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Abstract Let X be a metric space with doubling measure and L a nonnega-
tive self-adjoint operator in L2(X ) satisfying the Davies–Gaffney estimates. Let
ϕ : X × [0,∞) → [0,∞) be a function such that ϕ(x, ·) is an Orlicz function,
ϕ(·, t) ∈ A∞(X ) (the class of uniformly Muckenhoupt weights), its uniformly critical
upper type index I (ϕ) ∈ (0,1], and it satisfies the uniformly reverse Hölder inequal-
ity of order 2/[2 − I (ϕ)]. In this paper, the authors introduce a Musielak–Orlicz–
Hardy space Hϕ,L(X ), by the Lusin area function associated with the heat semigroup
generated by L, and a Musielak–Orlicz BMO-type space BMOϕ,L(X ), which is fur-
ther proved to be the dual space of Hϕ,L(X ) and hence whose ϕ-Carleson measure
characterization is deduced. Characterizations of Hϕ,L(X ), including the atom, the
molecule, and the Lusin area function associated with the Poisson semigroup of L,
are presented. Using the atomic characterization, the authors characterize Hϕ,L(X ) in
terms of the Littlewood–Paley g∗

λ-function g∗
λ,L and establish a Hörmander-type spec-

tral multiplier theorem for L on Hϕ,L(X ). Moreover, for the Musielak–Orlicz–Hardy
space Hϕ,L(Rn) associated with the Schrödinger operator L := −� + V , where
0 ≤ V ∈ L1

loc(R
n), the authors obtain its several equivalent characterizations in terms

of the non-tangential maximal function, the radial maximal function, the atom, and
the molecule; finally, the authors show that the Riesz transform ∇L−1/2 is bounded
from Hϕ,L(Rn) to the Musielak–Orlicz space Lϕ(Rn) when i(ϕ) ∈ (0,1], and from
Hϕ,L(Rn) to the Musielak–Orlicz–Hardy space Hϕ(Rn) when i(ϕ) ∈ ( n

n+1 ,1], where
i(ϕ) denotes the uniformly critical lower type index of ϕ.
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1 Introduction

The real-variable theory of Hardy spaces on the n-dimensional Euclidean space R
n,

initiated by Stein and Weiss [88], plays an important role in various fields of analysis
(see, for example, [41, 72, 83, 87]). It is well known that the Hardy space Hp(Rn)

when p ∈ (0,1] is a suitable substitute of the Lebesgue space Lp(Rn); for exam-
ple, the classical Riesz transform is bounded on Hp(Rn), but not on Lp(Rn) when
p ∈ (0,1]. Moreover, the practicability of Hp(Rn) with p ∈ (0,1], as a substitute for
Lp(Rn) with p ∈ (0,1], comes from its several equivalent real-variable characteriza-
tions, which were originally motivated by Fefferman and Stein in their seminal paper
[41]. Among these characterizations, a very important and useful characterization of
the Hardy spaces Hp(Rn) is their atomic characterizations, which were obtained by
Coifman [22] when n = 1 and Latter [67] when n > 1. Moreover, a direct extension
of the atomic characterization of the Hardy spaces is the molecular characterization
established by Taibleson and Weiss [91].

On the other hand, as a natural generalization of Lp(Rn), the Orlicz space was
introduced by Birnbaum–Orlicz in [9] and Orlicz in [77], which has extensive appli-
cations in several branches of mathematics (see, for example, [5, 48, 55, 71, 79, 80]
for more details). Moreover, the Orlicz–Hardy space, introduced and studied in [56,
89, 92], is also a suitable substitute of the Orlicz space in the study of the bound-
edness of operators (see, for example, [56–58, 60, 89, 92]). Furthermore, weighted
local Orlicz–Hardy spaces and their dual spaces were also studied in [94]. All the-
ories of these function spaces are intimately connected with the Laplace operator

� := ∑n
i=1

∂2

∂x2
i

on R
n.

Recall that the classical BMO space (the space of functions with bounded mean
oscillation) was originally introduced by John and Nirenberg [61] to solve some prob-
lems in partial differential equations. Since Fefferman and Stein [41] proved that
BMO(Rn) is the dual space of H 1(Rn), the space BMO(Rn) plays an important role
in not only partial differential equations but also harmonic analysis (see, for example,
[35, 41] for more details). Moreover, the generalized space BMOρ(Rn) was intro-
duced and studied in [47, 56, 89, 92] and it was proved therein to be the dual space
of the Orlicz–Hardy space HΦ(Rn), where Φ denotes the Orlicz function on (0,∞)

and ρ(t) := t−1/Φ−1(t−1) for all t ∈ (0,∞). Here and in what follows, Φ−1 denotes
the inverse function of Φ .

Recently, Ky [63] introduced a new Musielak–Orlicz–Hardy space, Hϕ(Rn), via
the grand maximal function, which contains both the Orlicz–Hardy space in [56, 89]
and the weighted Hardy space H

p
ω (Rn) with ω ∈ A∞(Rn) in [44, 90] as the special
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cases. Here, ϕ : R
n × [0,∞) → [0,∞) is a function such that ϕ(x, ·) is an Orlicz

function of uniformly upper type 1 and lower type p for some p ∈ (0,1] (see Sect. 2
below for the definitions of uniformly upper or lower types), and ϕ(·, t) is a Muck-
enhoupt weight, and Aq(Rn) with q ∈ [1,∞] denotes the class of Muckenhoupt’s
weights (see, for example, [43, 44, 46] for their definitions and properties). Moreover,
the Musielak–Orlicz BMO-type space BMOϕ(Rn) was also introduced and further
proved to be the dual space of Hϕ(Rn) in [63] by using the atomic characterization of
Hϕ(Rn) established in [63]. Furthermore, some interesting applications of the spaces
Hϕ(Rn) and BMOϕ(Rn) were given in [11, 13, 14, 63–66]. Moreover, the radial and
the non-tangential maximal functions characterizations, the Littlewood–Paley func-
tion characterization and the molecular characterization of Hϕ(Rn) were obtained in
[54, 69]. As an application of the Lusin area function characterization of Hϕ(Rn),
the ϕ-Carleson measure characterization of the space BMOϕ(Rn) was obtained in
[54]. Furthermore, the local Musielak–Orlicz–Hardy space and its dual space were
studied in [97]. It is worth pointing out that Musielak–Orlicz functions are the natu-
ral generalization of Orlicz functions (see, for example, [31, 32, 63, 73, 76]) and the
motivation to study function spaces of Musielak–Orlicz type is attributed to their ex-
tensive applications to many branches of physics and mathematics (see, for example,
[11–14, 31, 32, 63, 64, 68] for more details).

In recent years, the study of function spaces associated with different operators
inspired great interests (see, for example, [6–8, 35–37, 51–53, 57–60, 86, 93] and
their references). More precisely, Auscher, Duong, and McIntosh [6] initially studied
the Hardy space H 1

L(Rn) associated with the operator L whose heat kernel satisfies
a pointwise Poisson upper bound estimate. Based on this, Duong and Yan [36, 37]
introduced the BMO-type space BMOL(Rn) associated with L and proved that the
dual space of H 1

L(Rn) is just BMOL∗(Rn), where L∗ denotes the adjoint operator of
L in L2(Rn). Moreover, Yan [93] further generalized these results to the Hardy space
H

p
L (Rn) with p ∈ (0,1] close to 1 and its dual space. Also, the Orlicz–Hardy space

and its dual space associated with such an L were studied in [60].
Moreover, Hofmann and Mayboroda [52] and Hofmann et al. [53] introduced the

Hardy and Sobolev spaces associated with a second-order divergence form elliptic
operator L on R

n with bounded measurable complex coefficients and these operators
may not have the pointwise heat kernel bounds, and further established several equiv-
alent characterizations for these spaces and studied their dual spaces. Meanwhile, the
Orlicz–Hardy space and its dual space associated with L were independently studied
in [58]. Furthermore, Orlicz–Hardy spaces associated with a second-order divergence
form elliptic operator on the strongly Lipschitz domain of R

n were studied in [95, 96].
It is worth pointing out that the strongly Lipschitz domain of R

n is a special space
of homogeneous type in the sense of Coifman and Weiss [25]. Recall that the Hardy
spaces on strongly Lipschitz domains associated with the Laplace operator having
some boundary conditions were originally and systematically studied by Chang et al.
in [16–19] and Auscher et al. [8].

On the other hand, the Hardy space associated with the Schrödinger operator
−� + V was studied in [39, 40], where the nonnegative potential V satisfies the
reverse Hölder inequality (see, for example, [44, 46] for the definition of the reverse
Hölder inequality). More generally, for nonnegative self-adjoint operators L satis-
fying the Davies–Gaffney estimates, Hofmann et al. [51] studied the Hardy space
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H 1
L(X ) associated with L and its dual space on a metric measure space X , which

was extended to the Orlicz–Hardy space in [57]. As a special case of this setting, sev-
eral equivalent characterizations and some applications of the Hardy space H 1

L(Rn)

and the Orlicz–Hardy space HΦ,L(Rn) associated with the Schrödinger operator
L := −�+V were, respectively, obtained in [51] and [57], where 0 ≤ V ∈ L1

loc(R
n).

Moreover, Song and Yan [86] studied the weighted Hardy space H 1
ω,L(Rn) asso-

ciated with the Schrödinger operator L, where ω ∈ A1(R
n). Very recently, some

special Musielak–Orlicz–Hardy spaces associated with the Schrödinger operator
L := −� + V on R

n, where the nonnegative potential V satisfies the reverse Hölder
inequality of order n/2, were studied by Ky [65, 66] and further applied to the study
of commutators of singular integral operators associated with the operator L.

Let X be a metric measure space, L a nonnegative self-adjoint operator on L2(X )

satisfying the Davies–Gaffney estimates, and E(λ) the spectral resolution of L. For
any bounded Borel function m : [0,∞) → C, by using the spectral theorem, it is well
known that the operator

m(L) :=
∫ ∞

0
m(λ)dE(λ) (1.1)

is well defined and bounded on L2(X ). It is an interesting problem to find some suf-
ficient conditions on m and L such that m(L) in (1.1) is bounded on various function
spaces on X , which was extensively studied (see, for example, [2, 3, 10, 21, 30, 33,
34, 38, 50, 78] and their references). Specially, Duong and Yan [38] proved that m(L)

is bounded on the Hardy space H
p
L (X ), with p ∈ (0,∞), associated with L when X

is a metric space with doubling measure and the function m satisfies a Hörmander-
type condition.

Throughout the whole paper, let X be a metric space with doubling measure μ

and L a nonnegative self-adjoint operator in L2(X ) satisfying the Davies–Gaffney
estimates. Let ϕ : X × [0,∞) → [0,∞) be a growth function as in Definition 2.4
below, which means that ϕ(x, ·) is an Orlicz function (see Sect. 2.3 below), ϕ(·, t) ∈
A∞(X ) (the class of uniformly Muckenhoupt weights in Definition 2.3 below), and
its uniformly critical upper type index I (ϕ) ∈ (0,1] (see (2.10) below). Moreover,
we always assume that ϕ ∈ RH2/[2−I (ϕ)](X ) (see Definition 2.3 below). A typical
example of such a ϕ is

ϕ(x, t) := ω(x)Φ(t) (1.2)

for all x ∈ X and t ∈ [0,∞), where ω ∈ A∞(X ) (the class of Muckenhoupt weights)
and Φ is an Orlicz function on [0,∞) of upper type p1 ∈ (0,1] and lower type p2 ∈
(0,1] (see (2.9) below for the definition of types). Let x0 ∈ X . Another typical and
useful example of the growth function ϕ is

ϕ(x, t) := tα

[ln(e + d(x, x0))]β + [ln(e + t)]γ (1.3)

for all x ∈ X and t ∈ [0,∞) with some α ∈ (0,1], β ∈ [0, n) and γ ∈ [0,2α(1+ ln 2)]
(see Sect. 2.3 for more details). It is worth pointing out that such a function ϕ naturally
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appears in the study of the pointwise multiplier characterization for the BMO-type
space on the metric space with doubling measure (see [74]).

Motivated by [38, 51, 57, 63], in this paper, we study the Musielak–Orlicz–Hardy
space Hϕ,L(X ) and its dual space. More precisely, for all f ∈ L2(X ) and x ∈ X ,
define

SL(f )(x) :=
{∫

Γ (x)

∣
∣t2Le−t2Lf (y)

∣
∣2 dμ(y)dt

V (x, t)t

}1/2

. (1.4)

Here and in what follows, Γ (x) := {(y, t) ∈ X × (0,∞) : d(x, y) < t}, d denotes
the metric on X , B(x, t) := {y ∈ X : d(x, y) < t}, μ denotes the nonnegative Borel
regular measure on X and V (x, t) := μ(B(x, t)). The Musielak–Orlicz–Hardy space
Hϕ,L(X ) is then defined to be the completion of the set {f ∈ H 2(X ) : SL(f ) ∈
Lϕ(X )} with respect to the quasi-norm

‖f ‖Hϕ,L(X ) := ‖SL(f )‖Lϕ(X )

:= inf

{

λ ∈ (0,∞) :
∫

X
ϕ

(

x,
SL(f )(x)

λ

)

dμ(x) ≤ 1

}

,

where H 2(X ) := R(L) and R(L) denotes the closure of the range of L in L2(X ).
In this paper, we first establish the atomic decomposition of Hϕ,L(X ) and further

obtain its molecular decomposition. Using the atomic and the molecular decomposi-
tions of Hϕ,L(X ), we then prove that its dual space is the Musielak–Orlicz BMO-type
space BMOϕ,L(X ), which is characterized by the ϕ-Carleson measure, and further
establish the atomic and the molecular characterizations of Hϕ,L(X ). We also obtain
another characterization of Hϕ,L(X ) via the Lusin area function associated with the
Poisson semigroup of L. As applications, by using the atomic characterization, we
prove that Littlewood–Paley functions gL and g∗

λ,L are bounded from Hϕ,L(X ) to
the Musielak–Orlicz space Lϕ(X ); as a corollary, we characterize Hϕ,L(X ) in terms
of the Littlewood–Paley g∗

λ-function g∗
λ,L. We further establish a Hörmander-type

spectral multiplier theorem for L on Hϕ,L(X ) by using the atomic and the molecular
characterizations of Hϕ,L(X ). As further applications, we obtain several equivalent
characterizations of the Musielak–Orlicz–Hardy space Hϕ,L(Rn) associated with the
Schrödinger operator L := −� + V , where 0 ≤ V ∈ L1

loc(R
n), in terms of the Lusin-

area function, the non-tangential maximal function, the radial maximal function, the
atom, and the molecule. Finally, we show that the Riesz transform ∇L−1/2 is bounded
from Hϕ,L(Rn) to Lϕ(Rn) when i(ϕ) ∈ (0,1] and from Hϕ,L(Rn) to the Musielak–
Orlicz–Hardy space Hϕ(Rn) when i(ϕ) ∈ ( n

n+1 ,1], where i(ϕ) denotes the uniformly
critical lower type index of ϕ (see (2.11) below).

The key step of the above approach is to establish the atomic (molecular) char-
acterization of the Musielak–Orlicz–Hardy space Hϕ,L(X ). To this end, we inherit
a method used in [7, 57, 58]. We first establish the atomic decomposition of the
Musielak–Orlicz tent space Tϕ(X × (0,∞)) associated with ϕ, whose proof implies
that if f ∈ Tϕ(X × (0,∞)) ∩ T 2

2 (X × (0,∞)), then the atomic decomposition of f

holds true in both Tϕ(X × (0,∞)) and T 2
2 (X × (0,∞)). We point out that in this

paper, by the assumptions on L, we only know that the Lusin area function SL as
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in (1.4) is bounded on L2(X ) (see (2.7) below). To prove that the atomic decom-
position of f ∈ Tϕ(X × (0,∞)) ∩ T 2

2 (X × (0,∞)) holds true in T 2
2 (X × (0,∞))

(see Corollary 3.5 below), we need the additional assumption that ϕ(·, t) for all
t ∈ [0,∞) belongs to the uniformly reverse Hölder class RH2/[2−I (ϕ)](X ). Then by
the fact that the operator πΨ,L in (4.2) below is bounded from T 2

2 (X × (0,∞)) to
L2(X ), we further obtain the L2(X )-convergence of the corresponding atomic de-
composition for functions in Hϕ,L(X )∩ L2(X ), since for all f ∈ Hϕ,L(X )∩ L2(X ),

t2Le−t2Lf ∈ T 2
2 (X ×(0,∞))∩Tϕ(X ×(0,∞)). This technique plays a fundamental

role in the whole paper.
We remark that the method used to obtain the atomic characterization of the

Musielak–Orlicz–Hardy space Hϕ,L(X ) in this paper is different from that in [86],
but more close to the method in [15, 54, 57]. More precisely, in [86], the atomic char-
acterization of the weighted Hardy space H 1

L(Rn), associated with the Schrödinger
operator L, was established by using the Calderón reproducing formula associated
with L and a subtle decomposition of all dyadic cubes in R

n. However, in this paper,
we establish the atomic characterization of Hϕ,L(X ) by using the Calderón reproduc-
ing formula associated with L (see (4.14) below), the atomic decomposition of the
Musielak–Orlicz tent space established in Theorem 3.1 below and some boundedness
(see Proposition 4.6 below) of the operator πΨ,L defined in (4.2) below. Moreover, we
also point out that the notion of atoms in our atomic decomposition of the Musielak–
Orlicz tent space is different from that in [15]. Since the weight also appears in the
norm of atoms used by Bui and Duong [15] when establishing the atomic decompo-
sition of elements in the weighted tent space, Bui and Duong [15] had to require the
weight ω ∈ A1(X ) ∩ RH2/(2−p)(X ) in order to obtain the atomic decomposition of
the weighted Hardy space H

p
ω,L(X ) with p ∈ (0,1] (see the proof of [15, Proposi-

tion 3.9] for the details). Instead of this, we do not use the weight in the norm of our
Tϕ(X × (0,∞))-atoms. Due to this subtle choice, we are able to relax the require-
ments on the growth function into ϕ ∈ A∞(X ) ∩ RH2/[2−I (ϕ)](X ), which essentially
improves the results of Bui and Duong [15] even when ϕ is as in (1.2).

Another important estimate, appeared in the approach of this paper, is that there
exists a positive constant C such that, for any λ ∈ C and (ϕ,M)-atom α adapted to
the ball B (or any (ϕ,M,ε)-molecule α adapted to the ball B),

∫

X
ϕ
(
x,SL(λα)(x)

)
dμ(x) ≤ Cϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

); (1.5)

see Definitions 4.3 and 4.4 below for the notions of (ϕ,M)-atoms and (ϕ,M,ε)-
molecules. A main difficulty to prove (1.5) is how to take SL(λα)(x) out of the posi-
tion of the time variable of ϕ. In [57, 58], to obtain (1.5) when ϕ is as in (1.2) with
ω ≡ 1, it was assumed that Φ is a concave Orlicz function on (0,∞). In this case,
Jensen’s inequality does the job. In the present setting, the spatial variable and the
time variable of ϕ are combinative, so Jensen’s inequality does not work even when
ϕ is concave about the time variable. To overcome this difficulty, we subtly use the
properties of ϕ which are the uniformly upper p1 ∈ (0,1] and lower type p2 ∈ (0,1]
(see the proof of (4.5) below).

Precisely, this paper is organized as follows. In Sect. 2, we first recall some notions
and notation on metric measure spaces and then describe some basic assumptions on
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the operator L studied in this paper. We also recall some notation, some examples
and some basic properties concerning growth functions considered in this paper.

In Sect. 3, we first recall some notions about tent spaces and then study the
Musielak–Orlicz tent space Tϕ(X × (0,∞)) associated with growth function ϕ. The
main target of this section is to establish the atomic characterization for Tϕ(X ×
(0,∞)) (see Theorem 3.1 below). Assume further that ϕ ∈ RH2/[2−I (ϕ)](X ). As a
byproduct, we know that if f ∈ Tϕ(X × (0,∞)) ∩ T 2

2 (X × (0,∞)), then the atomic
decomposition of f holds true in both Tϕ(X × (0,∞)) and T 2

2 (X × (0,∞)), which
plays an important role in the remainder of this paper (see Corollary 3.5 below). We
point out that Theorem 3.1 and Corollary 3.5 completely cover [57, Theorem 3.1 and
Corollary 3.1] by taking ϕ as in (1.2) with ω ≡ 1 and Φ concave.

In Sect. 4, we first introduce the Musielak–Orlicz–Hardy space Hϕ,L(X ) and
prove that the operator πΨ,L in (4.2) below maps the Musielak–Orlicz tent space
Tϕ(X × (0,∞)) continuously into Hϕ,L(X ) (see Proposition 4.6 below). By this
and the atomic decomposition of Tϕ(X × (0,∞)), we conclude that, for each
f ∈ Hϕ,L(X ), there exists an atomic decomposition of f holding true in Hϕ,L(X )

(see Corollary 4.8 below). We should point out that to obtain the atomic decomposi-
tion of Hϕ,L(X ), we borrow some ideas from [51, 57], and the estimate (1.5) is very
important for this procedure. Via this atomic decomposition of Hϕ,L(X ), we further
prove that the dual space of Hϕ,L(X ) is just the Musielak–Orlicz BMO-type space
BMOϕ,L(X ) (see Theorem 4.16 below). As an application of this duality, we estab-
lish the ϕ-Carleson measure characterization of the space BMOϕ,L(X ) (see Theorem
4.19 below).

We remark that when ϕ is as in (1.2) with ω ≡ 1 and Φ concave, the Musielak–
Orlicz–Hardy space Hϕ,L(X ) and the Musielak–Orlicz BMO-type space BMOϕ,L(X )

are the Orlicz–Hardy space HΦ,L(X ) and the BMO-type space BMOρ,L(X ) intro-
duced in [57] respectively.

In Sect. 5, by Proposition 4.9 and Theorem 4.16, we establish the equivalence
between Hϕ,L(X ) and the atomic (resp., molecular) Musielak–Orlicz–Hardy space
HM

ϕ,at(X ) (resp., H
M,ε
ϕ,mol(X )) (see Theorem 5.5 below). We notice that the series in

HM
ϕ,at(X ) (resp., H

M,ε
ϕ,mol(X )) is required to converge in the norm of (BMOϕ,L(X ))∗,

where (BMOϕ,L(X ))∗ denotes the dual space of BMOϕ,L(X ); while in Corollary 4.8
below, the atomic decomposition holds true in Hϕ,L(X ). Applying its atomic char-
acterization, we further characterize the Hardy space Hϕ,L(X ) in terms of the Lusin
area function associated with the Poisson semigroup of L (see Theorem 5.7 below).
Observe that Theorems 5.5 and 5.7 completely cover [57, Theorems 5.1 and 5.2] by
taking ϕ as in (1.2) with ω ≡ 1 and Φ concave.

In Sect. 6, we give some applications of the Musielak–Orlicz–Hardy space
Hϕ,L(X ) to the boundedness of operators. More precisely, in Sect. 6.1, we prove
that the Littlewood–Paley g-function gL is bounded from Hϕ,L(X ) to the Musielak–
Orlicz space Lϕ(X ) (see Theorem 6.3 below); in Sect. 6.2, we show that the g∗

λ-
function g∗

λ,L is bounded from Hϕ,L(X ) to Lϕ(X ) (see Theorem 6.7 below). As a
corollary, we characterize Hϕ,L(X ) in terms of the g∗

λ-function g∗
λ,L (see Corollary

6.9 below). Observe that when X := R
n and L := −�, g∗

λ,L is just the classical
Littlewood–Paley g∗

λ-function. Moreover, the range of λ in Theorem 6.7 coincides
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with the corresponding result on the classical Littlewood–Paley g∗
λ-function on R

n

in the case that ϕ is as in (1.2) with that ω ∈ Aq(Rn), q ∈ [1,∞), and Φ(t) := tp

for all t ∈ [0,∞), p ∈ (0,1] (see Remark 6.8 below). Thus, in some sense, the range
of λ in Theorem 6.7 is sharp, which is attributed to the use of the unweighted norm
in our definition of tent atoms, appearing in the atomic decomposition of the tent
space Tϕ(X × (0,∞)). Finally, in Sect. 6.3, we establish a Hörmander-type spectral
multiplier theorem for m(L) as in (1.1) on Hϕ,L(X ) (see Theorem 6.10 below). Let
p ∈ (0,1]. We remark that Theorem 6.10 covers [38, Theorem 1.1] in the case that
p ∈ (0,1] by taking ϕ(x, t) := tp for all x ∈ R

n and t ∈ [0,∞). A typical example of
the function m satisfying the condition of Theorem 6.10 is m(λ) = λiγ for all λ ∈ R

and some real value γ , where i denotes the unit imaginary number (see Corollary
6.13 below).

As applications, in Sect. 7, we study the Musielak–Orlicz–Hardy spaces Hϕ,L(Rn)

associated with the Schrödinger operator L := −� + V , where 0 ≤ V ∈ L1
loc(R

n).
As an application of Theorems 5.5 and 5.7, we characterize Hϕ,L(Rn) in terms of
the Lusin-area function associated with the Poisson semigroup of L, the atom, and
the molecule (see Theorem 7.2 below). Moreover, characterizations of Hϕ,L(Rn), in
terms of the non-tangential maximal functions associated with the heat semigroup
and the Poisson semigroup of L, the radial maximal functions associated with the
heat semigroup and the Poisson semigroup of L, are also established (see Theorem
7.4 below). Observe that Theorem 7.4 completely covers [57, Theorem 6.4] by taking
ϕ as in (1.2) with ω ≡ 1 and Φ satisfying that there exist q1, q2 ∈ (0,∞) such that
q1 < 1 < q2 and [Φ(tq2)]q1 is a convex function on (0,∞). Finally, we show that the
Riesz transform ∇L−1/2 associated with L is bounded from Hϕ,L(Rn) to Lϕ(Rn)

when i(ϕ) ∈ (0,1], and from Hϕ,L(Rn) to the Musielak–Orlicz–Hardy space Hϕ(Rn)

introduced by Ky [63] when i(ϕ) ∈ ( n
n+1 ,1] (see Theorems 7.11 and 7.15 below). We

remark that the boundedness of ∇L−1/2 from H 1
L(Rn) to the classical Hardy space

H 1(Rn) was first established in [51, Theorem 8.6] and that Theorems 7.11 and 7.15
are respectively [57, Theorems 6.2 and 6.3] when ϕ is as in (1.2) with ω ≡ 1 and
Φ concave. We also point out that when n = 1 and ϕ(x, t) := t for all x ∈ R

n and
t ∈ [0,∞), the Hardy space Hϕ,L(Rn) coincides with the Hardy space introduced by
Czaja and Zienkiewicz [28]; if L := −�+V with V belonging to the reverse Hölder
class RHq(Rn) for some q ≥ n/2 and n ≥ 3, and ϕ(x, t) := tp with p ∈ ( n

n+1 ,1] for
all x ∈ R

n and t ∈ [0,∞), then the Hardy space Hϕ,L(Rn) coincides with the Hardy
space introduced by Dziubański and Zienkiewicz [39, 40].

To prove Theorem 7.4 below, we borrow some ideas from the proof of [51, Theo-
rem 8.2]. To this end, via invoking the Caccioppoli inequality associated with L, the
special differential structure of L itself and the divergence theorem, we first estab-
lish a weighted “good-λ inequality” concerning the non-tangential maximal function
NP (f ), associated with the Poisson semigroup of L, and the truncated variant of the
Lusin area function S̃P (f ) in Lemma 7.8 below, which is a suitable substitute, in the
present setting, of a distribution inequality concerning the non-tangential maximal
function NP (f ) and the Lusin area function S̃P (f ), appeared in the proof of [51,
Theorem 8.2] (see also [57, (6.5)]). We then use the Moser type local boundedness
estimate from [51, Lemma 8.4] (see also Lemma 7.9 below), which is the substitute
of the classical mean value property for harmonic functions in this setting. Moreover,
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a more delicate estimate in (7.15) below than that used in the proof of [57, Theo-
rem 6.4] is established, which leads us in Theorem 7.4 below to remove the additional
assumption, appeared in [57, Theorem 6.4], that there exist q1, q2 ∈ (0,∞) such that
q1 < 1 < q2 and [Φ(tq2)]q1 is a convex function on (0,∞) even when ϕ is as in (1.2)
with ω ≡ 1. The proof of Theorem 7.11 is a skillful application of the atomic char-
acterization of the Musielak–Orlicz–Hardy space Hϕ,L(Rn), a Davies–Gaffney type
estimate (see [51, Lemma 8.5] or Lemma 7.10 below) and the L2(Rn)-boundedness
of the Riesz transform ∇L−1/2. Furthermore, as an application of the atomic charac-
terization of Hϕ,L(Rn) obtained in Theorem 7.2 and the atomic characterization of
the Musielak–Orlicz–Hardy space Hϕ(Rn) established by Ky [63, Theorem 3.1] (see
also Lemma 7.14 below), we obtain the boundedness of the Riesz transform ∇L−1/2

from Hϕ,L(Rn) to Hϕ(Rn) in Theorem 7.15 below. More precisely, for any given
atom α as in Definition 4.3 below, we prove that

∇L−1/2(α) =
∑

j

bj

in L2(Rn), where, for each j , bj is a multiple of an atom introduced by Ky [63, Def-
inition 2.4]. Observe that the atom in Definition 4.3 below is different from the atom
in [63, Definition 2.4] in that the norm of the atom in Definition 4.3 is not weighted,
but the atom introduced by Ky [63, Definition 2.4] is weighted and, moreover, that, in
the present setting, ∇L−1/2 is known to be bounded on Lp(Rn) only with p ∈ (1,2].
Thus, in order to prove that, for each j , bj is a multiple of an atom as in [63, Defini-
tion 2.4], we need the assumption that q(ϕ) < 2 and r(ϕ) > 2/[2 − q(ϕ)] (see (7.36)
below for the details), where q(ϕ) and r(ϕ) are, respectively, as in (2.12) and (2.13)
below.

We remark that there exist more applications of the results in this paper.
For example, motivated by [64–66], in a forthcoming paper, we will apply the
Musielak–Orlicz–Hardy space Hϕ,L(Rn) and the Musielak–Orlicz BMO-type space
BMOϕ,L(Rn) associated with the Schrödinger operator L, introduced in this pa-
per, to the study of pointwise multipliers on BMO-type space associated with the
Schrödinger operator L and commutators of singular integral operators associated
with the operator L. This is reasonable, since ϕ in (1.3) naturally appears in the study
of these problems in [74, 75]. Moreover, motivated by [8, 16–19], in another forth-
coming paper, we will further establish various maximal function characterizations
of the Musielak–Orlicz–Hardy space Hϕ,L(Ω) on the strongly Lipschitz domain Ω

of R
n associated with the Schrödinger operator L with some boundary conditions,

which is a special case of the Musielak–Orlicz–Hardy space Hϕ,L(X ) introduced in
this paper.

After the first version of this paper was put on arXiv, we learned from Dr. Bui that,
in [15], Bui and Duong also introduced the weighted Hardy space H

p
L,ω(X ), with

p ∈ (0,1] and ω ∈ A1(X ) satisfying the reverse Hölder inequality of order 2/(2−p),
by the Lusin area function associated with the heat semigroup generated by L. More-
over, Bui and Duong [15] established the atomic and the molecular characterizations
of H

p
L,ω(X ) and, as applications, obtained the boundedness on H

p
L,ω(X ) of the gener-

alized Riesz transforms associated with L and of the spectral multipliers of L. These
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results are partially overlapped with the results of this paper when ϕ is as in (1.2)
with Φ(t) := tp for p ∈ (0,1] and t ∈ [0,∞). As have observed above, the atomic
decomposition of the weighted tent space obtained in [15] and the Riesz transforms
considered in [15] are different from these in this paper. We also point out that, it
is motivated by [15], in the present version of this paper, we replace the assumption
in the first version that the growth function ϕ is of uniformly upper type 1 by the
assumption that ϕ is of uniformly upper type p1 for some p1 ∈ (0,1] and hence, in
the main results of this paper, we improve the assumption in the first version that
ϕ ∈ RH2(X ) into the weaker assumption that ϕ ∈ RH2/[2−I (ϕ)](X ).

Finally we make some conventions on notation. Throughout the whole paper, we
denote by C a positive constant which is independent of the main parameters, but
it may vary from line to line. We also use C(γ,β, . . .) to denote a positive constant
depending on the indicated parameters γ , β , . . . . The symbol A � B means that
A ≤ CB . If A � B and B � A, then we write A ∼ B . The symbol 
s� for s ∈ R

denotes the maximal integer not more than s. For any given normed spaces A and B
with the corresponding norms ‖ · ‖A and ‖ · ‖B , the symbol A ⊂ B means that for all
f ∈ A, then f ∈ B and ‖f ‖B � ‖f ‖A. For any measurable subset E of X , we denote
by E� the set X \E and by χE its characteristic function. We also set N := {1,2, . . .}
and Z+ := {0} ∪ N. For any θ := (θ1, . . . , θn) ∈ Z

n+, let |θ | := θ1 + · · · + θn. For any
subsets E, F ⊂ X , and z ∈ X , let dist(E,F ) := infx∈E,y∈F d(x, y) and dist(z,E) :=
infx∈E d(z, x).

2 Preliminaries

In Sect. 2.1, we first recall some notions on metric measure spaces and then, in
Sect. 2.2, describe some basic assumptions on the operator L studied in this paper.
In Sect. 2.3, we recall some notions concerning growth functions considered in this
paper and also give some specific examples of growth functions satisfying the as-
sumptions of this paper. Section 2.4 is devoted to recalling some properties of growth
functions established in [63].

2.1 Metric Measure Spaces

Throughout the whole paper, we let X be a set, d a metric on X , and μ a nonnegative
Borel regular measure on X . For all x ∈ X and r ∈ (0,∞), let

B(x, r) := {
y ∈ X : d(x, y) < r

}

and V (x, r) := μ(B(x, r)). Moreover, we assume that there exists a constant C1 ∈
[1,∞) such that, for all x ∈ X and r ∈ (0,∞),

V (x,2r) ≤ C1V (x, r) < ∞. (2.1)

Observe that (X , d,μ) is a space of homogeneous type in the sense of Coifman
and Weiss [25]. Recall that in the definition of spaces of homogeneous type in [25,
Chap. 3], d is assumed to be a quasi-metric. However, for simplicity, we always
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assume that d is a metric. Notice that the doubling property (2.1) implies that the
following strong homogeneity property that, for some positive constants C and n,

V (x,λr) ≤ CλnV (x, r) (2.2)

uniformly for all λ ∈ [1,∞), x ∈ X , and r ∈ (0,∞). There also exist constants C ∈
(0,∞) and N ∈ [0, n] such that, for all x, y ∈ X and r ∈ (0,∞),

V (x, r) ≤ C

[

1 + d(x, y)

r

]N

V (y, r). (2.3)

Indeed, the property (2.3) with N = n is a simple corollary of the triangle inequality
for the metric d and the strong homogeneity property (2.2). In the cases of Euclidean
spaces and Lie groups of polynomial growth, N can be chosen to be 0.

In what follows, to simplify the notation, for each ball B ⊂ X , set

U0(B) := B and Uj (B) := 2jB \ 2j−1B for j ∈ N. (2.4)

Furthermore, for p ∈ (0,∞], the space of p-integrable functions on X is denoted
by Lp(X ) and the (quasi-)norm of f ∈ Lp(X ) by ‖f ‖Lp(X ).

2.2 Assumptions on Operators L

Throughout the whole paper, as in [51, 57], we always suppose that the considered
operators L satisfy the following assumptions.

Assumption A L is a nonnegative self-adjoint operator in L2(X ).

Assumption B The operator L generates an analytic semigroup {e−tL}t>0 which
satisfies the Davies–Gaffney estimates, namely, there exist positive constants C2 and
C3 such that, for all closed sets E and F in X , t ∈ (0,∞), and f ∈ L2(E),

∥
∥e−tLf

∥
∥

L2(F )
≤ C2 exp

{

−[dist(E,F )]2

C3t

}

‖f ‖L2(E). (2.5)

Here and in what follows, dist(E,F ) := infx∈E,y∈F d(x, y) and L2(E) is the set of all
μ-measurable functions supported in E such that ‖f ‖L2(E) := {∫

E
|f (x)|2 dμ(x)}1/2

< ∞.

Examples of operators satisfying Assumptions A and B include second-order el-
liptic self-adjoint operators in divergence form on R

n with bounded measurable coef-
ficients, (degenerate) Schrödinger operators with nonnegative potential or with mag-
netic field, and Laplace–Beltrami operators on all complete Riemannian manifolds
(see, for example, [29, 42, 84, 85]).

By Assumptions A and B, we have the following results which were established
in [51].
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Lemma 2.1 Let L satisfy Assumptions A and B. Then for every fixed k ∈ N, the
family of operators, {(t2L)ke−t2L}t>0, satisfies the Davies–Gaffney estimates (2.5)
with positive constants C2 and C3 only depending on n, N , and k.

In what follows, for any operator T , let KT denote its integral kernel. It is well
known that if L satisfies Assumptions A and B, and T := cos(t

√
L) with t ∈ (0,∞),

then there exists a positive constant C4 such that

suppKT ⊂ Dt := {
(x, y) ∈ X × X : d(x, y) ≤ C4t

}
(2.6)

(see, for example, [85, Theorem 2], [26, Theorem 3.14], and [51, Proposition 3.4]).
This observation plays a key role in obtaining the atomic characterization of the
Musielak–Orlicz–Hardy space Hϕ,L(X ) (see [51, 57] and Proposition 4.7 below).

Lemma 2.2 Assume that L satisfies Assumptions A and B. Let ψ ∈ C∞
c (R) be even

and suppψ ⊂ (−C−1
4 ,C−1

4 ), where C4 is as in (2.6). Let Φ̃ denote the Fourier
transform of ψ . Then for every κ ∈ N and t ∈ (0,∞), the kernel K

(t2L)κ Φ̃(t
√

L)
of

(t2L)κΦ̃(t
√

L) satisfies that suppK
(t2L)κ Φ̃(t

√
L)

⊂ {(x, y) ∈ X × X : d(x, y) ≤ t}.

For any given δ ∈ (0,∞), let φ be a measurable function from C to C satisfying

that there exists a positive constant C(δ) such that, for all z ∈ C, |φ(z)| ≤ C(δ)
|z|δ

1+|z|2δ .

Then
∫ ∞

0 |φ(t)|2t−1 dt < ∞. It was proved in [51, (3.14)] that, for all f ∈ L2(X ),

∫ ∞

0

∥
∥φ(t

√
L)f

∥
∥2

L2(X )

dt

t
≤

{∫ ∞

0

∣
∣φ(t)

∣
∣2 dt

t

}

‖f ‖2
L2(X )

, (2.7)

which is often used in what follows.

2.3 Growth Functions

We recall that a function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is
nondecreasing, Φ(0) = 0, Φ(t) > 0 for all t ∈ (0,∞) and limt→∞ Φ(t) = ∞ (see,
for example, [73, 76, 79, 80]). The function Φ is said to be of upper type p (resp.,
lower type p) for some p ∈ [0,∞), if there exists a positive constant C such that,
for all t ∈ [1,∞) (resp., t ∈ [0,1]) and s ∈ [0,∞), Φ(st) ≤ CtpΦ(s). If Φ is of
both upper type p1 and lower type p2, then Φ is said to be of type (p1,p2). The
function Φ is said to be of strictly lower type p if, for all t ∈ [0,1] and s ∈ [0,∞),
Φ(st) ≤ tpΦ(s). Define

pΦ := sup
{
p ∈ [0,∞) : Φ(st) ≤ tpΦ(s) holds true for all t ∈ [0,1] and s ∈ [0,∞)

}
.

(2.8)
It was proved in [58, Remark 2.1] that Φ is also of strictly lower type pΦ ; in other
words, pΦ is attainable.

For a given function ϕ : X × [0,∞) → [0,∞) such that, for any x ∈ X , ϕ(x, ·) is
an Orlicz function, ϕ is said to be of uniformly upper type p (resp., uniformly lower
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type p) for some p ∈ [0,∞), if there exists a positive constant C such that, for all
x ∈ X , t ∈ [1,∞) (resp., t ∈ [0,1]) and s ∈ [0,∞),

ϕ(x, st) ≤ Ctpϕ(x, s); (2.9)

ϕ is said to be of positive uniformly upper type (resp., uniformly lower type) if it is of
uniformly upper type (resp., uniformly lower type) p for some p ∈ (0,∞). Moreover,
let

I (ϕ) := inf
{
p ∈ (0,∞) : ϕ is of uniformly upper type p

}
(2.10)

and

i(ϕ) := sup
{
p ∈ (0,∞) : ϕ is of uniformly lower type p

}
. (2.11)

In what follows, I (ϕ) and i(ϕ) are, respectively, called the uniformly critical upper
type index and the uniformly critical lower type index of ϕ. Observe that I (ϕ) and
i(ϕ) may not be attainable, namely, ϕ may not be of uniformly upper type I (ϕ) and
uniformly lower type i(ϕ) (see below for some examples).

Let ϕ : X × [0,∞) → [0,∞) satisfy that x �→ ϕ(x, t) is measurable for all t ∈
[0,∞). Following Ky [63], ϕ(·, t) is said to be uniformly locally integrable if, for all
bounded subsets K of X ,

∫

K

sup
t∈(0,∞)

{

ϕ(x, t)

[∫

K

ϕ(y, t) dμ(y)

]−1}

dμ(x) < ∞.

Definition 2.3 Let ϕ : X × [0,∞) → [0,∞) be uniformly locally integrable. The
function ϕ(·, t) is said to satisfy the uniformly Muckenhoupt condition for some q ∈
[1,∞), denoted by ϕ ∈ Aq(X ), if, when q ∈ (1,∞),

Aq(ϕ) := sup
t∈(0,∞)

sup
B⊂X

1

μ(B)

∫

B

ϕ(x, t) dμ(x)

{
1

μ(B)

∫

B

[
ϕ(y, t)

]−q ′/q
dμ(y)

}q/q ′

< ∞,

where 1/q + 1/q ′ = 1, or

A1(ϕ) := sup
t∈(0,∞)

sup
B⊂X

1

μ(B)

∫

B

ϕ(x, t) dμ(x)
(

esssup
y∈B

[
ϕ(y, t)

]−1
)

< ∞.

Here the first supremums are taken over all t ∈ (0,∞) and the second ones over all
balls B ⊂ X .

The function ϕ(·, t) is said to satisfy the uniformly reverse Hölder condition for
some q ∈ (1,∞], denoted by ϕ ∈ RHq(X ), if, when q ∈ (1,∞),

RHq(ϕ) : = sup
t∈(0,∞)

sup
B⊂X

{
1

μ(B)

∫

B

[
ϕ(x, t)

]q
dμ(x)

}1/q

×
{

1

μ(B)

∫

B

ϕ(x, t) dμ(x)

}−1

< ∞,
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or

RH∞(ϕ) := sup
t∈(0,∞)

sup
B⊂X

{
esssup

y∈B

ϕ(y, t)
}{

1

μ(B)

∫

B

ϕ(x, t) dμ(x)

}−1

< ∞.

Here the first supremums are taken over all t ∈ (0,∞) and the second ones over all
balls B ⊂ X .

Recall that in Definition 2.3, when X = R
n, Aq(Rn) with q ∈ [1,∞) was intro-

duced by Ky [63].
Let A∞(X ) := ⋃

q∈[1,∞) Aq(X ) and define the critical indices of ϕ as follows:

q(ϕ) := inf
{
q ∈ [1,∞) : ϕ ∈ Aq(X )

}
(2.12)

and

r(ϕ) := sup
{
q ∈ (1,∞] : ϕ ∈ RHq(X )

}
. (2.13)

Observe that, if q(ϕ) ∈ (1,∞), then ϕ �∈ Aq(ϕ)(X ), and there exists ϕ �∈ A1(X )

such that q(ϕ) = 1 (see, for example, [62]). Similarly, if r(ϕ) ∈ (1,∞), then ϕ �∈
RHr(ϕ)(X ), and there exists ϕ �∈ RH∞(X ) such that r(ϕ) = ∞ (see, for example,
[27]).

Now we introduce the notion of growth functions.

Definition 2.4 A function ϕ : X × [0,∞) → [0,∞) is called a growth function if
the following hold true:

(i) ϕ is a Musielak–Orlicz function, namely,
(i)1 the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for all x ∈ X ;
(i)2 the function ϕ(·, t) is a measurable function for all t ∈ [0,∞).

(ii) ϕ ∈ A∞(X ).
(iii) The function ϕ is of positive uniformly upper type p1 for some p1 ∈ (0,1] and

of uniformly lower type p2 for some p2 ∈ (0,1].

Remark 2.5 By the definitions of the uniformly upper type and the uniformly lower
type, we see that, if the growth function ϕ is of positive uniformly upper type p1 and
of positive uniformly lower type p2, then p1 ≥ p2.

Clearly, ϕ(x, t) := ω(x)Φ(t) is a growth function if ω ∈ A∞(X ) and Φ is an
Orlicz function of upper type p1 for some p1 ∈ (0,1] and of lower type p2 for some
p2 ∈ (0,1]. It is known that, for p ∈ (0,1], if Φ(t) := tp for all t ∈ [0,∞), then Φ

is an Orlicz function of type (p,p); for p ∈ [ 1
2 ,1], if Φ(t) := tp/ ln(e + t) for all

t ∈ [0,∞), then Φ is an Orlicz function of lower type q for q ∈ (0,p) and of upper
type p; for p ∈ (0, 1

2 ], if Φ(t) := tp ln(e + t) for all t ∈ [0,∞), then Φ is an Orlicz
function of lower type p and of upper type q for q ∈ (p,1]. Recall that if an Orlicz
function is of upper type p ∈ (0,1), then it is also of upper type 1.

Another typical and useful growth function is ϕ as in (1.3). It is easy to show
that if ϕ is as in (1.3), then ϕ ∈ A1(X ), ϕ is of uniformly upper type α, I (ϕ) =
i(ϕ) = α, i(ϕ) is not attainable, but I (ϕ) is attainable. Moreover, it is worth to point
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out that such function ϕ naturally appears in the study of the pointwise multiplier
characterization for the BMO-type space on the metric space with doubling measure
(see [74]). We also point out that when X = R

n, a similar example of such ϕ is given
by Ky [63] replacing d(x, x0) by |x|, where | · | denotes the Euclidean distance on
R

n.

2.4 Some Basic Properties on Growth Functions

Throughout the whole paper, we always assume that ϕ is a growth function as in
Definition 2.4. Let us now introduce the Musielak–Orlicz space.

The Musielak–Orlicz space Lϕ(X ) is defined to be the set of all measurable func-
tions f such that

∫
X ϕ(x, |f (x)|) dμ(x) < ∞ with Luxembourg norm

‖f ‖Lϕ(X ) := inf

{

λ ∈ (0,∞) :
∫

X
ϕ

(

x,
|f (x)|

λ

)

dμ(x) ≤ 1

}

.

In what follows, for any measurable subset E of X and t ∈ [0,∞), let

ϕ(E, t) :=
∫

E

ϕ(x, t) dμ(x).

The following Lemmas 2.6 and 2.7 on the properties of growth functions are,
respectively, [63, Lemmas 4.1 and 4.3].

Lemma 2.6 (i) Let ϕ be a growth function. Then ϕ is uniformly σ -quasi-subadditive
on X × [0,∞), namely, there exists a positive constant C such that, for all (x, tj ) ∈
X × [0,∞) with j ∈ N, ϕ(x,

∑∞
j=1 tj ) ≤ C

∑∞
j=1 ϕ(x, tj ).

(ii) Let ϕ be a growth function and ϕ̃(x, t) := ∫ t

0
ϕ(x,s)

s
ds for all (x, t) ∈ X ×

[0,∞). Then ϕ̃ is a growth function, which is equivalent to ϕ; moreover, ϕ̃(x, ·) is
continuous and strictly increasing.

Lemma 2.7 Let c be a positive constant. Then there exists a positive constant C such
that

(i)
∫

X ϕ(x,
|f (x)|

λ
) dμ(x) ≤ c for some λ ∈ (0,∞) implies that ‖f ‖Lϕ(X ) ≤ Cλ;

(ii)
∑

j ϕ(Bj ,
tj
λ
) ≤ c for some λ ∈ (0,∞) implies that

inf

{

α ∈ (0,∞) :
∑

j

ϕ

(

Bj ,
tj

α

)

≤ 1

}

≤ Cλ,

where {tj }j is a sequence of positive numbers and {Bj }j a sequence of balls.

In what follows, for any given ball B := B(x, t), with x ∈ X and r ∈ (0,∞), and
λ ∈ (0,∞), we write λB for the λ-dilated ball of B , namely, λB := B(x,λt).

We have the following properties for A∞(X ), whose proofs are similar to those in
[44–46], and we omit the details. In what follows, M denotes the Hardy–Littlewood
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maximal function on X , namely, for all x ∈ X ,

M(f )(x) := sup
x∈B

1

μ(B)

∫

B

|f (y)|dμ(y),

where the supremum is taken over all balls B � x.

Lemma 2.8 (i) A1(X ) ⊂ Ap(X ) ⊂ Aq(X ) for 1 ≤ p ≤ q < ∞.
(ii) RH∞(X ) ⊂ RHp(X ) ⊂ RHq(X ) for 1 < q ≤ p ≤ ∞.
(iii) If ϕ ∈ Ap(X ) with p ∈ (1,∞), then there exists some q ∈ (1,p) such that

ϕ ∈ Aq(X ).
(iv) If ϕ ∈ RHp(X ) with p ∈ (1,∞), then there exists some q ∈ (p,∞) such that

ϕ ∈ RHq(X ).
(v) A∞(X ) = ⋃

p∈[1,∞) Ap(X ) ⊂ ⋃
q∈(1,∞] RHq(X ).

(vi) If p ∈ (1,∞) and ϕ ∈ Ap(X ), then there exists a positive constant C such
that, for all measurable functions f on X and t ∈ [0,∞),

∫

X

[
M(f )(x)

]p
ϕ(x, t) dμ(x) ≤ C

∫

X

∣
∣f (x)

∣
∣pϕ(x, t) dμ(x).

(vii) If ϕ ∈ Ap(X ) with p ∈ [1,∞), then there exists a positive constant C such

that, for all balls B1,B2 ⊂ X with B1 ⊂ B2 and t ∈ [0,∞), ϕ(B2,t)
ϕ(B1,t)

≤ C[μ(B2)
μ(B1)

]p .
(viii) If ϕ ∈ RHq(X ) with q ∈ (1,∞], then there exists a positive constant

C such that, for all balls B1,B2 ⊂ X with B1 ⊂ B2 and t ∈ [0,∞), ϕ(B2,t)
ϕ(B1,t)

≥
C[μ(B2)

μ(B1)
](q−1)/q .

Remark 2.9 We remark that in the setting of the Euclidean space R
n, Lemma 2.8(v)

can be improved to A∞(Rn) = ⋃
p∈[1,∞) Ap(Rn) = ⋃

q∈(1,∞] RHq(Rn) (see, for ex-
ample, [54, Lemma 2.4(iv)]). However, in the present setting, the inverse inclusion in
Lemma 2.8(v) may not be true (see [90, p. 9] for a counterexample).

3 Musielak–Orlicz Tent Spaces Tϕ(X × (0,∞))

In this section, we study the Musielak–Orlicz tent space associated with the growth
function. We first recall some notions as follows.

For any ν ∈ (0,∞) and x ∈ X , let Γν(x) := {(y, t) ∈ X × (0,∞) : d(x, y) < νt}
be the cone of aperture ν with vertex x ∈ X . For any closed subset F of X , denote
by RνF the union of all cones with vertices in F , namely, RνF := ⋃

x∈F Γν(x)

and, for any open subset O of X , denote the tent over O by Tν(O), which is de-
fined as Tν(O) := [Rν(O

�)]�. It is easy to see that Tν(O) = {(x, t) ∈ X × (0,∞) :
d(x,O�) ≥ νt}. In what follows, we denote Γ1(x) and T1(O) simply by Γ (x) and
Ô , respectively.

For all measurable functions g on X × (0,∞) and x ∈ X , define

A(g)(x) :=
{∫

Γ (x)

|g(y, t)|2 dμ(y)

V (x, t)

dt

t

}1/2

.
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If X = R
n, Coifman, Meyer, and Stein [23] introduced the tent space T

p

2 (Rn+1+ )

for p ∈ (0,∞). Here and in what follows, R
n+1+ := R

n × (0,∞). The tent space
T

p

2 (X × (0,∞)) on spaces of homogenous type was introduced by Russ [82]. Recall
that a measurable function g is said to belong to the tent space T

p

2 (X × (0,∞)) with
p ∈ (0,∞), if ‖g‖T

p
2 (X ×(0,∞)) := ‖A(g)‖Lp(X ) < ∞. Moreover, Harboure, Salinas,

and Viviani [47] and Jiang and Yang [57], respectively, introduced the Orlicz tent
spaces TΦ(Rn+1+ ) and TΦ(X × (0,∞)).

Let ϕ be as in Definition 2.4. In what follows, we denote by Tϕ(X × (0,∞)) the
space of all measurable functions g on X × (0,∞) such that A(g) ∈ Lϕ(X ) and, for
any g ∈ Tϕ(X × (0,∞)), define its quasi-norm by

‖g‖Tϕ(X ×(0,∞)) := ‖A(g)‖Lϕ(X )

= inf

{

λ ∈ (0,∞) :
∫

X
ϕ

(

x,
A(g)(x)

λ

)

dμ(x) ≤ 1

}

.

A function a on X × (0,∞) is called a Tϕ(X × (0,∞))-atom if

(i) there exists a ball B ⊂ X such that suppa ⊂ B̂;

(ii)
∫
B̂

|a(x, t)|2 dμ(x)dt
t

≤ μ(B)‖χB‖−2
Lϕ(X )

.

For functions in Tϕ(X × (0,∞)), we have the following atomic decomposition.

Theorem 3.1 Let ϕ be as in Definition 2.4. Then for any f ∈ Tϕ(X × (0,∞)), there
exist {λj }j ⊂ C and a sequence {aj }j of Tϕ(X × (0,∞))-atoms such that, for almost
every (x, t) ∈ X × (0,∞),

f (x, t) =
∑

j

λjaj (x, t). (3.1)

Moreover, there exists a positive constant C such that, for all f ∈ Tϕ(X × (0,∞)),

Λ
({λjaj }j

) := inf

{

λ ∈ (0,∞) :
∑

j

ϕ

(

Bj ,
|λj |

λ‖χBj
‖Lϕ(X )

)

≤ 1

}

≤ C‖f ‖Tϕ(X ×(0,∞)), (3.2)

where, for each j , B̂j appears in the support of aj .

We prove Theorem 3.1 by borrowing some ideas from the proof of [57, Theo-
rem 3.1] (see also [23] and [82]). To this end, we first need some known facts as
follows.

Let F be a closed subset of X and O := F �. Assume that μ(O) < ∞. For any
fixed γ ∈ (0,1), we say that x ∈ X has the global γ -density with respect to F if, for
all r ∈ (0,∞),

μ(B(x, r) ∩ F)

μ(B(x, r))
≥ γ.
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Denote by F ∗
γ the set of all such x. It is easy to prove that F ∗

γ with γ ∈ (0,1)

is a closed subset of F . Let γ ∈ (0,1) and O∗
γ := (F ∗

γ )�. Then it is easy to see
that O ⊂ O∗

γ . Indeed, from the definition of O∗, we deduce that O∗
γ = {x ∈ X :

M̃(χO)(x) > 1 − γ }, where M̃ denotes the centered Hardy–Littlewood maximal
function on X , which, together with the fact that M̃ is of weak type (1,1) (see [25]),
further implies that there exists a positive constant C(γ ), depending on γ , such that
μ(O∗

γ ) ≤ C(γ )μ(O). Recall that, for all f ∈ L1
loc(X ) and x ∈ X ,

M̃(f )(x) := sup
r∈(0,∞)

1

μ(B(x, r))

∫

B(x,r)

|f (y)|dμ(y).

It is well known that there exists a positive constant C5 such that, for all x ∈ X and
f ∈ L1

loc(X ),

C−1
5 M̃(f )(x) ≤ M(f )(x) ≤ C5 M̃(f )(x). (3.3)

The following Lemma 3.2 was established in [82].

Lemma 3.2 Let η ∈ (0,1). Then there exist γ0 ∈ (0,1) and C(η,γ0) ∈ (0,∞) such
that, for any closed subset F of X whose complement has finite measure, γ ∈ [γ0,1)

and nonnegative measurable function H on X × (0,∞),

∫

R1−η(F ∗
γ )

H(y, t)V (y, t) dμ(y)dt ≤ C(η,γ0)

∫

F

{∫

Γ (x)

H(y, t) dμ(y)dt

}

dμ(x),

where F ∗
γ denotes the set of points in X with the global γ -density with respect to F .

To prove Theorem 3.1, we need a covering lemma established in [24].

Lemma 3.3 Let Ω be a proper open subset of finite measure of X . For any x ∈ X ,
define r(x) := d(x,Ω�)/10. Then there exist a positive integer M and a sequence
{xj }j of points in X such that, if rj := r(xj ), then

(i) Ω = ⋃
j B(xj , rj );

(ii) B(xi, ri/4) ∩ B(xj , rj /4) = ∅ if i �= j ;
(iii) for each j , �{i : B(xi,5ri) ∩ B(xj ,5rj ) �= ∅} ≤ M , where �E denotes the car-

dinality of the set E;

Moreover, there exist nonnegative functions {φj }j on X such that

(iv) for all j , suppφj ⊂ B(xj ,2rj );
(v) for all j and x ∈ B(xj , rj ), φj (x) ≥ 1/M ;
(vi)

∑
j φj = χΩ .

Moreover, we also need the following Lemma 3.4, whose proof is similar to that
of [63, Lemma 5.4]. We omit the details.
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Lemma 3.4 Let f ∈ Tϕ(X × (0,∞)) and Ωk := {x ∈ X : A(f )(x) > 2k} for all
k ∈ Z. Then there exists a positive constant C such that, for all λ ∈ (0,∞),

∑

k∈Z

ϕ

(

Ωk,
2k

λ

)

≤ C

∫

X
ϕ

(

x,
A(f )(x)

λ

)

dμ(x).

Now we prove Theorem 3.1 by using Lemmas 3.3 and 3.4.

Proof of Theorem 3.1 Let f ∈ Tϕ(X × (0,∞)). For any k ∈ Z, let Ok := {x ∈ X :
A(f )(x) > 2k} and Fk := O�

k . Since f ∈ Tϕ(X × (0,∞)), for each k, Ok is an open
set of X with μ(Ok) < ∞.

Let η ∈ (0,1) and γ0 be as in Lemma 3.2. Let γ ∈ [γ0,1) such that C5(1 − γ ) ≤
1/2. In what follows, we denote (Fk,γ )∗ and (Ok,γ )∗ simply by F ∗

k and O∗
k , re-

spectively. We claim that suppf ⊂ ⋃
k∈Z

T1−η(O
∗
k ) ∪ E, where E ⊂ X × (0,∞)

satisfies
∫
E

dμ(y)dt
t

= 0. Indeed, let (x, t) be the Lebesgue point of f and (x, t) �∈⋃
k∈Z

T1−η(O
∗
k ). Then there exists a sequence {yk}k∈Z of points such that {yk}k∈Z ⊂

B(x, (1 − η)t) and for each k, yk �∈ T1−η(O
∗
k ), which implies that, for each k ∈ Z,

M̃(χOk
)(yk) ≤ 1 − γ . From this, (3.3) and C5(1 − γ ) ≤ 1/2, we deduce that

μ(B(x, t) ∩ {z ∈ X : A(f )(z) ≤ 2k}) ≥ μ(B(x, t))/2. Letting k → −∞, we then
see that μ(B(x, t) ∩ {z ∈ X : A(f )(z) = 0}) ≥ μ(B(x, t))/2. Therefore, there ex-
ists y ∈ B(x, t) such that f = 0 almost everywhere in Γ (y), which, together with
Lebesgue’s differentiation theorem (see [49, Theorem 1.8]), implies that f (x, t) = 0.
By this, we know that the claim holds true.

If O∗
k = X for some k ∈ Z, then μ(X ) < ∞, which implies that X is a ball (see

[74, Lemma 5.1]). In this case, set Ik := {1}, Bk,1 := X and φk,1 ≡ 1. If O∗
k is a proper

subset of X , by Lemma 3.3 with Ω = O∗
k , we obtain a set Ik of indices and balls

{Bk,j }j∈Ik
:= {B(xk,j ,2rk,j )}j∈Ik

and functions {φk,j }j∈Ik
satisfying that, for each

j ∈ Ik , suppφk,j ⊂ B(xx,j ,2rk,j ), and
∑

j∈Ik
φk,j = χO∗

k
. Thus, for each (x, t) ∈

X × (0,∞), we see that

(χT1−η(O∗
k ) − χT1−η(O∗

k+1)
)(x, t) =

∑

j∈Ik

φk,j (x)(χT1−η(O∗
k ) − χT1−η(O∗

k+1)
)(x, t).

From this, suppf ⊂ {⋃k∈Z
T1−η(O

∗
k ) ∪ E}, and

∫
E

dμ(y)dt
t

= 0, we infer that

f =
∑

k∈Z

f (χT1−η(O∗
k ) − χT1−η(O∗

k+1)
) =

∑

k∈Z

∑

j∈Ik

f φk,j (χT1−η(O∗
k ) − χT1−η(O∗

k+1)
)

almost everywhere on X × (0,∞). For each k and j , let

ak,j := 2−k‖χBk,j
‖−1
Lϕ(X )

f φk,j (χT1−η(O∗
k ) − χT1−η(O∗

k+1)
)

and λkj := 2k‖χBk,j
‖Lϕ(X ). Then f = ∑

k∈Z

∑
j∈Ik

λk,j ak,j almost everywhere.

Similar to the proof of [82, (2.4)], we see that, for each k and j , suppak,j ⊂ ̂C(η)Bk,j ,
where C(η) ∈ (1,∞) is a positive constant independent of k and j . By Lemma 3.2,
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suppak,j ⊂ (T1−η(O
∗
k+1))

� = R1−η(F
∗
k+1), and the definition of Fk+1, we know that,

for each k and j ,

‖ak,j‖2
T 2

2 (X ×(0,∞))
=

∫

X ×(0,∞)

|ak,j (y, t)|2 dμ(y)dt

t

�
∫

R1−η(F ∗
k+1)

|ak,j (y, t)|2 dμ(y)dt

t

�
∫

Fk+1

{∫

Γ (x)

|ak,j (y, t)|2 dμ(y)dt

V (y, t)t

}

dμ(x)

�
∫

Fk+1∩(C(η)Bk,j )

[
A(ak,j )(x)

]2
dμ(x)

� 2−2k‖χBk,j
‖−2
Lϕ(X )

∫

Fk+1∩(C(η)Bk,j )

[
A(f )(x)

]2
dμ(x)

� V
(
C(η)Bk,j

)‖χC(η)Bk,j
‖−2
Lϕ(X )

,

which implies that up to a harmless multiplicative constant, each ak,j is a Tϕ(X ×
(0,∞))-atom. Moreover, by (2.2), Lemma 2.7(i), and Lemma 3.4, we know that, for
all λ ∈ (0,∞),

∑

k∈Z

∑

j∈Ik

ϕ

(

C(η)Bk,j ,
|λk,j |

λ‖χC(η)Bk,j
‖Lϕ(X )

)

�
∑

k∈Z

∑

j∈Ik

ϕ

(

Bk,j ,
2k

λ

)

�
∑

k∈Z

ϕ

(

O∗
k ,

2k

λ

)

�
∫

X
ϕ

(

x,
A(f )(x)

λ

)

dμ(x),

which implies that Λ({λk,j ak,j }k∈Z,j ) � ‖f ‖Tϕ(X ×(0,∞)). This finishes the proof of
Theorem 3.1. �

Corollary 3.5 Let ϕ be as in Definition 2.4 with ϕ ∈ RH2/[2−I (ϕ)](X ), where I (ϕ)

is as in (2.10). If f ∈ Tϕ(X × (0,∞)) ∩ T 2
2 (X × (0,∞)), then (3.1) in Theorem 3.1

holds true in both Tϕ(X × (0,∞)) and T 2
2 (X × (0,∞)).

By the uniformly upper type p1 property of ϕ with some p1 ∈ [I (ϕ),1], Theo-
rem 3.1 and its proof, similar to the proof of [54, Corollary 3.4], we can show Corol-
lary 3.5 and omit the details here.

In what follows, let T b
ϕ (X × (0,∞)) and T

p,b

2 (X × (0,∞)) with p ∈ (0,∞) de-
note, respectively, the set of all functions in Tϕ(X × (0,∞)) and T

p

2 (X × (0,∞))

with bounded support. Here and in what follows, a function f on X × (0,∞) is said
to have bounded support means that there exist a ball B ⊂ X and 0 < c1 < c2 < ∞
such that suppf ⊂ B × (c1, c2).
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Proposition 3.6 Let ϕ be as in Definition 2.4. Then T b
ϕ (X × (0,∞)) ⊂ T

2,b
2 (X ×

(0,∞)) as sets.

The proof of Proposition 3.6 is an application of the uniformly lower type p2
property of ϕ for some p2 ∈ (0,1], which is similar to that of [54, Proposition 3.5].
We omit the details.

4 Musielak–Orlicz–Hardy Spaces Hϕ,L(X ) and Their Duals

In this section, we always assume that the operator L satisfies Assumptions A and B,
and the growth function ϕ is as in Definition 2.4. We introduce the Musielak–Orlicz–
Hardy space Hϕ,L(X ) associated with L via the Lusin-area function and give its dual
space via the atomic and molecular decomposition of Hϕ,L(X ). Let us begin with
some notions.

In order to introduce the Musielak–Orlicz–Hardy space associated with L, we
follow the ideas appeared in [6, 51] and first define the L2(X ) adapted Hardy space

H 2(X ) := H 2
L(X ) := R(L), (4.1)

where R(L) denotes the closure of the range of L in L2(X ). Then L2(X ) is the
orthogonal sum of H 2(X ) and the null space N(L), namely, L2(X ) = R(L)⊕N(L).

For all functions f ∈ L2(X ), let the Lusin-area function SL(f ) be as in (1.4).
From (2.7), it follows that SL is bounded on L2(X ). Hofmann et al. [51] intro-
duced the Hardy space H 1

L(X ) associated with L as the completion of {f ∈ H 2(X ) :
SL(f ) ∈ L1(X )} with respect to the norm ‖f ‖H 1

L(X ) := ‖f ‖L1(X ). The Orlicz–Hardy
space HΦ,L(X ) was introduced in [57] in a similar way.

Following [6, 51, 57], we now introduce the Musielak–Orlicz–Hardy space
Hϕ,L(X ) associated with L as follows.

Definition 4.1 Let L satisfy Assumptions A and B and ϕ be as in Definition 2.4.
A function f ∈ H 2(X ) is said to be in H̃ϕ,L(X ) if SL(f ) ∈ Lϕ(X ); moreover, define

‖f ‖Hϕ,L(X ) := ‖SL(f )‖Lϕ(X ) := inf

{

λ ∈ (0,∞) :
∫

X
ϕ

(

x,
SL(f )(x)

λ

)

dμ(x) ≤ 1

}

.

The Musielak–Orlicz–Hardy space Hϕ,L(X ) is defined to be the completion of
H̃ϕ,L(X ) in the quasi-norm ‖ · ‖Hϕ,L(X ).

Remark 4.2 (i) Notice that for 0 �= f ∈ L2(X ), ‖SL(f )‖Lϕ(X ) = 0 holds true if and

only if f ∈ N(L). Indeed, if f ∈ N(L), then t2Le−t2Lf = 0 almost everywhere and
hence ‖SL(f )‖Lϕ(X ) = 0. Conversely, if ‖SL(f )‖Lϕ(X ) = 0, then t2Le−t2Lf = 0

almost everywhere on X × (0,∞). Hence, for all t ∈ (0,∞), (e−t2L − I )f =
∫ t

0 −2sLe−s2Lf ds = 0, which further implies that Lf = Le−t2Lf = 0 almost ev-
erywhere and f ∈ N(L). Thus, in Definition 4.1, it is necessary to use R(L) rather



516 D. Yang and S. Yang

than L2(X ) to guarantee ‖ · ‖Hϕ,L(X ) to be a quasi-norm (see also [51, Sect. 2] and
[57, Remark 4.1(i)]).

Moreover, we know that, if the kernels of the semigroup {e−tL}t>0 satisfy the
Gaussian upper bounded estimates, then N(L) = {0} and hence H 2(X ) = L2(X )

(see, for example, [51, Sect. 2]).
(ii) It is easy to see that ‖ · ‖Hϕ,L(X ) is a quasi-norm.
(iii) From the Aoki–Rolewicz theorem in [4, 81], it follows that there exists a

quasi-norm ‖| · ‖| on H̃ϕ,L(X ) and γ ∈ (0,1] such that, for all f ∈ H̃ϕ,L(X ), ‖|f ‖| ∼
‖f ‖Hϕ,L(X ) and, for any sequence {fj }j ⊂ H̃ϕ,L(X ),

∥
∥
∥
∥

∣
∣
∣
∣

∑

j

fj

∥
∥
∥
∥

∣
∣
∣
∣

γ

≤
∑

j

‖|fj‖|γ .

By the theorem of completion of Yosida [98, p. 56], it follows that (H̃ϕ,L(X ),‖| · ‖|)
has a completion space (Hϕ,L(X ),‖| · ‖|); namely, for any f ∈ (Hϕ,L(X ),‖| · ‖|),
there exists a Cauchy sequence {fk}∞k=1 ⊂ H̃ϕ,L(X ) such that limk→∞ ‖|fk −f ‖| = 0.
Moreover, if {fk}∞k=1 is a Cauchy sequence in (H̃ϕ,L(X ),‖| · ‖|), then there exists
a unique f ∈ Hϕ,L(X ) such that limk→∞ ‖|fk − f ‖| = 0. Furthermore, by the fact
that ‖|f ‖| ∼ ‖f ‖Hϕ,L(X ) for all f ∈ H̃ϕ,L(X ), we know that the spaces (Hϕ,L(X ),
‖ · ‖Hϕ,L(X )) and (Hϕ,L(X ),‖| · ‖|) coincide with equivalent quasi-norms.

(iv) If ϕ(x, t) := t for all x ∈ X and t ∈ (0,∞), the space Hϕ,L(X ) is just the
space H 1

L(X ) introduced by Hofmann et al. [51]. Moreover, if ϕ is as in (1.2) with
ω ≡ 1 and Φ concave on (0,∞), the space Hϕ,L(X ) is just the Orlicz–Hardy space
HΦ,L(X ) introduced in [57].

We now introduce (ϕ,M)-atoms and (ϕ,M,ε)-molecules as follows.

Definition 4.3 Let M ∈ N. A function α ∈ L2(X ) is called a (ϕ,M)-atom associated
with the operator L if there exist a function b ∈ D(LM) and a ball B ⊂ X such that

(i) α = LMb;
(ii) supp(Lkb) ⊂ B , k ∈ {0, . . . ,M};

(iii) ‖(r2
BL)kb‖L2(X ) ≤ r2M

B [μ(B)]1/2‖χB‖−1
Lϕ(X )

, k ∈ {0, . . . ,M}.

Definition 4.4 Let M ∈ N and ε ∈ (0,∞). A function β ∈ L2(X ) is called a
(ϕ,M,ε)-molecule associated with the operator L if there exist a function b ∈
D(LM) and a ball B ⊂ X such that

(i) β = LMb;
(ii) for each k ∈ {0, . . . ,M} and j ∈ Z+, it holds true that

‖(r2
BL

)k
b‖L2(Uj (B)) ≤ 2−jεr2M

B

[
μ(B)

]1/2‖χB‖−1
Lϕ(X )

,

where Uj (B) with j ∈ Z+ is as in (2.4).

Remark 4.5 Let Φ be a concave Orlicz function on (0,∞) with pΦ ∈ (0,1]. When
ϕ(x, t) = Φ(t) for all x ∈ X and t ∈ [0,∞), the (ϕ,M)-atom is just the (Φ,M)-atom
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introduced in [57]. However, the (ϕ,M,ε)-molecule is different from the (Φ,M,ε)-
molecule in [57] even when ϕ(x, t) = Φ(t) for all x ∈ X and t ∈ [0,∞). More pre-
cisely, recall that β is called a (Φ,M,ε)-molecule, introduced in [57], if (ii) of Defi-
nition 4.4 is replaced by that, for each k ∈ {0, . . . ,M} and j ∈ Z+, it holds true that

∥
∥
(
r2
BL

)k
b
∥
∥

L2(Uj (B))
≤ 2−jεr2M

B

[
μ

(
2jB

)]−1/2[
ρ
(
μ

(
2jB

))]−1
,

where Uj (B) with j ∈ Z+ is as in (2.4) and ρ is given by ρ(t) := t−1/Φ−1(t−1)

for all t ∈ (0,∞). Let p2 be any lower type of Φ . Then for any ε ∈ (0,∞), every
(ϕ,M,ε)-molecule is a (Φ,M,ε − n(1/p2 − 1/2))-molecule when ϕ := Φ . Indeed,
by [92, Proposition 2.1], we know that ρ is of upper type 1/p2 − 1, which, together
with (2.2), implies that, for all j ∈ N, [ρ(μ(2jB))]−1 � 2−jn(1/p2−1)[ρ(μ(B))]−1.
From this and (2.2), we further deduce that, for all j ∈N, [μ(2jB)]−1/2[ρ(μ(2jB))]−1

� 2−jn(1/p2−1/2)[μ(B)]−1/2[ρ(μ(B))]−1, which, together with the fact that
‖χB‖Lϕ(X ) = μ(B)ρ(μ(B)), implies that the claim holds true. We point out that
the notion of (ϕ,M,ε)-molecules is motivated by [70], which is convenient in appli-
cations (see, for example, [70] for more details).

4.1 Decompositions into Atoms and Molecules

Recall that a function f on X × (0,∞) is said to have bounded support, if there exist
a ball B ⊂ X and 0 < c1 < c2 < ∞ such that suppf ⊂ B × (c1, c2). In what follows,
let L2

b(X × (0,∞)) denote the set of all functions f ∈ L2(X × (0,∞)) with bounded

support, M ∈ N and M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], where n, q(ϕ) and i(ϕ) are respectively as in

(2.2), (2.12), and (2.11). Let Φ̃ be as in Lemma 2.2 and Ψ (t) := t2(M+1)Φ̃(t) for all
t ∈ (0,∞). For all f ∈ L2

b(X × (0,∞)) and x ∈ X , define

πΨ,L(f )(x) := CΨ

∫ ∞

0
Ψ (t

√
L)

(
f (·, t))(x)

dt

t
, (4.2)

where CΨ is a positive constant such that

CΨ

∫ ∞

0
Ψ (t)t2e−t2 dt

t
= 1. (4.3)

By (2.7) and Hölder’s inequality, we easily see that, if f ∈ L2
b(X × (0,∞)), then

πΨ,L(f ) ∈ L2(X ). Moreover, we have the following boundedness of πΨ,L.

Proposition 4.6 Let L satisfy Assumptions A and B, πΨ,L be as in (4.2), ϕ as in
Definition 2.4 with ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) being as in (2.10), and M ∈ N

with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12)
and (2.11). Then

(i) the operator πΨ,L, initially defined on the space T
2,b
2 (X × (0,∞)), extends to a

bounded linear operator from T 2
2 (X × (0,∞)) to L2(X );

(ii) the operator πΨ,L, initially defined on the space T b
ϕ (X ), extends to a bounded

linear operator from Tϕ(X × (0,∞)) to Hϕ,L(X ).
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Proof The conclusion (i) is just [57, Proposition 4.1(i)]. We only need to show (ii)
of this proposition. Let f ∈ T b

ϕ (X × (0,∞)). Then by Proposition 3.6, Corollary 3.5
and (i), we know that

πΨ,L(f ) =
∑

j

λjπΨ,L(aj ) =:
∑

j

λjαj

in L2(X ), where {λj }j and {aj }j satisfy (3.1) and (3.2), respectively. Recall that,
for each j , suppaj ⊂ B̂j and Bj is a ball of X . Moreover, from (2.7), we deduce
that SL is bounded on L2(X ), which implies that, for all x ∈ X , SL(πΨ,L(f ))(x) ≤∑

j |λj |SL(αj )(x). This, combined with Lemma 2.6(i), yields that

∫

X
ϕ
(
x,SL

(
πΨ,L(f )

)
(x)

)
dμ(x) �

∑

j

∫

X
ϕ
(
x, |λj |SL(αj )(x)

)
dμ(x). (4.4)

We now show that αj = πΨ,L(aj ) is a multiple of a (ϕ,M)-atom for each j . Let

bj := CΨ

∫ ∞

0
t2(M+1)LΦ̃(t

√
L)

(
aj (·, t)

)dt

t
,

where CΨ is as in (4.3). Then for each j , from the definitions of αj and bj , it follows
that αj = LMbj . Moreover, by Lemma 2.2, we know that, for each k ∈ {0, . . . ,M},
supp(Lkbj ) ⊂ Bj . Furthermore, for any h ∈ L2(Bj ), from Hölder’s inequality and
(2.7), we infer that

∣
∣
∣
∣

∫

X

(
r2
Bj

L
)k

bj (x)h(x) dμ(x)

∣
∣
∣
∣

= CΨ

∣
∣
∣
∣

∫

X

∫ ∞

0
t2(M+1)

(
r2
Bj

L
)k

LΦ̃(t
√

L)
(
aj (·, t)

)
(x)h(x)

dμ(x)dt

t

∣
∣
∣
∣

� r2M
Bj

∫

X

∫ rB

0

∣
∣aj (y, t)

(
t2L

)k+1
Φ̃(t

√
L)h(y)

∣
∣dμ(y)dt

t

� r2M
Bj

‖aj‖T 2
2 (X ×(0,∞))

{∫

X

∫ ∞

0

∣
∣
(
t2L

)k+1
Φ̃(t

√
L)h(y)

∣
∣2 dμ(y)dt

t

}1/2

� r2M
Bj

‖aj‖T 2
2 (X ×(0,∞))‖h‖L2(X ) � r2M

Bj

[
V (Bj )

]1/2‖χBj
‖−1
Lϕ(X )

‖h‖L2(X ),

which implies that ‖(r2
Bj

L)kbj‖L2(X ) � r2M
Bj

[V (Bj )]1/2‖χBj
‖−1
Lϕ(X )

. Therefore, αj

is a (ϕ,M)-atom up to a harmless constant.
We claim that, for any λ ∈ C and (ϕ,M)-atom α supported in a ball B ⊂ X ,

∫

X
ϕ
(
x,SL(λα)(x)

)
dμ(x) � ϕ

(

B,
|λ|

‖χB‖Lϕ(X )

)

. (4.5)

If (4.5) holds true, by (4.5), the facts that, for all λ ∈ (0,∞),

SL

(
πΨ,L(f/λ)

) = SL

(
πΨ,L(f )

)
/λ
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and πΨ,L(f/λ) = ∑
j λjαj /λ, and SL(πΨ,L(f )) ≤ ∑

j |λj |SL(αj ), we see that, for
all λ ∈ (0,∞),

∫

X
ϕ

(

x,
SL(πΨ,L(f ))(x)

λ

)

dμ(x) �
∑

j

ϕ

(

Bj ,
|λj |

λ‖χBj
‖Lϕ(X )

)

,

which, together with (3.2), implies that

‖πΨ,L(f )‖Hϕ,L(X ) � Λ({λjαj }j ) � ‖f ‖Tϕ(X ×(0,∞)),

and hence completes the proof of (ii).
Now we prove (4.5). Write

∫

X
ϕ
(
x,SL(λα)(x)

)
dμ(x) =

∞∑

k=0

∫

Uk(B)

ϕ
(
x, |λ|SL(α)(x)

)
dμ(x). (4.6)

From the assumption ϕ ∈ RH2/[2−I (ϕ)](X ), Lemma 2.8(iv) and the definition of
I (ϕ), we infer that, there exists p1 ∈ [I (ϕ),1] such that ϕ is of uniformly upper
type p1 and ϕ ∈ RH2/(2−p1)(X ). For k ∈ {0, . . . ,4}, by the uniformly upper type p1
property of ϕ, Hölder’s inequality, ϕ ∈ RH2/(2−p1)(X ), the L2(X )-boundedness of
SL and (2.2), we conclude that
∫

Uk(B)

ϕ
(
x, |λ|SL(α)(x)

)
dμ(x)

�
∫

Uk(B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

){
1 + [

SL(α)(x)‖χB‖Lϕ(X )

]p1
}
dμ(x)

� ϕ
(
Uk(B), |λ|‖χB‖−1

Lϕ(X )

) + ‖χB‖p1
Lϕ(X )

×
{∫

Uk(B)

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)] 2
2−p1 dμ(x)

} 2−p1
2

{∫

Uk(B)

[
SL(α)(x)

]2
dμ(x)

} p1
2

� ϕ
(
Uk(B), |λ|‖χB‖−1

Lϕ(X )

)
� ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.7)

From the assumption that M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], it follows that, there exist p2 ∈
(0, i(ϕ)) and q0 ∈ (q(ϕ),∞) such that M > n

2 (
q0
p2

− 1
2 ). Moreover, by the definitions

of i(ϕ) and q(ϕ), we know that ϕ is of uniformly lower type p2 and ϕ ∈ Aq0(X ).
When k ∈ N with k ≥ 5, from the uniformly upper type p1 and lower type p2 prop-
erties of ϕ, it follows that

∫

Uk(B)

ϕ
(
x, |λ|SL(α)(x)

)
dμ(x)

�
∫

Uk(B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
SL(α)(x)‖χB‖Lϕ(X )

]p1 dμ(x)

+
∫

Uk(B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
SL(α)(x)‖χB‖Lϕ(X )

]p2 dμ(x)

=: Ek + Fk. (4.8)
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To estimate Ek and Fk , we first estimate
∫
Uk(B)

[SL(α)(x)]2 dμ(x). Write

∫

Uk(B)

[
SL(α)(x)

]2
dμ(x)

=
∫

Uk(B)

∫ d(x,xB )

4

0

∫

d(x,y)<t

∣
∣
(
t2L

)M+1
e−t2Lb(y)

∣
∣2 dμ(y)

V (x, t)

dt

t4M+1
dμ(x)

+
∫

Uk(B)

∫ ∞
d(x,xB )

4

∫

d(x,y)<t

· · ·

=: Hk + Ik. (4.9)

We first estimate the term Hk . Let

Gk(B) := {
y ∈ X : there exists x ∈ Uk(B) such that d(x, y) < d(x, xB)/4

}
.

From x ∈ Uk(B), it follows that d(x, xB) ∈ [2k−1rB,2krB). Let z ∈ B and y ∈
Gk(B). Then d(y, z) ≥ d(x, xB)−d(y, x)−d(z, xB) ≥ 3d(x, xB)/4− rB ≥ 2k−2rB ,
which implies that dist(Gk(B),B) ≥ 2k−2rB . By this, Fubini’s theorem, (2.5), and
(2.3), we know that

Hk �
∫ 2k+1rB

0

∫

Gk(B)

∣
∣
(
t2L

)M+1
e−t2Lb(y)

∣
∣2

dμ(y)
dt

t4M+1

� ‖b‖2
L2(B)

∫ 2k+1rB

0
exp

{

−[dist(Gk(B),B)]2

C3t2

}
dt

t4M+1

� r4M
B μ(B)‖χB‖−2

Lϕ(X )

∫ 2k+1rB

0

[
t

2krB

]4M+1
dt

t4M+1

� 2−4kMμ(B)‖χB‖−2
Lϕ(X )

. (4.10)

For Ik , from Lemma 2.1, it follows that

Ik �
∫ ∞

2k−2rB

∫

X

∣
∣
(
t2L

)M+1
e−t2Lb(y)

∣
∣2

dμ(y)
dt

t4M+1

�
∫ ∞

2k−2rB

‖b‖2
L2(B)

dt

t4M+1
� 2−4kMμ(B)‖χB‖−2

Lϕ(X )
,

which, together with (4.9) and (4.10), implies that, for all k ∈ N with k ≥ 5,

‖SL(α)‖L2(Uk(B)) � 2−2kM
[
μ(B)

]1/2‖χB‖−1
Lϕ(X )

. (4.11)
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Now we estimate Ek . By Hölder’s inequality, ϕ ∈ RH2/(2−p1)(X ), (4.11), Lemma
2.8(vii), and (2.2), we conclude that

Ek ≤
{∫

Uk(B)

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)] 2
2−p1 dμ(x)

} 2−p1
2

× ‖χB‖p1
Lϕ(X )

{∫

Uk(B)

[
SL(α)(x)

]2
dμ(x)

} p1
2

� 2−2kMp1
[μ(B)] p1

2

[μ(2k+1B)] p1
2

ϕ
(
2k+1B, |λ|‖χB‖−1

Lϕ(X )

)

� 2−2kMp1
[μ(B)] p1

2

[μ(2k+1B)] p1
2

[
μ(2k+1B)

μ(B)

]q0

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)

� 2−2kMp1ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)[
μ(B)

] p1
2 −q0

[
μ

(
2k+1B

)]q0− p1
2

� 2−k[2Mp1−nq0+ n
2 ]ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.12)

Moreover, by Remark 2.5, we know that p1 ≥ p2 and hence 2/(2 − p1) ≥ 2/(2 −
p2), which, together with ϕ ∈ RH2/(2−p1)(X ) and Lemma 2.8(ii), implies that ϕ ∈
RH2/(2−p2)(X ). From this, Hölder’s inequality, and (4.11), it follows that

Fk �
{∫

2k+1B

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)] 2
2−p2 dμ(x)

} 2−p2
2

× ‖χB‖p2
Lϕ(X )

(
2−2kM

[
μ(B)

] 1
2 ‖χB‖−1

Lϕ(X )

)p2

� 2−2kMp2‖χB‖−p2
Lϕ(X )

[
μ(B)

μ(2k+1B)

] p2
2

ϕ
(
2k+1B, |λ|‖χB‖−1

Lϕ(X )

)

� 2−2kMp2
[
μ(B)

] p2
2 −q0

[
μ

(
2k+1B

)]q0− p2
2 ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)

� 2−k(2Mp2+ np2
2 −nq0)ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)
,

which, together with (4.6), (4.7), (4.8), (4.12), and M > n
2 (

q0
p2

− 1
2 ) ≥ n

2 (
q0
p1

− 1
2 ), im-

plies that (4.5) holds true. This finishes the proof of (ii) and hence Proposition 4.6. �

Proposition 4.7 Let ϕ be as in Definition 2.4 with ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ)

being as in (2.10), and M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], where n, q(ϕ) and i(ϕ) are,

respectively, as in (2.2), (2.12) and (2.11). Then, for all f ∈ Hϕ,L(X )∩L2(X ), there
exist {λj }j ⊂ C and a sequence {αj }j of (ϕ,M)-atoms such that

f =
∑

j

λjαj (4.13)
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in both Hϕ,L(X ) and L2(X ). Moreover, there exists a positive constant C such that,
for all f ∈ Hϕ,L(X ) ∩ L2(X ),

Λ
({λjαj }j

) := inf

{

λ ∈ (0,∞) :
∑

j

ϕ

(

Bj ,
|λj |

λ‖χBj
‖Lϕ(X )

)

≤ 1

}

≤ C‖f ‖Hϕ,L(X ),

where for each j , suppαj ⊂ Bj .

Proof Let f ∈ Hϕ,L(X )∩L2(X ). Then by the H∞-functional calculi for L and (4.3),
we know that

f = CΨ

∫ ∞

0
Ψ (t

√
L)t2Le−t2Lf

dt

t
= πΨ,L

(
t2Le−t2Lf

)
(4.14)

in L2(X ). Moreover, from Definition 4.1 and (2.7), we infer that t2Le−t2Lf ∈
Tϕ(X × (0,∞))∩T 2

2 (X × (0,∞)). Applying Theorem 3.1, Corollary 3.5 and Propo-

sition 4.6 to t2Le−t2Lf , we conclude that

f = πΨ,L

(
t2Le−t2Lf

) =
∑

j

λjπΨ,L(aj ) =:
∑

j

λjαj

in both L2(X ) and Hϕ,L(X ), and Λ({λjαj }j ) � ‖t2Le−t2Lf ‖Tϕ(X ×(0,∞)) ∼
‖f ‖Hϕ,L(X ). Furthermore, by the proof of Proposition 4.6, we know that, for each
j , αj is a (ϕ,M)-atom up to a harmless constant, which completes the proof of
Proposition 4.7. �

Corollary 4.8 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) being as in (2.10), and M ∈ N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ],

where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12) and (2.11). Then for all
f ∈ Hϕ,L(X ), there exist {λj }j ⊂ C and a sequence {αj }j of (ϕ,M)-atoms such that
f = ∑

j λjαj in Hϕ,L(X ). Moreover, there exists a positive constant C, independent
of f , such that Λ({λjαj }j ) ≤ C‖f ‖Hϕ,L(X ).

Proof If f ∈ Hϕ,L(X ) ∩ L2(X ), then it follows, from Proposition 4.7, that all con-
clusions hold true.

If f ∈ Hϕ,L(X ), since Hϕ,L(X ) ∩ L2(X ) is dense in Hϕ,L(X ), we then
choose {fk}k∈Z+ ⊂ (Hϕ,L(X ) ∩ L2(X )) such that, for all k ∈ Z+, ‖fk‖Hϕ,L(X ) ≤
2−k‖f ‖Hϕ,L(X ) and f = ∑

k∈Z+ fk in Hϕ,L(X ). By Proposition 4.7, we see that, for

all k ∈ Z+, there exist {λk
j }j ⊂ C and (ϕ,M)-atoms {αk

j }j such that fk = ∑
j λk

jα
k
j

in Hϕ,L(X ) and Λ({λk
jα

k
j }j ) � ‖fk‖Hϕ,L(X ). From this, we deduce that, for each

k ∈ Z+,

∑

j

ϕ

(

Bk
j ,

|λk
j |

‖fk‖Hϕ,L(X )‖χBk
j
‖Lϕ(X )

)

� 1,
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where, for each j , αk
j is supported in the ball Bk

j , which, together with the uniformly
lower type p2 property of ϕ with p2 ∈ (0, i(ϕ)), implies that

∑

k∈Z+

∑

j

ϕ

(

Bk
j ,

|λk
j |

‖f ‖Hϕ,L(X )‖χBk
j
‖Lϕ(X )

)

�
∑

k∈Z+

∑

j

ϕ

(

Bk
j ,

|λk
j |

2k‖fk‖Hϕ,L(X )‖χBk
j
‖Lϕ(X )

)

�
∑

k∈Z+
2−kp2

� 1.

This further implies that Λ({λk
jα

k
j }k∈Z+,j ) � ‖f ‖Hϕ,L(X ) and hence finishes the proof

of Corollary 4.8. �

Let HM
ϕ,at,fin(X ) and H

M,ε
ϕ,mol,fin(X ) denote the sets of all finite combinations of

(ϕ,M)-atoms and (ϕ,M,ε)-molecules, respectively. Then we have the following
dense conclusions.

Proposition 4.9 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) being as in (2.10), ε ∈ (n[q(ϕ)/i(ϕ) − 1/2],∞) and

M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2),

(2.12) and (2.11). Then the spaces HM
ϕ,at,fin(X ) and H

M,ε
ϕ,mol,fin(X ) are both dense in

the space Hϕ,L(X ).

Proof From Corollary 4.8, it follows that HM
ϕ,at,fin(X ) is dense in Hϕ,L(X ).

To prove that H
M,ε
ϕ,mol,fin(X ) is dense in Hϕ,L(X ), noticing that each (ϕ,M)-atom

is a (ϕ,M,ε)-molecule, hence we know that HM
ϕ,at,fin(X ) ⊂ H

M,ε
ϕ,mol,fin(X ) and we

only need to show that H
M,ε
ϕ,mol,fin(X ) ⊂ Hϕ,L(X ). Let λ ∈ C and β be a (ϕ,M,ε)-

molecule associated with a ball B := B(xB, rB). Then there exists b ∈ L2(X ) such
that β = LMb and b satisfies Definition 4.4. Write

∫

X
ϕ
(
x,SL(λβ)(x)

)
dμ(x)

�
∞∑

j=0

∫

X
ϕ

(

x, |λ|
{∫ rB

0

∫

d(x,y)<t

∣
∣t2Le−t2L(χUj (B)β)(y)

∣
∣2 dμ(y)dt

V (x, t)t

}1/2)

dμ(x)

+
∞∑

j=0

∫

X
ϕ

(

x, |λ|
{∫ ∞

rB

∫

d(x,y)<t

· · ·
}1/2)

dμ(x) =:
∞∑

j=0

Ej +
∞∑

j=0

Fj . (4.15)
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For each j ∈ Z+, let Bj := 2jB . Then

Ej =
∞∑

k=0

∫

Uk(Bj )

ϕ

(

x, |λ|
{∫ rB

0

∫

d(x,y)<t

∣
∣t2Le−t2L(χUj (B)β)(y)

∣
∣2

× dμ(y)dt

V (x, t)t

}1/2)

dμ(x) =:
∞∑

k=0

Ek,j . (4.16)

From the assumption ϕ ∈ RH2/[2−I (ϕ)](X ), Lemma 2.8(iv) and the definition
of I (ϕ), we deduce that, there exists p1 ∈ [I (ϕ),1] such that ϕ is of uniformly
upper type p1 and ϕ ∈ RH2/(2−p1)(X ). Furthermore, by ε > n[ q(ϕ)

i(ϕ)
− 1

2 ] and

M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], we know that, there exist p2 ∈ (0, i(ϕ)) and q0 ∈ (q(ϕ),∞) such

that ε > n(
q0
p2

− 1
2 ) and M > n

2 (
q0
p2

− 1
2 ). Moreover, from the definitions of i(ϕ) and

q(ϕ), we infer that ϕ is of uniformly lower type p2 and ϕ ∈ Aq0(X ).
When k ∈ {0, . . . ,4}, by the uniformly upper type p1 and lower type p2 properties

of ϕ, we see that

Ek,j � ‖χB‖p1
Lϕ(X )

∫

Uk(Bj )

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
SL(χUj (B)β)(x)

]p1 dμ(x)

+ ‖χB‖p2
Lϕ(X )

∫

Uk(Bj )

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
SL(χUj (B)β)(x)

]p2 dμ(x)

=: Gk,j + Hk,j . (4.17)

Now we estimate Gk,j . By Hölder’s inequality, the L2(X )-boundedness of SL,
ϕ ∈ RH2/(2−p1)(X ) and Lemma 2.8(vii), we conclude that

Gk,j � ‖χB‖p1
Lϕ(X )

{∫

Uk(Bj )

[
SL(χUj (B)β)(x)

]2
dμ(x)

} p1
2

×
{∫

Uk(Bj )

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)] 2
2−p1 dμ(x)

} 2−p1
2

� ‖χB‖p1
Lϕ(X )

‖β‖p1

L2(X )

[
μ

(
2k+jB

)]− p1
2 ϕ

(
2k+jB, |λ|‖χB‖−1

Lϕ(X )

)

� 2−jp1ε2(k+j)n(q0− p1
2 )ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)

∼ 2
−jp1[ε−n(

q0
p1

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.18)

For Hk,j , similarly, we see that Hk,j � 2−jp2[ε−n(q0/p2−1/2)]ϕ(B, |λ|‖χB‖−1
Lϕ(X )

),
which, together with (4.17), (4.18) and p1 ≥ p2, implies that, for each j ∈ Z+ and
k ∈ {0, . . . ,4},

Ek,j � 2
−jp2[ε−n(

q0
p2

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.19)
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When k ∈ N with k ≥ 5, to estimate Ek,j , for x ∈ X , let

SL,rB (x) :=
{∫ rB

0

∫

d(x,y)<t

∣
∣t2Le−t2L(χUj (B)β)(y)

∣
∣2 dμ(y)dt

V (x, t)t

}1/2

.

Then from the uniformly upper type p1 and lower type p2 properties of ϕ, it follows
that

Ek,j � ‖χB‖p1
Lϕ(X )

∫

Uk(Bj )

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
SL,rB (x)

]p1 dμ(x)

+ ‖χB‖p2
Lϕ(X )

∫

Uk(Bj )

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
SL,rB (x)

]p2 dμ(x)

=: Ik,j + Kk,j . (4.20)

For each k, j ∈ Z+, let Ũk(Bj ) := {y ∈ X : 2j−22krB ≤ d(y, xB) < 2j+12krB}.
It is easy to see that, when k ≥ 5, dist(Uj (B), Ũk(Bj )) � 2k+j rB . Take s ∈ (0,∞)

such that s ∈ (n[ q0
p2

− 1
2 ],2M). Now we deal with the term Ik,j . To this end, by (2.5),

we see that
∫

Uk(Bj )

[
SL,rB (x)

]2
dμ(x)

=
∫

Uk(Bj )

∫ rB

0

∫

d(x,y)<t

∣
∣t2Le−t2L(χUj (B)β)(y)

∣
∣2 dμ(y)dt

V (x, t)t
dμ(x)

�
∫ rB

0

∫

Ũk(Bj )

∣
∣t2Le−t2L(χUj (B)β)(y)

∣
∣2 dμ(y)dt

t

�
∫ rB

0
exp

{

−[dist(Uj (B), Ũk(Bj ))]2

C3t2

}

‖β‖2
L2(Uj (B))

dt

t

� 2−2(k+j)s‖β‖2
L2(Uj (B))

, (4.21)

which, together with Hölder’s inequality, ϕ ∈ RH2/(2−p1)(X ) and Lemma 2.8(vii),
implies that

Ik,j � 2−(k+j)p1s‖β‖p1

L2(Uj (B))
‖χB‖p1

Lϕ(X )

[
μ

(
2k+jB

)]− p1
2 ϕ

(
2k+jB, |λ|‖χB‖−1

Lϕ(X )

)

� 2
−jp1[ε+s−n(

q0
p1

− 1
2 )]

2
−kp1[s−n(

q0
p1

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.22)

Now we estimate Kk,j . From Hölder’s inequality, (4.21), ϕ ∈ RH2/(2−p2)(X ) and
Lemma 2.8(vii), it follows that

Kk,j �
{∫

Uk(Bj )

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)] 2
2−p2 dμ(x)

} 2−p2
2

× ‖χB‖p2
Lϕ(X )

{∫

Uk(Bj )

[
SL,rB (x)

]2
dμ(x)

} p2
2
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� 2−(k+j)sp2‖χB‖p2
Lϕ(X )

‖β‖p2

L2(X )

[
μ

(
2k+jB

)]− p2
2 ϕ

(
2k+jB, |λ|‖χB‖−1

Lϕ(X )

)

� 2
−jp2[ε+s−n(

q0
p2

− 1
2 )]

2
−kp2[s−n(

q0
p2

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.23)

By (4.20), (4.22), (4.23) and p1 ≥ p2, we know that, when k ∈ N with k ≥ 5 and
j ∈ Z+,

Ek,j � 2
−jp2[ε+s−n(

q0
p2

− 1
2 )]

2
−kp2[s−n(

q0
p2

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.24)

Now we deal with Fj . Write

Fj =
∞∑

k=0

∫

Uk(Bj )

ϕ

(

x, |λ|
{∫ ∞

rB

∫

d(x,y)<t

∣
∣t2Le−t2L(χUj (B)β)(y)

∣
∣2

× dμ(y)dt

V (x, t)t

}1/2)

dμ(x) =:
∞∑

k=0

Fk,j . (4.25)

When k ∈ {0, . . . ,4}, by the uniformly upper type p1 and lower type p2 properties
of ϕ, Hölder’s inequality, the L2(X )-boundedness of SL and ϕ ∈ RH2/(2−p1)(X ),
similar to the proof of (4.19), we see that

Fk,j � 2
−jp2[ε−n(

q0
p2

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.26)

When k ∈ N with k ≥ 5, for any x ∈ X , let

HL,rB (x) :=
{∫ ∞

rB

∫

d(x,y)<t

∣
∣
(
t2L

)M+1
e−t2L(χUj (B)b)(y)

∣
∣2 dμ(y)dt

V (x, t)t4M+1

}1/2

.

Then from the uniformly upper type p1 and lower type p2 properties of ϕ, it follows
that

Fk,j � ‖χB‖p1
Lϕ(X )

∫

Uk(Bj )

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
HL,rB (x)

]p1 dμ(x)

+ ‖χB‖p2
Lϕ(X )

∫

Uk(Bj )

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
HL,rB (x)

]p2 dμ(x).

Similar to (4.21), we know that

∫

Uk(Bj )

[
HL,rB (x)

]2
dμ(x) � 2−2jε2−2(k+j)sμ(B)‖χB‖−2

Lϕ(X )
.

Thus, similar to (4.24), we conclude that, when k ∈ N with k ≥ 5 and j ∈ Z+,

Fk,j � 2
−jp2[ε+s−n(

q0
p2

− 1
2 )]

2
−kp2[s−n(

q0
p2

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (4.27)
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Then from (4.15), (4.16), (4.19), (4.24), (4.25), (4.26) and (4.27), we infer that
∫

X
ϕ
(
x, |λ|SL(β)(x)

)
dμ(x) � ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)
,

which implies that ‖β‖Hϕ,L(X ) � 1, and hence completes the proof of Proposi-
tion 4.9. �

4.2 Dual Spaces of Hϕ,L(X )

In this subsection, we study the dual spaces of Musielak–Orlicz–Hardy spaces
Hϕ,L(X ). We begin with some notions.

Let M ∈ N and φ = LMν be a function in L2(X ), where ν ∈ D(LM). Following
[51, 52, 57], for ε ∈ (0,∞), M ∈ N and fixed x0 ∈ X , we introduce the space

MM,ε
ϕ (L) := {

φ = LMν ∈ L2(X ) : ‖φ‖MM,ε
ϕ (L)

< ∞}
,

where

‖φ‖MM,ε
ϕ (L)

:= sup
j∈Z+

{

2jε
[
V (x0,1)

]−1/2‖χB(x0,1)‖Lϕ(X )

M∑

k=0

‖Lkν‖L2(Uj (B(x0,1)))

}

.

Notice that, if φ ∈ MM,ε
ϕ (L) with norm 1 and some ε ∈ (0,∞), then φ is a (ϕ,M,ε)-

molecule adapted to the ball B(x0,1). Conversely, if β is a (ϕ,M,ε)-molecule
adapted to any ball, then β ∈ MM,ε

ϕ (L).

Let At denote either (I + t2L)−1 or e−t2L and f belong to the dual space
of MM,ε

ϕ (L), (MM,ε
ϕ (L))∗. We claim that (I − At)

Mf ∈ L2
loc(X ) in the sense

of distributions. Indeed, for any ball B , if ψ ∈ L2(B), then it follows, from the
Davies–Gaffney estimates (2.5), that (I − At)

Mψ ∈ MM,ε
ϕ (L) for every ε ∈ (0,∞).

Thus, there exists a positive constant C(t, rB,dist(B,x0)), depending on t, rB and
dist(B,x0), such that

∣
∣
〈
(I − At)

Mf,ψ
〉∣
∣ := ∣

∣
〈
f, (I − At)

Mψ
〉∣
∣

≤ C
(
t, rB,dist(B,x0)

)‖f ‖
(MM,ε

ϕ (L))∗‖ψ‖L2(B),

which implies that (I − At)
Mf ∈ L2

loc(X ) in the sense of distributions.
Finally, for any M ∈ N, define

MM
ϕ (X ) :=

⋂

ε>n[q(ϕ)/i(ϕ)−1/2]

(
MM,ε

ϕ (L)
)∗

,

where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12) and (2.11).

Definition 4.10 Let ϕ be as in Definition 2.4, L satisfy Assumptions A and B, and
M ∈ N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ], where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2),
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(2.12) and (2.11). A functional f ∈ MM
ϕ (X ) is said to be in the space BMOM

ϕ,L(X )

if

‖f ‖BMOM
ϕ,L(X ) := sup

B⊂X

[μ(B)]1/2

‖χB‖Lϕ(X )

{∫

B

∣
∣
(
I − e−r2

BL
)M

f (x)
∣
∣2

dμ(x)

}1/2

< ∞,

where the supremum is taken over all balls B of X .

By using Davies–Gaffney estimates (2.5) and the uniformly upper type and lower
type properties of ϕ, similar to proofs of [52, Lemmas 8.1 and 8.3] or [57, Proposi-
tions 4.4 and 4.5], we obtain the following Propositions 4.11 and 4.12. Here, we omit
the details.

Proposition 4.11 Let ϕ, L and M be as in Definition 4.10. Then f ∈ BMOM
ϕ,L(X ) if

and only if f ∈ MM
ϕ (X ) and

sup
B⊂X

[μ(B)]1/2

‖χB‖Lϕ(X )

{∫

B

∣
∣
(
I − (

I + r2
BL

)−1)M
f (x)

∣
∣2

dμ(x)

}1/2

< ∞,

where the supremum is taken over all balls B of X . Moreover, the quantity appeared
in the left-hand side of the above formula is equivalent to ‖f ‖BMOM

ϕ,L(X ).

Proposition 4.12 Let ϕ, L and M be as in Definition 4.10. Then there exists a posi-
tive constant C such that, for all f ∈ BMOM

ϕ,L(X ),

sup
B⊂X

[μ(B)]1/2

‖χB‖Lϕ(X )

{∫

B̂

∣
∣
(
t2L

)M
e−t2Lf (x)

∣
∣2 dμ(x)dt

t

}1/2

≤ C‖f ‖BMOM
ϕ,L(X ),

where the supremum is taken over all balls B of X .

The following Proposition 4.13 and Corollary 4.15 are a kind of Calderón repro-
ducing formulae.

Proposition 4.13 Let ϕ, L and M be as in Definition 4.10, ε ∈ (0,∞) and M̃ ∈ N

with M̃ > M + ε + N
4 + nq(ϕ)

2i(ϕ)
, where N , n, q(ϕ) and i(ϕ) are, respectively, as in

(2.3), (2.2), (2.12) and (2.11). Fix x0 ∈ X . Assume that f ∈ MM
ϕ (X ) satisfies

∫

X

|(I − (I + L)−1)Mf (x)|2
1 + [d(x, x0)]N+ε+2nq0/p2

dμ(x) < ∞ (4.28)

for some q0 ∈ (q(ϕ),∞) and p2 ∈ (0, i(ϕ)). Then for all (ϕ, M̃)-atoms α,

〈f,α〉 = C̃M

∫

X ×(0,∞)

(
t2L

)M
e−t2Lf (x)t2Le−t2Lα(x)

dμ(x)dt

t
,

where C̃M is a positive constant satisfying C̃M

∫ ∞
0 t2(M+1)e−2t2 dt

t
= 1.
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The proof of Proposition 4.7 is a skillful application of the Davies–Gaffney esti-
mates (2.5), the H∞-functional calculi for L and the uniformly upper type and lower
type properties of ϕ, which is similar to that of [57, Proposition 4.6]. We omit the
details here.

To prove that Proposition 4.13 also holds true for all f ∈ BMOM
ϕ,L(X ), we need

the following dyadic cubes on spaces of homogeneous type constructed by Christ
[20, Theorem 11].

Lemma 4.14 There exist a collection of open subsets, {Qk
α ⊂ X : k ∈ Z, α ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, and constants δ ∈
(0,1), a0 ∈ (0,1) and C6 ∈ (0,∞) such that

(i) μ(X \ ⋃
α Qk

α) = 0 for all k ∈ Z;
(ii) if i ≥ k, then either Qi

α ⊂ Qk
β or Qi

α ∩ Qk
β = ∅;

(iii) for each (k,α) and each i < k, there exists a unique β such that Qk
α ⊂ Qi

β ;

(iv) the diameter of Qk
α ≤ C6δ

k ;
(v) each Qk

α contain some ball B(zk
α, a0δ

k).

From Proposition 4.13 and Lemma 4.14, we deduce the following weighted ver-
sion of [57, Corollary 4.3].

Corollary 4.15 Let ϕ, L and M be as in Definition 4.10, ε ∈ (0,∞) and M̃ ∈ N with
M̃ > M + ε + N

4 + nq(ϕ)
2i(ϕ)

, where N , n, q(ϕ) and i(ϕ) are, respectively, as in (2.3),
(2.2), (2.12) and (2.11).

Then for all (ϕ, M̃)-atoms α and f ∈ BMOM
ϕ,L(X ),

〈f,α〉 = C̃M

∫

X ×(0,∞)

(
t2L

)M
e−t2Lf (x)t2Le−t2Lα(x)

dμ(x)dt

t
,

where C̃M is as in Proposition 4.13.

Proof From M̃ > M + ε + N
4 + nq(ϕ)

2i(ϕ)
, we deduce that there exist q0 ∈ (q(ϕ),∞) and

p2 ∈ (0, i(ϕ)) such that M̃ > M + ε + N
4 + nq0

2p2
. Let ε ∈ (0, M̃ − M − N

4 − nq0
2p2

).
By Proposition 4.13, we only need to show that (4.28) with such ε holds true for all
f ∈ BMOM

ϕ,L(X ).
Let all the notation be the same as in Lemma 4.14. For each j ∈ Z, choose kj ∈ Z

such that C6δ
kj ≤ 2j < C6δ

kj −1. Let B := B(x0,1), where x0 is as in (4.28), and

Mj := {
β ∈ Ik0 : Qk0

β ∩ B
(
x0,C6δ

kj −1) �= ∅}
.

Then for each j ∈ Z+,

Uj (B) ⊂ B
(
x0,C6δ

kj −1) ⊂
⋃

β∈Mj

Q
k0
β ⊂ B

(
x0,2C6δ

kj −1). (4.29)
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From Lemma 4.14, it follows that the sets {Qk0
β }β∈Mj

are disjoint. Moreover, by (iv)

and (v) of Lemma 4.14, we know that there exists z
k0
β ∈ Q

k0
β such that

B
(
z
k0
β , a0δ

k0
) ⊂ Q

k0
β ⊂ B

(
z
k0
β ,C6δ

k0
) ⊂ B

(
z
k0
β ,1

)
. (4.30)

Then by Proposition 4.11, we know that

H :=
{∫

X

|(I − (I + L)−1)Mf (x)|2
1 + [d(x, x0)]N+ε+2nq0/p2

dμ(x)

}1/2

=
{ ∑

j∈Z+

∫

Uj (B)

|(I − (I + L)−1)Mf (x)|2
1 + [d(x, x0)]N+ε+2nq0/p2

dμ(x)

}1/2

≤
∑

j∈Z+
2−j [(N+ε)/2+nq0/p2]

{ ∑

β∈Mj

∫

Q
k0
j

∣
∣
[
I − (I + L)−1]Mf (x)

∣
∣2

dμ(x)

}1/2

�
∑

j∈Z+
2−j [(N+ε)/2+nq0/p2]

{ ∑

β∈Mj

[
μ

(
B

(
z
k0
β ,1

))]−1

× ‖χ
B(z

k0
β ,1)

‖2
Lϕ(X )‖f ‖2

BMOM
ϕ,L(X )

}1/2

�
∑

j∈Z+
2−j [ε/2+nq0/p2][μ

(
B(x0,1)

)]−1/2 ∑

β∈Mj

‖χ
B(z

k0
β ,1)

‖Lϕ(X )‖f ‖BMOM
ϕ,L(X ).

(4.31)

It follows, from the choice of k0, that δk0 ∼ 1, which, together with the definition
of ϕ, implies that ‖χ

B(z
k0
β ,1)

‖Lϕ(X ) ∼ ‖χ
B(z

k0
β ,a0δ

k0 )
‖Lϕ(X ). By this and (4.30), we

conclude that
∑

β∈Mj

‖χ
B(z

k0
β ,1)

‖Lϕ(X ) ∼
∑

β∈Mj

‖χ
B(z

k0
β ,a0δ

k0 )
‖Lϕ(X )

�
∑

β∈Mj

‖χ
Q

k0
β

‖Lϕ(X ) ∼ ‖χ⋃
β∈Mj

Q
k0
β

‖Lϕ(X )

� ‖χ
B(x0,2C6δ

kj −1
)
‖Lϕ(X ) � ‖χ2j B‖Lϕ(X ). (4.32)

Moreover, by q0 ∈ (q(ϕ),∞), the uniformly lower type p2 property of ϕ and
Lemma 2.8(vii), we conclude that, for all j ∈ Z+,

∫

2j B

ϕ

(

x,
1

2jnq0/p2‖χB‖Lϕ(X )

)

dμ(x)

� 2−jnq0ϕ
(
2jB,‖χB‖−1

Lϕ(X )

)
� 2−jnq0

{
μ(2jB)

μ(B)

}q0

ϕ
(
B,‖χB‖−1

Lϕ(X )

) ∼ 1,

which implies that ‖χ2j B‖Lϕ(X ) � 2jnq0/p2‖χB‖Lϕ(X ). From this, (4.31) and (4.32),
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we deduce that

H �
[
V

(
B(x0,1)

)]−1/2‖χB‖Lϕ(X )‖f ‖BMOM
ϕ,L(X ) < ∞,

which completes the proof of Corollary 4.15. �

Now we prove that BMOM
ϕ,L(X ) is just the dual space of Hϕ,L(X ) by using Corol-

lary 4.15.

Theorem 4.16 Let L satisfy Assumptions A and B, ϕ be as in (2.4) with ϕ ∈
RH2/[2−I (ϕ)](X ) and I (ϕ) being as in (2.10), M ∈ N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ] and

M̃ ∈ N with M̃ > M + N
4 + nq(ϕ)

2i(ϕ)
, where n, N , q(ϕ) and i(ϕ) are, respectively, as in

(2.2), (2.3), (2.12) and (2.11). Then the dual space of Hϕ,L(X ), (Hϕ,L(X ))∗, coin-
cides with the space BMOM

ϕ,L(X ) in the following sense:

(i) Let g ∈ BMOM
ϕ,L(X ). Then the linear functional �, which is initially defined on

HM̃
ϕ,at,fin(X ) by

�(f ) := 〈g,f 〉, (4.33)

has a unique extension to Hϕ,L(X ) with ‖�‖(Hϕ,L(X ))∗ ≤ C‖g‖BMOM
ϕ,L(X ), where

C is a positive constant independent of g.
(ii) Conversely, let ε ∈ (n[q(ϕ)/i(ϕ) − 1/2],∞). Then for any � ∈ (Hϕ,L(X ))∗,

there exists g ∈ BMOM
ϕ,L(X ) such that (4.33) holds true for all f ∈ H

M,ε
ϕ,mol,fin(X )

and ‖g‖BMOM
ϕ,L(X ) ≤ C‖�‖(Hϕ,L(X ))∗ , where C is a positive constant independent

of �.

Proof Let g ∈ BMOM
ϕ,L(X ). For any f ∈ HM̃

ϕ,at,fin(X ), by Proposition 4.9, we know

that t2Le−t2Lf ∈ Tϕ(X × (0,∞)). From this and Theorem 3.1, it follows that there
exist {λj }j ⊂ C and Tϕ(X × (0,∞))-atoms {aj }j supported in {B̂j }j such that (3.2)
holds true. Moreover, by the uniformly upper type p1 property of ϕ, we know that∑

j |λj | � Λ({λjaj }j ), where Λ({λjaj }j ) is as in (3.2). This, together with Corol-
lary 4.15, Hölder’s inequality, and Proposition 4.12, yields that

|〈g,f 〉| =
∣
∣
∣
∣C̃M

∫ ∞

0

∫

X

(
t2L

)M
e−t2Lg(x)t2Le−t2Lf (x)

dμ(x)dt

t

∣
∣
∣
∣

�
∑

j

|λj |
∫ ∞

0

∫

X

∣
∣
(
t2L

)M
e−t2Lg(x)aj (x, t)

∣
∣dμ(x)dt

t

�
∑

j

|λj |‖aj‖T 2
2 (X ×(0,∞))

{∫

B̂j

∣
∣
(
t2L

)M
e−t2Lg(x)

∣
∣2 dμ(x)dt

t

}1/2

�
∑

j

|λj |‖g‖BMOM
ϕ,L(X ) � Λ

({λjαj }j
)‖g‖BMOM

ϕ,L(X )

�
∥
∥t2Le−t2Lf

∥
∥

Tϕ(X ×(0,∞))
‖g‖BMOM

ϕ,L(X ) � ‖f ‖Hϕ,L(X )‖g‖BMOM
ϕ,L(X ),

which, together with Proposition 4.9, implies that (i) holds true.
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Conversely, let � ∈ (Hϕ,L(X ))∗. If g ∈ MM,ε
ϕ (L), then g is a multiple of a

(ϕ,M,ε)-molecule. Moreover, if ε > n[q(ϕ)/i(ϕ) − 1/2], then by Proposition 4.9,
we see that g ∈ Hϕ,L(X ), and hence MM,ε

ϕ (L) ⊂ Hϕ,L(X ). Therefore, � ∈ MM
ϕ (X ).

Moreover, for any ball B ⊂ X , let φ ∈ L2(B) with

‖φ‖L2(B) ≤ [
μ(B)

]1/2‖χB‖−1
Lϕ(X )

and β̃ := (I − (I + r2
BL)−1)Mφ. Obviously, β̃ = (r2

BL)M(I + r2
BL)−Mφ =: LMb̃.

Then from the fact that (I + r2
BL)−1 satisfies the Davies–Gaffney estimates (2.5)

with [dist(E,F )]2 and t2, respectively, replaced by dist(E,F ) and t , we infer that,
for each j ∈ Z+ and k ∈ {0, . . . ,M},

∥
∥
(
r2
BL

)k
b̃
∥
∥

L2(Uj (B))
= r2M

B

∥
∥
(
I − (

I + r2
BL

)−1)k(
I + r2

BL
)−(M−k)

φ
∥
∥

L2(Uj (B))

� r2M
B exp

{

−dist(B,Uj (B))

C3rB

}

‖φ‖L2(B)

� 2−jεr2M
B

[
μ(B)

]1/2‖χB‖−1
Lϕ(X )

,

where M ∈ N and 2M > n[q(ϕ)/i(ϕ) − 1/2]. Thus, β̃ is a multiple of a (ϕ,M,ε)-
molecule. Since (I − (I + r2

BL)−1)M� is well defined and belongs to L2
loc(X ) for

every t ∈ (0,∞), by ‖β̃‖Hϕ,L(X ) � 1, we know that

∣
∣
〈(
I −(

I +r2
BL

)−1)M
�,φ

〉∣
∣ = ∣

∣
〈
�,

(
I −(

I +r2
BL

)−1)M
φ
〉∣
∣ = ∣

∣〈�, β̃〉∣∣ � ‖�‖(Hϕ,L(X ))∗ ,

which further implies that

[μ(B)]1/2

‖χB‖Lϕ(X )

{∫

B

∣
∣
(
I − (

I + r2
BL

)−1)M
�(x)

∣
∣2

dμ(x)

}1/2

� sup
‖φ‖

L2(B)
≤1

∣
∣
∣
∣

〈

�,
(
I − (

I + r2
BL

)−1)M [μ(B)]1/2φ

‖χB‖Lϕ(X )

〉∣
∣
∣
∣ � ‖�‖(Hϕ,L(X ))∗ .

From this and Proposition 4.11, it follows that � ∈ BMOM
ϕ,L(X ), which completes the

proof of Theorem 4.16. �

Remark 4.17 By Theorem 4.16, we know that, for all M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ],
the spaces BMOM

ϕ,L(X ) coincide with equivalent norms; thus, in what follows, we

denote BMOM
ϕ,L(X ) simply by BMOϕ,L(X ).

Definition 4.18 A measure dμ on X × (0,∞) is called a ϕ-Carleson measure if

‖dμ‖ϕ := sup
B⊂X

[μ(B)]1/2

‖χB‖Lϕ(X )

{∫

B̂

∣
∣dμ(x, t)

∣
∣
}1/2

< ∞,

where the supremum is taken over all balls B ⊂ X and B̂ denotes the tent over B .
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Using Theorem 4.16 and Proposition 4.12, we obtain the following ϕ-Carleson
measure characterization of BMOϕ,L(X ), whose proof is similar to that of [57, The-
orem 4.2]. We omit the details.

Theorem 4.19 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) as in (2.10), and M ∈ N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ], where

n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12) and (2.11). Then the following
conditions are equivalent:

(i) f ∈ BMOϕ,L(X );
(ii) f ∈ MM

ϕ (X ) satisfies (4.28) for some q0 ∈ (q(ϕ),∞), p2 ∈ (0, i(ϕ)) and ε ∈
(0,∞), and dμf is a ϕ-Carleson measure, where dμf is defined by

dμf := ∣
∣
(
t2L

)M
e−t2Lf (x)

∣
∣2 dμ(x)dt

t
.

Moreover, ‖f ‖BMOϕ,L(X ) and ‖dμf ‖ϕ are comparable.

5 Equivalent Characterizations of Hϕ,L(X )

In this section, we establish several equivalent characterizations of the Musielak–
Orlicz–Hardy space Hϕ,L(X ) in terms of the atom, the molecule and the Lusin-area
function associated with the Poisson semigroup generated by L. We begin with some
notions.

Definition 5.1 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4 and M ∈
N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ], where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12)

and (2.11). A distribution f ∈ (BMOϕ,L(X ))∗ is said to be in the space HM
ϕ,at(X ) if

there exist {λj }j ⊂ C and a sequence {αj }j of (ϕ,M)-atoms such that f = ∑
j λjαj

in (BMOϕ,L(X ))∗ and

∑

j

ϕ

(

Bj ,
|λj |

‖χBj
‖Lϕ(X )

)

< ∞,

where, for each j , suppαj ⊂ Bj . Moreover, for any f ∈ HM
ϕ,at(X ), its quasi-norm

is defined by ‖f ‖HM
ϕ,at(X ) := inf{Λ({λjαj }j )}, where Λ({λjαj }j ) is the same as in

Proposition 4.7 and the infimum is taken over all possible decompositions of f as
above.

Definition 5.2 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4, M ∈ N

with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ] and ε ∈ (n[ q(ϕ)
i(ϕ)

− 1
2 ],∞), where n, q(ϕ) and i(ϕ) are, respec-

tively, as in (2.2), (2.12) and (2.11). A distribution f ∈ (BMOϕ,L(X ))∗ is said to be
in the space H

M,ε
ϕ,mol(X ) if there exist {λj }j ⊂ C and a sequence {βj }j of (ϕ,M,ε)-

molecules such that f = ∑
j λjβj in (BMOϕ,L(X ))∗ and

∑

j

ϕ

(

Bj ,
|λj |

‖χBj
‖Lϕ(X )

)

< ∞,
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where, for each j , βj is associated with the ball Bj . Moreover, for any f ∈
H

M,ε
ϕ,mol(X ), its quasi-norm is defined by ‖f ‖

H
M,ε
ϕ,mol(X )

:= inf{Λ({λjβj }j )}, where

Λ({λjβj }j ) is the same as in Proposition 4.7 and the infimum is taken over all possi-
ble decompositions of f as above.

For all f ∈ L2(X ) and x ∈ X , define the Lusin area function associated with the
Poisson semigroup of L by

SP f (x) :=
{∫

Γ (x)

∣
∣t

√
Le−t

√
Lf (y)

∣
∣2 dμ(y)dt

V (x, t)t

}1/2

. (5.1)

Similar to Definition 4.1, we introduce the space Hϕ,SP
(X ) as follows.

Definition 5.3 Let L satisfy Assumptions A and B and ϕ be as in Definition 2.4.
A function f ∈ H 2(X ) is said to be in H̃ϕ,SP

(X ) if SP (f ) ∈ Lϕ(X ); moreover, define

‖f ‖Hϕ,SP
(X ) := ‖SP (f )‖Lϕ(X )

:= inf

{

λ ∈ (0,∞) :
∫

X
ϕ

(

x,
SP (f )(x)

λ

)

dμ(x) ≤ 1

}

.

The Musielak–Orlicz–Hardy space Hϕ,SP
(X ) is defined to be the completion of

H̃ϕ,SP
(X ) in the quasi-norm ‖ · ‖Hϕ,SP

(X ).

We now show that the spaces Hϕ,L(X ), HM
ϕ,at(X ), HMε

ϕ,mol(X ) and Hϕ,SP
(X ) co-

incide with equivalent quasi-norms.

5.1 Atomic and Molecular Characterizations

In this subsection, we establish the atomic and the molecular characterizations of the
Musielak–Orlicz–Hardy space Hϕ,L(X ). First we need the following Proposition 5.4
whose proof is similar to that of [57, Proposition 5.1]. We omit the details.

Lemma 5.4 Let L satisfy Assumptions A and B and ϕ be as in Definition 2.4. Fix
t ∈ (0,∞) and B̃ := B(x0,R). Then there exists a positive constant C(t,R, B̃), de-
pending on t,R and B̃ , such that, for all φ ∈ L2(B̃), t2Le−t2Lφ ∈ BMOϕ,L(X ) and

∥
∥t2Le−t2Lφ

∥
∥

BMOϕ,L(X )
≤ C(t,R, B̃)‖φ‖L2(B̃).

From Lemma 5.4, it follows that, for each f ∈ (BMOϕ,L(X ))∗, t2Le−t2Lf is
well defined. Indeed, for any ball B := B(xB, rB) and φ ∈ L2(B), by Lemma 5.4, we
know that there exists a positive constant C(t,B), depending on t and B , such that

∣
∣
〈
t2Le−t2Lf,φ

〉∣
∣ := ∣

∣
〈
f, t2Le−t2Lφ

〉∣
∣ ≤ C(t,B)‖φ‖L2(B)‖f ‖(BMOϕ,L(X ))∗,

which implies that t2Le−t2Lf ∈ L2
loc(X ) in the sense of distributions.
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Theorem 5.5 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) as in (2.10), M ∈ N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ] and ε ∈

(n[ q(ϕ)
i(ϕ)

− 1
2 ],∞), where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12) and

(2.11). Then the spaces Hϕ,L(X ), HM
ϕ,at(X ) and H

M,ε
ϕ,mol(X ) coincide with equivalent

quasi-norms.

Proof By Theorem 4.16, we know that (Hϕ,L(X ))∗ = BMOϕ,L(X ), which, together
with Corollary 4.8, further implies that, for any f ∈ Hϕ,L(X ), its atomic decomposi-
tion (4.13) also holds true in (BMOϕ,L(X ))∗. Thus, Hϕ,L(X ) ⊂ HM

ϕ,at(X ). Moreover,

since every (ϕ,M)-atom is a (ϕ,M,ε)-molecule for all ε ∈ (n[ q(ϕ)
i(ϕ)

− 1
2 ],∞), the in-

clusion HM
ϕ,at(X ) ⊂ H

M,ε
ϕ,mol(X ) is obvious.

Let us finally prove that H
M,ε
ϕ,mol(X ) ⊂ Hϕ,L(X ). Suppose that f ∈ H

M,ε
ϕ,mol(X ).

Then there exist {λj }j ⊂ C and a sequence {βj }j of (ϕ,M,ε)-molecules such that
f = ∑

j λjβj in (BMOϕ,L(X ))∗ and Λ({λjβj }j ) < ∞.
For all x ∈ X , from Lemma 5.4, it follows that

SL(f )(x) =
{∫ ∞

0

∥
∥t2Le−t2Lf

∥
∥2

L2(B(x,t))

dt

V (x, t)t

}1/2

=
{∫ ∞

0

(

sup
‖φ‖

L2(B(x,t))
≤1

∣
∣
∣
∣

〈∑

j

λjβj , t
2Le−t2Lφ

〉∣
∣
∣
∣

)2
dt

V (x, t)t

}1/2

≤
∑

j

{∫ ∞

0

(
sup

‖φ‖
L2(B(x,t))

≤1

∣
∣
〈
t2Le−t2L(λjβj ),φ

〉∣
∣
)2 dt

V (x, t)t

}1/2

≤
∑

j

SL(λjβj )(x).

By this, the proof of Proposition 4.9 and Lemma 2.2(i), we conclude that, for ε ∈
(n[ q(ϕ)

i(ϕ)
− 1

2 ],∞),

∫

X
ϕ
(
x,SL(f )(x)

)
dμ(x) �

∑

j

∫

X
ϕ
(
x,SL(λjβj )(x)

)
dμ(x)

�
∑

j

ϕ

(

Bj ,
|λj |

‖χBj
‖Lϕ(X )

)

,

where, for each j , βj is associated with the ball Bj , which further implies that
‖f ‖Hϕ,L(X ) � Λ({λjβj }j ). Then by taking the infimum over all decompositions of
f as above, we see that

‖f ‖Hϕ,L(X ) � ‖f ‖
H

M,ε
ϕ,mol(X )

,

which completes the proof of Theorem 5.5. �
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5.2 The Lusin Area Function Characterization

In this subsection, we characterize the space Hϕ,L(X ) by the Lusin area function
SP as in (5.1). First, by using the subadditivity and continuity of ϕ, and the uni-
formly upper type p1 property of ϕ for some p1 ∈ (0,1], similar to the proof of [57,
Lemma 5.2], we obtain the following auxiliary conclusion. We omit the details here.

Recall that a nonnegative sublinear operator T means that T is sublinear and
T (f ) ≥ 0 for all f in the domain of T .

Lemma 5.6 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4 and M ∈ N

with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12)
and (2.11). Suppose that T is a linear (resp., nonnegative sublinear) operator which
maps L2(X ) continually into weak-L2(X ). If there exists a positive constant C such
that, for all λ ∈ C and (ϕ,M)-atoms α,

∫

X
ϕ
(
x,T (λα)(x)

)
dμ(x) ≤ Cϕ

(

B,
|λ|

‖χB‖Lϕ(X )

)

, (5.2)

then T extends to a bounded linear (resp., sublinear) operator from Hϕ,L(X ) to
Lϕ(X ); moreover, there exists a positive constant C such that, for all f ∈ Hϕ,L(X ),
‖Tf ‖Lϕ(X ) ≤ C‖f ‖Hϕ,L(X ).

Theorem 5.7 Let L satisfy Assumptions A and B, and ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) as in (2.10). Then the spaces Hϕ,L(X ) and Hϕ,SP

(X )

coincide with equivalent quasi-norms.

Proof We first prove Hϕ,L(X ) ∩ H 2(X ) ⊂ Hϕ,SP
(X ) ∩ H 2(X ). From (2.7), it fol-

lows that SP is bounded on L2(X ). Thus, by Lemma 5.6, to prove that Hϕ,L(X ) ∩
H 2(X ) ⊂ Hϕ,SP

(X ) ∩ H 2(X ), we only need to show that (5.2) holds true with
T := SP , where M ∈ N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ]. From (2.5), the subordination for-

mulae associated with L (see, for example, [57, (5.3)]) and the uniformly upper type
p1 ∈ [I (ϕ),1] and lower type p2 ∈ (0, i(ϕ)) properties of ϕ, similar to the proof of
(4.5), we can show (5.2) holds true with T := SP . We omit the details.

Conversely, we show that Hϕ,SP
(X ) ∩ H 2(X ) ⊂ Hϕ,L(X ) ∩ H 2(X ). Let f ∈

Hϕ,SP
(X ) ∩ H 2(X ). Then t

√
Le−t

√
Lf ∈ Tϕ(X × (0,∞)), which, together with

Proposition 4.6(ii), implies that πΨ,L(t
√

Le−t
√

Lf ) ∈ Hϕ,L(X ). Furthermore, from
the H∞ functional calculi, we infer that

f = C̃Ψ

CΨ

πΨ,L

(
t
√

Le−t
√

Lf
)

in L2(X ), where C̃Ψ is a positive constant such that C̃Ψ

∫ ∞
0 Ψ (t)te−t dt

t
= 1 and

CΨ is as in (4.2). This, combined with πΨ,L(t
√

Le−t
√

Lf ) ∈ Hϕ,L(X ), implies that
f ∈ Hϕ,L(X ). Therefore, we know that Hϕ,SP

(X ) ∩ H 2(X ) ⊂ Hϕ,L(X ) ∩ H 2(X ).
From the above argument, it follows that Hϕ,SP

(X ) ∩ H 2(X ) = Hϕ,L(X ) ∩
H 2(X ) with equivalent norms, which, together with the fact that Hϕ,SP

(X )∩H 2(X )
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and Hϕ,L(X )∩H 2(X ) are, respectively, dense in Hϕ,SP
(X ) and Hϕ,L(X ), and a den-

sity argument, implies that the spaces Hϕ,SP
(X ) and Hϕ,L(X ) coincide with equiva-

lent norms. This finishes the proof of Theorem 5.7. �

6 Applications

In this section, we give some applications of the Musielak–Orlicz–Hardy space to the
boundedness of operators. More precisely, in Sect. 6.1, we prove that the Littlewood–
Paley g-function gL is bounded from Hϕ,L(X ) to the Musielak–Orlicz space Lϕ(X );
in Sect. 6.2, we show that the Littlewood–Paley g∗

λ-function g∗
λ,L is bounded from

Hϕ,L(X ) to Lϕ(X ); in Sect. 6.3, we prove that the spectral multipliers associated
with L is bounded on Hϕ,L(X ).

6.1 Boundedness of Littlewood–Paley g-Functions gL

We begin with the definition of the Littlewood–Paley g-function gL associated
with L.

Definition 6.1 For all functions f ∈ L2(X ), the g-function gL(f ) is defined by set-
ting, for all x ∈ X ,

gL(f )(x) :=
{∫ ∞

0

∣
∣t2Le−t2Lf (x)

∣
∣2 dt

t

}1/2

.

To establish the main result of this subsection, we need the following Lemma 6.2,
which is a simple corollary of (2.7).

Lemma 6.2 Let L satisfy Assumptions A and B and gL be as in Definition 6.1. Then
gL is bounded on L2(X ).

The main result of this subsection is as follows.

Theorem 6.3 Let L satisfy Assumptions A and B and ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) as in (2.10). Then gL is bounded from Hϕ,L(X ) to
Lϕ(X ).

Proof Let M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ], where n, q(ϕ) and i(ϕ) are, respectively,
as in (2.2), (2.12) and (2.11). Then there exist q0 ∈ (q(ϕ),∞) and p2 ∈ (0, i(ϕ))

such that M > n
2 (

q0
p2

− 1
2 ), ϕ is of uniformly lower type p2 and ϕ ∈ Aq0(X ). We first

assume that f ∈ Hϕ,L(X ) ∩ L2(X ). To show Theorem 6.3, it suffices to show that,
for any λ ∈ C and (ϕ,M)-atom α supported in the ball B := B(xB, rB),

∫

X
ϕ
(
x,gL(λα)(x)

)
dμ(x) � ϕ

(

B,
|λ|

‖χB‖Lϕ(X )

)

. (6.1)
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Indeed, if (6.1) holds true, it follows, from Proposition 4.7, that there exist {λj }j ⊂
C and a sequence {αj }j of (ϕ,M)-atoms such that f = ∑

j λjαj in Hϕ,L(X ) ∩
L2(X ) and Λ({λjαj }j ) � ‖f ‖Hϕ,L(X ), which, together with Lemmas 6.2 and 2.6(i),
and (6.1), implies that, for all λ ∈ (0,∞),

∫

X
ϕ

(

x,
gL(f )(x)

λ

)

dμ(x) �
∑

j

∫

X
ϕ

(

x,
gL(λjαj )(x)

λ

)

dμ(x)

�
∑

j

ϕ

(

Bj ,
|λj |

λ‖χBj
‖Lϕ(X )

)

,

where, for each j , suppαj ⊂ Bj . By this, we see that ‖gL(f )‖Lϕ(X ) � Λ({λjαj }j ) �
‖f ‖Hϕ,L(X ). Since Hϕ,L(X ) ∩ L2(X ) is dense in Hϕ,L(X ), a density argument then
gives the desired conclusion.

Now we prove (6.1). First we see that
∫

X
ϕ
(
x,gL(λα)(x)

)
dμ(x) =

∑

j∈Z+

∫

Uj (B)

ϕ
(
x, |λ|gL(α)(x)

)
dμ(x) =:

∑

j∈Z+
Hj .

(6.2)
From the assumption ϕ ∈ RH2/[2−I (ϕ)](X ), Lemma 2.8(iv) and the definition of

I (ϕ), we infer that, there exists p1 ∈ [I (ϕ),1] such that ϕ is of uniformly upper type
p1 and ϕ ∈ RH2/(2−p1)(X ). When j ∈ {0, . . . ,4}, by the uniformly upper type p1
property of ϕ, Hölder’s inequality, ϕ ∈ RH2/(2−p1)(X ) and Lemmas 6.2 and 2.8(vi),
we know that

Hj ≤
∫

Uj (B)

ϕ

(

x,
|λ|

‖χB‖Lϕ(X )

)
(
1 + [

gL(α)(x)‖χB‖Lϕ(X )

]p1
)
dμ(x)

� ϕ

(

2jB,
|λ|

‖χB‖Lϕ(X )

)

+ ‖χB‖p1
Lϕ(X )

‖gL(α)‖p1

L2(X )

×
{∫

2j B

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)] 2
2−p1 dμ(x)

} 2−p1
2

� ϕ

(

2jB,
|λ|

‖χB‖Lϕ(X )

)

� ϕ

(

B,
|λ|

‖χB‖Lϕ(X )

)

. (6.3)

When j ∈ N with j ≥ 5, from the uniformly upper type p1 and lower type p2
properties of ϕ, it follows that

Hj � ‖χB‖p1
Lϕ(X )

∫

Uj (B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
gL(α)(x)

]p1 dμ(x)

+ ‖χB‖p2
Lϕ(X )

∫

Uj (B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)[
gL(α)(x)

]p2 dμ(x)

=: Ej + Fj . (6.4)
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To deal with Ej and Fj , we first estimate
∫
Uj (B)

[gL(α)(x)]2 dμ(x). By the defini-
tion of gL, we see that

∫

Uj (B)

[
gL(α)(x)

]2
dμ(x) =

∫ rB

0

∫

Uj (B)

∣
∣t2Le−t2Lα(x)

∣
∣2

dμ(x)
dt

t
+

∫ ∞

rB

· · · .

(6.5)

Take s0 ∈ (0,∞) such that s0 ∈ (n[ q0
p2

− 1
2 ],2M). From (2.5), we infer that

∫ rB

0

∫

Uj (B)

∣
∣t2Le−t2Lα(x)

∣
∣2

dμ(x)
dt

t

�
∫ rB

0
exp

{

− (2j rB)2

C3t2

}

‖α‖2
L2(B)

dt

t

�
{∫ rB

0

t2s0

(2j rB)2s0

dt

t

}

‖α‖2
L2(B)

∼ 2−2js0‖α‖2
L2(B)

� 2−2js0μ(B)‖χB‖−2
Lϕ(X )

. (6.6)

Moreover, by the definition of α, we know that there exists b ∈ L2(B) such that
α = LMb and ‖b‖L2(B) ≤ r2M

B [μ(B)]1/2‖χB‖−1
Lϕ(X )

. From this and (2.5), it follows
that

∫ ∞

rB

∫

Uj (B)

∣
∣t2Le−t2Lα(x)

∣
∣2

dμ(x)
dt

t

=
∫ ∞

rB

∫

Uj (B)

∣
∣
(
t2L

)M+1
e−t2Lb(x)

∣
∣2

dμ(x)
dt

t4M+1

�
∫ ∞

rB

exp

{

− (2j rB)2

C3t2

}

‖b‖2
L2(B)

dt

t4M+1

�
{∫ ∞

rB

t2s0

(2j rB)2s0

dt

t4M+1

}

‖b‖2
L2(B)

� 2−2js0μ(B)‖χB‖−2
Lϕ(X )

,

which, together with (6.5) and (6.6), implies that

∫

Uj (B)

[
gL(α)(x)

]2
dμ(x) � 2−2js0μ(B)‖χB‖−2

Lϕ(X )
. (6.7)

Thus, by Hölder’s inequality, (6.7), ϕ ∈ RH2/(2−p1)(X ) and (2.2), we conclude that,
for all j ∈ N with j ≥ 5,
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Ej � ‖χB‖p1
Lϕ(X )

{∫

2j B

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(X )

)] 2
2−p1 dμ(x)

} 2−p1
2

×
{∫

Uj (B)

[
gL(α)(x)

]2
dμ(x)

} p1
2

� 2−jp1s0
[
μ(B)

] 1
2 −q0

[
μ

(
2jB

)]q0− 1
2 ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)

� 2
−jp1[s0−n(

q0
p1

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (6.8)

Similarly, by using Hölder’s inequality, (6.7), ϕ ∈ RH2/(2−p1)(X ) ⊂ RH2/(2−p2)(X )

and Lemma 2.8(vii), we see that Fj � 2
−jp2[s0−n(

q0
p2

− 1
2 )]

ϕ(B, |λ|‖χB‖−1
Lϕ(X )

), which,
together with (6.8), (6.4) and p1 ≥ p2, implies that, for each j ∈ N with j ≥ 5,

Hj � 2
−jp2[s0−n(

q0
p2

− 1
2 )]

ϕ
(
B, |λ|‖χB‖−1

Lϕ(X )

)
.

From this, s0 > n(
q0
p2

− 1
2 ), (6.2) and (6.3), we infer that (6.1) holds true, which

completes the proof of Theorem 6.3. �

Remark 6.4 When X := R
n, L is a nonnegative self-adjoint elliptic operator in

L2(Rn) and ϕ as in (1.2) with ω ≡ 1 and Φ concave, Theorem 6.3 was obtained
in [58, Theorem 7.1].

6.2 Boundedness of Littlewood–Paley g∗
λ-Functions g∗

λ,L

In this subsection, we establish the boundedness of the Littlewood–Paley g∗
λ-function

g∗
λ,L associated with L from Hϕ,L(X ) to Lϕ(X ). We begin with the definition of the

Littlewood–Paley g∗
λ-function g∗

λ,L.

Definition 6.5 Let λ ∈ (0,∞) and L satisfy Assumptions A and B. For all f ∈
L2(X ), the g∗

λ-function associated with L, g∗
λ,L(f ), is defined by setting, for all

x ∈ X ,

g∗
λ,L(f )(x) :=

{∫ ∞

0

∫

X

[
t

t + d(x, y)

]λ∣
∣t2Le−t2Lf (y)

∣
∣2 dμ(y)dt

V (x, t)t

}1/2

.

To prove the boundedness of g∗
λ,L from Hϕ,L(X ) to Lϕ(X ), we need the following

auxiliary conclusion.

Lemma 6.6 Let α ∈ (0,∞) and

Sα
L(f )(x) :=

{∫ ∞

0

∫

B(x,αt)

∣
∣t2Le−t2Lf (y)

∣
∣2 dμ(y)dt

V (x, t)t

}1/2

for all f ∈ L2(X ) and x ∈ X . Then there exists a positive constant C such that, for
all f ∈ L2(X ), ‖Sα

L(f )‖L2(X ) ≤ Cαn/2(1 + α)N/2‖f ‖L2(X ), where n and N are,
respectively, as in (2.2) and (2.3).
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Proof By the definition of Sα
L, Fubini’s theorem, (2.2), (2.3) and (2.7), we see that

‖Sα
L(f )‖2

L2(X )
=

∫

X

∫ ∞

0

∫

B(x,αt)

∣
∣t2Le−t2Lf (y)

∣
∣2 dμ(y)dt

V (x, t)t
dμ(x)

≤ (1 + α)N
∫

X

∫ ∞

0

∫

B(y,αt)

∣
∣t2Le−t2Lf (y)

∣
∣2 dμ(x)

V (y, t)

dμ(y)dt

t

� αn(1 + α)N
∫ ∞

0

∫

X

∣
∣t2Le−t2Lf (y)

∣
∣2 dμ(y)dt

t

� αn(1 + α)N‖f ‖2
L2(X )

,

which is desired, and hence completes the proof of Lemma 6.6. �

Now we give the main result of this subsection.

Theorem 6.7 Let L satisfy Assumptions A and B, ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ) and I (ϕ) as in (2.10), and λ ∈ ([2nq(ϕ) + NI (ϕ)]/i(ϕ),∞),
where n, N , q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.3), (2.12) and (2.11). Then
the operator g∗

λ,L is bounded from Hϕ,L(X ) to Lϕ(X ).

Proof Let M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ] and λ ∈ ([2nq(ϕ) + NI (ϕ)]/i(ϕ),∞),
where n, N , q(ϕ), I (ϕ) and i(ϕ) are, respectively, as in (2.2), (2.3), (2.12), (2.10)
and (2.11). Then by the assumption ϕ ∈ RH2/[2−I (ϕ)](X ), Lemma 2.8(iv) and the
definitions of q(ϕ), I (ϕ) and i(ϕ), we know that, there exist q0 ∈ (q(ϕ),∞), p1 ∈
[I (ϕ),1] and p2 ∈ (0, i(ϕ)) such that M > n

2 (
q0
p2

− 1
2 ), λ > (2nq0 + Np1)/p2, ϕ is

of uniformly upper type p1 and uniformly lower type p2, and ϕ ∈ RH2/(2−p1)(X ) ∩
Aq0(X ). To show Theorem 6.7, similar to the proof of Theorem 6.3, it suffices to
show that, for all γ ∈ C and (ϕ,M)-atoms α supported in the ball B := B(xB, rB),

∫

X
ϕ
(
x,g∗

λ,L(γ α)(x)
)
dμ(x) � ϕ

(

B,
|γ |

‖χB‖Lϕ(X )

)

. (6.9)

In order to prove (6.9), it suffices to show that, for all k ∈ Z+,
∫

X
ϕ
(
x,2−kλ/2S2k

L (γ α)(x)
)
dμ(x) � 2

− kp2
2 (λ− 2nq0+Np1

p2
)
ϕ

(

B,
|γ |

‖χB‖Lϕ(X )

)

. (6.10)

Indeed, if (6.10) holds true, from the definition of g∗
λ,L, it follows that, for all x ∈ X ,

g∗
L(γ α)(x)

�
{∫ ∞

0

∫

B(x,t)

∣
∣t2Le−t2L(γ α)(y)

∣
∣2 dμ(y)

V (x, t)

dt

t
+

∞∑

k=1

2−kλ

∫ ∞

0

∫

B(x,2k t)

· · ·
}1/2

�
∞∑

k=0

2−kλ/2S2k

L (γ α)(x),
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which, together with (6.10), Lemma 2.6(i) and λ > (2nq0 + Np1)/p2, implies that

∫

X
ϕ
(
x,g∗

λ,L(γ α)(x)
)
dμ(x) �

∞∑

k=0

∫

X
ϕ
(
x,2−kλ/2S2k

L (γ α)(x)
)
dμ(x)

�
∞∑

k=0

2
− kp2

2 (λ− 2nq0+Np1
p2

)
ϕ
(
B, |γ |‖χB‖−1

Lϕ(X )

)

� ϕ
(
B, |γ |‖χB‖−1

Lϕ(X )

)
.

Thus, (6.9) holds true.
Now we prove (6.10). For each k ∈ Z+, let Bk := 2kB . Then

∫

X
ϕ
(
x,2−kλ/2S2k

L (γ α)(x)
)
dμ(x) =

∞∑

j=0

∫

Uj (Bk)

· · · . (6.11)

For j ∈ {0, . . . ,4}, then by the uniformly upper type p1 and lower type p2 properties
of ϕ, Hölder’s inequality, ϕ ∈ RH2/(2−p1)(X ), Lemmas 6.6 and 2.8(vi), we know
that, for all k ∈ Z+,

∫

Uj (Bk)

ϕ
(
x,2−kλ/2S2k

L (γ α)(x)
)
dμ(x)

�
∫

Uj (Bk)

ϕ
(
x,2−kλ/2|γ |‖χB‖−1

Lϕ(X )

)(
1 + [

S2k

L (α)(x)‖χB‖Lϕ(X )

]p1
)
dμ(x)

� 2−kλp2/2ϕ
(
2j+kB, |γ |‖χB‖−1

Lϕ(X )

)

+ 2−kλp2/2‖χB‖p1
Lϕ(X )

{∫

Uj (Bk)

[
S2k

L (α)(x)
]2

dμ(x)

} p1
2

×
{∫

Uj (Bk)

[
ϕ
(
x, |γ |‖χB‖−1

Lϕ(X )

)] 2
2−p1 dμ(x)

} 2−p1
2

� 2−k(
λp2

2 −nq0)ϕ
(
B, |γ |‖χB‖−1

Lϕ(X )

) + 2− kλp2
2 2

k(n+N)p1
2 ‖α‖p1

L2(X )
‖χB‖p1

Lϕ(X )

× [
μ

(
2j+kB

)]q0− p1
2

[
μ(B)

]−q0ϕ
(
B, |γ |‖χB‖−1

Lϕ(X )

)

� 2−k(
λp2

2 −nq0− Np1
2 )ϕ

(
B, |γ |‖χB‖−1

Lϕ(X )

)
. (6.12)

When j ∈ N with j ≥ 5, from the uniformly upper type p1 and lower type p2
properties of ϕ, we deduce that, for all k ∈ Z+,

∫

Uj (Bk)

ϕ
(
x,2−kλ/2S2k

L (γ α)(x)
)
dμ(x)

� 2−kλp2/2‖χB‖p1
Lϕ(X )

∫

Uj (Bk)

ϕ
(
x, |γ |‖χB‖−1

Lϕ(X )

)[
S2k

L (α)(x)
]p1 dμ(x)
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+ 2−kλp2/2‖χB‖p2
Lϕ(X )

∫

Uj (Bk)

ϕ
(
x, |γ |‖χB‖−1

Lϕ(X )

)[
S2k

L (α)(x)
]p2 dμ(x)

=: Hj,k + Ij,k. (6.13)

To estimate Hj,k and Ij,k , we need to estimate
∫
Uj (Bk)

|S2k

L (α)(x)|2 dμ(x). We first
see that

∫

Uj (Bk)

[
S2k

L (α)(x)
]2

dμ(x)

=
∫

Uj (Bk)

∫ rB

0

∫

B(x,2k t)

∣
∣t2Le−t2L(α)(y)

∣
∣2 dμ(y)

V (x, t)

dt

t
dμ(x) +

∫

Uj (Bk)

∫ ∞

rB

· · ·

=: Jj,k + Kj,k. (6.14)

Take s ∈ (0,∞) such that s ∈ (n[ q0
p2

− 1
2 ],2M). Moreover, for each j ∈ N with j ≥

5 and k ∈ Z+, let Ũj (Bk) := {z ∈ X : 2j−22krB ≤ d(z, xB) < 2j+12krB}. Then for
any x ∈ Uj(Bk), t ∈ (0, rB) and y ∈ X with d(x, y) < 2kt , we see that y ∈ Ũj (Bk).
From this, (2.3), Fubini’s theorem and (2.5), it follows that

Jj,k � 2k(N+n)

∫ rB

0

∫

Ũj (Bk)

∣
∣t2Le−t2L(α)(y)

∣
∣2 dμ(y)dt

t

� 2k(N+n)‖α‖2
L2(B)

∫ rB

0
e
− [2j+krB ]2

C3 t2
dt

t
� 2−2js2−k(2s−N−n)‖α‖2

L2(B)
. (6.15)

Furthermore, by the definition of α, we know that there exists b ∈ L2(B) such that
α = LMb and ‖b‖L2(X ) ≤ r2M

B [μ(B)]1/2‖χB‖−1
Lϕ(X )

. From this, we deduce that

Kj,k �
∫

Uj (Bk)

∫ 2j−3rB

rB

∫

B(x,2k t)

∣
∣
(
t2L

)M+1
e−t2L(b)(y)

∣
∣2 dμ(y)

V (x, t)

dt

t4M+1
dμ(x)

+
∫

Uj (Bk)

∫ ∞

2j−3rB

· · · =: Kj,k,1 + Kj,k,2. (6.16)

We first estimate Kj,k,1. Let x ∈ Uj (Bk), t ∈ [rB,2j−3rB) and y ∈ X with d(x, y) <

2kt . Then

d(y, xB) ≤ d(x, y) + d(x, xB) ≤ 2kt + 2j 2krB ≤ 2j+12krB

and

d(y, xB) ≥ d(x, xB) − d(x, y) ≥ 2j−12krB − 2j−32krB ≥ 2j−32krB.

From this, (2.3), Fubini’s theorem and (2.5), we infer that

Kj,k,1 � 2k(N+n)

∫ 2j−3rB

rB

∫

Ũj (Bk)

∣
∣
(
t2L

)M+1
e−t2L(b)(y)

∣
∣2 dμ(y)dt

t4M+1
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� 2k(N+n)‖b‖2
L2(B)

∫ 2j−3rB

rB

e
− [2j+k−3rB ]2

C3t2
dt

t4M+1

� 2−2js2−k(2s−N−n)μ(B)‖χB‖−2
Lϕ(X )

. (6.17)

For Kj,k,2, by (2.3), Fubini’s theorem and (2.5), we see that

Kj,k,2 � 2k(N+n)‖b‖2
L2(B)

∫ ∞

2j−3rB

dt

t4M+1
� 2−2js2k(N+n)μ(B)‖χB‖−2

Lϕ(X )
,

which, together with (6.17) and (6.16), implies that, for all j ∈ N with j ≥ 5 and
k ∈ Z+,

Kj,k � 2−2js2k(N+n)μ(B)‖χB‖−2
Lϕ(X )

.

From this, (6.14) and (6.15), it follows that, for all j ∈ N with j ≥ 5 and k ∈ Z+,

∫

Uj (Bk)

[
S2k

L (α)(x)
]2

dμ(x) � 2−2js2k(N+n)μ(B)‖χB‖−2
Lϕ(X )

. (6.18)

By (6.18), Hölder’s inequality, ϕ ∈ RH2/(2−p1)(X ) and Lemma 2.8(vii), we conclude
that

Hj,k � 2− kλp2
2 ‖χB‖p1

Lϕ(B)

{∫

Uj (Bk)

[
ϕ
(
x, |γ |‖χB‖−1

Lϕ(X )

)] 2
2−p1 dμ(x)

} 2−p1
2

×
{∫

Uj (Bk)

[
S2k

L (α)(x)
]2

dμ(x)

} p1
2

� 2− kλp2
2 2−jsp1 2

k(N+n)p1
2

[
μ

(
2j+kB

)]q0− p1
2

[
μ(B)

] p1
2 −q0ϕ

(
B, |γ |‖χB‖−1

Lϕ(X )

)

� 2
−jp1[s−n(

q0
p1

− 1
2 )]

2
−kp2(

λ
2 − nq0

p2
− Np1

2p2
)
ϕ
(
B, |γ |‖χB‖−1

Lϕ(X )

)
. (6.19)

For Ij,k , similar to (6.19), we see that

Ij,k � 2− kλp2
2 ‖χB‖p2

Lϕ(B)

{∫

Uj (Bk)

[
ϕ
(
x, |γ |‖χB‖−1

Lϕ(X )

)] 2
2−p2 dμ(x)

} 2−p2
2

×
{∫

Uj (Bk)

[
S2k

L (γ α)(x)
]2

dμ(x)

} p2
2

� 2− kλp2
2 2−jsp2 2

k(N+n)p2
2

[
μ

(
2j+kB

)]q0− p2
2

[
μ(B)

] p2
2 −q0ϕ

(
B, |γ |‖χB‖−1

Lϕ(X )

)

� 2
−jp2[s−n(

q0
p2

− 1
2 )]

2
−kp2(

λ
2 − nq0

p2
− N

2 )
ϕ
(
B, |γ |‖χB‖−1

Lϕ(X )

)
,
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which, together with (6.11), (6.12), (6.13), (6.19), p1 ≥ p2 and s > n(
q0
p2

− 1
2 ), im-

plies that
∫

X
ϕ
(
x,2−kλ/2S2k

L (γ α)(x)
)
dμ(x) � 2

− kp2
2 (λ− 2nq0+Np1

p2
)
ϕ
(
B, |γ |‖χB‖−1

Lϕ(X )

)
.

From this, we deduce that (6.10) holds true, which completes the proof of Theo-
rem 6.7. �

Remark 6.8 We remark that when X := R
n and L := −�, g∗

λ,L is just the classical
Littlewood–Paley g∗

λ-function.
Let p ∈ (0,1], ω ∈ Aq(Rn) with q ∈ [1,∞) and ϕ(x, t) := ω(x)tp for all x ∈ R

n

and t ∈ [0,∞). We point out that, in this case, the range of λ in Theorem 6.7 coincides
with the result on the classical Littlewood–Paley g∗

λ-function on R
n (see, for example,

[1, Theorem 2]).

From Theorem 6.7 and the fact that SL(f ) ≤ g∗
λ,L(f ) pointwise for all f ∈ L2(X ),

we immediately deduce the following Littlewood–Paley g∗
λ-function g∗

λ,L character-
ization of Hϕ,L(X ).

Corollary 6.9 Let L satisfy Assumptions A and B, g∗
λ,L be as in Definition 6.5 and

ϕ as in Definition 2.4 with ϕ ∈ RH2/[2−I (ϕ)](X ), where I (ϕ) is as in (2.10). As-
sume further that λ ∈ ([2nq(ϕ) + NI (ϕ)]/i(ϕ),∞), where n, N , q(ϕ) and i(ϕ) are,
respectively, as in (2.2), (2.3), (2.12) and (2.11). Then f ∈ Hϕ,L(X ) if and only if
g∗

λ,L(f ) ∈ Lϕ(X ); moreover, ‖f ‖Hϕ,L(X ) ∼ ‖g∗
λ,L(f )‖Lϕ(X ) with the implicit con-

stants independent of f .

6.3 Boundedness of Spectral Multipliers

In this subsection, we prove a Hörmander-type spectral multiplier theorem for L on
the Musielak–Orlicz–Hardy space Hϕ,L(X ). We begin with some notions.

Let L satisfy Assumptions A and B, and m(L) be as in (1.1). Let φ be a nonnega-
tive C∞

c function on R such that

suppφ ⊂ (1/4,1) and
∑

�∈Z

φ
(
2−�λ

) = 1 for all λ ∈ (0,∞). (6.20)

Let s ∈ [0,∞). Recall that Cs(R) is the space of all functions m on R for which

‖m‖Cs(R) :=
{∑s

k=0 supλ∈R |m(k)(λ)|, s ∈ Z+,

‖m(
s�)‖Lip(s−
s�) + ∑
s�
k=0 supλ∈R |m(k)(λ)|, s �∈ Z+

is finite, where m(k), k ∈ N, denotes the k-order derivative of m, and ‖m(
s�)‖Lip(s−
s�)
is defined by

∥
∥m(
s�)∥∥

Lip(s−
s�) := sup
x,y∈R,x �=y

|m(
s�)(x) − m(
s�)(y)|
|x − y|s−
s� .
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Now we state the main result of this subsection as follows.

Theorem 6.10 Let L satisfy Assumptions A and B and ϕ be as in Definition 2.4 with
ϕ ∈ RH2/[2−I (ϕ)](X ), where I (ϕ) is as in (2.10). Assume that φ is a nonnegative
C∞

c (R) function satisfying (6.20). If the bounded Borel function m : [0,∞) → C

satisfies that, for some s ∈ (n[ q(ϕ)
i(ϕ)

− 1
2 ],∞), where n, q(ϕ) and i(ϕ) are, respectively,

as in (2.2), (2.12) and (2.11),

C(φ, s) := sup
t∈(0,∞)

‖φ(·)m(t ·)‖Cs(R) + |m(0)| < ∞, (6.21)

then m(L) is bounded on Hϕ,L(X ) and there exists a positive constant C such that,
for all f ∈ Hϕ,L(X ),

‖m(L)f ‖Hϕ,L(X ) ≤ C‖f ‖Hϕ,L(X ).

Remark 6.11 (i) A typical example of the function m satisfying the condition of
Theorem 6.10 is m(λ) = λiγ for all λ ∈ R and some real-valued γ , where i denotes
the unit imaginary number (see Corollary 6.13 below).

(ii) Theorem 6.10 covers the results of [38, Theorem 1.1] in the case when p ∈
(0,1], by taking ϕ(x, t) := tp for all x ∈ R

n and t ∈ [0,∞).

To prove Theorem 6.10, we need the following Lemma 6.12.

Lemma 6.12 Let ϕ and L be as in Theorem 6.10, and m a bounded Borel function
and M ∈ N with M > n

2 [ q(ϕ)
i(ϕ)

− 1
2 ], where n, q(ϕ) and i(ϕ) are, respectively, as in

(2.2), (2.12) and (2.11). Assume that there exist D ∈ (n[ q(ϕ)
i(ϕ)

− 1
2 ],∞) and C ∈ (0,∞)

such that, for every j ∈ {2,3, . . .}, any ball B := B(xB, rB) and f ∈ L2(X ) with
suppf ⊂ B ,

∥
∥m(L)

(
I − e−r2

BL
)M

f
∥
∥

L2(Uj (B))
≤ C2−jD‖f ‖L2(B). (6.22)

Then m(L) can extend to a bounded linear operator on Hϕ,L(X ). More precisely,
there exists a positive constant C such that, for all f ∈ Hϕ,L(X ), ‖m(L)f ‖Hϕ,L(X ) ≤
C‖f ‖Hϕ,L(X ).

Proof We borrow some ideas from [38]. Notice that since Hϕ,L(X )∩H 2(X ) is dense
in Hϕ,L(X ), we can define m(L) on Hϕ,L(X ) ∩ H 2(X ). Once we prove that m(L)

is bounded from Hϕ,L(X ) ∩ H 2(X ) to Hϕ,L(X ), by a density argument, we then see
that the operator m(L) can be extended to Hϕ,L(X ).

Let f ∈ Hϕ,L(X ) ∩ H 2(X ) and M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ]. To prove the
desired conclusion, it suffices to prove that, for any (ϕ,2M)-atom α, m(L)α is
a constant multiple of a (ϕ,M,ε)-molecule with ε ∈ (n[ q(ϕ)

i(ϕ)
− 1

2 ],∞). Indeed, if
this holds true, by Proposition 4.7, we know that there exist {λj } ⊂ C and a se-
quence {αj }j of (ϕ,2M)-atoms such that f = ∑

j λjαj in Hϕ,L(X ) ∩ L2(X ) and
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Λ({λjαj }j ) � ‖f ‖Hϕ,L(X ). From this and the L2(X )-boundedness of m(L), we infer
that m(L)f = ∑

j λj (m(L)αj ) is a molecular decomposition of m(L)f and

‖m(L)f ‖
H

M,ε
ϕ,mol(X )

� Λ
({

λj

(
m(L)αj

)}
j

)
� Λ

({λjαj }j
) ∼ ‖f ‖Hϕ,L(X ).

Let α be a (ϕ,2M)-atom. Then there exists a function b ∈ D(L2M) such that α =
L2Mb satisfies (ii) and (iii) of Definition 4.3. From the spectral theory, it follows that
m(L)α = LM(m(L)LMb). Furthermore, by the definition of (ϕ,M,ε)-molecules, it
remains to prove that, for all k ∈ {0, . . . ,M} and j ∈ Z+,

∥
∥
(
r2
BL

)k
m(L)LMb

∥
∥

L2(Uj (B))
� 2−jεr2M

B

[
μ(B)

]1/2‖χB‖−1
Lϕ(X )

. (6.23)

From the L2(X )-boundedness of m(L), the H∞-functional calculi for L and (2.5),
similar to the proof of [38, (3.4)], it follows that (6.23) holds true. We omit the details
and hence complete the proof of Lemma 6.12. �

Now we give the proof of Theorem 6.10 by using Lemma 6.12.

Proof of Theorem 6.10 We borrow some ideas from [33, 38]. Since that m satis-
fies (6.21) if and only if the function λ → m(λ2) satisfies the same property, similar
to the proof of [38, Theorem 1.1], we may consider m(

√
L) instead of m(L). By

m(λ) = m(λ)−m(0)+m(0), we know that m(
√

L) = (m(·)−m(0))(
√

L)+m(0)I .
Replacing m by m − m(0), without loss of generality, we may assume, in the follow-
ing, that m(0) = 0. Let φ be a function as in (6.20). Then for all λ ∈ (0,∞),

m(λ) =
∑

�∈Z

φ
(
2−�λ

)
m(λ) =:

∑

�∈Z

m�(λ).

Moreover, from (1.1), it follows that the sequence
∑N

�=−N m�(
√

L) converges

strongly in L2(X ) to m(
√

L). We shall prove that
∑N

�=−N m�(
√

L) is bounded on
Hϕ,L(X ) with its bound independent of N . This, together with the strong conver-
gence of (1.1) in L2(X ), the fact that Hϕ,L(X ) ∩ L2(X ) is dense in Hϕ,L(X ) and a
density argument, then gives the desired conclusion.

Now fix s ∈ R with s > n[q(ϕ)/i(ϕ) − 1/2]. Let M ∈ N with M > s/2. For
any � ∈ Z, r, λ ∈ (0,∞), we set Fr,M(λ) := m(λ)(1 − e−(rλ)2

)M and F�
r,M(λ) :=

m�(λ)(1 − e−(rλ)2
)M . Then we see that

m(
√

L)
(
I − e−r2L

)M = Fr,M(
√

L) = lim
N→∞

N∑

�=−N

F�
r,M(

√
L) (6.24)

in L2(X ). Fix a ball B . For all b ∈ L2(X ) with suppb ⊂ B , by using the L2(X )-
boundedness of m(L) and (6.20), similar to the proof of [38, (4.8)], we know that,
for all � ∈ Z and j ∈ N with j ≥ 3,

∥
∥F�

rB,M(
√

L)b
∥
∥

L2(Uj (B))
� C(φ, s)2−sj

(
2�rB

)−s min
{
1,

(
2�rB

)2M}‖b‖L2(B),

(6.25)
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which, together with (6.24), s > n[q(ϕ)/i(ϕ) − 1/2] and M > s/2, implies that, for
all j ∈ N with j ≥ 3,

∥
∥m(

√
L)

(
I − e−r2

BL
)M

b
∥
∥

L2(Uj (B))

� 2−js lim
N→∞

N∑

�=−N

(
2�rB

)−s min
{
1,

(
2�rB

)2M}‖b‖L2(B)

� 2−js

[ ∑

{�∈Z:2�rB>1}

(
2�rB

)−s +
∑

{�∈Z:2�rB≤1}

(
2�rB

)2M−s
]

‖b‖L2(B)

� 2−js‖b‖L2(B).

By this, we know that the assumptions of Lemma 6.12 are satisfied, and hence the
desired conclusion of Theorem 6.10 holds true, which completes the proof of Theo-
rem 6.10. �

In the following corollary, we obtain the boundedness of imaginary powers of
self-adjoint operators on Musielak–Orlicz–Hardy spaces Hϕ,L(X ).

Corollary 6.13 Let ϕ and L be as in Theorem 6.10. Then for any γ ∈ R, the operator
Liγ is bounded on Hϕ,L(X ). Moreover, for any ε ∈ (0,∞), there exists a positive
constant C(ε), depending on ε, such that, for all f ∈ Hϕ,L(X ),

‖Liγ f ‖Hϕ,L(X ) ≤ C(ε)(1 + |γ |)n[ q(ϕ)
i(ϕ)

− 1
2 ]+ε‖f ‖Hϕ,L(X ),

where n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12) and (2.11).

Proof We apply Theorem 6.10 with m(λ) := λiγ for all λ ∈ (0,∞). In this case it is
easy to show that, for s > n[q(ϕ)/i(ϕ) − 1/2], C(φ, s) � (1 + |γ |)s , where C(φ, s)

is as in (6.21) (see, for example, [38, Corollary 4.3]). From this, (6.25) and the proof
of Theorem 6.10, we deduce that, for all ε ∈ (0,∞), there exists a positive constant
C(ε), depending on ε, such that, for all f ∈ Hϕ,L(X ),

‖Liγ f ‖Hϕ,L(X ) ≤ C(ε)(1 + |γ |)n[ q(ϕ)
i(ϕ)

− 1
2 ]+ε‖f ‖Hϕ,L(X ),

which completes the proof of Corollary 6.13. �

7 Applications to Schrödinger Operators

In this section, let X := R
n and

L := −� + V (7.1)

be a Schrödinger operator, where 0 ≤ V ∈ L1
loc(R

n). We establish several equivalent
characterizations of the corresponding Musielak–Orlicz–Hardy spaces Hϕ,L(X ), in
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terms of the atom, the molecular, the Lusin-area function associated with the Poisson
semigroup of L, the non-tangential and the radial maximal functions associated with
the heat semigroup generated by L, and the non-tangential and the radial maximal
functions associated with the Poisson semigroup generated by L. Moreover, we prove
that the Riesz transform ∇L−1/2 associated with L is bounded from Hϕ,L(Rn) to
Lϕ(Rn) when i(ϕ) ∈ (0,1], and from Hϕ,L(Rn) to the Musielak–Orlicz–Hardy space
Hϕ(Rn) introduced by Ky [63] when i(ϕ) ∈ ( n

n+1 ,1].
Since V is a nonnegative function, from the Feynman–Kac formula, we deduce

that the kernel of the semigroup e−tL, ht , satisfies that, for all x, y ∈ R
n and t ∈

(0,∞),

0 ≤ ht (x, y) ≤ (4πt)−n/2 exp

{

−|x − y|2
4t

}

.

Remark 7.1 (i) By Remark 4.2(i), we know that, in this case, H 2(Rn) = L2(Rn).
(ii) In this section, for the sake of convenience, we choose the norm on R

n

to be the supremum norm; namely, for any x = (x1, x2, . . . , xn) ∈ R
n, |x| :=

max{|x1|, . . . , |xn|}, for which balls determined by this norm are cubes associated
with the usual Euclidean norm with sides parallel to the axes.

It is easy to see that L satisfies Assumptions A and B, which, combined with
Theorems 5.5 and 5.7, immediately implies the following conclusions. We omit the
details.

Theorem 7.2 Let L be as in (7.1) and ϕ as in Definition 2.4 with ϕ ∈
RH2/[2−I (ϕ)](Rn), where I (ϕ) is as in (2.10). Assume further that M ∈ N with

M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ] and ε ∈ (n[ q(ϕ)
i(ϕ)

− 1
2 ],∞), where n, q(ϕ) and i(ϕ) are, respectively,

as in (2.2), (2.12) and (2.11). Then the spaces Hϕ,L(Rn), HM
ϕ,at(R

n), H
M,ε
ϕ,mol(R

n) and
Hϕ,SP

(Rn) coincide with equivalent quasi-norms.

For any β ∈ (0,∞), f ∈ L2(Rn) and x ∈ R
n, let

N β
h (f )(x) := sup

y∈B(x,βt),t∈(0,∞)

∣
∣e−t2L(f )(y)

∣
∣,

N β
P (f )(x) := sup

y∈B(x,βt),t∈(0,∞)

∣
∣e−t

√
L(f )(y)

∣
∣,

Rh(f )(x) := supt∈(0,∞) |e−t2L(f )(x)| and RP (f )(x) := supt∈(0,∞) |e−t
√

L(f )(x)|.
We denote N 1

h (f ) and N 1
P (f ) simply by Nh(f ) and NP (f ), respectively.

Definition 7.3 Let L be as in (7.1) and ϕ as in Definition 2.4. A function f ∈ H 2(Rn)

is said to be in H̃ϕ,Nh
(Rn) if Nh(f ) ∈ Lϕ(Rn); moreover, let ‖f ‖Hϕ,Nh

(Rn) :=
‖Nh(f )‖Lϕ(Rn). The Musielak–Orlicz–Hardy space Hϕ,Nh

(Rn) is defined to be the
completion of H̃ϕ,Nh

(Rn) with respect to the quasi-norm ‖ · ‖Hϕ,Nh
(Rn).

The spaces Hϕ,NP
(Rn), Hϕ,Rh

(Rn) and Hϕ,RP
(Rn) are defined in a similar way.
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Then we give the following several equivalent characterizations of Hϕ,L(Rn) in
terms of maximal functions associated with L.

Theorem 7.4 Assume that ϕ and L are as in Theorem 7.2. Then the spaces
Hϕ,L(Rn), Hϕ,Nh

(Rn), Hϕ,NP
(Rn), Hϕ,Rh

(Rn), Hϕ,RP
(Rn) and Hϕ,SP

(Rn) co-
incide with equivalent quasi-norms.

Remark 7.5 Theorem 7.2 completely covers [57, Theorem 6.1] by taking ϕ as in
(1.2) with ω ≡ 1 and Φ concave. Theorem 7.4 completely covers [57, Theorem 6.4]
by taking ϕ as in (1.2) with ω ≡ 1 and Φ satisfying that Φ is concave on (0,∞) and
there exist q1, q2 ∈ (0,∞) such that q1 < 1 < q2 and [Φ(tq2)]q1 is a convex function
on (0,∞).

To prove Theorem 7.4, we first establish the following Proposition 7.6.

Proposition 7.6 Let ϕ and L be as in Theorem 7.2. Then Hϕ,NP
(Rn) ∩ L2(Rn) ⊂

Hϕ,SP
(Rn) ∩ L2(Rn). Moreover, there exists a positive constant C such that, for all

f ∈ Hϕ,NP
(Rn) ∩ L2(Rn), ‖f ‖Hϕ,SP

(Rn) ≤ C‖f ‖Hϕ,NP
(Rn).

To prove Proposition 7.6, we first introduce some notions. Let α ∈ (0,∞) and
ε,R ∈ (0,∞) with ε < R. For f ∈ L2(Rn), define the truncated Lusin-area function
S

ε,R,α
P (f )(x) for all x ∈ R

n, by setting,

S
ε,R,α
P (f )(x) :=

{∫

Γ
ε,R
α (x)

∣
∣t

√
Le−t

√
L(f )(y)

∣
∣2 dydt

tn+1

}1/2

,

where

Γ ε,R
α (x) := {

(y, t) ∈ R
n × (ε,R) : |x − y| < αt

}
. (7.2)

Then we have the following conclusion about the truncated Lusin-area function.

Lemma 7.7 Let ϕ be as in Definition 2.4 and α,β ∈ (0,∞). Then for all 0 ≤ ε <

R < ∞ and f ∈ L2(Rn),

∫

Rn

ϕ
(
x,S

ε,R,α
P (f )(x)

)
dx ∼

∫

Rn

ϕ
(
x,S

ε,R,β
P (f )(x)

)
dx,

where the implicit constants are independent of ε,R and f .

Proof First we recall two useful conclusions established in [23]. Let α,β ∈ (0,∞),
ε,R ∈ (0,∞) with ε < R. Then for any closed subset F of R

n whose complement
has finite measure and any nonnegative measurable function H on R

n × (0,∞),

∫

F

{∫

Γ
ε,R
α (x)

H(y, t) dy dt

}

dx �
∫

Rε,R
α (F )

H(y, t)tn dy dt, (7.3)
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where Γ ε,R
α (x) is as in (7.2), Rε,R

α (F ) := ⋃
x∈F Γ ε,R

α (x) and the implicit constants
are independent of F , ε,R and H . Let γ ∈ (0,1) and F ∗

γ be as in Sect. 3. Then

∫

Rε,R
α (F ∗

γ )

H(y, t)tn dy dt �
∫

F

{∫

Γ
ε,R
β (x)

H(y, t) dy dt

}

dx. (7.4)

Let α,β ∈ (0,∞). Without loss of generality, we may assume that α > β . Let
ε,R ∈ (0,∞) with ε < R and f ∈ L2(Rn). Fix λ ∈ (0,∞). Let γ ∈ (0,1), F := {x ∈
R

n : Sε,R,β
P (f )(x) ≤ λ} and O := R

n \ F . Assume that F ∗
γ and O∗

γ are as in Sect. 3.

Then by (7.3) with F := F ∗
γ and H(y, t) := |t√Le−t

√
L(f )(y)|2t−(n+1), we know

that
∫

F ∗
γ

[
S

ε,R,α
P (f )(x)

]2
dx �

∫

Rε,R
α (F ∗

γ )

∣
∣t

√
Le−t

√
L(f )(y)

∣
∣2

t−1 dy dt.

This, combined with (7.4) by choosing H(y, t) := |t√Le−t
√

L(f )(y)|2t−(n+1),
yields that

∫

F ∗
γ

[
S

ε,R,α
P (f )(x)

]2
dx �

∫

F

[
S

ε,R,β
P (f )(x)

]2
dx. (7.5)

Let q ∈ (q(ϕ),∞). Then ϕ ∈ Aq(Rn), which, together with (7.5) and Lemma
2.8(vi), implies that, for all t ∈ (0,∞),

∫

{x∈Rn:Sε,R,α
P (f )(x)>λ}

ϕ(x, t) dx

≤
∫

O∗
γ

ϕ(x, t) dx +
∫

{x∈F ∗
γ :Sε,R,α

P (f )(x)>λ}
· · ·

�
∫

{x∈Rn:M(χO)(x)>1−γ }
ϕ(x, t) dx +

∫

{x∈F ∗
γ :Sε,R,α

P (f )(x)>λ}
· · ·

�
∫

Rn

|χO(x)|qϕ(x, t) dx + 1

λ2

∫

F

[
S

ε,R,β
P (f )(x)

]2
ϕ(x, t) dx

∼
∫

{x∈Rn:Sε,R,β
P (f )(x)>λ}

ϕ(x, t) dx + 1

λ2

∫

F

[
S

ε,R,β
P (f )(x)

]2
ϕ(x, t) dx.

From this, the fact that ϕ(x, t) ∼ ∫ t

0
ϕ(x,s)

s
ds for all x ∈ R

n and t ∈ (0,∞), Fubini’s
theorem and the uniformly upper type p1 property of ϕ with p1 ∈ (0,1], it follows
that
∫

Rn

ϕ
(
x,S

ε,R,α
P (f )(x)

)
dx

∼
∫

Rn

{∫ S
ε,R,α
P (f )(x)

0

ϕ(x, t)

t
dt

}

dx



552 D. Yang and S. Yang

�
∫ ∞

0

∫

{x∈Rn:Sε,R,α
P (f )(x)>t}

ϕ(x, t)

t
dx dt

�
∫ ∞

0

1

t

∫

{x∈Rn:Sε,R,β
P (f )(x)>t}

ϕ(x, t) dx dt

+
∫ ∞

0

1

t3

∫

F

[
S

ε,R,β
P (f )(x)

]2
ϕ(x, t) dx dt

∼
∫

Rn

ϕ
(
x,S

ε,R,β
P (f )(x)

)
dx +

∫

Rn

{∫ ∞

S
ε,R,β
P (f )(x)

ϕ(x, t)

t3
dt

}
[
S

ε,R,β
P (f )(x)

]2
dx

∼
∫

Rn

ϕ
(
x,S

ε,R,β
P (f )(x)

)
dx +

∫

Rn

[
S

ε,R,β
P (f )(x)

]2−p1ϕ
(
x,S

ε,R,β
P (f )(x)

)

×
{∫ ∞

S
ε,R,β
P (f )(x)

1

t3−p1
dt

}

dx

∼
∫

Rn

ϕ
(
x,S

ε,R,β
P (f )(x)

)
dx,

which completes the proof of Lemma 7.7. �

Let α ∈ (0,∞) and ε,R ∈ (0,∞) with ε < R. For f ∈ L2(Rn), define the trun-
cated Lusin-area function S̃

ε,R,α
P (f )(x) for all x ∈ R

n, by setting,

S̃
ε,R,α
P (f )(x) :=

{∫

Γ
ε,R
α (x)

∣
∣t∇e−t

√
L(f )(y)

∣
∣2 dy dt

tn+1

}1/2

,

where Γ ε,R
α (x) is as in (7.2) and ∇ := (∇, ∂t ). When α = 1, we denote S̃

ε,R,1
P (f )

simply by S̃
ε,R
P (f ). Obviously, for any α ∈ (0,∞), ε,R ∈ (0,∞) with ε < R and f ∈

L2(Rn), S
ε,R,α
P (f ) ≤ S̃

ε,R,α
P (f ) pointwise. Now we give the following Lemma 7.8,

which establishes a “good-λ inequality” concerning the truncated Lusin-area function
S̃

ε,R,α
P and the non-tangential maximal function NP .

Lemma 7.8 There exist positive constants C and ε0 ∈ (0,1] such that, for all γ ∈
(0,1], λ ∈ (0,∞), ε,R ∈ (0,∞) with ε < R, f ∈ Hϕ,NP

(Rn) ∩ L2(Rn) and t ∈
(0,∞),

∫

{x∈Rn:S̃ε,R,1/20
P (f )(x)>2λ,NP (f )(x)≤γ λ}

ϕ(x, t) dx

≤ Cγ ε0

∫

{x∈Rn:S̃ε,R,1/2
P (f )(x)>λ}

ϕ(x, t) dx. (7.6)

Proof We prove this lemma by borrowing some ideas from [7, 8, 95]. Fix 0 < ε <

R < ∞, γ ∈ (0,1] and λ ∈ (0,∞). Let f ∈ Hϕ,NP
(Rn) ∩ L2(Rn) and

O := {
x ∈ R

n : S̃ε,R,1/2
P (f )(x) > λ

}
.
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It is easy to see that O is an open subset of R
n. Let O = ⋃

k Qk be the Whitney de-
composition of O , where {Qk}k are closed dyadic cubes of R

n with disjoint interiors
and 2Qk ⊂ O , but (4Qk) ∩ O� �= ∅. To show (7.6), by O = ⋃

k Qk and the disjoint
property of {Qk}k , it suffices to show that there exists ε0 ∈ (0,1] such that, for all k,

∫

{x∈Qk :S̃ε,R,1/20
P (f )(x)>2λ,NP (f )(x)≤γ λ}

ϕ(x, t) dx � γ ε0

∫

Qk

ϕ(x, t) dx. (7.7)

From now on, we fix k and denote by lk the sidelength of Qk .
If x ∈ Qk , then

S̃
max{10lk ,ε},R,1/20
P (f )(x) ≤ λ. (7.8)

Indeed, pick xk ∈ 4Qk ∩ O�. For any (y, t) ∈ R
n × (0,∞), if |x − y| < t

20 and
t ≥ max{10lk, ε}, then |xk − y| ≤ |xk − x| + |x − y| < 4lk + t

20 < t
2 , which implies

that Γ
max{10lk,ε},R

1/20 (x) ⊂ Γ
max{10lk,ε},R

1/2 (xk). From this, it follows that

S̃
max{10lk ,ε},R,1/20
P (f )(x) ≤ S̃

max{10lk,ε},R,1/2
P (f )(xk) ≤ λ.

Thus, (7.8) holds true.
When ε ≥ 10lk , by (7.8), we see that

{
x ∈ Qk : S̃ε,R,1/20

P (f )(x) > 2λ, NP (f )(x) ≤ γ λ
} = ∅

and hence (7.7) holds true. When ε < 10lk , to show (7.7), by the fact that
S̃

ε,R,1/20
P (f ) ≤ S̃

ε,10lk,1/20
P (f ) + S̃

10lk,R,1/20
P (f ) and (7.8), it remains to show that,

for all t ∈ (0,∞),
∫

{x∈Qk∩F :g(x)>λ}
ϕ(x, t) dx � γ ε0

∫

Qk

ϕ(x, t) dx, (7.9)

where g := S̃
ε,10lk,1/20
P (f ) and F := {x ∈ R

n : NP (f )(x) ≤ γ λ}.
To prove (7.9), we claim that

∣
∣
{
x ∈ Qk ∩ F : g(x) > λ

}∣
∣ � γ 2|Qk|. (7.10)

If (7.10) holds true, it follows, from the fact that ϕ ∈ A∞(Rn) and Lemma 2.8(v),
that there exists r ∈ (1,∞) such that ϕ ∈ RHr (R

n), which, together with (7.10) and
Lemma 2.8(viii), implies that, for all t ∈ (0,∞),

1

ϕ(Qk, t)

∫

{x∈Qk∩F :g(x)>λ}
ϕ(x, t) dx �

{ |{x ∈ Qk ∩ F : g(x) > λ}|
|Qk|

}(r−1)/r

� γ 2(r−1)/r .

Let ε0 := 2(r −1)/r . Then
∫
{x∈Qk∩F :g(x)>λ} ϕ(x, t) dx � γ ε0ϕ(Qk, t), which implies

that (7.9) holds true.
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Now we show (7.10). By Chebychev’s inequality, we know that (7.10) can be
deduced from

∫

Qk∩F

[
g(x)

]2
dx � (γ λ)2|Qk|. (7.11)

From the Caccioppoli inequality associated with L (see, for example, [51, Lemma
8.3]), the differential structure of L and the divergence theorem, similar to the proof
of [95, (3.9)], it follows that (7.11) holds true. We omit the details and hence complete
the proof of Lemma 7.8. �

Now we prove Proposition 7.6 by using Lemmas 7.7 and 7.8.

Proof of Proposition 7.6 Assume that f ∈ Hϕ,NP
(Rn)∩L2(Rn). Take p2 ∈ (0, i(ϕ))

such that ϕ is uniformly lower type p2. By Lemma 2.6(ii), we know that ϕ(x, t) ∼∫ t

0
ϕ(x,s)

s
ds for all x ∈ R

n and t ∈ (0,∞), which, together with Fubini’s theorem and
Lemma 7.8, implies that, for all ε,R ∈ (0,∞) with ε < R and γ ∈ (0,1],

∫

Rn

ϕ
(
x, S̃

ε,R,1/20
P (f )(x)

)
dx

∼
∫

Rn

∫ S̃
ε,R,1/20
P (f )(x)

0

ϕ(x, t)

t
dt dx

∼
∫ ∞

0

1

t

∫

{x∈Rn:S̃ε,R,1/20
P (f )(x)>t}

ϕ(x, t) dx dt

�
∫ ∞

0

1

t

∫

{x∈Rn:NP (f )(x)>γ t}
ϕ(x, t) dx dt

+ γ ε0

∫ ∞

0

1

t

∫

{x∈Rn:S̃ε,R,1/2
P (f )(x)>t/2}

· · ·

� 1

γ

∫ ∞

0

∫

{x∈Rn:NP (f )(x)>t}
ϕ(x, t)

t
dx dt

+ γ ε0

∫ ∞

0

∫

{x∈Rn:S̃ε,R,1/2
P (f )(x)>t}

· · ·

∼ 1

γ

∫

Rn

ϕ
(
x, NP (f )(x)

)
dx + γ ε0

∫

Rn

ϕ
(
x, S̃

ε,R,1/2
P (f )(x)

)
dx. (7.12)

Furthermore, by (7.12), Lemma 7.7 and S̃
ε,R,1/2
P (f ) ≤ S̃

ε,R
P (f ) pointwise, we con-

clude that, for all γ ∈ (0,1], and ε,R ∈ (0,∞) with ε < R,
∫

Rn

ϕ
(
x, S̃

ε,R
P (f )(x)

)
dx

∼
∫

Rn

ϕ
(
x, S̃

ε,R,1/20
P (f )(x)

)
dx

� 1

γ

∫

Rn

ϕ
(
x, NP (f )(x)

)
dx + γ ε0

∫

Rn

ϕ
(
x, S̃

ε,R
P (f )(x)

)
dx,
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which, together with the facts that, for all λ ∈ (0,∞), S̃
ε,R
P (f/λ) = S̃

ε,R
P (f )/λ and

NP (f/λ) = NP (f )/λ, implies that there exists a positive constant C̃ such that

∫

Rn

ϕ

(

x,
S̃

ε,R
P (f )(x)

λ

)

dx

≤ C̃

[
1

γ

∫

Rn

ϕ

(

x,
NP (f )(x)

λ

)

dx + γ ε0

∫

Rn

ϕ

(

x,
S̃

ε,R
P (f )(x)

λ

)

dx

]

. (7.13)

Take γ ∈ (0,1] such that C̃γ ε0 = 1/2. Then from (7.13) and the fact that S
ε,R
P (f ) ≤

S̃
ε,R
P (f ) pointwise, we deduce that, for all λ ∈ (0,∞),

∫

Rn

ϕ

(

x,
S

ε,R
P (f )(x)

λ

)

dx ≤
∫

Rn

ϕ

(

x,
S̃

ε,R
P (f )(x)

λ

)

dx

�
∫

Rn

ϕ

(

x,
NP (f )(x)

λ

)

dx.

By the Fatou lemma and letting ε → 0 and R → ∞, we know that, for all λ ∈ (0,∞),

∫

Rn

ϕ

(

x,
SP (f )(x)

λ

)

dx �
∫

Rn

ϕ

(

x,
NP (f )(x)

λ

)

dx,

which implies that ‖SP (f )‖Lϕ(Rn) � ‖NP (f )‖Lϕ(Rn) and hence completes the proof
of Proposition 7.6. �

To prove Theorem 7.4, we need the following Moser type local boundedness esti-
mate from [51, Lemma 8.4].

Lemma 7.9 Let u be a weak solution of L̃u := Lu− ∂2
t u = 0 in the ball B(Y0,2r) ⊂

R
n+1+ . Then for all p ∈ (0,∞), there exists a positive constant C(n,p), depending on

n and p, such that

sup
Y∈B(Y0,r)

|u(Y )| ≤ C(n,p)

{
1

rn+1

∫

B(Y0,2r)

|u(Y )|p dY

}1/p

.

Now we prove Theorem 7.4 by using Theorem 7.2, Lemma 7.9 and Proposi-
tion 7.6.

Proof of Theorem 7.4 The proof of Theorem 7.4 is divided into the following six
steps.

Step 1. Hϕ,L(Rn) ∩ L2(Rn) ⊂ Hϕ,Nh
(Rn) ∩ L2(Rn). Let M be as in Theo-

rem 7.2. By Theorem 7.2, we know that Hϕ,L(Rn) ∩ L2(Rn) = HM
ϕ,at(R

n) ∩ L2(Rn)

with equivalent quasi-norms. Thus, we only need to prove HM
ϕ,at(R

n) ∩ L2(Rn) ⊂
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Hϕ,Nh
(Rn) ∩ L2(Rn). To this end, similar to the proof of (4.5), it suffices to show

that, for any λ ∈ C and (ϕ,M)-atom a with suppa ⊂ B := B(xB, rB),
∫

Rn

ϕ
(
x, Nh(λa)(x)

)
dx � ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

From the L2(Rn)-boundedness of Nh and (2.5), similar to the proof of (4.5), it fol-
lows that the above estimate holds true. We omit the details here.

Step 2. Hϕ,Nh
(Rn) ∩ L2(Rn) ⊂ Hϕ,Rh

(Rn) ∩ L2(Rn), which is deduced from the
fact that, for all f ∈ L2(Rn) and x ∈ R

n, Rh(f )(x) ≤ Nh(f )(x).

Step 3. Hϕ,Rh
(Rn) ∩ L2(Rn) ⊂ Hϕ,RP

(Rn) ∩ L2(Rn). By the subordination for-
mula associated with L,

e−t
√

L = 1√
π

∫ ∞

0
e− t2

4u
Le−uu−1/2 du

with t ∈ (0,∞) (see, for example, [8]), we know that, for all f ∈ L2(Rn) and x ∈ R
n,

RP (f )(x) ≤ sup
t∈(0,∞)

∫ ∞

0

e−u

√
u

∣
∣e− t2

4u
L(f )(x)

∣
∣du

� Rh(f )(x)

∫ ∞

0

e−u

√
u

du

� Rh(f )(x),

which implies that, for all f ∈ Hϕ,Rh
(Rn)∩L2(Rn), ‖f ‖Hϕ,RP

(Rn) � ‖f ‖Hϕ,Rh
(Rn).

From this and the arbitrariness of f , we deduce that Hϕ,Rh
(Rn) ∩ L2(Rn) ⊂

Hϕ,RP
(Rn) ∩ L2(Rn).

Step 4. Hϕ,RP
(Rn)∩L2(Rn) ⊂ Hϕ,NP

(Rn)∩L2(Rn). For all f ∈ L2(Rn), x ∈ R
n

and t ∈ (0,∞), let u(x, t) := e−tL1/2
(f )(x). Then L̃u = Lu − ∂2

t u = 0 in R
n+1+ . Let

x ∈ R
n and t ∈ (0,∞). Then by Lemma 7.9, we know that, for any γ ∈ (0,1) and

y ∈ Q(x, t/4),

∣
∣e−t

√
L(f )(y)

∣
∣γ � 1

tn+1

∫ 3t/2

t/2

∫

Q(x,t/2)

∣
∣e−s

√
L(f )(z)

∣
∣γ dz ds

� 1

tn

∫

Q(x,t)

|RP (f )(z)|γ dz

� M
([

RP (f )
]γ )

(x),

which implies that, for all f ∈ L2(Rn) and x ∈ R
n,

N 1/4
P (f )(x) �

{
M

([
RP (f )

]γ )
(x)

}1/γ
. (7.14)
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Let q0 ∈ (q(ϕ),∞), p2 ∈ (0, i(ϕ)) and γ0 ∈ (0,1) such that γ0q0 < p2. Then we
know that ϕ is of uniformly lower type p2 and ϕ ∈ Aq0(R

n). For any α ∈ (0,∞) and
g ∈ L

q0
loc(R

n), let g = gχ{x∈Rn:|g(x)|≤α} + gχ{x∈Rn:|g(x)|>α} =: g1 + g2. Then from
Lemma 2.8(vi), we infer that, for all t ∈ (0,∞),

∫

{x∈Rn:M(g)(x)>2α}
ϕ(x, t) dx ≤

∫

{x∈Rn:M(g2)(x)>α}
ϕ(x, t) dx

≤ 1

αq0

∫

Rn

[
M(g2)(x)

]q0ϕ(x, t) dx

� 1

αq0

∫

Rn

|g2(x)|q0ϕ(x, t) dx

∼ 1

αq0

∫

{x∈Rn:|g(x)|>α}
|g(x)|q0ϕ(x, t) dx,

which implies that, for all α ∈ (0,∞),

∫

{x∈Rn:[M([RP (f )]γ0 )(x)]1/γ0 >α}
ϕ(x, t) dx

� 1

αγ0q0

∫

{x∈Rn:[RP (f )(x)]γ0> αγ0
2 }

[
RP (f )(x)

]γ0q0ϕ(x, t) dx

� σRP (f ),t

(
α

21/γ0

)

+ 1

αγ0q0

∫ ∞
α

21/γ0

γ0q0s
γ0q0−1σRP (f ),t (s) ds. (7.15)

Here and in what follows, σRP (f ),t (α) := ∫
{x∈Rn:RP (f )(x)>α} ϕ(x, t) dx. From this,

(7.14), the uniformly upper type p1 and lower type p2 properties of ϕ and γ0q0 < p2,
it follows that

∫

Rn

ϕ
(
x, N 1/4

P (f )(x)
)
dx

�
∫

Rn

ϕ
(
x,

[
M

([
RP (f )

]γ0
)
(x)

]1/γ0
)
dx

�
∫

Rn

∫ {M([RP (f )]γ0 )(x)}1/γ0

0

ϕ(x, t)

t
dt dx

∼
∫ ∞

0

1

t

∫

{x∈Rn:[M([RP (f )]γ0 )(x)]1/γ0 >t}
ϕ(x, t) dx dt

�
∫ ∞

0

1

t

∫

{x∈Rn:RP (f )(x)> t

21/γ0
}
ϕ(x, t) dx dt

+
∫ ∞

0

1

tγ0q0+1

{∫ ∞
t

21/γ0

γ0q0s
γ0q0−1σRP (f ),t (s) ds

}

dt
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∼ JRP (f ) +
∫ ∞

0
γ0q0s

γ0q0−1
{∫ 21/γ0 s

0

1

tγ0q0+1
σRP (f ),t (s) dt

}

ds

� JRP (f )

+
∫ ∞

0
γ0q0s

γ0q0−1σRP (f ),t (s)ϕ
(
x,21/γ0s

)
{∫ 21/γ0 s

0

[
t

21/γ0s

]p2 1

tγ0q0+1
dt

}

ds

� JRP (f ) +
∫ ∞

0
γ0q0s

γ0q0−1σRP (f ),t (s)
ϕ(x, s)

(2
1
γ0 s)p2

{∫ 21/γ0 s

0
tp2−γ0q0−1 dt

}

ds

� JRP (f ) +
∫ ∞

0

∫

{x∈Rn:RP (f )(x)>s}
ϕ(x, s)

s
ds

∼
∫

Rn

ϕ
(
x, RP (f )(x)

)
dx,

where

JRP (f ) :=
∫ ∞

0

∫

{x∈Rn:RP (f )(x)>t}
ϕ(x, t)

t
dx dt,

which, together the fact that, for all λ ∈ (0,∞), N 1/4
P (f/λ) = N 1/4

P (f )/λ and
RP (f/λ) = RP (f )/λ, implies that, for all λ ∈ (0,∞),

∫

Rn

ϕ

(

x,
N 1/4

P (f )(x)

λ

)

dx �
∫

Rn

ϕ

(

x,
RP (f )(x)

λ

)

dx.

From this, we further deduce that

∥
∥N 1/4

P (f )
∥
∥

Lϕ(X )
�

∥
∥RP (f )

∥
∥

Lϕ(X )
. (7.16)

To end the proof of this step, we claim that, for all g ∈ L2(Rn),

∥
∥N 1/4

P (g)
∥
∥

Lϕ(X )
∼ ‖NP (g)‖Lϕ(X ). (7.17)

Then by (7.16) and (7.17), we conclude that ‖NP (f )‖Lϕ(X ) � ‖RP (f )‖Lϕ(X ).
From this and the arbitrariness of f , we deduce that Hϕ,RP

(Rn) ∩ L2(Rn) ⊂
Hϕ,NP

(Rn) ∩ L2(Rn).
Now we show (7.17). We borrow some ideas from [41, p. 166, Lemma 1]. By the

change of variables, it suffices to prove that

∫

Rn

ϕ
(
x, N N

P (f )(x)
)
dx �

∫

Rn

ϕ
(
x, NP (f )(x)

)
dx, (7.18)

where N is a positive constant with N ∈ (1,∞). For any α ∈ (0,∞), let

Eα := {
x ∈ R

n : NP (f )(x) > α
}

and E∗
α := {

x ∈ R
n : M(χEα )(x) > C̃/Nn

}
,



Musielak–Orlicz–Hardy Spaces Associated with Operators 559

where C̃ ∈ (0,1) is a positive constant. By ϕ ∈ A∞(Rn), we know that there exists
p ∈ (q(ϕ),∞) such that ϕ ∈ Ap(Rn). From this and Lemma 2.8(vi), it follows that,
for all t ∈ [0,∞),

∫

E∗
α

ϕ(x, t) dx � Nnp

C̃p

∫

Eα

ϕ(x, t) dx. (7.19)

Moreover, we claim that N N
P (f )(x) ≤ α for all x �∈ E∗

α . Indeed, fix any given
(y, t) ∈ R

n × (0,∞) satisfying |y − x| < Nt . Then B(y, t) �⊂ Eα . If this is not true,
then

M(χEα )(x) ≥ |B(y, t)|
|B(y,Nt)| = 1

Nn
>

C̃

Nn
.

This gives a contradiction with x �∈ E∗
α , and hence the claim holds true. From the

claim, we deduce that there exists z ∈ B(y, t) such that NP (f )(z) ≤ α, which implies
that |e−t

√
L(f )(y)| ≤ NP (f )(z) ≤ α. By this and the choice of (y, t), we conclude

that, for all x �∈ E∗
α , N N

P (f )(x) ≤ α, which, together with Lemma 2.6(ii), Fubini’s
theorem and (7.19), implies that

∫

Rn

ϕ
(
x, N N

P (f )(x)
)
dx ∼

∫

Rn

∫ N N
P (f )(x)

0

ϕ(x, t)

t
dt dx

∼
∫ ∞

0

∫

{x∈Rn:N N
P (f )(x)>t}

ϕ(x, t)

t
dx dt

�
∫ ∞

0

∫

E∗
t

ϕ(x, t)

t
dx dt

�
∫ ∞

0

∫

Et

ϕ(x, t)

t
dx dt ∼

∫

Rn

ϕ
(
x, NP (f )(x)

)
dx.

Thus, the claim (7.18) holds true.

Step 5. Hϕ,NP
(Rn) ∩ L2(Rn) ⊂ Hϕ,SP

(Rn) ∩ L2(Rn). This is just the conclusion
of Proposition 7.6.

Step 6. Hϕ,SP
(Rn) ∩ L2(Rn) ⊂ Hϕ,L(Rn) ∩ L2(Rn). This is directly deduced from

Theorem 7.2.
From Steps 1 though 6, we deduce that

Hϕ,L

(
R

n
) ∩ L2(

R
n
) = Hϕ,Nh

(
R

n
) ∩ L2(

R
n
) = Hϕ,Rh

(
R

n
) ∩ L2(

R
n
)

= Hϕ,RP

(
R

n
) ∩ L2(

R
n
) = Hϕ,NP

(
R

n
) ∩ L2(

R
n
)

= Hϕ,SP

(
R

n
) ∩ L2(

R
n
)

with equivalent quasi-norms, which, together with the fact that Hϕ,L(Rn) ∩ L2(Rn),
Hϕ,Nh

(Rn) ∩ L2(Rn), Hϕ,Rh
(Rn) ∩ L2(Rn), Hϕ,RP

(Rn) ∩ L2(Rn), Hϕ,NP
(Rn) ∩

L2(Rn) and Hϕ,SP
(Rn) ∩ L2(Rn) are, respectively, dense in Hϕ,L(Rn), Hϕ,Nh

(Rn),
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Hϕ,Rh
(Rn), Hϕ,RP

(Rn), Hϕ,NP
(Rn) and Hϕ,SP

(Rn), and a density argument, then
implies that the spaces Hϕ,L(Rn), Hϕ,Nh

(Rn), Hϕ,Rh
(Rn), Hϕ,RP

(Rn), Hϕ,NP
(Rn)

and Hϕ,SP
(Rn) coincide with equivalent quasi-norms, which completes the proof of

Theorem 7.4. �

Now we consider the boundedness of the Riesz transform ∇L−1/2 associated
with L. By the functional calculus of L, we know that, for all f ∈ L2(Rn),

∇L−1/2f = 1

2
√

π

∫ ∞

0
∇e−tLf

dt√
t
. (7.20)

It is well known that ∇L−1/2 is bounded on L2(Rn) (see, for example, [51, (8.20)]).
To establish the main results in this subsection about the boundedness of the Riesz
transform ∇L−1/2 on Hϕ,L(Rn), we need the following conclusion, which is just [51,
Lemma 8.5] (see also [57, Lemma 6.2]).

Lemma 7.10 There exist two positive constants C and c such that, for all closed sets
E and F in R

n and f ∈ L2(E),

∥
∥t∇e−t2Lf

∥
∥

L2(F )
≤ C exp

{

−[dist(E,F )]2

ct2

}

‖f ‖L2(E).

Theorem 7.11 Let ϕ and L be as in Theorem 7.2. Then the Riesz transform ∇L−1/2

is bounded from Hϕ,L(Rn) to Lϕ(Rn).

Proof First let f ∈ Hϕ,L(Rn)∩L2(Rn) and M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ]+ 1
2 , where

n, q(ϕ) and i(ϕ) are, respectively, as in (2.2), (2.12) and (2.11). Then there exist
p2 ∈ (0, i(ϕ)) and q0 ∈ (q(ϕ),∞) such that M > n

2 (
q0
p2

− 1
2 )+ 1

2 , ϕ is uniformly lower
type p2 and ϕ ∈ Aq0(R

n). Moreover, by Proposition 4.7, we know that there exist
{λj }j ⊂ C and a sequence {αj }j of (ϕ,M)-atoms such that f = ∑

j λjαj in L2(Rn)

and ‖f ‖Hϕ,L(Rn) ∼ ‖f ‖HM
ϕ,at(R

n), which, together with the L2(Rn)-boundedness of

∇L−1/2, implies that

∇L−1/2(f ) =
∑

j

λj∇L−1/2(αj ) (7.21)

in L2(Rn).
To finish the proof of Theorem 7.11, it suffices to show that, for any λ ∈ C and

(ϕ,M)-atom α supported in B := B(xB, rB),
∫

Rn

ϕ
(
x,∇L−1/2(α)(x)

)
dx � ϕ

(
B, |λ|‖χB‖−1

Lϕ(X )

)
. (7.22)

If (7.22) holds true, then it follows, from this and (7.21), that
∫

Rn

ϕ
(
x,∇L−1/2(f )(x)

)
dx �

∑

j

ϕ
(
Bj , |λj |‖χBj

‖−1
Lϕ(X )

)
,
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where, for each j , suppαj ⊂ Bj . By this and ‖f ‖Hϕ,L(Rn) ∼ ‖f ‖HM
ϕ,at(R

n), we con-

clude that ‖∇L−1/2(f )‖Lϕ(Rn) � ‖f ‖Hϕ,L(Rn), which, together with the fact that
Hϕ,L(Rn) ∩ L2(Rn) is dense in Hϕ,L(Rn) and a density argument, implies that
∇L−1/2 is bounded from Hϕ,L(Rn) to Lϕ(Rn).

Now we prove (7.22). By the definition of α, we know that there exists b ∈ D(LM)

such that α = LMb and (ii) and (iii) of Definition 4.3 hold true. First we see that

∫

Rn

ϕ
(
x,λ∇L−1/2(α)(x)

)
dx =

∞∑

j=0

∫

Uj (B)

ϕ
(
x,λ∇L−1/2(α)(x)

)
dx

=:
∞∑

j=0

Ij . (7.23)

From the assumption ϕ ∈ RH2/[2−I (ϕ)](Rn), Lemma 2.8(iv) and the definition
of I (ϕ), we infer that, there exists p1 ∈ [I (ϕ),1] such that ϕ is of uniformly up-
per type p1 and ϕ ∈ RH2/(2−p1)(R

n). When j ∈ {0, . . . ,4}, by the uniformly up-
per type p1 property of ϕ, Hölder’s inequality, the L2(Rn)-boundedness of ∇L−1/2,
ϕ ∈ RH2/(2−p1)(R

n) and Lemma 2.8(vii), we conclude that

Ij �
∫

Uj (B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

)(
1 + [|∇L−1/2(α)(x)|‖χB‖Lϕ(X )

]p1
)
dx

� ϕ
(
2jB, |λ|‖χB‖−1

Lϕ(Rn)

) + ‖χB‖p1
Lϕ(Rn)

∥
∥∇L−1/2(α)

∥
∥p1

L2(Rn)

×
{∫

2j B

[
ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

)] 2
2−p1 dx

} 2−p1
2

� ϕ
(
2jB, |λ|‖χB‖−1

Lϕ(Rn)

)
� ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (7.24)

When j ∈ N with j ≥ 5, from the uniformly upper type p1 and the lower type p2
properties of ϕ, it follows that

Ij � ‖χB‖p1
Lϕ(Rn)

∫

Uj (B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

)∣
∣∇L−1/2(α)(x)

∣
∣p1 dx

+ ‖χB‖p2
Lϕ(Rn)

∫

Uj (B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

)∣
∣∇L−1/2(α)(x)

∣
∣p2 dx

=: Ej + Fj . (7.25)

To deal with Ej and Fj , we first estimate
∫
Uj (B)

|∇L−1/2(α)(x)|2 dx. By (7.20),
the change of variables and Minkowski’s inequality, we see that, for each j ∈ N with
j ≥ 5,

∫

Uj (B)

∣
∣∇L−1/2(α)(x)

∣
∣2

dx �
∫ ∞

0

{∫

Uj (B)

∣
∣∇e−t2Lα(x)

∣
∣2

dx

}1/2

dt
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∼
∫ rB

0

{∫

Uj (B)

∣
∣t∇e−t2Lα(x)

∣
∣2

dx

}1/2
dt

t

+
∫ ∞

rB

{∫

Uj (B)

∣
∣t∇(

t2L
)M

e−t2Lb(x)
∣
∣2

dx

}1/2
dt

t2M+1

=: Hj,1 + Hj,2. (7.26)

We first estimate Hj,1. From Lemma 7.10, we infer that

Hj,1 �
∫ rB

0
exp

{

− (2j rB)2

ct2

}

‖α‖L2(B)

dt

t

�
{∫ rB

0

t2M−1

(2j rB)2M−1

dt

t

}

‖α‖L2(B) ∼ 2−(2M−1)j‖α‖L2(B)

� 2−(2M−1)j |B|1/2‖χB‖−1
Lϕ(Rn)

. (7.27)

For Hj,2, by Lemma 7.10, we see that

Hj,2 �
∫ ∞

rB

exp

{

− (2j rB)2

ct2

}

‖b‖L2(B)

dt

t2M+1

�
∫ ∞

rB

t (2M−1)

(2j rB)(2M−1)

dt

t2M+1
‖b‖L2(B) � 2−(2M−1)j |B|1/2‖χB‖−1

Lϕ(Rn)
,

which, together with (7.26) and (7.27), implies that, for all j ∈ N with j ≥ 5,

{∫

Uj (B)

∣
∣∇L−1/2(α)(x)

∣
∣2

dx

}1/2

� 2−(2M−1)j |B|1/2‖χB‖−1
Lϕ(Rn)

. (7.28)

Thus, from Hölder’s inequality, (7.28) and ϕ ∈ RH2/(2−p1)(R
n) ⊂ RH2/(2−p2)(R

n),
similar to the proof of (6.8), we infer that

Ej � 2
−jp1[(2M−1+ n

2 )− nq0
p1

]
ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (7.29)

Similarly, by using Hölder’s inequality, (7.28) and ϕ ∈ RH2/(2−p2)(R
n), we see

that

Fj � 2
−jp2[(2M−1+ n

2 )− nq0
p2

]
ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,

which, together with (7.25), (7.29) and p1 ≥ p2, implies that, for each j ∈ N with
j ≥ 5,

Ij � 2
−jp2[(2M−1+ n

2 )− nq0
p2

]
ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

From this, M > n
2 (

q0
p2

− 1
2 ) + 1

2 , (7.23) and (7.24), we infer that (7.22) holds true,
which completes the proof of Theorem 7.11. �

Now we recall the definition of the Musielak–Orlicz–Hardy space Hϕ(Rn) intro-
duced by Ky [63].
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Definition 7.12 Let ϕ be as in Definition 2.4. The Musielak–Orlicz–Hardy space
Hϕ(Rn) is the space of all distributions f ∈ S ′(Rn) such that G(f ) ∈ Lϕ(Rn) with
the quasi-norm ‖f ‖Hϕ(Rn) := ‖G(f )‖Lϕ(Rn), where S ′(Rn) and G(f ) denote, respec-
tively, the dual space of the Schwartz functions space (namely, the space of tempered
distributions) and the grand maximal function of f .

To state the atomic characterization of Hϕ(Rn) established by Ky, we recall the
notion of atoms introduced by Ky [63].

Definition 7.13 Let ϕ be as in Definition 2.4.

(I) For each ball B ⊂ R
n, the space L

q
ϕ(B) with q ∈ [1,∞] is defined to be the set

of all measurable functions f on R
n supported in B such that

‖f ‖L
q
ϕ(B) :=

{
supt∈(0,∞)[ 1

ϕ(B,t)

∫
Rn |f (x)|qϕ(x, t) dx]1/q < ∞, q ∈ [1,∞),

‖f ‖L∞(B) < ∞, q = ∞.

(II) A triplet (ϕ, q, s) is said to be admissible, if q ∈ (q(ϕ),∞] and s ∈ Z+ satisfies
s ≥ 
n[ q(ϕ)

i(ϕ)
− 1]�. A measurable function a on R

n is called a (ϕ, q, s)-atom if
there exists a ball B ⊂ R

n such that
(i) suppa ⊂ B;

(ii) ‖a‖L
q
ϕ(B) ≤ ‖χB‖−1

Lϕ(Rn)
;

(iii)
∫

Rn a(x)xα dx = 0 for all α ∈ Z
n+ with |α| ≤ s.

(III) The atomic Musielak–Orlicz–Hardy space, Hϕ,q,s(Rn), is defined to be
the set of all f ∈ S ′(Rn) satisfying that f = ∑

j bj in S ′(Rn), where
{bj }j is a sequence of multiples of (ϕ, q, s)-atoms with suppbj ⊂ Bj and∑

j ϕ(Bj ,‖bj‖L
q
ϕ(Bj )) < ∞. Moreover, letting

Λq

({bj }j
) := inf

{

λ ∈ (0,∞) :
∑

j

ϕ

(

Bj ,
‖bj‖L

q
ϕ(Bj )

λ

)

≤ 1

}

,

the quasi-norm of f ∈ Hϕ,q,s(Rn) is defined by

‖f ‖Hϕ,q,s (Rn) := inf
{
Λq

({bj }j
)}

,

where the infimum is taken over all the decompositions of f as above.

To establish the boundedness of ∇L−1/2 from Hϕ,L(Rn) to Hϕ(Rn), we need the
atomic characterization of the space Hϕ(Rn) obtained by Ky [63].

Lemma 7.14 Let ϕ be as in Definition 2.4 and (ϕ, q, s) admissible. Then Hϕ(Rn) =
Hϕ,q,s(Rn) with equivalent quasi-norms.

Now we prove that the Riesz transform ∇L−1/2 is bounded from Hϕ,L(Rn) to
Hϕ(Rn) by using Proposition 4.7 and Lemma 7.14.
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Theorem 7.15 Let ϕ be as in Definition 2.4 with i(ϕ) ∈ ( n
n+1 ,1], L as in (7.1),

q(ϕ) and r(ϕ) as in (2.12) and (2.13), respectively. Assume that q(ϕ) <
(n+1)i(ϕ)

n

and r(ϕ) > 2
2−q(ϕ)

. Then the Riesz transform ∇L−1/2 is bounded from Hϕ,L(Rn) to
Hϕ(Rn).

Proof Let f ∈ Hϕ,L(Rn) ∩ L2(Rn) and M ∈ N with M > n
2 [ q(ϕ)

i(ϕ)
− 1

2 ]. Then there

exist p2 ∈ (0, i(ϕ)) and q0 ∈ (q(ϕ),∞) such that M > n
2 (

q0
p2

− 1
2 ), ϕ is uniformly

lower type p2 and ϕ ∈ Aq0(R
n). Moreover, by Proposition 4.7, we know that there

exist {λj }j ⊂ C and a sequence {αj }j of (ϕ,M)-atoms such that f = ∑
j λjαj in

L2(Rn) and ‖f ‖Hϕ,L(Rn) ∼ ‖f ‖HM
ϕ,at(R

n). Moreover, we know that (7.21) also holds

true in this case.
Let α be a (ϕ,M)-atom with suppα ⊂ B := B(xB, rB). For k ∈ Z+, let

χk := χUk(B), χ̃k := |Uk(B)|−1χk , mk := ∫
Uk(B)

∇L−1/2(α)(x) dx and Mk :=
∇L−1/2(α)χk − mkχ̃k . Then we have

∇L−1/2(α) =
∞∑

k=0

Mk +
∞∑

k=0

mkχ̃k. (7.30)

For j ∈ Z+, let Nj := ∑∞
k=j mk . By an argument similar to that used in the proof of

[57, Theorem 6.3], we know that
∫

Rn α(x) dx = 0, which, together with (7.30), yields
that

∇L−1/2(α) =
∞∑

k=0

Mk +
∞∑

k=0

Nk+1(χ̃k+1 − χ̃k). (7.31)

Obviously, for all k ∈ Z+,

suppMk ⊂ 2k+1B and
∫

Rn

Mk(x) dx = 0. (7.32)

When k ∈ {0, . . . ,4}, by Hölder’s inequality and the L2(Rn)-boundedness of
∇L−1/2, we conclude that

‖Mk‖L2(Rn) ≤
{∫

Uk(B)

|∇L−1/2α(x)|2 dx

}1/2

+
{∫

Uk(B)

|mkχ̃k(x)|2 dx

}1/2

� ‖α‖L2(Rn) + |mk||Uk(B)|−1/2

� ‖α‖L2(Rn) � |B|1/2‖χB‖−1
Lϕ(Rn)

. (7.33)

From the Davies–Gaffney estimates (2.5) and the H∞-functional calculi for L,
similar to the proof of [52, Theorem 3.4], it follows that there exists K ∈ N with
K > n/4 such that, for all t ∈ (0,∞), closed sets E,F in R

n with dist(E,F ) > 0
and g ∈ L2(Rn) with suppg ⊂ E,

∥
∥∇L−1/2(I − e−tL

)K
g
∥
∥

L2(F )
�

(
t

[dist(E,F )]2

)K

‖g‖L2(E)
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and

∥
∥∇L−1/2(tLe−tL

)K
g
∥
∥

L2(F )
�

(
t

[dist(E,F )]2

)K

‖g‖L2(E).

By this, we conclude that, when k ∈ N with k ≥ 5,

∥
∥∇L−1/2α

∥
∥

L2(Uk(B))
�

∥
∥∇L−1/2(I − e−r2

BL
)M

α
∥
∥

L2(Uk(B))

+
M∑

k=1

∥
∥∇L−1/2(r2

BLe− k
M

r2
BL

)M
r−2M
B b

∥
∥

L2(Uk(B))

� 2−2kM |B|1/2‖χB‖−1
Lϕ(Rn)

, (7.34)

which, together with Hölder’s inequality, implies that, when k ∈ N with k ≥ 5,

‖Mk‖L2(Rn) �
∥
∥∇L−1/2α

∥
∥

L2(Uk(B))
� 2−2kM |B|1/2‖χB‖−1

Lϕ(Rn)
. (7.35)

Furthermore, by q(ϕ) < 2 and r(ϕ) > 2/[2 − q(ϕ)], we know that there exists q ∈
(q(ϕ),2) such that ϕ ∈ Aq(Rn) and RH2/(2−q)(R

n). From this, Hölder’s inequality,
(7.33) and (7.35), it follows that, for all k ∈ Z+ and t ∈ (0,∞),

[
ϕ
(
2k+1B, t

)]−1
∫

2k+1B

|Mk(x)|qϕ(x, t) dx

≤ [
ϕ
(
2k+1B, t

)]−1
{∫

2k+1B

|Mk(x)|2 dx

} q
2
{∫

2k+1B

[
ϕ(x, t)

] 2
2−q dx

} 2−q
2

� 2−2qkM |B| q
2 ‖χB‖−q

Lϕ(Rn)
|2k+1B|− q

2 , (7.36)

which implies that

‖Mk‖L
q
ϕ(2k+1B) � 2−(2M+ n

2 )k‖χB‖−1
Lϕ(B). (7.37)

Then by (7.37) and (7.32), we conclude that, for each k ∈ Z+, Mk is a multiple of a
(ϕ, q,0)-atom. Moreover, from (7.35), it follows that

∑∞
k=0 Mk converges in L2(Rn).

Now we estimate ‖Nk+1(χ̃k+1 − χ̃k)‖L2(Rn) with k ∈ Z+. By Hölder’s inequality
and (7.34), we see that

∥
∥Nk+1(χ̃k+1 − χ̃k)

∥
∥

L2(Rn)
� |Nk+1||2kB|− 1

2 �
∞∑

j=k+1

|mj+1||2kB|− 1
2

�
∞∑

j=k+1

|2kB|− 1
2 |2jB| 1

2 ‖∇L−1/2α‖L2(Uj (B))

� 2−2kM |B| 1
2 ‖χB‖−1

Lϕ(Rn)
. (7.38)
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From this and Hölder’s inequality, similar to the proof of (7.37), we deduce that, for
all k ∈ Z+,

∥
∥Nk+1(χ̃k+1 − χ̃k)

∥
∥

L
q
ϕ(2k+1B)

� 2−(2M+ n
2 )k‖χB‖−1

Lϕ(B), (7.39)

which, together with
∫

Rn(χ̃k+1(x) − χ̃k(x)) dx = 0 and supp(χ̃k+1 − χ̃k) ⊂ 2k+1B ,
implies that, for each k ∈ Z+, Nk+1(χ̃k+1 − χ̃k) is a multiple of a (ϕ, q,0)-atom.
Moreover, by (7.38), we see that

∑∞
k=0 Nk+1(χ̃k+1 − χ̃k) converges in L2(Rn).

Thus, (7.31) is an atomic decomposition of ∇L−1/2α and, further by (7.37), (7.39),
the uniformly lower type p2 property of ϕ and M > n

2 (
q0
p2

− 1
2 ), we know that

∑

k∈Z+
ϕ
(
2k+1B,‖Mk‖L

q
ϕ(2k+1B)

) +
∑

k∈Z+
ϕ
(
2k+1B,‖Nk+1(χ̃k+1 − χ̃k)‖L

q
ϕ(2k+1B)

)

�
∑

k∈Z+
ϕ
(
2k+1B,2−(2M+ n

2 )k‖χB‖−1
Lϕ(Rn)

)

�
∑

k∈Z+
2−(2M+ n

2 )p22knq0 � 1. (7.40)

Replacing α by αj , consequently, we then denote Mk , Nk and χ̃k in (7.31), re-
spectively, by Mj,k , Nj,k and χ̃j,k . Similar to (7.31), we know that

∇L−1/2f =
∑

j

∞∑

k=0

λjMj,k +
∑

j

∞∑

k=0

λjNj,k+1(χ̃j,k+1 − χ̃j,k),

where, for each j and k, Mj,k and Nj,k+1(χ̃j,k+1 − χ̃j,k) are multiples of (ϕ, q,0)-
atoms and both summations hold true in L2(Rn), and hence in S ′(Rn). Moreover,
from (7.40) with B , Mk , Nk+1(χ̃k+1 − χ̃k) replaced by Bj , Mj,k , Nj,k+1(χ̃j,k+1 −
χ̃j,k), respectively, we deduce that

Λq

({Mj,k}j,k
) + Λq

({
Nj,k+1(χ̃j,k+1 − χ̃j,k)

}
j,k

)
� Λ

({λjαj }j
)
� ‖f ‖Hϕ,L(Rn).

From this and Lemma 7.14, we deduce that ‖∇L−1/2f ‖Hϕ(Rn) � ‖f ‖Hϕ,L(Rn),
which, together with the fact that Hϕ,L(Rn) ∩ L2(Rn) is dense in Hϕ,L(Rn) and a
density argument, implies that ∇L−1/2 is bounded from Hϕ,L(Rn) to Hϕ(Rn). This
finishes the proof of Theorem 7.15. �

Remark 7.16 (i) Theorem 7.15 completely covers [51, Theorem 8.6] by taking
ϕ(x, t) := t for all x ∈ R

n and t ∈ [0,∞).
(ii) Theorem 7.11 completely covers [57, Theorem 6.2] by taking ϕ as in (1.2)

with ω ≡ 1 and Φ concave, and Theorem 7.15 completely covers [57, Theorem 6.3]
by taking ϕ as in (1.2) with ω ≡ 1, Φ concave and pΦ ∈ ( n

n+1 ,1], where pΦ is as in
(2.8).
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