasing
and continuous on [0, s0(x)) for μ̄-a.e. x ∈ X/Γ .

Fix a rearrangement system of (X,μ) and let E ⊂ X be a Borel set such that
μ(E) < ∞. Then we have μx(Ex) < ∞ for μ̄-a.e. x ∈ X/Γ . We let E�

x = Bs(x) ∩
Γx , where s ∈ [0, s0(x)] is such that μx(Bs(x) ∩ Γx) = μx(Ex). Such an s exists and
is unique for μ̄-a.e. x ∈ X/Γ . We possibly let E�

x = ∅ for a μ̄-null set of x ∈ X/Γ .

Definition 3.1 (Rearrangement) Let (Γ, (μx)x∈X/Γ , μ̄) be a rearrangement system
of (X,μ).

(i) For any Borel set E ⊂ X such that μ(E) < ∞ we let

E� =
⋃

x∈X/Γ

E�
x. (3.6)

We call E� the rearrangement of E in (Γ, (μx)x∈X/Γ , μ̄).
(ii) For any f ∈ S(X,μ), the function f : X → [0,∞]

f �(x) =
∫ ∞

0
χ{f >t}� (x) dt, x ∈ X, (3.7)

is called the rearrangement of f in (Γ, (μx)x∈X/Γ , μ̄).

Finally, we say that the rearrangement system is regular if E� is a Borel set for any
Borel set E ⊂ X.

The problem of determining whether the rearrangement system is regular or not is
in general rather subtle. In most relevant examples, the system is indeed regular.

Let R = {H−,H,H+, �} be a reflection system of X and let T be a 1-parameter
group of isometries of X. We fix on T the natural topology. Let π : X → X/T be
the natural projection. As soon as we identify X/T with a subset of X, we have a
foliation X = ⋃

x∈X/T Tx , where Tx = {τx ∈ X : τ ∈ T } is the orbit of x.

Definition 3.2 (Steiner system) We say that the pair (R, T ) is a Steiner system of the
metric space X if we have:

(i) X/T ⊂ H and π : X → X/T is continuous; (3.8)

(ii) τ−1x = �τx for any x ∈ X/T and τ ∈ T ; (3.9)

(iii) for x, y ∈ X/T and z,w ∈ Ty , d(x, z) ≤ d(x,w) implies d(y, z) ≤ d(y,w).
(3.10)
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By X/T ⊂ H we mean that the quotient is identified with a subset of H . Condi-
tion (3.9) with τ = Id implies �x = x for all x ∈ X/T . The reflection system R can
be translated along T . Namely, for all x ∈ X/T and z,w ∈ Tx there exists a reflec-
tion system R̄ = {H̄−, H̄ , H̄+, �̄} of X such that �̄z = w and �̄ : Ty → Ty for any
y ∈ X/T . See Example 3.4 below. Motivated by this fact, we propose the following
general definition.

Definition 3.3 (Schwarz system) We say that a foliation Γ of the metric space X

induced by the projection π : X → X is a Schwarz system if we have:

(i) π : X → π(X) = X/Γ is continuous; (3.11)

(ii) for all x ∈ X/Γ and z,w ∈ Γx there exists a reflection system

R = {
H−,H,H+, �

}
such that �z = w and � : Γy → Γy for any y ∈ X/Γ ;

(3.12)

(iii) for x, y ∈ X/Γ and z,w ∈ Γy , d(x, z) ≤ d(x,w) implies d(y, z) ≤ d(y,w).
(3.13)

We can polarize the function f � constructed starting from the foliation Γ using
the reflection system given by (3.12). Condition (3.13) guarantees then the stability
f �

R = f � (see the final part of the proof of Theorem 3.6). When X/Γ consists of one
element, condition (3.13) is trivially satisfied. The Steiner system is a special case of
Schwarz system. In the following example, we comment further on (3.12).

Example 3.4 Let (R, T ) be a Steiner system and let G be a group of isometries of X.
We denote by Γ the group generated by T and G, and we identify the quotient X/Γ

with a subset of X and in fact of H , the “reflection hyperplane” of R. Assume that
γ x = x for any γ ∈ G and x ∈ X/Γ and that for any x ∈ X/Γ the orbits have the
following representation:

Γx = {γ τx ∈ X : Γ ∈ G,τ ∈ T }. (3.14)

We claim that (3.12) holds true.
In fact, if z+, z− ∈ Γx , there are γ−, γ+ ∈ G and τ−, τ+ ∈ T such that z− =

γ−τ−x and z+ = γ+τ+x. Moreover, there exist τ ∈ T and γ ∈ G such that γ τx =
τ−1− γ −1− γ+τ+x.

Let
√

τ ∈ T be such that τ = √
τ
√

τ . Such a
√

τ exists, because T is a 1-parameter
group. Let us define ι = γ−τ−γ

√
τ ∈ Γ , and let

H̄ = ιH, H̄− = ιH−, H̄+ = ιH+, �̄ = ι�ι−1.

We claim that �̄z+ = z−. Indeed, by (3.9) we have

�̄z+ = γ−τ−γ
√

τ�
√

τx = γ−τ−γ
√

τ
√

τ
−1

x = γ−τ−γ x = γ−τ−x = z−.
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Finally, we prove that R̄ = {H̄−, H̄ , H̄+, �̄} is a reflection system of X. Clearly,
�̄ is an isometry, �̄2 = Id and �̄H̄+ = H̄−. Moreover, for x, y ∈ H̄+ we have

d(x, �̄y) = d
(
ι−1x,�ι−1y

) ≥ d
(
ι−1x, ι−1y

) = d(x, y).

The axioms (2.1)–(2.2) are satisfied. Finally, the reflection �̄ preserves the orbits
because it is the composition of orbits preserving isometries.

We study some qualitative properties of the rearrangement f �.

Lemma 3.5 Let (Γ, (μx)x∈X/Γ , μ̄) be a regular rearrangement system of (X,μ).
For any f ∈ S(X,μ), the rearrangement f � of f enjoys the following properties:

(i)
{
f � > t

} = {f > t}�, t > 0; (3.15)

(ii) μx

{
f � > t

}
x

= μx{f > t}x for μ̄-a.e. x ∈ X/Γ and, in particular, f � ∼ f ;
(3.16)

(iii) f �(y) ≤ f �(z) if y, z ∈ Γx for some x ∈ X/Γ and d(y, x) ≥ d(z, x); (3.17)

(iv) f �(y) = f �(z) if y, z ∈ Γx for some x ∈ X/Γ and d(y, x) = d(z, x). (3.18)

Proof (i) We prove that {f � > t} ⊂ {f > t}� for any t > 0. Notice that the family of
sets ({f > t}�)t>0 is non-increasing in t . For any x ∈ {f � > t} we have

t < f �(x) =
∫ ∞

0
χ{f >s}� (x) ds,

and thus x ∈ {f > s}� for 0 ≤ s ≤ t and the claim follows.
We preliminarily claim that

{f > t}� =
⋃

s>t

{f > s}�. (3.19)

One inclusion is a consequence of the elementary implications

s > t ⇒ {f > s} ⊂ {f > t} ⇒ {f > s}� ⊂ {f > t}�.
We check the converse inclusion ⊂ in (3.19). If z ∈ {f > t}� then for some x ∈ X/Γ

and r > 0 we have z ∈ {f > t}� ∩ Γx = Br(x) ∩ Γx . Thus there exists 0 < r̄ < r such
that z ∈ Br̄(x) ∩ Γx . For the function r 
→ μx(Br(x) ∩ Γx) is strictly increasing for
r > 0 and, as in (3.1), it holds that

lim
s↓t

μx

({f > s}� ∩ Γx

) = lim
s↓t

μx

({f > s} ∩ Γx

)

= μx

({f > t} ∩ Γx

) = μx

({f > t}� ∩ Γx

)
, (3.20)

we deduce that there exists s > t such that Br̄(x)∩Γx ⊂ {f > s}� ∩Γx and the claim
(3.19) follows.
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We prove the converse inclusion {f > t}� ⊂ {f � > t}. If z ∈ {f > t}� then z ∈
{f > s}� for some s > t and thus

f �(z) =
∫ ∞

0
χ{f >s}(z) ds ≥ s > t.

Statement (ii) follows from (i). Statement (iii) is a consequence of the inequality
∫ ∞

0
χ{f >s}(z) ds ≤

∫ ∞

0
χ{f >s}(y) ds,

for y, z ∈ Γx with d(y, x) ≤ d(z, x). Statement (iv) follows from (iii). �

Let us introduce some more terminology. Recall that a Borel measure μ on X

is nondegenerate if (1.1) holds. We say that the measure μ is diffuse if spheres are
μ-negligible, i.e.,

μ
{
y ∈ X : d(x, y) = r

} = 0, for all x ∈ X and r > 0. (3.21)

We say that μ has the Lebesgue property if for any Borel set A ⊂ X we have for
μ-a.e. x ∈ A

lim
r↓0

μ(A ∩ Br(x))

μ(Br(x))
= 1. (3.22)

Finally, we say that μ is isometric if γμ = μ for any isometry γ : X → X and
μ(H) = 0 for any reflection system R = {H−,H,H+, �} of X.

Theorem 3.6 Let X be a proper metric space, let μ be a nondegenerate, diffuse,
isometric Borel measure on X with the Lebesgue property. Let (Γ, (μx)x∈X/Γ , μ̄)

be a regular rearrangement system of (X,μ) related to the Schwarz system Γ . Then
the rearrangement f � in (Γ, (μx)x∈X/Γ , μ̄) of any nonnegative, compactly supported
function f ∈ Lp(X,μ), 1 < p < ∞, satisfies

∥∥f �
∥∥

Lp(X;μ)
= ‖f ‖Lp(X;μ) and

∥∥∇f �
∥∥−

Lp(X;μ)
≤ ‖∇f ‖−

Lp(X;μ)
. (3.23)

Proof The identity ‖f �‖Lp(X;μ) = ‖f ‖Lp(X;μ) follows from (3.3) and (3.16) in
Lemma 3.5.

By assumption, the projection π : X → X/Γ is continuous. For the set suppf =
{x ∈ X : f (x) �= 0} is compact, the set π(suppf ) is compact. With the choice

R = 1 + diam
(
suppf ∪ π(suppf )

)
< ∞,

the set

K =
⋃

x∈π(suppf )

BR(x) ∩ Γx

is bounded and thus contained in a compact set and moreover suppf ⊂ K . Because
μx{f > t}x ≤ μx(BR(x) ∩ Γx), we also have suppf � ⊂ K .
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Let us recall our notation

Qr,p(f ) =
∫

X

∫

Br(x)

∣∣f (x) − f (y)
∣∣pdμ(y)dμ(x).

Let A(f ) be the family of all nonnegative functions g ∈ Lp(X;μ) such that

(i) μx{g > t}x = μx{f > t}x for μ̄-a.e. x ∈ X/Γ and for all t > 0; (3.24)

(ii) g(x) = 0 for μ-a.e. x ∈ X \ K; (3.25)

(iii) Qr,p(g) ≤ Qr,p(f ) for all 0 < r ≤ 1. (3.26)

The set A(f ) is nonempty, because f ∈ A(f ). We apply to A(f ) the compactness
Theorem 4.2, which is proved in Sect. 4. Here, we need the assumption on X to be
proper and the assumption (3.21) on μ.

By (3.3), (3.5), and (3.24), we have for any g ∈ A(f )

∫

X

g(x)p dμ =
∫ ∞

0
μ

{
g > t1/p

}
dμ =

∫ ∞

0
μ

{
f > t1/p

}
dμ =

∫

X

f (x)p dμ.

Thus A(f ) is uniformly bounded in Lp(X,μ). The uniform bound (4.6) holds
by (3.26). In fact, we may assume that ‖∇f ‖−

Lp(X;μ)
< ∞, otherwise there is nothing

to prove. By Theorem 4.2, A(f ) is then precompact in Lp(X;μ). A(f ) is also closed
in Lp(X;μ). Let gj ∈ A(f ), j ∈ N, be a sequence such that gj → g as j → ∞ in
Lp(X;μ) and μ-almost everywhere. Then g satisfies (3.25) and also (3.26), by Fa-
tou’s Lemma.

We check (3.24). We may assume that for μ̄-a.e. x ∈ X/Γ we have gj (y) → g(y)

as j → ∞ for μx -a.e. y ∈ Γx . Then for μ̄-a.e. x ∈ X/Γ and for all t > 0 we have:

lim
j→∞μx

({g > t}x ∩ {gj ≤ t}x
) = lim

j→∞

∫

{g>t}x
χ{gj ≤t}x (y)dμx(y)

=
∫

{g>t}x
lim

j→∞χ{gj ≤t}x dμx(y) = 0. (3.27)

Notice that for a function g ∈ Lp(X,μ), the set of all t > 0 such that μ{g = t} > 0 is
at most countable. Then we also have for all but a countable set of t > 0:

lim
j→∞μx

({gj > t}x ∩ {g ≤ t}x
) = lim

j→∞μx

({gj > t}x ∩ {g < t}x
) = 0.

This implies μx({gj > t}x�{g > t}x) → 0 as j → ∞, and (3.24) follows for all but
a countable set of t > 0. By right continuity as in (3.1), (3.24) holds for all t > 0.

The functional J : A(f ) → [0,∞)

J (g) =
∫

X

∣∣g − f �
∣∣p dμ,

is continuous in Lp(X,μ). By Weierstrass’s theorem, there exists f̄ ∈ A(f ) such
that

J (f̄ ) = min
{
J (g) ∈ [0,∞) : g ∈ A(f )

}
. (3.28)



Rearrangements in Metric Spaces and in the Heisenberg Group 1691

There are two cases: (1) J (f̄ ) = 0; (2) J (f̄ ) > 0. In the first case, we have f̄ = f �,
and hence, for any 0 < r ≤ 1,

Qr,p

(
f �

) ≤ Qr,p(f ).

Dividing this inequality by rp and taking the liminf as r ↓ 0, we get ‖∇f �‖−
Lp(X;μ)

≤
‖∇f ‖−

Lp(X;μ)
and we are finished.

The case J (f̄ ) > 0 may not occur. In this case, we have by (3.2) and (3.5)

0 <

(∫

X

∣∣f̄ (x) − f �(x)
∣∣pdμ(x)

)1/p

=
(∫

X

∣∣∣∣

∫ ∞

0

(
χ{f̄ >t}(x) − χ{f �>t}(x)

)
dt

∣∣∣∣

p

dμ(x)

)1/p

≤
∫ ∞

0

(∫

X

∣∣χ{f̄ >t}(x) − χ{f �>t}(x)
∣∣pdμ(x)

)1/p

dt

=
∫ ∞

0
μ

({f̄ > t}�{
f � > t

})1/p
dt.

Then, there exists t > 0 such that, letting A = {f̄ > t} and B = {f � > t}, we have
μ(A�B) > 0. As f̄ and f � are both rearrangements of f , it holds that μ(A) = μ(B).
Hence, we have μ(A \ B) = μ(B \ A) > 0. By (3.22), μ-a.e. z ∈ A \ B is a point of
density of A \ B , i.e.,

lim
r↓0

μ(Br(z) ∩ A \ B)

μ(Br(z))
= 1. (3.29)

The same holds for B \ A.
Let us define the sets

ΛA\B = {
x ∈ X/Γ : there exists z ∈ Γx ∩ A \ B point of density of A \ B

}
,

ΛB\A = {
x ∈ X/Γ : there exists z ∈ Γx ∩ B \ A point of density of B \ A

}
.

We claim that μ̄(ΛA\B ∩ ΛB\A) > 0. In fact, we have μx(Ax \ Bx) = μx(Bx \ Ax)

for μ̄-a.e. x ∈ X/Γ . This follows from the fact that both f̄ and f � satisfy (3.24).
Hence,

∫

ΛA\B
μx(Bx \ Ax)dμ̄(x) =

∫

ΛA\B
μx(Ax \ Bx)dμ̄(x) = μ(A \ B) > 0,

and thus there exists a set Λ ⊂ ΛA\B such that μ̄Λ > 0 and μx(Bx \ Ax) > 0 for all
x ∈ Λ. Then, there exist x ∈ X/Γ , z− ∈ Γx ∩ A \ B point of density of A \ B , and
z+ ∈ Γx ∩ B \ A point of density of B \ A.

Let R = {H−,H,H+, �} be the reflection system related to z = z+ and w = z−
given by (3.12). In particular, we may assume z+ ∈ H+ and z− ∈ H−. By (3.29)
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there exists a number η > 0 such that

μ
(
Bη(z−) ∩ A \ B

)
>

1

2
μ

(
Bη(z−)

)
, μ

(
Bη(z+) ∩ B \ A

)
>

1

2
μ

(
Bη(z+)

)
.

(3.30)
Possibly choosing a smaller η we may also assume that Bη(z+) ⊂ H+ (and hence
also Bη(z−) ⊂ H−).

From (3.30) we deduce that μ(H+ ∩ (B \ A ∩ �(A \ B))) > 0. In view of B \ A ∩
�̄(A \ B) = B \ �B ∩ �A \ A, we eventually obtain

μ
{
x ∈ H+ : f̄ (x) < f̄ (�x) and f �(x) > f �(�x)

}
> 0. (3.31)

This is assumption (2.23) in Theorem 2.11.
We claim that the two-points rearrangement f �

R satisfies f �
R = f �. From

f �(z+) > t ≥ f �(z−) we deduce by Lemma 3.5 that d(z+, x) < d(x−, x). As
z− = �̄z+, this implies that x ∈ H+ ∪ H , by (2.2). Now let z,w ∈ Γy , y ∈ X/Γ ,
be such that z ∈ H+ and w = �z. Again by (2.2), we have d(x, z) ≤ d(x,w) and
thus, by (3.13), d(y, z) ≤ d(y,w). This yields f �(z) ≥ f �(w), by Lemma 3.5, and
the claim is proved.

As φ(t) = tp with p > 1 is strictly convex, by the statement concerning the strict
inequality in Theorem 2.11 we have

∫

X

∣∣f̄R − f �
∣∣p dμ =

∫

X

∣∣f̄R − f �
R

∣∣p dμ <

∫

X

∣∣f̄ − f �
∣∣p dμ. (3.32)

This contradicts the minimality (3.28) of f̄ , provided that f̄R ∈ A(f ). We check
(3.24)–(3.25) for g = f̄R.

We start with (3.24). For a Borel set B ⊂ X/Γ let h denote the function f̄ re-
stricted to π−1(B). For μ �-invariant we have μ{h > t} = μ{hR > t}, t > 0. As
� : Γy → Γy for any y ∈ X/Γ , the function hR is also supported in π−1(B), and
thus

∫

B

μx{f̄ > t}x dμ̄(x) =
∫

B

μx{f̄R > t}x dμ̄(x)

for a generic B . This implies the claim (3.24).
Next, we prove that the function f̄R is supported in K . Let z,w ∈ Γy , y ∈ X/Γ , be

such that w = �z with z ∈ H+. Because x ∈ H+ ∪H , it holds that d(x, z) ≤ d(x,w),
by (2.2), and so d(y, z) ≤ d(y,w), by (3.13). Now, if f (w) > 0 then w ∈ K . By the
previous observation, this implies that also z ∈ K . This ensures that f̄R is supported
in K .

Finally, (3.26) holds by Theorem 2.8. �

We have an analogous theorem for the rearrangement of sets.

Theorem 3.7 Let X be a proper metric space, let μ be a nondegenerate, diffuse,
isometric Borel measure on X with the Lebesgue property. Let (Γ, (μx)x∈X/Γ , μ̄)
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be a regular rearrangement system of (X,μ) related to the Schwarz system Γ . The
Schwarz rearrangement E� in (Γ, (μx)x∈X/Γ , μ̄) of any bounded Borel set E ⊂ X

satisfies

μ
(
E�

) = μ(E) and P −(
E�

) ≤ P −(E). (3.33)

Proof The proof is analogous to the one of Theorem 3.6 and we only sketch it. First,
we fix a suitable compact set K ⊂ X, as in the above proof. Then we introduce the
set A(E) of all Borel subsets F of X such that (3.24)–(3.26) hold with g = χF and
f = χE and p = 2 (or equivalently p = 1). The functional J (F ) = μ(F�E�) attains
the minimum on A(E) at some F̄ . The compactness Theorem 4.2 does apply to this
situation. As in the proof above, it must be F̄ = E� and the proof is finished. �

When X/Γ consists of one point, the set E� is a ball. Theorem 3.7 states in this
case that metric balls are isoperimetric sets, within the class of bounded sets, in the
metric measure space (X,μ). This is the case of space forms (Euclidean and hyper-
bolic space, sphere).

In the final part of this section, we address the problem of the existence of a dis-
integration of μ along Γ , an isometry group of X. When X/Γ = {x} consists of
one element there exists a trivial disintegration. In fact, we may choose μx = μ and
μ̄ = Dirac mass on X/Γ . In this case, (Γ,μx, μ̄) is a rearrangement system of (X,μ)

as soon as the function s 
→ μ(Bs(x)) is continuous and strictly increasing in its nat-
ural domain.

Let us recall the disintegration theorem for probability measures. A proof can be
found in [16], III.70–73. By definition, a Borel measure μ on the metric spaces X is
regular if μ(E) = sup{μ(K) : K ⊂ E compact} for any Borel set E ⊂ X.

Theorem 3.8 Let X,Y be separable metric spaces, let π : X → Y be a Borel map, let
μ be a regular Borel probability measure on X, and let μ̄ = πμ be the push-forward
measure of μ on Y . Then there exist Borel probability measures μy supported in
π−1(y), y ∈ Y , such that the function y 
→ μy(E) is Borel measurable and

μ(E) =
∫

Y

μy(E)dμ̄(y),

for any Borel set E.

We apply Theorem 3.8 to our setting in a couple of examples.

Example 3.9 Let X be a compact metric space and let Γ be a Schwarz system of X.
Then any finite, regular Borel measure on X is disintegrable along Γ . This follows
from Theorem 3.8 with X and Y = X/Γ = π(X). In fact, Y is compact because the
projection is continuous.

Though restrictive, the compact case is actually sufficient for our purposes. In fact,
in Theorem 3.6 the functions are supposed to have compact support. Then we could
localize the rearrangement in some compact set and restrict the measure to this set.
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In the case of a Steiner system, the measure μ is assumed to be invariant with respect
to a 1-parameter group of isometries. This makes possible a disintegration also in the
noncompact case.

Example 3.10 Let X be a σ -compact metric space and let (R, T ) be a Steiner system
of X with R = {H−,H,H+, �} and T = {τt }t∈R such that H+ = ⋃

t>0 τt (H), with
disjoint union. Then any locally finite, T -invariant and regular Borel measure μ on
X is disintegrable along T . By definition, the measure μ is T -invariant if (τt )μ = μ

for all t ∈ R.
By assumption, we have H = X/T and the projection π : X → X/T is contin-

uous. Then H is σ -compact and w.l.g. we may assume that H is compact. For any
k ∈ Z let

Xk =
⋃

t∈[k,k+1)

τt (H).

Then we have X = ⋃
k∈Z

Xk , with disjoint union. With the natural assumption that
the mapping (x, t) 
→ τt (x) is continuous from H × R to X, the Borel set Xk is
bounded. The measure μk = μ Xk , the restriction of μ to Xk , is then finite and
moreover the measure μ̄ = πμk is independent of k ∈ Z, because μ is T invariant.
By Theorem 3.8, there are probability measures μk

x , x ∈ X/T , supported in Tx ∩ Xk

such that

μ(E) =
∫

X/T

μk
x(E ∩ Tx)dμ̄(x),

for any Borel set E ⊂ Xk . Letting μx = ∑
k∈Z

μk
x we obtain a disintegration of μ

along T . The measures μx are locally finite.
We investigate whether (T , (μx)x∈X/T , μ̄) is a rearrangement system of (X,μ),

i.e., whether for μ̄-a.e. x ∈ X/T the function s 
→ μx(Bs(x) ∩ Tx) is strictly increas-
ing and continuous for s ≥ 0

Let E ⊂ X/T be a Borel set and for −∞ < r < s < ∞ let Er,s = ⋃
r<t<s τt (E).

Since μ is T -invariant we have μ(Er,s) = μ(Er+t,s+t ) for all t ∈ R. The disintegra-
tion formula (3.5) implies that

∫

E

μx(Er,s ∩ Tx)dμ̄(x) =
∫

E

μx(Er+t,s+t ∩ Tx)dμ̄(x).

Because E is arbitrary, we deduce that, for fixed r, s, t , it holds that μx(Er,s) =
μx(Er+t,s+t ) for μ̄-a.e. x ∈ X/T . Finally, this implies that there exists a set N ⊂
X/T with μ̄(N) = 0 such that

μx(Er,s) = μx(Er+t,s+t ) (3.34)

for all x ∈ (X/T ) \ N and for all r, s, t ∈ Q with r < s. We deduce that μx is
nonatomic, i.e., μx{z} = 0 for all z ∈ Tx . In fact, if μx{z} = δ > 0 for some z ∈ Tx

then, by (3.34), this holds for all z ∈ Tx and μx is not locally finite. The same argu-
ment proves that if μx(Er,s ∩ Tx) = 0, x ∈ E, for some r < s then μx = 0.
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We proved that for μ̄-a.e. x ∈ X/T the function s 
→ μx(
⋃

0<t<s τt (H) ∩ Tx) is
either identically zero or continuous and strictly increasing. This is sufficient to set
up a Steiner-type rearrangement, as in Definition 3.1.

The function s 
→ μx(Bs(x)∩Tx) is strictly increasing. This follows from the dis-
cussion above. If the orbit Tx , x ∈ X/T , meets the spheres {y ∈ X : d(x, y) = s} at
isolated points, the function is also continuous and (T , (μx)x∈X/T , μ̄) is a rearrange-
ment system of (X,μ) in the sense defined before Definition 3.1.

4 Compactness

We prove the compactness theorem in Lp(X,μ) used in Sect. 3, Theorem 3.6. We re-
call that a family of functions F ⊂ L1

loc(X,μ) is said to be locally uniformly bounded
if for any compact set K ⊂ X we have

sup
f ∈F

∫

K

|f |dμ < +∞. (4.1)

The family F is said to be locally uniformly absolutely continuous in L1
loc(X,μ) if

for any compact set K ⊂ X and for any ε > 0 there is a δ > 0 such that for any Borel
set B ⊂ K , it holds that

μ(B) < δ ⇒ sup
f ∈F

∫

B

|f |dμ < ε. (4.2)

A metric space is proper if closed balls are compact.

Lemma 4.1 Let X be a proper metric space with a Borel measure μ satisfying (1.1)
and (3.21). Let F ⊂ L1

loc(X,μ) be a family of functions which is locally uniformly
bounded and locally uniformly absolutely continuous. Then the family of functions
Fr = {fr ∈ C(X) : f ∈ F }, where

fr(x) =
∫

Br(x)

f (y) dμ(y), (4.3)

is locally uniformly bounded in C(X) and locally uniformly continuous.

Proof Because the balls Br(x) are precompact, the functions fr in (4.3) are well
defined. Because μ({y ∈ X : d(x, y) = r}) = 0, the characteristic function of Br(x)

converges μ-a.e. to the characteristic function of Br(x0), as x → x0, for any x0 ∈ X.
By the theorem of dominated convergence, we then have

lim
x→x0

∫

Br (x)

f (y) dμ(y) =
∫

Br (x0)

f (y) dμ(y).

In particular, x 
→ μ(Br(x)) is continuous (and positive). It follows that fr ∈ C(X).



1696 R. Monti

Let K ⊂ X be a compact set and let Kr = {x ∈ X : dist(x,K) ≤ r}. The set Kr is
also compact. Letting

C1 = max
x∈K

1

μ(Br(x))
, C2 = sup

f ∈F

∫

Kr

∣∣f (y)
∣∣dμ(y) < ∞,

we have |fr(x)| ≤ C1C2, for any x ∈ K and f ∈ F . Thus Fr is locally uniformly
bounded.

On the other hand, for any x, x0 ∈ K

∣∣fr(x) − fr(x0)
∣∣ ≤ max

{
1

μ(Br(x))
,

1

μ(Br(x0))

}∫

Br(x)�Br (x0)

∣∣f (y)
∣∣dμ(y)

+ |μ(Br(x)) − μ(Br(x0))|
μ(Br(x))μ(Br(x0))

∫

Br (x)∩Br(x0)

∣∣f (y)
∣∣dμ(y)

≤ C1

∫

Br(x)�Br (x0)

∣∣f (y)
∣∣dμ(y)

+ C2
1C2

∣∣μ
(
Br(x)

) − μ
(
Br(x0)

)∣∣, (4.4)

where Br(x)�Br(x0) = Br(x) \ Br(x0) ∪ Br(x0) \ Br(x) denotes the symmetric dif-
ference of sets.

The function m : X × X → [0,∞), m(x,x0) = μ(Br(x)�Br(x0)) is continuous
and thus uniformly continuous on K × K . Moreover, m(x0, x0) = 0. Thus, for any
δ > 0 there is an η > 0 such that d(x, x0) < η implies m(x,x0) < δ. By (4.2), for any
given ε > 0 we have

sup
f ∈F

∫

Br (x)�Br (x0)

∣∣f (y)
∣∣dμ(y) < ε (4.5)

as soon as d(x, x0) < η and η > 0 is small enough. By (4.5) and (4.4), Fr is uniformly
continuous on compact sets. �

Let us recall our notation, with f ∈ Lp(X,μ) and r > 0,

Qr,p(f ) =
∫

X

∫

Br(x)

∣∣f (x) − f (y)
∣∣pdμ(y)dμ(x).

Theorem 4.2 (Compactness) Let (X,μ) be a proper metric measure space satisfying
(1.1) and (3.21). Let 1 ≤ p < ∞ and let F ⊂ L

p

loc(X,μ) be a set of functions such
that

(i) F is uniformly bounded in L
p

loc(X,μ); moreover, if p = 1 assume that F is uni-
formly absolutely continuous;

(ii) there exists a function g ∈ Lp(X,μ) such that lim infr↓0 r−pQr,p(g) < ∞ and
for all 0 < r < 1 it holds that

sup
f ∈F

Qr,p(f ) ≤ Qr,p(g). (4.6)

Then F is precompact in L
p

loc(X,μ).
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Proof Let K ⊂ X be a compact set. The assumptions in Lemma 4.1 are satisfied.
The set Fr = {fr ∈ C(K) : f ∈ F } is then equibounded and equicontinuous, and by
Arzelà–Ascoli’s theorem, Fr is totally bounded with respect to the max norm and
then with respect to the Lp(K,μ) norm.

We claim that

lim inf
r↓0

sup
f ∈F

‖fr − f ‖Lp(K,μ) = 0. (4.7)

This follows from (ii):

∫

K

|fr − f |pdμ =
∫

K

∣∣∣∣

∫

Br(x)

(
f (y) − f (x)

)
dμ(y)

∣∣∣∣

p

dμ(x)

≤
∫

K

∫

Br (x)

∣∣f (y) − f (x)
∣∣p dμ(y)dμ(x)

≤
∫

X

∫

Br(x)

∣∣g(y) − g(x)
∣∣p dμ(y)dμ(x),

the inequality holding for any 0 < r < 1. This implies (4.7).
Finally, by a standard argument from (4.7) it follows that F is totally bounded in

Lp(K,μ). �

5 Examples

We describe some examples of reflection, Steiner, and Schwarz systems.

5.1 Banach Spaces

Let X = Z ⊕ V be a real vector space, where V is a 1-dimensional subspace of X.
We may then decompose x ∈ X as x = z + v for unique z ∈ Z and v ∈ V . On V we
fix a total ordering. Let � : X → X be the map �(x) = �(z + v) = z − v, and let ‖ · ‖
be a norm on X such that

‖�x‖ = ‖x‖ for all x ∈ X. (5.1)

Let us define the sets H = Z, H− = {x ∈ X : x = z+v, z ∈ Z, v < 0}, and H+ =
{x ∈ X : x = z+ v, z ∈ Z, v > 0}. We claim that R = {H−,H,H+, �} is a reflection
system of X with the distance induced by the norm ‖ · ‖.

Let v ∈ V and z ∈ Z. The function ϑ(t) = ‖z + tv‖ is nondecreasing for t ≥ 0. In
fact, for 0 ≤ t < s we have

z + tv = σ(z − tv) + (1 − σ)(z + sv), with σ = s − t

s + t
∈ (0,1),

and therefore, also using (5.1), we have
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ϑ(t) = ‖z + tv‖ ≤ σ‖z − tv‖ + (1 − σ)‖z + sv‖ = σϑ(t) + (1 − σ)ϑ(s),

which implies ϑ(t) ≤ ϑ(s).
We can now prove (2.2) and, namely, that ‖x − y‖ ≤ ‖x − �y‖ for all x, y ∈

H ∪ H+. Let x = z1 + t1v and y = z2 + t2v be in H+ ∪ H , i.e., t1, t2 ≥ 0. From the
previous observation along with the trivial inequality |t1 − t2| ≤ t1 + t2 and (5.1), it
follows that

‖x − y‖ = ∥∥z1 − z2 + |t1 − t2|v
∥∥ ≤ ∥∥z1 − z2 + (t1 + t2)v

∥∥ = ‖x − �y‖.

We specialize to the following situation. Let us factorize R
n = R

m × R
n−m, for

some 1 ≤ m ≤ n. When m = n we agree that R
n−m = {0}. Let G = O(m) ⊂ O(n) be

the group of orthogonal transformations of R
n fixing the R

n−m factor. Let ‖ · ‖ be a
norm in R

n such that ‖γ x‖ = ‖x‖ for all x ∈ R
n and γ ∈ G. We endow R

n with the
metric space structure induced by this norm.

Let v ∈ R
m × {0}, v �= 0, and denote by H the hyperplane orthogonal to v. We

have a natural partition R
n = H− ∪ H ∪ H+ and a natural reflection � with respect

to H . As noted above, R = {H−,H,H+, �} is a reflection system. Let τt : R
n → R

n

be the translation τtx = x + tv, t ∈ R and x ∈ R
n. T = {τt }t∈R is a 1-parameter group

of isometries. We have R
n/T = H and R

n/Γ = {0} × R
n−m, where Γ = Γ (T ,G),

the group generated by T and G.
We claim that the projection π : R

n → R
n/Γ induces a Schwarz system of R

n

with the norm ‖ · ‖. It is elementary to check that the representation (3.14) for the
orbits holds. As a consequence, condition (3.12) also holds. We check (3.13). Let
x, y ∈ R

n/Γ = {0} × R
n−m and z,w ∈ Γy = R

m × {y} be such that z = y + tγ v and
w = y + sξv, t, s ∈ R and γ, ξ ∈ G. If ‖x − z‖ ≤ ‖x − w‖ then by (5.1) we have

‖y − x + tv‖ = ‖y − x + tγ v‖ ≤ ‖y − x + sξv‖ = ‖y − x + sv‖,

which implies |t | ≤ |s|. This in turn implies

‖z − y‖ = ‖tγ v‖ = |t |‖v‖ ≤ |s|‖v‖ = ‖sξv‖ = ‖w − y‖.

The Fubini–Tonelli theorem provides a disintegration along Γ of the Lebesgue
measure Ln in R

n and a regular rearrangement system. Theorems 3.6 and 3.7 apply
to the metric measure space (Rn,‖ · ‖, Ln). Within this setting, integral differential
quotients as in (1.3) are studied in [32].

5.2 Hyperbolic Space

Let H
n = {x ∈ R

n : |x| < 1} be the n-dimensional hyperbolic space, n ≥ 2, given in
the ball model. In the sequel, | · | and · denote the standard norm and inner product
in R

n. The metric d is defined via the identity

coshd(x, y) = 1 + 2|x − y|2
(1 − |x|2)(1 − |y|2) , x, y ∈ H

n. (5.2)
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In the coordinates x = (x1, . . . , xn), let

H− = {
x ∈ H

n : x1 < 0
}
, H = {

x ∈ H
n : x1 = 0

}
,

H+ = {
x ∈ H

n : x1 > 0
}
.

The mapping � : H
n → H

n, �(x) = (−x1, x2, . . . , xn) is an isometry such that �2 =
Id and �H+ = H−. By formula (5.2), condition (2.2) holds. This also follows from
the remark in Example 2.2. Then R = {H−,H,H+, �} is a reflection system.

For any b ∈ H
n, the mapping τb : H

n → H
n

τb(x) = 1 − |b|2
|b|2|x|2 + 2x · b + 1

x + |x|2 + 2x · b + 1

|b|2|x|2 + 2x · b + 1
b

is a hyperbolic isometry, called translation by b. With e1 = (1,0, . . . ,0), we also let

τt (x) = 1 − t2

t2|x|2 + 2tx1 + 1
x + |x|2 + 2tx1 + 1

t2|x|2 + 2tx1 + 1
te1, t ∈ (−1,1). (5.3)

Then T = {τt }t∈(−1,1) is a 1-parameter group of isometries

τsτt = τu, with u = s + t

1 + st
and s, t ∈ (−1,1). (5.4)

The quotient is H
n/T = {x ∈ H

n : x1 = 0} = H . We claim that (R, T ) is a Steiner
system. Trivially, for any τ ∈ T and x ∈ H

n/T we have τ−1x = �τx. This is (3.9).
We check (3.10). For x, y ∈ H

n/T let ϑ : (−1,1) → [0,∞) be the function

ϑ(t) = |τtx − y|2
(1 − |τtx|2)(1 − |y|2) = t2(1 + 2x · y + |x|2|y|2) + |x − y|2

(1 − t2)(1 − |x|2)(1 − |y|2) .

The second identity can be checked by a short computation based on (5.3). It holds
that ϑ ′(t) > 0 for t ∈ (0,1) and, by (5.2), this implies (3.10).

The hyperbolic measure on H
n is, up to a positive multiplicative constant,

μ = 1

(1 − |x|2)n Ln,

where Ln is the Lebesgue measure on R
n. A disintegration of μ along T is provided

by the construction given in Example 3.10. We describe explicitly the disintegration
in dimension n = 2. Let f : H

2 → (−1,1) be the function

f (x) = h

(
2x2

1 − |x|2
)

, x = (x1, x2) ∈ H
2,

where h : R → (−1,1) is the function h(s) = s/(1 + √
1 + s2). The level sets of f

are the orbits of T . Namely, for any x = (0, x2) ∈ H it holds that f (τtx) = x2 for all
t ∈ (−1,1). For any Borel set E ⊂ H

2, by the standard coarea formula we have

μ(E) =
∫

E

1

(1 − |x|2)2
dx =

∫ 1

−1

∫

{f =σ }∩E

1

(1 − |x|2)2|∇f (x)| dH1(x) dσ, (5.5)



1700 R. Monti

where H1 is the standard length measure and |∇f (x)| is the standard length of the
gradient of f . By an elementary computation, we have |∇f (x)| = |f (x)/x2|. Using
this piece of information and integrating along orbits in the set of parameters t ∈
(−1,1), we finally obtain the disintegration

μ(E) =
∫ 1

−1

1 + σ 2

(1 − σ 2)2

∫

Eσ

1

1 − t2
dt dσ, (5.6)

where Eσ = {t ∈ (−1,1) : τt (0, σ ) ∈ E} denotes the section of E with the orbit, at
the parameters level. The measure dμσ = 1

1−t2 dt on the orbit is in fact independent
of σ : it is the Haar measure of (−1,1) with the group law (5.4).

We describe now examples of Schwarz system. The arguments rely upon elemen-
tary facts of hyperbolic geometry. Let 1 ≤ m ≤ n and for x ∈ {0} × H

n−m, 0 ∈ H
m,

let Γx = τx(H
m × {0}), 0 ∈ H

n−m, be the translation by x of the copy of H
m sitting

inside H
n. We have a foliation Γ of H

n: H
n/Γ = {0} × H

n−m and

H
n =

⋃

x∈Hn/Γ

Γx.

The foliation is obviously given by a continuous projection π : H
n → {0} × H

n−m.
We claim that Γ is a Schwarz system of H

n.
Let x, y ∈ {0} × H

n−m and z,w ∈ Γy be such that d(z, x) ≤ d(w,x). We claim
that d(z, y) ≤ d(w,y). As τ−y maps {0} × H

n−m into itself, we can without loss of
generality assume that y = 0. The claim then follows from the equivalence

|z − x|2
(1 − |x|2)(1 − |z|2) ≤ |w − x|2

(1 − |x|2)(1 − |w|2) ⇔ |z| ≤ |w|

that holds for all z,w ∈ H
m × {0} and x ∈ {0} × H

n−m. This proves (3.13).
The proof of (3.12) is elementary. Given z,w ∈ H

n, z �= w, let H be the “hy-
perplane” through 0 orthogonal to τ−1

z w ∈ H
n. Let � be the reflection with re-

spect to H . We have τ−1
z w = tv for some v ∈ R

n, |v| = 1, and t ∈ (0,1). Let
s ∈ (0,1) be such that 2s

1+s2 = t . Then the conjugation of H and � with τzτsv , namely

H̄ = τzτsvHτ−1
sv τ−1

z and �̄ = τzτsv�τ−1
sv τ−1

z , provides the required reflection system.
Then Theorems 3.6 and 3.7 apply to the hyperbolic space with its measure.

We describe the disintegration of the hyperbolic measure μ along Γ in the case
n = 2 and m = 1. This configuration represents a kind of “Steiner rearrangement”
dual to the one discussed above. Let f : R

2 → R be the function f (x) = 2x1
|x|2+1

,

x = (x1, x2) ∈ R
2. For any s ∈ (−1,1), we have

{
x ∈ H

2 : f (x) = 2s

1 + s2

}
= τs

({0} × (−1,1)
)
.

Starting from the formula (5.5), by the change of variable σ = 2s/(s2 + 1) we obtain

μ(E) = 2
∫ 1

−1

1 − s2

1 + s2

∫

{f =2s/(s2+1)}∩E

1

(1 − |x|2)2|∇f (x)|dH1(x) ds.
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We compute |∇f (x)| and we express the inner integral in parametric form along the
curve t 
→ τs(0, t). The details are omitted. We obtain the formula

μ(E) =
∫ 1

−1

1

1 − s2

∫

Es

1 + t2

(1 − t2)2
dt ds,

where Es = {t ∈ (−1,1) : τs(0, t) ∈ E}. This is the formula dual to (5.6).

5.3 Sphere

The standard sphere S
n = {x ∈ R

n+1 : |x| = 1} is also rich in reflection, Steiner, and
Schwarz systems. This example is well known and motivated the general theory on
polarization (see [3] and [5]).

5.4 Grushin Plane

Consider the vector fields in R
2

X1 = ∂

∂x1
and X2 = |x1| ∂

∂x2
.

A Lipschitz curve γ : [0,1] → R
2 is admissible if γ̇ = h1X1(γ )+h2X2(γ ) for func-

tions h1, h2 ∈ L1(0,1). We define the length of an admissible curve γ as

L(γ ) =
∫ 1

0

∣
∣h(t)

∣
∣dt,

where h = (h1, h2). We can then define a distance d on letting, for x, y ∈ R
2,

d(x, y) = inf
{
L(γ ) : γ ∈ Lip

([0,1];R
2) admissible, γ (0) = x, γ (1) = y)

}
.

Then (R2, d) is a metric space known as the Grushin plane and the mapping � is an
isometry. In fact, if γ is an admissible curve joining x to y, then �◦γ is an admissible
curve joining �x to �y and moreover L(γ ) = L(� ◦ γ ).

Let H− = {x ∈ R
2 : x2 < 0}, H+ = {x ∈ R

2 : x2 > 0}, and H = {x ∈ R
2 : x2 = 0}.

Then R = {H−,H,H+, �} is a reflection system of (R2, d). Condition (2.2) holds
by the remark in Example 2.2.

Now let T = {τt }t∈R be the 1-parameter group of vertical translations τtx =
(x1, x2 + t), x ∈ R

2. We may identify R
2/T = H and the orbits Tx , x ∈ H , are

vertical lines. We claim that (R, T ) is a Steiner system of (R2, d). We check (3.13).
If d(x, z) ≤ d(x,w) for some z,w ∈ Ty and x, y ∈ H , then we have |z2| ≤ |w2|. This
in turn implies that d(y, z) ≤ d(y,w) The proof of these facts is an easy exercise.

The standard reflection with respect to the x2-axis also defines a reflection sys-
tem of (R2, d). In this case, however, there is no 1-parameter group of translations
compatible with the reflection system, i.e., yielding a Steiner system. For this reason,
Pólya–Szegő inequalities for the x1-rearrangement of functions and sets are more
difficult. See [26] and [27] for some results in this direction.
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5.5 Sub-Riemannian Heisenberg Group

The following examples are of particular interest. In spite of the fact that condition
(2.2) is violated, a substantial part of our rearrangement theory can be carried out in
these cases, for functions and sets enjoying a suitable symmetry. This point of view
is developed in Sect. 6.

Let Hn = C
n × R be endowed with the group law

(z, t) ∗ (ζ, τ ) = (
z + ζ, t + τ + 2Im(z · ζ̄ )

)
,

where we let z · ζ̄ = z1ζ̄2 + · · · + znζ̄n. Hn with this group law is known as the
Heisenberg group. Let z = x + iy, with x, y ∈ R

n. The vector fields

Xj = ∂

∂xj

+ 2yj

∂

∂t
, Yj = ∂

∂xj

− 2xj

∂

∂t
, j = 1, . . . , n,

span a 2n-dimensional left invariant distribution H, called horizontal distribution.
A Lipschitz curve γ : [0,1] → Hn is horizontal if γ̇ (s) ∈ H(γ (s)) for a.e. s ∈ [0,1].
Fix on H the left invariant metric that makes X1, . . . ,Xn,Y1, . . . , Yn orthonormal,
and let |γ̇ | denote the length of γ̇ in this metric. The length of γ is then by definition

L(γ ) =
∫ 1

0

∣∣γ̇ (s)
∣∣ds.

The distance between the points (z, t), (ζ, τ ) ∈ Hn is

d
(
(z, t), (ζ, τ )

)

= inf
{
L(γ ) : γ ∈ Lip

([0,1];Hn
)

horizontal, γ (0) = (z, t), γ (1) = (ζ, τ )
}
.

Then d is a metric on Hn, called the Carnot–Carathéodory metric.
Let us introduce two different types of what we may call “reflection system with

symmetry”: the horizontal reflection system and the vertical reflection system with
symmetry.

We start with the horizontal reflection system. Let H,H−,H+ be the following
subsets of Hn:

H = {
(z, t) ∈ Hn : t = 0

}
and H± = {

(z, t) ∈ Hn : ±t > 0
}
, (5.7)

and let � : Hn → Hn denote the mapping

�(z, t) = (z̄,−t), (5.8)

where z̄ = x + iy = x − iy, with x, y ∈ R
n. The mapping � is an isometry of (Hn, d)

that maps H+ to H− and such that �2 = Id. This follows from the following ob-
servation: a curve γ is horizontal if and only if � ◦ γ is horizontal, and moreover
L(γ ) = L(� ◦ γ ). The isometry �, however, does not satisfy condition (2.2).
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A first attempt to overcome this problem is to consider the mapping � ◦ σ , where
σ : Hn → Hn is the “symmetry” defined by

σ(z, t) = (z̄, t), (z, t) ∈ Hn. (5.9)

The mapping σ is not an isometry of Hn and, moreover, � ◦ σ does not satisfy
condition (2.2), either. In fact, we have d((z, t), (ζ, τ )) ≤ d((z, t), (ζ,−τ)) for all
(z, t), (ζ, τ ) ∈ H+ such that z = αζ for some α ∈ R. If z and ζ are not collinear,
however, the inequality needs not hold.

In particular, R = {H−,H,H+, � ◦ σ } is not a reflection system of Hn with the
Carnot–Carathéodory metric. However, it is a reflection system of Hn with the Eu-
clidean metric. This makes possible a rearrangement argument for sets and functions
that are σ -invariant (see Sect. 6). We call R = {H−,H,H+, �, σ } a horizontal re-
flection system of Hn with symmetry σ .

Now we pass to vertical reflection systems with symmetry. In this case, we let

H = {
(z, t) ∈ Hn : Im(z1) = 0

}
, H± = {

(z, t) ∈ Hn : ±Im(z1) > 0
}
.

The isometry � is the one in (5.8). The symmetry σ : Hn → Hn is in this case

σ(z, t) = (z1, z̄2, . . . , z̄n,−t), (z, t) ∈ Hn. (5.10)

The same considerations as above apply to this situation. We call R = {H−,H,H+,

�, σ } a vertical reflection system of Hn with symmetry σ .

6 Rearrangements in the Heisenberg Group

In this section, we consider the Heisenberg group Hn with the Carnot–Carathéodory
metric introduced in Example 5.5. The notions of horizontal and vertical reflection
system with symmetry σ are introduced in the same example. The results proved in
this section hold in the following more general framework: the horizontal or verti-
cal reflection system with symmetry is conjugated by some isometry of Hn. Precise
statements can be easily deduced from the basic results.

The horizontal Sobolev space W
1,p

H (Hn), 1 ≤ p < ∞, is the set of all functions
f ∈ Lp(Hn) such that the distributional derivatives X1f, . . . ,Xnf,Y1f, . . . , Ynf are
in Lp(Hn). Moreover, we let

∫

Hn

∣∣∇Hf (z, t)
∣∣p dz dt =

∫

Hn

n∑

j=1

{(
Xjf (z, t)

)2 + (Yjf (z, t)2}p/2
dzdt.

For any locally integrable function f : Hn → R let

|∇Hf |(Hn
)

= sup

{∫

E

f

n∑

j=1

{Xjφj + Yjψj }dzdt : φj ,ψj ∈ C1
c

(
Hn

)
,

n∑

j=1

φ2
j + ψ2

j ≤ 1

}

.
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The space BVH(Hn) = {f ∈ L1(Hn) : |∇Hf |(Hn) < ∞} is the space of functions
with finite horizontal variation.

When f = χE is the characteristic function of a measurable set E ⊂ Hn, we let
|∂HE|(Hn) = |∇HχE |(Hn). If |∂HE|(Hn) < ∞ we say that E has finite horizontal
perimeter in Hn.

The characterizations (1.6) and (1.8) of Sobolev and BV norms with infinitesimal
integral difference quotients are proved in [32]. For R = {H−,H,H+, �, σ } vertical
or horizontal reflection system with symmetry σ , the two-points rearrangement of a
function f : Hn → R is defined in (2.3). The function f is σ -symmetric if f = f ◦σ .
For σ -symmetric functions, the two-points rearrangement reads as follows. When R
is the horizontal reflection system we have

fR(z, t) =
{

max{f (z, t), f (z,−t)} if t ≥ 0,

min{f (z, t), f (z,−t)} if t ≤ 0.

When R is the vertical reflection system we have

fR(z, t) =
{

max{f (z, t), f (z̄1, z2, . . . , zn, t)} if Im(z1) ≥ 0,

min{f (z, t), f (z̄1, z2, . . . , zn, t)} if Im(z1) ≤ 0.

6.1 Two-Points Rearrangement

Theorem 6.1 Let R be either a horizontal or a vertical reflection system of Hn with
symmetry σ and let 1 ≤ p < ∞. For any σ -symmetric function f ∈ C1

c (Hn) we have

fR ∈ W
1,p

H (Hn) and moreover

∫

Hn

∣∣∇HfR(z, t)
∣∣p dz dt ≤

∫

Hn

∣∣∇Hf (z, t)
∣∣p dz dt. (6.1)

Proof With abuse of notation, we denote points of Hn by x, y. For any 0 < r < 1 let

Qr,p(f ) =
∫

Hn×Hn

∣∣f (x) − f (y)
∣∣pχr(x, y) dx dy,

where

χr(x, y) =
{

1
L2n+1(Br (x))

if d(x, y) < r,

0 otherwise.

Here, d stands for the Carnot–Carathéodory metric and Br(x) denote Carnot–
Carathéodory balls. Notice that L2n+1(Br(x)) = r2n+2 L2n+1(B1(0)) is independent
of x.

Let L denote the Lipschitz constant of f with respect to the Euclidean metric:

L = Lip(f ) = sup
x �=y

|f (x) − f (y)|
|x − y| . (6.2)
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Let

K = {
(z, t) ∈ Hn : ∣∣Re(zi)

∣∣ ≤ R,
∣∣Im(zi)

∣∣ ≤ R, |t | ≤ R, i = 1, . . . , n
}

(6.3)

be a compact cube centered at 0 and with axes parallel to the coordinate axes and
such that

distH
(
Hn \ K, supp(f )

) ≥ 1. (6.4)

Here, distH stands for the Carnot–Carathéodory distance. Condition (6.4) holds if
R > 0 is large enough. By a well-known estimate, there exists a constant CK > 0
such that

|x − y| ≤ CKd(x, y) for all x, y ∈ K. (6.5)

Let H be the reflection hyperplane of R = {H−,H,H+, �, σ } and let (H ∩ K)r
denote the CKr-neighborhood in the Euclidean metric of H ∩ K in Hn, and namely:

(H ∩ K)r = {
x ∈ Hn : dist(x,H ∩ K) < rCK

}
.

Here and hereafter, dist stands for the Euclidean distance. We claim that for any
0 < r < 1 we have

Qr,p(fR) ≤ Qr,p(f ) + 2LpC
p
Krp L2n+1(H ∩ K)r . (6.6)

Because

lim
r↓0

L2n+1(H ∩ K)r = 0,

the claim (6.1) follows from (6.6), by formula (1.6) (which also holds for p = 1 for
smooth enough functions).

We prove (6.6). As in the proof of Theorem 2.8, we have

Qr,p(f ) =
∫ ∫

H+×H+

{∣∣f (x) − f (y)
∣∣p + ∣∣f (�x) − f (�y)

∣∣p}
χr(x, y) dx dy

+
∫ ∫

H+×H+

{∣∣f (x) − f (�y)
∣∣p + ∣∣f (�x) − f (y)

∣∣p}
χr(x,�y)dxdy.

In the latter integral we perform the change of variable y = σz. Using the symmetries
f (�σy) = f (�y) and f (σy) = f (y) we obtain

Qr,p(f ) =
∫ ∫

H+×H+
Q(f ;x, y) dxdy,

where we let

Q(f ;x, y) = {∣∣f (x) − f (y)
∣∣p + ∣∣f (�x) − f (�y)

∣∣p}
χr(x, y)

+ {∣∣f (x) − f (�y)
∣∣p + ∣∣f (�x) − f (y)

∣∣p}
χr(x,�σy).

Let x, y ∈ H+. We have the following four cases:
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(1) d(x, y) ≥ r and d(x,�σy) ≥ r ;
(2) d(x, y) < r and d(x,�σy) < r ;
(3) d(x, y) < r ≤ d(x,�σy);
(4) d(x,�σy) < r ≤ d(x, y).

In the proof of Theorem 2.8, we had no case (4). In the cases (1), (2), and (3) we have

Q(fR;x, y) ≤ Q(f ;x, y). (6.7)

The proof is the same as in Theorem 2.8. We study case (4). Let

Er = {
(x, y) ∈ H+ × H+ : d(x,�σy) < r ≤ d(x, y)

}
.

If (x, y) ∈ Er , we have

Q(f ;x, y) = {∣∣f (x) − f (�y)
∣∣p + ∣∣f (�x) − f (y)

∣∣p}
χr(x,�σy).

The function fR is σ -symmetric. Moreover, fR is the Euclidean two-points re-
arrangement of f with respect to the hyperplane H . By (2.4), we have Lip(fR) ≤
Lip(f ) = L. In particular, we have fR ∈ W

1,p

H (Hn), trivially. By (6.5), we have

∣∣fR(x) − fR(�y)
∣∣ = ∣∣fR(x) − fR(�σy)

∣∣

≤ L|x − �σy| ≤ LCKd(x,�σy) < LCKr,

and analogously |fR(�x) − fR(y)| < LCKr .
By (6.4) we may assume that x, y ∈ K . In fact, if x ∈ Hn \ K (or y ∈ Hn \ K) and

d(x,�σy) < r < 1, we have

f (x) = f (�x) = f (�y) = f (y) = 0,

and thus Q(fR;x, y) = 0. On the other hand, if d(x,σ�y) < r and x, y ∈ H+ ∩ K ,
we have

dist(�x,H ∩ K) = dist(x,H ∩ K) < |x − σ�y| ≤ CKd(x,σ�y) ≤ CKr.

Then we have
∫

Er

Q(fR;x, y) dx dy

≤
∫

(H∩K)r

∫

H+

{∣∣fR(x) − fR(�y)
∣∣p + ∣∣fR(�x) − fR(y)

∣∣p}
χr(x,�σy)dy dx

≤ 2LpC
p
Krp

∫

H+∩(H∩K)r

∫

H+
χr(x,�σy)dy dx

≤ 2LpC
p
Krp L2n+1(H ∩ K)r,
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and finally

∫

H+×H+
Q(fR;x, y) dx dy

=
∫

H+×H+\Er

Q(fR;x, y) dx dy +
∫

Er

Q(fR;x, y) dx dy

≤
∫

H+×H+
Q(f ;x, y)dxdy + 2LpC

p
Krp L2n+1(H ∩ K)r .

This is (6.6). �

We extend Theorem 6.1 to the case of Sobolev functions in W
1,p

H (Hn) and to sets
with finite horizontal perimeter. We need the following density theorems which are
proved in [18], in a more general framework. For any f ∈ W

1,p

H (Hn), 1 ≤ p < ∞,

there exists a sequence fh ∈ C1(Hn) ∩ W
1,p

H (Hn), h ∈ N, such that

lim
h→∞‖fh − f ‖p = lim

h→∞‖∇Hfh − ∇Hf ‖p = 0. (6.8)

This is Theorem 1.2.3 in [18]. The functions fh are obtained as convolutions of the
form

fε(x) =
∫

Hn

f (y)Jε(x − y)dy, ε > 0, x ∈ Hn,

where Jε(x) = ε2n+1J (|x|/ε) is a standard approximation of the identity and |x|
denotes the Euclidean norm of x ∈ Hn = R

2n+1. If f is σ -symmetric with σ as in
(5.9) or (5.10), then also fε is σ -symmetric. Multiplying each fh by a suitable cut-off
function, we may then assume that the functions fh in (6.8) are compactly supported
and σ -symmetric, if f is σ -symmetric.

Analogously, for any f ∈ BVH(Hn) there exists a sequence fh ∈ C1(Hn) ∩
BVH(Hn), h ∈ N, such that

lim
h→∞‖fh − f ‖1 = 0 and lim

h→∞|∇Hfh|
(
Hn

) = |∇Hf |(Hn
)
. (6.9)

This is Theorem 2.2.2 in [18]. The functions fh may be assumed to be compactly
supported and σ -symmetric, if f is σ -symmetric.

Corollary 6.2 Let R be either a horizontal or a vertical reflection system of Hn with
symmetry σ .

(i) Let 1 < p < ∞. For any σ -symmetric function f ∈ W
1,p

H (Hn) we have fR ∈
W

1,p

H (Hn) and moreover

∫

Hn

∣∣∇HfR(z, t)
∣∣pdzdt ≤

∫

Hn

∣∣∇Hf (z, t)
∣∣p dz dt. (6.10)
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(ii) For any σ -symmetric function f ∈ BVH(Hn) we have fR ∈ BVH(Hn) and more-
over

|∇HfR|(Hn
) ≤ |∇Hf |(Hn

)
, (6.11)

where fR is the two-points rearrangement of f .

Proof This follows from Theorem 6.1, on using the approximation in (6.8) and (6.9).
The proof is elementary and we skip the details. �

6.2 Vertical Steiner Rearrangement

Let R = {H−,H,H+, �, σ ) be the horizontal reflection system with symmetry in-
troduced in Example 5.5; in particular, we have H = {(z, t) ∈ Hn : t = 0}. We prove
some theorems on the Steiner rearrangement of sets and functions in the t-coordinate.
We call this procedure vertical Steiner rearrangement. So the vertical rearrangement
corresponds to the horizontal reflection system.

The mappings τs : Hn → Hn, s ∈ R, τs(z, t) = (z, t + s) form a 1-parameter group
T = {τs}s∈R of isometries of Hn. We may identify the reflection hyperplane H with
Hn/T . The orbits are vertical lines Tz = {(z, t) ∈ Hn : t ∈ R}, z ∈ C

n, and the projec-
tion π : Hn → Hn/T = H , π(z, t) = (z,0), is continuous.

The natural disintegration of the Lebesgue measure L2n+1 along the orbits Tz is
given by the Fubini–Tonelli theorem. For any measurable set E ⊂ Hn we have

L2n+1(E) =
∫

H

L1(Ez)dL2n(z),

where Ez = {t ∈ R : (z, t) ∈ E}, z ∈ C
n. For any measurable set E ⊂ Hn with finite

measure, we call the set

E� = {
(z, t) ∈ C

n × R : 2|t | < L1(Ez)
}
,

the vertical Steiner rearrangement of E. Analogously, for any measurable, rearrange-
able function f : Hn → [0,∞), we call the function

f �(z, t) =
∫ ∞

0
χ{f >s}� (z, t) ds, (z, t) ∈ Hn,

the vertical Steiner rearrangement of f .

Theorem 6.3 Let f ∈ W
1,p

H (Hn), p > 1, be a nonnegative, σ -symmetric function

and let f � be the vertical Steiner rearrangement of f . Then f � ∈ W
1,p

H (Hn) and

∫

Hn

∣∣∇Hf �(z, t)
∣∣p dz dt ≤

∫

Hn

∣∣∇Hf (z, t)
∣∣p dz dt. (6.12)

Proof We follow closely the proof of Theorem 3.6. For the reader’s convenience, we
repeat some of the details.

Step 1. Let us first assume that f ∈ C1
c (Hn).
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As in (6.3), let K ⊂ Hn be a compact cube centered at the origin with axes parallel
to the coordinate axes and containing the support of f . Let A(f ) be the family of all
nonnegative, σ -symmetric functions g ∈ Lp(Hn) such that

(i) L1{g > s}z = L1{f > s}z for L2n-a.e. z ∈ C
n, s > 0; (6.13)

(ii) g(z, t) = 0 for all (z, t) ∈ Hn \ K; (6.14)

(iii) ‖∇Hg‖p ≤ ‖∇Hf ‖p. (6.15)

The set A(f ) is uniformly bounded in W
1,p

H (Hn) and boundedly supported. By the
compactness theorem in [21] (see Sect. 4), A(f ) is compact in Lp(K). The closure
of A(f ) can be shown as in the proof of Theorem 3.6 and we skip the details.

The functional J : A(f ) → [0,∞)

J (g) =
∫

Hn

∣∣g(z, t) − f �(z, t)
∣∣pdzdt, (6.16)

achieves the minimum at some f̄ ∈ A(f ). There are two cases: (1) J (f̄ ) = 0;
(2) J (f̄ ) > 0. In the first case, we are finished. On the other hand, the case J (f̄ ) > 0
may not occur. The proof of this fact is the same as in Theorem 3.6. We sketch the
argument below.

If J (f̄ ) > 0 there exists a δ > 0 such that, letting A = {f̄ > δ} and B = {f � > δ},
we have L2n+1(A�B) > 0. The same argument after (3.29) proves then the existence
of some z ∈ C

n, t−, t+ ∈ R, and η > 0 such that (z, t−) ∈ A \ B , (z, t+) ∈ B \ A and

L2n+1(Uη(z, t−) ∩ A \ B
)
>

1

2
L2n+1(Uη(z, t−)

)
,

L2n+1(Uη(z, t+) ∩ B \ A
)
>

1

2
L2n+1(Uη(z, t+)

)
.

(6.17)

Here, Uη(z, t) is the Euclidean ball centered at (z, t) ∈ Hn = C
n × R with radius η.

Let t = (t− + t+)/2, H̄ = τtH , H̄− = τtH
−, H̄+ = τtH

+, and let �̄ denote the
standard (Euclidean) reflection w.r.t. H̄ . Let f̄R̄ be the function defined as follows

f̄R̄(z, t) =
{

max{f̄ (z, t), f̄ (�̄(z, t))} if (z, t) ∈ H̄+,

min{f̄ (z, t), f̄ (�̄(z, t))} if (z, t) ∈ H̄−,

and f̄R̄ = f̄ on H̄ . By a straightforward generalization of Corollary 6.2, this func-
tion satisfies ‖∇Hf̄R̄‖p ≤ ‖∇Hf̄ ‖p ≤ ‖∇Hf ‖p . Moreover, the function g = f̄R̄ is
σ -symmetric and satisfies (6.13)–(6.14). Thus f̄R̄ is an element of A(f ). Finally,
assumption (2.23) of Theorem 2.11 holds by (6.17) and f �

R̄ = f �. The proof of the
last statement is as in Theorem 3.6. Therefore, we have

J (f̄R̄) =
∫

Hn

∣∣f̄R̄ − f �
∣∣p dz dt =

∫

Hn

∣∣f̄R̄ − f �

R̄
∣∣p dz dt

<

∫

Hn

∣∣f̄ − f �
∣∣p dz dt = J (f̄ ).

This contradicts the minimality of f̄ .
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Step 2. We prove the theorem for any nonnegative, σ -symmetric function f ∈
W

1,p

H (Hn).
The proof is by approximation. Let (fh)h∈N be a sequence of nonnegative, σ -

symmetric functions fh ∈ C1
c (Hn) such that (6.8) holds. We can also assume that

fh(z, t) → f (z, t) as h → ∞ for L2n+1-a.e. (z, t) ∈ Hn. It follows that for L2n-
a.e. z ∈ C

n and for all but a countable set of s > 0 it holds that

lim
h→∞ L1({fh > s}z�{f > s}z

) = 0. (6.18)

The proof of this claim is analogous to one in Theorem 3.6. We skip the details.
By the Step 1, we have

∫

Hn

∣∣∇Hf �
h (z, t)

∣∣p dz dt ≤
∫

Hn

∣∣∇Hfh(z, t)
∣∣p dz dt.

It follows that, up to a subsequence, the sequence (f �
h )h∈N converges weakly in

W
1,p

H (Hn) to a function g such that

∫

Hn

∣∣∇Hg(z, t)
∣∣p dz dt ≤ lim inf

h→∞

∫

Hn

∣∣∇Hf �
h (z, t)

∣∣p dz dt.

We may also assume that f �
h → g L2n+1-a.e. in Hn. We claim that g = f �.

We preliminarily prove that for L2n-a.e. z ∈ C
n and for all but a countable set of

s > 0 it holds that

lim
h→∞ L1({f �

h > s
}
z
�{g > s}z

) = 0. (6.19)

First notice that for L2n-a.e. z ∈ C
n and for all but a countable set of s > 0 we have

L1{g = s}z = 0. Moreover, the functions t 
→ f �
h (z, t) and t 
→ g(z, t) are even and

non-increasing for t ≥ 0. The sets Ih(z, s) = {f �
h > s}z and I (z, s) = {g(z, t) > s}z

are therefore essentially symmetric intervals, Ih(z, s) = (−ah, ah) and I (z, s) =
(−a, a) for some a, ah ≥ 0. Using the pointwise convergence and L1{g = s}z = 0, it
is elementary to show that ah → a as h → ∞. This proves (6.19).

From (6.18) and (6.19), we deduce that

L1{g > s}z = lim
h→∞ L1{f �

h > s
}
z
= lim

h→∞ L1{fh > s}z = L1{f > s}z.

This implies that g = f �, and the proof is finished. �

In the sequel, let |∂HE| = |∂HE|(Hn) denote the horizontal perimeter of E in Hn.

Theorem 6.4 Let E ⊂ Hn be a σ -symmetric set of finite measure and finite H-
perimeter and let E� be the vertical Steiner rearrangement of E. Then E� is of finite
H-perimeter and

∣∣∂HE�
∣∣ ≤ |∂HE|. (6.20)
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Proof The proof is a repetition of the one of Theorem 6.3. We sketch a few details.

Step 1. We claim that for any f ∈ C1
c (Hn) with ‖f ‖∞ ≤ 1 we have |∇Hf �|(Hn) ≤

|∇Hf |(Hn) .
As in (6.3), let K ⊂ Hn be a cube centered at the origin and containing the support

of f . Let A(f ) be the set of all nonnegative, σ -symmetric functions g ∈ L1(Hn) with
‖g‖∞ ≤ 1 and such that

(i) L1{g > s}z = L1{f > s}z for L2n-a.e. z ∈ C
n, s > 0;

(ii) g(z, t) = 0 for all (z, t) ∈ Hn \ K;

(iii) |∇Hg|(Hn
) ≤ |∇Hf |(Hn

)
.

The set A(f ) is compact in L2(K). The functional J : A(f ) → [0,∞)

J (g) =
∫

Hn

∣∣g(z, t) − f �(z, t)
∣∣2

dzdt,

achieves the minimum at some f̄ ∈ A(f ). The case J (f̄ ) > 0 may not occur. The
proof is the same as in Theorem 6.3. Here, we use Corollary 6.2, part (ii).

Step 2. The proof of the theorem is a line-by-line repetition of the Step 2 of The-
orem 6.3. Here, we use the approximation (6.9) of the characteristic function of E

with a sequence of smooth functions for which we may use Step 1. �

Example 6.5 Theorem 6.4 does not hold if we drop the σ -symmetry of the set. We
construct a set E ⊂ H1 such that its vertical Steiner rearrangement E� satisfies

∣∣∂HE�
∣∣ > |∂HE|.

The set E is the left translation of a cylinder.
Let D = {z ∈ C : |z| < 1} and define the horizontal area of the graph of a Lipschitz

function f : D → R as

AH(f ) =
∫

D

√(
∂f

∂x
− 2y

)2

+
(

∂f

∂y
+ 2x

)2

dx dy. (6.21)

This area is the horizontal perimeter of the epigraph of f inside the cylinder D × R.
Formula (6.21) is a special case of the formula

|∂HE| =
∫

∂E

√
(X · ν)2 + (Y · ν)2dH2, (6.22)

for a bounded open set E ⊂ H1 = R
3 with Lipschitz boundary. Here, ν is the unit

normal to the boundary, · is the standard scalar product of R
3, and H2 stands for the

standard 2-dimensional Hausdorff measure in R
3.
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Fix a real number c > 0 and, for a, b ∈ R, let fa,b be the affine function
fa,b(x, y) = ax + by + c. The horizontal area of the graph of this function depends
only on the parameter s = √

a2 + b2, and namely, by (6.21),

A(s) = AH(f ) =
∫ 1

0

∫ 2π

0

√
s2 + 4rs sinϑ + 4r2dϑ r dr, s ≥ 0.

The derivative in s of the function A is

A′(s) =
∫ 1

0

∫ 2π

0

s + 2r sinϑ√
s2 + 4rs sinϑ + 4r2

dϑ rdr, s ≥ 0,

and, in particular, we have A′(0) = 0. The second derivative is

A′′(s) =
∫ 1

0

∫ 2π

0

4r3 cos2 ϑ

(s2 + 4rs sinϑ + 4r2)3/2
dϑ dr > 0, s ≥ 0.

Then A′ is strictly increasing and thus also A is strictly increasing for s ≥ 0.
Now let Ca,b ⊂ H1 be the cylinder

Ca,b = {
(x + iy, t) ∈ H1 : x + iy ∈ D, |t − ax − by| < c

}
.

We claim that for all a, b ∈ R we have

|∂HC0,0| ≤ |∂HCa,b|

with equality if and only if a = b = 0.
We start from the following identity

|∂HCa,b| = 2AH(fa,b) + H2(∂D × R ∩ ∂Ca,b), (6.23)

which easily follows from (6.22). By the Fubini–Tonelli theorem, H2(∂D × R ∩
∂Ca,b) = 4πc is independent of a, b. The claim follows.

Now let p = (z0,0) ∈ H1 be a point such that z0 �= 0 and let

E = p ∗ C0,0 = {
(z, t) ∈ H1 : |z − z0| < 1,

∣∣t − 2Im(z0z̄)
∣∣ < c

}
.

The vertical Steiner rearrangement of E is the cylinder

E� = {
(z, t) ∈ H1 : |z − z0| < 1, |t | < c

} = p ∗ Ca,b

for suitable a, b ∈ R that satisfy a2 + b2 �= 0, because z0 �= 0. By the left invariance
of the horizontal perimeter and by the discussion of the equality case in (6.23), we
have

∣∣∂HE�
∣∣ = |∂HCa,b| > |∂HC0,0| = |∂HE|.
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6.3 Circular Rearrangement

Let R = {H−,H,H+, �, σ } be the vertical reflection system with symmetry in-
troduced in Example 5.5. In particular, we have H = {(z, t) ∈ H1 : Im(z1) = 0},
�(z, t) = (z̄,−t), and σ(z, t) = (z1, z̄2, . . . , z̄n,−t), (z, t) ∈ Hn.

For any s ∈ S
1 = {s ∈ C : |s| = 1} let τs : Hn → Hn be the mapping τs(z, t) =

(sz1, z2, . . . , zn, t). Then T = {τs}s∈S1 is a 1-parameter group of isometries of Hn

with the Carnot–Carathéodory metric. We may identify

Hn/T = {
(z, t) ∈ Hn : Im(z1) = 0,Re(z1) ≥ 0

} ⊂ H.

The orbits Tz,t = {(sz1, z2, . . . , zn, t) ∈ Hn : s ∈ S
1} are circles and the projection

π : Hn → Hn/T is π(z, t) = (|z1|, z2, . . . , zn, t).
The natural disintegration of the Lebesgue measure L2n+1 is given by cylindrical

coordinates. For any Borel set E ⊂ Hn we have

L2n+1(E) =
∫

Hn/T

H1(Ez,t )dL2n(z, t),

where Ez,t = E ∩ Tz,t is the section of E with the orbit of (z, t) ∈ Hn/T . Here, H1

is the standard 1-dimensional Hausdorff measure in R
2n+1.

For any (z, t) ∈ Hn/T we let

E�
z,t = {

(sz1, z2, . . . , zn, t) ∈ Hn : s ∈ S
1, Re(s) > s0

}
,

where s0 ∈ [−1,1] is the unique real number such that H1(E�
z,t ) = H1(Ez,t ). We call

the set

E� =
⋃

(z,t)∈Hn/T

E�
z,t (6.24)

the circular rearrangement of E. This definition is a special case of (3.6). Analo-
gously, for any nonnegative, measurable (rearrangeable) function f : Hn → R, we
call the function f � defined in (3.7) the circular rearrangement of f .

Theorem 6.6 (i) Let f ∈ W
1,p

H (Hn), p > 1, be a nonnegative, σ -symmetric function

and let f � be the circular rearrangement of f . Then f � ∈ W
1,p

H (Hn) and

∫

Hn

∣∣∇Hf �(z, t)
∣∣p dz dt ≤

∫

Hn

∣∣∇Hf (z, t)
∣∣p dz dt. (6.25)

(ii) Let E ⊂ Hn be a σ -symmetric set of finite measure and finite H-perimeter and
let E� be the circular rearrangement of E. Then E� is of finite H-perimeter and

∣∣∂HE�
∣∣ ≤ |∂HE|. (6.26)

Proof The proof is a straightforward adaptation of the proof of Theorems 6.3 and 6.4.
A repetition of the details is not necessary, here. �
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