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Abstract Let X be a metric space with doubling measure and L a nonnega-
tive self-adjoint operator in L?(X) satisfying the Davies—Gaffney estimates. Let
¢ X x[0,00) — [0,00) be a function such that ¢(x,-) is an Orlicz function,
©(-, 1) € Ay (X) (the class of uniformly Muckenhoupt weights), its uniformly critical
upper type index I (¢) € (0, 1], and it satisfies the uniformly reverse Holder inequal-
ity of order 2/[2 — I (¢)]. In this paper, the authors introduce a Musielak—Orlicz—
Hardy space Hy 1 (X), by the Lusin area function associated with the heat semigroup
generated by L, and a Musielak—Orlicz BMO-type space BMO,, 1 (X'), which is fur-
ther proved to be the dual space of Hy, ;. (X) and hence whose ¢-Carleson measure
characterization is deduced. Characterizations of Hy, 1 (X), including the atom, the
molecule, and the Lusin area function associated with the Poisson semigroup of L,
are presented. Using the atomic characterization, the authors characterize Hy 1 (X) in
terms of the Littlewood—Paley g} -function gj{’ ;. and establish a Hérmander-type spec-
tral multiplier theorem for L on H, ; (X'). Moreover, for the Musielak—Orlicz-Hardy
space Hy 1 (R") associated with the Schrodinger operator L := —A + V, where
0<Ve LI]OC (R™), the authors obtain its several equivalent characterizations in terms
of the non-tangential maximal function, the radial maximal function, the atom, and
the molecule; finally, the authors show that the Riesz transform VL2 is bounded
from Hy, ; (R") to the Musielak—Orlicz space L?(IR") when i(¢) € (0, 1], and from
H, 1 (R") to the Musielak—Orlicz—Hardy space H, (R") when i (@) € ( 1], where
i (@) denotes the uniformly critical lower type index of ¢.
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1 Introduction

The real-variable theory of Hardy spaces on the n-dimensional Euclidean space R",
initiated by Stein and Weiss [88], plays an important role in various fields of analysis
(see, for example, [41, 72, 83, 87]). It is well known that the Hardy space H” (R")
when p € (0, 1] is a suitable substitute of the Lebesgue space L?”(R"); for exam-
ple, the classical Riesz transform is bounded on H”(R"), but not on L?(R") when
p € (0, 1]. Moreover, the practicability of H” (R") with p € (0, 1], as a substitute for
LP(R") with p € (0, 1], comes from its several equivalent real-variable characteriza-
tions, which were originally motivated by Fefferman and Stein in their seminal paper
[41]. Among these characterizations, a very important and useful characterization of
the Hardy spaces H” (R") is their atomic characterizations, which were obtained by
Coifman [22] when n = 1 and Latter [67] when n > 1. Moreover, a direct extension
of the atomic characterization of the Hardy spaces is the molecular characterization
established by Taibleson and Weiss [91].

On the other hand, as a natural generalization of L?(R"), the Orlicz space was
introduced by Birnbaum—Orlicz in [9] and Orlicz in [77], which has extensive appli-
cations in several branches of mathematics (see, for example, [5, 48, 55, 71, 79, 80]
for more details). Moreover, the Orlicz-Hardy space, introduced and studied in [56,
89, 92], is also a suitable substitute of the Orlicz space in the study of the bound-
edness of operators (see, for example, [56-58, 60, 89, 92]). Furthermore, weighted
local Orlicz—Hardy spaces and their dual spaces were also studied in [94]. All the-
ories of these function spaces are intimately connected with the Laplace operator

a2
A=3T1 ade on R".

Recall that the classical BMO space (the space of functions with bounded mean
oscillation) was originally introduced by John and Nirenberg [61] to solve some prob-
lems in partial differential equations. Since Fefferman and Stein [41] proved that
BMO(R") is the dual space of H'!(R"), the space BMO(R”") plays an important role
in not only partial differential equations but also harmonic analysis (see, for example,
[35, 41] for more details). Moreover, the generalized space BMO,(R") was intro-
duced and studied in [47, 56, 89, 92] and it was proved therein to be the dual space
of the Orlicz—Hardy space Hgp (R"), where @ denotes the Orlicz function on (0, 00)
and p(z) := ! /cb*‘ (t’l) for all ¢t € (0, 00). Here and in what follows, @~ denotes
the inverse function of @.

Recently, Ky [63] introduced a new Musielak—Orlicz-Hardy space, H,(R"), via
the grand maximal function, which contains both the Orlicz—Hardy space in [56, 89]
and the weighted Hardy space HJ (R") with w € Ao (R") in [44, 90] as the special
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cases. Here, ¢ : R" x [0, 00) — [0, 00) is a function such that ¢(x, -) is an Orlicz
function of uniformly upper type 1 and lower type p for some p € (0, 1] (see Sect. 2
below for the definitions of uniformly upper or lower types), and ¢(-, t) is a Muck-
enhoupt weight, and A, (R") with g € [1, co] denotes the class of Muckenhoupt’s
weights (see, for example, [43, 44, 46] for their definitions and properties). Moreover,
the Musielak—Orlicz BMO-type space BMO,, (R") was also introduced and further
proved to be the dual space of H,(IR") in [63] by using the atomic characterization of
H,(R") established in [63]. Furthermore, some interesting applications of the spaces
H,(R") and BMO, (R") were given in [11, 13, 14, 63-66]. Moreover, the radial and
the non-tangential maximal functions characterizations, the Littlewood—Paley func-
tion characterization and the molecular characterization of Hy,(R") were obtained in
[54, 69]. As an application of the Lusin area function characterization of H,(IR"),
the ¢-Carleson measure characterization of the space BMO, (R") was obtained in
[54]. Furthermore, the local Musielak—Orlicz—Hardy space and its dual space were
studied in [97]. It is worth pointing out that Musielak—Orlicz functions are the natu-
ral generalization of Orlicz functions (see, for example, [31, 32, 63, 73, 76]) and the
motivation to study function spaces of Musielak—Orlicz type is attributed to their ex-
tensive applications to many branches of physics and mathematics (see, for example,
[11-14, 31, 32, 63, 64, 68] for more details).

In recent years, the study of function spaces associated with different operators
inspired great interests (see, for example, [6-8, 35-37, 51-53, 57-60, 86, 93] and
their references). More precisely, Auscher, Duong, and Mclntosh [6] initially studied
the Hardy space H L] (R™) associated with the operator L whose heat kernel satisfies
a pointwise Poisson upper bound estimate. Based on this, Duong and Yan [36, 37]
introduced the BMO-type space BMOp (R") associated with L and proved that the
dual space of H Ll (R™) is just BMOp*(R"), where L* denotes the adjoint operator of
L in L>(R™). Moreover, Yan [93] further generalized these results to the Hardy space
H f (R™) with p € (0, 1] close to 1 and its dual space. Also, the Orlicz-Hardy space
and its dual space associated with such an L were studied in [60].

Moreover, Hofmann and Mayboroda [52] and Hofmann et al. [53] introduced the
Hardy and Sobolev spaces associated with a second-order divergence form elliptic
operator L on R" with bounded measurable complex coefficients and these operators
may not have the pointwise heat kernel bounds, and further established several equiv-
alent characterizations for these spaces and studied their dual spaces. Meanwhile, the
Orlicz—Hardy space and its dual space associated with L were independently studied
in [58]. Furthermore, Orlicz—Hardy spaces associated with a second-order divergence
form elliptic operator on the strongly Lipschitz domain of R were studied in [95, 96].
It is worth pointing out that the strongly Lipschitz domain of R" is a special space
of homogeneous type in the sense of Coifman and Weiss [25]. Recall that the Hardy
spaces on strongly Lipschitz domains associated with the Laplace operator having
some boundary conditions were originally and systematically studied by Chang et al.
in [16—-19] and Auscher et al. [8].

On the other hand, the Hardy space associated with the Schrédinger operator
—A 4+ V was studied in [39, 40], where the nonnegative potential V satisfies the
reverse Holder inequality (see, for example, [44, 46] for the definition of the reverse
Holder inequality). More generally, for nonnegative self-adjoint operators L satis-
fying the Davies—Gaffney estimates, Hofmann et al. [51] studied the Hardy space
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H Ll (X) associated with L and its dual space on a metric measure space X', which
was extended to the Orlicz—Hardy space in [57]. As a special case of this setting, sev-
eral equivalent characterizations and some applications of the Hardy space H Ll ®R™)
and the Orlicz—-Hardy space Hg 1 (R") associated with the Schrodinger operator
L := — A+ V were, respectively, obtained in [51] and [57], where 0 < V € LlloC (R™).
Moreover, Song and Yan [86] studied the weighted Hardy space H alj 1 (R") asso-
ciated with the Schrodinger operator L, where w € Aj(R"). Very recently, some
special Musielak—Orlicz—Hardy spaces associated with the Schrodinger operator
L :=—A + V on R", where the nonnegative potential V satisfies the reverse Holder
inequality of order n/2, were studied by Ky [65, 66] and further applied to the study
of commutators of singular integral operators associated with the operator L.

Let X' be a metric measure space, L a nonnegative self-adjoint operator on L2(X)
satisfying the Davies—Gaffney estimates, and E()) the spectral resolution of L. For
any bounded Borel function m : [0, oo) — C, by using the spectral theorem, it is well
known that the operator

m(L) = /oom(x)dE()\) (1.1)
0

is well defined and bounded on L2(X). It is an interesting problem to find some suf-
ficient conditions on m and L such that m (L) in (1.1) is bounded on various function
spaces on X', which was extensively studied (see, for example, [2, 3, 10, 21, 30, 33,
34, 38, 50, 78] and their references). Specially, Duong and Yan [38] proved that m (L)
is bounded on the Hardy space H f (X), with p € (0, 00), associated with L when X
is a metric space with doubling measure and the function m satisfies a Hormander-
type condition.

Throughout the whole paper, let X be a metric space with doubling measure u
and L a nonnegative self-adjoint operator in L*(X) satisfying the Davies—Gaffney
estimates. Let ¢ : X x [0, 00) — [0, 00) be a growth function as in Definition 2.4
below, which means that ¢ (x, -) is an Orlicz function (see Sect. 2.3 below), ¢(-,?) €
A (X) (the class of uniformly Muckenhoupt weights in Definition 2.3 below), and
its uniformly critical upper type index I (¢) € (0, 1] (see (2.10) below). Moreover,
we always assume that ¢ € RH/[2—1()1(X) (see Definition 2.3 below). A typical
example of such a ¢ is

o(x, 1) = w(x)P (1) (1.2)

for all x € X and t € [0, 00), where w € Axo (X) (the class of Muckenhoupt weights)
and @ is an Orlicz function on [0, oo) of upper type p; € (0, 1] and lower type p; €
(0, 1] (see (2.9) below for the definition of types). Let xo € X. Another typical and
useful example of the growth function ¢ is

tC\l
[In(e 4+ d(x, x0))]? + [In(e +1)]”

P(x, 1) = (1.3)

forallx € X and ¢ € [0, oo) withsome & € (0, 1], 8 € [0,n) and y € [0, 2a(1 +1n2)]
(see Sect. 2.3 for more details). It is worth pointing out that such a function ¢ naturally
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appears in the study of the pointwise multiplier characterization for the BMO-type
space on the metric space with doubling measure (see [74]).

Motivated by [38, 51, 57, 63], in this paper, we study the Musielak—Orlicz—Hardy
space Hy 1 (X) and its dual space. More precisely, for all f € L*(X) and x € X,
define

(1.4)

2du(y)de |'?
Vix, )t

SL(f)(x):= { / 2Le™ L £(y)]
I'(x)

Here and in what follows, I'(x) := {(y,t) € X x (0,00) : d(x,y) <}, d denotes
the metric on X, B(x,t) :={y € X : d(x,y) <t}, u denotes the nonnegative Borel
regular measure on X and V (x, t) := w(B(x, t)). The Musielak—Orlicz—Hardy space
Hy 1 (X) is then defined to be the completion of the set {f € H*(X): Si(f) e
L?(X)} with respect to the quasi-norm

I f e, L) = 1SL(H) o)
= inf{)» € (0,00): / go(x, M) du(x) < 1},
X A

where H2(X) := R(L) and R(L) denotes the closure of the range of L in L2(X).

In this paper, we first establish the atomic decomposition of Hy  (X) and further
obtain its molecular decomposition. Using the atomic and the molecular decomposi-
tions of Hy 1 (X), we then prove that its dual space is the Musielak—Orlicz BMO-type
space BMO,, 1 (X), which is characterized by the ¢-Carleson measure, and further
establish the atomic and the molecular characterizations of Hy 1 (X'). We also obtain
another characterization of Hy, 1 (X) via the Lusin area function associated with the
Poisson semigroup of L. As applications, by using the atomic characterization, we
prove that Littlewood—Paley functions g; and gi" ; are bounded from H, 1 (&) to
the Musielak—Orlicz space L?(X); as a corollary, we characterize Hy ; (X) in terms
of the Littlewood-Paley gi-function g ;. We further establish a Hormander-type
spectral multiplier theorem for L on Hy ; (X) by using the atomic and the molecular
characterizations of Hy 1 (X). As further applications, we obtain several equivalent
characterizations of the Musielak—Orlicz-Hardy space H, ; (R") associated with the
Schrodinger operator L := —A + V,where0 <V € LllOc (R™), in terms of the Lusin-
area function, the non-tangential maximal function, the radial maximal function, the
atom, and the molecule. Finally, we show that the Riesz transform VL~ 1/2 is bounded
from Hy, ; (R") to L?(R") when i(¢) € (0, 1] and from H, ; (R") to the Musielak—
Orlicz-Hardy space H,(IR") when i(¢) € (n"?, 1], where i (¢) denotes the uniformly
critical lower type index of ¢ (see (2.11) below).

The key step of the above approach is to establish the atomic (molecular) char-
acterization of the Musielak-Orlicz-Hardy space H,, 1 (X). To this end, we inherit
a method used in [7, 57, 58]. We first establish the atomic decomposition of the
Musielak—Orlicz tent space T, (X x (0, 00)) associated with ¢, whose proof implies
that if f € Ty(X x (0,00)) N T22(X x (0, 00)), then the atomic decomposition of f
holds true in both T, (X x (0, 00)) and T22(X x (0, 00)). We point out that in this
paper, by the assumptions on L, we only know that the Lusin area function S; as
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in (1.4) is bounded on L?(X) (see (2.7) below). To prove that the atomic decom-
position of f € T,(X x (0,00)) N T22(X x (0, o0)) holds true in T22(X x (0, o))
(see Corollary 3.5 below), we need the additional assumption that ¢(-,t) for all
t € [0, 00) belongs to the uniformly reverse Holder class RHy /12— /()] (). Then by
the fact that the operator mwy 1 in (4.2) below is bounded from T22(X x (0, 00)) to
L?(X), we further obtain the L?(X)-convergence of the corresponding atomic de-
composition for functions in Hy 1 (X)N L?(X), since for all f € Hy 1 (X)N L2(X),
2Le "L f ¢ T3 (X x (0,00)) N T, (X x (0, 00)). This technique plays a fundamental
role in the whole paper.

We remark that the method used to obtain the atomic characterization of the
Musielak—Orlicz—Hardy space H, 1 (X)) in this paper is different from that in [86],
but more close to the method in [15, 54, 57]. More precisely, in [86], the atomic char-
acterization of the weighted Hardy space H Ll (R™), associated with the Schrodinger
operator L, was established by using the Calderén reproducing formula associated
with L and a subtle decomposition of all dyadic cubes in R". However, in this paper,
we establish the atomic characterization of Hy ; (X') by using the Calderén reproduc-
ing formula associated with L (see (4.14) below), the atomic decomposition of the
Musielak—Orlicz tent space established in Theorem 3.1 below and some boundedness
(see Proposition 4.6 below) of the operator wy, 1 defined in (4.2) below. Moreover, we
also point out that the notion of atoms in our atomic decomposition of the Musielak—
Orlicz tent space is different from that in [15]. Since the weight also appears in the
norm of atoms used by Bui and Duong [15] when establishing the atomic decompo-
sition of elements in the weighted tent space, Bui and Duong [15] had to require the
weight w € A1(X) N RH3;2—;)(X) in order to obtain the atomic decomposition of
the weighted Hardy space H 5, 1 (X) with p € (0, 1] (see the proof of [15, Proposi-
tion 3.9] for the details). Instead of this, we do not use the weight in the norm of our
T, (X x (0, 00))-atoms. Due to this subtle choice, we are able to relax the require-
ments on the growth function into ¢ € Aso (X)) NRHy/[2—1(p)](X), which essentially
improves the results of Bui and Duong [15] even when ¢ is as in (1.2).

Another important estimate, appeared in the approach of this paper, is that there
exists a positive constant C such that, for any A € C and (¢, M)-atom « adapted to
the ball B (or any (¢, M, €)-molecule « adapted to the ball B),

fX ¢(x, SL(G@)(x)) dp(x) < Co(B, IMIx8lI 4 )); (1.5)

see Definitions 4.3 and 4.4 below for the notions of (¢, M)-atoms and (¢, M, €)-
molecules. A main difficulty to prove (1.5) is how to take S7 (Ax)(x) out of the posi-
tion of the time variable of ¢. In [57, 58], to obtain (1.5) when ¢ is as in (1.2) with
w = 1, it was assumed that @ is a concave Orlicz function on (0, co). In this case,
Jensen’s inequality does the job. In the present setting, the spatial variable and the
time variable of ¢ are combinative, so Jensen’s inequality does not work even when
@ is concave about the time variable. To overcome this difficulty, we subtly use the
properties of ¢ which are the uniformly upper p; € (0, 1] and lower type p> € (0, 1]
(see the proof of (4.5) below).

Precisely, this paper is organized as follows. In Sect. 2, we first recall some notions
and notation on metric measure spaces and then describe some basic assumptions on
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the operator L studied in this paper. We also recall some notation, some examples
and some basic properties concerning growth functions considered in this paper.

In Sect. 3, we first recall some notions about tent spaces and then study the
Musielak—Orlicz tent space Ty, (X x (0, 00)) associated with growth function ¢. The
main target of this section is to establish the atomic characterization for T, (X x
(0, 00)) (see Theorem 3.1 below). Assume further that ¢ € RHp/p—j)(X). As a
byproduct, we know that if f € Ty, (X x (0, 00)) N TQZ(X x (0, 00)), then the atomic
decomposition of f holds true in both 7, (X" x (0, 00)) and T22(X x (0, 00)), which
plays an important role in the remainder of this paper (see Corollary 3.5 below). We
point out that Theorem 3.1 and Corollary 3.5 completely cover [57, Theorem 3.1 and
Corollary 3.1] by taking ¢ as in (1.2) with w = 1 and @ concave.

In Sect. 4, we first introduce the Musielak—Orlicz-Hardy space H, ; (&) and
prove that the operator mwy 1 in (4.2) below maps the Musielak—Orlicz tent space
T, (X x (0,00)) continuously into Hy 1 (X) (see Proposition 4.6 below). By this
and the atomic decomposition of T, (X x (0,00)), we conclude that, for each
f € Hy 1 (X), there exists an atomic decomposition of f holding true in Hy (X))
(see Corollary 4.8 below). We should point out that to obtain the atomic decomposi-
tion of Hy 1 (X), we borrow some ideas from [51, 57], and the estimate (1.5) is very
important for this procedure. Via this atomic decomposition of Hy 1 (X)), we further
prove that the dual space of H, 1 (X) is just the Musielak—Orlicz BMO-type space
BMOy, 1 (X) (see Theorem 4.16 below). As an application of this duality, we estab-
lish the ¢-Carleson measure characterization of the space BMO,, 1 (X) (see Theorem
4.19 below).

We remark that when ¢ is as in (1.2) with w = 1 and @ concave, the Musielak—
Orlicz-Hardy space H,,  (X) and the Musielak—Orlicz BMO-type space BMO,, 1 (X))
are the Orlicz-Hardy space Hg 1 (X) and the BMO-type space BMO, 1 (X) intro-
duced in [57] respectively.

In Sect. 5, by Proposition 4.9 and Theorem 4.16, we establish the equivalence
between Hy 1 (X) and the atomic (resp., molecular) Musielak—Orlicz—Hardy space

H(%n()( ) (resp., H (ZI r}fol(X )) (see Theorem 5.5 below). We notice that the series in

H(gf[at()() (resp., H(%’Tfol()()) is required to converge in the norm of (BMO,, ;1 (X))*,
where (BMO,, 1 (X))* denotes the dual space of BMO,, ; (X'); while in Corollary 4.8
below, the atomic decomposition holds true in Hy ; (X). Applying its atomic char-
acterization, we further characterize the Hardy space Hy 1 (X') in terms of the Lusin
area function associated with the Poisson semigroup of L (see Theorem 5.7 below).
Observe that Theorems 5.5 and 5.7 completely cover [57, Theorems 5.1 and 5.2] by
taking ¢ as in (1.2) with @ = 1 and @ concave.

In Sect. 6, we give some applications of the Musielak—Orlicz—Hardy space
Hy 1 (X) to the boundedness of operators. More precisely, in Sect. 6.1, we prove
that the Littlewood—Paley g-function g is bounded from Hy 1 (X) to the Musielak—
Orlicz space L¥(X) (see Theorem 6.3 below); in Sect. 6.2, we show that the gi-
function g;‘, 1. is bounded from Hy 1 (X) to L?(X) (see Theorem 6.7 below). As a
corollary, we characterize Hy, 1 (X) in terms of the g5-function g} ; (see Corollary
6.9 below). Observe that when X :=R" and L := —A, g;f,L is just the classical
Littlewood—Paley g;-function. Moreover, the range of A in Theorem 6.7 coincides
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with the corresponding result on the classical Littlewood—Paley g} -function on R”
in the case that ¢ is as in (1.2) with that € A;(R"), g € [1,00), and D (¢) :=1”
for all t € [0, 00), p € (0, 1] (see Remark 6.8 below). Thus, in some sense, the range
of A in Theorem 6.7 is sharp, which is attributed to the use of the unweighted norm
in our definition of tent atoms, appearing in the atomic decomposition of the tent
space Ty(X x (0, 00)). Finally, in Sect. 6.3, we establish a Hormander-type spectral
multiplier theorem for m (L) as in (1.1) on Hy 1 (X) (see Theorem 6.10 below). Let
p € (0, 1]. We remark that Theorem 6.10 covers [38, Theorem 1.1] in the case that
p € (0, 1] by taking ¢(x, ¢) :=t? for all x € R" and ¢ € [0, 00). A typical example of
the function m satisfying the condition of Theorem 6.10 is m(A) = A for all A € R
and some real value y, where i denotes the unit imaginary number (see Corollary
6.13 below).

As applications, in Sect. 7, we study the Musielak—Orlicz-Hardy spaces Hy 1 (R")

associated with the Schrodinger operator L := —A + V, where 0 <V € LllOC (R™).
As an application of Theorems 5.5 and 5.7, we characterize H, 1 (R") in terms of
the Lusin-area function associated with the Poisson semigroup of L, the atom, and
the molecule (see Theorem 7.2 below). Moreover, characterizations of Hy 1 (R"), in
terms of the non-tangential maximal functions associated with the heat semigroup
and the Poisson semigroup of L, the radial maximal functions associated with the
heat semigroup and the Poisson semigroup of L, are also established (see Theorem
7.4 below). Observe that Theorem 7.4 completely covers [57, Theorem 6.4] by taking
@ as in (1.2) with w = 1 and @ satisfying that there exist g, g2 € (0, 0o) such that
q1 <1 < gy and [@(¢92)]9" is a convex function on (0, co). Finally, we show that the
Riesz transform VL2 associated with L is bounded from Hy 1 (R") to L?(R")
when i (¢) € (0, 1], and from H,, 1 (R") to the Musielak—Orlicz—Hardy space H, (R")
introduced by Ky [63] when i (¢) € (;47, 1] (see Theorems 7.11 and 7.15 below). We
remark that the boundedness of VL~!/2 from H Ll (R™) to the classical Hardy space
H(R") was first established in [51, Theorem 8.6] and that Theorems 7.11 and 7.15
are respectively [57, Theorems 6.2 and 6.3] when ¢ is as in (1.2) with @ = 1 and
@ concave. We also point out that when n = 1 and ¢(x, t) :=¢ for all x € R" and
t € [0, 00), the Hardy space H, ; (R") coincides with the Hardy space introduced by
Czaja and Zienkiewicz [28]; if L := —A 4+ V with V belonging to the reverse Holder
class RH, (R") for some g > n/2 and n > 3, and ¢(x, t) :=t? with p € (n"ﬁ, 1] for
all x € R" and ¢ € [0, 00), then the Hardy space H, ; (R") coincides with the Hardy
space introduced by Dziubanski and Zienkiewicz [39, 40].

To prove Theorem 7.4 below, we borrow some ideas from the proof of [51, Theo-
rem 8.2]. To this end, via invoking the Caccioppoli inequality associated with L, the
special differential structure of L itself and the divergence theorem, we first estab-
lish a weighted “good-X inequality” concerning the non-tangential maximal function
Np(f), associated with the Poisson semigroup of L, and the truncated variant of the
Lusin area function §p (f) in Lemma 7.8 below, which is a suitable substitute, in the
present setting, of a distribution inequality concerning the non-tangential maximal
function Np(f) and the Lusin area function Sp(f), appeared in the proof of [51,
Theorem 8.2] (see also [57, (6.5)]). We then use the Moser type local boundedness
estimate from [51, Lemma 8.4] (see also Lemma 7.9 below), which is the substitute
of the classical mean value property for harmonic functions in this setting. Moreover,
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a more delicate estimate in (7.15) below than that used in the proof of [57, Theo-
rem 6.4] is established, which leads us in Theorem 7.4 below to remove the additional
assumption, appeared in [57, Theorem 6.4], that there exist g1, g2 € (0, 0o) such that
q1 <1 < gy and [@(t92)]9! is a convex function on (0, co) even when ¢ is as in (1.2)
with w = 1. The proof of Theorem 7.11 is a skillful application of the atomic char-
acterization of the Musielak—Orlicz-Hardy space H, ; (R"), a Davies—Gaffney type
estimate (see [51, Lemma 8.5] or Lemma 7.10 below) and the L2(R")-boundedness
of the Riesz transform VL ~!/2. Furthermore, as an application of the atomic charac-
terization of Hy ; (R") obtained in Theorem 7.2 and the atomic characterization of
the Musielak—Orlicz—Hardy space H,, (IR") established by Ky [63, Theorem 3.1] (see
also Lemma 7.14 below), we obtain the boundedness of the Riesz transform vL—1/2
from Hy 1 (R") to Hy(R") in Theorem 7.15 below. More precisely, for any given
atom « as in Definition 4.3 below, we prove that

VL™ ()= "b;

J

in LZ(R”), where, for each j, b; is a multiple of an atom introduced by Ky [63, Def-
inition 2.4]. Observe that the atom in Definition 4.3 below is different from the atom
in [63, Definition 2.4] in that the norm of the atom in Definition 4.3 is not weighted,
but the atom introduced by Ky [63, Definition 2.4] is weighted and, moreover, that, in
the present setting, VL~1/2 is known to be bounded on L? (R") only with p € (1, 2].
Thus, in order to prove that, for each j, b; is a multiple of an atom as in [63, Defini-
tion 2.4], we need the assumption that g(¢) <2 and r(¢) > 2/[2 — g (¢)] (see (7.36)
below for the details), where g (¢) and r(¢) are, respectively, as in (2.12) and (2.13)
below.

We remark that there exist more applications of the results in this paper.
For example, motivated by [64—66], in a forthcoming paper, we will apply the
Musielak—Orlicz-Hardy space H,, ; (R") and the Musielak—Orlicz BMO-type space
BMO,, 1 (R") associated with the Schrodinger operator L, introduced in this pa-
per, to the study of pointwise multipliers on BMO-type space associated with the
Schrodinger operator L and commutators of singular integral operators associated
with the operator L. This is reasonable, since ¢ in (1.3) naturally appears in the study
of these problems in [74, 75]. Moreover, motivated by [8, 16—19], in another forth-
coming paper, we will further establish various maximal function characterizations
of the Musielak—Orlicz-Hardy space Hy, 1. (§2) on the strongly Lipschitz domain £2
of R” associated with the Schrodinger operator L with some boundary conditions,
which is a special case of the Musielak—Orlicz—Hardy space H, 1 (X') introduced in
this paper.

After the first version of this paper was put on arXiv, we learned from Dr. Bui that,
in [15], Bui and Duong also introduced the weighted Hardy space H} P » (X)), with
p € (0,1]and w € A (X) satisfying the reverse Holder inequality of order 2/(2—p),
by the Lusin area function associated with the heat semigroup generated by L. More-
over, Bui and Duong [15] established the atomic and the molecular characterizations
of Hy 4 »(X) and, as applications, obtained the boundedness on H; 4 »(X) of the gener-
allzed Rlesz transforms associated with L and of the spectral multlphers of L. These
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results are partially overlapped with the results of this paper when ¢ is as in (1.2)
with @ (¢) :=t? for p € (0,1] and ¢ € [0, 00). As have observed above, the atomic
decomposition of the weighted tent space obtained in [15] and the Riesz transforms
considered in [15] are different from these in this paper. We also point out that, it
is motivated by [15], in the present version of this paper, we replace the assumption
in the first version that the growth function ¢ is of uniformly upper type 1 by the
assumption that ¢ is of uniformly upper type p; for some p; € (0, 1] and hence, in
the main results of this paper, we improve the assumption in the first version that
¢ € RH,(X) into the weaker assumption that ¢ € RHy /(2 (¢)(X).

Finally we make some conventions on notation. Throughout the whole paper, we
denote by C a positive constant which is independent of the main parameters, but
it may vary from line to line. We also use C(y, B, ...) to denote a positive constant
depending on the indicated parameters y, B, .... The symbol A < B means that
A<CB.If A< B and B < A, then we write A ~ B. The symbol |s]| for s € R
denotes the maximal integer not more than s. For any given normed spaces A and B
with the corresponding norms | - || 4 and || - || 5, the symbol A C B means that for all
feAthen feBand| flig < | fIl.a- Forany measurable subset E of X', we denote
by E C the ser X \ E and by xg its characteristic function. We also set N :={1,2, ...}
and Z; :={0} UN. For any 6 := (01, ...,6,) € Z} ,1let |#] := 61 + - - - + 6. For any
subsets E, F C X, and z € X, let dist(E, F) :=infyeg, yer d(x, y) and dist(z, E) :=
infyeg d(z, x).

2 Preliminaries

In Sect. 2.1, we first recall some notions on metric measure spaces and then, in
Sect. 2.2, describe some basic assumptions on the operator L studied in this paper.
In Sect. 2.3, we recall some notions concerning growth functions considered in this
paper and also give some specific examples of growth functions satisfying the as-
sumptions of this paper. Section 2.4 is devoted to recalling some properties of growth
functions established in [63].

2.1 Metric Measure Spaces

Throughout the whole paper, we let X be a set, d a metric on X, and  a nonnegative
Borel regular measure on X'. For all x € X and r € (0, 00), let

B(x,r):={yeX:dx,y) <r}

and V(x,r) := uw(B(x,r)). Moreover, we assume that there exists a constant C| €
[1, 00) such that, for all x € X and r € (0, 0c0),

Vix,2r) <C1V(x,r) < oo. 2.1

Observe that (X, d, i) is a space of homogeneous type in the sense of Coifman
and Weiss [25]. Recall that in the definition of spaces of homogeneous type in [25,
Chap. 3], d is assumed to be a quasi-metric. However, for simplicity, we always
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assume that d is a metric. Notice that the doubling property (2.1) implies that the
following strong homogeneity property that, for some positive constants C and n,

V(x,ar) <CA"V(x,r) 2.2)

uniformly for all A € [1, 00), x € X, and r € (0, 00). There also exist constants C €
(0, 00) and N € [0, n] such that, for all x, y € X and r € (0, 00),

N
V(x,r)gc[ur@} V(y,r). 2.3)

Indeed, the property (2.3) with N = n is a simple corollary of the triangle inequality
for the metric d and the strong homogeneity property (2.2). In the cases of Euclidean
spaces and Lie groups of polynomial growth, N can be chosen to be 0.

In what follows, to simplify the notation, for each ball B C X, set

Up(B):=B and U;(B):=2/B\2/7'B forjeN. (2.4)

Furthermore, for p € (0, 0o], the space of p-integrable functions on X is denoted
by L?(X) and the (quasi-)norm of f € LP(X) by || fllLr(x)-

2.2 Assumptions on Operators L

Throughout the whole paper, as in [51, 57], we always suppose that the considered
operators L satisfy the following assumptions.

Assumption A L is a nonnegative self-adjoint operator in L?(X).

Assumption B The operator L generates an analytic semigroup {eL},~o which
satisfies the Davies—Gaffney estimates, namely, there exist positive constants C, and
C3 such that, for all closed sets E and F in X, t € (0,00), and f € LZ(E),

[dist(E, F)]?

||eith”L2(F) SCZGXP{_ C3t

}||f||L2(E)' (2.5)

Here and in what follows, dist(E, F) :=infycg yer d(x, y) and L2(E) is the set of all
w-measurable functions supported in E such that || f || .2 gy = {fE | £ )2 du(x)}1/?
< 0.

Examples of operators satisfying Assumptions A and B include second-order el-
liptic self-adjoint operators in divergence form on R” with bounded measurable coef-
ficients, (degenerate) Schrodinger operators with nonnegative potential or with mag-
netic field, and Laplace—Beltrami operators on all complete Riemannian manifolds
(see, for example, [29, 42, 84, 85]).

By Assumptions A and B, we have the following results which were established
in [51].
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Lemma 2.1 Let L satisfy Assumptions A and B. Then for every fixed k € N, the
Sfamily of operators, {(tzL)ke_’zL}t>o, satisfies the Davies—Gaffney estimates (2.5)
with positive constants Cy and C3 only depending on n, N, and k.

In what follows, for any operator T, let K7 denote its integral kernel. It is well
known that if L satisfies Assumptions A and B, and T := cos(t\/Z) with t € (0, 00),
then there exists a positive constant C4 such that

suppK7 C Dy :={(x,y) € X x X': d(x,y) < Cut} (2.6)

(see, for example, [85, Theorem 2], [26, Theorem 3.14], and [51, Proposition 3.4]).
This observation plays a key role in obtaining the atomic characterization of the
Musielak—Orlicz—Hardy space Hy 1 (X) (see [51, 57] and Proposition 4.7 below).

Lemma 2.2 Assume that L satisfies Assumptions A and B. Let 1y € CZ°(R) be even
and suppy C (—C4_1, C4_1), where Cy is as in (2.6). Let @ denote the Fourier
transform of . Then for every k € N and t € (0, 00), the kernel K(tzL)"a(t\/Z) of

(12L)* ® (1+/L) satisfies that supp Kppydavn ClGY) €X x X0 d(x,y) <t}

For any given 8 € (0, 00), let ¢ be a measurable function from C to C satisfying

that there exists a positive constant C (8) such that, forall z € C, |¢(z)| < C(5) T Jlrzl‘;lzl; .

Then [3~ | (t)|*t =" dt < oo. It was proved in [51, (3.14)] that, for all f € L2(X),

o dt o0 dt
/0 Hd’(t«/z)inz(X)TS{ fo !¢(t)|27}||flliz(x), @)

which is often used in what follows.
2.3 Growth Functions

We recall that a function @ : [0, o0) — [0, 00) is called an Orlicz function if it is
nondecreasing, @ (0) =0, &(¢) > 0 for all t € (0, o0) and lim;_, o, @ (1) = o0 (see,
for example, [73, 76, 79, 80]). The function @ is said to be of upper type p (resp.,
lower type p) for some p € [0, 00), if there exists a positive constant C such that,
for all ¢ € [1, 00) (resp., t € [0, 1]) and s € [0, 00), @ (st) < CtP P (s). If @ is of
both upper type p; and lower type p>, then @ is said to be of type (p1, p2). The
function @ is said to be of strictly lower type p if, for all ¢ € [0, 1] and s € [0, 00),
D (st) <tPP(s). Define

pao :=sup{p €[0,00) : ®(st) < 1" P(s) holds true for all € [0, 1] and s € [0, 00)}.

(2.8)

It was proved in [58, Remark 2.1] that @ is also of strictly lower type pg; in other
words, pg is attainable.

For a given function ¢ : X x [0, 00) — [0, 0o) such that, for any x € X, ¢(x, -) is

an Orlicz function, ¢ is said to be of uniformly upper type p (resp., uniformly lower
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type p) for some p € [0, 00), if there exists a positive constant C such that, for all
xeX,te[l,o00) (resp., t € [0, 1]) and s € [0, 00),

o(x,st) < CtPo(x,s); 2.9)

@ is said to be of positive uniformly upper type (resp., uniformly lower type) if it is of
uniformly upper type (resp., uniformly lower type) p for some p € (0, 0c0). Moreover,
let

1(p) :==inf{p € (0, 00) : ¢ is of uniformly upper type p} (2.10)
and
i(p):= sup{p € (0, 00) : ¢ is of uniformly lower type p}. (2.11)

In what follows, I (¢) and i(¢) are, respectively, called the uniformly critical upper
type index and the uniformly critical lower type index of ¢. Observe that I (¢) and
i (¢) may not be attainable, namely, ¢ may not be of uniformly upper type I (¢) and
uniformly lower type i (¢) (see below for some examples).

Let ¢ : X x [0, 00) — [0, 00) satisfy that x — @(x, ) is measurable for all t €
[0, 00). Following Ky [63], ¢(:, t) is said to be uniformly locally integrable if, for all
bounded subsets K of X,

-1
/ sup {w(x,t)[/ <p(y,t)du(y)} }du(X)<0<>-
K 1€(0,00) K

Definition 2.3 Let ¢ : X x [0, 0c0) — [0, 00) be uniformly locally integrable. The
function ¢(-, t) is said to satisfy the uniformly Muckenhoupt condition for some q €
[1, 00), denoted by ¢ € A, (X)), if, when g € (1, 00),

1 1 . q/q’
Ay (p) i= — )d — 0] 1 }
) Sup sup, M(B)/Bw(x 1) u(x){M(B)/B[w(y ] w(y)

< o0,

where 1/qg +1/¢q’ =1, or

1 1
A= sup sup — | g nduio)(esssup[p(y, 0] ) < oo
te(0,00) Bcx W(B) Jp yeB

Here the first supremums are taken over all ¢ € (0, co) and the second ones over all
balls B C X.

The function ¢(-, t) is said to satisfy the uniformly reverse Holder condition for
some q € (1, oo], denoted by ¢ € RH, (&), if, when g € (1, 00),

1 1/q
RH D= S 0)%d }
o= s sp | [ ot o] dnco

-1
X {ﬁ/}gw(x,t)du(x)} < 00,
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or

1 -1
RHyo (@) := sup sup esssup<p(y,t)}{—/ (p(x,t)du(x)} < 0.
1e(0,00) BCX ' yeB u(B) Jp

Here the first supremums are taken over all ¢ € (0, co) and the second ones over all
balls B C X.

Recall that in Definition 2.3, when & =R", A, (R") with g € [1, c0) was intro-
duced by Ky [63].

Let Ao (X) = ) A, (X) and define the critical indices of ¢ as follows:

gell,00
q(p) :=inf{g €[1,00) : ¢ € Ag(X)} (2.12)
and
r(@) :=sup{q € (1, 00] : ¢ € RH, (X)}. (2.13)

Observe that, if g(¢) € (1,00), then ¢ & Ay (X), and there exists ¢ & A(X)
such that g(¢) = 1 (see, for example, [62]). Similarly, if 7(¢) € (1, c0), then ¢ ¢
RH, () (&), and there exists ¢ & RHuo(X) such that r(¢) = co (see, for example,
[27D).

Now we introduce the notion of growth functions.

Definition 2.4 A function ¢ : X x [0, 00) — [0, 00) is called a growth function if
the following hold true:

(1) ¢ is a Musielak—Orlicz function, namely,
(1)1 the function ¢(x, -) : [0, 0c0) — [0, 00) is an Orlicz function for all x € X;
(i)7 the function ¢(-, t) is a measurable function for all ¢ € [0, 00).
(i) ¢ € Axo(X).
(iii) The function ¢ is of positive uniformly upper type p; for some p; € (0, 1] and
of uniformly lower type p, for some p, € (0, 1].

Remark 2.5 By the definitions of the uniformly upper type and the uniformly lower
type, we see that, if the growth function ¢ is of positive uniformly upper type p; and
of positive uniformly lower type p3, then p; > ps.

Clearly, ¢(x,t) := w(x)®(t) is a growth function if v € Ax(X) and @ is an
Orlicz function of upper type p; for some pj € (0, 1] and of lower type p, for some
p2 € (0, 1]. It is known that, for p € (0, 1], if @(¢) := ¢ for all ¢ € [0, 0c0), then &
is an Orlicz function of type (p, p); for p € [%, 11, if @(¢) :=t?/In(e + ¢) for all
t € [0, 00), then @ is an Orlicz function of lower type g for g € (0, p) and of upper
type p; for p € (0, %], if @(t) :=1t”In(e +t) for all ¢ € [0, 00), then @ is an Orlicz
function of lower type p and of upper type g for g € (p, 1]. Recall that if an Orlicz
function is of upper type p € (0, 1), then it is also of upper type 1.

Another typical and useful growth function is ¢ as in (1.3). It is easy to show
that if ¢ is as in (1.3), then ¢ € A(&X), ¢ is of uniformly upper type «, I(p) =
i(p) =«a, i(p) is not attainable, but I (¢) is attainable. Moreover, it is worth to point
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out that such function ¢ naturally appears in the study of the pointwise multiplier
characterization for the BMO-type space on the metric space with doubling measure
(see [74]). We also point out that when X = R", a similar example of such ¢ is given
by Ky [63] replacing d(x, xp) by |x|, where | - | denotes the Euclidean distance on
R”.

2.4 Some Basic Properties on Growth Functions

Throughout the whole paper, we always assume that ¢ is a growth function as in
Definition 2.4. Let us now introduce the Musielak—Orlicz space.

The Musielak—Orlicz space L?(X) is defined to be the set of all measurable func-
tions f such that IX o, | f(x)])du(x) < oo with Luxembourg norm

1oy = inf{x € (0.00) /Xw(x, 'fi—x)') dp(x) < 1}.

In what follows, for any measurable subset E of X’ and ¢ € [0, 00), let

¢(E,0:=:/;¢(nt)du(XL

The following Lemmas 2.6 and 2.7 on the properties of growth functions are,
respectively, [63, Lemmas 4.1 and 4.3].

Lemma 2.6 (i) Let ¢ be a growth function. Then ¢ is uniformly o -quasi-subadditive
on X x [0, 00), namely, there exists a positive constant C such that, for all (x,t;) €
X x [0,00) with j €N, ¢(x, Zj’c’:l tj) < CZ?‘;I p(x,tj).

(ii) Let ¢ be a growth function and ¢(x,t) := fot ‘/’(f‘T“Y)ds for all (x,t) e X x
[0, 00). Then @ is a growth function, which is equivalent to ¢; moreover, ¢(x,-) is
continuous and strictly increasing.

Lemma 2.7 Let c be a positive constant. Then there exists a positive constant C such
that

@) fX(p(x, |fgh—x)l)d,ud(x) < c for some A € (0, 0o) implies that || f || Le(x) < CA;
(ii) Zj (B, %) < c for some )\ € (0, 00) implies that

t.
infa € (0, 00) : B, L) <1t<ca,
1n{a (0, c0) Z(p( b a>_ }_
J
where {t;} is a sequence of positive numbers and {B;}; a sequence of balls.
In what follows, for any given ball B := B(x, t), with x € X and r € (0, 00), and
A € (0, 00), we write AB for the A-dilated ball of B, namely, LB := B(x, At).

We have the following properties for A, ("), whose proofs are similar to those in
[44—46], and we omit the details. In what follows, M denotes the Hardy—Littlewood
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maximal function on X', namely, for all x € X,

1
MUY= sup gy

/ O du(y).
B

where the supremum is taken over all balls B > x.

Lemma 2.8 (i) Aj(X) CA,(X) CAH(X) for1 < p <gq <oo.

(i) RHoo (X) C RH, (X) C RH, (&) for 1 <g < p < oco.

(iil) If ¢ € Ap(X) with p € (1, 00), then there exists some q € (1, p) such that
p e (X).

(iv) If ¢ € RH, (X)) with p € (1, 00), then there exists some q € (p, 00) such that
¢ € RH, (X).

(V) Ao (X) = U pe1.00) A (X) C Uy e(1,00) RHg ().

(vi) If p € (1,00) and ¢ € Ap(X), then there exists a positive constant C such
that, for all measurable functions f on X and t € [0, 00),

fX MH®] px,t)dux) <C /X | F O] px, ) dp(x).

(vii) If ¢ € Ap(X) with p € [1, 00), then there exists a positive constant C such

. @(Ba,1) 1(B2)
that, for all balls By, By C X with B; C By and t € [0, 00), (p(B—T,t) < C[ITBT)]”.

(viii) If ¢ € RH,(X) with q € (1,00], then there exists a positive constant

C such that, for all balls By, By C X with Bi C By and t € [0,00), 4320 >

“(By) 1(g—1)/q
C[M(B 1) ] .

Remark 2.9 We remark that in the setting of the Euclidean space R”, Lemma 2.8(v)
can be improved to A (R") = Upe[l,oo) Ap,(R") = qu(l,oo] RH, (R") (see, for ex-
ample, [54, Lemma 2.4(iv)]). However, in the present setting, the inverse inclusion in
Lemma 2.8(v) may not be true (see [90, p. 9] for a counterexample).

3 Musielak-Orlicz Tent Spaces T, (X x (0, 00))

In this section, we study the Musielak—Orlicz tent space associated with the growth
function. We first recall some notions as follows.

Forany v € (0,00) and x € X, let [, (x) :={(y,1) e X x (0,00) : d(x,y) < vt}
be the cone of aperture v with vertex x € X. For any closed subset F of X, denote
by R, F the union of all cones with vertices in F, namely, R, F := UxeF I,(x)
and, for any open subset O of X, denote the tent over O by T, (0), which is de-
fined as 7, (0) := [RV(OB)]C. It is easy to see that 7,(0) = {(x,1) € X x (0,00) :
d(x, OG) > vt}. In what follows, we denote I'1(x) and 71(O) simply by I'(x) and
0, respectively.

For all measurable functions g on X x (0, 0o0) and x € X, define

- 2 dply) dt 172
A(g)(x) .—{fm) g PP S } .
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If X =R", Coifman, Meyer, and Stein [23] introduced the tent space sz (RT])
for p € (0, 00). Here and in what follows, R'}f‘ :=R" x (0, 00). The tent space
T 2” (X x (0, 00)) on spaces of homogenous type was introduced by Russ [82]. Recall
that a measurable function g is said to belong to the tent space sz (X x (0, 00)) with
p € (0,00), if ||g||T2”(Xx(0,oo)) = L A(@)llLrx) < oo. Moreover, Harboure, Salinas,
and Viviani [47] and Jiang and Yang [57], respectively, introduced the Orlicz tent
spaces Ty (R’fl) and To (X x (0, 00)).

Let ¢ be as in Definition 2.4. In what follows, we denote by T, (X x (0, 00)) the
space of all measurable functions g on X x (0, co) such that A(g) € L?(X) and, for
any g € T,(X x (0, 00)), define its quasi-norm by

g1l (X x0.00)) = MA@ | Lo (x)

= inf{k € (0, 00) : / (p()c, A(g)(x)) dp(x) < 1}.
X A

A function a on X x (0, 00) is called a T, (X x (0, 00))-atom if

(1) there exists a ball B C X such that suppa C B;
(i) [5laCe, HPLDY < (B xsl 17 )

For functions in T, (X x (0, 00)), we have the following atomic decomposition.

Theorem 3.1 Let ¢ be as in Definition 2.4. Then for any f € Ty,(X x (0, 00)), there
exist {1} ; C Cand a sequence {aj}; of T,(X x (0, 00))-atoms such that, for almost
every (x,t) € X x (0, 00),

FO =) njaj(x,1). G.1)
j

Moreover, there exists a positive constant C such that, for all f € Ty(X x (0, 00)),

A({Ajaj}j) ::inf{ke(o, o) : Zq)(B. &) Sl}
J

/’ MixB; llLex)
< ClfllT,xx(0.00)) 3.2)

where, for each j, E; appears in the support of a;.

We prove Theorem 3.1 by borrowing some ideas from the proof of [57, Theo-
rem 3.1] (see also [23] and [82]). To this end, we first need some known facts as
follows.

Let F be a closed subset of X and O := FC. Assume that u(0) < oo. For any
fixed y € (0, 1), we say that x € X has the global y -density with respect to F if, for
all r € (0, 00),

wBx,NOF)
n(B(x,r))



512 D. Yang and S. Yang

Denote by F) the set of all such x. It is easy to prove that F; with y € (0,1)
is a closed subset of F. Let y € (0,1) and 0; = (F;,")G. Then it is easy to see
that O C 0;. Indeed, from the definition of O*, we deduce that O;j ={xeX:
MV(XO)(x) > 1 — y}, where /\7 denotes the centered Hardy—Littlewood maximal
function on X, which, together with the fact that f\Z is of weak type (1, 1) (see [25]),
further implies that there exists a positive constant C(y ), depending on y, such that
,u(O)’j) < C(y)u(0). Recall that, forall f € L} (X)andx € X,

loc

— 1
M = _ d .
(Hx) reS(gEO) W (BGr) B(x’r)lf(y)l n(y)

It is well known that there exists a positive constant Cs such that, for all x € X and
[ € Lj(X),

loc
C5 ' M(f)(x) < M(f)(x) < CsSM(f)(). (33)
The following Lemma 3.2 was established in [82].

Lemma 3.2 Let n € (0, 1). Then there exist yy € (0, 1) and C(n, yp) € (0, 00) such
that, for any closed subset F of X whose complement has finite measure, y € [y, 1)
and nonnegative measurable function H on X x (0, 00),

/ H(y. 0V (y. ) dp(y)di < C(n. yo) / { H(y,t)du(y)dt}du(X),
Ri-(F}) F U/ (x)

where F;‘ denotes the set of points in X with the global y -density with respect to F .
To prove Theorem 3.1, we need a covering lemma established in [24].

Lemma 3.3 Let §2 be a proper open subset of finite measure of X. For any x € X,
define r(x) :=d(x, .QG)/10. Then there exist a positive integer M and a sequence
{xj}; of points in X such that, if rj :=r(x;), then

6] Q:Uj B(xj,rj);
(i) B(xi,ri/4)NB(xj,rj/4)=01ifi#];
(iii) for each j, #{i : B(x;,5r;) N B(xj,5r;) # @} < M, where {E denotes the car-
dinality of the set E,

Moreover, there exist nonnegative functions {¢;}; on X such that

(@iv) forall j,supp¢; C B(x;,2r;);
(v) forall j and x € B(xj,r;), ¢;j(x) = 1/M;
(vi) Zj D= Xx2-

Moreover, we also need the following Lemma 3.4, whose proof is similar to that
of [63, Lemma 5.4]. We omit the details.
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Lemma 3.4 Let f € Ty(X x (0,00)) and 2 :={x € X: A(f)(x) > 2%} for all
k € 7Z. Then there exists a positive constant C such that, for all A € (0, 00),

2k A(f)(x)
Zw(ﬂk, 7) < c/ﬂ(x, T) dp(x).

keZ

Now we prove Theorem 3.1 by using Lemmas 3.3 and 3.4.

Proof of Theorem 3.1 Let f € T,(X x (0,00)). For any k € Z, let O :={x € A :
A(f)(x) > 2K} and Fy := O,E. Since f € Ty(X x (0, 00)), for each k, Oy is an open
set of X with w(Oy) < oo.

Let n € (0, 1) and yg be as in Lemma 3.2. Let y € [y, 1) such that C5(1 — y) <
1/2. In what follows, we denote (Fy,,)* and (Og,,)* simply by F and O}, re-
spectively. We claim that supp f C UkeZ Tl,n(Olf) U E, where E C X x (0, 00)
satisfies fE M = 0. Indeed, let (x, ) be the Lebesgue point of f and (x,t) &
UkeZ Tl_n(Ol’;). Then there exists a sequence {y }xez of points such that {y;}rez C
B(x, (1 —n)t) and for each k, y; & T1—,;(Oy), which implies that, for each k € Z,
M(Xok)(yk) <1 — y. From this, (3.3) and C5(1 — y) < 1/2, we deduce that
w(B@x,H)N{zeX: A(f)) < 2k}) > w(B(x,t))/2. Letting k — —oo, we then
see that w(B(x, 1) N{z e X : A(f)(z) =0}) > u(B(x,1))/2. Therefore, there ex-
ists y € B(x, t) such that f = 0 almost everywhere in I"(y), which, together with
Lebesgue’s differentiation theorem (see [49, Theorem 1.8]), implies that f(x, ) =0.
By this, we know that the claim holds true.

If Of = X for some k € Z, then u(X) < oo, which implies that X" is a ball (see
[74, Lemma 5.1]). In this case, set Iy := {1}, By 1 := X and ¢,; = 1. If O} is a proper
subset of X', by Lemma 3.3 with 2 = 0,’(k , we obtain a set [; of indices and balls
{Bk,j}jen == {B(xk,j,2rk,j)}jer, and functions {¢x ;}jes, satisfying that, for each
J € I, supp ey, j C B(xy,j,2r% ), and Zje,k ®x,j = xop- Thus, for each (x,1) €
X x (0, 00), we see that

(X11_,(0p) = XTi_y(05, ) (X 1) = Z b, j ) XTi_y07) = XTi_y (07, ) (X5 1)-
J€lk

From this, supp f C {{Uyez T1—(O0f) U E}, and fE w =0, we infer that

£=Yfr_,opn - XTi_,(0F, ) = DD Foeixr o) — XTi-,0F, )

keZ keZ jeli
almost everywhere on X' x (0, 00). For each k and j, let
o~k -1
ar,j =27 NxBe i Loy f Brj (Xmi_y0p) = X11_07,,)

and Ay = 2k||)(3k‘j lzecxy. Then f =3, Zjelk Ak, jay,j almost everywhere.

Similar to the proof of [82, (2.4)], we see that, for each k and j, suppay, ; C CG)EJ- R
where C(n) € (1, 00) is a positive constant independent of £ and j. By Lemma 3.2,
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suppay, j C (Tl,n(O,ijl))G =Ri-y(F{,,),and the definition of Fi, we know that,
for each k and j,

dp(y)dt
lag, ;112 = f lag,j (v, )] ———
TNT2(X % (0,00)) A% (0.00) J t

du(y)dt
S / lag,j (v, P ———
Riy(Fp) t

du(y)dt}
< TO0) |
N/Fk+l{/r(x)lak,,(y )l V.0t m(x)

2
S / [Adar, D)) dp(x)
Fiep1N(C () By, )
- - 2
SZ Zk”XBk,j”Lg%(X)/‘ [A(f)(X)] d,u(x)
Fie10(C () By, j)
SV(C B ) Ixca s 172 ),

which implies that up to a harmless multiplicative constant, each ay_; is a Tp(X x
(0, 00))-atom. Moreover, by (2.2), Lemma 2.7(i), and Lemma 3.4, we know that, for
all 1 € (0, 00),

> *”(C(’”Bk,fv - )

Mixcm s llLex)

keZ jely
2k 2k
3
SNWCIES WIS
keZ jel keZ

S / w(x, M) dp(x),
X A

which implies that A({Ax jak,j}kez. ;) S f 17, %(0,00))- This finishes the proof of
Theorem 3.1. 0

Corollary 3.5 Let ¢ be as in Definition 2.4 with ¢ € RHy /21 (4)(X), where I ()
is as in (2.10). If f € Ty(X x (0,00)) N T22(X X (0, 00)), then (3.1) in Theorem 3.1
holds true in both T,(X x (0, 00)) and T22(X x (0, 00)).

By the uniformly upper type p; property of ¢ with some p; € [I(¢), 1], Theo-
rem 3.1 and its proof, similar to the proof of [54, Corollary 3.4], we can show Corol-
lary 3.5 and omit the details here.

In what follows, let T;]’(X x (0, 00)) and sz’b(X x (0, 00)) with p € (0, 0o) de-
note, respectively, the set of all functions in Ty(X x (0, 00)) and sz (X x (0, 00))
with bounded support. Here and in what follows, a function f on X x (0, co) is said
to have bounded support means that there existaball BC X and 0 <c¢) < ¢ < o0
such that supp f C B x (c1, ¢2).
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Proposition 3.6 Let ¢ be as in Definition 2.4. Then T!(X x (0,00)) C T,"(X x
(0, 00)) as sets.

The proof of Proposition 3.6 is an application of the uniformly lower type p»
property of ¢ for some p; € (0, 1], which is similar to that of [54, Proposition 3.5].
We omit the details.

4 Musielak-Orlicz-Hardy Spaces H, 1 (X) and Their Duals

In this section, we always assume that the operator L satisfies Assumptions A and B,
and the growth function ¢ is as in Definition 2.4. We introduce the Musielak—Orlicz—
Hardy space Hy 1 (X) associated with L via the Lusin-area function and give its dual
space via the atomic and molecular decomposition of Hy, 1 (X). Let us begin with
some notions.

In order to introduce the Musielak—Orlicz—Hardy space associated with L, we
follow the ideas appeared in [6, 51] and first define the LX) adapted Hardy space

H*(X):= H}(X):=R(L), 4.1

where R(L) denotes the closure of the range of L in L>(X). Then L?(X) is the
orthogonal sum of H?2(X) and the null space N (L), namely, L2(X)=R(L)DN(L).

For all functions f € LZ(X), let the Lusin-area function Sz (f) be as in (1.4).
From (2.7), it follows that S; is bounded on L2(X ). Hofmann et al. [51] intro-
duced the Hardy space H Ll (X)) associated with L as the completion of { f € H 2(X):
S1.(f) € L'(X)} with respect to the norm ”f”HLl(X) = I/l L1 x)- The Orlicz-Hardy
space He 1 (X) was introduced in [57] in a similar way.

Following [6, 51, 57], we now introduce the Musielak—Orlicz—Hardy space
Hy 1 (X) associated with L as follows.

Definition 4.1 Let L satisfy Assumptions A and B and ¢ be as in Definition 2.4.
A function f € H?(X) is said to be in H(/, L(X) if Sy (f) € L?(X); moreover, define

S
1, 2ty = IS (Do) :=inf{x €(0,00): /X¢<x, %) duix) < 1}.

The Musielak-Orlicz—Hardy space Hgy 1(X) is defined to be the completion of
Hy 1 (X) in the quasi-norm || - ||H¢ L(X)-

Remark 4.2 (i) Notice that for 0 # f € L2(X), ISL(H)NLexy =0 holds true if and
only if f € N(L). Indeed, if f € N(L), then tzLe_tsz = 0 almost everywhere and
hence ||S.(f)llLexy = 0. Conversely, if |SL(f)lzexy = 0, then tzLe”sz =0
almost everywhere on & x (0, 00). Hence, for all ¢ € (0, 00), (e_’zl‘ - nf =
fé —2sLe~*’L fds = 0, which further implies that Lf = Le "L f = 0 almost ev-
erywhere and f € N(L). Thus, in Definition 4.1, it is necessary to use R(L) rather
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than L?(X) to guarantee | - || H, 1 (X) tO be a quasi-norm (see also [51, Sect. 2] and
[57, Remark 4.1(1)]).

Moreover, we know that, if the kernels of the semigroup {e™’ Lyoo satisfy the
Gaussian upper bounded estimates, then N (L) = {0} and hence H 2(xX) = L%2(X)
(see, for example, [51, Sect. 2]).

(i1) It is easy to see that || - || i, , (x) 18 @ quasi-norm.

(iii) From the Aolgi—Rolewicz theorem in [4, 81], it follows th~at there exists a
quasi-norm ||| - [[| on Hy 1 (X) and y € (0, 1] such that, for all f € Hy 1 (X), I flll ~
(RAIFZANeS) and, for any sequence {f;}; C Hy 1 (X),

14
H‘ij <Y I
J J

By the theorem of completion of Yosida [98, p. 56], it follows that (ﬁw,L(X), - 1D

has a completion space (Hy, 1 (X), Il - II); namely, for any f € (Hy,r(X), Il - D,
there exists a Cauchy sequence { fx}72 | C Hyp, 1 (X) such that limy_ o Il fx — fIll = 0.
Moreover, if {fi}p2, is a Cauchy sequence in (Hy, 1 (X), || - |I), then there exists

a unique f € Hy 1 (X) such that limy_, o [l fc — fIl = 0. Furthermore, by the fact
that ||| £l ~ ”f”Hw,L(X) for all f € Hy 1 (X), we know that the spaces (Hy, 1 (X),
I 11 a, L x) and (Hy, 1 (X), |l - lIl) coincide with equivalent quasi-norms.

(iv) If o(x,7) ;=1 for all x € X and t € (0, 00), the space Hy 1 (X) is just the
space H ]1 (&) introduced by Hofmann et al. [S1]. Moreover, if ¢ is as in (1.2) with
w =1 and @ concave on (0, 00), the space Hy 1 (X) is just the Orlicz-Hardy space
Hg 1 (X) introduced in [57].

We now introduce (¢, M)-atoms and (¢, M, €)-molecules as follows.

Definition 4.3 Let M € N. A function o € L?(X) is called a (¢, M)-atom associated

with the operator L if there exist a function b € D(LM) and a ball B C X’ such that
() a=LMp;

(ii) supp(L*¥b) c B,k €{0,..., M};

(i) 1CFL) bl 2y < 75" [RGB X8I Loy K €40 M},

Definition 4.4 Let M € N and € € (0,00). A function 8 € L%(X) is called a

(¢, M, €)-molecule associated with the operator L if there exist a function b €
D(LM) and a ball B C X such that

() B=L"b;
(ii) foreach k €{0,..., M} and j € Z, it holds true that

” (rzz?L)kb”Lz(Uj(B)) < zfjertng[M(B)]l/Z

where U;(B) with j € Z, is as in (2.4).

—1
sl 7 v,

Remark 4.5 Let @ be a concave Orlicz function on (0, o) with pg € (0, 1]. When
ox,t)=@(t) forallx € X and ¢t € [0, 00), the (¢, M)-atom is just the (@, M)-atom
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introduced in [57]. However, the (¢, M, €)-molecule is different from the (&, M, €)-
molecule in [57] even when ¢ (x, 1) = @ (¢) for all x € X and ¢ € [0, 00). More pre-
cisely, recall that g is called a (@, M, €)-molecule, introduced in [57], if (ii) of Defi-
nition 4.4 is replaced by that, for each k € {0, ..., M} and j € Z., it holds true that

[BLY Dl 2y my = 2775 (12 B)] ™ [p(n(2/B)]

where U;(B) with j € Z, is as in (2.4) and p is given by p(¢) := Yo
for all ¢ € (0, 00). Let p> be any lower type of @. Then for any € € (0, c0), every
(¢, M, ¢)-molecule is a (&, M, e —n(1/p> — 1/2))-molecule when ¢ := @. Indeed,
by [92, Proposition 2.1], we know that p is of upper type 1/py — 1, which, together
with (2.2), implies that, for all j € N, [p(u(2/B)]~" > 27n1/P2=D(p(u(B))]~".
From this and (2.2), we further deduce that, forall j €N, [(2/B)]~/?[p(u(2/B))]~!
> 27/ p2=121(B)) V2 [p(u(B))]~!, which, together with the fact that
lxBllLexy = n(B)p(u(B)), implies that the claim holds true. We point out that
the notion of (¢, M, €)-molecules is motivated by [70], which is convenient in appli-
cations (see, for example, [70] for more details).

4.1 Decompositions into Atoms and Molecules

Recall that a function f on X x (0, 00) is said to have bounded support, if there exist
aball BC & and 0 < ¢] < ¢p < oo such that supp f C B X (c1, ¢2). In what follows,
let L2(X x (0, 00)) denote the set of all functions f € L*(X x (0, 00)) with bounded

support, M e N and M > %[?((5)) - %], where 7, g (¢) and i (¢) are respectively as in

(2.2), (2.12), and (2.11). Let @ be as in Lemma 2.2 and ¥ (¢) := r>M+D @ (1) for all
t € (0,00). Forall f € L3(X x (0,00)) and x € X, define

> d
7y, (f)(x) = Cq//O l1’(%/3)(}”(,t))(x)Tt, 4.2)

where Cy is a positive constant such that
o dt
Cy / w ()™ =l 4.3)
0

By (2.7) and Holder’s inequality, we easily see that, if f € Li(?c' x (0, 0)), then
mw(f) € L2(X). Moreover, we have the following boundedness of my 1.

Proposition 4.6 Let L satisfy Assumptions A and B, w1 be as in (4.2), ¢ as in
Definition 2.4 with ¢ € RHy/2—1)|(X) and 1(p) being as in (2.10), and M € N

with M > %[?((z)) — %], where n, q(¢) and i(¢) are, respectively, as in (2.2), (2.12)

and (2.11). Then

(1) the operator my, 1., initially defined on the space Tzz’b(X x (0, 00)), extends to a
bounded linear operator from T22(X x (0, 00)) to L3(X);

(ii) the operator my 1, initially defined on the space T(/l)’ (X), extends to a bounded
linear operator from Ty(X x (0, 00)) to Hy 1 (X).



518 D. Yang and S. Yang

Proof The conclusion (i) is just [57, Proposition 4.1(i)]. We only need to show (ii)
of this proposition. Let f € qu’ (X x (0, 00)). Then by Proposition 3.6, Corollary 3.5
and (i), we know that

To(f) =Y Ajmwra) =y ija;
J J

in L2(X), where {A;}; and {a;}; satisfy (3.1) and (3.2), respectively. Recall that,
for each j, suppa; C E; and Bj is a ball of X'. Moreover, from (2.7), we deduce
that S, is bounded on L2(X), which implies that, for all x € X, Sp. (7w, (f))(x) <
Zj |A;1SL(a)(x). This, combined with Lemma 2.6(i), yields that

f){(ﬂ(x,SL(?Tq/,L(f))(X))dM(X)SZ/Xw(x,I)»jISL(Olj)(X))d/L(X) (4.4)
J

We now show that «; = 7y 1 (a;) is a multiple of a (¢, M)-atom for each j. Let
Foamin; g dt
bj:=Cy | 1t L<D(tx/Z)(aj(-,t))7,
0
where Cy is as in (4.3). Then for each j, from the definitions of «;; and b}, it follows
that o = LMbj. Moreover, by Lemma 2.2, we know that, for each k € {0, ..., M},

supp(L¥b;) C B;. Furthermore, for any i € L*(B;), from Holder’s inequality and
(2.7), we infer that

‘/;{(rzza,-L)kbj(X)h(x)du(x)

:CQI/

/ /OOtz(M'H)(rf;jL)kch(t«/Z)(aj(-, t))(x)h(x)m

<r2Mf / laj (v, ) (2L) T B (/DR (y)| S “(y)

o k1~ 2du(y)dr | '?
5r%§4||ajllrg<xx<o,oo)){f)(/0 [(2L) T BV Dh(y)| —

1/2

-1
Sy 1aj 172 20,000 101l 200y S 7B [V BN 1B, ooy Ml 22

which implies that ||(rB LYfbjll 2y S rZM[V(B N2 xs; 11 LM) Therefore, o
isa (¢, M)-atom up to a harmless constant.
We claim that, for any A € C and (¢, M)-atom « supported in aball B C X,

X
/Xfﬂ(x, Sp(ha)(x)) dp(x) 5@(37 #> 4.5)

IxBllLe )

If (4.5) holds true, by (4.5), the facts that, for all A € (0, 00),

Se(me,L(f/1) = Sc(me,(f))/*



Musielak—Orlicz—Hardy Spaces Associated with Operators 519

and g 1 (f/)) = Z/ Ajaj/A, and Sg (g, (f)) < Z/ |A;1SL(aj), we see that, for
all & € (0, 00),

SL(JTw,L(f))(X)) ( [Aj] )
, ———""")d < B, ——— ),
/X‘”(X x “(x)w;‘” 7 38, ey

which, together with (3.2), implies that

e, (Ola, ) S AQR e} ) ST, x0.00))

and hence completes the proof of (ii).
Now we prove (4.5). Write

| ot 5.0 @) duio) = Z / o(x. MISL@) dp(x).  (46)
X Uk(B)

From the assumption ¢ € RHy/[2—/(4)(X), Lemma 2.8(iv) and the definition of
I (p), we infer that, there exists p; € [/ (¢), 1] such that ¢ is of uniformly upper
type p1 and ¢ € RHy,2—p,)(X). For k € {0, ..., 4}, by the uniformly upper type pi
property of ¢, Holder’s inequality, ¢ € RHy/2— p,)(X), the L*(X)-boundedness of
S;, and (2.2), we conclude that

/ (%, IASL(@)(x)) dpu(x)
Uk(B)

S fU " o (x, IMxsl o) {1+ [SL@lxs o] } di)
k

So(UB), IMIxsll o) + 1170 )

2-py Pl
2 7 7
x { f [o(x 11lxB 17 )] 770 d,u(x)} { f [SL(“)(X)]ZCZM(X)}
Uk (B) Uk (B)
S @(UkB), M1 X811 14 aey) S 0 (B, 11118114 ) 4.7)

From the assumption that M > [ ] it follows that, there exist p €

l(sa)
(0,i(p)) and qo € (g(¢), 00) such that M > 5 (qo — —) Moreover, by the definitions
of i(p) and g(¢), we know that ¢ is of umformly lower type p2 and ¢ € Ay (X).
When k € N with k > 5, from the uniformly upper type p; and lower type p» prop-
erties of ¢, it follows that

/ o (x. IMISL@ () dua(x)

Uk(B)

S / o (. MBI o)) [SL@ @ X8 o 2)] ™ dia(x)
Uk(B)

k

—: By + Fy. (4.8)
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To estimate E; and Fy, we first estimate ka(B) [Sz(a)(x)]*> dp(x). Write

f [SL@) )] dux)
Ui (B)

d(x,xp)

¢ 2 \M+1 2 2du(y) dt
= 1L e "b(y) du(x)
'/;/k(B)/O v/z;(x,y)<t’( ) } V(x,t) t4M+1

o0
Skl
Up(B) JLB) Ja(x,y)<t

= Hg + 1. (4.9)

We first estimate the term Hy. Let
Gr(B) = {y € X : there exists x € Uy(B) such that d(x, y) < d(x,xB)/4}.
From x € Ux(B), it follows that d(x,xp) € [2¥"rp,2%rp). Let z € B and y €
Gi(B). Thend(y,z) > d(x,xp) —d(y,x) —d(z, xp) > 3d(x,xp) /4 —rp > 28 "2rp,

which implies that dist(Gr(B), B) > 2k=2pp. By this, Fubini’s theorem, (2.5), and
(2.3), we know that

Hki/
0

S 24 [dist(Gx(B), B)]>] dt
N||b||L2(B) 0 €Xpy — C3t2 f4M+1

ok+1

"B 2 \M+1 g2 2 dt
i et Pane i

2k+1r8 4AM+1
4M -2 t dt
SJVB /’L(B)”XB”LW(X)/(; |:2k ] I4M+1

re

S2 MM uB) xS - (4.10)

For I, from Lemma 2.1, it follows that

o0 dt
L < 2LV Ly P d i (y) —
k Nfzkzrgfxl( )" e bW )

> dt _ 2
S / L R = A TI 3] PO o
2 rp

which, together with (4.9) and (4.10), implies that, for all k € N with k > 5,

_ 1/2 _
ISL@ll 2wy S 22 [B)] 21X - (4.11)



Musielak—Orlicz—Hardy Spaces Associated with Operators 521

Now we estimate E. By Holder’s inequality, ¢ € RHy;2—p,)(X), (4.11), Lemma
2.8(vii), and (2.2), we conclude that

2-p1
2

2
E < { / [o(x, M X8 Lo )] 70 du(x)}
Uk (B)

Jan
x ||xB||€!pm{ / [SL(axx)]zdu(x)} 2

Uk (B)

P
_ (n(B)]2 -
52 2kMP17(p(2k+lBa |)\|”XB||L(}(X))

[n@+1B)1F
) [(B)I?  [u@ By -
s [u(2k+1B)]”7‘[ u(B) ] o(B. MH'XB”L;(X))

_ Py _r

S22 (B, Ml g ey [ (BY] [ (25 B2
<27 HRMP =0t 3o (B X1l 0 ) - (4.12)
Moreover, by Remark 2.5, we know that p; > ps and hence 2/(2 — p1) > 2/(2 —

p2), which, together with ¢ € RH,,2—p,)(X) and Lemma 2.8(ii), implies that ¢
RH> /2 p,) (X). From this, Holder’s inequality, and (4.11), it follows that

2-pp
2

2
Fe S { / [o(x, I xB1 o 1) ] 772 du(x)}
2k+1p

1 _
X Nxs 7o @M B xsl 0 e) ™
2
2
} (2B, 1Al )

|§

w(B)

< 2—2kMp2 -2 Lt S
S P Py

2(X)

P _n
S22 B [T @ B) T T o (B, M8 o)

np
< 2—k(2MP2+TZ—nq0)(p(B’ Al xB ”Ij"}(/\’))’

which, together with (4.6), (4.7), (4.8), (4.12), and M > ’%(% — %) > ’%(% — %), im-
plies that (4.5) holds true. This finishes the proof of (ii) and hence Proposition 4.6. [

Proposition 4.7 Let ¢ be as in Definition 2.4 with ¢ € RHy /2 1(,)(X) and I(¢p)
being as in (2.10), and M € N with M > '7’[‘{((5)) — %], where n, q(¢) and i(p) are,
respectively, as in (2.2), (2.12) and (2.11). Then, for all f € Hy 1 (X)N L2(X), there

exist {A;}; C C and a sequence {a;}; of (p, M)-atoms such that

f=> hje; (4.13)
j
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in both H,  (X) and L2(X). Moreover, there exists a positive constant C such that,
forall f e Hy(X)NLXX),

. [Aj]
7 Mlxs; ey

Alhja5);) :=inf{x € (0,00): Zw(B ) < 1} < Cllf ., )
J

where for each j, suppa; C Bj.

Proof Let f € Hy 1 (X)N L2(X). Then by the Hyo-functional calculi for L and (4.3),
we know that

f=Cy foo lII(t«/Z)tzLe_tszg = nw,L(tZLe—’sz) (4.14)
0

in L2(X). Moreover, from Definition 4.1 and (2.7), we infer that 2Le "L f €
T, (X x (0,00))N 7;22 (X x (0, 00)). Applying Theorem 3.1, Corollary 3.5 and Propo-
sition 4.6 to r2Le™" Lf, we conclude that

f= ﬂw’L(tzLe_tZLf) = Z)»jmp’L(aj) = ijaj
J J

. _42

in both L*(X) and Hy,p(X), and A({Aje;}j) S 1£7Le™ L Fllg,(xx(0.00) ™~
Il £l Hy 1.(X)- Furthermore, by the proof of Proposition 4.6, we know that, for each
J, o is a (¢, M)-atom up to a harmless constant, which completes the proof of
Proposition 4.7. 0

Corollary 4.8 Let L satisfy Assumptions A and B, ¢ be as in Definition 2.4 with
@ € RHy /o1 (p)(X) and 1 (@) being as in (2.10), and M € N with M > %[% — %],
where n, q(¢) and i (@) are, respectively, as in (2.2), (2.12) and (2.11). Then for all
f € Hy 1 (X), there exist {\;}; C C and a sequence {o;}; of (p, M)-atoms such that
= jhjejin Hy, L(X). Moreover, there exists a positive constant C, independent

of f,suchthat A({xje;}j) < Cllfllm, , x)-

Proof If f € Hy 1 (X)N L%(X), then it follows, from Proposition 4.7, that all con-
clusions hold true.

If f e Hyp(X), since Hy 1(X) N L2(X) is dense in Hy 1 (X), we then
choose { fitrez, C (Hp,L(X)N L%(X)) such that, for all k € Z, ||fk||H¢,L(X) <
27k I f &, x) and f = ZkeZ+ Si in Hy 1 (X). By Proposition 4.7, we see that, for

all k € Z4, there exist {A];-}j C C and (¢, M)-atoms {alj‘.}j such that f; = Zj )J;ot]]‘.

in Hy 1 (X) and A({)»]J‘.ot]]‘.}j) < Il flla,, . x0)- From this, we deduce that, for each
k e Z+,

2k
Zqo(Bk l )51,
J

7 ||fk||H¢,L(X)||XBI; lLexy



Musielak—Orlicz—Hardy Spaces Associated with Operators 523

where, for each j, oe]; is supported in the ball B;‘ , which, together with the uniformly
lower type p property of ¢ with py € (0, i(¢)), implies that

5 ; ( IS )

vz, ||f||H¢L(X)||XBk||LW(X)

ZZ¢< - IS )

ez, ||fk||Hw,L(X)||XB§||Lw(X)

< Z 2—kp2

keZ4
<1.

This further implies that A({Ak k}kez+ RS ”f”Hw . (x) and hence finishes the proof

of Corollary 4.8. d
Let H(p at, fin(X) and oM mol fin(X) denote the sets of all finite combinations of

(¢, M)-atoms and (¢, M, e) -molecules, respectively. Then we have the following
dense conclusions.

Proposition 4.9 Let L satisfy Assumptions A and B, ¢ be as in Definition 2.4 with
¢ € RH 2191 (X) and I (@) being as in (2.10), € € (nlg(p)/i(p) — 1/2], 00) and
M e N with M > ﬂ[q(‘p) — 19, where n, q(p) and i((p) are, respectively, as in (2.2),

ilp) 2
(2.12) and (2.11). Then the spaces H (X) and b

the space Hy 1 (X).

(X) are both dense in

,at,fin mol fin

Proof From Corollary 4.8, it follows that HM

oat, fn (X) is dense in Hy, 1 (X).

To prove that aM (X) is dense in Hy, L(X ), noticing that each (¢, M)-atom

mol fin
isa (g, M,e)- molecule hence we know that H (p at in(X) C oY mol fin(X) and we
only need to show that H;”nfol 4 (X) C Hy(X). Let A e C and B bea (p, M, e)-

molecule associated with a ball B := B(xg, rg). Then there exists b € L?(X) such
that 8 = LMb and b satisfies Definition 4.4. Write

fX o(x, SLAB)(x)) dpu(x)

d d 1/2
<Z/ (x |A|{/ / [PLe ™ GBS, “(” t} )du(x)
d(x,y)<t X, D)t

172 o S
+Z/ (x |x|{/ / } )d,u(x)::ZEj—l—ZFj. (4.15)
d(xy)<t =0 j=0
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For each j € Z, let B; := 2/ B. Then

(o) rp ) ’
Ej= Z/ w(x, |A|{/ / P Le™  (xu,8) B) ()|
k=0 Uk (Bj) 0 d(x,y)<t ’

du(y)di)'? R -
xm} )du(x)_.gEk,]. (4.16)

From the assumption ¢ € RHy/2—;(y))(X), Lemma 2.8(iv) and the definition
of I(p), we deduce that, there exists p; € [1(¢), 1] such that ¢ is of uniformly

upper type p; and ¢ € RHy/o—p,)(X). Furthermore, by € > ”[?((5)) — l] and

M>Z [% — —] we know that, there exist py € (0,i(¢)) and go € (g(¢), 00) such

that € > n(— - —) and M > (— — —) Moreover, from the definitions of i (¢) and
q(p), we 1nfer that @ is of umformly lower type pz and ¢ € Ay, (X).

When k € {0, ..., 4}, by the uniformly upper type p; and lower type p» properties
of ¢, we see that

Ek’j

AN

Ixs10h ey /U o P HXB 1  0) [SLGrosn HY]” o)
k

J
+ X1 /U o L X o (81 ey B 0) )
k(B

=:Gg,j +Hy ;. 4.17)

Now we estimate Gy, ;. By Holder’s inequality, the L?(X)-boundedness of Sy,
¢ € RHy/2—p,)(X) and Lemma 2.8(vii), we conclude that

Pl
2 2
Gr.j S IxBlI7e {f [SLCw; ) B)(0)] dM(X)}
Ur(Bj)
2-py
2

2
x { / [o(x, IMIXBI s )] dM(X)}
Uk(B;)
S 1812 e I1B17S 1 [ (25 B) ™ 0 (25 B, Al x5 17, )
~ WXBI Lo ) 1P 2 20y L ¢ AMIXBI Lo ()
<2° Jplez(k+1)n(q0—— (B, |)‘|”XB”Z‘/£(X))
_i _n(40 _1 _
~ 2Oy (B M X L ) (4.18)
For Hy j, similarly, we see that Hy j < 27/721¢=n@0/p2=1 /Dl (B, A] [l x5l g ))-
which, together with (4.17), (4.18) and p; > p», implies that, for each j € Z and

ke{0,...,4},

i fe—n(90 _1 B
Erj <27 P20 (B s 1 L ) - (4.19)
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When k € N with k > 5, to estimate Ey ;, for x € X, let

rp d d 1/2
Sprp(x) = {/ / |t?Le™ L(XU,(B),B)()’)PM} )
0 d(x,y)<t t)t

Then from the uniformly upper type p; and lower type p, properties of ¢, it follows
that

Etj S IxBle f @ (x, MBI o ) [S2.rp (0] dpa ()
Uk(Bj)

k(Bj

+ ”XB ”L‘/’(X) / (/)(X, |)"|||XB||Z¢'1(X))[SL,}’B (x)]p2 d,u(x)
Uk(Bj)
=:I,; + Ky ;. (4.20)

For each k, j € Z, let Ux(B;) :={y € X : 2/722krp <d(y,xp) <2/712%rp).
It is easy to see that, when k > 5, dist(U; (B), Uk(B ) 2 2k+/r3 Take s € (0, 00)

such that s € (n[ q" — —] 2M). Now we deal with the term I;_;. To this end, by (2.5),
we see that

/ [SL.rs 0] dia ()
Uk (Bj)

Z/ / / 2 (XU (B)ﬁ)(y)}zﬂdu(x)
Ux(Bj) JO  Jd(x,y)<t Dt
SO et mpoP S

0 JUuB) t

B [dist(U;(B), Ux(B)) ), . > dt
< /O exp{_ — 181200,

~

S./ 272(k+j)s ”ﬁ ”%‘Z(Uj (B))’ (421)

which, together with Holder’s inequality, ¢ € RH;2—p,)(X) and Lemma 2.8(vii),
implies that

. P1 .
k k T 22k o
L S27¢ +’)p”llﬂ||L2(U ey 1XB 1Ly [ (27 B)] 2 0 (2 BL M8 0 )

" I ki [s—n(2 _1 _
<2 PR Gl Gl (B s ). (4.22)
Now we estimate Ky ;. From Holder’s inequality, (4.21), ¢ € RH;2—p,)(X) and
Lemma 2.8(vii), it follows that

2-pp
2

2
K j S { f [o (. I xB 1 o 1) ] 772 du(x)}
Uk(B))

P2
2 2
X ”XB”Z?(J(X){‘/I; . )[SL,VB(X)] d“(x)}
k\Dj
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. . _rn . _
S22 g 175 ) 181 3 [ (2 B) ] 2 0 (2 B s I o )

—i —nfo_1y _ _pd0_1
S 2Pl TR T o (B A s ) (4.23)

By (4.20), (4.22), (4.23) and p; > p», we know that, when k € N with £ > 5 and
J €Ly,

40

_i _pd0 _1 _ _n(d0_1
Ek,jf,z Jpalets—n(3) 2)]2 kpals—n (3 2)]‘P(B»|)\|||XB||Z<}(X))- (4.24)

Now we deal with F;. Write

ot oo
2 2
Fj = E / <P<X, |)»|{/ / |PLe™ L(XU,(B),B)(y)|
k=0 Uk(B)) rg Jd(x,y)<t .

du(y)dr)'? T =
xm} )dﬂ(x)_.;)lsk,,. (4.25)

When k € {0, ..., 4}, by the uniformly upper type p; and lower type p» properties
of ¢, Holder’s inequality, the L2(X)-boundedness of S; and ¢ € RHp/—p)) (X)),
similar to the proof of (4.19), we see that

—jpale=n(32—7)] -
Frj S27 7m0 (B M Xl fo v)- (4.26)

When k € N with k > 5, for any x € X, let

00 1/2
M+1 _2p 2 du(y)dt

Hy, (x)::{ / / 2L (g by ()AL
" rg d(x,y)<t|( ) B | V(x,t)t4M+1

Then from the uniformly upper type p; and lower type p» properties of ¢, it follows
that

Fij S IIXBlliL(X)/U " @ (x, 11BN o ) [ L, (0] dpa(0)

k(Bj)

+ s l7s /U - )<o(x, MBI o ey ) [HLrs (0] 7 dp ().
k(B

Similar to (4.21), we know that
2 —Die~— i —
| [ty @] di) €272 25 0 Bl
Uk(Bj)
Thus, similar to (4.24), we conclude that, when k e N with k > 5 and j € Z,

a0

—j (90 1y _ _1
Frj <2 Jpalets—n(32 2)]2 kpals—n (3 2)](P(B:|)~|||XB||Z¢]>(X))- (4.27)
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Then from (4.15), (4.16), (4.19), (4.24), (4.25), (4.26) and (4.27), we infer that
fX o (. IMSLBY0) dux) S @(B. 1M xs Iz ).

which implies that 1B, .x) < 1, and hence completes the proof of Proposi-
tion 4.9. O

4.2 Dual Spaces of Hy 1. (X)

In this subsection, we study the dual spaces of Musielak—Orlicz-Hardy spaces
Hy, 1 (X). We begin with some notions.

Let M € N and ¢ = LMy be a function in L2(X), where v € D(LM). Following
[51, 52, 57], for € € (0, 00), M € N and fixed xo € X', we introduce the space

MPEL)={p=L"ve L2(X): Bl g1y < oo},
where
M
18]y = Sup 2 [V o, D] s, n ey ;} L 2 3o, ) { -

Notice that, if ¢ € Mé’[’s (L) withnorm 1 and some € € (0, 00), then ¢ is a (¢, M, €)-
molecule adapted to the ball B(xg, 1). Conversely, if g is a (¢, M, €)-molecule
adapted to any ball, then g € M€ (L).

Let A, denote either (I 4+ t?L)~! or e L and f belong to the dual space
of Mé”*f(L), (Mg”'e(L))*. We claim that (I — A)M f € L} (X) in the sense
of distributions. Indeed, for any ball B, if ¢ € L2(B), then it follows, from the
Davies—Gaffney estimates (2.5), that (I — A,)My € MQ’I'E(L) for every € € (0, 00).
Thus, there exists a positive constant C(, rp, dist(B, x¢)), depending on #,rp and
dist(B, xg), such that

(£, (1 — An™My)|
< C([, erdiSt(37xO))”f”(Myvf(L))*”110”[‘2(3),

(1 = ADM £, 9)| :

which implies that (1 — A)M f e LIZOC(X ) in the sense of distributions.
Finally, for any M € N, define

M . M, *
M(p (X):= m (MW G(L)) ’
e>nlq(p)/i(p)—1/2]

where n, ¢(¢) and i (¢) are, respectively, as in (2.2), (2.12) and (2.11).

Definition 4.10 Let ¢ be as in Definition 2.4, L satisfy Assumptions A and B, and

M e N with M > %[?((Z)) — %], where n, g(¢) and i(¢) are, respectively, as in (2.2),




528 D. Yang and S. Yang

(2.12) and (2.11). A functional f € M} (X) is said to be in the space BMO)'; (X)
if

B2 12
1 Ismop, () = sup M{/ I _ergL)Mf(x)}ZdM(x)} -
oL sex llxBllLecxy LB

where the supremum is taken over all balls B of X.

By using Davies—Gaffney estimates (2.5) and the uniformly upper type and lower
type properties of ¢, similar to proofs of [52, Lemmas 8.1 and 8.3] or [57, Proposi-
tions 4.4 and 4.5], we obtain the following Propositions 4.11 and 4.12. Here, we omit
the details.

Proposition 4.11 Let ¢, L and M be as in Definition 4.10. Then f € BMOS)’{L X) if
andonly if f € M{,}”(X) and

[u(B)]'/?
sex IxBllLecx)

1/2
{/ (1= +r%L)‘1)Mf(x>|2du<x>} <00,
B

where the supremum is taken over all balls B of X. Moreover, the quantity appeared
in the left-hand side of the above formula is equivalent to || f ”BMOML( X
0.

Proposition 4.12 Let ¢, L and M be as in Definition 4.10. Then there exists a posi-
tive constant C such that, for all f € BMO(’;{L X)),

[w(B)]'/? { f 2, pdup)de) '
p—— L) e M) ———— <ClfllgmoM, (xy
pcx IxsllLecx §|( ) | t BMO, ; (X)

where the supremum is taken over all balls B of X.

The following Proposition 4.13 and Corollary 4.15 are a kind of Calderén repro-
ducing formulae.

Proposition 4.13 Let ¢, L and M be as in Definition 4.10, € € (0, 00) and M eN
with M > M + € + % + g?((;f)), where N, n, q(¢) and i(p) are, respectively, as in
(2.3), (2.2), (2.12) and (2.11). Fix xo € X. Assume that f € Mé’I(X) satisfies

B —1\M 2
/ (I — I+ L))" f(x)] dpu(x) < 00 (4.28)
X

1+ [d(x, x)]N+e+2nd0/p2

for some qo € (q(¢), 00) and p> € (0,i(p)). Then for all (¢, A?)-atoms o,

=8y [ (1)t prLe Tam MO,
X'%(0,00) p

~ . .. . . ~ _ 942
where Cyy is a positive constant satisfying Cy fooo 2M+D) g2t % =1.
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The proof of Proposition 4.7 is a skillful application of the Davies—Gaffney esti-
mates (2.5), the Ho-functional calculi for L and the uniformly upper type and lower
type properties of ¢, which is similar to that of [57, Proposition 4.6]. We omit the
details here.

To prove that Proposition 4.13 also holds true for all f € BMO:Z 1 (X), we need
the following dyadic cubes on spaces of homogeneous type constructed by Christ
[20, Theorem 11].

Lemma 4.14 There exist a collection of open subsets, {ngl CX: keZ,aeli},
where I denotes some (possibly finite) index set depending on k, and constants § €
0,1),a9€(0,1) and Cg € (0, 00) such that

(i) pX\U, 0% =0forallkei;
(ii) if i > k, then either Qi, C Qf or QN Q% =0;
(iii) for each (k, o) and each i < k, there exists a unique B such that Q’é - Qig;
(iv) the diameter of QX < Ce8%;
(V) each ng[ contain some ball B(zf;, apd®).

From Proposition 4.13 and Lemma 4.14, we deduce the following weighted ver-
sion of [57, Corollary 4.3].

Corollary 4.15 Let ¢, L and M be as in Definition 4.10, € € (0, 00) and M e N with
M>M+e+ % + "z‘l.’(((f)), where N, n, q(¢) and i(p) are, respectively, as in (2.3),
(2.2). (2.12) and (2.11).

Then for all (¢, M)-atoms o and f € BMOS;{L X),

(f.0)=Cu / (PL)" L f ()2 Le Lo L0
X'x(0,00) P

where GM is as in Proposition 4.13.

Proof From M > M + ¢+ % + 'Z’((;f)) , we deduce that there exist gg € (g(¢), 00) and
p2 € (0,i(g)) such that M > M + € + %+%. Letee (0,.M —M — % — 500).
By Proposition 4.13, we only need to show that (4.28) with such € holds true for all
fe BMog{ 1 (X).

Let all the notation be the same as in Lemma 4.14. For each j € Z, choose k; € Z
such that Ce8%i <2/ < C¢8%i~1. Let B := B(xg, 1), where x is as in (4.28), and

Mj = {B €Iy, : QF N B(xo. Ce8“ ") £ 0.
Then for each j € Z,

U;(B) C B(xo.Ces"1 ") C | ] OF C B(x0.2C68% 7). (4.29)
ﬂEMj
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From Lemma 4.14, it follows that the sets {Ql;0 }gem; are disjoint. Moreover, by (iv)
and (v) of Lemma 4.14, we know that there exists zlg’ € Q'g’ such that

B(2y . aps) C O € B(zy. C8%) C B(2y. 1). (4.30)

Then by Proposition 4.11, we know that

_ —1\M 2 1/2
H_{/ [ —U+L)"H" f(x)] J (x)}
X

T Jx T+ [d(x, xo) Vet 2na0/p2

_ —I\M 2 1/2
{ / (I =T+ L))" )" f(0)l J (x)}
U

j(B) 1+ [d(x, xo)]N+e+2n4q0/p2

JELy

1/2
Z 2—JL(N+€)/2+nqo/ p2] { Z / I—(I+L) 1] f(x)| du(x)}

=
iz, BeM;

< Z 2—][(N+e)/2+nqo/l72]{ Z [M(B(Z];}O’ 1))]_1
j€Z+ ﬁEMj

172
2 2
X ”XB(sz l)HL‘ﬂ(X)”f”BMOM (X)}

24 —-1/2
> otz pa [ (B, )] T Y 1o 1y o) 1f Tmsiop, oy
JELy BeM;

A

4.31)

It follows, from the choice of kg, that 8% ~ 1, which, together with the definition
of ¢, implies that ”XB(ZI;O,])””(X) ~ ”XB(ZZO,aOa"O)””(X)' By this and (4.30), we

conclude that

> X0 1 ey ~ > 10 gt I1270)
BeM; BeM;

N Il x ko”L‘ﬂ(X) llx ko llLe ()
ﬁg Upew; 2

~ ”XB(X(),ZC()Bkj_l)”LW(X) 5 ||X2jB||LW(X)' (432)

Moreover, by qo € (¢(¢), 00), the uniformly lower type p, property of ¢ and
Lemma 2.8(vii), we conclude that, for all j € Z,

1
X, — du(x)
,/2.f3 <P< 2inao/p2 || y g ||L¢’(X))
©w(2/B)

q0
<27/M0g(27 B, ”XB”L‘/’(X)) 2- f”‘f‘){m} (B, IIXBIIZJ(X))W,

which implies that || x,j g llLe(x) S 2/7490/P2 || y | Lo (xy- From this, (4.31) and (4.32),
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we deduce that
-1/2
HS [V (Bo. D)™l e 1 lpwiop, ) < 0.
which completes the proof of Corollary 4.15. 0

Now we prove that BMO(’/‘)’{L (X) is just the dual space of Hy 1 (X) by using Corol-
lary 4.15.

Theorem 4.16 Let L satisfy Assumptions A and B, ¢ be as in (2. 4) with (NS
RH3/12—1(p)1(X) and I((p) being as in (2.10), M € N with M > [1(<p) ] and

M eNwith M > M + + nq((p; where n, N, q(¢) and i (@) are, respectively, as in

(2.2), (2.3), (2.12) and (2 11) Then the dual space of Hy 1 (X), (Hy,1(X))*, coin-
cides with the space BMOM o.L (X)) in the following sense:

(i) Let g € BMOM 1 (X). Then the linear functional €, which is initially defined on

zp at ﬁn(X) by

L) =(g, f), (4.33)
has a unique extension to Hy, 1 (X) with €1l (a,, ) < C”g”BMO%L(X)’ where

C is a positive constant independent of g.
(i1) Conversely, let € € (n[q(p)/i(¢) — 1/2],00). Then for any £ € (H(p L(X)N*,
there exists g € BMOM 1. (X) such that (4.33) holds true for all f € HM mol fin ()
and ||g||BMO<’;’{L(X) < CHEH(H%L(X))* where C is a positive constant mdependent

of L.

Proof Let g € BMO . (X). Forany feH, at fin

that 2Le~""L feT, (X x (0, 00)). From this and Theorem 3.1, 1t follows that there
exist {A;}; CC and T, (X x (0, 00))-atoms {a;}; supported in {B }j such that (3.2)
holds true. Moreover, by the uniformly upper type p; property of ¢, we know that
2141 S A({xjaj}j), where A({Ajaj})) is as in (3.2). This, together with Corol-
lary 4.15, Holder’s inequality, and Proposition 4.12, yields that

(X), by Proposition 4.9, we know

g, f)l = 'CM/ / 2L Me " Lg(x)i2Le~ L f(x )d’“‘(x)dt

d
SZIMI/O /X|(t2L)Me_t2Lg(x)aj(x»t)|%

1/2
2L zd,bb(x)d[
<ZM |uajnrz<xxw>{f3 [GARE16]

J

< Z 518 lsvon, ey S A(4j}) g lBpoy, )
J

—12L
S ”t Le f”Tw(Xx(O oo))”g”BMOML(X) ~ ”f”Hw L(X)”g”BMOML(X)’

which, together with Proposition 4.9, implies that (i) holds true.
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Conversely, let £ € (Hy,(X))*. If g € MJ(L), then g is a multiple of a
(¢, M, €)-molecule. Moreover, if € > n[g(¢)/i(¢) — 1/2], then by Proposition 4.9,
we see that g € Hy, 1 (X), and hence Mg”’e(L) C Hy,1(X). Therefore, £ € ./\/lg”(X).

Moreover, for any ball B C X, let ¢ € L?(B) with

16120 < [LB] X817 )

and = (I — (I +r3L)""YM¢. Obviously, B = (rzLYM (I + r3L)"M¢ =: LMp.
Then from the fact that (I + rlz;L)_1 satisfies the Davies—Gaffney estimates (2.5)
with [dist(E, F )]2 and t2, respectively, replaced by dist(E, F) and ¢, we infer that,
foreach j € Z4 and k € {0, ..., M},

k7 1\ k —(M—k
|(r5L) b“Lz(Uj(B))_rBM” 1= (1+r30) ) (1 4+r3L)” "0

dist(B, U;(B))

¢| L2(U;(B))

—j 1/2 _
<27 [1(B)] P81 1 -

where M € N and 2M > n[q((p)/l(go) — 1/2]. Thus, Eis a multiple of a (go, M, e€)-
molecule. Since (I — (I + rBL) My is well defined and belongs to L (&) for
every t € (0, 00), by ||,3||H LX) S'1, we know that

I)M

(1 =(r+r5L) ™) e o) =[{e. (1= (1+r52) ™) 9)| = e B < el e

which further implies that

B2 . 2
%{/’("(’“@ 1)M‘3<x>|2du<x>}

< osup

1y m [r(B)12¢
<E’ (I—(1+rpL) )" ———)| €1l (h,, p (2))*-
191125 <1

lxBllLex)

From this and Proposition 4.11, it follows that ¢ € BMO% 1. (X), which completes the
proof of Theorem 4.16. O

Remark 4.17 By Theorem 4.16, we know that, for all M € N with M > 4[44 — 1,

the spaces BMOé’{ 1. (X) coincide with equivalent norms; thus, in what follows, we
denote BMO%L (X) simply by BMO,, 1 (&X).

Definition 4.18 A measure du on X x (0, 00) is called a ¢-Carleson measure if

(B2 12
ldullg = sup —————— /!du(x nlt  <oo,
Bcx IxBllLecxy

where the supremum is taken over all balls B C X" and B denotes the tent over B.
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Using Theorem 4.16 and Proposition 4.12, we obtain the following ¢-Carleson
measure characterization of BMO,, 1 (X), whose proof is similar to that of [57, The-
orem 4.2]. We omit the details.

Theorem 4.19 Let L satisfy Assumptions A and B, ¢ be as in Deﬁnmon 2.4 with

¢ € RHy/p—1(0)1(X) and I (¢) asin (2.10), and M € Nwith M > 5 [% — —] where

n, q(¢) and i(@) are, respectively, as in (2.2), (2.12) and (2.11). Then the followmg

conditions are equivalent:

(1) f €BMOy, (X);

) f e Mg’[(X) satisfies (4.28) for some qo € (q(¢), 00), p2 € (0,i(p)) and € €
(0, 00), and du ¢ is a ¢-Carleson measure, where du ¢ is defined by

d d
dper = (L) poo P

Moreover, ||f||BMOw,L(X) and ||dw g |, are comparable.

5 Equivalent Characterizations of H,  (X)

In this section, we establish several equivalent characterizations of the Musielak—
Orlicz-Hardy space Hy, 1 (X) in terms of the atom, the molecule and the Lusin-area
function associated with the Poisson semigroup generated by L. We begin with some
notions.

Definition 5.1 Let L satisfy Assumptions A and B, ¢ be as in Definition 2.4 and M €
N with M > %[?((g)) - %], where n, g(¢) and i (¢) are, respectively, as in (2.2), (2.12)
and (2.11). A distribution f € (BMO,, 1(X))* is said to be in the space H(%at(X) if

there exist {A;}; C C and a sequence {«}; of (¢, M)-atoms such that f = Zj Ajoj

in (BMO‘pyL(X))* and
)\‘ .
Z¢<ij7| i )<O°’
; I xB; lLex)

where, for each j, suppa; C B;. Moreover, for any f € H(/’,‘f’at(é\,’ ), its quasi-norm

is defined by || f |l ym x) = inf{A({A;;};)}, where A({Aja;};) is the same as in
@,at

Proposition 4.7 and the infimum is taken over all possible decompositions of f as

above.

Definition 5.2 Let L satisfy Assumptions A and B, ¢ be as in Definition 2.4, M € N
with M > %[?é"f)) — %] and € € (n[?((ﬁ)) — %], 00), where n, g (¢) and i (¢) are, respec-
tively, as in (2. 2) (2 12) and (2.11). A distribution f € (BMO,, 1 (X))* is said to be
in the space H 1(X) if there exist {A;}; C C and a sequence {8;}; of (¢, M, €)-
molecules such that f=>. j2jBjin (BMOg 1 (X))* and

A
Sl )
J

lxB; IlLecx)
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where for each j, B; is associated with the ball B;. Moreover, for any f €
(p mol (X) =inf{A({X;B;};)}, where

A({AjB;})) is the same as in Proposition 4.7 and the infimum is taken over all possi-
ble decompositions of f as above.

(&), its quasi-norm is defined by ||f||HMe

For all f € L?(X) and x € X, define the Lusin area function associated with the
Poisson semigroup of L by

dp(y)de)'?
Spf(x) :={/F evLe VT £ ()| “(y)t);} . G.1)

Similar to Definition 4.1, we introduce the space Hy s, (X) as follows.

Definition 5.3 Let L satisfy Assumptions A and B and ¢ be as in Definition 2.4.
A function f € H*(X) is said to be in Hy s, (X)if Sp(f) € LY(X); moreover, define

If 1, s, ) = ISP () llLecxy

= inf{k € (0, o0) :/ (p(x, M) du(x) < 1}-
X A

The Musielak—Orlicz—Hardy space Hy s, (X) is defined to be the completion of
Hy sp(X) in the quasi-norm || - ||H¢,sp (X

(X), HM¢ (X) and H, s, (X) co-

@, mol

We now show that the spaces Hy 1 (X), H,
incide with equivalent quasi-norms.

<pat

5.1 Atomic and Molecular Characterizations

In this subsection, we establish the atomic and the molecular characterizations of the
Musielak—Orlicz—Hardy space H,, 1 (X). First we need the following Proposition 5.4
whose proof is similar to that of [57, Proposition 5.1]. We omit the details.

Lemma 5.4 Let L satisfy Assumptions A and B and ¢ be as in Definition 2.4. Fix
t € (0,00) and B := B(xq, R). Then there exists a positive constant C(t, R, B), de-
pending on t, R and B, such that, for all ¢ € L*(B), tzLe_’2L¢ € BMOy, 1. (X) and

||t2L€_t2L¢HBMO<p.L(X) =CW R, §)H¢”L2(§).

From Lemma 5.4, it follows that, for each f € (BMO, 1 (X))*, tzLe_’sz is
well defined. Indeed, for any ball B := B(xp,rp) and ¢ € L*(B), by Lemma 5.4, we
know that there exists a positive constant C (¢, B), depending on ¢ and B, such that

(PLe™ £, ¢)] = |(£.2Le ™" Lo)| < C (&, Bl 20y £ MO, 1 00

which implies that 2Le~""L f € L2 _(X) in the sense of distributions.

loc
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Theorem 5.5 Let L satisfy Assumptions A and B, ¢ be as in Definition 2.4 with
¢ € RHy/p2—1())(X) and 1(¢) as in (2.10), M € N with M > 2[12 — L] and € €

i(p)
(n[% — —] o0), where n, q(p) and i(@) are, respectively, as in (2.2), (2.12) and

(2.11). Then the spaces Hy 1 (X), (p’at(X) and H(p,mol(X) coincide with equivalent
quasi-norms.

Proof By Theorem 4.16, we know that (Hy, 1 (X))* = BMO,, 1 (X), which, together
with Corollary 4.8, further implies that, for any f € H, 1 (X), its atomic decomposi-
tion (4.13) also holds true in (BMO,, 1 (X))*. Thus, H, 1 (X) C Hé‘f’at(X). Moreover,

since every (¢, M)-atom is a (¢, M, €)-molecule for all € € (n[’f(%) — %], 00), the in-

clusion H, at(2() C H(p mol(X) is obvious.

Let us finally prove that H(%rfol(X) C Hy,1.(X). Suppose that f € H%’neo] (X).
Then there exist {A;}; C C and a sequence {8;}; of (¢, M, €)-molecules such that
f= Zj AjBjin (BMOy, 1 (X))* and A({A;B;};) < oo.

For all x € X, from Lemma 5.4, it follows that

dt 1/2
(BED) Y (x, 1)t

2y 12
<ZA" Pi t2L6_12L¢>D V(xtm}

SL(NHx) = { /0 |PLe "t r 7

UG

161,20y <1\
2 qr V2
< 2Le "L B)), b }
Z{/O H¢\|Lz(3m))_1|( o >|) Vi(x, )t
< SL(GBHX).
j

By this, the proof of Proposition 4.9 and Lemma 2.2(i), we conclude that, for € €

([ %5 — 51, 00).

/X o(x, SL(H)) dux) Y /X o(x, SL(;B))(x)) dpa(x)
J

2] )
< 3o )
; s llec)

where, for each j, B; is associated with the ball B;, which further implies that
Il £l Hyp (X) S S A({A;B;};). Then by taking the infimum over all decompositions of
f as above, we see that

100 S 0 e ey

which completes the proof of Theorem 5.5. O
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5.2 The Lusin Area Function Characterization

In this subsection, we characterize the space Hy 1 (X) by the Lusin area function
Sp as in (5.1). First, by using the subadditivity and continuity of ¢, and the uni-
formly upper type p; property of ¢ for some p; € (0, 1], similar to the proof of [57,
Lemma 5.2], we obtain the following auxiliary conclusion. We omit the details here.

Recall that a nonnegative sublinear operator T means that T is sublinear and
T(f) >0 forall f in the domain of T'.

Lemma 5.6 Let L satisfy Assumptions A and B, ¢ be as in Definition 2.4 and M € N
with M > %[?((‘p)) - %], where n, q(¢) and i (@) are, respectively, as in (2.2), (2.12)
and (2.11). Suppose that T is a linear (resp., nonnegative sublinear) operator which
maps L*(X) continually into weak-L*(X). If there exists a positive constant C such

that, for all » € C and (¢, M)-atoms «,

A
/ o(x. T00) (1)) du(x) 5c¢<3, L) (52)
X IxBllLexy

then T extends to a bounded linear (resp., sublinear) operator from Hy [ (X) to
L?(X); moreover, there exists a positive constant C such that, for all f € Hy 1 (X),

ITf Loy < Cllflla, x)-

Theorem 5.7 Let L satisfy Assumptions A and B, and ¢ be as in Definition 2.4 with
¢ € RH 2 1(p)1(X) and 1 (@) as in (2.10). Then the spaces Hy 1 (X) and Hy s, (X)
coincide with equivalent quasi-norms.

Proof We first prove Hy 1 (X) N H*(X) C Hy sp(X)N H?(X). From (2.7), it fol-
lows that Sp is bounded on LZ(X). Thus, by Lemma 5.6, to prove that Hy 1 (X) N
H?(X) C Hy,s,(X) N H*(X), we only need to show that (5.2) holds true with

T := Sp, where M € N with M > %[%‘Z’; — %]. From (2.5), the subordination for-
mulae associated with L (see, for example, [57, (5.3)]) and the uniformly upper type
p1 € [1(¢), 1] and lower type ps € (0,i(¢)) properties of ¢, similar to the proof of
(4.5), we can show (5.2) holds true with T := Sp. We omit the details.

Conversely, we show that Hy s, (X) N H*(X) C Hy, 1 (X) N H*(X). Let f €
Hy sp(X) N H?(X). Then t\/Ze_“/zf € T,(X x (0,00)), which, together with

Proposition 4.6(ii), implies that my, L(t\/Ze_’ ﬁf ) € Hy 1 (X). Furthermore, from
the Hy functional calculi, we infer that

~

f= g—wﬂw,L(l\/ze_tﬁf)

'4

in L2(X), where E‘W is a positive constant such that 5,1, fooo lI/(t)te_“i—’ =1 and

Cy is as in (4.2). This, combined with mp,L(t\/Ze_“/zf) € Hy, [ (X), implies that

f € Hy 1 (X). Therefore, we know that Hy, s, (X) N H*(X)C Hy 1 (X)N H2(X).
From the above argument, it follows that H, s, (X) N H%(X) = Hy 1 (X) N

H2(X) with equivalent norms, which, together with the fact that Hy s, (X) N H 2(x)
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and Hy 1 (X)N H2(X) are, respectively, dense in Hy, s, (X) and Hy 1 (X), and a den-
sity argument, implies that the spaces Hy s, (X) and Hy 1 (X)) coincide with equiva-
lent norms. This finishes the proof of Theorem 5.7. g

6 Applications

In this section, we give some applications of the Musielak—Orlicz—Hardy space to the
boundedness of operators. More precisely, in Sect. 6.1, we prove that the Littlewood—
Paley g-function g is bounded from H, ; (X') to the Musielak—Orlicz space L? (X);
in Sect. 6.2, we show that the Littlewood—Paley g;-function g}i ;. is bounded from
Hy, 1 (X) to LY(X); in Sect. 6.3, we prove that the spectral multipliers associated
with L is bounded on Hy, 1 (X).

6.1 Boundedness of Littlewood—Paley g-Functions g,

We begin with the definition of the Littlewood—Paley g-function g; associated
with L.

Definition 6.1 For all functions f € L?(X), the g-function g; (f) is defined by set-
ting, for all x € X,

Ldr )\
T

gL (f)(x) = { fo PLe™ L ()|

To establish the main result of this subsection, we need the following Lemma 6.2,
which is a simple corollary of (2.7).

Lemma 6.2 Let L satisfy Assumptions A and B and gy be as in Definition 6.1. Then
gL is bounded on L2(X).

The main result of this subsection is as follows.
Theorem 6.3 Let L satisfy Assumptions A and B and ¢ be as in Definition 2.4 with

¢ € RHy/2—1(p))(X) and 1(@) as in (2.10). Then gy is bounded from Hy 1 (X) to
LY (X).

Proof Let M € N with M > %[q(‘a) - %], where n, g(¢) and i(¢) are, respectively,

i (p)
as in (2.2), (2.12) and (2.11). ”lihen there exist gg € (g(¢),00) and p> € (0,i(p))

such that M > %(% - %), ¢ is of uniformly lower type p; and ¢ € Ay, (X). We first

assume that f € Hy ;1 (X) N L2(X). To show Theorem 6.3, it suffices to show that,
for any A € C and (¢, M)-atom « supported in the ball B := B(xp, rp),

A
f w(x,gL(M(x))du(x)sgo(B, L) ©.1)
X lxBllLecxy
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Indeed, if (6.1) holds true, it follows, from Proposition 4.7, that there exist {A;}; C
C and a sequence {«;}; of (¢, M)-atoms such that f =3 ;Aja; in Hyr(X) N
L?(X) and A({rjaj}p) S ||f||H¢.L(X), which, together with Lemmas 6.2 and 2.6(i),
and (6.1), implies that, for all A € (0, 00),

/}((p(x gr(fHx )>d o )<Z/ ( gL (hj aj)(x))du(x)

Tl i)

"l ey

where, for each j, suppa; C B;. By this, we see that |g7 () llLex) S A{rjaj} ) S
I/, x)- Since Hy p (X)N L2(X) is dense in Hy, 1 (X), a density argument then
gives the desired conclusion.

Now we prove (6.1). First we see that

/ o(x, gL O) (X)) dux) = Y / ¢ (x, IMgL(@) () dpu(x) =: Y Hj.
X JE€Zy JEZy
(6.2)
From the assumption ¢ € RHp 27 (4)](X), Lemma 2.8(iv) and the definition of
I (p), we infer that, there exists p; € [/ (¢), 1] such that ¢ is of uniformly upper type
p1 and ¢ € RHp,2—p)(X). When j € {0, ...,4}, by the uniformly upper type p;
property of ¢, Holder’s inequality, ¢ € RHy/>—,)(X) and Lemmas 6.2 and 2.8(vi),
we know that

A
= [ ¢<x, L)(l + [sL@ sl ] due)
U;(B) I xBIlLe )

; x| )
Sel2/B,————— )+ Ixsll7y 3 llgr @)1}
~ @ y XB 8L

( x5l Lex) Lo L2

2-pg
2

x {fz,B[w(x, Ml ) |77 du(x)}

< (p(ZjB, L)
lxBlLe )

A
< so(B, #) 6.3)
lxBllLecx)

When j € N with j > 5, from the uniformly upper type p; and lower type p»
properties of g, it follows that

H;

A

s 155, /U P R8I ) [ @] i)

j
+|IXBIIii(X)f ( )w(x,I/\IIIXBIIZJ(X))[gL(a)(x)]”du(x)
Uj(B

=:E; +F;. (6.4)



Musielak—Orlicz—Hardy Spaces Associated with Operators 539

To deal with E; and F;, we first estimate ij(B)[gL (a)(x)1? dju(x). By the defini-
tion of g;, we see that

B 2 d
fU .(B)[gL(axx)]zdu(x): /O fU oL La@)| dp S+ f
J J r

B

0]

(6.5)

Take sg € (0, 00) such that sg € (n[% — %], 2M). From (2.5), we infer that

B dt
/ / |t2Le_’2La(x)|2d/L(x) —
o Ju; !

B Q@irp)?), ., dt

< — _
~ /(; exp{ C3[2 ||a||L2(B) P

rp 2s0 )
<7 A2, 22
~Jo @irg)2o ¢ L2(B) L2(B)

S270uB sl vy (6.6)

Moreover, by the definition of o, we know that there exists b € L2(B) such that

a=LYpand ||b|l;2p) < r%M[/JL(B)]l/QHXBHZJ(X). From this and (2.5), it follows
that

o0 dt
/ / |t2Left2La(x)|2d,uv(x)—
rg JU;(B) !

o0
2 \M+1 _g2p 2 dt
= t°L e b(x)| " dux) ——
[ G P ano) e
00 j 2
2/rp) 2 dt
S/r exp{_ C3t2 ||b||L2(B) t4M+1

B
00 2s0
S i v | 1912
~ e (2jrB)2S() t4M+1 L>(B)
—-2j -2
Sz jSO/’L(B)”XB”Lw(X)’

which, together with (6.5) and (6.6), implies that

/ [2L(@™)]* dun(x) S 2720 u(B)llxsl 12 ) 6.7)

U;(B)

Thus, by Holder’s inequality, (6.7), ¢ € R, 2—p,)(X) and (2.2), we conclude that,
for all j € N with j > 5,
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2-py
2
||xB||L¢(X){ f [o(x. 111x8 158 )] 77 du(x)}
2/B

Jan
2

x { / [gm)(x)]zdu(x)}
U;(B)

. 1_ ; _1
<2 P[] [w(2 B) [ 2 (B. 1Ml xa I s )

—ipilso—n(dQ —1y] _
<27 PGy (B s I - 6.8)

Similarly, by using Holder’s inequality, (6.7), ¢ € RHy/2—p;)(X) C RHz /2 p,) (X)
i ('
and Lemma 2.8(vii), we see that F; < 277207720, (B |31 x511 )} ). which,
together with (6.8), (6.4) and p;| > p,, implies that, for each j € N with j > 5,
—ipalso— a0 1 ] _
H; <2770 Do (B Al xs 11 )

From this, so > n(q" — —) (6.2) and (6.3), we infer that (6.1) holds true, which
completes the proofp of Theorem 6.3. g

Remark 6.4 When X :=R", L is a nonnegative self-adjoint elliptic operator in
L%(R") and ¢ as in (1.2) with w = 1 and @ concave, Theorem 6.3 was obtained
in [58, Theorem 7.1].

6.2 Boundedness of Littlewood-Paley g5-Functions g} ;

In this subsection, we establish the boundedness of the Littlewood—Paley g -function
g;f’ ;, associated with L from Hy, 1 (X) to L?(X’). We begin with the definition of the
Littlewood-Paley g3 -function g ;.

Definition 6.5 Let 1 € (0,00) and L satisfy Assumptions A and B. For all f €
L?(X), the g5 -function associated with L, g5 ; (f), is defined by setting, for all
xedk,

2Pl zdmy)dr 12
stann= ([ f [ PG

To prove the boundedness of g;‘y ; from Hy 1 (X) to L?(X), we need the following
auxiliary conclusion.

Lemma 6.6 Ler o € (0, 00) and

d d 1/2
SE(H) _{/ /B( JRree g M(y) z}
xal

x, )t

forall f € L*(X) and x € X. Then there exists a positive constant C such that, for
all f e L*(X), 1S¥(Nll2exy < Ca™2(1 4+ )N/ fll 2(x), where n and N are,
respectively, as in (2.2) and (2.3).
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Proof By the definition of S¢, Fubini’s theorem, (2.2), (2.3) and (2.7), we see that

d d
1S5 22y = // /B( e P A M(y) ! o
x,at

- dp(x) du(y)de
1 Nf/ / Le 2L 2
=+ s IO

5a”(1+a)N/ /|t2Le_’2Lf(y)|27du(y)dt
0o Jx t

Sa" U+ N f 117200

which is desired, and hence completes the proof of Lemma 6.6. |
Now we give the main result of this subsection.

Theorem 6.7 Let L satisfy Assumptions A and B, ¢ be as in Definition 2.4 with
¢ € RELya— (o)) (X) and () as in (2.10), and 1 € ([2nq(¢) + N1()]/i(p), 00,
where n, N, q(¢) and i(p) are, respectively, as in (2.2), (2.3), (2.12) and (2.11). Then
the operator g;f’L is bounded from Hy | (X) to LY (X).

Proof Let M € N with M > %[?(%)
where n, N, q(¢), I(¢) and i(p) are, respectively, as in (2.2), (2.3), (2.12), (2.10)
and (2.11). Then by the assumption ¢ € RHj/2—/(y)](X), Lemma 2.8(iv) and the
definitions of g (¢), I (¢) and i(p), we know that, there exist go € (g(¢), 00), p1 €
[Z(¢), 1] and p; € (0,i(¢p)) such that M > (— — —) A > (2nqo + Np1)/p2, ¢ is
of uniformly upper type p; and uniformly lower type p2, and ¢ € RHyp/0—p (X)) N
A4y (X). To show Theorem 6.7, similar to the proof of Theorem 6.3, it suffices to
show that, for all y € C and (¢, M)-atoms « supported in the ball B := B(xp, rp),

171
/ o(x. gl L (re)(®) dp(x) S 90(3, ). 6.9)
X lxBllLex)
In order to prove (6.9), it suffices to show that, for all k € Z,
. k92 (- 2tV ¥l
/Xgo(x, 27 (ya) () dpo 27 74T m %o( Tl ) €10

Indeed, if (6.10) holds true, from the definition of g;‘ 1 » it follows that, for all x € X,

81 (yea)(x)

Le—"L 2 d,u(y) dt 2_“/ /
{/ ./B(x z)|t e el )| V1)t Z B(x2"t)

o0
_ k
S 2MSE (v (x),
k=0
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which, together with (6.10), Lemma 2.6(i) and A > (2nqo + Np1)/p2, implies that

/X o(x, g5 L (rea) (@) du(x) S /X ¢ (6. 279252 (ya) () dpu(x)
k=0

2nqp+Np

o 2 ) -1
32 7 (B Iy lllxsl o)
k=0

A

S (B, Iy llxsll s )

Thus, (6.9) holds true.
Now we prove (6.10). For each k € Z, let By := 2%B. Then

f(p(x,Z_k)‘/zSzk(ya)(x))du(x)=Z (6.11)
X =0 U;(Bx)

For j € {0, ..., 4}, then by the uniformly upper type p; and lower type p, properties

of ¢, Holder’s inequality, ¢ € RH,2—p,)(X), Lemmas 6.6 and 2.8(vi), we know
that, forall k € Z,

/U o 279252 (ya) (1)) d e (x)
j (Bk

— — k
5/{}(3)90()5,2 Ry e Lo (1+ [SE @ lxsllen]™) dux)
j (DK

S27M G (270 B 1y llxsl 0 )

Pl
2
+2—“P2/2||XB||€;(X>{ / [S%k(a><x>]2dﬂ<X>}

J (By)

-1

2

2
x { / [o (e, Iy lixsl o x) ] 77 dM(X)}
Uj(Bi)

kipy  k(n+N)pg
kxpy p pi
2 2 ||a||L12(X)||XB||Lw(X)

<SR 0 (B, |y sl ) +27
. _P1 —
x [ B)] " 2 [w(B)] o (B. 1y X8l 1)

k(2 o NP1 _
S22 000 (B, 1y xsll o) (6.12)

When j € N with j > 5, from the uniformly upper type p; and lower type p>
properties of ¢, we deduce that, for all k € Z .,

/U i )go(xv2*"*/282k<ya><x))du<x>
j(Bk

— _ k
S22 e ) / o (x, 171Xl o) [ST @] dpu(x)
U;(Bk)

Jj\ Bk
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_ _ k
+ 27922 122 f o PG P ) [T @] e
_] k

=Hj+1j¢. (6.13)

To estimate H; ; and I x, we need to estimate ij(Bk) |Sl%k (@) (x)|? dp(x). We first
see that

/ [52 (@) ()] die(x)
U;(By)

d dt o
/ / / |t Le~! L( )y )|2 M(y) —d w(x )+/ /
Uj(By) B(x,2k1) X, 1) t Uj(By) Jrg

=:Jjr +Kji. (6.14)

Take s € (0, o0) such that s € (n[— — —] 2M). Moreover, for each j € N with j >

5and k € Zy, let Uj(By) :={z € X 21722 < d(z,xp) < 2/t12%rp}. Then for
any x € U;(By), t € (0 rp)and y € X withd(x,y) < 2k¢, we see that y € U (Bg).
From this, (2 3), Fubini’s theorem and (2.5), it follows that

'B d dt
Tk < 2k<N+">/ /~ |;2Le—t2L(a)(y),2ﬂ
U; (B !

k(N 2 = *[ZﬁkrzB]z 4 2jsn—k(2s—N 2
S 2N a7, / e Gf 2TV, 4y (6.15)
0

Furthermore, by the definition of «, we know that there exists b € L?(B) such that
a=LMband |bl| 2y < rg[n(B)] I/ZHXBHLV’(X) From this, we deduce that

2/'*31’3 ) d
- M()’) dt
K‘,kS/ f / 2L e L) (y >2 du(x)
’ Uj(By) Jrp B(x,2"t)|( ) ’ X, 1) t4M+1

o
+f [ =K1 + Kk (6.16)
Uj(By) J2773rg

We first estimate K 1. Let x € U;(B), t € [rg, 2/ 73rp) and y € X with d(x, y) <
2Kt. Then

d(y,xp) <d(x,y) +d(x,xp) <2¥t +2/2krp <2/ F10kpp
and
d(y,xp) > d(x,xp) —d(x,y) =2/ " 12krp — 27 730krp > 27730k

From this, (2.3), Fubini’s theorem and (2.5), we infer that

27 rp du(y)dt
g < 2k 2\ M+ 2L 2du(y)dt
Kjir1 52 / /if(Bk)|(t L))" e b)) AMH1
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0j-3 (273,52 di
K(N+R) 115112 a2
52 ||b||L2(B)/ e 3t I4M+l
]
—2jsn—k(2s—N—n) -2
S279%2 M(B)”XB“Lw(X)- (6.17)

For K k2, by (2.3), Fubini’s theorem and (2.5), we see that

© d
-2
Kjx2 S 22XV b11T, 4 f e S22 NI LB x84 s

which, together with (6.17) and (6.16), implies that, for all j € N with j > 5 and
ke Z+,
Kjx S 27225 N (B xs Il -

From this, (6.14) and (6.15), it follows that, for all j € N with j >5and k € Z,
k 2 2 _
/ [ST @] dux) 272V u(B)lxl 7 x)  (6:18)
Uj(Bi)

By (6.18), Holder’s inequality, ¢ € RHy,2— p,)(X) and Lemma 2.8(vii), we conclude
that

2-py
2

_2
Hie <2 P lxal?p [o(x. 17 1IxB I h )] 77T dp(x)
(B) U (X)

J(Bk)
n
k 2
x {/ [S7 () ()] du(x)}
Uj(Bk)
__ k(N + k(N+n)py i -2 A -
<P pmismp Tt [1(27H*B)]" 2 [w(B)] > qo(ﬂ(B,|V|||XB||L¢1’(X))
— N kpy(k—1d0 NPy
<2 —jpils— n( 2)2 kp2 (3=~ 25y go(B |V|||XB||L¢(X)) (6.19)

For I i, similar to (6.19), we see that

2—py
2

_2
L <27 P lxsll [o(x. 17 1xB I e )] 772 du(x)
(B) U (X)

_](Bk)
P2
2

x { / [Si"(ya>(x)]2du<x)}
U;(Bx)

(+)p2

. n n_
<o Bt [ (2’+l‘15’)]q0 T [uB)] T " 0(B. Iy llxsll e x))

"o (B Iy lIxsI7 x):
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which, together with (6.11), (6.12), (6.13), (6.19), p1 > p> and s > n(— — _) im-
plies that

kpz O 2nqp+Np )

— k  py -
/X(p(x,g /262 (ya) () dpu(x) <2 7 o(B v llxs o)

From this, we deduce that (6.10) holds true, which completes the proof of Theo-
rem 6.7. O

Remark 6.8 We remark that when X :=R” and L := —A, g;"L is just the classical
Littlewood—Paley g} -function.

Let p € (0,1], w € A;(R") with g € [1, 00) and ¢(x, 1) := w(x)t? for all x € R"
and ¢ € [0, 0c0). We point out that, in this case, the range of A in Theorem 6.7 coincides
with the result on the classical Littlewood—Paley g} -function on R” (see, for example,
[1, Theorem 2]).

From Theorem 6.7 and the fact that S (f) < gI’L(f) pointwise for all f € L2(X),
we immediately deduce the following Littlewood—Paley g}-function g;\"’ ;. Character-
ization of Hy 1 (X).

Corollary 6.9 Let L satisfy Assumptions A and B, gk ;. be as in Definition 6.5 and
@ as in Definition 2.4 with ¢ € RHy/pp—1(p)(X), where 1 (p) is as in (2.10). As-
sume further that A € ([2nq(¢) + N1 (9)1/i(¢), 00), where n, N, q(¢) and i(¢) are,

respectively, as in (2.2), (2.3), (2.12) and (2.11). Then f € Hy, (X) if and only if
gi"’L(f) € L?(X); moreover, I f Wk, L) ~ IIg;f’L(f)IIL«z(X) with the implicit con-
stants independent of f .

6.3 Boundedness of Spectral Multipliers

In this subsection, we prove a Hormander-type spectral multiplier theorem for L on
the Musielak—Orlicz—Hardy space Hy 1 (X). We begin with some notions.

Let L satisfy Assumptions A and B, and m(L) be as in (1.1). Let ¢ be a nonnega-
tive C2° function on R such that

supp¢ C (1/4,1) and Zd) Z)L =1 forall A € (0, 00). (6.20)
LeZ

Let s € [0, 00). Recall that C*(R) is the space of all functions m on R for which
> i—osup;er MO M1, sely,

Imllcs ) == ) ) o
Im SN Lips—1s)) + Dofo SUPser MO V)1, s €Zy

is finite, where m®, k € N, denotes the k-order derivative of m, and [l LD Lip(s—Ls))
is defined by

[m LD (x) —m D (y))
sup .

”m x,yeR,x#y lx — y|S7LSJ

(LSD”Lip(s—LsJ) =
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Now we state the main result of this subsection as follows.

Theorem 6.10 Let L satisfy Assumptions A and B and ¢ be as in Definition 2.4 with
¢ € RHy/121(4))(X), where I(¢p) is as in (2.10). Assume that ¢ is a nonnegative

CX(R) function satisfying (6.20). If the bounded Borel function m : [0, 00) — C
a(g) _

satisfies that, for some s € (n[3 © %], 00), where n, q(¢) and i(¢) are, respectively,
asin (2.2), (2.12) and (2.11),
C(p,s):= sup |l¢()m(t)|csw) + [m(0)] < o0, (6.21)
te(0,00)

then m(L) is bounded on Hy | (X) and there exists a positive constant C such that,
Sforall f € H, (X),

Im(L) fllg, L) < CIFlla, -

Remark 6.11 (i) A typical example of the function m satisfying the condition of
Theorem 6.10 is m(X) = 1Y for all A € R and some real-valued y, where i denotes
the unit imaginary number (see Corollary 6.13 below).

(i1) Theorem 6.10 covers the results of [38, Theorem 1.1] in the case when p €
(0, 1], by taking ¢(x, t) :=t? for all x € R" and t € [0, 00).

To prove Theorem 6.10, we need the following Lemma 6.12.

Lemma 6.12 Ler ¢ and L be as in Theorem 6.10, and m a bounded Borel function

and M € N with M > %[({((g)) — %], where n, q(¢) and i(@) are, respectively, as in

(2.2), (2.12) and (2.11). Assume that there exist D € (n[’{(((f)) — %], 00) and C € (0, 00)
such that, for every j € {2,3,...}, any ball B := B(xp,rg) and f € L>(X) with

supp f C B,

—r2INM —j
[ @) (1 =) | 2 my < €27 PN li2cm)- (6.22)
Then m(L) can extend to a bounded linear operator on Hy 1 (X). More precisely,

there exists a positive constant C such that, for all f € Hy 1 (X), |m(L) f|| Hyp(X) <
Cllf I, L)

Proof We borrow some ideas from [38]. Notice that since Hy 1 (X)NH 2(X) is dense
in Hy 1 (X), we can define m(L) on Hy, 1 (X)N H2(X). Once we prove that m(L)
is bounded from Hy, 1 (X) N H 2(X) to Hy 1 (X), by a density argument, we then see

that the operator m (L) can be extended to Hy 1 (X).
Let f € Hy1(X) N H2(X) and M € N with M > g[%) — 1. To prove the
desired conclusion, it suffices to prove that, for any (¢,2M)-atom o, m(L)x is

a constant multiple of a (¢, M, €)-molecule with € € (n[% — %], 00). Indeed, if

this holds true, by Proposition 4.7, we know that there exist {A;} C C and a se-
quence {a;}; of (¢, 2M)-atoms such that f = Zj Ajajin Hy 1 (X) N L%(X) and



Musielak—Orlicz—Hardy Spaces Associated with Operators 547

A({rjaj}p) S I/ | i, x)- From this and the L?(X)-boundedness of m (L), we infer
that m(L) f = Zj Aj(m(L)a;) is a molecular decomposition of m (L) f and

Im (@) fll gt ey S AR (m (L)) S A je)j) ~ 1 g 102

Let o be a (¢, 2M)-atom. Then there exists a function b € D(L*M) such that o =
L*Mp satisfies (ii) and (iii) of Definition 4.3. From the spectral theory, it follows that
m(L)oe = LM (m(L)LMb). Furthermore, by the definition of (¢, M, €)-molecules, it
remains to prove that, forall k € {0,..., M} and j € Z,,

k —j 1/2 _
[ (LY m@IL B 2y 5y S 277 TE BT 1811 (6.23)
From the L2(X)-boundedness of m (L), the Hao-functional calculi for L and (2.5),

similar to the proof of [38, (3.4)], it follows that (6.23) holds true. We omit the details
and hence complete the proof of Lemma 6.12. g

Now we give the proof of Theorem 6.10 by using Lemma 6.12.

Proof of Theorem 6.10 We borrow some ideas from [33, 38]. Since that m satis-
fies (6.21) if and only if the function A — m(A2) satisfies the same property, similar
to the proof of [38, Theorem 1.1], we may consider m(«/f) instead of m(L). By
m(x) =m(x) —m(0) +m(0), we know that m(v/L) = (m(-) —m(0))(v/L) +m(0)1.
Replacing m by m — m(0), without loss of generality, we may assume, in the follow-
ing, that m(0) = 0. Let ¢ be a function as in (6.20). Then for all A € (0, 0c0),

m\) = Z¢(2—fx)m(x) =: ng(,\).

LeZ LeZ

Moreover, from (1.1), it follows that the sequence ZL?N m¢(v/L) converges

strongly in LX) to m(\/Z). We shall prove that Z?]:_N m@(\/Z) is bounded on
Hy 1 (X) with its bound independent of N. This, together with the strong conver-
gence of (1.1) in LZ(X), the fact that Hy 1 (X) N LZ(X) is dense in H, 1 (X) and a
density argument, then gives the desired conclusion.

Now fix s € R with s > n[g(¢)/i(¢) — 1/2]. Let M € N with M > 5/2. For

any £ € Z, r, . € (0,00), we set Fyp (L) :=m)(1 — e~ MM ang FfM(/\) =
me(A)(1 — e=M*)M Then we see that

N
m(VL) (I —e )W = Fy (VL) = lim > FLWD (6.24)
{=—N

in L2(X). Fix a ball B. For all b € L?>(X) with suppb C B, by using the L*(X)-
boundedness of m(L) and (6.20), similar to the proof of [38, (4.8)], we know that,
forall £ € Z and j € N with j >3,

I FrlB,M(\/Z)b”U(Uj(B)) SC(g. 927 (ZZ’B)_S min{1, (ZZFB)ZM}HI’”LZ(B)’
(6.25)
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which, together with (6.24), s > n[g(¢)/i(¢) — 1/2] and M > s/2, implies that, for
all j e Nwith j >3,

2
[m(V/I)(1 —e rBL)Mb”Lz(Uj(B))

N

o - . M

<2778 Nh_r)nOo ZZN(erB) ’ min{1, (ZZFB) }||b||L2(B)

< 215|: Z (2€I’B)7S + Z (ZZVB)ZMA} ”b||L2(B)
{eeZ:2trp>1} {eez:2trp=1)

S2700bN 12

By this, we know that the assumptions of Lemma 6.12 are satisfied, and hence the
desired conclusion of Theorem 6.10 holds true, which completes the proof of Theo-
rem 6.10. O

In the following corollary, we obtain the boundedness of imaginary powers of
self-adjoint operators on Musielak—Orlicz—Hardy spaces Hy, 1 (X).

Corollary 6.13 Let ¢ and L be as in Theorem 6.10. Then for any y € R, the operator
L' is bounded on Hy 1 (X). Moreover, for any € € (0, 00), there exists a positive
constant C(€), depending on €, such that, for all f € Hy 1 (X),

q(@)
i(p)

, 1
LY fllm, o < CEOA+ 1y D" @ 2 £y,

where n, q(¢) and i () are, respectively, as in (2.2), (2.12) and (2.11).

Proof We apply Theorem 6.10 with m (1) := A’ for all A € (0, 00). In this case it is
easy to show that, for s > n[q(¢)/i(p) — 1/2], C(¢,s) < (1 + |y|)*, where C(¢, s)
is as in (6.21) (see, for example, [38, Corollary 4.3]). From this, (6.25) and the proof
of Theorem 6.10, we deduce that, for all € € (0, 00), there exists a positive constant
C(€), depending on €, such that, for all f € Hy 1 (X),

q(p)

, _1
1LY flla, 0 < COA+ D™ @ 2 £l L o,

which completes the proof of Corollary 6.13. |

7 Applications to Schrodinger Operators
In this section, let X :=R" and
L:=—A+V 7.1

be a Schrodinger operator, where 0 <V € LllOC (R™). We establish several equivalent
characterizations of the corresponding Musielak—Orlicz-Hardy spaces Hy 1 (X), in
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terms of the atom, the molecular, the Lusin-area function associated with the Poisson
semigroup of L, the non-tangential and the radial maximal functions associated with
the heat semigroup generated by L, and the non-tangential and the radial maximal
functions associated with the Poisson semigroup generated by L. Moreover, we prove
that the Riesz transform VL~1/2 associated with L is bounded from Hy, 1 (R") to
L?(R") when i(p) € (0, 1], and from H,, ; (R") to the Musielak—Orlicz—Hardy space
H,(R") introduced by Ky [63] when i(¢) € (n"?, 1].

Since V is a nonnegative function, from the Feynman—Kac formula, we deduce
that the kernel of the semigroup e~ 'L, h,, satisfies that, for all x, yeR" and r €
(0, 00),

0< i ( /2 {_|x_y|2}
<h;(x,y) < (4mt) exp a7 .
Remark 7.1 (i) By Remark 4.2(i), we know that, in this case, H2(R") = LZ(R”).

(i) In this section, for the sake of convenience, we choose the norm on R”
to be the supremum norm; namely, for any x = (x1,x2,...,x,) € R?, |x| :=
max{|xi], ..., |xn|}, for which balls determined by this norm are cubes associated
with the usual Euclidean norm with sides parallel to the axes.

It is easy to see that L satisfies Assumptions A and B, which, combined with
Theorems 5.5 and 5.7, immediately implies the following conclusions. We omit the
details.

Theorem 7.2 Let L be as in (7.1) and ¢ as in Definition 2.4 with ¢ €

RHb /-1 (o)) (R"), where I1(¢) is as in (2.10). Assume further that M € N with
M > %[?(%) - %] ande € (n[‘l?((g)) - %], 00), where n, q(¢) and i (@) are, respectively,
asin (2.2),(2.12) and (2.11). Then the spaces Hy 1 (R"), H(%at(R"), H‘%fol (R™) and
Hy s, (R") coincide with equivalent quasi-norms.

For any 8 € (0, 0), f € L*(R") and x € R", let

b

NP () = sup e "E(HO)

yeB(x,pt),te(0,00)

NP () = sup e VEHO],

yeB(x,pt),te(0,00)

R (f)(x) 1= sup,e(0,00) e~ L(f)(0)] and Rp(f)(x) := SUP; ¢ (0, 00) e VI @)
We denote N (f) and N} (f) simply by N, (f) and Np(f), respectively.

Definition 7.3 Let L be as in (7.1) and ¢ as in Definition 2.4. A function f € H>(R")
is said to be in ﬁw,/\/’h R™) if N (f) € L?(R"); moreover, let ”f”Hw,Nh ®?) =
IV (O Le®n). The Musielak—Orlicz—Hardy space Hy y;, (R™) is defined to be the
completion of H, a;, (R") with respect to the quasi-norm || - || Hy n;, (RY)-

The spaces Hy nr, R"), Hy 1, (R") and H, 1, (R") are defined in a similar way.
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Then we give the following several equivalent characterizations of Hy ; (R") in
terms of maximal functions associated with L.

Theorem 7.4 Assume that ¢ and L are as in Theorem 7.2. Then the spaces
Hy 1 (R"), Hy Ny, R"), Hy N R"), Hy R, (R"), HyR,(R") and Hy s, (R") co-
incide with equivalent quasi-norms.

Remark 7.5 Theorem 7.2 completely covers [57, Theorem 6.1] by taking ¢ as in
(1.2) with w = 1 and @ concave. Theorem 7.4 completely covers [S57, Theorem 6.4]
by taking ¢ as in (1.2) with w = 1 and @ satisfying that @ is concave on (0, co) and
there exist g1, g2 € (0, 00) such that g1 < 1 < g» and [ (#92)]! is a convex function
on (0, 00).

To prove Theorem 7.4, we first establish the following Proposition 7.6.

Proposition 7.6 Let ¢ and L be as in Theorem 7.2. Then H, pr, (R") N L3(R") C
Hy, s, (R") N L2(R™). Moreover, there exists a positive constant C such that, for all
f € Hy A (R N LARM), I f a5, @y < CNf I H prp &Y -

To prove Proposition 7.6, we first introduce some notions. Let o € (0, c0) and
€,R e (0,00) withe < R.For f € L?(R™), define the truncated Lusin-area function
S;;R’“(f)(x) for all x € R", by setting,

" dvd 1/2

where
FER) ={0.0) eR" x (€, R) : |x — y| <at}. (7.2)

Then we have the following conclusion about the truncated Lusin-area function.

Lemma 7.7 Let ¢ be as in Definition 2.4 and o, € (0,00). Then for all 0 < € <
R < oo and f € L*(R"),

/Rngo(x,S?R’a(f)(X))dxN/erw(x,S;R’ﬂ(f)(X))dx,

where the implicit constants are independent of €, R and f.
Proof First we recall two useful conclusions established in [23]. Let «, 8 € (0, 00),

€, R € (0, 00) with € < R. Then for any closed subset F' of R” whose complement
has finite measure and any nonnegative measurable function H on R" x (0, 00),

/{/ . H(y,t)dydt}dx,ﬂ/ . H(y,)t" dydt, (7.3)
FUTERe R&"(F)
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where F;’R(x) is as in (7.2), RS;R(F ) i=Uyer Ty 'R (x) and the implicit constants

are independent of F, ¢, R and H. Let y € (0, 1) and F;f be as in Sect. 3. Then

'/SR H(y,t)t”dydt,ﬂ/{/ER H(y,t)dydt}dx. (7.4)
RG® () FUUrgRe

Let o, B € (0, 00). Without loss of generality, we may assume that « > 8. Let
€, R € (0,00) withe < R and f € L2(R"). Fix A € (0,00). Lety € (0, 1), F:={x €
R" . S;’R’ﬂ(f)(x) <X} and O :=R"\ F. Assume that F;‘ and O;j are as in Sect. 3.

Then by (7.3) with F := F} and H(y,1) := ltv/Le ™V (F)(0) 2t~ +D | we know
that

/ [S65 ()] dx S / VL VI dydr.
F*

; RG"(Fy)

This, combined with (7.4) by choosing H(y,?) := |t\/Ze”‘/z(f)(y)|2t’(”+l),
yields that

/ [sp ] dx g fF (57 P(H ] dx. (7.5)

L

Let g € (g(p), 00). Then ¢ € A, (R"), which, together with (7.5) and Lemma
2.8(vi), implies that, for all ¢ € (0, 00),

/ o(x,t)dx
(reRm:SER (f) =2}

<),

<

~

o(x,t)dx +/

: {xeFpseR (=1}

o(x,t)dx +/

[XGR"ZM(X{))(){)>1—V} {xEF;‘:S;R’a(.)")(x)>)L}

L[
< fR xoWltpx ndx + /F [s5°7 (Ho e dx

1
~ / o, dx + — | [S55P(H e, ndx.
fxeRn:SS™P (£)(0)>2) 22 Jr

From this, the fact that ¢ (x, t) ~ fol w ds for all x € R" and 1 € (0, 00), Fubini’s

theorem and the uniformly upper type p; property of ¢ with p; € (0, 1], it follows
that

fR ol SERUD) dn

RO '
N/ {/ ’ plx. 1) )dt}dx
R LJo t
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o
1
0 JuernssRepsny 1

® ]
< Z o(x,t)dxdt
0 1 JixernsSRP(p) )1}

9] 1 .
+/0 t_3/F[SﬁR'ﬁ(f)(X)]zw(x,t)dxdt

N'/Rnw(x,sj;&ﬂ(f)(x))dx+/n{/ €0(;€3,t) dt}[S;R’ﬁ(f)(x)]zdx

SR

~ fR (e SN @) dx + fR 55 D] (e 555 (D)

o0 1
X {/ N == dt}dx
P 7
~ A o(x, S5*P () dx

which completes the proof of Lemma 7.7. |

Let o € (0, 00) and ¢, R e (0, 00) with ¢ < R. For f € L2(R"), define the trun-
cated Lusin-area function S;’R’a( f)(x) for all x € R, by setting,

i B dvdi 112
S5 (= {/p< e EnmF t’)’)“t} ’

where ¢ R(x) is as in (7.2) and V := (V, ;). When « = 1, we denote S6 R1csy
simply by SP (f). Obviously, for any o € (0, 00), €, R € (0,00) withe < Rand f €

LR, S;’R’“(f) < §§;R’°‘(f) pointwise. Now we give the following Lemma 7.8,
which establishes a “good-A inequality” concerning the truncated Lusin-area function
S5 and the non-tangential maximal function Ap.

Lemma 7.8 There exist positive constants C and € € (0, 1] such that, for all y €
(0,11, 2 € (0,00), €, R € (0,00) with € < R, f € H, nr, (R") N LZ(R") and t €
(0, 00),

/{ n.3€R.1/20 ¢(x, 1) dx
xeR":Sp (H@>20Np(f)(x)=y2}

< CyEO/ o o(x, 1) dx. (7.6)
weRn3GR2 (1) (0> 1)

Proof We prove this lemma by borrowing some ideas from [7, 8, 95]. Fix 0 < € <
R <00,y €(0,1]and A € (0,00). Let f € Hy pr, (R") N LA(R") and

0:={xeR": 5521 > a).
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It is easy to see that O is an open subset of R”. Let O = |, Ok be the Whitney de-
composition of O, where {Qy} are closed dyadic cubes of R" with disjoint interiors
and 2Q; C O, but (4Qp) N ot # (. To show (7.6), by O = Uk Ok and the disjoint
property of { O }«, it suffices to show that there exists €y € (0, 1] such that, for all &,

[ i sndx Sy [ pwndx @)
{xeQr:8p (NH)>20Np () <yir} Ok

From now on, we fix k and denote by /; the sidelength of Qy.
If x € Oy, then
<max{10l,€},R,1/20
SOl R0 ) () < 1. (7.8)
Indeed, pick x; € 40x N 0C. For any (y,t) € R" x (0,00), if |x — y| < % and
t > max {10, €}, then |x; — y| < |xx — x| + |x — y| < 4lx + 55 < 5, which implies

that 177501 () ¢ X% IR () From this, it follows that

omax{10/,€},R,1/20

Sp SO = Sp

Thus, (7.8) holds true.
When € > 10/, by (7.8), we see that

Smax{10/;,€},R,1/2

() xx) < 4.

<6, R,1/20

[x € 0k : SV (H(0) > 20, Np(HH(x) <yr} =1

and hence (7.7) holds true. When € < 10l;, to show (7.7), by the fact that
E R. 1/20(f) < S6 100k, 1/20(f) + SlOl" R. 1/zo(f) and (7.8), it remains to show that,
for all t € (0, 00),

f o(x.t)dx < y%/ p(x.0)dx, (7.9)
{xeOrNF:g(x)>A} O
e, 100;,1/20

where g := S, (f)and F :={x e R" : Np(f)(x) < yA}.
To prove (7.9), we claim that

{xe QN Figt)>a}| Sv?I0l. (7.10)

If (7.10) holds true, it follows, from the fact that ¢ € A (R") and Lemma 2.8(v),
that there exists r € (1, co) such that ¢ € RH, (R"), which, together with (7.10) and
Lemma 2.8(viii), implies that, for all ¢ € (0, 00),
1
0Ok, 1) Jixe0inFig(0)>1)

l{x € QN F:g(x) > A}l }“‘”/’

) d <
e XN{ 0l

S )/Z(r—l)/r.

Leteg:=2(r—1)/r. Then f{xEQkﬂF:g(x)>M o(x,)dx < y0p(Qg, t), which implies
that (7.9) holds true.
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Now we show (7.10). By Chebychev’s inequality, we know that (7.10) can be
deduced from

fQ r]F[goc)]zdx < ()1 Qxl- (7.11)
k

From the Caccioppoli inequality associated with L (see, for example, [51, Lemma
8.3]), the differential structure of L and the divergence theorem, similar to the proof
of [95, (3.9)], it follows that (7.11) holds true. We omit the details and hence complete
the proof of Lemma 7.8. O

Now we prove Proposition 7.6 by using Lemmas 7.7 and 7.8.
Proof of Proposition 7.6 Assume that f € H, n7, (R")N L2(R"). Take p> € (0,i(¢p))
such that ¢ is uniformly lower type p>. By Lemma 2.6(ii), we know that ¢(x, ) ~

fé M ds for all x € R" and ¢ € (0, 00), which, together with Fubini’s theorem and
Lemma 7.8, implies that, for all €, R € (0, co) withe < R and y € (0, 1],

f¢(x SRRy (x)) dx

Se R.1/20
/I\En /

0
/ S
~ - o(x,t)dxdt
0 I Jixern35R Y21 )>1)
1
1

() o(x,1)

dtdx

o0
/ o(x,t)dxdt
0 {xeR"Np(f)(x)>yt}

|
e :
{xeR:35R l/z(f)(x)>t/2}
1 Jt
< _f / ﬁdxdt
Y Jo {(xeR":Np (f)(x)>t} t

+ l?O‘/ /
Y 0 Jxert:SSR 2 0)>1)
1 5
~;fRw(x,/vp(fxx))dxw%/Rw(x SRIZ(h) ) dx. (7.12)

Furthermore, by (7.12), Lemma 7.7 and SE R.1/ 2( )< g;;R( f) pointwise, we con-

clude that, for all y € (0, 1], and €, R € (0, oo) with € < R,
/R o (x. S35 () (x)) dx
~fR (. S5 ()) dx

1 ~
S ;/Rnw(x’NP(f)(x))deL)/éo /l;n ‘p(x’S;R(f)(x))dx,
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which, together with the facts that, for all A € (0, 00), S5 (f/2) = S5*(f)/ and
Np(f/r) = Np(f)/A, implies that there exists a positive constant C such that

o€ R
[ ofs B0,

Q€ R
55[%/ w(x’wwwrw/ 90(*%)‘“}' (7.13)

Iake y € (0, 1] such that 5)/60 = 1/2. Then from (7.13) and the fact that S;’R(f) <
S;;R( f) pointwise, we deduce that, for all A € (0, 00),

€, R e R
/ (p(x’ Sp (f)(ﬂ)de/ (p(x, Sp (f)()O)dx
n A n A
5/ (p(x,NP(){)(x))dx.

By the Fatou lemma and letting ¢ — 0 and R — oo, we know that, for all A € (0, 00),

/ (p(x’ SP(J;)(X))de/ (p(LNP(/J\‘)(X))dx’

which implies that ||Sp(f)|lLe®r) S INp(f)ll e vy and hence completes the proof
of Proposition 7.6. d

To prove Theorem 7.4, we need the following Moser type local boundedness esti-
mate from [51, Lemma 8.4].

Lemma 7.9 Let u be a weak solution onu = Lu— 81214 =0in the ball B(Yy, 2r) C
RZ’FH. Then for all p € (0, 00), there exists a positive constant C (n, p), depending on
n and p, such that

1 1/p
sup  |u(Y)| < C(”,P){WA |M(Y)|de} .

YeB(Yy,r) (Yo,2r)

Now we prove Theorem 7.4 by using Theorem 7.2, Lemma 7.9 and Proposi-
tion 7.6.

Proof of Theorem 7.4 The proof of Theorem 7.4 is divided into the following six
steps.

Step 1. Hy(R") N L2(R") C H, n; (R") N L2(R"). Let M be as in Theo-
rem 7.2. By Theorem 7.2, we know that H, . (R") N L*(R") = H), (R") N L*(R")
with equivalent quasi-norms. Thus, we only need to prove Hé‘:’at(R”) N L2(R") C
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Hy pr, (R™) N L%(R™). To this end, similar to the proof of (4.5), it suffices to show
that, for any A € C and (¢, M)-atom a with suppa C B := B(xp,rp),

[ ols N ) dx (B llxal )

From the LZ(R")-boundedness of A, and (2.5), similar to the proof of (4.5), it fol-
lows that the above estimate holds true. We omit the details here.

Step 2. H, p;,(R™) N L2R") C Hy, g, (R") N L?(R"), which is deduced from the
fact that, for all f € L>(R") and x € R", Ry (f)(x) < Np(f)(x).

Step 3. H,w,®R") N L*[R") C H,R,[R") N L*(R"). By the subordination for-
mula associated with L,

oIV — L /”efgLefuuq/zdu
NE
with ¢ € (0, oo) (see, for example, [8]), we know that, for all f € L?(R") and x € R",

Rp(f)(x) < sup /OOO %\e‘%L(f)(x)ldu

te(0,00)
o0 e—u
<
< RA(N)() /0 =
<Ru(H),

which implies that, for all f € H, z, (R")N L2(R™), ”f”Hw,RP ®) S ||f||Hwth R).
From this and the arbitrariness of f, we deduce that H, z,(R") N L2(R") C
H,r,R") N L*R").

Step4. H,r, R")NL2R") C H, xr, R") N L2(R"). Forall f € L>(R"), x € R"
and € (0, 00), let u(x, 1) := e~ L' (f)(x). Then Lu = Lu — 021 =0 in R"*! Let
x € R" and ¢ € (0, 00). Then by Lemma 7.9, we know that, for any y € (0, 1) and
y€Qx,t/4),

1 3t)2

e VED O] < /Q ( /z)le—fﬁ (@ dzds
X,t

n+l 12

1
S IRp(f)(2)| dz
" Jo@.n

SM(Re(H]) ),

which implies that, for all f € L2(R") and x € R",

NP SIMReH] )0} (7.14)
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Let go € (q(p),00), p2 € (0,i(¢)) and yp € (0, 1) such that ypqo < p2. Then we
know that ¢ is of uniformly lower type p> and ¢ € A, (R"). For any « € (0, c0) and
g € LIy (R"), let g = gx{reRrn:|g(v)|<a) + &X{xeRr|g(x)>a} = &1 + g2. Then from
Lemma 2.8(vi), we infer that, for all ¢ € (0, 00),

p(x,t)dx S/ o(x,t)dx

/{xeR”:M(g)(x>>2a} {xeR": M (g2)(x)>a}

1
= a0 - [M(g2)()]*p(x, 1) dx

1
S| 1@k, 1)dx
ado R”

1

~— lg()|Pe(x,1)dx,
a0 Jixerr:|g(x)|>a)

which implies that, for all « € (0, 00),
/ p(x,t)dx
{xeR:IMIRp (H)I0) ()]0 >a)

S |
o090 {xe]R":[RP(f)(X)]yO>#}

[Rp (£ p(x,1)dx

o 1 o0 _q
SORp <W> * arod /L 100" oR ()1 () ds. (7.15)

21/7()
Here and in what follows, o, (r),; () 1= f{xeR":RP(f)(x)>a} ¢(x,t)dx. From this,

(7.14), the uniformly upper type p; and lower type p, properties of ¢ and ypqo < p2,
it follows that

fR (e N ) da

5f o(x, [M([Re(H])(0]/7") dx

Rn
IMARP (NP0
/ oo D
" JO

<
~ t

0 |
“’/ —/ o(x,t)dxdt
0 T J@xeRIMARP(HI0)()]V/70>1)
% |
Sf —/ @(x,t)dx dt
0 I JeR Ry (N> if)

+/0 W{/, ¥0q0s7*90™ URp(f),;(S)ds}dt

21/1/0
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00 21/1’0‘?
-1
NJR”(”JF/O Yogos™ {/0 WGRP(f),,(s)dt}ds

SIRp()

OO 1 1/ e I L
Yoqo— Yo
* /(; voqos O—RP(f)’t(S)(p(x’ 2 S) {/0 |:21/Vos:| tYoqo+1 dt} ds

°° i plx,s) [ (27 1
SIRp() +/ Yoqos?*0™ GRp(f),t(S)li{/ tP277090— dt}ds
0 (27 s)r2 L0

o0
SIRp() +/ / 2D gy
0 JxeR"Rp(Hx)>s} S

~fRngo(x,Rp<f>(x>)dx,

where

o0 x,t
JRP(f) ZZ/ / L)dxdt,
' 0 (xeR":Rp(H(x)>t} [

which, together the fact that, for all A € (0, 00), /\/}13/4(]‘/)\) = J\/Il,/4(f)/k and
Rp(f/A) =Rp(f)/A, implies that, for all A € (0, 00),

1/4
/ ¢<X’Np if)(x)>dx§f (p<x,RP({)(x)>dx.

From this, we further deduce that
N <|r 7.16
H P (f)Hm(X)N” P(f)”LW(X)‘ (7.16)
To end the proof of this step, we claim that, for all g € L>(R"),

[N oy ~ NP o). (7.17)

Then by (7.16) and (7.17), we conclude that |[Np(f)llLexy S IRP(H)ILecx)-
From this and the arbitrariness of f, we deduce that H, ,(R") N L2(R") C
Hy z, RY) N LARY).

Now we show (7.17). We borrow some ideas from [41, p. 166, Lemma 1]. By the
change of variables, it suffices to prove that

/R <o(x,N;Y<f)<x))dx§fR o (6. Np(f)(@)) dax, (7.18)
where N is a positive constant with N € (1, 00). For any o € (0, 00), let

Eq:={xeR":Np(f)x) >a} and E:={xeR": M(xg,)x)>C/N"},
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where C € (0, 1) is a positive constant. By ¢ € A (R"), we know that there exists
p € (g(¢), 00) such that ¢ € A ,(R"). From this and Lemma 2.8(vi), it follows that,
for all ¢ € [0, c0),

NP
/ ex,t)dx < —= / o(x,t)dx. (7.19)
p Cr JE,

Moreover, we claim that A/ é,v (f)(x) <« for all x & E}. Indeed, fix any given
(y, 1) € R" x (0, 00) satisfying |y — x| < Nt. Then B(y,t) ¢ Ey. If this is not true,
then

Bo.nl _ 1 _C
B, NOl — N~ N*

This gives a contradiction with x ¢ E}, and hence the claim holds true. From the
claim, we deduce that there exists z € B(y, t) such that Np (f)(z) < a, which implies

that |e’“/z(f)(y)| < Np(f)(z) <a. By this and the choice of (y, ), we conclude
that, for all x ¢ EX, N ;,V (f)(x) < «, which, together with Lemma 2.6(ii), Fubini’s
theorem and (7.19), implies that

NY ()
/ ¢(X’N1{>V(f)(x))dx~f f Md d
Rn Rn 0 t

00
, 1
,\,/ / Md dt
0 {(xeRENY (f)(x)>1} t
00
Sf f <P(xat)d d
0 0

S/(;OO/I; @dxdt"‘/’l‘p(xaNP(f)(X))dx

Thus, the claim (7.18) holds true.

M(xEg)(x) =

Step 5. Hy nr, (R") N LAR") C Hy 5, (R") N L2(R™). This is just the conclusion
of Proposition 7.6.

Step 6. Hy.s,(R") N L2(R") C Hy 1 (R") N L>(R™). This is directly deduced from
Theorem 7.2.
From Steps 1 though 6, we deduce that

Hy L (R") N L*(R") = H, ;, (R") N L*(R") = H, R, (R") N L*(R")
= H, R, (R") N L*(R") = Hy x, (R") N L*(R")
%SP(R”)HL (Rn)

with equivalent quasi-norms, which, together with the fact that H, 1 (R") N L2(R™),
Hy A, (R") N L2(R™), Hy ®, (R") N L*(R"), H, », (R") N L2(R"), Hy pr, R™) N
L2(R") and Hy s, (R") N LQ(R") are, respectlvely, dense in Hy 1 (R"), H, p;, (R"),
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Hy, r,(R"), H, z,(R"), Hy, s, (R") and Hy g, (R"), and a density argument, then
implies that the spaces Hy 1 (R"), H, n;, R"), Hy, g, (R"), Hy R, (R"), Hy A7, (R")
and H, s, (R") coincide with equivalent quasi-norms, which completes the proof of
Theorem 7.4. O

Now we consider the boundedness of the Riesz transform VL™1/2 associated

with L. By the functional calculus of L, we know that, for all f € L>(R"),

VL2 = % /OOO Ve—fo%. (7.20)

It is well known that VL~1/2 is bounded on L%(R") (see, for example, [51, (8.20)]).
To establish the main results in this subsection about the boundedness of the Riesz
transform VL~!/2 on H, 1 (R"), we need the following conclusion, which is just [51,
Lemma 8.5] (see also [57, Lemma 6.2]).

Lemma 7.10 There exist two positive constants C and c¢ such that, for all closed sets
E and F in R" and f € L*(E),

|eve "L f L2 < Cexp

{_ [dist(E, F)]?
ct?

}||f||L2(E)~

Theorem 7.11 Let ¢ and L be as in Theorem 71.2. Then the Riesz transform VL ~1/2
is bounded from H, 1 (R") to LY (R").

Proof Firstlet f € Hw,L(R”)ﬂLZ(R”) and M € Nwith M > %[% - %]—f— %, where
n, q(¢) and i(¢p) are, respectively, as in (2.2), (2.12) and (2.11). Then there exist
p2 € (0,i(p)) and gg € (g(¢), 00) such that M > %(% — %) + % @ is uniformly lower
type p2 and ¢ € A, (IR"). Moreover, by Proposition 4.7, we know that there exist
{A;j}; € Cand a sequence {«;}; of (¢, M)-atoms such that f = Zj Ajajin LR
and || fllm, @ ~ 1 £l HM, (R which, together with the L2(R™)-boundedness of

vL~1/2 implies that

VL~ V2(f) = ZAJVL_I/z(aj) (7.21)
J
in L2(R").
To finish the proof of Theorem 7.11, it suffices to show that, for any A € C and
(¢, M)-atom « supported in B := B(xp,rp),

f o(x, VL™ (@)(0) dx S @ (B, IMIxs 1 Lo x))- (7.22)

If (7.22) holds true, then it follows, from this and (7.21), that

fR o VLT @) dx S Y e(Bj Il )

J
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where, for each j, suppa; C Bj. By this and || f1|a, , r") ~ ||f||H£/1n(Rn), we con-

clude that ||VL_1/2(f)||L«p(Rn) < I /Nl H, . ny, which, together with the fact that
Hy  (R") N L?(R™) is dense in H,  (R") and a density argument, implies that
VL~1/2 is bounded from Hy 1 (R") to L?(R").

Now we prove (7.22). By the definition of «, we know that there exists b € D(LM)
such that @ = LMp and (ii) and (iii) of Definition 4.3 hold true. First we see that

/ o(x, AVL™ V(@) (x)) dx = Z/ @, AVL™ (@) (x)) dx

Uj (B)

=1, (7.23)
j=0

From the assumption ¢ € RH /() (R"), Lemma 2.8(iv) and the definition
of I(¢), we infer that, there exists p; € [I(¢), 1] such that ¢ is of uniformly up-
per type p1 and ¢ € RHy/0—p)(R"). When j € {0, ...,4}, by the uniformly up-

per type pj property of ¢, Holder’s inequality, the L?(R")-boundedness of VL~!/2,
¢ € RHp;o—p,)(R") and Lemma 2.8(vii), we conclude that
I s/ o (x, Ml o @) (1 + [IVLT 2@ ) lxs 1 2o x)]™) dx
i (B)
S (2B MIxs o) + 18170 @ VL2 @] 7 )
5 2-py
| [ ot w5 ]|
2/B
S o2 B, Mlxsll e @) S @(B. IMIXBI L @) (7.24)

When j € N with j > 5, from the uniformly upper type p; and the lower type p>
properties of g, it follows that

i S Ixel o /U <B>‘”(x’ I X8 1 o) [ VL™ (@) (0)] 7" dx

J
+ xs 175 @ / @, MBIl o ) | VL2 (@) (x0) |7 dx
Uj(B)
=:E; +F;. (7.25)

To deal with E; and F;, we first estimate jUj(B) [VL=12(a)(x)|?> dx. By (7.20),

the change of variables and Minkowski’s inequality, we see that, for each j € N with
j 2 5’

) 00 5 ) 1/2
/ VL™ (@) (x)|"dx 5/ {f |Ve ™ La(x)| dx} dt
Ui (B) o Uum
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B 172 44
~/ {/ |tVe_t2La(x)|2dx} —
0 U;(B) t

9] 1/2
M _op 2 dt
+/ {/ tV(:2L)" e Lh(x) dx} —
s U B) | ( ) | 2M+1

=:H; 1 +Hjp>. (7.26)

We first estimate H j,1. From Lemma 7.10, we infer that

i (27rp)? dt
H; < expy — —
il N/O P{ o2 ||(Y||L2(B) p

B l‘2M—l dt .
—-2M-1
AL e f1elie ~ 2 el

5 27(2M71)]|B|1/2

111 6 @ - (1.27)
For H; >, by Lemma 7.10, we see that

00 j 2
Qirg) dt
Hj,2§/r CXP{—T ”b||L2(B)t2M—+1

B

o @M1 di CM-1)j, p(1/2
s /B (2irp)@M=1) (2M+1 161125y S 27 ’1B|

-1
lxB ”L“’(R")’

r

which, together with (7.26) and (7.27), implies that, for all j € N with j > 5,

1/2 _
{ / }VL—‘/2<a><x>|2dx} S22 CMEVIBI 2 xpl p gy (7:28)
U;(B)

Thus, from Holder’s inequality, (7.28) and ¢ € RHy/2—p,)(R") C RHy,/2—p,) (R"),
similar to the proof of (6.8), we infer that

—jpil@M—1+1
E; <27imle =B, sl L ). (7.29)
Similarly, by using Holder’s inequality, (7.28) and ¢ € RH>;o—p,)(R"), we see

that

—jpal@M—-1+%)—
F, <207 7 0(B 11l )

which, together with (7.25), (7.29) and p; > p;, implies that, for each j € N with
j 2 5’

1; <2 —jp2[@M—1+5)— /72 (p(B |)»|||XB||L¢(]R'1)

From this, M > (— — —) + 2, (7.23) and (7.24), we infer that (7.22) holds true,
which completes the proof of Theorem 7.11. O

Now we recall the definition of the Musielak—Orlicz—Hardy space H,, (R") intro-
duced by Ky [63].



Musielak—Orlicz—Hardy Spaces Associated with Operators 563

Definition 7.12 Let ¢ be as in Definition 2.4. The Musielak—Orlicz—Hardy space
H,(R") is the space of all distributions f € S’(R") such that G(f) € LY(R") with
the quasi-norm || f || n, &) = G (f)llLe (rn), Where S’ (R™) and G(f) denote, respec-
tively, the dual space of the Schwartz functions space (namely, the space of tempered
distributions) and the grand maximal function of f.

To state the atomic characterization of H,(IR") established by Ky, we recall the
notion of atoms introduced by Ky [63].

Definition 7.13 Let ¢ be as in Definition 2.4.

(I) For each ball B C R", the space Lg(B) with g € [1, oo] is defined to be the set
of all measurable functions f on R” supported in B such that

. SUD, ¢ 0,00) [rm 7y Sy 1 £ () 90(x, 1) dx]'V4 < 00, g €1, 00),
Ly(B) "=
! I fllLee(B) < 00, q = 0.

(II) A triplet (¢, g, s) is said to be admissible, if g € (q(¢), 0o] and s € Z satisfies
s> Ln[% — 1]]. A measurable function a on R” is called a (¢, g, s)-atom if
there exists a ball B C R" such that

(i) suppa C B;
(i) Nlall 9 gy < X8I gnys
(iii) fgn a(x)x*dx =0 for all « € Z} with |a| <s.

(II1) The atomic Musielak—Orlicz—Hardy space, H?7°(R™), is defined to be
the set of all f € S'(R") satisfying that f = Zj b; in S'(R"), where
{bj}; is a sequence of multiples of (¢, q,s)-atoms with suppb; C B; and
Zj ¢(Bj, ||bj||Lg(B_,-)) < 00. Moreover, letting

bill;a.p.
Aq(1b5}5) ::inf{,\e (0, 00) : Z¢<B,~, “’”#) < 1},
i

the quasi-norm of f € H¥95(R") is defined by
1 sy 2= inf{ Aq ({0} }.
where the infimum is taken over all the decompositions of f as above.

To establish the boundedness of VL~1/2 from Hy 1 (R") to Hy(R"), we need the
atomic characterization of the space H,(IR") obtained by Ky [63].

Lemma 7.14 Let ¢ be as in Definition 2.4 and (¢, q, s) admissible. Then H,(R") =
H?95(R™) with equivalent quasi-norms.

Now we prove that the Riesz transform VL~ is bounded from H, 1 (R") to
H,(R") by using Proposition 4.7 and Lemma 7.14.
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Theorem 7.15 Let ¢ be as in Definition 2.4 with i(p) € (47, 11, L as in (7.1),

q (@) and r(p) as in (2.12) and (2.13), respectively. Assume that q(¢) < ("Hnﬂ
and r(¢) > %. Then the Riesz transform VL2 s bounded from Hy | (R") to

H,(R").

Proof Let f € Hy (R") N L2(R") and M € N with M > 5[%% — }]. Then there
exist py € (0,i(p)) and go € (g(¢), o) such that M > 5 % — %), ¢ 1is uniformly

lower type p; and ¢ € A4 (R"). Moreover, by Proposition 4.7, we know that there
exist {A;}; C C and a sequence {«;}; of (¢, M)-atoms such that f =3, 4;e; in
L*(R™) and I f N, ey ~ ”f”Hé‘f’m(R")' Moreover, we know that (7.21) also holds
true in this case.

Let  be a (¢, M)-atom with suppa C B := B(xp,rp). For k € Z4, let
Xk = Xus)s Xk = BN gy mic = [y ) VL@ (x)dx and My =
VL~ 2(a) xx — mi Xx. Then we have

o0 o0
VL™ ()= "M+ ) mii (7.30)
k=0 k=0

For j € Zy,let Nj:=> 72 jmk. By an argument similar to that used in the proof of

[57, Theorem 6.3], we know that fRn a(x) dx = 0, which, together with (7.30), yields
that

o o0
VL™ (@)=Y "M+ Newt Fir1 — o). (7.31)
k=0 k=0

Obviously, for all k € Z_,

supp My C 2¥*'B  and M(x)dx =0. (7.32)
Rr‘l

When k € {0,...,4}, by Holder’s inequality and the L2(R™)-boundedness of
VL~ 12 we conclude that

1/2 1/2
I Ml 2.y < {/ |VL—”2a(x)|2dx} + {/ |mk;7k(x>|2dx}
Ui (B) Uk (B)

S el g2y + lmel U (B) ™1/
Sllall 2@y S 1BV x8I 6 @) (7.33)

From the Davies—Gaffney estimates (2.5) and the Hyo-functional calculi for L,
similar to the proof of [52, Theorem 3.4], it follows that there exists K € N with
K > n/4 such that, for all ¢ € (0, 00), closed sets E, F in R” with dist(E, F) > 0
and g € L*>(R") with suppg C E,

K
_ _tINK !
| VL2 (1 —e7tE) 8||Lz(p)§<m> I8llz2 k)
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and

K
- —1I\K d
|vL='2(tLe™'F) gHLz(F)§<m) el L2 (k)

By this, we conclude that, when k € N with k > 5,

— - —r M
VL™ e 2y S NVETV2(I =7 55) R 12y, iy

M
IV L w2 b
k=1

S27MIBIYlxs 1 s gy (7.34)

(Uk(B))

which, together with Holder’s inequality, implies that, when k € N with k > 5,

IMell 2y S VL 2 MBI oy (735)

2
a ||L2(Uk(B)) N

Furthermore, by g(¢) <2 and r(p) > 2/[2 — q(¢)], we know that there exists g €
(g(p),2) such that ¢ € A, (R") and RHy/(>—4)(R"). From this, Holder’s inequality,
(7.33) and (7.35), it follows that, for all k € Z and ¢ € (0, 00),

[e@'B.0)] [ZB | My ()| (x, 1) dx

< k+1 -1 2 ’ bt Z
<[e(2*"'B,1)] 2HIB|M,<(x)| dx 2k+13[(p(x,t)] 7 dx

_ q — _4q
S22 MIBIT |l oy 1257 BT, (7.36)

)l

which implies that
IMill g i1 gy S 27 P2 8110 ). (7.37)

Then by (7.37) and (7.32), we conclude that, for each k € Z, M} is a multiple of a
(¢, g, 0)-atom. Moreover, from (7.35), it follows that Z,fio M, converges in L2(R™).

Now we estimate || Ni+1(Xk+1 — Xk) |l L2@gey With k € Z.. By Holder’s inequality
and (7.34), we see that

oo

~ ~ _1 _1

[ N1 Gt = B0 | oy S INi+1112°BI72 S0 Y Imya 1128172
j=k+1

o0
S S _
5 Z |2kB| 2|2]B|2||VL l/za”Lz(Uj(B))
k1

_ 1 _
S22 MBI sl o gy (7.38)
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From this and Holder’s inequality, similar to the proof of (7.37), we deduce that, for
allk e Z4,

| Nest Riewr = Tl g 15y S 2722 U811 Lo ). (7.39)

which, together with [p, (Xk+1(x) — Xk (x)) dx = 0 and supp(¥k+1 — X&) C 27! B,
implies that, for each k € Zy, Ng+1(Xk+1 — Xx) is a multiple of a (¢, ¢, 0)-atom.
Moreover, by (7.38), we see that Y o g Ni+1(Xk+1 — Xk) converges in L2(R™).
Thus, (7.31) is an atomic decomposition of VL ™!/2« and, further by (7.37), (7.39),
40

the uniformly lower type p; property of ¢ and M > %(E — %), we know that

> @ BAM g e py) + D @2 BN Gt = Tl g 0001 5))
k€Z+ kEZ+

S (@B 2D )
keZ4

< Z 9—(@M+75)paykngo <1. (7.40)
keZy

Replacing a by o, consequently, we then denote My, Ny and Xk in (7.31), re-
spectively, by M ¢, N; ; and )N(j,k. Similar to (7.31), we know that

o oo
VLTV =33 "0 iMix+ Y Y hjNju1 (k1 — Xk

j k=0 j k=0

where, for each j and k, M ; and N, j41(Xjx+1 — Xj,x) are multiples of (¢, g, 0)-
atoms and both summations hold true in LZ(R"), and hence in S’(R"). Moreover,
from (7.40) with B, My, Niy1(Xi+1 — Xk) replaced by Bj, Mk, Njjv1(Xjk+1 —
Xj.k), respectively, we deduce that

Ag(IMj i} k) + Ag({Nj i1 (X1 — )Tj,k)}j,k) S A(frjegly) SUFa,, @-

From this and Lemma 7.14, we deduce that ||VL—1/2f||H¢,(R") < I ey, @
which, together with the fact that Hy, ; (R") N L2(R") is dense in Hy 1 (R") and a
density argument, implies that VL~!/2 is bounded from H, 1 (R") to Hy(R"). This
finishes the proof of Theorem 7.15. g

Remark 7.16 (i) Theorem 7.15 completely covers [51, Theorem 8.6] by taking
@(x,t):=t forall x e R" and ¢ € [0, 00).

(i1) Theorem 7.11 completely covers [57, Theorem 6.2] by taking ¢ as in (1.2)
with w = 1 and @ concave, and Theorem 7.15 completely covers [57, Theorem 6.3]
by taking ¢ as in (1.2) with w = 1, @ concave and pg € (n”?, 1], where pg is as in
(2.9).
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