
J Geom Anal (2014) 24:1346–1367
DOI 10.1007/s12220-012-9376-3

O R I G I NA L R E S E A R C H

Volume Growth, Number of Ends, and the Topology
of a Complete Submanifold

Vicent Gimeno · Vicente Palmer

Received: 17 December 2011 / Published online: 27 November 2012
© Mathematica Josephina, Inc. 2012

Abstract Given a complete isometric immersion ϕ : P m −→ Nn in an ambient Rie-
mannian manifold Nn with a pole and with radial sectional curvatures bounded
from above by the corresponding radial sectional curvatures of a radially symmet-
ric space Mn

w, we determine a set of conditions on the extrinsic curvatures of P that
guarantee that the immersion is proper and that P has finite topology in line with the
results reported in Bessa et al. (Commun. Anal. Geom. 15(4):725–732, 2007) and
Bessa and Costa (Glasg. Math. J. 51:669–680, 2009). When the ambient manifold
is a radially symmetric space, an inequality is shown between the (extrinsic) volume
growth of a complete and minimal submanifold and its number of ends, which gener-
alizes the classical inequality stated in Anderson (Preprint IHES, 1984) for complete
and minimal submanifolds in R

n. As a corollary we obtain the corresponding inequal-
ity between the (extrinsic) volume growth and the number of ends of a complete and
minimal submanifold in hyperbolic space, together with Bernstein-type results for
such submanifolds in Euclidean and hyperbolic spaces, in the manner of the work
Kasue and Sugahara (Osaka J. Math. 24:679–704, 1987).
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1 Introduction

A natural question in Riemannian geometry is to explore the influence of the conduct
of the curvature of a complete Riemannian manifold on its geometric and topological
properties. Classical results concerning this are the intrinsic gap theorems shown by
Greene and Wu in [10] (see Theorems 2 and 3; see also [11]) and the Bernstein-type
theorems shown by Anderson in [1] and by Schoen in [25] when minimal submani-
folds properly immersed in the Euclidean space R

n were considered.
Greene and Wu’s results state that a Riemannian manifold Mn with a pole and

with faster-than-quadratic decay of its sectional curvatures is isometric to Euclidean
space, if either its dimension is odd and the curvature does not change its sign or
its dimension is even (and n �= 2,4,8) and the curvature is everywhere non-negative.
On the other hand, Anderson proved, as a corollary of a generalization of the Chern–
Osserman theorem on complete and minimal submanifolds of R

n with finite total
(extrinsic) curvature, that any such submanifold having one end is an affine n-plane.

More examples concerning submanifolds immersed in an ambient Riemannian
manifold and the analysis of their (intrinsic and extrinsic) curvature behavior are the
(Bernstein-type) gap results given by Kasue and Sugahara in [13] (see Theorems A
and B) and by Kasue in [14], where an accurate (extrinsic) curvature decay forces
minimal (or not) submanifolds with one end of the Euclidean and hyperbolic spaces
to be totally geodesic.

The estimation of the number of ends of these submanifolds plays a fundamental
role in all the Bernstein-type results mentioned above. In this way, in [1] it is proved
that given a complete and minimal submanifold ϕ : P m −→ R

n, m > 2, having fi-
nite total curvature

∫
P

‖BP ‖mdσ < ∞, its (extrinsic) volume growth, defined as the

quotient Vol(ϕ(P )∩B
0,n
t )

ωntn
is bounded from above by the number of ends of P , E (P ),

namely:

lim
t→∞

Vol(ϕ(P ) ∩ B
0,n
t )

ωntn
≤ E (P ), (1.1)

where B
b,n
t denotes the metric t-ball in the real space form of constant curvature b,

K
n(b), and ‖BP ‖ denotes the Hilbert–Schmidt norm of the second fundamental form

of P in R
n. Moreover, if E (P ) = 1, the conclusion reached (using inequality (1.1))

is the Bernstein-type result outlined above, namely that P m is an affine plane, i.e.,
totally geodesic in R

n (see Theorems 4.1, 5.1, and 5.2 in [1]).
In the paper [7] it was proven that inequality (1.1) is in fact an equality when

the minimal submanifold in R
n exhibits an accurate decay of its extrinsic curvature

‖BP ‖. Furthermore, in the paper [13] it was also proven that if the submanifold P has
only one end and the decay of its extrinsic curvature ‖BP ‖ is faster than linear (when
the ambient space is R

n) or than exponential (when the ambient space is H
n(b)), then

it is totally geodesic.



1348 V. Gimeno and V. Palmer

Within this study of the behavior at infinity of complete and minimal submanifolds
with finite total curvature immersed in Euclidean space, it was also proven in [1] and
in [20] that the immersion of a complete and minimal submanifold P in R

n or H
n(b)

satisfying
∫
P

‖BP ‖mdσ < ∞ is proper and that P is of finite topological type.
At this point we should mention the results reported in [2] and in [3], where new

conditions have been stated on the decay of the extrinsic curvature for a completely
immersed submanifold P in Euclidean space [2] and in a Cartan–Hadamard mani-
fold [3], which guarantees the properness of the submanifold and the finiteness of its
topology.

In view of these results, it seems natural to consider the following three issues:

(1) Can the properness/finiteness results in [2] and [3] be extended to submanifolds
immersed in spaces which do not necessarily have non-positive curvature?

(2) Do we have an analogy to inequality (1.1) between the extrinsic volume growth
and the number of ends when we consider a minimal submanifold (properly) im-
mersed in hyperbolic space which exhibit an accurate extrinsic curvature decay?

(3) Moreover, is it possible to deduce from this inequality a Bernstein-type result in
line with [1] and [13]?

In this paper we provide a (partial) answer to these questions, besides other lower
bounds for the number of ends for (non-minimal) submanifolds in Euclidean and
hyperbolic spaces and other gap results related to these estimates. As a preliminary
view of our results, we have Theorems 1.1 and 1.2, which follow directly from our
Theorem 3.5.

In Theorem 1.1 we have the answer to the last two questions, namely, we have
obtained equation (1.1) but in the hyperbolic case and, moreover, we have also proven
a Bernstein-type result for minimal submanifolds in hyperbolic space, along the lines
studied by Kasue and Sugahara in [13] (see assertion (A-iv) of Theorem A).

Theorem 1.1 Let ϕ : P m −→ H
n(b) be a complete, proper, and minimal immersion

with m > 2. Let us suppose that for sufficiently large R0 and for all points x ∈ P such
that r(x) > R0, (i.e., outside a compact):

‖BP
x ‖ ≤ δ(r(x))

e2
√−br(x)

,

where r(x) = dHn(b)(o,ϕ(x)) is the (extrinsic) distance in H
n(b) of the points in

ϕ(P ) to a fixed pole o ∈ H
n(b) such that ϕ−1(o) �= ∅ and δ(r) is a smooth function

such that δ(r) → 0 when r → ∞. Then:

(1) The finite number of ends E (P ) is related to the volume growth by

Supt>0
Vol(Dt (o))

Vol(Bb,m
t )

≤ E (P ),

where Dt(o) = {x ∈ P : r(x) < t} = {x ∈ P : ϕ(x) ∈ B
b,n
t (o)} is the extrinsic

ball of radius t in P (see Definition 2.1).
(2) If P has only one end, P is totally geodesic in H

n(b).
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When the ambient manifold is R
n, Theorem 1.2 encompasses a slightly less gen-

eral version of the Bernstein-type result given in assertion (A-i) of Theorem A in
[13].

Theorem 1.2 Let ϕ : P m −→ R
n be a complete non-compact, minimal, and proper

immersion with m > 2. Let us suppose that for sufficiently large R0 and for all points
x ∈ P such that r(x) > R0 (i.e., outside the compact extrinsic ball DR0(o) with
ϕ−1(o) �= ∅):

‖BP
x ‖ ≤ ε(r(x))

r(x)
,

where ε(r) is a smooth function such that ε(r) → 0 when r → ∞. Then:

(1) The finite number of ends E (P ) is related to the volume growth by

Supt>0
Vol(Dt )

Vol(B0,m
t )

≤ E (P ).

(2) If P has only one end, P is totally geodesic in R
n.

These results, which we shall prove in Sect. 8 (together with the corollaries in
Sect. 4) follow from two main theorems, which are established in Sect. 3. In the
first (Theorem 3.1) we show that a complete isometric immersion ϕ : P m −→ Nn,
m > 2, with controlled second fundamental form in a complete Riemannian manifold
that possesses a pole and has controlled radial sectional curvatures is proper and has
finite topology. In the second (Theorem 3.4) it is proven that a complete and proper
isometric immersion ϕ : P m −→ Mn

w , m > 2, with controlled second fundamental
form in a radially symmetric space Mn

w with sectional curvatures bounded from below
by a radial function, has its volume growth bounded from above by a quantity which
involves its (finite) number of ends.

1.1 Outline

The structure of the paper can be outlined as follows. In Sect. 2 we present the defi-
nition of an extrinsic ball, together with the basic facts about the Hessian comparison
theory of restricted distance function that we are going to use and an isoperimet-
ric inequality for the extrinsic balls which plays an important role in the proof of
Theorem 3.4. Section 3 is devoted to the statement of the main results (Theorems
3.1, 3.4, and 3.5). In Sect. 4 we will present two lists of results based on Theorems
3.1, 3.4, and 3.5: the first set of consequences is devoted to bounding the volume
growth of a submanifold from above by the number of its ends, in several contexts,
some Bernstein-type results also being obtained. In the second set of corollaries, some
compactification theorems for submanifolds in R

n, in H
n, and in H

n × R
l are stated.

Sections 5, 6, 7 are devoted to the proofs of the Theorems 3.1, 3.4, and 3.5, respec-
tively. Theorems 1.1, 1.2, and the corollaries stated in Sect. 4 are proven in Sect. 8.
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2 Preliminaries

2.1 The Extrinsic Distance

Throughout the paper we assume that ϕ : P m −→ Nn is an isometric immersion of
a complete non-compact Riemannian m-manifold P m into a complete Riemannian
manifold Nn with a pole o ∈ N (this is the precise meaning we shall give to the
word submanifold throughout the text). Recall that a pole is a point o such that the
exponential map

expo : ToN
n → Nn

is a diffeomorphism. For every x ∈ Nn − {o} we define r(x) = ro(x) = distN(o, x),
and this distance is realized by the length of a unique geodesic from o to x, which
is the radial geodesic from o. We also denote by r|P or by r the composition r ◦ ϕ :
P → R+ ∪ {0}. This composition is called the extrinsic distance function from o in
P m. The gradients of r in N and r|P in P are denoted by ∇Nr and ∇P r , respectively.
Then we have the following basic relation, by virtue of the identification, given any
point x ∈ P , between the tangent vector fields X ∈ TxP and ϕ∗x (X) ∈ Tϕ(x)N :

∇Nr = ∇P r + (∇Nr)⊥, (2.1)

where (∇Nr)⊥(ϕ(x)) = ∇⊥r(ϕ(x)) is perpendicular to TxP for all x ∈ P .

Definition 2.1 Given ϕ : P m −→ Nn an isometric immersion of a complete and
connected Riemannian m-manifold P m into a complete Riemannian manifold Nn

with a pole o ∈ N , we denote the extrinsic metric balls of radius t > 0 and center
o ∈ N by Dt(o). They are defined as the subset of P :

Dt(o) = {x ∈ P : r(ϕ(x)) < t} = {x ∈ P : ϕ(x) ∈ BN
t (o)},

where BN
t (o) denotes the open geodesic ball of radius t centered at the pole o in Nn.

Note that the set ϕ−1(o) can be the empty set.

Remark 2.2 When the immersion ϕ is proper, the extrinsic domains Dt(o) are pre-
compact sets, with smooth boundaries ∂Dt (o). The assumption on the smoothness of
∂Dt (o) makes no restriction. Indeed, the distance function r is smooth in N − {o}
since N is assumed to possess a pole o ∈ N . Hence the composition r|P is smooth in
P and consequently the radii t that produce smooth boundaries ∂Dt (o) are dense in
R by Sard’s theorem and the Regular Level Set Theorem.

We now present the curvature restrictions which constitute the geometric frame-
work of our study.

Definition 2.3 Let o be a point in a Riemannian manifold N and let x ∈ N − {o}.
The sectional curvature KN(σx) of the two-plane σx ∈ TxN is then called an o-radial
sectional curvature of N at x if σx contains the tangent vector to a minimal geodesic
from o to x. We denote these curvatures by Ko,N(σx).
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2.2 Model Spaces

Throughout this paper we shall assume that the ambient manifold Nn has its o-radial
sectional curvatures Ko,N(x) bounded from above by the expression Kw(r(x)) =
−w′′(r(x))/w(r(x)), which are precisely the radial sectional curvatures of the
w-model space Mm

w we are going to define.

Definition 2.4 (See [21], [12], and [9]) A w-model Mm
w is a smooth warped product

with base B1 = [0,Λ[⊂ R (where 0 < Λ ≤ ∞), fiber Fm−1 = S
m−1
1 (i.e., the unit

(m − 1)-sphere with standard metric), and warping function w : [0,Λ[→ R+ ∪ {0},
with w(0) = 0, w′(0) = 1, and w(r) > 0 for all r > 0. The point ow = π−1(0), where
π denotes the projection onto B1, is called the center point of the model space. If
Λ = ∞, then ow is a pole of Mm

w .

Proposition 2.5 The simply connected space forms K
m(b) of constant curvature b

are w-models with warping functions

wb(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
b

sin(
√

br) if b > 0

r if b = 0
1√−b

sinh(
√−br) if b < 0

Note that for b > 0 the function wb(r) admits a smooth extension to r = π/
√

b.

Proposition 2.6 (See Proposition 42 in Chap. 7 of [21]. See also [9] and [12]) Let
Mm

w be a w-model with warping function w(r) and center ow . The distance sphere
Sw

r of radius r and center ow in Mm
w is the fiber π−1(r). This distance sphere has the

constant mean curvature ηw(r) = w′(r)
w(r)

.

On the other hand, the ow-radial sectional curvatures of Mm
w at every x ∈ π−1(r)

(for r > 0) are all identical and determined by

Kow,Mw(σx) = −w′′(r)
w(r)

,

and the sectional curvatures of Mm
w at every x ∈ π−1(r) (for r > 0) of the tangent

planes to the fiber Sw
r are also all identical and determined by

K(r) = KMw(ΠSw
r
) = 1 − (w′(r))2

w2(r)
.

Remark 2.7 The w-model spaces are completely determined via w by the mean cur-
vatures of the spherical fibers Sw

r :

ηw(r) = w′(r)/w(r),

by the volume of the fiber

Vol(Sw
r ) = V0w

m−1(r),

and by the volume of the corresponding ball, for which the fiber is the boundary
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Vol(Bw
r ) = V0

∫ r

0
wm−1(t) dt.

Here V0 denotes the volume of the unit sphere S
0,m−1
1 (in general, the sphere of radius

r in the real space form K
m(b) is denoted as S

b,m−1
r ). The last two functions define

the isoperimetric quotient function as follows:

qw(r) = Vol(Bw
r )/Vol(Sw

r ).

Besides the role of comparison controllers for the radial sectional curvatures of
Nn, we shall also need two further purely intrinsic conditions on the model spaces:

Definition 2.8 A given w-model space Mm
w is called balanced from below and bal-

anced from above, respectively, if the following weighted isoperimetric conditions
are satisfied:

Balanced from below: qw(r)ηw(r) ≥ 1/m for all r ≥ 0

Balanced from above: qw(r)ηw(r) ≤ 1/(m − 1) for all r ≥ 0

A model space is called totally balanced if it is balanced both from below and from
above.

Remark 2.9 If Kw(r) ≥ −η2
w(r), then Mm

w is balanced from above. If Kw(r) ≤ 0,
then Mm

w is balanced from below; see paper [15] for a detailed list of examples.

2.3 Hessian Comparison Analysis

The second-order analysis of the restricted distance function r|P defined on manifolds
with a pole is governed by the Hessian comparison Theorem A in [9].

This comparison theorem can be stated as follows, when one of the spaces is a
model space Mm

w (see [23]):

Theorem 2.10 (See [9], Theorem A) Let N = Nn be a manifold with a pole o, and
let M = Mm

w denote a w-model with center ow . Suppose that every o-radial sectional
curvature at x ∈ N \ {o} is bounded from above by the ow-radial sectional curvatures
in Mm

w as follows:

Ko,N(σx) ≤ −w′′(r)
w(r)

for every radial two-plane σx ∈ TxN at distance r = r(x) = distN(o, x) from o in N .
Then the Hessian of the distance function in N satisfies:

HessN(r(x))(X,X) ≥ HessM(r(y))(Y,Y )

= ηw(r)
(
‖X‖2 − 〈∇Mr(y),Y 〉2

M

)

= ηw(r)
(
‖X‖2 − 〈∇Nr(x),X〉2

N

)
(2.2)

for every vector X in TxN and for every vector Y in TyM with r(y) = r(x) = r and
〈∇Mr(y),Y 〉M = 〈∇Nr(x),X〉N .
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Remark 2.11 Note that inequality (2.2) is true along the geodesics emanating from o

and ow , which are free of conjugate points of o and ow (see Remark 2.3 in [9]). An-
other relevant observation is that the bound given in inequality (2.2) does not depend
on the dimension of the model space (see Remark 3.7 in [23]).

We now present a technical result concerning the Hessian of a radial function,
namely, a function which only depends on the distance function r . For the proof of
this result, and the rest of the results in this subsection, we refer to the paper [23].

Proposition 2.12 Let N = Nn be a manifold with a pole o. Let r = r(x) =
distN(o, x) be the distance from o to x in N . Let F : R −→ R be a smooth func-
tion. Then, given q ∈ N and X,Y ∈ TqN ,

HessN F ◦ r|q(X,Y ) = F ′′(r)(∇Nr ⊗ ∇Nr)(X,Y )

+ F ′(r)HessN r|q(X,Y ). (2.3)

Now, let us consider a complete isometric immersion ϕ : P m −→ N in a Rieman-
nian ambient manifold Nn with pole o, and with distance function to the pole r . We
are going to see how the Hessians (in P and in N ) of a radial function defined in
the submanifold are related via the second fundamental form BP of the submanifold
P in N . As before, given any q ∈ P , we identify the tangent vectors X ∈ TqP with
ϕ∗q X ∈ T ϕ(q)N throughout the following results.

Proposition 2.13 Let Nn be a manifold with a pole o, and let us consider an iso-
metric immersion ϕ : P m −→ N . If r|P is the extrinsic distance function, then, given
q ∈ P and X,Y ∈ TqP ,

HessP r|q(X,Y ) = HessN r|ϕ(q)(X,Y ) + 〈BP
q (X,Y ),∇Nr|q〉, (2.4)

where BP
q is the second fundamental form of P in N at the point q ∈ P .

Now, we apply Proposition 2.12 to F ◦ r|P = F ◦ r ◦ ϕ (considering P as the
Riemannian manifold where the function is defined) to obtain an expression for
HessP F ◦ r|P (X,Y ). Then, let us apply Proposition 2.13 to HessP r|P (X,Y ), and
finally we get:

Proposition 2.14 Let N = Nn be a manifold with a pole o, and let P m denote an
immersed submanifold in N . Let r|P be the extrinsic distance function. Let F : R −→
R be a smooth function. Then, given q ∈ P and X,Y ∈ TqP :

HessP F ◦ r|q(X,Y ) = F ′′(r(q))〈∇Nr|q,X〉〈∇Nr|q, Y 〉
+ F ′(r(q)){HessN r|q(X,Y ) + 〈∇Nr|q,BP

q (X,Y )〉}. (2.5)
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2.4 Comparison Constellations and Isoperimetric Inequalities

The isoperimetric inequalities satisfied by the extrinsic balls in minimal submanifolds
are at the base of the monotonicity of the volume growth function f (r) = Vol(Dr )

Vol(Bw
r )

,
a key result to prove Theorem 1.1. We have the following theorem.

Theorem 2.15 (See [15–18], and [22]) Let ϕ : P m −→ Nn be a complete, proper,
and minimal immersion in an ambient Riemannian manifold Nn which possesses at
least one pole o ∈ N . Let us suppose that the o-radial sectional curvatures of N are
bounded from above by the ow-radial sectional curvatures of the w-model space Mm

w :

Ko,N(σx) ≤ −w′′(r(x))

w(r(x))
∀x ∈ N,

and let us also assume that Mm
w is balanced from below. Let Dr be an extrinsic r-ball

in P m, with center at a pole o ∈ N in the ambient space N . Then:

Vol(∂Dr)

Vol(Dr)
≥ Vol(Sw

r )

Vol(Bw
r )

for all r > 0. (2.6)

Furthermore, if ϕ−1(o) �= ∅,

Vol(Dr) ≥ Vol(Bw
r ) for all r > 0. (2.7)

Moreover, if equality in inequalities (2.6) or (2.7) holds for some fixed radius R and
if the balance of Mm

w from below is sharp qw(r)ηw(r) > 1/m for all r , then DR is
a minimal cone in the ambient space Nn, so if Nn is the hyperbolic space H

n(b),
b < 0, then P m is totally geodesic in H

n(b).
If, on the other hand, the ambient space is R

n and equality in inequalities (2.6) or
(2.7) holds for all radii r > 0, then P m is totally geodesic in R

n.
On the other hand, and also as a consequence of inequality (2.6), the volume

growth function f (r) = Vol(Dr )
Vol(Bw

r )
is a non-decreasing function of r .

3 Main Results

In this section we prove our main results. In doing so, we establish a set of conditions
that ensure our submanifolds are properly immersed and have finite topology, as well
as (under certain conditions) bounding from below the number of their ends.

To obtain the finiteness of the topology in Theorem 3.1, we show that the restricted
(to the submanifold) extrinsic distance to a fixed pole (in the ambient manifold) has no
critical points outside a compact, and then we apply classical Morse theory. To show
that the extrinsic distance function has no critical points we compute its Hessian as it
appears in [15] and [23]. These results are, in turn, based on the Jacobi-Index analy-
sis for the Hessian of the distance function given in [9], in particular, its Theorem A
(see Sect. 2.3). This comparison theorem is different from the Hessian comparison
Theorem 2.1 used in [3]. While in this last theorem, the space used as a model for
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comparison purposes is the real space form with constant sectional curvature equal to
the bound on the sectional curvatures of the given Riemannian manifold, in our adap-
tation of Theorem A in [9] (see Theorem 2.10), only the sectional curvatures of the
planes containing radial directions from the pole are bounded by the corresponding
radial sectional curvatures in a radially symmetric space used as a model.

Here, we also note that although we use the definition of pole given by Greene
and Wu in [9] (namely, the exponential must be a diffeomorphism at a pole), in fact,
the comparison of the Hessians in Theorem A in [9] (and in our Theorem 2.10) holds
along radial geodesics from the poles defined as those points which have no conjugate
points, as in [3].

Theorem 3.1 Let ϕ : P m −→ Nn be an isometric immersion of a complete non-
compact Riemannian m-manifold P m into a complete Riemannian manifold Nn with
a pole o ∈ N and satisfying ϕ−1(o) �= ∅. Let us suppose that:

(1) The o-radial sectional curvatures of N are bounded from above by the ow-radial
sectional curvatures of the w-model space Mm

w :

Ko,N(σx) ≤ −w′′(r(x))

w(r(x))
∀x ∈ N.

(2) The second fundamental form BP
x in x ∈ P satisfies that, for sufficiently large

radius R0, and for some constant c ∈]0,1[:
‖BP

x ‖ ≤ cηw(ρP (x)) ∀x ∈ P − BP
R0

(xo),

where ρP (x) denotes the intrinsic distance in P from some fixed xo ∈ ϕ−1(o)

to x.
(3) For any r > 0, w′(r) ≥ d > 0 and (ηw(r))′ ≤ 0.

Then P is properly immersed in N and it is C∞-diffeomorphic to the interior of a
compact smooth manifold P with boundary.

Remark 3.2 To show that ϕ is proper, we shall use Theorem 2.10. Hence, as was
pointed out before, it is enough to assume that o is a pole in the sense that there are no
conjugate points along any geodesic emanating from o (see [8] and [24]). Therefore,
our statement about the properness of the immersion includes ambient manifolds N

that admit non-negative sectional curvatures, unlike the ambient manifold in Theorem
1.2 in [3].

On the other hand, to prove the finiteness of the topology of P we need to assume
that the ambient manifold N possesses a pole as defined in [9], namely, a point p ∈ N

where expp is a C∞ diffeomorphism. However, although our ambient manifold must
be diffeomorphic to R

n in this case (as in Theorem 1.2 in [3], where the ambient
space must be a Cartan–Hadamard manifold), it also admits non-negative sectional
curvatures.

To complete the benchmarking with the hypotheses in [2] and [3], we are going
to compare assumptions (2) and (3) in Theorem 3.1 with the notion of “submanifold
with tamed second fundamental form” introduced in [2]. It is straightforward to check
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that if ϕ : P m −→ Nn is an immersion of a complete Riemannian m-manifold P m

into a complete Riemannian manifold Nn with sectional curvatures KN ≤ b ≤ 0, and
P has tamed second fundamental form, in the sense of Definition 1.1 in [3], then
there exists R0 > 0 such that for all r ≥ R0, the quantity

ar := Sup

{
wb

w′
b

(ρP (x))‖BP
x ‖ : x ∈ P − BP

r

}

satisfies ar < 1.
Hence, taking r = R0, we have that for all x ∈ P − BP

R0
, and some c ∈ (0,1),

‖BP
x ‖ ≤ cηwb

(ρP (x)).

On the other hand, when b ≤ 0, then w′
b(r) ≥ 1 > 0 ∀r > 0 and (ηwb

(r))′ ≤ 0
∀r > 0.

If the o-radial sectional curvatures of the ambient space N are bounded from above
by −G(r(x)) = −w′′(r(x))

w(r(x))
, then the condition w′(r) ≥ d > 0 can be achieved pro-

vided the criteria t
∫ ∞
t

G−(s)ds ≤ 1
4 is fulfilled, where G− = min{−G,0} (see [4]

and [5]).
All these observations lead us to consider our Theorem 3.1 as a natural and slight

generalization of assertions (b) and (c) of Theorem 1.2 in [3].

Observe that if we assume the properness of the immersion, we obtain the follow-
ing version of Theorem 3.1, where we can remove the hypothesis about the decrease
in the function ηw(r) because the norm of the second fundamental form ‖BP

x ‖ is
bounded by the value of ηw at r(x) instead of ρP (x):

Theorem 3.3 Let ϕ : P m −→ Nn be an isometric and proper immersion of a com-
plete non-compact Riemannian m-manifold P m into a complete Riemannian man-
ifold Nn with a pole o ∈ N and satisfying ϕ−1(o) �= ∅. Let us suppose that, as in
Theorem 3.1, the o-radial sectional curvatures of N are bounded from above as:

Ko,N(σx) ≤ −w′′(r(x))

w(r(x))
∀x ∈ N

and for any r > 0, w′(r) ≥ d > 0. Let us assume, moreover, that the second funda-
mental form BP

x in x ∈ P satisfies that, for sufficiently large radius R0:

‖BP
x ‖ ≤ cηw(r(x)) ∀x ∈ P − DR0(o),

where c is a positive constant such that c < 1.
Then P is C∞-diffeomorphic to the interior of a compact smooth manifold P with

boundary.

We are now going to see how to estimate the area growth function of P , defined as
g(r) = Vol(∂Dr )

Vol(Sw
r )

, by the number of ends of the immersion P , E (P ), when the ambient
space N is a radially symmetric space.
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Theorem 3.4 Let ϕ : P m −→ Mn
w be an isometric and proper immersion of a com-

plete non-compact Riemannian m-manifold P m into a model space Mn
w with pole

ow . Suppose that ϕ−1(ow) �= ∅, m > 2, and moreover:

(1) The norm of second fundamental form BP
x in x ∈ P is bounded from above out-

side a (compact) extrinsic ball DR0(o) ⊆ P with sufficiently large radius R0 by:

‖BP
x ‖ ≤ ε(r(x))

(w′(r(x)))2
ηw(r(x)) ∀x ∈ P − DR0,

where ε is a positive function such that ε(r) → 0 when r → ∞.
(2) For sufficiently large r , w′(r) ≥ d > 0.

Then, for sufficiently large r , we have:

Vol(∂Dr)

Vol(Sw
r )

≤ E (P )

(1 − 4ε(r))
(m−1)

2

, (3.1)

where E (P ) is the (finite) number of ends of P .

When we consider minimal immersions in model spaces, we have the following
result, which is an immediate corollary from the theorem above, and Theorem 2.15
in Sect. 2.

Theorem 3.5 Let ϕ : P m −→ Mn
w be a complete non-compact, proper, and minimal

immersion into a balanced from below model space Mn
w with pole ow . Suppose that

ϕ−1(ow) �= ∅ and m > 2. Let us assume moreover hypotheses (1) and (2) in Theo-
rem 3.4.

Then

(1) The (finite) number of ends E (P ) is related to the (finite) volume growth by

1 ≤ lim
r→∞

Vol(Dr)

Vol(Bw
r )

≤ E (P ). (3.2)

(2) If P has only one end, P is a minimal cone in Mn
w .

4 Corollaries

As we said in the Introduction, we have divided the list of results based on Theorem
3.1 and on Theorem 3.4 into two series of corollaries. The first set of consequences
follows along the lines of Theorems 1.1 and 1.2 (which are in fact the main repre-
sentatives of these results), presenting upper bounds for the volume and area growth
of a complete and proper immersion in the real space form K

n(b), (b ≤ 0), in terms
of the number of its ends. The second set of corollaries includes the statement of
compactification theorems for complete and proper immersions in R

n, H
n(b), and

H
n(b) × R

l .
The first of these corollaries constitutes a non-minimal version of Theorem 1.1:
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Corollary 4.1 Let ϕ : P m −→ H
n(b) be a complete non-compact and proper im-

mersion with m > 2. Let us suppose that for sufficiently large R0 and for all points
x ∈ P such that r(x) > R0, (i.e., outside the compact extrinsic ball DR0(o) with
ϕ−1(o) �= ∅),

‖BP
x ‖ ≤ δ(r(x))

e2
√−br(x)

,

where r(x) = dHn(b)(o,ϕ(x)) is the (extrinsic) distance in H
n(b) of the points in

ϕ(P ) to a fixed pole o ∈ H
n(b), and δ(r) is a smooth function such that δ(r) → 0

when r → ∞. Let {ti}∞i=1 be any non-decreasing sequence such that ti → ∞ when
i → ∞. Then the finite number of ends E (P ) is related to the area growth of P by:

lim inf
i→∞

Vol(∂Dti )

Vol(Sb,m−1
ti

)
≤ E (P ).

The corresponding non-minimal statement of Theorem 1.2 is:

Corollary 4.2 Let ϕ : P m −→ R
n be a complete non-compact and proper immersion

with m > 2. Let us suppose that for sufficiently large R0 and for all points x ∈ P such
that r(x) > R0 (i.e., outside the compact extrinsic ball DR0(o) with ϕ−1(o) �= ∅),

‖BP
x ‖ ≤ ε(r(x))

r(x)
,

where r(x) = dRn(o,ϕ(x)) is the (extrinsic) distance in R
n of the points in ϕ(P ) to

a fixed pole o ∈ R
n and ε(r) is a smooth function such that ε(r) → 0 when r → ∞.

Let {ti}∞i=1 be any non-decreasing sequence such that ti → ∞ when i → ∞. Then
the finite number of ends E (P ) is related to the area growth by:

lim inf
i→∞

Vol(∂Dti )

Vol(S0,m−1
ti

)
≤ E (P ).

Concerning compactification, we have the following result given by Bessa, Jorge,
and Montenegro in [2], and by Bessa and Costa in [3]:

Corollary 4.3 Let ϕ : P m −→ K
n(b) be a complete non-compact immersion in the

real space form K
n(b), (b ≤ 0). Let us suppose that for all points x ∈ P \BP

R0
(o) (for

sufficiently large R0, where o is a pole in K
n(b) such that ϕ−1(o) �= ∅):

‖BP
x ‖ ≤ chb(ρ

P (x)),

where ρP (x) is the (intrinsic) distance to a fixed xo ∈ ϕ−1(o) and c is a positive
constant such that c < 1, and

hb(r) = ηwb
(r) =

{
1/r if b = 0√−b coth(

√−br) if b < 0
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is the mean curvature of the geodesic spheres in K
n(b). Then P is properly immersed

in K
n(b) and it is diffeomorphic to the interior of a compact smooth manifold P with

boundary.

Our last result concerns isometric immersions in H
n(b) × R

l :

Corollary 4.4 Let ϕ : P m −→ H
n(b) × R

l be a complete non-compact immersion.
Let us consider a pole o ∈ H

n(b) × R
l such that ϕ−1(o) �= ∅. Let us suppose that for

all points x ∈ P \ BP
R0

(xo), where xo ∈ ϕ−1(o) and for sufficiently large R0:

‖Bx‖ ≤ c

ρP (x)
.

Here, ρP (x) denotes the intrinsic distance in P from the fixed xo ∈ ϕ−1(o) to x and c

is a positive constant such that c < 1. Then P is properly immersed in H
n(b)×R

l and
it is diffeomorphic to the interior of a compact smooth manifold P with boundary.

5 Proof of Theorem 3.1

5.1 P Is Properly Immersed

Let us define the following function:

F(r) :=
∫ r

0
w(t)dt. (5.1)

Observe that F is injective, because F ′(r) = w(r) > 0 ∀r > 0, and F(r) → ∞ when
r → ∞. Applying Theorem 2.10 and Proposition 2.14, we obtain, for all x ∈ P and
given X ∈ TxP :

HessP
x F (r)(X,X) ≥ w′(r(x))‖X‖2 + w(r(x))〈BP

x (X,X),∇Nr〉
≥ w′(r(x))‖X‖2 − w(r(x))‖BP

x ‖‖X‖2. (5.2)

By hypothesis there exists a geodesic ball BP
r1

(x0) in P , with r1 ≥ R0, such that
for any x ∈ P \ BP

r1
(x0), ‖BP

x ‖ ≤ cηw(ρP (x)). On the other hand, as ηw(r) is
non-increasing and r(x) ≤ ρP (x) because ϕ is isometric, we have cηw(ρP (x)) ≤
cηw(r(x)), so if x ∈ P \ BP

r1
:

HessP
x F (r)(X,X) ≥ w′(r(x))‖X‖2 − w(r)cηw(ρP (x))‖X‖2

≥ w′(r(x))‖X‖2 (1 − c) ≥ d (1 − c) > 0. (5.3)

The above result implies that there exists r1 ≥ R0 such that F ◦ r is a strictly convex
function outside the geodesic ball in P centered at x0, BP

r1
(x0). And hence, as r(x) ≤

ρP (x) for all x ∈ P (and therefore BP
r1

(x0) ⊆ Dr1 ), F ◦ r is a strictly convex function
outside the extrinsic disc Dr1 .
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Let σ : [0, ρP (x)] → P m be a minimizing geodesic from x0 to x.
If we denote as f = F ◦ r , let us define h : R → R as

h(s) = F(r(σ (s))) = f (σ (s)).

Then,

(f ◦ σ)′(s) = h′(s) = σ ′(s)(f ) = 〈∇P f (σ (s)), σ ′(s)〉 (5.4)

and hence,

(f ◦ σ)′′(s) = h′′(s) = σ ′(s)(〈∇P f (σ (s)), σ ′(s)〉)
= 〈∇P

σ ′(s)∇P f (σ (s)), σ ′(s)〉 + 〈∇P f (σ (s)),∇P
σ ′(s)σ

′(s)〉

= HessP
σ(s) f (σ (s))(σ ′(s), σ ′(s)). (5.5)

From (5.3) we have that (f ◦ σ)′′(τ ) = HessP f (σ (τ))(σ ′, σ ′) ≥ d(1 − c) for all
τ ≥ r1. And for τ < r1, (f ◦σ)′′(τ ) ≥ a = infx∈BP

r1
{HessP f (x)(ν, ν), |ν| = 1}. Then

(f ◦ σ)′(s) = (f ◦ σ)′(0) +
∫ s

0
(f ◦ σ)′′(τ )dτ

≥ (f ◦ σ)′(0) +
∫ r1

0
a dτ + d

∫ s

r1

(1 − c)dτ

≥ (f ◦ σ)′(0) + ar1 + d(1 − c)(s − r1). (5.6)

On the other hand, as

∇P f (σ (s)) = ∇P F (r(σ (s))) = F ′(r(σ (s)))∇P r|σ(s) = w(r(σ (s)))∇P r|σ(s)

(5.7)
then

∇P f (σ (0)) = w(r(σ (0)))∇P r|σ(0) = w(0)∇P r|σ(0) = 0,

so we have that

(f ◦ σ)′(0) = 〈∇P f (σ (0)), σ ′(0)〉 = 0. (5.8)

We also have that (f ◦σ)(0) = F(r(σ (0))) = F(0) = 0. Hence, by applying inequal-
ity (5.6):

f (σ (s)) = (f ◦ σ)(0) +
∫ s

0
(f ◦ σ)′(τ )dτ ≥ ar1s + d(1 − c)

{
1

2
s2 − r1s

}

. (5.9)

Therefore,

F(r(x)) = f (x) = f (σ (ρP (x))) =
∫ ρP (x)

0
(f ◦ σ)′(s) ds
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≥
∫ ρP (x)

0
ar1 + d(1 − c)(s − r1) ds

= ar1ρ
P (x) + d(1 − c)

(
ρP (x)2

2
− r1ρ

P (x)

)

. (5.10)

Hence, if ρP → ∞, then F(r(x)) → ∞ and then, as F is strictly increasing,
r → ∞, so the immersion is proper.

5.2 P Has Finite Topology

We are going to see that ∇P r never vanishes on P \ Dr1 . To show this, we consider,
as in the previous subsection, any geodesic in P emanating from the pole o, σ(s).
Using inequality (5.6), we have that

〈∇P f (σ (s)), σ ′(s)〉 = (f ◦ σ)′(s) ≥ ar1 + d(1 − c)(s − r1) > 0, ∀s > r1. (5.11)

Hence, as ‖σ ′(s)‖ = 1 ∀s, then ‖∇P f (σ (s))‖ > 0 for all s > r1. But we have com-
puted ∇P f (σ (s)) = w(r(σ (s)))∇P r|σ(s), so as w(r) > 0 ∀r > 0, then ‖∇P r|σ(s)‖ >

0 ∀s > r1 and hence ∇P r|σ(s) �= 0 ∀s > r1. We have proven that ∇P r never vanishes
on P \ BP

r1
, so we also have that ∇P r never vanishes on P \ Dr1 . Let

φ : ∂Dr1 × [r1,+∞) → P \ Dr1

be the integral flow of a vector field ∇P r

‖∇P r‖2 with

φ(p, r1) = p ∈ ∂Dr1 .

It is obvious that r(φ(p, t)) = t and

φ(·, t) : ∂Dr1 → ∂Dt

is a diffeomorphism. So P has finitely many ends, and each of its ends is of finite
topological type.

In fact, by applying Theorem 3.1 in [19], we conclude that, as the extrinsic annuli
Ar1,R(o) = DR(o)\Dr1(o) contain no critical points of the extrinsic distance function
r : P −→ R

+, then DR(o) is diffeomorphic to Dr1(o) for all R ≥ r1 and hence the
annuli Ar1,R(o) are diffeomorphic to ∂Dr1 × [r1,R].

Remark 5.1 To demonstrate Theorem 3.3, we use the same argument as that shown
at the beginning of the proof of Theorem 3.1: with the same function F(r) we obtain
inequality (5.2). But now, as our hypothesis, we have that ‖BP

x ‖ ≤ cηw(r(x)), so
inequality η′

w(r) ≤ 0 is not necessary to obtain inequality (5.3).

6 Proof of Theorem 3.4

Initially, we are going to see that P has finite topology. As P is properly immersed,
we shall apply Theorem 3.3, and to do so, it must be checked that the hypotheses
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in that theorem are fulfilled. First, we have hypothesis (1) in Theorem 3.3 because
N = Mn

w . On the other hand, as w′(r) ≥ d > 0 ∀r > 0 and, for some R0, we have that
‖BP

x ‖ ≤ ε(r(x))

(w′(r(x)))2 ηw(r(x)) ∀x ∈ P − DR0 , where ε is a positive function such that

ε(r) → 0 when r → ∞, hence 0 ≤ limr→∞ ε(r)

(w′(r))2 ≤ limr→∞ ε(r)

d2 = 0. Therefore,

for a constant c < 1, there exists R0 such that ‖BP
x ‖ ≤ cηw(r(x)) ∀x ∈ P − DR0 .

Therefore, as ϕ : P −→ Mn
w is a proper immersion, by Theorem 3.3 we have that P

has finite topological type and thus P has finitely many ends, each of finite topologi-
cal type. Hence we have, in a way analogous to [1], and for r1 ≥ R0 as in Sect. 5:

P − Dr1 =
E (P )⋃

k=1

Vk; (6.1)

where Vk are disjoint, smooth domains in P . Throughout the rest of the proof, we will
work on each end Vk separately. Let V denote one element of the family {Vk}E (P )

k=1
and, given a fixed radius t > r1, let ∂V (t) denote the set ∂V (t) = V ∩ ∂Dt = V ∩Sw

t ,
where Sw

t is the geodesic t-sphere in Mn
w . This set is a hypersurface in P m, with

normal vector ∇P r
‖∇P r‖ , and we are going to estimate its sectional curvatures when

t → ∞.
Suppose that ei, ej are two orthonormal vectors of Tp∂V (t) on the point p ∈

∂V (t). Then the sectional curvature of the plane expanded by ei, ej , using Gauss’s
formula, is:

K∂V (t)(ei , ej ) = KP (ei, ej ) + 〈B∂V −P (ei, ei),B
∂V −P (ej , ej )〉 − ‖B∂V −P (ei, ej )‖2

= KN(ei, ej ) + 〈B∂V −P (ei, ei),B
∂V −P (ej , ej )〉

− ‖B∂V −P (ei, ej )‖2 + 〈BP (ei, ei),B
P (ej , ej )〉 − ‖BP (ei, ej )‖2

≥ KN(ei, ej ) + 〈B∂V −P (ei, ei),B
∂V −P (ej , ej )〉

− ‖B∂V −P (ei, ej )‖2 − 2‖BP ‖2, (6.2)

where B∂V −P is the second fundamental form of ∂V (t) in P . But this second funda-
mental form is for two vector fields X,Y in T ∂V (t):

B∂V −P (X,Y ) =
〈

∇P
XY,

∇P r

||∇P r||
〉 ∇P r

||∇P r|| = 〈∇P
XY,∇P r〉 ∇P r

||∇P r||2

= X(〈Y,∇P r〉) ∇P r

||∇P r||2 − 〈Y,∇P
X∇P r〉 ∇P r

||∇P r||2

= −HessP r(X,Y )
∇P r

||∇P r||2 . (6.3)

Then, since for all X,Y ∈ TpMn
w ,

HessMn
w r(X,Y ) = ηw(r)〈X,Y 〉 − 〈X,∇Mn

wr〉〈Y,∇Mn
wr〉, (6.4)



Volume Growth, Number of Ends 1363

we have (using the fact that ei are tangent to the fiber Sw
t and Proposition 2.6) that:

KMn
w
(ei, ej ) = K(t) = 1

w2(t)
− η2

w(t). (6.5)

So for any p ∈ ∂V (t) such that t = r(p) is sufficiently large:

K∂V (t)(ei, ej ) ≥ KMn
w
(ei, ej ) + HessP

p r(ei, ei)HessP
p r(ej , ej )

||∇P r||2

− HessP
p r(ei, ej )

2

||∇P r||2 − 2‖BP ‖2

≥ K(t) +
(
ηw(t) − ‖BP ‖)2 − ‖BP ‖2

||∇P r||2 − 2‖BP ‖2

≥ η2
w(t)

(

1 − 2
‖BP ‖
ηw(t)

− 2

(‖BP ‖
ηw(t)

)2

+ K(t)

η2
w(t)

)

≥ η2
w(t)

(

1 − 4
‖BP ‖
ηw(t)

+ K(t)

η2
w(t)

)

= η2
w(t)

(

1 + K(t)

η2
w(t)

)
⎛

⎝1 − 4
‖BP ‖
ηw(t)

1 + K(t)

η2
w(t)

⎞

⎠

≥ 1

w2(t)

(
1 − 4‖BP ‖w′(t)w(t)

)
≥ 1

w2(t)
(1 − 4ε(t)) , (6.6)

where we recall that, by hypothesis, ‖BP ‖ ≤ ε(t)

(w′(t))2 ηw(t) for all t = r(x) > R0, and
ε is a positive function such that ε(r) → 0 when r → ∞.

If we denote as δ(t) = 1
w2(t)

(1 − 4ε(t)), for each sufficiently large t we have
that K∂V (t)(ei, ej ) ≥ δ(t) holds everywhere on ∂V (t) and δ(t) is a positive constant.
Then, the Ricci curvature of ∂V (t) is bounded from below, for these sufficiently large
radius t , as

Ricc∂V (t)(ξ, ξ) ≥ δ(t)(m − 2)‖ξ‖2 > 0 ∀ξ ∈ T ∂V (t)

So, by applying Myers’s Theorem, ∂V (t) is compact and has diameter d(∂V (t)) ≤
π√
δ(t)

(see [24]). On the other hand, by applying Bishop’s Theorem (see Theorem 6
in [6]), we obtain:

Vol(∂V (t)) ≤ Vol(S0,m−1(1))
√

δ(t)m−1
(6.7)

and hence

Vol(∂V (t))

Vol(Sw
t )

≤ 1

w(t)m−1
√

δ(t)m−1

= 1

(1 − 4ε(t))(m−1)/2
. (6.8)
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Therefore, since for t large enough Vol(∂Dt (o)) ≤ ∑E (P )
i=1 Vol(∂Vi(t)), where Vi de-

notes each end of P then:

Vol(∂Dt (o))

Vol(Sw
t )

≤ E (P )

(1 − 4ε(t))(m−1)/2
. (6.9)

7 Proof of Theorem 3.5

To show assertion (1) we apply Theorem 2.15 and inequality (3.1) in Theorem 3.4 to
obtain, for sufficiently large r (we suppose that ϕ−1(ow) �= ∅, and take o ∈ ϕ−1(ow)

in order to have that Vol(Dr(o)) ≥ Vol(Bw
r ) for all r > 0):

1 ≤ Vol(Dr(o))

Vol(Bw
r )

≤ Vol(∂Dr(o))

Vol(Sw
r )

≤ E (P )

(1 − 4ε(r))(m−1)/2
. (7.1)

Moreover, we know (again using Theorem 2.15) that the volume growth function
is non-decreasing.

Therefore, taking limits in (7.1) when r goes to ∞, we obtain:

1 ≤ lim
r→∞

Vol(Dr(o))

Vol(Bw
r )

= Supr>0
Vol(Dr(o))

Vol(Bw
r )

≤ E (P ). (7.2)

Now, to prove assertion (2), if P has one end, we have that:

1 ≤ Supr>0
Vol(Dr(o))

Vol(Bw
r )

≤ 1. (7.3)

Hence, as f (r) = Vol(Dr (o))
Vol(Bw

r )
is non-decreasing, then f (r) = 1 ∀r > 0, so we have

equality in inequality (2.6) for all r > 0, and P is a minimal cone (see [16] for details).

8 Proof of Theorems 1.1 and 1.2 and the Corollaries

8.1 Proof of Theorem 1.1

We are going to apply Theorem 3.5. To do this, we must check hypotheses (1) and
(2) in Theorem 3.4.

In this case we have that the ambient manifold is the hyperbolic space H
n(b).

Therefore all of its points are poles, so there exist at least o ∈ H
n(b) such that

ϕ−1(o) �= ∅. As is known, hyperbolic space H
n(b) is a model space with w(r) =

wb(r) = 1√−b
sinh

√−br so w′
b(r) = cosh

√−br ≥ 1 ∀r > 0.
Therefore, hypothesis (2) in Theorem 3.4 is fulfilled in this context. Concerning

hypothesis (1), it is straightforward that

‖BP
x ‖ ≤ δ(r(x))

e2
√−br(x)

≤ ε(r)
√−b

sinh
√−br cosh

√−br
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= ε(r)

cosh2 √−br

√−b coth
√−br = ε(r)

(w′
b(r))

2
ηwb

(r), (8.1)

where ε(r) = δ(r(x))

4
√−b

goes to 0 when r goes to ∞.
Hence, hypothesis (1) in Theorem 3.4 is also fulfilled, and so by applying inequal-

ity (3.2) in Theorem 3.5 (because P is minimal):

1 ≤ lim
r→∞

Vol(Dr)

Vol(Bwb
r )

≤ E (P ). (8.2)

Finally, when P has one end, then limr→∞ Vol(Dr )

Vol(B
wb
r )

= 1. Since P is minimal, by

Theorem 2.15, f (r) = Vol(Dr )

Vol(B
wb
r )

is a monotone non-decreasing function and, on the

other hand, f (r) ≥ 1 ∀r > 0 because of inequality (2.7). Hence f (r) = 1 ∀r > 0, so
f ′(r) = 0 ∀r > 0. This last equality implies equality in inequality (2.6) for all r > 0
(see [16] or [17] for details), and we apply the equality assertion in Theorem 2.15 to
conclude that P is totally geodesic in H

n(b).

8.2 Proof of Theorem 1.2

In this case, we apply Theorem 3.5, with Mn
w = R

n, i.e., with w(r) = w0(r) = r ,
(b = 0). Hence, w′

0(r) = 1 > 0 ∀r > 0 and η0(r) = 1
r

and hypotheses (1) and (2) in
this theorem are trivially satisfied.

When P has only one end we conclude, as before, that the volume growth function
is constant, so we conclude equality in (2.6) for all radii r > 0. Hence on applying
the corresponding equality assertion in Theorem 2.15, P is totally geodesic in R

n.

8.3 Proof of Corollary 4.1

We are now considering a complete and proper immersion in H
n(b), as in Theo-

rem 1.1, but P is not necessarily minimal. In this setting hypotheses (1) and (2) in
Theorem 3.4 are fulfilled (as we have verified in the proof above, without using min-
imality). Hence, by taking limits in (3.1) when we consider an increasing sequence
{ti}∞i=1 such that ti → ∞ when i → ∞, we have:

lim inf
i→∞

Vol(∂Dti )

Vol(Sb,m−1
ti

)
≤ E (P ).

8.4 Proof of Corollary 4.2

Hypotheses (1) and (2) in Theorem 3.4 are trivially satisfied, and the result is obtained
by arguing as in the proof of Corollary 4.1.

8.5 Proof of Corollary 4.3

We apply Theorem 3.1. Our ambient manifold is K
n(b), (b ≤ 0), so hypothesis (1)

about the bounds for the radial sectional curvature holds, and as w(r) = wb(r), hence



1366 V. Gimeno and V. Palmer

w′
b(r) ≥ 1 > 0 ∀r > 0 and η′

wb
(r) ≤ 0 ∀r > 0. This means that hypothesis (3) is

fulfilled. Hypothesis (2) in Theorem 3.1 holds because

‖BP
x ‖ ≤ chb(ρ

P (x)),

where ρP (x) is the (intrinsic) distance to a fixed xo ∈ ϕ−1(o) and c is a positive
constant such that c < 1.

8.6 Proof of Corollary 4.4

We again apply Theorem 3.1, taking into account that the ambient space is the
Cartan–Hadamard manifold H

n(b) × R
l , and the model space used for comparison

is R
m, with w(r) = w0(r) = r .
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