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Abstract In the present paper we study the solvability of the Dirichlet problem for
second order divergence form elliptic operators with bounded measurable coefficients
which are small perturbations of given operators in rough domains beyond the Lips-
chitz category. In our approach, the development of the theory of tent spaces on these
domains is essential.

Keywords Chord arc domains · Elliptic measures · Perturbations of the Laplacian ·
Tent spaces
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1 Introduction

In this paper, we establish fine properties of the elliptic measure associated with the
solvability of the Dirichlet problem for certain small perturbations of elliptic oper-
ators in chord arc domains. The elliptic measure is that which arises naturally as

Communicated by Steven G. Krantz.

E. Milakis
Department of Mathematics & Statistics, University of Cyprus, P.O. Box 20537, Nicosia 1678,
Cyprus
e-mail: emilakis@ucy.ac.cy

J. Pipher (�)
Mathematics Department, Brown University, P.O. Box 1917, Providence, RI 02912, USA
e-mail: jpipher@math.brown.edu

T. Toro
Department of Mathematics, University of Washington, P.O. Box 354350, Seattle, WA 98195-4350,
USA
e-mail: toro@math.washington.edu

mailto:emilakis@ucy.ac.cy
mailto:jpipher@math.brown.edu
mailto:toro@math.washington.edu


2092 E. Milakis et al.

the representing measure associated with the solution of the Dirichlet problem for a
second order elliptic operator with continuous boundary data. The “fine properties”
of such measures are sharply described by the conditions defining the Muckenhoupt
weight classes, in which these measures are compared to other natural measures, such
as surface measure, which live on the boundary of the domain.

We will consider second order elliptic operators in divergence form, L = divA∇ ,
which are perturbations, in a sense to be made precise, of some given elliptic opera-
tors. The perturbation theory developed here for chord arc domains is the extension
of that same theory for Lipschitz domains; see [3, 8, 9], and [10] for some prior
literature.

A chord arc domain in R
n is a non-tangentially accessible (NTA) domain whose

boundary is rectifiable and whose surface measure is Ahlfors regular (i.e., the sur-
face measure on boundary balls of radius r grows like rn−1). We refer the reader to
the available literature, and specifically to [11] for the precise definition of NTA do-
mains. NTA domains possess all of the following properties: (i) a quantified standard
relationship between elliptic measure on the boundary of a domain and the Green’s
function for that domain, (ii) the doubling property of elliptic measure, and (iii) com-
parison principles for non-negative solutions to elliptic divergence form equations.
These properties are consequences of the geometric definition of NTA domains and
are stated precisely in the next section.

We briefly recall the Muckenhoupt weight classes (see [16] for a detailed dis-
cussion of these weight classes). If μ and ν are mutually absolutely continuous
positive measures defined on the boundary of a domain, ∂Ω , then there exists a
weight function g such that dμ = gdν. The measure dμ belongs to the weight
class Bq(dν) if there exists a constant C > 0 such that for all balls B ⊂ ∂Ω ,
(ν(B)−1

´
B

gqdν)1/q ≤ Cν(B)−1
´
B

gdν. The union of the Bq classes is the A∞
class. By real variable methods, it is known that if elliptic measure and surface mea-
sure on a domain are related via a weight in the A∞ class, then the Dirichlet problem
with data in Lp(dσ) is solvable for some p < ∞. There is a well-known relationship
between the Muckenhoupt Bq weight classes, the existence of estimates for maxi-
mal functions and non-tangential maximal functions, and the solvability of Dirichlet
problems for second order elliptic divergence form operators. We assume that the
reader is familiar with these results in harmonic analysis/elliptic theory.

One specific and nontrivial result in this theory is Dahlberg’s result of 1977:
The harmonic measure ω on a Lipschitz domain is mutually absolutely continu-
ous with respect to surface measure, σ , and the weight k relating the two measures
(dω = kdσ) belongs to the B2(dσ ) class. There is a further relationship between
Muckenhoupt weights and the function space BMO of functions of bounded mean
oscillation which then implies that logk ∈ BMO(dσ ). On C1 domains, Jerison and
Kenig proved that logk ∈ VMO(dσ ). VMO is the Sarason space of vanishing mean
oscillation, a proper subspace of BMO, and arises as the predual of the Hardy space
H 1. In [13], Kenig and Toro showed that log k belongs to VMO(dσ ) when the domain
is merely chord arc (with a vanishing condition).

The theory of perturbation of elliptic operators on Lipschitz domains begins with
a result of Dahlberg, [4], which measures the difference between coefficients of the
matrices of two divergence form elliptic operators in a Carleson norm. Here is the
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setup for the general perturbation theory: If L0 = divA0∇ is elliptic in a domain Ω ,
then an elliptic operator L1 = divA1∇ is a perturbation of L0 when the difference
ε(X) = |A1(X) − A0(X)| is equal to zero when X ∈ ∂Ω . How closely should these
operators, L0 and L1, agree in the interior of the domain so that good properties of
the elliptic measure associated with L0 are preserved? The correct answer to this
question is stated in terms of Carleson measures. The Carleson condition on ε(X)

is a delicate measure of the rate at which ε(X) tends to zero as X approaches the
boundary of Ω . In terms of such Carleson conditions, sharp results on perturbations
were obtained in [10]. And in [8], Escauriaza showed that a (vanishing) Carleson
condition on a perturbation of the Laplacian in C1 domains preserved the Jerison–
Kenig result, namely that logk ∈ VMO. We will provide precise statements of some
of these results in the next section.

Our aim is to extend the perturbation results of [10] to the setting of chord arc
domains (CADs). Much of the technology of function spaces on the boundary which
is available when the domain has Lipschitz boundary is not available in this setting.
Therefore, a good portion of this paper is devoted to developing the theory of these
function spaces for chord arc domains, especially the theory of tent spaces due to
Coifman, Meyer, and Stein. These function spaces and their duals figure prominently
in the theory of Hardy spaces and BMO spaces—the connection between them is
established via Carleson measures. The development of the theory of tent spaces on
chord arc domains is a purely geometric and independent aspect of this paper.

In [14], it was shown that a (vanishing) Carleson measure condition on perturba-
tions of the Laplacian on CADs with vanishing constant preserves A∞. In the last
section of the paper we show that this result holds for perturbations from arbitrary
elliptic divergence form operators on general CADs.

2 Preliminaries

In this section, we recall some definitions and give the necessary background on
properties of solutions to elliptic equations in divergence form. We will also introduce
some notation which will be used throughout the paper.

Definition 2.1 Let Ω ⊂ R
n. We say that Ω is a chord arc domain (CAD) if Ω is

an NTA set of locally finite perimeter whose boundary is Ahlfors regular, i.e., the
surface measure to the boundary satisfies the following condition: There exists C ≥ 1
so that for r ∈ (0,diamΩ) and Q ∈ ∂Ω

C−1rn−1 ≤ σ
(
B(Q, r)

) ≤ Crn−1. (2.1)

Here B(Q, r) denotes the n-dimensional ball of radius r and center Q, σ =
Hn−1 ∂Ω , and Hn−1 denotes the (n−1)-dimensional Hausdorff measure. The best
constant C above is referred to as the Ahlfors regularity constant.

Definition 2.2 Let Ω ⊂ R
n, δ > 0, and R > 0. If D denotes Hausdorff measure and

L(Q) denotes an (n − 1)-plane containing a point Q ∈ Ω , set

θ(r) = sup
Q∈∂Ω

inf
L(Q)

r−1D
[
∂Ω ∩ B(Q, r), L ∩ B(Q, r)

]
(2.2)
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We say that Ω is a (δ,R)-chord arc domain (CAD) if Ω is a set of locally finite
perimeter such that

sup
0<r≤R

θ(r) ≤ δ (2.3)

and

σ
(
B(Q, r)

) ≤ (1 + δ)ωn−1r
n−1 ∀Q ∈ ∂Ω and ∀r ∈ (0,R]. (2.4)

Here ωn−1 is the volume of the (n − 1)-dimensional unit ball in R
n−1.

Definition 2.3 Let Ω ⊂ R
n. We say that Ω is a chord arc domain with vanishing

constant if it is a (δ,R)-CAD for some δ > 0 and R > 0,

lim sup
r→0

θ(r) = 0, (2.5)

and

lim
r→0

sup
Q∈∂Ω

σ(B(Q, r))

ωnrn−1
= 1. (2.6)

For the purpose of this paper, we assume that Ω ⊂ R
n is a bounded domain. We

consider elliptic operators L of the form

Lu = div
(
A(X)∇u

)
(2.7)

defined in the domain Ω with symmetric coefficient matrix A(X) = (aij (X)) and
such that there are λ,Λ > 0 satisfying

λ|ξ |2 ≤
n∑

i,j=1

aij (X)ξiξj ≤ Λ|ξ |2 (2.8)

for all X ∈ Ω and ξ ∈ R
n.

We say that a function u in Ω is a solution to Lu = 0 in Ω provided that u ∈
W

1,2
loc (Ω) and for all φ ∈ C∞

c (Ω)

ˆ

Ω

〈
A(x)∇u,∇φ

〉
dx = 0.

A domain Ω is called regular for the operator L, if for every g ∈ C(∂Ω), the
generalized solution of the classical Dirichlet problem with boundary data g is a
function u ∈ C(Ω). Let Ω be a regular domain for L as above and g ∈ C(∂Ω). The
Riesz Representation Theorem ensures that there exists a family of regular Borel
probability measures {ωX

L }X∈Ω such that

u(X) =
ˆ

∂Ω

g(Q)dωX
L (Q).
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For X ∈ Ω , ωX
L is called the L-elliptic measure of Ω with pole X. When no confusion

arises, we will omit the reference to L and simply call it the elliptic measure.
To state our results, we introduce the notion of perturbation of an operator. Con-

sider two elliptic operators Li = div(Ai∇) for i = 0,1 defined on a chord arc domain
Ω ⊂ R

n. We say that L1 is a perturbation of L0 if the deviation function

a(X) = sup
{∣∣A1(Y ) − A0(Y )

∣∣ : Y ∈ B
(
X,δ(X)/2

)}
(2.9)

where δ(X) is the distance of X to ∂Ω , satisfies the following Carleson measure
property: There exists a constant C > 0 such that

sup
0<r<diamΩ

sup
Q∈∂Ω

{
1

σ(B(Q, r))

ˆ

B(Q,r)∩Ω

a2(X)

δ(X)
dX

}1/2

≤ C. (2.10)

Note that in this case L1 = L0 on ∂Ω . For i = 0,1 we denote by Gi(X,Y ) the
Green’s function of Li in Ω with pole at X and by ωX

i the corresponding elliptic
measure.

We now recall some of the results concerning the regularity of the elliptic measure
of perturbation operators in Lipschitz domains. The results in the literature are more
general than those quoted below.

Theorem 2.4 [4] Let Ω = B(0,1). If L0 = �, a(X) is as in (2.9),

h(Q, r) =
{

1

σ(B(Q, r))

ˆ

B(Q,r)∩Ω

a2(X)

δ(X)
dX

}1/2

, (2.11)

and

lim
r→0

sup
|Q|=1

h(Q, r) = 0,

then the elliptic kernel of L1, k = dωL1/dσ ∈ Bq(dσ) for all q > 1.

In [9], R. Fefferman investigated an alternative to the smallness condition on
h(Q, r) above, and considered a pointwise requirement on the quantity A(a)(Q).

Theorem 2.5 [9] Let Ω = B(0,1) and L0 = �. Let Γ (Q) denote a non-tangential
cone with vertex Q ∈ ∂Ω and

A(a)(Q) =
(ˆ

Γ (Q)

a2(X)

δn(X)
dX

)1/2

,

where a(X) is as in (2.9). If ‖A(a)‖L∞ ≤ C then ω ∈ A∞(dσ ).

The main results in [4] and in [9] are proved using Dahlberg’s idea of introducing
a differential inequality for a family of elliptic measures. In [10], Fefferman, Kenig,
and Pipher presented a new direct proof of these results, and we will show here that
this proof extends beyond the class of Lipschitz domains. This requires a careful
reworking of many of the technical steps in the [10] proof, and the development of
the required new analytic tools for CADs.
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Theorem 2.6 [10] Let Ω be a Lipschitz domain. Let L1 be such that (2.10) holds.
Then ω1 ∈ A∞(dσ ) whenever ω0 ∈ A∞(dσ ).

Theorem 2.7 [10] Let Ω be a Lipschitz domain. Let ω0, ω1 denote the L0-elliptic
measure and the L1-elliptic measure, respectively, in Ω with pole 0 ∈ Ω . There exists
an ε0 > 0, depending on the ellipticity constants and the dimension, such that if

sup
�⊆∂Ω

{
1

ω0(�)

ˆ

T (�)

a2(X)
G0(X)

δ2(X)
dX

}1/2

≤ ε0,

then ω1 ∈ B2(ω0). Here T (�) = B(Q, r) ∩ Ω is the Carleson region associated
with the surface ball �(Q, r) = B(Q, r) ∩ ∂Ω , and G0(X) = G0(0,X) denotes the
Green’s function for L0 in Ω with pole at 0 ∈ Ω .

In the recent paper [14], Theorem 2.6 was generalized to chord arc domains with
small constant in the case L0 = �. More precisely,

Theorem 2.8 [14] Let Ω be a chord arc domain. Let L0 = � and L1 be such that
(2.10) holds. There exists δ(n) > 0 such that if Ω ⊂ R

n is a (δ,R)-CAD with 0 < δ ≤
δ(n), then ω1 ∈ A∞(dσ ).

The purpose of the present paper is to extend the result above to perturbation
operators on “rough domains”. In particular, we will show the following result.

Theorem 2.9 Let Ω be a chord arc domain. There exists an ε0 > 0, depending also
on the ellipticity constants and the dimension, such that if

sup
�⊆∂Ω

{
1

ω0(�)

ˆ

T (�)

a2(X)
G0(X)

δ2(X)
dX

}1/2

≤ ε0, (2.12)

then ω1 ∈ B2(ω0).

The various constants that will appear in the sequel may vary from formula to for-
mula, although for simplicity we use the same letter(s). If we do not give any explicit
dependence for a constant, we mean that it depends only on the usual parameters
such as ellipticity constants, NTA constants, the Ahlfors regularity constant, the di-
mension, and the NTA character of the domain. Moreover, throughout the paper we
shall use the notation a � b to mean that there is a constant c > 0 such that a ≤ cb.
Similarly, a  b means that a � b and b � a.

Next we recall the main theorems we will use about the boundary behavior of
L-elliptic functions in non-tangentially accessible (NTA) domains for uniformly el-
liptic divergence form operators L with bounded measurable coefficients. We refer
the reader to [12] for the definitions and more details regarding elliptic operators of
divergence form defined in NTA domains.
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Lemma 2.10 Let Ω be an NTA domain, Q ∈ ∂Ω , 0 < 2r < R, and X ∈ Ω\B(Q,2r).
Then

C−1 <
ωX(B(Q, r))

rn−2G(A(Q, r),X)
< C,

where G(A(Q, r),X) is the L-Green function of Ω with pole X, and ωX is the cor-
responding elliptic measure.

Lemma 2.11 Let Ω be an NTA domain with constants M > 1 and R > 0, Q ∈ ∂Ω ,
0 < 2r < R, and X ∈ Ω\B(Q,2Mr). Then for s ∈ [0, r],

ωX
(
B(Q,2s)

) ≤ CωX
(
B(Q, s)

)
,

where C only depends on the NTA constants of Ω .

Lemma 2.12 Let Ω be an NTA domain, and 0 < Mr < R. Suppose that u,v vanish
continuously on ∂Ω ∩ B(Q,Mr) for some Q ∈ ∂Ω , u,v ≥ 0, and Lu = Lv = 0
in Ω . Then there exists a constant C > 1 (depending only on the NTA constants) such
that for all X ∈ B(Q, r) ∩ Ω ,

C−1 u(A(Q, r))

v(A(Q, r))
≤ u(X)

v(X)
≤ C

u(A(Q, r))

v(A(Q, r))
.

Lemma 2.13 Let μ ∈ A∞(dω), 0 ∈ Ω , and set

Sα(u)(Q) =
(ˆ

Γα(Q)

∣∣∇u(X)
∣∣2

δ(X)2−ndX

)1/2

and

Nα(u)(Q) = sup
{∣∣u(X)

∣∣ : X ∈ Γα(Q)
}

where for Q ∈ ∂Ω

Γα(Q) = {
X ∈ Ω : |X − Q| < (1 + α)δ(X)

}
. (2.13)

Then if Lu = 0 and 0 < p < ∞,

(ˆ

∂Ω

(
Sα(u)

)p
dμ

)1/p

≤ Cα,p

(ˆ

∂Ω

(
Nα(u)

)p
dμ

)1/p

.

If in addition u(0) = 0, then

(ˆ

∂Ω

(
Nα(u)

)p
dμ

)1/p

≤ Cα,p

(ˆ

∂Ω

(
Sα(u)

)p
dμ

)1/p

.

3 Non-Tangential Behavior in CADs

In this section, we study the space of functions defined on chord arc domains whose
non-tangential maximal function is well behaved. Our goal is to extend the theory of
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tent spaces developed by Coifman, Meyer, and Stein [2] in the upper half-space to
chord arc domains. It will play a crucial role in the proof of Theorem 2.9.

We first study the notion of global γ -density with respect to a set F ⊂ ∂Ω for
a doubling measure μ supported on ∂Ω . In this paper, μ will either be the elliptic
measure of a divergence form operator defined on Ω or the surface measure to ∂Ω .
Please note that in contrast with the classical case we do not restrict the definition to
the case where F is closed.

Definition 3.1 Let F ⊂ ∂Ω , and let γ ∈ (0,1). A point Q ∈ ∂Ω has global γ -density
with respect to F for a doubling measure μ if for ρ ∈ (0,diamΩ)

μ(B(Q,ρ) ∩ F )

μ(B(Q,ρ)
≥ γ. (3.1)

Let F ∗
γ be the set of points of global γ -density of F .

Lemma 3.2 Let Ω be a CAD with surface measure σ and let �(P, s) = B(P, s) ∩
∂Ω be the surface ball centered at P . Given α > 0, there exist γ ∈ (0,1) close to 1
and λ0 > 0 such that if F ⊂ ∂Ω and P ∈ F ∗

γ , then for P ∈ �(P, (2 + α)r)

σ
(
�(Q,βr) ∩ F

) ≥ λ0(βr)n−1, (3.2)

where β = min{1, α}.
Proof Assume σ(�(Q,βr) ∩ F ) < λ0(βr)n−1. Since �(Q,βr) ⊂ �(P, (2 +
α + β)r) ⊂ �(P, (3 + 2α)r) and P ∈ F ∗

γ , then

γ σ
(
�

(
P, (3 + 2α)r

))

≤ σ
(
�

(
P, (3 + 2α)r

) ∩ F
)

≤ σ
(
�

(
P, (3 + 2α)r

)\�(Q,βr)
) + σ

(
�(Q,βr)

)

≤ σ(�
(
P, (3 + 2α)r

)[
1 − 1

C2
·
(

β

3 + 2α

)n−1

+ C2λ0

(
β

3 + 2α

)n−1]
, (3.3)

where C denotes the Ahlfors regularity constant. For λ0 = 1/2C4, (3.3) implies that
γ ≤ 1 − 1

2C2 · ( β
3+2α

)n−1 < 1, which is a contradiction if γ is close enough to 1. �

Please note that so far we have not assumed that the set F is closed. The following
proposition requires the set F to be closed. It holds for a general doubling measure
supported on ∂Ω , but will only be applied to either surface measure or elliptic mea-
sure.

Proposition 3.3 Let Ω be a CAD, and let μ be a doubling measure on ∂Ω . Let
F ⊂ ∂Ω be a closed set. Then F ∗

γ ⊂ F and

μ
((

F ∗
γ

)c) ≤ Cμ
(

F c
)
. (3.4)

Here the constant C depends on γ and on the doubling constant of μ.
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Proof Since F is closed, it is clear that F ∗
γ ⊂ F . Let O = F c and O∗ = (F ∗

γ )c. If
Q ∈ O∗, by definition there exists a radius �Q > 0 such that

μ(�(Q,�Q) ∩ F )

μ(�(Q,�Q))
< γ.

By Besicovitch (see [7]),

O∗ ⊂
Nn⋃

i=1

⋃

j

�
(
Qi

j ,�
i
j

)

where �(Qi
j , �

i
j ) ∩ �(Qi

l , �
i
l ) = ∅ for j �= l. Therefore,

μ
(

O∗) ≤
Nn∑

i=1

∑

j

μ
(
�

(
Qi

j ,�
i
j

))

and

Nn∑

i=1

∑

j

μ
(
�

(
Qi

j ,�
i
j

)) =
Nn∑

i=1

∑

j

μ
(
�

(
Qi

j ,�
i
j

) ∩ F
) + μ

(
�

(
Qi

j ,�
i
j

) ∩ O
)

≤
Nn∑

i=1

∑

j

γμ
(
�

(
Qi

j ,�
i
j

)) + μ
(
�

(
Qi

j ,�
i
j

) ∩ O
)
.

Hence,

μ
(

O∗) ≤ C

Nn∑

i=1

∑

j

μ
(
�

(
Qi

j ,�
i
j

) ∩ O
) ≤ Cμ(O). (3.5)

�

Definition 3.4 Let Ω be a CAD. We denote by N a linear space of Borel measurable
functions F such that

N = {
F : Ω → R such that N(F) ∈ L1(dσ )

}

where N(F)(Q) = sup{|F(X)| : X ∈ Γ (Q)} and Γ (Q) = Γ1(Q) as defined in (2.13).

Remark 3.5 The set N with the norm given by ‖F‖N = ‖N(F)‖L1(∂Ω) is a Banach
space.

The following proposition shows that the definition of the space N above does not
depend on the aperture of the cone used.
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Proposition 3.6 Let Ω be a CAD. Let μ be a doubling measure supported on ∂Ω .
For Q ∈ ∂Ω let

NαF(Q) = sup
X∈Γα(Q)

∣∣F(X)
∣∣,

where Γα(Q) is as defined in (2.13). Then given α, β > 0 there exists a constant C

depending on α, β and the doubling constant of μ such that for all λ > 0

μ
({

X ∈ ∂Ω : NαF(X) > λ
}) ≤ Cμ

({
X ∈ ∂Ω : NβF(X) > λ

})
. (3.6)

Hence for 1 ≤ p < ∞,
ˆ

|NαF |pdμ ≤ C

ˆ
|NβF |pdμ. (3.7)

Proof If α ≤ β , the inequality (3.6) is automatic. Thus, we may assume that α > β .
To prove (3.6), we would like to apply Proposition 3.3. We claim that for γ ∈ (0,1)

close enough to 1, the set {X ∈ ∂Ω : NαF(X) > λ} is contained in the complement
of the set of points of global γ -density with respect to {X ∈ ∂Ω : NβF(X) > λ}c. It
is straightforward to show that the set {X ∈ ∂Ω : NβF(X) > λ} is open, which en-
sures that Proposition 3.3 applied to F = {X ∈ ∂Ω : NβF(X) > λ}c combined with
the previous claim yields (3.6). To prove the claim, assume that NαF(Q) > λ for
Q ∈ ∂Ω there exists Y ∈ Γα(Q) such that F(Y ) ≥ λ and |Q − Y | < (1 + α)δ(Y ).
Now let QY ∈ ∂Ω such that |Y − QY | = δ(Y ); then �(QY ,βδ(Y )) ⊂ {P ∈ ∂Ω :
NβF(P ) > λ} ∩ �(Q, (α + β + 2)δ(Y )). In fact, if P ∈ �(QY ,βδ(Y )), then
|P − Y | ≤ |P − QY | + |QY − Y | < (1 + β)δ(Y ) and F(Y ) > λ. Therefore, since
μ is doubling,

μ({P : NβF(P ) > λ} ∩ �(Q, (α + β + 2)δ(Y )))

μ(�(Q, (α + β + 2)δ(Y )))

≥ μ(�(QY ,βδ(Y )))

μ(�(Q, (α + β + 2)δ(Y )))

≥ μ(�(QY , (2 + α + β)δ(Y )))

μ(�(Q, (α + β + 2)δ(Y )))

≥ μ(�(Q,βδ(Y )))

μ(�(Q, (α + β + 2)δ(Y )))

≥ C0, (3.8)

where C0 depends on α, β and the doubling constant of μ. Note that (3.8) shows
that for Q ∈ ∂Ω such that NαF(Q) > λ, Q is not a global γ -density point with
respect to {P ∈ ∂Ω : NβF(P ) > λ} whenever γ ∈ (1 − C0/2,1), which proves our
claim. �

One of the goals of this section is to study the dual of the space N . To achieve
this, we still need to understand better the geometry of Ω and the structure of its
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boundary. To this effect, we first prove a Whitney decomposition type lemma for an
open subset of ∂Ω . Then we define the “tent” over an open subset of ∂Ω . Finally, we
define Carleson measures on Ω .

Lemma 3.7 Let F ⊂ ∂Ω be a closed nonempty set on ∂Ω . There exist a family of
balls {Bk} with Bk = B(Xk, rk), Xk ∈ ∂Ω and constants 1 < c∗ < c∗∗ such that if
B∗

k = c∗Bk = B(Xk, c
∗rk), B∗∗

k = c∗∗Bk , then

• Bk ∩ Bj = ∅, for k �= j

• ⋃
k B∗

k = Fc ∩ ∂Ω = O

• B∗∗
k ∩ F �= ∅.

In addition, if we define

Qk = B∗
k ∩

(⋃

j<k

Qj

)c

∩
(⋃

j>k

Bj

)c

,

then Bk ⊂ Qk ⊂ B∗
k , the Qk’s are disjoint, and

⋃∞
k=1 Qk = O .

Proof Consider 0 < ε < 1/6 and let d(X) = sup{d : B(X,d) ∩ ∂Ω ⊂ O} for X ∈
∂Ω . Let us choose a maximal disjoint subcollection of {B(X,εd(X))}X∈O . For this
countable subcollection {Bk}∞k=1, where Bk := B(Xk, εd(Xk)) and Xk ∈ ∂Ω , we con-

sider B∗
k = B(Xk,

d(Xk)
2 ) and B∗∗

k = B(Xk,2d(Xk)). Clearly (i) and (iii) hold; more-
over, B∗

k ⊂ O . To show that

O ⊂
⋃

k≥1

B∗
k ,

we take Y ∈ O . By the selection of {Bk}, there exists k such that

B
(
Y, εd(Y )

) ∩ B
(
Xk, εd(Xk)

) �= ∅. (3.9)

Therefore, |Y −Xk| < εd(Y )+ εd(Xk). Moreover, d(Y ) ≤ |Xk −Y |+d(Xk), which
implies d(Y ) ≤ 1+ε

1−ε
d(Xk), and as a consequence |Y −Xk| < 3εd(Xk) <

d(Xk)
2 , since

ε < 1/6.
By construction, B1 ⊂ Q1 ⊂ B∗

1 . Assume that for k ≥ 2 and j ≤ k − 1, Bj ⊂
Qj ⊂ B∗

j and note that Bk ⊂ (
⋃

j>k Bj )
c ∪B∗

k . By definition and using the hypothesis
of induction, we have for j < k

Qc
j = (

B∗
j

)c ∪
(⋃

i<j

Qj

)
∪

(⋃

i>j

Bi

)
⊃

(⋃

i �=j

Bi

)
⊃ Bk

and
⋂

j<k Qc
j ⊃ ⋃

i≥k Bi ⊃ Bk , which ensures that Bk ⊂ Qk ⊂ B∗
k .

It is clear that
⋃∞

k=1 Qk ⊂= ⋃∞
k=1 B∗

k = O . For X ∈ O consider two cases. Either
there exists j such that X ∈ B(Xj , εd(Xj )) =: Bj ⊂ B∗

j , X /∈ Qi for i < j , X /∈ Bi

for i �= j and therefore X ∈ Qj . Or for all j , X /∈ Bj . In this case, there exists a k0
such that X ∈ B∗

k0
but X /∈ B∗

k , for k < k0. Hence X /∈ Qk with k < k0, which implies
X ∈ Q∗

k0
and O ⊂ ⋃

k Qk . �
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To define the notion of “tent” over an open subset of ∂Ω , we first look at “fans”
of cones over subsets on ∂Ω . Let F ⊂ ∂Ω . For α > 0, define

Rα(F ) =
⋃

Q∈F
Γα(Q), (3.10)

where Γα(Q) is as defined in (2.13). We denote R1(F ) by R(F ). Given an open set
O ⊂ ∂Ω , the tent over O is defined as

T (O) = Ω \ R(F ). (3.11)

Lemma 3.8 Let O be the open set defined by

O = {
Q ∈ ∂Ω : N(F)(Q) > α

}
.

Then

T (O) ⊆
⋃

P∈O

T
(
�

(
P,dist

(
P,Oc

)))
.

Proof Recall that T (�(Q, r)) = B(Q, r) ∩ Ω . Let Y ∈ T (O). Then Y /∈ R(F ),
hence NF(QY ) > α, where by QY ∈ ∂Ω we denote the boundary point satisfying
|Y − QY | = δ(Y ). Now if P ∈ �(QY , δ(Y )), then |P − Y | < 2δ(Y ), Y ∈ Γ (P ), and
since Y /∈ R(F ), then P /∈ F , thus P ∈ O , i.e., �(QY , δ(Y )) ⊂ O , which implies
δ(Y ) ≤ dist(QY ,Oc). �

Definition 3.9 Let Ω be a CAD. For a Borel measure μ on Ω , we define for Q ∈ ∂Ω ,

C(μ)(Q) = sup
Q∈�

1

σ(�)

ˆ

T (�)

dμ

and denote by

C =
{
μ is Borel in Ω : ‖μ‖C = sup

Q∈∂Ω

C(μ)(Q) < ∞
}
.

C is the collection of Carleson measures on Ω .

Lemma 3.10 Assume that μ is a positive measure on Ω such that ‖μ‖C ≤ 1, i.e.,
μ(T (B)) ≤ σ(B) for all balls B. Then, for every open set O ⊂ ∂Ω

μ
(
T (O)

) ≤ Cσ(O).

Proof As in the classical setting, we appeal to the Whitney decomposition, Lem-
ma 3.7. If the Bk’s are as in Lemma 3.7, then we claim that

T (O) ⊂
⋃

k

T
(
B∗∗

k

)
. (3.12)
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Thus

μ
(
T (O)

) ≤
∑

k

μ
(
T

(
B∗∗

k

)) ≤ C
∑

k

σ
(
B∗∗

k

) ≤ C
∑

k

σ (Bk)

�
∑

k

σ (Qk) � σ(O)

where we have used the fact that σ is Ahlfors regular (in fact, the doubling
properties of σ are enough). To prove (3.12), consider a point Z ∈ T (O) ⊆⋃

P∈O T (�(P,dist(P,Oc))), that is, Z ∈ T (�(P,dist(P,Oc))) for some P ∈ O ,
and there exists a k such that P ∈ B∗

k and |P − Xk| <
dk

2 . Now if Y ∈ Oc is such

that dk = |Y − Xk| |Y − P | ≤ |Y − Xk| + |Xk − P | <
3dk

2 , dist(P,Oc) <
3dk

2
and |Z − Xk| ≤ |Z − P | + |P − Xk| < dist(P,Oc) + dk

2 < 2dk , that is, Z ∈
T (�(Xk,2dk)) = T (B∗∗

k ). �

We are now ready to study the relationship between the spaces N and C . First we
prove the analogue of Proposition 3 in [2].

Proposition 3.11 Let Ω be a CAD. If F ∈ N and μ ∈ C , then
∣∣∣∣

ˆ

Ω

F(X)dμ(X)

∣∣∣∣ �
ˆ

∂Ω

NF(Q)C(μ)(Q)dσ. (3.13)

Proof Assume that F ≥ 0 and consider the open set O = {P ∈ ∂Ω : NF(P ) > α}.
Using the notation in Lemma 3.7 and the fact that σ is Ahlfors regular, we have for
X ∈ Qk

μ
(
T

(
B∗∗

k

)) ≤ C(μ)(X)σ
(
B∗∗

k

) ≤ C(μ)(X)σ(Bk) ≤
ˆ

Qk

C(μ)(X)dσ.

By Lemma 3.10 and the fact that the Qk’s are disjoint, we have that

μ
({∣∣F(X)

∣∣ > α
}) ≤

∑

k

μ
(
T

(
B∗∗

k

)) ≤ C
∑

k

ˆ

Qk

C(μ)(X)dσ

≤ C

ˆ

{NF(X)>α}
C(μ)(X)dσ.

Integrating over α and using Fubini yields (3.13). �

Corollary 3.12 Let μ ∈ C . Let F be a function defined on Ω such that NF ∈ Lp(dσ),
for some p ∈ (0,∞) fixed. Then,

ˆ

Ω

∣
∣F(X)

∣
∣pdμ ≤ C

ˆ

∂Ω

∣
∣NF(Q)

∣
∣pC(μ)(Q)dσ. (3.14)

Proof Inequality (3.14) follows from Proposition 3.11 if we replace |F(X)| by
|F(X)|p . �
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We now present a couple of integration lemmas. They provide control of boundary
integrals in terms of solid integrals on CAD, via Fubini. In what follows, the function
A(X) is a non-negative measurable function in Ω . In Sect. 4, we will take A(X) to
be the square function.

Lemma 3.13 Let Ω be a CAD. Given α > 0, if F ⊂ ∂Ω and A is a non-negative
measurable function in Ω , then

ˆ

F

(ˆ

Γα(Q)

A(X)dX

)
dσ(Q) ≤ Cα

ˆ

Rα(F )

A(X)δ(X)n−1dX, (3.15)

where Rα(F ) is given by (3.10).

Proof By Fubini’s theorem,

ˆ

F

(ˆ

Γα(Q)

A(X)dX

)
dσ(Q) =

ˆ

F

ˆ

Ω

A(X)χΓα(Q)(X)dXdσ(Q)

=
ˆ

Ω

ˆ

F
A(X)χΓα(Q)(X)dσ(Q)dX. (3.16)

If χΓα(Q)(X) = 1, then |X − Q| < (1 + α)δ(X), and if QX ∈ ∂Ω is such that
|X − QX| = δ(X), then |QX − Q| ≤ |X − QX| + |X − Q| < (2 + α)δ(X), and

ˆ

F
χΓα(Q)(X)dσ(Q) ≤ σ

(
�

(
QX, (2 + α)δ(X)

)) ≤ Cαδ(X)n−1. (3.17)

Combining (3.17) and (3.16), we obtain

ˆ

Ω

ˆ

F
A(X)χΓα(Q)(X)dσ(Q)dX

≤
ˆ

Ω

ˆ

F
A(X)χΓα(Q)(X)χ�(QX,(2+α)δ(X))(Q)dσ(Q)dX

≤
ˆ

Rα(F )

A(X)

(ˆ

F
χ�(QX,(2+α)δ(X))(Q)dσ(Q)

)
dX

≤ Cα

ˆ

Rα(F )

A(X)δ(X)n−1dX. �

Lemma 3.14 Let Ω be a CAD. Given α > 0, there exists γ ∈ (0,1) close to 1 such
that if F ⊂ ∂Ω and A is a non-negative measurable function in Ω , then

ˆ

Rα(F ∗
γ )

A(X)δ(X)n−1dX ≤ Cα

ˆ

F

(ˆ

Γβ(Q)

A(X)dX

)
dσ(Q), (3.18)

where β = min{1, α}.
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Proof If χΓβ(Q)(X) = 0, then |X − Q| ≥ (1 + β)δ(X), and |Q − QX| ≥ βδ(X).
Hence χΓβ(Q)(X) ≥ χ�(QX,βδ(X))(Q). Fubini’s theorem yields

ˆ

F

ˆ

Γβ(Q)

A(X)dXdσ(Q)

=
ˆ

∂Ω

ˆ

F
A(X)χΓβ(Q)(X)dσ(Q)dX

≥
ˆ

Ω

A(X)

ˆ

F
χ�(QX,βδ(X))(Q)dσ(Q)dX

≥
ˆ

Rα(F ∗
γ )

A(X)

ˆ

F
χ�(QX,βδ(X))(Q)dσ(Q)dX. (3.19)

Note that if X ∈ Rα(F ∗
γ ), there is P ∈ F ∗

γ such that X ∈ Γα(P ) and QX ∈ �(P,

(2 + α)δ(X)), then applying (3.2) in (3.3) we obtain
ˆ

F

ˆ

Γβ(Q)

A(X)dXdσ(Q) ≥ Cα

ˆ

Rα(F ∗
γ )

A(X)δ(X)n−1dX. (3.20)

�

Corollary 3.15 Let Ω be a CAD. Given α > 0 there exists γ ∈ (0,1) close to 1 such
that if F ⊂ ∂Ω and f is a measurable function in Ω , then

ˆ

F ∗
γ

ˆ

Γα(Q)

f 2(x)

δ(X)n
dXdσ(Q) ≤ Cα

ˆ

Rα(F ∗
γ )

f 2(X)

δ(X)
dX

≤ Cα

ˆ

F

ˆ

Γ (Q)

f 2(x)

δ(X)n
dXdσ(Q). (3.21)

Proof Combining Lemma 3.14 applied to F and Lemma 3.13 applied to F ∗
γ with

A(X) = f 2(X)
δn(X)

, we obtain (3.21). �

4 Square Functions in CADs

Next we focus our attention on the tent spaces T p defined for chord arc domains,
following the theory developed by Coifman, Meyer, and Stein in [2]. Suppose that f

is a measurable function defined on Ω . For α > 0 and Q ∈ ∂Ω , we define

A(α)(f )(Q) =
(ˆ

Γα(Q)

f (X)2 dX

δ(X)n

)1/2

. (4.1)

The square function of f is defined as A(f ) = A(1)(f ). By analogy with the space N
defined in Sect. 3, we denote by T p for 1 ≤ p < ∞ the space of all Borel measurable
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functions given by

T p = {
f ∈ L2(Ω) : A(f ) ∈ Lp(σ)

}
. (4.2)

Remark 4.1 The space T p as defined above with the norm ‖f ‖T p = ‖A(f )‖Lp(σ) is
a Banach space.

We define operator C(f ) : ∂Ω → R by

C(f )(Q) := sup
Q∈�

(
1

σ(�)

ˆ

T (�)

f (X)2 dX

δ(X)

)1/2

(4.3)

where � is a surface ball and T (�) is the tent over it. We also introduce the space

T ∞ = {
f ∈ L2(Ω) : C(f ) ∈ L∞(σ )

}
, (4.4)

with the norm ‖f ‖T ∞ = ‖C(f )‖L∞ .

Theorem 4.2

(a) Whenever g ∈ T 1 and C(f ) ∈ L∞(σ ), then
ˆ

Ω

∣∣f (X)g(X)
∣∣ dX

δ(X)
≤ C

∥∥C(f )
∥∥

L∞‖g‖T 1 .

(b) More precisely,
ˆ

Ω

∣∣f (X)g(X)
∣∣ dX

δ(X)
≤ C

ˆ

∂Ω

C(f )(Q)A(g)(Q)dσ(Q).

Proof Without loss of generality we may assume that both f and g are non-negative.
For any τ > 0, we define the truncated cone

Γ τ (Q) = {
X ∈ Ω : |X − Q| < 2δ(X), δ(X) ≤ τ

}
(4.5)

and let

Aτ (f )(Q) :=
(ˆ

Γ τ (Q)

f (X)2 dX

δ(X)n

)1/2

.

Note that Aτ (f ) increases with τ , is constant for τ > diamΩ , and A∞(f ) = A(f ).
Given f , define the “stopping time” τ(Q), which is given for Q ∈ ∂Ω by

τ(Q) = sup
{
τ > 0 : Aτ (f )(Q) ≤ ΛC(f )(Q)

}

where Λ is a large constant to be determined later. Λ is only allowed to depend on n,
the NTA constants, and the Ahlfors regularity constant.

Claim: There exists a constant c0 > 0 such that for every Q0 ∈ ∂Ω and 0 < r ≤
diamΩ

σ
({

Q ∈ �(Q0, r) : τ(Q) ≥ r
}) ≥ c0σ

(
�(Q0, r)

)
.
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We assume that the previous claim holds and we prove that part (b) is satisfied by
showing that for H ≥ 0

ˆ

Ω

H(X)δ(X)n−1dX ≤ C1

ˆ

∂Ω

{ˆ

Γ τ(Q)(Q)

H(X)dX

}
dσ(Q) (4.6)

where C1 depends on c0 and the Ahlfors constant. Applying Fubini’s theorem we
obtain

ˆ

∂Ω

ˆ

Γ τ(Q)(Q)

H(X)dXdσ(Q) =
ˆ

Ω

ˆ

∂Ω

H(X)χΓ τ(Q)(Q)(X)dσ(Q)dX.

Note that if Q ∈ �(QX, δ(X)) and δ(X) ≤ τ(Q) then |Q − X| ≤ |Q − QX| +
|QX − X| < 2δ(X), which implies that X ∈ Γ τ(Q)(Q) and

χΓ τ(Q)(Q)(X) ≥ χ�(QX,δ(X))∩{τ(Q)≥δ(X)}(Q).

Therefore, using the claim and the fact that σ is Ahlfors regular, we obtain
ˆ

Ω

ˆ

∂Ω

H(X)χΓ τ(Q)(Q)(X)dσ(Q)dX

≥
ˆ

Ω

ˆ

∂Ω

H(X)χ�(QX,δ(X))∩{τ(Q)≥δ(X)}(Q)dσ(Q)dX

≥
ˆ

Ω

H(X)σ
({

Q ∈ �
(
QX,δ(X)

) : τ(Q) ≥ δ(X)
})

dX

≥
ˆ

Ω

H(X)c0σ
(
B

(
QX,δ(X)

))
dX

≥ C−1
1

ˆ

Ω

H(X)δ(X)n−1dX.

To prove part (b), we take H(X) = f (X)g(X)δ(X)−n in the inequality (4.6),

ˆ

Ω

f (X)g(X)
dX

δ(X)
≤ C1

ˆ

∂Ω

(ˆ

Γ τ(Q)(Q)

f (X)g(X)δ(X)−ndX

)
dσ(Q)

and then we use the Cauchy–Schwarz inequality in order to obtain
ˆ

Γ τ(Q)(Q)

f (X)g(X)δ(X)−ndX

≤
(ˆ

Γ τ(Q)(Q)

f 2(X)

δ(X)n
dX

)1/2(ˆ

Γ τ(Q)(Q)

g2(X)

δ(X)n
dX

)1/2

.

Therefore,
ˆ

Ω

f (X)g(X)
dX

δ(X)
≤ C1

ˆ

∂Ω

Aτ(Q)(f )(Q)Aτ(Q)(g)(Q)dσ(Q). (4.7)
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By the definition of τ(Q),

Aτ(Q)(f )(Q) ≤ ΛC(f )(Q) and Aτ(Q)(g)(Q) ≤ A(g)(Q).

Hence,
ˆ

Ω

f (X)g(X)
dX

δ(X)
≤ C

ˆ

∂Ω

C(f )(Q)A(g)(Q)dσ(Q)

as required in part (b). In order to complete the proof, we need to prove the claim
stated above.

Proof of Claim For Q0 ∈ ∂Ω , consider � = �(Q0, r) and �̃ = �(Q0,3r). Note that
⋃

Q∈� Γ r(Q) ⊂ T (�̃). Indeed, if X ∈ Γ r(Q) for Q ∈ �, then |X −Q| < 2δ(X) and
δ(X) ≤ r , that is, |X − Q0| < |Q0 − Q| + |Q− X| < r + 2δ(X) ≤ 3r , which implies
X ∈ B(Q0,3r) ∩ Ω = T (�̃). Thus, for Q ∈ �,

ˆ

�

A2
r (f )(Q)dσ(Q) =

ˆ

�

ˆ

Γ r (Q)

f 2(X)

δ(X)n
dXdσ(Q)

=
ˆ

Ω

ˆ

�

f 2(X)

δ(X)n
χΓ r (Q)(X)dσ(Q)dX

≤
ˆ

Ω

f 2(X)

δ(X)n
χB(Q0,3r)(X)σ

(
�

(
QX,3δ(X)

))
dX

≤ C

ˆ

T (�̃)

f 2(X)

δ(X)
dX.

Since σ(�̃) ≤ cσ (�) for any Q ∈ �

1

σ(�)

ˆ

�

A2
r (f )(Q)dσ(Q)� 1

σ(�̃)

ˆ

T (�̃)

f 2(X)

δ(X)
dX�C2(f )(Q)≤C′ inf

Q∈�
C(f )(Q).

If σ({Q ∈ � : τ(Q) ≥ r}) < c0σ(B), then σ({Q ∈ � : τ(Q) < r}) > (1 − c0)σ (�)

and
ˆ

�

A2
r (f )(Q)dσ(Q) ≥

ˆ

�∩{τ(Q)<r}
A2

r (f )(Q)dσ(Q)

> Λ2
ˆ

�∩{τ(Q)<r}
C2(f )(Q)dσ(Q)

≥ Λ2 inf
�

C2(f )(Q)σ
(
� ∩ {

τ(Q) < r
})

≥ Λ2(1 − c0) inf
�

C2(f )(Q)σ(�)

which would imply

Λ2(1 − c0) inf
�

C2(f )(Q) < C′ inf
�

C2(f )(Q) or Λ2(1 − c0) ≤ C′,

which is a contradiction if we take Λ large and c0 = 3/4 fixed. This concludes the
proof of the claim, thus that of Theorem 4.2. �
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Remark 4.3 As in [2], Theorem 4.2 can be used to identify the dual of T 1 with those
F for which C(F) ∈ L∞(σ ).

Remark 4.4 Note that if 1 < p,q < ∞, are such that 1
p

+ 1
q

= 1, f ∈ T p , g ∈ T q ,
then using (4.7) and Hölder’s inequality we have that

ˆ

Ω

f (X)g(X)

δ(X)
dX � ‖f ‖T p‖g‖T q .

Similarly, (b) in Theorem 4.2 ensures that
ˆ

Ω

f (X)g(X)

δ(X)
dX �

∥∥C(f )
∥∥

Lp‖g‖T q . (4.8)

It will be proved in Theorem 6.1 that for 2 < p < ∞, A(f ) ∈ Lp(σ) if and only if
C(f ) ∈ Lp(σ).

As in [2], we prove that the definition of tent spaces is independent of the aperture
of the cone used. The following proposition is also crucial for the forthcoming results
in Sect. 7 (see, in particular, Remarks 7.3 and 7.2).

Proposition 4.5 Using the notation in (4.1), we have that for 0 < p < ∞
∥∥A(α)(f )

∥∥
Lp(σ)

≈
∥∥A(f )

∥∥
Lp(σ)

. (4.9)

To prove Proposition 4.5, we assume that α > 1. We note that in this case
A(α)(f ) ≥ A(f ). We show that there exists a constant C(α,p) such that
‖A(α)(f )‖Lp ≤ C(α,p)‖A(f )‖Lp . This proves (4.9) for α > 1. The case α ≤ 1 is
proved the same way by reversing the roles of α and 1. The following lemma, which
is straightforward on Lipschitz domains, requires proof on a CAD.

Lemma 4.6 For f ∈ T 1 and λ > 0, the set F = {Q ∈ ∂Ω : A(α)(f )(Q) ≤ λ} is
closed.

Proof To prove that F c = {Q ∈ ∂Ω : A(α)(f )(Q) > λ} is open, we show that given
Q ∈ ∂Ω such that A(α)(f )(Q) > λ, there exist η > 0 and ε > 0 such that if P ∈ ∂Ω

with |P − Q| < εη, then
ˆ

Γα(P )\B(P,η)

f 2(X)

δ(X)n
dX > λ2.

Since A(α)(f )(Q) > λ, there exists η > 0 so that

ˆ

Γα(Q)\B(Q,η)

f 2(X)

δ(X)n
dX >

(
A(α(f )(Q) + λ

2

)2

.

Observe that
∣∣
∣∣

ˆ

Γα(P )\B(P,η)

f 2(X)

δ(X)n
dX −

ˆ

Γα(Q)\B(Q,η)

f 2(X)

δ(X)n
dX

∣∣
∣∣ ≤

ˆ

D

f 2(X)

δ(X)n
dX
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where D = (Γα(Q) \ B(Q,η))�(Γα(P ) \ B(P,η)). If |X − Q| < (1 + α)δ(X) and
|X − Q| ≥ η, then δ(X) ≥ η

1+α
. If P ∈ B(Q,εη) and X /∈ Γα(P ) \ B(P,η), then

|X − Q| ≥ (1 + α)(1 − ε)δ(X). Thus we need to study sets of the form

VP = {
X ∈ Ω : |X − P | ≥ η;
δ(X)(1 + α)(1 − ε) ≤ |X − P | < (1 + α)δ(X)

}
(4.10)

for P ∈ B(Q,εη) and prove that they have small Hn-measure. Note that for ε < 1/2

VP ⊂ V ′
ε = {

X ∈ Ω : |X − Q| ≥ η/2;
δ(X)(1 + α)(1 − ε)2 ≤ |X − Q| < (1 + α)2δ(X)

}
. (4.11)

Note that D ⊂ VP ∪VQ ⊂ V ′. We show that given α > 0 and δ > 0, there exists β > 0
such that

Hn
({

X ∈ Ω : |X − Q| ≥ η/2;
δ(X)(1 + α − β) ≤ |X − Q| ≤ (1 + α + β)δ(X)

})
< δ, (4.12)

which ensures that given α > 0 and δ > 0, there exists ε > 0 such that Hn(V ′
ε) < δ.

Fix α > 0 and take β > 0 small, such that α − β > α/2. Consider the set

V = Ω ∩
{
|X − P | ≥ η/2,

1

1 + α + β
≤ δ(X)

|X − P | ≤ 1

1 + α − β

}
⊂ Ω\B(Q,η/2).

F (X) = δ(X)
|X−Q| − 1 is a non-positive Lipschitz function on Ω\B(Q,η/2). By the

co-area formula, we have

Hn(V ) =
ˆ 0

−1

(ˆ

F−1(t)

1

JF
χV dHn−1

)
dt

=
ˆ 1

1+α−β
−1

1
1+α+β

−1

(ˆ

F−1(t)

1

JF
χV dHn−1

)
dt. (4.13)

Since
ˆ 0

−1

(ˆ

F−1(t)

1

JF
χΩ\B(Q,η/2)dHn−1

)
dt ≤ Hn(Ω) ≤ C(Ω) < ∞,

given α > 0, there exists β > 0 small, such that

ˆ 1
1+α−β

−1

1
1+α+β

−1

(ˆ

F−1(t)

1

JF
χΩ\B(Q,η/2)dHn−1

)
dt < δ. (4.14)

Note that (4.11), (4.13), and (4.14) yield (4.12).
Since f ∈ L2(Ω), given ε′ > 0 there exists δ > 0 so that if (4.12) holds then

ˆ

D

f 2(X)

δ(X)n
dX ≤ 2nη−n

ˆ

D

f 2(X)dX < η−nε′.
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Thus

ˆ

Γα(P )\B(P,η)

f 2(X)

δ(X)n
dX >

ˆ

Γα(Q)\B(Q,η)

f 2(X)

δ(X)n
dX

− η−nε′
(

A(α(f )(Q) + λ

2

)2

− η−nε′.

Since A(α)(f )(Q) > λ, we can choose ε′ > 0 so that

(
A(α)(f )(P )

)2 ≥
ˆ

Γα(P )\B(P,η)

f 2(X)

δ(X)n
dX > λ2. �

Proof of Proposition 4.5 We fix λ > 0 and let

F = {
Q ∈ ∂Ω : A(f )(Q) ≤ λ

}
, O = F C = {

Q ∈ ∂Ω : A(f )(Q) > λ
}
.

Since F is a closed set, F ∗
γ ⊂ F (see Proposition 3.3). Let O∗ = (F ∗

γ )C . Since σ is
Ahlfors regular, it is doubling, and (3.4) ensures that

σ
({

Q ∈ ∂Ω : A(α)(f )(Q) > λ
})

≤ σ
((

F ∗
γ

)C}) + σ
({

Q ∈ F ∗
γ : A(α)(f )(Q) > λ

})

≤ σ
(
O∗) + Cα,γ

λ2

ˆ

F

(
A(f )(Q)

)2
dσ(Q)

≤ Cσ
({

Q ∈ ∂Ω : A(f )(Q) > λ
}) + C

λ2

ˆ

{A(f )≤λ}
(
A(f )(Q)

)2
dσ(Q).

Multiplying both sides by pλp−1 and integrating, we obtain

p

ˆ ∞

0
σ
({

Q ∈ ∂Ω : A(α)(f ) > λ
})

λp−1dλ

≤ Cp

ˆ ∞

0
σ
({

Q ∈ ∂Ω : A(f ) > λ
})

λp−1dλ

+ Cp

ˆ ∞

0
λp−3

ˆ

{A(f )≤λ}
(
A(f )(Q)

)2
dσdλ. (4.15)

If p < 1, Fubini’s theorem applied to the second term yields

ˆ ∞

0
λp−3

ˆ

{A(f )≤λ}
(
A(f )(Q)

)2
dσdλ

=
ˆ ∞

0

ˆ

∂Ω

χ{Af ≤λ}
(
A(f )(Q)

)2
λp−3dσdλ
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=
ˆ

∂Ω

(
Af (Q)

)2
ˆ ∞

Af (Q)

λp−3dλdσ

= Cp

ˆ

∂Ω

(
Af (Q)

)2(
Af (Q)

)p−2
dσ(Q). (4.16)

Thus for p < 2, ‖A(α)f ‖p
Lp ≤ C‖Af ‖p

Lp .

For the case p ≥ 2, if 1
r

+ 2
p

= 1, observe that

∥∥A(α)f
∥∥2

p
= sup

ψ

{ˆ

∂Ω

(
A(α)f

)2
ψdσ : ψ ∈ Lr(σ ), ‖ψ‖Lr ≤ 1

}
. (4.17)

Note that

ˆ

∂Ω

(
A(α)f

)2
ψdσ ≤

(ˆ

∂Ω

(
A(α)f

)p
)2/p(ˆ

∂Ω

ψr

)1/r

.

Also, if X ∈ Γα(Q), then |X − Q| < (1 + α)δ(X) and |Q − QX| < (2 + α)δ(X).
Therefore,

ˆ

∂Ω

(
A(α)(f )(Q)

)2
ψ(Q)dσ(Q)

=
ˆ

∂Ω

ˆ

Γα(Q)

f 2(X)
dX

δ(X)n
ψ(Q)dσ(Q)

=
ˆ

∂Ω

ˆ

Ω

f 2(X)

δ(X)n
χΓα(Q)(X)χ�(QX,(2+α)δ(X))(Q)ψ(Q)dXdσ

=
ˆ

Ω

(ˆ

∂Ω

χ�(QX,(2+α)δ(X))(Q)ψ(Q)χΓα(Q)(X)dσ(Q)

)
f 2(X)

δ(X)n
dX

≤
ˆ

Ω

f 2(X)

δ(X)n

ˆ

�(QX,(2+α)δ(X))

ψ(Q)dσ(Q)dX

≤ Cα

ˆ

Ω

M(2+α)δ(X)ψ(QX)
f 2(X)

δ(X)
dX (4.18)

where

Msψ(P ) = 1

sn−1

ˆ

�(P,s)

ψ(Q)dσ(Q).

Let

ψ∗(P ) = sup
s>0

1

sn−1

ˆ

�(P,s)

ψ(Q)dσ(Q).

Then

Ms(Mβsψ)(P ) = 1

sn−1

ˆ

�(P,s)

1

(βs)n−1

ˆ

�(Q,βs)

ψ(X)dσ(X)dσ(Q).
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If β > 1 and Q ∈ �(P, s), observe that �(P, (β − 1)s) ⊂ �(Q,βs) and

Ms(Mβsψ)(P ) ≥ 1

sn−1

ˆ

�(P,s)

1

(βs)n−1

ˆ

�(P,(β−1)s)

ψ(X)dσ(X)dσ(Q)

≥ C
1

(βs)n−1

ˆ

�(P,(β−1)s)

ψ(X)dσ(X)

≥ CβM(β−1)sψ.

That is, for β > 1,

M(β−1)sψ ≤ CβMs(Mβsψ) ≤ CβMsψ
∗ (4.19)

since Mβsψ ≤ Cψ∗. Plugging (4.19) into (4.18) with s = δ(X), β − 1 = 2 + α, we
obtain

ˆ

∂Ω

(
A(α)(f )(Q)

)2
ψ(Q)dσ(Q)

� Cα

ˆ

Ω

M(2+α)δ(X)ψ(QX)
f 2(X)

δ(X)
dX

≤ Cα

ˆ

Ω

Mδ(X)ψ
∗(QX)

f 2(X)

δ(X)
dX

≤ Cα

ˆ

Ω

f 2(X)

δ(X)n

ˆ

�(QX,δ(X))

ψ∗(Q)dσ(Q)dX

≤ Cα

ˆ

Ω

ˆ

∂Ω

f 2(X)

δ(X)n
χ�(QX,δ(X))(Q)χΓ (Q)(X)ψ∗(Q)dσ(Q)dX

≤ Cα

ˆ

∂Ω

(ˆ

Γ (Q)

f 2(X)

δ(X)n
dX

)
ψ∗(Q)dσ(Q)

≤ Cα

ˆ

∂Ω

(Af )2(Q)ψ∗(Q)dσ(Q)

≤ Cα‖Af ‖2
Lp

∥∥ψ∗∥∥
Lr ≤ Cα‖Af ‖2

Lp‖ψ‖Lr ≤ Cα‖Af ‖2
Lp

where we have used the fact that if Q ∈ �(QX, δ(X)) then |X − Q| ≤ |Q − QX| +
|X − QX| ≤ 2δ(X) and the fact that the maximal function of ψ is bounded in
Lr(σ ). Taking the supremum over all ψ yields that ‖A(α)f ‖Lp ≤ Cα‖Af ‖Lp for
2 ≤ p < ∞. �

Definition 4.7 A T 1 atom is a function a(X) which is supported in T (�), � =
B(Q0, r) ∩ ∂Ω for Q0 ∈ ∂Ω and

ˆ

T (�)

a2(X)
dX

δ(X)
≤ 1

σ(�)
. (4.20)
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Observe that if a is supported in B(Q0, r) ∩ Ω , then A(a) given by

A(a) =
(ˆ

Γ (Q)

a2(X)

δ(X)n
dX

)1/2

is supported in �(Q0,3r). Indeed, if X ∈ Γ (Q) and |Q − Q0| ≥ 3r , then
|X − Q0| ≥ r , which gives a(X) = 0 and thus A(a)(Q) = 0. Using (4.20) we es-
timate,

ˆ

∂Ω

A2(a)(Q)dσ(Q) =
ˆ

∂Ω

ˆ

Γ (Q)

a2(X)

δ(X)n
dXdσ(Q)

=
ˆ

∂Ω

ˆ

Ω

χΓ (Q)(X)
a2(X)

δ(X)n
dXdσ(Q)

≤
ˆ

Ω

ˆ

∂Ω

χ�(QX,3δ(X))(Q)χΓ (Q)(X)
a2(X)

δ(X)n
dσ(Q)dX

≤ C

ˆ

Ω

a2(X)

δ(X)
dX = C

ˆ

T (�)

a2(X)

δ(X)
dX � 1

σ(�)

which yields

ˆ

∂Ω

A(a)(Q)dσ(Q) ≤
(ˆ

∂Ω

A2(a)(Q)dσ(Q)

)1/2(
σ(�)

)1/2 ≤ Cn

where Cn depends on the Ahlfors regularity constant. Thus, if a is a T 1 atom, then
a ∈ T 1 and ‖a‖T 1 = ‖A(a)‖L1 ≤ Cn.

We are now ready to prove the duality relation between T 1 and T ∞ (see (4.2) and
(4.4)).

Theorem 4.8 If G ∈ (T 1)∗, then there exists a g ∈ T ∞ such that for every f ∈ T 1

∣∣G(f )
∣∣ 

∣∣∣∣

ˆ

Ω

f (x)g(x)
dX

δ(X)

∣∣∣∣.

Proof We first notice that Theorem 4.2 shows that every g ∈ T ∞ induces an ele-
ment in (T 1)∗. Let G ∈ (T 1)∗ and note that if K is a compact set in Ω and f is
supported in K with f ∈ L2(K) then f ∈ T 1. First we consider K = B(X0, r) with
dist(K, ∂Ω) ≥ ε0. If X ∈ Γ (Q) ∩ B(X0, r) then

|Q − QX0 | ≤ |Q − X| + |X − X0| + |X0 − QX0 | < 2δ(X) + r + δ(X0)

≤ 2|X − QX0 | + r + δ(X0) ≤ 2|X − X0| + 2|X0 − QX0 | + r + δ(X0)

≤ 3r + 3δ(X0) < 4r + 4δ(X0).
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Thus

ˆ

∂Ω

A(f )(Q)dσ(Q) =
ˆ

∂Ω

(ˆ

Γ (Q)∩B(X0,r)

f 2(X)

δ(X)n
dX

)1/2

dσ(Q)

≤
ˆ

�(QX0,4r+4δ(X0))

(ˆ

Γ (Q)∩B(X0,r)

f 2(X)

δ(X)n
dX

)1/2

dσ(Q)

� ε
−n/2
0

(
r + δ(X0)

)n−1
(ˆ

B(X0,r)

f 2(X)

)1/2

.

If K ⊆ ⋃m
i=1 B(Xi, ri) with B(Xi, ri) ⊂⊂ Ω , dist(B(Xi, ri), ∂Ω) ≥ ri >

1
2 dist(K, ∂Ω) = εK and ri ≤ diamK , then δ(Xi) ≤ diamK + dist(K, ∂Ω) and

ˆ

∂Ω

A(f )(Q)dσ(Q)

≤
ˆ

∂Ω

m∑

i=1

(ˆ

Γ (Q)∩B(Xi,ri )

f 2(X)

δ(X)n
dX

)1/2

dσ(Q)

≤
m∑

i=1

CKε
−n/2
K

(ˆ

B(Xi,ri )

f 2(X)dX

)1/2(
ri + δ(Xi)

)n−1 ≤ CK‖f ‖L2(K).

Therefore, for f compactly supported,
∣∣G(f )

∣∣ ≤ C‖f ‖T 1 ≤ CK‖f ‖L2(K).

Thus G induces a bounded linear functional on L2(K) which can be represented by
a gK ∈ L2(K). Taking an increasing family of such K which exhaust Ω gives us a
function g ∈ L2

loc(Ω) and

G(f ) =
ˆ

Ω

f (X)g(X)
dX

δ(X)
(4.21)

whenever f ∈ T 1 with compact support in Ω .
Let a ∈ T 1 be an atom supported on T (�). Then

∣∣G(a)
∣∣ ≤ ‖G‖‖a‖T 1 ≤ Cn‖G‖.

For the atom

am = gχT (�)∩{δ(X)>r/m}
(

σ(�)

ˆ

T (�)∩{δ(X)>r/m}
g2(X)

δ(X)
dX

)−1/2

where � = B(Q, r) ∩ ∂Ω , we have

∣∣G(am)
∣∣ =

(
1

σ(�)

ˆ

T (�)∩{δ(X)>r/m}
g2(X)

δ(X)
dX

)1/2

≤ Cn‖G‖,
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and if m → ∞
(

1

σ(�)

ˆ

T (�)

g2(X)

δ(X)
dX

)1/2

≤ Cn‖G‖,

which shows that C(g) ∈ L∞. This representation of G (as in (4.21)) can be ex-
tended to all of T 1 since the subspace of the functions with compact support is dense
in T 1. �

5 Duality of T p Spaces

The main purpose of the present section is to study the dual spaces to T p spaces for
1 < p < ∞. The main result is contained in the following theorem.

Theorem 5.1 Let 1 < p < ∞. The dual of T p is the space T q with 1
p

+ 1
q

= 1. More
precisely, if G ∈ (T p)∗, then there exists g ∈ T q such that for every f ∈ T p

G(f ) =
ˆ

Ω

f (X)g(X)
dX

δ(X)
and ‖G‖  ‖g‖T q .

Proof As in [2], we first study the case p = 2. Note that from Lemmas 3.13 and 3.14
there exists a constant Cn such that

C−1
n

ˆ

Ω

f 2(X)
dX

δ(X)
≤ ‖f ‖2

T 2 ≤ Cn

ˆ

Ω

f 2(X)
dX

δ(X)
. (5.1)

Given g ∈ T 2, the proof of Theorem 4.2 (see (4.7)) yields that the operator G defined
by

G(f ) =
ˆ

Ω

f (X)g(X)
dX

δ(X)

satisfies

∣∣G(f )
∣∣ ≤ C

ˆ

∂Ω

A(f )(Q)A(g)(Q)dσ(Q) ≤ C‖f ‖T 2‖g‖T 2 . (5.2)

Thus G ∈ (T 2)∗.
Consider T 2 with the norm induced by the inner product

〈f,g〉 =
ˆ

Ω

f (X)g(X)

δ(X)
dX;

then (T 2, 〈, 〉) is a Hilbert space. Given G ∈ (T 2)∗, by the Riesz Representation The-
orem there exists g ∈ (T 2, 〈 , 〉) such that

G(f ) =
ˆ

Ω

f (X)g(X)
dX

δ(X)
.
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By (5.1) and (5.2), we have that

C−1
n ‖g‖T 2 ≤ ‖G‖ ≤ Cn‖g‖T 2 .

Consider the case 1 < p < 2. Let G ∈ (T p)∗. For f ∈ L2(Ω) with compact sup-
port K ⊂⊂ Ω , let S = {Q ∈ ∂Ω : Γ (Q) ∩ K �= ∅} and εK = dist(K, ∂Ω). Then
|G(f )| ≤ ‖G‖‖f ‖T p and

‖f ‖p
T p ≤

ˆ

S

(ˆ

Γ (Q)∩K

f 2(X)

δ(X)n
dX

)p/2

dσ

≤
(ˆ

K

f 2(X)

δ(X)n
dX

)p/2

σ(S) ≤ CK

(ˆ

K

f 2(X)

δ2(X)
dX

)1/2

. (5.3)

Thus |G(f )| ≤ CK‖f/δ‖T 2 . By the Riesz Representation Theorem there exists g

which is locally in L2(Ω) such that

G(f ) =
ˆ

Ω

f (X)g(X)

δ(X)
dX

whenever f ∈ L2(Ω) and has compact support in Ω . Note that for every K ⊂⊂ Ω ,
f ∈ L2(Ω), by Theorem 4.2(b)

ˆ

K

f 2(X)dX ≤ CK

ˆ

Ω

(f χK)(X)(f χK)(X)

δ(X)
dX

≤ CK

ˆ

∂Ω

A(f χK)(Q)C(f χK)(Q)dσ(Q) (5.4)

≤ CK

(ˆ

∂Ω

Ap(f χK)(Q)dσ(Q)

)1/p

×
(ˆ

∂Ω

Cq(f χK)(Q)dσ(Q)

)1/q

, (5.5)

where 1/p+1/q = 1. By the definition of C(f χK) and if δK(Q) denotes the distance
of Q to the set K ,

C(f χK)(Q) = sup
Q∈�

(
1

σ(�)

ˆ

T (�)

(f χK)2(X)

δ(X)
dX

)1/2

�
(ˆ

T (�)

f 2(X)dX

)1/2

ε
− 2
K

and
ˆ

∂Ω

(
C(f χK)(Q)

)q
dσ (Q) ≤ CK

(ˆ

K

f 2(X)dX

)q/2

. (5.6)

Combining (5.4) and (5.6), we have for p > 1

(ˆ

K

f 2(X)dX

)1/2

≤ C(K,p)‖f χK‖T p .
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Observe that the set {f ∈ T p : f is compactly supported in Ω} is dense in T p .
Indeed, let us choose an increasing family of compact sets {Kn} which exhaust Ω .
For f ∈ T p , consider fm = f χKm ∈ T p . Then

‖fm − f ‖T p = ∥∥A(fm − f )
∥∥

Lp(σ)

and

∥∥A(fm − f )
∥∥

Lp(σ)
=

(ˆ

∂Ω

[ˆ

Γ (Q)

(fm − f )2(X)

δ(X)n
dX

]p/2

dσ

)1/2

=
(ˆ

∂Ω

(
Em(f )(Q)

)p/2
dσ(Q)

)1/2

,

where

Em(f )(Q) =
ˆ

Γ (Q)∩Kc
m

f 2(X)

δ(X)n
dX.

Note that 0 ≤ Em(f )(Q) ≤ Em−1(f )(Q) ≤ · · · ≤ E(f )(Q) = ´
Γ (Q)

f 2(X)
δ(X)n

dX. Since

f ∈ T p , Em(f ) → 0 a.e. Q ∈ ∂Ω , and by the Dominated Convergence Theorem

lim
m→∞

ˆ

∂Ω

Em(f )(Q)dσ(Q) = 0 and lim
m→∞

∥∥A(fm − f )
∥∥

Lp = 0.

We claim that for g as above there exists C′ > 0 such that

∥∥A(gK)
∥∥

Lq ≤ C′‖G‖, (5.7)

where gK = gχK , and K is any compact subset of Ω . The key point is that C′ is a
constant independent of the choice of the set K . Note that this ensures that

‖g‖T q ≤ C′‖G‖. (5.8)

Let r denote the exponent dual to q/2, 1
r

+ 2
q

= 1. Then, as in the proof of Propo-
sition 4.5 (see (4.17)),

∥∥A(gK)
∥∥2

Lq

= sup
ψ

{ˆ

∂Ω

(
A(gK)(Q)

)2
ψ(Q)dσ(Q) : ψ ≥ 0,ψ ∈ Lr(∂Ω),‖ψ‖Lr ≤ 1

}
. (5.9)

As in the proof of Proposition 4.5 to obtain (see (4.18))

sup
ψ

ˆ

∂Ω

(
A(gK)(Q)

)2
ψ(Q)dσ(Q)

≤ C sup
ψ

ˆ

Ω

g2
K(X)

δ(X)
M3δ(X)ψ(QX)dX = C sup

ψ

G(hψ), (5.10)
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where hψ(X) = gK(X)M3δ(X)ψ(QX). Note that

M3δ(X)ψ(QX) = 1

(3δ(X))n−1

ˆ

�(QX,3δ(X))

ψ(Y )dσ(Y )

≤ CM6δ(X)ψ(Q) ≤ CMψ(Q)

A(hψ)(Q) =
(ˆ

Γ (Q)

g2
K(X)M2

3δ(X)ψ(QX)

δ(X)n
dX

)1/2

� Mψ(Q)A(gK)(Q)

(5.11)

where Mψ denotes the maximal function of ψ .
Integrating (5.11), noting that p

r
+ p

q
= 1, and applying Hölder’s inequality, we

conclude that

‖hψ‖T p =
(ˆ

∂Ω

(
A(hψ)(Q)

)p
dσ(Q)

)1/p

�
(ˆ

∂Ω

(
Mψ(Q)

)r
dσ (Q)

)1/r(ˆ

∂Ω

(
A(gK)(Q)

)q
dσ (Q)

)1/q

� ‖Mψ‖Lr

∥∥A(gK)
∥∥

Lq � ‖ψ‖Lr

∥∥A(gK)
∥∥

Lq . (5.12)

Since hψ is compactly supported, hψ ∈ T p

∣
∣G(hψ)

∣
∣ ≤ ‖G‖‖hψ‖T p � ‖G‖ · ‖ψ‖Lr ‖gK‖T q (5.13)

Combining (5.10), (5.13), and (5.12)

∥
∥A(gK)

∥
∥2

Lq = ‖gK‖2
T q ≤ C‖G‖ · ‖gK‖T q ,

where C is independent of K . This proves (5.7) and (5.8). The density of com-
pactly supported functions f in T p ensures that G(f ) = ´

Ω
f (X)g(X)

δ(x)
dX. Apply-

ing Hölder’s inequality to (5.2), we conclude that ‖G‖ ≤ ‖g‖T q . This combined with
(5.8) guarantees that ‖G‖  ‖g‖T q , which completes the proof in the case 1 < p < 2.

To prove Theorem 5.1 for any p ∈ (2,∞), it is enough to show that for 1 < p < 2,
T p is reflexive. By the Eberlein–Smulyan Theorem (see [17]) it is enough to show
that whenever fn ∈ T p , ‖fn‖T p ≤ 1, there exists a subsequence which converges
weakly in T p . If {fn} ∈ T p with ‖fn‖T p ≤ 1, we have

(ˆ

K

f 2
n (X)dX

)1/2

≤ CK‖fn‖T p ≤ CK.

Therefore, taking a compact exhaustion of Ω , we show that there exists a subse-
quence {fnj

} such that fnj
⇀ f in L2(K), for all K ⊂⊂ Ω . Let G ∈ (T p)∗. By the

proof above, there exists g ∈ T q , where 1
p

+ 1
q

= 1 such that G(f ) = ´
Ω

f (X)g(X)
δ(x)

dX.

Given ε > 0, there exists a compact set K such that
∥∥A(g − gK)

∥∥
T q = ‖g − gK‖T q < ε,
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where gK = gχK . Note that

G(fnj
) − G(fni

) =
ˆ

Ω

(fnj
− fni

)(X)

δ(X)
g(X)dX

=
ˆ

Ω

(fnj
− fni

)(X)

δ(X)
gK(X)dX

+
ˆ

Ω

(fnj
− fni

)(X)

δ(X)
(g − gK)(X)dX.

Since fni
⇀ f in L2(K) and gK(X)/δ(X) ∈ L2(K),

ˆ

Ω

(fnj
− fni

)(X)

δ(X)
gK(X)dX −→ 0 as i, j → ∞.

Also, by (4.7)

∣∣
∣∣

ˆ

Ω

(fnj
− fni

)(X)

δ(X)
(g − gK)(X)dX

∣∣
∣∣ �

ˆ

∂Ω

A(fnj
− fni

)(Q)A(g − gK)(Q)dσ(Q)

≤ ‖fnj
− fni

‖T p‖g − gK‖T q < 2ε.

Thus {G(fni
)} converges, which ensures that {fni

} converges weakly in T p . �

6 Relation Between Integrals on Cones A and Carleson’s Function C

In this section, we study, as in [2], the relation between the functionals A and C. We
show that if 2 < p < ∞, then ‖A(f )‖Lp  ‖C(f )‖Lp .

Theorem 6.1

(a) If 0 < p < ∞, then
∥∥A(f )

∥∥
Lp ≤ Cp

∥∥C(f )
∥∥

Lp .

(b) If 2 < p ≤ ∞, then
∥
∥C(f )

∥
∥

Lp ≤ Cp

∥
∥A(f )

∥
∥

Lp .

The proof of Theorem 6.1 uses the following “good-λ” inequality.

Lemma 6.2 There exist a fixed aperture α > 1 and a constant C > 0 so that for
0 < γ ≤ 1 and 0 < λ < ∞

σ
({

Q ∈ ∂Ω : A(f )(Q) > 2λ; C(f )(Q) ≤ γ λ
})

≤ Cγ 2σ
({

Q ∈ ∂Ω : A(α)(f )(Q) > λ
})

. (6.1)
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Proof Let
⋃

Qk be a Whitney decomposition of {A(α)(f )(Q) > λ} as in Lemma 3.7.
For each k, there exists Yk ∈ {A(α)(f )(Q) ≤ λ} such that dist(Yk,Qk) ≤ c0 diamQk .
Since α > 1, A(α)(f ) ≥ A(f ) and the set {A(f )(Q) > 2λ} is contained in the set
{A(α)(f )(Q) > λ}.

To prove (6.1), it is enough to show that

σ
({

X ∈ Qk : A(f )(X) > 2λ; C(f )(X) ≤ γ λ
}) ≤ cγ 2σ(Qk).

The construction in Lemma 3.7 for {A(α)(f )(Q) ≤ λ} yields a family of balls {Bk}
such that Bk = B(Xk,

1
24d(Xk)), B∗

k = B(Xk,
1
2d(Xk)), B∗∗

k = B(Xk,2d(Xk)), and
Bk ⊂ Qk ⊂ B∗

k for Xk ∈ {A(α)(f ) > λ} and d(XK) = dist(XK, {A(α)(f ) ≤ λ}). Note
that 1

12d(Xk)≤diamQk ≤d(Xk)=:2rk and that there exists Yk ∈{A(α)(f )(Q)≤λ}
such that dist(Yk,Qk) ≤ 4rk . If P ∈ Qk , then |P −Yk| ≤ 5d(Xk). Define f = f1 +f2,
where

{
f1(X) = f (X)χ{δ(X)≥rk}
f2(X) = f (X)χ{δ(X)<rk}.

Note that A(f ) ≤ A(f1) + A(f2). For P ∈ Qk , |P − Yk| ≤ 5rk , where Yk ∈
{A(α)(f )(Q) ≤ λ} and

A(f1)(P )2 =
ˆ

Γ (P )∩{δ(X)≥rk}
f 2(X)

δ(X)n
dX ≤

ˆ

Γ6(Yk)∩{δ(X)≥rk}
f 2(X)

δ(X)n
dX.

Thus for α ≥ 6 and P ∈ Qk , we obtain

A(f1)(P )2 ≤ A(α)(f )(Yk)
2 ≤ λ2.

Thus for P ∈ Qk , if A(f )(P ) ≥ 2λ, A(f1)(P ) ≤ λ, and 2λ ≤ A(f )(P ) ≤ A(f1)(P )+
A(f2)(P ), which ensures that A(f2)(P ) ≥ λ, i.e., {P ∈ Qk : A(f )(P ) > 2λ} ⊂ {P ∈
Qk : A(f2)(P ) ≥ λ}. By the definition,

A(f2)(P )2 =
ˆ

Γ (P )∩{δ(X)<rk}
f 2(X)

δ(X)n
dX.

Lemma 3.13 combined the Ahlfors regularity of σ yields

1

σ(B∗
k )

ˆ

B∗
k

(
A(f2)(P )

)2
dσ(P ) ≤ 1

σ(B∗
k )

ˆ

B∗∗
k

f 2(X)

δ(X)
dX ≤ C

σ(B∗∗
k )

ˆ

B∗∗
k

f 2(X)

δ(X)
dX

≤ C inf
P∈B∗

k

(
C(f )(P )

)2
. (6.2)

On the other hand, if the set {X ∈ Qk : A(f )(X) > 2λ; C(f )(X) ≤ γ λ} is nonempty,
there exists P0 ∈ Qk ⊂ B∗

k such that A(f )(P0) > 2λ and C(f )(P0) ≤ γ λ. Thus, (6.2)
yields

1

σ(B∗
k )

ˆ

B∗
k

(
A(f2)(P )

)2
dσ(P ) ≤ Cγ 2λ2.
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In this case, using the Ahlfors regularity of σ ,

σ
({

P ∈ Qk : A(f2)(P ) > λ
}) ≤ σ

({
P ∈ B∗

k : A(f2)(P ) > λ
})

Cγ 2σ(Bk)

≤ Cγ 2σ(Qk).

Hence

σ
({

P ∈ Qk : Af (P ) > 2λ; C(f )(P ) ≤ γ λ
}) ≤ Cγ 2σ(Qk),

and since {Qk} is a disjoint cover of {A(α)(f ) > λ}
σ
({

Q ∈ ∂Ω : A(f ) > 2λ; C(f ) ≤ γ λ
})

≤
∑

k

σ
({

X ∈ Qk : A(f ) > 2λ; C(f ) ≤ γ λ
})

≤
∑

k

Cγ 2σ(Qk) ≤ Cγ 2σ
({

Q ∈ ∂Ω : A(α)(f ) > λ
})

.
�

Proof of Theorem 6.1 Note that Theorem 5.1 combined with (4.8) yield part (a) for
1 < p < ∞. Note that Lemma 6.2 ensures that for α big enough

σ
({

A(f ) > 2λ
}) ≤ σ

({
A(f ) > 2λ; C(f ) ≤ γ λ

}) + σ
({

C(f ) > γλ
})

≤ Cγ 2σ
({

A(α)(f ) > λ
}) + σ

({
C(f ) > γλ

})
.

Multiplying both sides by pλp−1, integrating with respect to λ, and using Proposi-
tion 4.5, we obtain

2−p
∥∥A(f )

∥∥p

Lp ≤ Cγ 2
∥∥A(α)(f )

∥∥p

Lp + Cγ −p
∥∥C(f )

∥∥p

LpC(α,p)γ 2
∥∥A(f )

∥∥p

Lp

+ Cγ −p
∥∥C(f )

∥∥p

Lp .

Choosing γ > 0 small enough so that Cγ 2C(α,p)2p < 1
2 , we obtain

∥∥A(f )
∥∥

Lp ≤ C
∥∥C(f )

∥∥
Lp

provided that ‖A(f )‖Lp < ∞. If ‖A(f )‖Lp = ∞, the result is obtained by applying
the previous argument to f χK , where K is selected from an increasing family of
compact subsets which exhausts Ω .

To prove part (b) of Theorem 4.2, let � = �(Q0, r) and t� = �(Q0, tr) for
t > 3. Note that X ∈ T (�); then �(QX, δ(X)) ⊂ t�, as in Lemma 3.14 χΓ (Q)(X) ≥
χ�(QX,δ(Q))(Q) thus

ˆ

t�

(ˆ

Γ (Q)

f 2(X)

δ(X)n
dX

)
dσ(Q)

=
ˆ

∂Ω

ˆ

Ω

f 2(X)

δ(X)n
χΓ (Q)(X)χt�(Q)dXdσ(Q)
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≥
ˆ

∂Ω

ˆ

Ω

f 2(X)

δ(X)n
χ�(QX,δ(X))(Q)χT (�)(X)dXdσ(Q)

≥
ˆ

Ω

f 2(X)

δ(X)n
σ
(
�

(
QX,δ(X)

))
χT (�)(X)dXdσ(Q)

≥
ˆ

T (�)

f 2(X)

δ(X)
dX. (6.3)

Equation (6.3) and the Ahlfors regularity of σ ensure that

1

σ(�)

ˆ

T (�)

f 2(X)

δ(X)
dX ≤ C

σ(�)

ˆ

t�

(
A(f )(Q)

)2
dσ(Q)

≤ C

σ(t�)

ˆ

t�

(
A(f )(Q)

)2
dσ(Q).

Therefore, (C(f )(Q))2 ≤ CM(A(f )(Q))2, which for p > 1 ensures that

(ˆ

∂Ω

(
C(f )(Q)

)2p
dσ(Q)

)1/p

≤ C

(ˆ

∂Ω

(
M

(
A(f )2(Q)

))p
(Q)dσ(Q)

)1/p

≤ C

(ˆ

∂Ω

(
A(f )(Q)

)2p
dσ(Q)

)1/2p

. �

7 Solvability of the Dirichlet Problem in Lp for Perturbation Operators
on CADs

In this section, we study the following question: Given a second order divergence
form elliptic symmetric operator L1 which is a perturbation of an operator L0 for
which the Dirichlet problem can be solved in Lp , what can be said about the solvabil-
ity of the Dirichlet problem in Lq for L1? As it was pointed out in the Introduction,
this problem is well understood on Lipschitz domains. The goal of this section is to
develop a similar theory for CADs. Given that we lack some of the tools available
in the Lipschitz case, rather than following Dahlberg’s steps we turn our attention
to [10]. Proposition 7.1 below justifies this approach.

Assume that L0 and L1 are second order divergence form elliptic symmetric oper-
ators as in Sect. 2. Assume also that 0 ∈ Ω , and denote by G0(Y ) the Green’s function
of L0 in Ω with pole 0, and by ω0 the corresponding elliptic measure. Let a be the
deviation function defined in (2.9).

Proposition 7.1 Let Ω be a CAD and assume that ω0 ∈ Bp(σ) for some p > 1.
Given ε > 0, there exists δ > 0 such that if

sup
�⊆∂Ω

{
1

σ(�)

ˆ

T (�)

a2(X)

δ(X)
dX

}1/2

≤ δ, (7.1)
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then

sup
�⊆∂Ω

{
1

ω0(�)

ˆ

T (�)

a2(X)
G0(X)

δ2(X)
dX

}1/2

≤ ε. (7.2)

Proof Let �0 = �(Q0, r0) and t�0 = �(Q0, tr0). Using Lemmas 3.14, 2.10, Fu-
bini, and the notation for truncated cones introduced in (4.5), we have

ˆ

T (�0)

a2(X)
G0(X)

δ(X)2
dX ≤

ˆ

∂Ω

ˆ

Γ (Q)

a2(X)G0(X)

δ(X)n+1
χT (�0)(X)dXdσ(Q)

�
ˆ

3�0

ˆ

Γ r0 (Q)

a2(X)

δ(X)n

ω0(�(QX, δ(X)))

δ(X)n−1
dXdσ(Q)

�
ˆ

7�0

ˆ

Γ
r0

5 (P )

a2(X)

δ(X)n
dXdω0(P )

�
ˆ

7�0

(
A(5)

r0
(P )

)2
dω0(P ). (7.3)

Since ω0 ∈ Bp(dσ) for some p > 1, if 1
p

+ 1
q

= 1 and k = dω0
dσ

, then

ˆ

t�0

(
A(α)

r0
(a)(P )

)2
k(P )dσ(P )

≤
(ˆ

t�0

(
A(α)

r0
(a)(P )

)2q
dσ (P )

)1/q(ˆ

t�0

kpdσ

)1/p

≤
( 

t�0

(
A(α)

r0
(a)(P )

)2q
dσ (P )

)1/q

ω0(t�0) (7.4)

because
(ˆ

t�0

kpdσ

)1/p

≤ Cσ(t�0)
1/p

 

t�

kdσ ≤ Cω0(t�)σ(t�0)
−1/q .

Combining (7.3), (7.4), and Lemma 2.11, we obtain

1

ω0(�0)

ˆ

T (�0)

a2(X)
G0(X)

δ(X)2
dX ≤ C

( 

7�0

(
A(5)

r0
(a)(P )

)2q
dσ (P )

)1/q

. (7.5)

We estimate (
ffl

7�0
(A

(5)
r0 (a)(P ))2qdσ (P ))1/q by duality. Let g ∈ Lp(σ) with 1

p
+

1
q

= 1 and g supported on 7�0. Without loss of generality we may assume that g ≥ 0.

ˆ

∂Ω

(
A(5)

r0
(a)(P )

)2
g(P )dσ(P )

=
ˆ

∂Ω

ˆ

Γ5(Q)

a2(X)

δ(X)n
χ{δ(X)<r0}(X)χ7�0(Q)g(Q)dXdσ(Q)
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≤
ˆ

∂Ω

ˆ

Ω

a2(X)

δ(X)n
χ{δ(X)<r0}(X)χT (13�0)(X)χ�(QX,7δ(X))(Q)g(Q)dXdσ(Q)

≤
ˆ

T (13�0)

χ{δ(X)<r0}(X)
a2(X)

δ(X)n

(ˆ

�(QX,7δ(X))

g(Q)dσ(Q)

)
dX

≤ C

ˆ

T (13�0)

χ{δ(X)<r0}(X)
a2(X)

δ(X)

( 

�(QX,7δ(X))

g(Q)dσ(Q)

)
dX. (7.6)

Letting F(X) = χ{δ(X)<r0}(X)
ffl
�(QX,7δ(X))

g(Q)dσ(Q) and applying Proposi-

tion 3.11 to the last term in (7.6), we obtain

ˆ

∂Ω

(
A(5)

r0
(a)(P )

)2
g(P )dσ(P )

≤ C

ˆ

∂Ω

NF(Q)C

(
a2

δ
χT (13�0)

)
(Q)dσ(Q), (7.7)

where

NF(Q) = sup
X∈Γ (Q)

∣∣F(X)
∣∣ = sup

X∈Γ r0 (Q)

∣∣F(X)
∣∣ ≤ CM9r0g(Q). (7.8)

Here M9r0g denotes the truncated maximal function of g, i.e., M9r0g(Q) =
sup0<r≤9r0

ffl
�(Q,r)

|g|dσ . Note that if |Q − Q0| ≥ 10r0 and X ∈ Γ r0(Q), then

|Q − QX| > 7r0 and NF(Q) = 0. Moreover, (7.1) yields C(a2

δ
χT (13�0))(Q) ≤

C(a2

δ
)(Q) ≤ δ. This combined with (7.7), (7.8), Hölder’s inequality, the fact that

σ is Ahlfors regular, and the maximal function theorem ensures that

ˆ

∂Ω

(
A(5)

r0
(a)(P )

)2
g(P )dσ(P ) ≤ Cδ

ˆ

10�0

NF(Q)dσ(Q)

≤ Cδ

ˆ

10�0

M9r0g(Q)dσ(Q)

≤ Cδ

(ˆ

10�0

(
M9r0g(Q)

)p
dσ(Q)

)1/p

σ (10�0)
1/q

≤ Cδ

(ˆ

∂Ω

g(Q)pdσ(Q)

)1/p

σ (7�0)
1/q, (7.9)

which implies

( 

7�0

(
A(5)

r0
(a)(P )

)2q
dσ (P )

)1/q

≤ Cδ. (7.10)

Note that (7.10) combined with (7.5) yields (7.2), provided Cδ < ε. �
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In this section, we need to consider variants of the non-tangential maximal func-
tion of u. Define for α ∈ (0,1) and η > 0

Ñη
αF (Q) = sup

X∈Γη(Q)

( 

B(X,αδ(X)/8)

F 2(Z)dZ

)1/2

. (7.11)

For simplicity, Ñ1
αF = ÑαF , Ñ

η
1 F = ÑηF , and Ñ1

1 F = ÑF . Recall that NηF(Q) =
supX∈Γη(Q) |F(X)|.
Remark 7.2 Let μ be a doubling measure on ∂Ω . Then for p ≥ 1, α,β ∈ (0,1), and
η > 0

‖ÑαF‖Lp(μ) ∼ ‖ÑβF‖Lp(μ) ∼ ‖Ñη
αF‖Lp(μ).

Proof Note that Proposition 3.6 ensures that for 1 ≤ p < ∞, ‖Ñη
αF‖Lp(μ) ∼

‖ÑαF‖Lp(μ). Moreover, for α > β , ÑβF (Q) ≤ (α/β)nÑαF (Q). Thus it is enough
to show ‖ÑαF‖Lp(μ) ≤ C‖ÑβF‖Lp(μ). We claim that for γ = (2 + α

8 )(1 − α
8 )−1 − 1

ÑαF (Q) ≤ Cn,α,βÑ
γ
β F (Q), (7.12)

which yields the desired inequality. Note that
 

B(X, α
8 δ(X))

F 2(Z)dZ = Cα

δ(X)n

ˆ

B(X, α
8 δ(X))

F 2(Z)dZ

= Cα

δ(X)n

ˆ

B(X, α
8 δ(X))\B(X,

β
8 δ(X))

F 2(Z)dZ

+ Cα

δ(X)n

ˆ

B(X,
β
8 δ(X))

F 2(Z)dZ.

Covering the region B(X, α
8 δ(X))\B(X,

β
8 δ(X)) by balls Bi = B(Yi, r) with radius

r = (1 − α
8 )δ(x)

β
8 and Yi ∈ B(X, α

8 δ(X))\B(X,
β
8 δ(X)), and noting that the number

of such balls only depends on α,β,n, we have
 

B(X, α
8 δ(X))

F 2(Z)dZ

≤ C′
α,β,n

(
1

δ(X)n

∑

i

ˆ

Bi

F 2(Z)dZ +
 

B(X,
β
8 δ(X))

F 2(Z)dZ

)
. (7.13)

If X ∈ Γ (Q) and Y ∈ B(X, α
8 δ(X)), then (1 − α

8 )δ(X) ≤ δ(Y ) ≤ (1 + α
8 )δ(X) and

Y ∈ Γγ (Q). Hence
 

Bi

F 2(Z)dZ ≤ C sup
Y∈Γγ (Q)

 

B(Y,r)

F 2(Z)dZ

≤ C sup
Y∈Γγ (Q)

 

B(Y,
β
8 δ(Y ))

F 2(Z)dZ = Ñ
γ
β F (Q), (7.14)

which combined with (7.13) yields (7.12). �
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Remark 7.3 Assume that Liu = 0 for i = 0 or i = 1. Then ‖Ñu‖Lp(σ) ∼ ‖Nu‖Lp(σ)

for 1 ≤ p < ∞.

Proof Since Ñu(Q) ≤ CN10/7u(Q), Proposition 3.6 ensures that ‖Ñu‖Lp(σ) ≤
C‖Nu‖Lp(σ). Since u is a solution for Li , u2 is a subsolution for Li , and Lemma 1.1.8
of [12] guarantees that

u2(X) ≤ sup
B(X,

δ(X)
16 )

u2(Y ) ≤ C

 

B(X,
δ(X)

8 )

u2(Z)dZ.

Hence Nu(Q) ≤ CÑu(Q), and ‖Nu‖Lp(σ) ≤ C‖Ñu‖Lp(σ) follows. �

We still need a few preliminaries before we can get to the proof of Theo-
rem 2.9. Recall that by assumption 0 ∈ Ω . Let R0 = 1

230 min{δ(0),1}. The follow-
ing calculation shows that we may assume that a(X) = 0 for all X ∈ Ω such that
δ(X) > 4R0. Cover the boundary ∂Ω by balls {B(Qi,R0/2)}Mi=1 such that Qi ∈ ∂Ω

and |Qi − Qj | ≥ R0
2 for i �= j . Note that M depends only on n, R0, and diamΩ . Let

{ϕi}Mi=1 be a partition of unity associated with this covering satisfying 0 ≤ ϕi ≤ 1,
sptϕi ⊂ B(Qi,2R0), ϕi ≡ 1 on B(Qi,R0), and |∇ϕi | ≤ 4/R0. Define

ψi(X) =
{

(
∑M

j=1 ϕj (X))−1ϕi(X) if
∑M

j=1 ϕj (X) �= 0

0 otherwise.

Note that for X ∈ (∂Ω, 1
2R0) := {Y ∈ R

n : ∃QY ∈ ∂Ω with |QY − Y | = δ(Y ) ≤
R0/2} there exists QX ∈ ∂Ω with |QX − X| ≤ R0/2 and i ∈ {1, . . . ,M} such that

|QX −Qi | < R0/2. Thus X ∈ B(Qi,R0) and ϕi(X) = 1; therefore
∑M

j=1 ψj (X) = 1.

If X ∈ R
n \ (∂Ω,2R0) then ϕi(X) = 0 and

∑M
j=1 ψj(X) = 0. Consider the matrix

A′(X) =
(

M∑

j=1

ψj (X)

)

A1(X) +
(

1 −
M∑

j=1

ψj(X)

)

A0(X) (7.15)

and the corresponding operator L′ = divA′∇ . Note that A′ is symmetric and L′ is
an elliptic second order divergence form operator with bounded coefficients in Ω .
Denote by a′ the deviation function

a′(X) = sup
B(X,δ(X)/2)

∣∣A′(Y ) − A0(Y )
∣∣.

Lemma 7.4 Let A′ be as in (7.15). Then a′(X) = 0 for X ∈ Ω , with δ(X) > 4R0.

Proof For X ∈ Ω with δ(X) > 4R0, if Y ∈ B(X, δ(X)/2), then δ(Y ) ≥ δ(X)
2 > 2R0,

A′(Y ) = A0, and a′(X) = 0. �

Lemma 7.5 If ω′ denotes the elliptic measure associated with L′ with pole at 0, then
ω1 ∈ Bp(ω0) if and only if ω′ ∈ Bp(ω0).
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Proof Let G′ be the Green’s function for L′ in Ω . Note that for X ∈ (∂Ω,
R0
2 ),

A′(X) = A1(X). For r < R0/4 and Q ∈ ∂Ω , the comparison principle for NTA do-
mains yields that for i = 0,1

Gi(0,A(Q, r))

r
∼ ωi(�(Q, r))

rn−1
, and

G′(0,A(Q, r))

r
∼ ω′(�(Q, r))

rn−1
. (7.16)

Moreover,

G1(0,A(Q, r))

G′(0,A(Q, r))
∼ 1. (7.17)

Combining (7.16) and (7.17), we have

G1(0,A(Q, r))

G0(0,A(Q, r))
∼ ω1(�(Q, r))

ω0(�(Q, r))
and

G1(0,A(Q, r))

G′(0,A(Q, r))
∼ ω1(�(Q, r))

ω′(�(Q, r))
∼ 1,

(7.18)

which yields for every Q ∈ ∂Ω and for every r < R0/2

ω′(�(Q, r))

ω0(�(Q, r))
∼ ω1(�(Q, r))

ω0(�(Q, r))
(7.19)

with constants that only depend on the NTA constants of Ω . Letting r tend to 0, we
obtain that for every Q ∈ ∂Ω

dω′

dω0
(Q) ∼ dω1

dω0
(Q). (7.20)

�

Lemma 7.6 Assume that

sup
�⊂∂Ω

{
1

ω0(�)

ˆ

T (�)

a2(Y )
G0(Y )

δ(Y )2
dY

}1/2

< ε0 (7.21)

with a(Y ) = 0 for Y ∈ Ω and δ(Y ) > 4R0, where R0 = 1
230 min{δ(0),1}. Then there

exists C > 0 such that for X ∈ Ω with δ(X) > 5R0

sup
�⊂∂Ω

{
1

ωX
0 (�)

ˆ

T (�)

a2(Y )
G0(X,Y )

δ(Y )2
dY

}1/2

≤ Cε0. (7.22)

Here C depends on NTA constants of Ω , the NTA character of Ω its diameter and R0.

Proof If � = �(Q, r) with r ≤ 9/2R0 and δ(X) > 5R0, then for Y ∈ T (�) by the
comparison principle and (7.16) we have

G0(X,Y )

G0(Y )
∼ G0(X,A(Q, r))

G0(A(Q, r))
∼ ωX

0 (�(Q, r))

ω0(�(Q, r))
(7.23)
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hence

1

ωX
0 (�)

ˆ

T (�)

a2(Y )
G0(X,Y )

δ(Y )2
dY ∼ 1

ω0(�)

ˆ

T (�)

a2(Y )
G0(Y )

δ(Y )2
dY. (7.24)

If r ≥ 9/2R0, then

1

ωX
0 (�)

ˆ

T (�)

a2(Y )
G0(X,Y )

δ(Y )2
dY = 1

ωX
0 (�)

ˆ

T (�)∩(∂Ω,4R0)

a2(Y )
G0(X,Y )

δ(Y )2
dY.

Covering ∂Ω by balls {B(Q,R0/2)}Mi=1, if �i = B(Qi,9/2R0)∩ ∂Ω we have, using
(7.24), that

1

ωX
0 (�)

ˆ

T (�)∩(∂Ω,4R0)

a2(Y )
G0(X,Y )

δ(Y )2
dY

≤ 1

ωX
0 (�)

M∑

i=1

ˆ

T (�i)

a2(Y )
G0(X,Y )

δ(Y )2
dY

�
M∑

i=1

(ˆ

T (�i)

a2(Y )
G0(Y )

δ(Y )2
dY

)
ωX

0 (�i)

ω0(�i)

1

ωX
0 (�)

� ε0 (7.25)

because ω0, ωX
0 are doubling, ωX(�) ∼ CωX(�i), and by (7.23). �

The last preliminary concerns the existence of a family of dyadic cubes in ∂Ω

whose “projections” in Ω provide a good covering of Ω ∩ (∂Ω,4R0), with R0 as
above. Since Ω is a CAD in R

n, both σ = Hn−1 ∂Ω and ω0 are doubling measures,
and therefore (∂Ω, | |, σ ) and (∂Ω, | |,ω0) are spaces of homogeneous type. Here | |
denotes the Euclidean distance in R

n. M. Christ’s construction (see [1]) ensures that
there exists a family of dyadic cubes {Qk

α ⊂ ∂Ω : k ∈ Z, α ∈ Ik}, Ik ⊂ N such that for
every k ∈ Z

σ

(
∂Ω \

⋃

α

Qk
α

)
= 0, ω0

(
∂Ω \

⋃

α

Qk
α

)
= 0. (7.26)

Furthermore, the following properties are satisfied:

1. If l ≥ k, then either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = ∅.

2. For each (k,α) and each l < k, there is a unique β so that Qk
α ⊂ Ql

β .

3. There exists a constant C0 > 0 such that diamQk
α ≤ C08−k .

4. Each Qk
α contains a ball B(Zk

α,8−k−1).

The fact that B(Zk
α,8−k−1) ⊂ Qk

α implies that diamQk
α ≥ 8−k−1. The Ahlfors

regularity property of σ , combined with properties 3 and 4, ensure that there exists
C1 > 1 such that

C−1
1 8−k(n−1) ≤ σ

(
Qk

α

) ≤ C18−k(n−1). (7.27)
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In addition, the doubling property of ω0 yields

ω0
(
B

(
Zk

α,8−k−1)) ∼ ω0
(
Qk

α

)
. (7.28)

For k ∈ Z and α ∈ Ik , we define

I k
α = {

Y ∈ Ω : λ8−k−1 < δ(Y ) < λ8−k+1,

∃P ∈ Qk
α so that λ8−k−1 < |P − Y | < λ8−k+1}, (7.29)

where λ > 0 is chosen so that for each k, the {I k
α }α∈Ik

’s have finite overlaps and

Ω ∩ (∂Ω,4R0) ⊂
⋃

α,k≤k0

I k
α . (7.30)

Here k0 is chosen so that 4R0 < λ8−k−1; i.e., k0 = [ logλ−log32R0
log 8 ] + 1. To see that

such a λ > 0 can be found, note that if I k
α ∩ I k

β �= ∅ there exist Y ∈ I k
α ∩ I k

β , Pα ∈ Qk
α ,

and Pβ ∈ Qk
α so that

λ8−k−1 < δ(Y ), |Pα − Y |, |Pβ − Y | < λ8−k+1.

Thus |Pα − Pβ | ≤ 2λ8−k+1 and for P ∈ Qk
β ,

|Pα − P | ≤ |Pα − Pβ | + |Pβ − P | ≤ 2δ(Y ) + diamQk
β

≤ 2λ8−k+1 + C08−k ≤ 8−k(16λ + C0). (7.31)

Thus (7.31) yields that given I k
α , if Qk

β is such that I k
α ∩ I k

β �= ∅ then Qk
β ⊂

B(Pα,8−k(16λ + C0)) for some Pα ∈ Qk
α . Since {Qk

β}β∈Ik
is a disjoint collec-

tion, (7.27) yields that the number N of cubes Qk
β so that I k

α ∩ I k
β �= ∅ satisfies

NC−18−k(n−1) ≤ C8−k(n−1)(16λ + C0)
n−1, i.e., N ≤ C2(16λ + C0)

n−1. To show
that the I k

α ’s cover (∂Ω,4R0), let Y ∈ (∂Ω,4R0), δ(Y ) ≤ 4R0 < 1
228 min{δ(0),1} by

choosing λ ≥ 1
8 max{δ(0),1} + 1 + 64C0 we have that δ(Y ) < λ

8 . Thus there exists
k ≥ 2 so that λ8−k−1 < δ(Y ) < λ8−k+1 and QY ∈ ∂Ω so that |QY − Y | = δ(Y ). Let
ρ0 = 1

2 min{δ(Y ) − λ8−k−1, λ8−k+1 − δ(Y )} > 0. Since σ(∂Ω \ ⋃
α∈Ik

Qk
α) = 0 and

σ(�(QY ,ρ0)) ≥ C−1ρn−1
0 > 0 there exists α ∈ Ik so that �(QY ,ρ0) ∩ Qk

α �= ∅. Let
Pα ∈ �(QY ,ρ0) ∩ Qk

α ; then

δ(Y ) − ρ0 ≤ |QY − Y | − |Pα − QY | ≤ |Pα − Y | ≤ |Pα − QY | + |QY − Y |
≤ ρ0 + δ(Y ). (7.32)

Hence by the selection of ρ0,

δ(Y ) + λ8−k−1

2
≤ |Pα − Y | ≤ δ(Y ) + λ8−k+1

2
.

Thus Y ∈ I k
α , provided that λ is chosen as above.
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Next we proceed with the proof of Theorem 2.9, following the approach pre-
sented in [10]. Note that (2.12) implies that ε(X) = A1(X) − A0(X) ≡ 0 on ∂Ω ,
i.e., L0 = L1 on ∂Ω . Thus L1 is regarded as a perturbation of L0. Hence as in [10]
the strategy consists of regarding the solution to L1 with given boundary data as
a perturbation of the solution to L0 with the same boundary data. We consider the
Dirichlet problem

{
L1u1 = 0 in Ω

u1|∂Ω = f ∈ L2(ω0).
(7.33)

We need to show the following a priori estimate
∥∥N(u1)

∥∥
L2(ω0)

≤ ‖f ‖L2(ω0)
, (7.34)

which is equivalent to the statement that ω1 ∈ B2(ω0). Assume that f ∈ C(∂Ω) and
u1 is a solution of (7.33). Let u0 satisfy

{
L0u0 = 0 in Ω

u0 = f on ∂Ω.
(7.35)

Then
∥∥N(u0)

∥∥
L2(ω0)

≤ ‖f ‖L2(ω0)

since Nu0(Q) ≤ CMω0(f )(Q) and u1 is related to u0 by the formula

u1(X) = u0(X) +
ˆ

Ω

G0(X,Y )L0u1(Y )dY = u0(X) + F(X).

Integration by parts shows that

F(X) =
ˆ

Ω

G0(X,Y )(L0 − L1)u1(Y )dY =
ˆ

Ω

∇Y G0(X,Y )ε(Y )∇u1(Y )dY

where ε(Y ) = A1(Y ) − A0(Y ).
As in [10], the proof of Theorem 2.9 follows from the two lemmas below (Lem-

mas 7.7 and 7.8). We start with the analogue of Lemma 2.9 of [10].

Lemma 7.7 Let Ω be a CAD and assume that (2.12) holds. Then there exist C > 1
and M > 1 such that for Q0 ∈ ∂Ω

ÑF(Q0) ≤ Cε0Mω0

(
SM(u1)

)
(Q0) (7.36)

and

Ñ1/2
(
δ|∇F |)(Q0) ≤ Cε0

[
Mω0

(
SM(u1)

)
(Q0) + Ñ

(
δ|∇F |)(Q0)

]
. (7.37)

Therefore,
ˆ

∂Ω

[
ÑF (Q)2 + Ñ

(
δ|∇F |)(Q)2]dω0(Q) ≤ Cε2

0

ˆ

∂Ω

S2(u1)(Q)dω0(Q). (7.38)
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Here Mω0 denotes the Hardy–Littlewood maximal function with respect to ω0,
and Sα(u) denotes the square function of u given by

S2
α(u)(Q) =

ˆ

Γα(Q)

∣∣∇u(X)
∣∣2

δ(X)2−ndX. (7.39)

Proof The proof follows the same guidelines of Lemma 2.9 in [10]. We estimate each
term separately. First we show that there exists M > 1 so that for Q0 ∈ ∂Ω

ÑF(Q0) ≤ Cε0Mω0

(
SM(u1)

)
(Q0). (7.40)

Let X ∈ Γ (Q0) and set B(X) = B(X, δ(X)/4). We split the potential F into two
pieces

F(Z) = F1(Z) + F2(Z) (7.41)

where

F1(Z) =
ˆ

B(X)

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY (7.42)

and

F2(Z) =
ˆ

Ω\B(X)

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY. (7.43)

To estimate ÑF (Q0), let X ∈ Γ (Q0) and note that
ˆ

B(X,
δ(X)

8 )

F 2(Z)
dZ

δ(X)n
�
 

B(X,
δ(X)

8 )

F 2
1 (Z)dZ +

 

B(X,
δ(X)

8 )

F 2
2 (Z)dZ.

We look at each term on the right-hand side separately. For Y ∈ B(X), 3δ(X)
4 ≤

δ(Y ) ≤ 5δ(X)
4 , and either δ(X) < 8R0 or δ(X) ≥ 8R0. If δ(X) ≥ 8R0 then δ(Y ) ≥ 6R0

thus ε(Y ) = 0. If δ(X) < 8R0 then δ(Y ) < 10R0 and |Y | ≥ 8R0. In this case the Har-
nack principle ensures that G0(X) ∼ G0(Y ). Furthermore, since ω0 is doubling, for
Y ∈ Γ5/4(Q0) the relationship between the Green’s function and the elliptic measure
on NTA domains yields

G0(X)

δ(X)
∼ ω0(�(Q0, δ(X))

δ(X)n−1
∼ ω0(�(Q0, δ(Y ))

δ(Y )n−1
∼ G0(Y )

δ(Y )
. (7.44)

Therefore for Y0 ∈ B(X) either ε(Y0) = 0 or for δ(X) < 8R0. In this case (7.44) and
the doubling properties of ω0 imply

∣∣ε(Y0)
∣∣ �

( 

B(X,
δ(X)

8 )

a2(Y )dY

)1/2

�
( 

B(X)

a2(Y )dY

)1/2
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�
(ˆ

B(X)

a2(Y )

δ(Y )2
G0(Y )

δ(Y )

G0(Y )

dY

δn−1(X)

)1/2

�
(

1

δ(X)n−1

ˆ

B(X)

a2(Y )

δ(Y )2
G0(Y )

δ(X)n−1

ω0(�(Q0, δ(X)))
dY

)1/2

�
(

1

ω0(�(Q0, δ(X)))

ˆ

B(X,δ(X)/4)

a2(Y )

δ(Y )2
G0(Y )dY

)1/2

�
(

1

ω0(�(Q0, δ(X)))

ˆ

T (�(Q0,3δ(X)))

a2(Y )

δ(Y )2
G0(Y )dY

)1/2

�
(

1

ω0(�(Q0,3δ(X)))

ˆ

T (�(Q0,3δ(X)))

a2(Y )

δ(Y )2
G0(Y )dY

)1/2

� ε0. (7.45)

Let G̃0(Z,Y ) be the Green’s function for L0 in 2B(X) = B(X, δ(X)/2). Let

K(Z,Y ) = G0(Z,Y ) − G̃0(Z,Y ),

F̃1(Z) =
ˆ

B(X)

∇Y G̃0(Z,Y )ε(Y )∇u1(Y )dY
(7.46)

and

F̂1(Z) = F1(Z) − F̃1(Z), (7.47)
{

L0F̃ = div[ε∇u1χB(X)] in 2B(X)

F̃ = 0 on ∂(2B(X)).
(7.48)

Using (7.45), as in [10], we have that
ˆ

2B(X)

|∇F̃1|2dZ ≤ C

ˆ

2B(X)

A0∇F̃1∇F̃1dZ = C

ˆ
∇F̃1ε∇u1χBdZ

≤ 1

2

ˆ

B(X)

|∇F̃1|2dZ + Cε2
0

ˆ

B(X)

|∇u1|2dZ. (7.49)

Combining Sobolev inequality and (7.49) we obtain
ˆ

2B(X)

|F̃1|2dZ ≤ Cδ(X)2
ˆ

2B(X)

|∇F̃1|2dZ ≤ Cε2
pδ(X)2

ˆ

B(X)

|∇u1|2dZ. (7.50)

Thus since for Z ∈ B(X), δ(Z) ∼ δ(X) (7.50) yields

( 

B(X,
δ(X)

8 )

|F̃1|2dZ

)1/2

≤ C

( 

B(X,
δ(X)

2 )

|F̃1|2dZ

)1/2

≤ Cε0

(ˆ

B(X)

|∇u1|2δ(Z)2−ndZ

)1/2

. (7.51)
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If X ∈ Γ (Q0) and Z ∈ B(X) then Z ∈ Γ2(Q0) and from (7.51) we conclude

( 

B(X,
δ(X)

8 )

|F̃1|2dZ

)1/2

≤ C

( 

B(X,
δ(X)

2 )

|F̃1|2dZ

)1/2

≤ Cε0S2(u1)(Q0). (7.52)

We now estimate F̂1 by writing

F̂1 = F1 − F̃1 =
ˆ

B(X)

∇Y K(Z,Y )ε∇u1(Y )dY. (7.53)

That is,
∣∣F̂1(Z)

∣∣ ≤ ε0

ˆ

B(X)

∣∣∇Y K(Z,Y )
∣∣∣∣∇u1(Y )

∣∣dY.

For fixed Z ∈ B(X) we have that L0K(Z,Y ) = 0 in 2B(X). Applying Cauchy–
Schwarz and Cacciopoli’s inequality (to K), we obtain

∣∣F̂1(Z)
∣∣ ≤ Cε0

δ(X)

(ˆ

3
2 B(X)

∣∣K(Z,Y )
∣∣2

dY

)1/2(ˆ

B(X)

∣∣∇u1(Y )
∣∣2

dY

)1/2

. (7.54)

Since K(Z,−) ≥ 0 Harnack’s inequality yields,

(ˆ
−

3
2 B(X)

K(Z,Y )2dY

)1/2

≤ C

(ˆ
−

3
2 B(X)

K(Z,Y )dY

)

≤ C

ˆ
−

3
2 B(X)

|Z − Y |2−ndY (7.55)

since G0(Z,Y ) � 1
|Z−Y |n−2 . Thus since for Y ∈ B(X), δ(X) ∼ δ(Y ) combining (7.54)

and (7.55) we have

( 

2B(X)

∣∣F̂1(Z)
∣∣2

dZ

)1/2

≤ Cε0

δ(X)

(ˆ

2B(X)

( 

3
2 B(X)

dY

|Z − Y |n−2

)2

dZ

)1/2

×
(ˆ

B(X)

∣
∣∇u1(Y )

∣
∣2

dY

)1/2

≤ Cε0δ(X)1−n/2
(ˆ

B(X)

∣∣∇u1(Y )
∣∣2

dY

)1/2

≤ Cε0

(ˆ

B(X)

∣∣∇u1(Y )
∣∣2

δ(Y )2−ndY

)1/2

≤ Cε0S2(u1)(Q0). (7.56)

Combining (7.47), (7.52) and (7.56) we obtain

( 

B(X,
δ(X)

2 )

∣
∣F1(Z)

∣
∣2

dZ

)1/2

≤ Cε0S2(u1)(Q0). (7.57)
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Next we give a pointwise estimate for F2(Z) when Z ∈ B(X, δ(X)/8). Note that in
this case Z is away from the pole of the Green’s function that appears as an integrand
in the definition of F2. To estimate F2(Z) for Z ∈ B(X, δ(X)/8) we consider two
cases: δ(X) ≤ 4R0 and δ(X) > 4R0. In the second case we use Lemma 7.6.

Assume that δ(X) ≤ 4R0 and let QX ∈ ∂Ω be such that |X − QX| = δ(X). Let
Ω0 = Ω ∪B(QX,

δ(X)
2 ) and �0 = ∂Ω ∩B(QX, δ(X)/2). For j ≥ 1 define Ωj = Ω ∩

B(QX,2j−1δ(X)) with j = 1, . . . ,N and 214R0 ≤ 2N−1δ(X) < 215R0. Let R̃j =
Ω2j \ Ω2j−2, �j = ∂Ω ∩ B(QX,2j−1δ(X)) and Aj = A(QX,2j−1δ(X)) ∈ Ωj . We
now follow the argument that appears in [10] using the dyadic surface cubes con-
structed by M. Christ and described above (see (7.26)) and their interior projections
(see (7.29)). Note that Ω0 ⊂ ⋃

Qk
α⊂3�0

I k
α . In fact if Y ∈ Ω0 then δ(Y ) ≤ |Y −QX| <

δ(X)
2 < 2R0. As in the proof of (7.30) there exists k ≥ 2 so that λ

8 < 8kδ(Y ) < 8λ

and QY ∈ ∂Ω with |Y − QY | = δ(Y ). For ρ0 = min{ δ(Y )−λ8−k−1

2 ,
λ8−k+1−δ(Y )

2 } there
exists Qk

α so that Pα ∈ Qk
α ∩ �(QY ,ρ0) and Y ∈ I k

α . For any P ∈ Qk
α ,

|P − QX| ≤ |P − Pα| + |Pα − QY | + |QY − Y | + |Y − QX|
≤ diamQk

α + ρ0 + δ(Y ) + δ(X)

2

< C08−k + ρ0 + δ(Y ) + δ(X)

2

<
8C0

λ
δ(Y ) + δ(Y ) + δ(X)

2
+ ρ0

<
9

8
δ(Y ) + δ(X)

2
+ δ(Y )

2

< 2δ(Y ) + δ(X)

2
< δ(X) + δ(X)

2
<

3δ(X)

2
(7.58)

which implies that Qk
α ⊂ 3�0. We now estimate F2(Z) for Z ∈ B(X, δ(X)/8) as

follows.

∣∣F2(Z)
∣∣ ≤

∣
∣∣∣

ˆ

Ω0

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY

∣
∣∣∣

+
N∑

j=1

∣∣∣∣

ˆ

R̃j ∩(Ω\B(X))

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY

∣∣∣∣

+
ˆ

(Ω\B(X))∩(∂Ω,4R0)\B(QX,215R0)

∣
∣∇Y G0(Z,Y )ε(Y )∇u1(Y )

∣
∣dY. (7.59)

We estimate each term separately. To estimate the first term we note that

∣∣F 0
2 (Z)

∣∣ =
∣∣∣∣

ˆ

Ω0

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY

∣∣∣∣

≤
ˆ

Ω0

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1(Y )
∣∣dY

≤ lim
ε→0+

ˆ

Ω0\(∂Ω,ε)

∣
∣∇Y G0(Z,Y )

∣
∣
∣
∣ε(Y )

∣
∣
∣
∣∇u1(Y )

∣
∣dY. (7.60)
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The goal is to estimate

Fε
2 (Z) =

ˆ

Ω0\(∂Ω,ε)

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1(Y )
∣∣dY

independently of ε > 0. In particular

Fε
0 (Z) ≤

∑

Qk
α⊂3�0

ε<λ8−k−1

sup
I k
α

∣∣ε(Y )
∣∣
(ˆ

I k
α

∣∣∇Y G0(Z,Y )
∣∣2

dY

)1/2

×
(ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

)1/2

. (7.61)

By Cacciopoli’s inequality

(ˆ

I k
α

∣∣∇Y G0(Z,Y )
∣∣2

dY

)1/2

≤ C

diamQk
α

(ˆ

Î k
α

∣∣G0(Z,Y )
∣∣2

dY

)1/2

(7.62)

where Î k
α = {Y ∈ Ω : ∃Z ∈ I k

α , |Z − Y | <
δ(Z)

84 }. By the comparison principle for

NTA domains, the Harnack principle, and the doubling properties of ωZ and ω0 we
have for Y ∈ Î k

α

G0(Z,Y )

G0(Y )
∼ G0(Z,A0)

G0(A0)
∼ ωZ(�0)

ω0(�0)
. (7.63)

Thus for Y ∈ Î k
α with Qk

α ⊂ 3�0

G0(Z,Y )

G0(Y )
≤ C

ω0(�0)
. (7.64)

Combining (7.61), (7.62), (7.63), and (7.64) we have that

∣
∣Fε

2 (Z)
∣
∣ �

∑

Qk
α⊂3�0

k≤kε

1

ω0(�0)

(ˆ

Î k
α

G2
0(Y )a2(Y )

δ(Y )2
dY

)1/2

×
(ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

)1/2

. (7.65)

Note that for Y ∈ Î k
α , there exist Z ∈ I k

α and Pα ∈ Qk
α so that λ

8 < |Z − Pα| < λ8,
λ8−k−1 − λ8−k−3 < |Y − Pα| < λ8−k+1 + λ8−k−3 and δ(Z)(1 − 8−4) < δ(Y ) <

δ(Z)(1 + 8−4). That is, |Pα − QY | ≤ |Pα − Z| + |Z − Y | ≤ λ8−k+1 + δ(Z)8−4 ≤
δ(Z)(64 + 8−4) ≤ 65δ(Y ). Now using the doubling property of ω0 we have

G0(Y ) ∼ ω0(�(QY , δ(Y )))

δ(Y )n−2
∼ ω0(�(Pα, δ(Y )))

δ(Y )n−2
. (7.66)
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Recall that there exists Zk
α ∈ ∂Ω such that �(Zk

α,8−k−1) ⊂ Qk
α ⊂ �(Zk

α,2C08−k)

(see the construction of the Qk
α) and |Pα − Zk

α| ≤ diamQk
α ≤ C08−k ∼ δ(Y ). Again

by the doubling property of ω0 we have that (7.66) yields for Y ∈ I k
α

G0(Y ) ∼ ω0(�(Zk
α,8−k−1))

(8−k)n−2
∼ ω0(Q

k
α)

(diamQk
α)n−2

(7.67)

and combining (7.65) with (7.67) we have

∣∣Fε
2 (Z)

∣∣ ≤
∑

Qk
α⊂3�0

k+1≤ logλ−log ε
8

1

ω0(�0)

(ˆ

Î k
α

G0(Y )a2(Y )

δ(Y )2
dY

)1/2

×
(

ω0(Q
k
α)

(diamQk
α)n−2

ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

)1/2

. (7.68)

To finish the estimate of Fε
2 (Z) for Z ∈ B(X, δ(X)/8) we use a “stopping time”

argument. For j ∈ Z let M ≥ 64(1 + C0) and

Oj =
{
Q ∈ 3�0 : Tεu1(Q)=

(ˆ

(ΓM(Q)\B2ε(Q))∩(∂Ω,4R0)

∣∣∇u1(Y )
∣∣2δ(Y )2−ndY

)1/2
>2j

}
.

We say that a surface cube Qk
α in the dyadic grid belongs to Jj if

ω0
(
Qk

α ∩ Oj

) ≥ 1

2
ω0

(
Qk

α

)
and ω0

(
Qk

α ∩ Oj+1
)
<

1

2
ω0

(
Qk

α

)
(7.69)

and it belongs to J∞ if

ω0
(
Qk

α ∩ {
Tεu1(Q) = 0

}) ≥ 1

2
ω0

(
Qk

α

)
. (7.70)

Note that there exists 0 < c0 < 1 depending on the doubling constant of ω0 so that
for Õj = {Mω0(χOj

) > c0}; if Qk
α ∈ Jj then Qk

α ⊂ Õj and

ω0
(
Qk

α ∩ Õj \ Oj+1
) ≥ 1

2
ω0

(
Qk

α

)
. (7.71)

In fact, for Qk
α there exists Zk

α ∈ Qk
α so that

�
(
Zk

α,8−k−1) ⊂ Qk
α ⊂ �

(
Zk

α,2C08−k
)
. (7.72)

Moreover, if Qk
α ∈ Jj for P ∈ Qk

α , |Zk
α − P | ≤ diamQk

α ≤ C08−k thus

�
(
Zk

α,2C08−k
) ⊂ �

(
P,3C08−k

) ⊂ �
(
Zk

α,4C08−k
)

(7.73)

and by (7.72) and the doubling property of ω0 we have

Mω0(χOj
)(P ) ≥ ω0(�(P,3C08−k) ∩ Oj)

ω0(�(P,3C08−k)

≥ ω0(�(Zk
α,2C08−k) ∩ Oj)

ω0(�(Zk
α,4C08−k))
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� ω0(Q
k
α ∩ Oj)

ω0(�(Zk
α,8−k−1))

� ω0(Q
k
α ∩ Oj)

ω0(Qk
α)

≥ c0. (7.74)

We conclude that if Qk
α ∈ Jj then Qk

α ⊂ Õj . Since Oj+1 ⊂ Oj ⊂ Õj

ω0
(
Qk

α ∩ Õj \ Oj+1
) = ω0

(
Qk

α ∩ Oc
j+1

)

= ω0
(
Qk

α

) − ω0
(
Qk

α ∩ Oj+1
)
>

1

2
ω0

(
Qk

α

)
, (7.75)

which ensures that Qk
α ⊂ {Q ∈ ∂Ω : Mω0(χÕj \Oj+1

)(Q) > c0} = Uj . A weak type
inequality for Mω0 applied to χ

Õj \Oj+1
and χOj

yields

ω0(Uj ) ≤ Cω0(Õj \ Oj+1) ≤ Cω0(Oj ). (7.76)

Note that for each ε > 0 Tεu1(Q) is bounded. Thus for Qk
α ⊂ 3�0 either Tεu1 ≡ 0 or

there exists j0 so that

2j0−1 ≤
 

Qk
α

Tεu1(Q)dω0(Q) < 2j0 .

In the first case Qk
α ∈ J∞, in the second ω0(Q

k
α ∩ Oj) < 1

2ω0(Q
k
α) for j ≥ j0.

Furthermore either there exists j < j0 so that (7.69) is satisfied or for all l ∈ Z,
ω0(Q

k
α ∩ Ol) < 1

2ω0(Q
k
α) which implies that ω0(Q

k
α ∩ {Tεu1(Q) = 0}) ≥ 1

2ω(Qk
α).

In this case Qk
α ∈ J∞ and

Qk
α ⊂ {

Q ∈ ∂Ω : Mω0(χ{Tεu1=0})(Q) > c0
} = U∞.

As above a weak type inequality on the maximal function yields that ω0(U∞) ≤
Cω0(O∞) where O∞ = {Q ∈ ∂Ω : Tεu1(Q) = 0}. Note that if Qk

α ∈ J∞, ω0(Q
k
α ∩

O∞) ≥ 1
2ω0(Q

k
α).

We now go back to our estimate of Fε
2 for Z ∈ B(X, δ(X/8)). Combining (7.68),

the Cauchy–Schwarz inequality, and letting kε = logλ−log ε
8 − 1 we have

∣∣Fε
2 (Z)

∣∣ ≤ 1

ω0(�0)

∑

j

∑

k≤kε

∑

Qk
α∈Jj

(ˆ

I k
α

G0(Y )a2(Y )

δ(Y )2
dY

)1/2

×
(

ω0(Q
k
α)

(diamQk
α)n−2

ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

)1/2

+ 1

ω0(�0)

∑

k≤kε

∑

Qk
α∈J∞

(ˆ

I k
α

G0(Y )a2(Y )

δ(Y )2
dY

)1/2
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×
(

ω0(Q
k
α)

(diamQk
α)n−2

ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

)1/2

� 1

ω0(�0)

∑

j

(∑

k≤kε

∑

Qk
α∈Jj

ˆ

I k
α

G0(Y )a2(Y )

δ(Y )2
dY

)1/2

×
(∑

k≤kε

∑

Qk
α∈Jj

ω0(Q
k
α)

(diamQk
α)n−2

ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

)1/2

+ 1

ω0(�0)

(∑

k≤kε

∑

Qk
α∈J∞

ˆ

I k
α

G0(Y )a2(Y )

δ(Y )2
dY

)1/2

×
(∑

k≤kε

∑

Qk
α∈J∞

ω0(Q
k
α)

(diamQk
α)n−2

ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

)1/2

. (7.77)

Note that if Qk
α , Ql

β ∈ Jj , and Qk
α ∩Ql

β �= ∅ then either Qk
α ⊂ Ql

β or Ql
β ⊂ Qk

α . Since

Qk
α ⊂ �(Zk

α,C08−k) by construction, then for Y ∈ I l
β there exists P ∈ Ql

β so that

λ/8 < 8k|P − Y | < 8λ and |Y − Zk
α| ≤ C08−k + λ8−k+1 thus Y ∈ T (�(Zk

α, (C0 +
8λ)8−k)). Furthermore since �(Zk

α,8−k−1) ⊂ Qk
α , ω0 is doubling, the I k

α ’s have fi-
nite overlap, and (7.75) we conclude that

∑

k≤kε

∑

Qk
α∈Jj

ˆ

I k
α

G0(Y )a2(Y )

δ(Y )2
dY �

∑

Qk
α∈Jj

Qk
α disjoint

ˆ

T (�(Zk
α,(C0+8λ)8−k))

G0(Y )a2(Y )

δ(Y )2
dY

� ε2
p

∑

Qk
α∈Jj

Qk
α disjoint

ω0
(
Qk

α

)
� ε2

pω0(Oj ). (7.78)

Similarly we obtain

∑

k≤kε

∑

Qk
α∈J∞

ˆ

I k
α

G0(Y )a2(Y )

δ(Y )2
dY � ε2

p

∑

Qk
α∈J∞

Qk
α disjoint

ω0
(
Qk

α

)
� ε2

pω0(O∞). (7.79)

To estimate the other term note that I k
α ⊂ ΓM(P ) for all P ∈ Qk

α and M > 64 + 8C0.
In fact if Y ∈ I k

α , δ(Y ) > λ8−k−1 and there is P ′ ∈ Qk
α so that |Y − P ′| < λ8−k+1,

thus for P ∈ Qk
α |Y − P | < λ8−k+1 + diamQk

α ≤ λ8−k+1 + C08−k < δ(Y )(1 + M)

and Y ∈ ΓM(P ). So if Ql
β ⊂ Qk

α , I k
α ⊂ ΓM(P ) for every P ∈ Ql

β and since the

I k
α ’s have finite overlap then denoting by S

ε,l
M = (ΓM(Q) \ Bε(Q)) ∩ (∂Ω,4R0) ∩
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{λ
8 < 8lδ(Y ) < 8λ} we have using (7.75)

∑

k≤kε

∑

Qk
α∈Jj

ω0(Q
k
α)

(diamQk
α)n−2

ˆ

I k
α

∣∣∇u1(Y )
∣∣2

dY

�
∑

k≤kε

∑

Qk
α∈Jj

ω0
(
Qk

α

)ˆ

I k
α

∣∣∇u1(Y )
∣∣2

δ(Y )2−ndY

�
∑

Qk
α∈Jj

Qk
α disjoint

k≤kε

∑

Ql
β⊂Qk

α

Ql
β∈Jj

ω0
(
Ql

β

)ˆ

I l
β

∣∣∇u1(Y )
∣∣2

δ(Y )2−ndY

�
∑

Qk
α∈Jj

Qk
α disjoint

k≤kε

∑

Ql
β⊂Qk

α

Ql
β∈Jj

ω0
(
Õj \ Oj+1 ∩ Ql

β

)ˆ

I l
β

∣∣∇u1(Y )
∣∣2

δ(Y )2−ndY

�
∑

Qk
α∈Jj

Qk
α disjoint

k≤kε

∑

Ql
β⊂Qk

α

Ql
β∈Jj

ˆ

Õj \Oj+1∩Ql
β

ˆ

S
ε,l
M

∣∣∇u1(Y )
∣∣2

δ(Y )2−ndYdω0(Q)

�
∑

Qk
α∈Jj

Qk
α disjoint

k≤kε

∑

l

ˆ

Õj \Oj+1∩Qk
α

ˆ

S
ε,l
M

∣
∣∇u1(Y )

∣
∣2

δ(Y )2−ndYdω0(Q)

�
∑

Qk
α∈Jj

Qk
α disjoint

k≤kε

ˆ

Õj \Oj+1∩Qk
α

Tεu1(Q)2dω0(Q)

�
ˆ

Õj \Oj+1

Tεu1(Q)2dω0(Q). (7.80)

Note that if Qk
α ∈ J∞ for k ≤ kε since I k

α ⊂ ΓM(P ) \ Bε(P ) then

ˆ

I k
α

|∇u1|2δ(Y )2−ndY ≤ Tεu1(Q)2 = 0.
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Combining this remark with (7.76), (7.77), (7.78), and (7.80) we conclude that for
Z ∈ B(X, δ(X)/8)

∣∣Fε
2 (Z)

∣∣ � ε0

ω0(�0)

∑

j

ω0(Oj )
1/2

(ˆ

Õj \Oj+1

Tεu1(Q)2dω0(Q)

)1/2

� ε0

ω0(�0)

∑

j

2jω0(Oj )
1/2ω0(Õj \ Oj+1)

1/2

� ε0

ω0(�0)

∑

j

2jω0(Oj )
1/2ω0(Uj )

1/2

� ε0

ω0(�0)

∑

j

2jω0(Oj )

� ε0

ω0(�0)

ˆ

�0

Tεu1(Q)dω0(Q). (7.81)

The last inequality comes from the fact that
∑

2jω0(Oj ) = ∑
2jω0(Oj\Oj+1) +∑

j 2jω0(Oj ) which ensures that
∑

2jω0(Oj ) = 1
2

∑
2jω0(Oj\Oj+1). It is impor-

tant to note that at each step the constants involved are independent of ε > 0. Com-
bining (7.60), (7.81), as well as the doubling property of ω0 we have that

∣∣F 0
2 (Z)

∣∣ ≤ C lim
ε→0

ε0

ω0(�0)

ˆ

�0

Tεu1(Q)dω0(Q)

≤ C
ε0

ω0(�0)

ˆ

�0

SM(u1)(Q)dω0(Q)

≤ Cε0Mω0

(
SM(u1)

)
(Q). (7.82)

To estimate the second part of (7.59) recall that for j ≥ 1, R̃j = Ω2j \ Ω2j−2,
�j = �(QX,2j−1δ(X)), Ωj = B(QX,2j−1δ(X)) ∩ Ω and

Aj = A
(
QX,2j−1δ(X)

) ∈ Ωj .

Denote Rj = R̃j \ B(X). To estimate

F
j

2 (Z) =
ˆ

Rj

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY (7.83)

for Z ∈ B(X, δ(X)/8) divide Rj as follows

Rj = Rj ∩ (
∂Ω,22j−6δ(X)

) ∪ Rj \ (
∂Ω,22j−6δ(X)

)
. (7.84)

Let Vj = Rj ∩ (∂Ω,22j−6δ(X)) and Wj = Rj \ (∂Ω,22j−6δ(X)). Note that Vj ⊂
⋃

Qk
α⊂3�2j \ 1

3 �2j−2
I k
α . In fact if Y ∈ Vj then 22j−3δ(X) ≤ |Y − QX| < 22j−1δ(X),

δ(Y ) < 4R0 and there exists k such that 8−k−1λ < δ(Y ) < 8−k+1λ and Y ∈ I k
α for
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some α. For ρ0 = 1
2 min{δ(Y ) − λ8−k−1, λ8−k+1 − δ(Y )} there exists P ∈ Qk

α ∩
�(QY ,ρ0) such that

|P − QX| ≥ |QX − QY | − |P − QY | ≥ |Y − QX| − |Y − QY | − |P − QY |
≥ 22j−3δ(X) − ρ0 − δ(Y ) ≥ 22j−3δ(X) − 3

2
δ(Y ) ≥ (

22j−3 − 22j−5)δ(X)

>
22j−3

3
δ(X).

Following the same pattern of the proof above we have for Z ∈ B(X, δ(X)/8)

ˆ

Vj

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1(Y )
∣∣dY

≤ lim
ε→0

ˆ

Vj \(∂Ω,ε)

∣
∣∇Y G0(Z,Y )

∣
∣
∣
∣ε(Y )

∣
∣
∣
∣∇u1(Y )

∣
∣dY (7.85)

and

ˆ

Vj \(∂Ω,ε)

∣
∣∇Y G0(Z,Y )

∣
∣
∣
∣ε(Y )

∣
∣
∣
∣∇u1

∣
∣dY

�
∑

Qk
α⊂3�2j \ 1

3 �2j−2

k≤kε

(ˆ

I k
α

G0(Z,Y )2a2(Y )

δ(Y )2
dY

)1/2(ˆ

I k
α

|∇u1|2dY

)1/2

. (7.86)

For Y ∈ I k
α ∩ Vj and Z ∈ B(X, δ(X)/8), (7.64) and the vanishing properties of the

Green’s function at the boundary of an NTA domain yield

G0(Z,Y ) �
(

δ(Z)

δ(X)22j−1

)β

G0(A2j , Y ) � 2−2βjG0(Y )
1

ω0(�2j )
. (7.87)

Moreover for Y ∈ I k
α , G0(Y ) ∼ ω0(Q

k
α)

(diamQk
α)n−2 as in (7.67). Thus combining (7.86),

(7.87), and the remark above we have

ˆ

Vj \(∂Ω,ε)

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1
∣∣dY

�
∑

Qk
α⊂3�2j \ 1

3 �2j−2

k≤kε

2−2βj 1

ω0(�2j )

(ˆ

I k
α

G0(Y )a2(Y )

δ(Y )2
dY

)1/2

×
(

ω0(Q
k
α)

(diamQk
α)n−2

ˆ

I k
α

|∇u1|2dY

)1/2

. (7.88)
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A “stopping time” argument yields, as in (7.82), that
ˆ

Vj

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1(Y )
∣∣dY ≤ Cε02−2βjMω0

(
SM(u1)

)
(Q). (7.89)

To estimate the corresponding integral over Wj , cover Wj with balls B(Xjl,

22j−8δ(X)) such that Xjl ∈ Wj and the B(Xjl,22j−10δ(X))’s are disjoint. Since
Xjl ∈ Wj 22j−6δ(X) ≤ δ(Xjl) ≤ 22j−1δ(X), the Bjl = B(Xjl,22j−8δ(X))’s are
non-tangential balls and

ˆ

Wj

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1
∣∣dY

≤
∑

l

sup
Bjl

∣∣ε(Y )
∣∣
(ˆ

Bjl

G0(Z,Y )2

δ(Y )2
dY

)1/2(ˆ

Bjl

|∇u1|2dY

)1/2

≤
∑

l

(ˆ

Bjl

a2(Y )G0(Z,Y )2

δ(Y )2
dY

)1/2(ˆ

Bjl

|∇u1|2dY

)1/2

(7.90)

For Y ∈ Bjl , 22j−7δ(X) ≤ δ(Y ) ≤ 22j δ(X) and Z ∈ B(X, δ(X)/8)

G0(Z,Y ) ≤ C2−2jβG0(A2j , Y ) ≤ C2−2jβ G0(Y )

ω0(�2j )
(7.91)

and for Y ∈ Bjl , G0(Y ) ≤ G0(A2j ). Thus combining this with (7.90) and (7.91) we
obtain

ˆ

Wj

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1
∣∣dY

≤ C
2−2βj

ω0(�j )

∑

l

(ˆ

Bjl

a2(Y )G0(Y )

δ(Y )2
dY

)1/2( G0(A2j )

(22j δ(X))2−n

)1/2

×
(ˆ

Bjl

|∇u1|2δ(Y )2−ndY

)1/2

≤ C
2−2βj

ω0(�j )

(
G0(A2j )

(
22j δ(X)

)n−2)1/2
(∑

l

ˆ

Bjl

a2(Y )G0(Y )

δ(Y )2
dY

)1/2

×
(∑

l

ˆ

Bjl

|∇u1|2δ(Y )2−ndY

)1/2

≤ C2−2βj

(
1

ω0(�2j+1)

ˆ

Ω2j+1

a2(Y )G0(Y )

δ(Y )2
dY

)1/2

×
(ˆ

(Ω2j+1\Ω2j−2)\(∂Ω,22j−4δ(X))

|∇u1|2δ(Y )2−ndY

)1/2

(7.92)
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For Y ∈ (Ω2j+1 \Ω2j−2)\ (∂Ω,22j−4δ(X)) we have |Y −Q0| ≤ |Y −QX|+ |QX −
Q0| ≤ 22j δ(X) + |QX − X| + |X − Q0| ≤ 22j δ(X) + δ(X) + 2δ(X) ≤ 24δ(Y ) +
2−2j+4δ(Y ) + 2−2j+5δ(Y ) thus |Y − Q0| ≤ 64δ(Y ) and Y ∈ Γ64(Q0), therefore for
M ≥ 64, (7.92) yields

ˆ

Wj

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1
∣∣dY ≤ C2−2βj ε0SM(u1)(Q0). (7.93)

Combining (7.82), (7.89), and (7.93) we have for δ(X) ≤ 4R0 and Z ∈ B(X, δ(X/8))

∣∣∣∣

ˆ

(Ω\B(X))∩B(QX,215R0)

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY

∣∣∣∣

≤
ˆ

Ω0

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1
∣∣dY +

N∑

j=1

ˆ

Rj

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1
∣∣dY

≤ Cε0Mω0

(
SM(u1)

)
(Q0) + Cε0

N∑

j=1

2−2βjMω0

(
SM(u1)

)
(Q0)

≤ Cε0Mω0

(
SM(u1)

)
(Q0) (7.94)

To complete the estimate for F2(Z) with Z ∈ B(X, δ(X)/8) it only remains to con-
sider the integral

ˆ

(Ω\B(X))∩(∂Ω,4R0)\B(QX,215R0)

∇Y G0(Z,Y )ε(Y )∇u1(Y )dY. (7.95)

Note that

(
Ω \ B(X)

) ∩ (∂Ω,4R0) \ B
(
QX,215R0

) ⊂
⋃

Qk
α⊂∂Ω\�(QX,214R0)

I k
α .

If Y ∈ (Ω \ B(X)) ∩ (∂Ω,4R0) \ B(QX,215R0) then |Y − QX| ≥ 215R0 and there
are I k

α and P k
α ∈ Qk

α so that Y ∈ I k
α , 8/λ < |P k

α − Y |8k < 8λ. Given Y ′ ∈ I k
α note

that |P k
α − Y ′| ≤ diamQk

α + λ8−k+1 ≤ C08−k + λ8−k+1 ≤ 8C0δ(Y )/λ + 64δ(Y ) ≤
65δ(Y ) ≤ 210R0. Thus I k

α ⊂ B(P k
α ,210R0) ∩ Ω , and for Y ′ ∈ B(P k

α ,210R0) ∩ Ω we
have |Y ′ − QX| ≥ |Y − QX| − |Y ′ − Y | ≥ |Y − QX| − |Y − P k

α | − |Y ′ − P k
α | ≥

215R0 −λ8−k+1 −210R0 ≥ 215R0 −210R0 −26δ(Y ) ≥ 214R0. Moreover for P ∈ Qk
α ,

|P − QX| ≥ |P k
α − QX| − |P − P k

α | ≥ |Y − QX| − |Y − P k
α | − |P − P k

α | ≥ 215R0 −
λ8−k+1 −diamQk

α ≥ 214R0. If Z ∈ B(X, δ(X)/8) and Y ∈ (Ω \B(X))∩(∂Ω,4R0)\
B(QX,215R0) then since δ(X) ≤ 4R0 we have |Z − Y | ≥ |Y − QX| − |QX − X| −
|X − Z| ≥ 215R0 − δ(X) − δ(X)/8 ≥ 214R0. Similarly if Y ∈ B(P k

α ,210R0) ∩ Ω we
have |Z−Y | ≥ |Y −QX|−|QX −X|−|X−Z| ≥ 213R0. We mimic the stopping time
argument used when the integration over the region Ω0 was considered. The key point
is that for Z ∈ B(X, δ(X)/8) the pole of the Green’s function is far away from the I k

α ’s
considered in the integration. Since ∂Ω \ �(QX,214R0) ⊂ ∂Ω \ �(Q0,213R0) and



Harmonic Analysis on Chord Arc Domains 2145

ω0(∂Ω) ≤ CR0ω0(�(P,29R0)) for any P ∈ ∂Ω by the doubling properties of ω0,
estimate (7.64) becomes G0(Z,Y ) ≤ CR0G0(Y ) and (7.82) becomes

ˆ

(Ω\B(X))∩(∂Ω,4R0)\B(QX,215R0)

∣∣∇Y G0(Z,Y )
∣∣∣∣ε(Y )

∣∣∣∣∇u1(Y )
∣∣

≤ Cε0

ˆ

∂Ω\�(Q0,213R0)

SM(u1)(Q)dω0

≤ Cε0Mω0SM(u1)(Q0). (7.96)

Combining (7.94) and (7.96) and noting that when δ(X) > 8R0 the integration over
Ω ∩ (∂Ω,4R0) is treated as that over Ω0 or Ω\B(X) ∩ (∂Ω,4R0)\B(QX,215R0)

as the pole Z ∈ B(X,
δ(X)

8 ) is very far from the I k
α ’s we obtain that

∣∣F2(Z)
∣∣ ≤ Cε0Mω0SM(u1)(Q0), ∀Z ∈ B

(
X,

δ(X)

8

)
. (7.97)

Hence (7.41), (7.57), and (7.97) ) yield for M large and fixed

ÑF (Q0) = sup
X∈Γ (Q0)

 

B(X,
δ(X)

8 )

F 2(Z)dZ

� sup
X∈Γ (Q0)

 

B(X,
δ(X)

8 )

F 2
1 (Z)dZ + sup

X∈Γ (Q0)

ˆ

B(X,
δ(X)

8 )

F 2
2 (Z)dZ

� Cε0Mω0

(
SM(u1)

)
(Q0). (7.98)

We now estimate the second term in Lemma 7.7. Fix Q0 ∈ ∂Ω, X ∈ Γ (Q0), let
B(X) = B(X,

δ(X)
16 ). Note that B(X,

δ(X)
8 ) ⊂ Γ2(Q0), then

 

B(X)

(
δ|∇F |)2

(Z)dZ ≤ Cδ2(X)
1

δ(X)n

ˆ

B(X)

|∇F |2(Z)dZ

≤ C
1

δ(X)n−1

ˆ δ(X)
8

δ(X)
16

ˆ

B(X,ρ)

|∇F |2(Z)dZdρ. (7.99)

The same argument as in [10] which only uses interior estimates yields

Ñ2
1/2

(
δ|∇F |)(Q0) ≤ CÑF(Q0)Ñ

(
δ|∇F |)(Q0) + ε0Ñ

(
δ|∇F |)S2(u1)(Q0)

+ ε0Ñ(F )(Q0)S2(u1)(Q0). (7.100)

Combining (7.100) with (7.36) and using the fact ab ≤ a2

2 + b2

2 we obtain (7.37).
Integrating (7.37) and applying Remark 7.2 we obtain

ˆ
Ñ

(
δ|∇F |)2

dω0 ≤ C

ˆ
Ñ1/2

(
δ|∇F |)2

dω0

≤ Cε0

ˆ (
Mω0SM(u1)

)2
dω0 + Cε0

ˆ
Ñ

(
δ|∇F |)2

dω0
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≤ Cε0

ˆ (
SM(u1)

)2
dω0

+ Cε0

ˆ
Ñ

(
δ|∇F |)2

dω0, (7.101)

which yields
ˆ

Ñ
(
δ|∇F |)2

dω0 ≤ Cε0

ˆ
S2

M(u1)(Q)dω0. (7.102)

Combining (7.102), the integration of (7.36) and the maximal function theorem we
obtain (7.38) which concludes the proof of Lemma 7.7. �

Lemma 7.8 Let Ω be a CAD and assume that (2.12) holds. Then there exists C > 1
so that

‖SF‖2
L2(ω0)

≤ C
(∥∥Ñ

(
δ|∇F |)∥∥2

L2(ω0)
+ ‖NF‖2

L2(ω0)
+ ‖ÑF‖2

L2(ω0)
+ ‖f ‖2

L2(ω0)

)
.

(7.103)

Proof For s ∈ [1,2], let Ωs = B(0, sR̃0) where R̃0 = δ(0)

230 , then

ˆ

∂Ω

S2F(Q)dω0 =
ˆ

∂Ω

ˆ

Γ (Q)∩Ωs

δ(Z)2−n
∣∣∇F(Z)

∣∣2
dZdω0

+
ˆ

∂Ω

ˆ

Γ (Q)\Ωs

δ(Z)2−n
∣∣∇F(Z)

∣∣2
dZdω0

=
ˆ

∂Ω

ˆ

Γ (Q)∩Ωs

δ(Z)−n
(
δ(Z)

∣∣∇F(Z)
∣∣)2

dZdω0

+
ˆ

Ω\Ωs

ˆ

∂Ω

δ(Z)2−n
∣∣∇F(Z)

∣∣2
χ{Z∈Γ (Q)}(Q)dω0dZ

≤
ˆ

∂Ω

ˆ

Γ (Q)∩Ωs

δ(Z)−n
(
δ(Z)

∣∣∇F(Z)
∣∣)2

dZdω0(Q)

+
ˆ

Ω\Ωs

∣∣∇F(Z)
∣∣2

δ(Z)2−nω0
(
�

(
QZ,3δ(Z)

))
dZ. (7.104)

Note that if 0 ∈ Γ2(Q) then B(0, sR̃0) ⊂ Γ3(Q) and if 0 /∈ Γ2(Q) then B(0, sR̃0)∩
Γ (Q) = ∅. Thus

ˆ

∂Ω

ˆ

Γ (Q)∩Ωs

δ(Z)−n
(
δ(Z)|∇F |)2

dZdω0

≤
ˆ

∂Ω

ˆ

Γ (Q)∩Ωs

δ(Z)−n
(
δ(Z)|∇F |)2

χ{0∈Γ2(Q)}(Z)dZdω0
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�
ˆ

∂Ω

 

B(0,sR̃0)

(
δ(Z)

∣∣F(Z)
∣∣)2

χ{0∈Γ2(Q)}(Z)dZdω0

�
ˆ

∂Ω

Ñ
(
δ
∣
∣∇F(Z)

∣
∣)2

(Q)dω0(Q). (7.105)

We now estimate the second term in (7.104). Since ω0(�(QZ,3δ(Z)))δ(Z)2−n
∼

G0(Z) using the ellipticity of L0 we have
ˆ

Ω\Ωs

δ(Z)2−n
∣∣∇F(Z)

∣∣2
dZdω0(Q)

�
ˆ

Ω\Ωs

∣∣∇F(Z)
∣∣2

G0(Z)dZ

�
ˆ

Ω\Ωs

〈
A0∇F(Z),∇F(Z)

〉
G0(Z)dZ

�
ˆ

Ω\Ωs

div(A0∇F)F)G0dZ −
ˆ

Ω\Ωs

div((A0∇F)FG0dZ

� 1

2

ˆ

Ω\Ωs

L0
(
F 2)G0dZ −

ˆ

Ω\Ωs

(L0F)FG0dZ. (7.106)

Integration by parts on the second term in (7.106) yields
ˆ

Ω\Ωs

(L0F)(Z)F (Z)G0(Z)dZ

= −
ˆ

Ω\Ωs

div(ε∇u1)(FG0)(Z)dZ

=
ˆ

Ω\Ωs

∇(FG0)ε∇u1dZ

=
ˆ

Ω\Ωs

G0∇Fε∇u1dZ +
ˆ

Ω\Ωs

∇G0Fε∇u1dZ. (7.107)

since G0 = 0 on ∂Ω and ε = 0 on ∂Ωs (recall ε(Y ) = 0 when δ(Y ) ≥ 4R0). We
use the dyadic decomposition of ∂Ω to estimate each term. Recall that for Y ∈ I k

α ,

G0(Y ) ∼ ω0(Q
k
α)

(diamQk
α)n−2 then given ε > 0

ˆ

Ω\Ωs\(∂Ω,ε)

|∇F |G0
∣∣ε(Z)

∣∣|∇u1|dZ

≤
∑

Qk
α⊂∂Ω

k≤kε

sup
I k
α

∣
∣ε(Z)

∣
∣
ˆ

I k
α

G0|∇F ||∇u1|dZ



2148 E. Milakis et al.

�
∑

Qk
α⊂∂Ω

k≤kε

sup
I k
α

∣∣ε(Z)
∣∣ ω0(Q

k
α)

(diamQk
α)n−2

(ˆ

I k
α

|∇F ||∇u1|dZ

)
. (7.108)

To estimate
´
I k
α
|∇F ||∇u1|dZ cover I k

α by balls {B(Xi,λ8−k−3)}1≤i≤N with Xi ∈ I k
α

such that |Xi − Xl | ≥ λ8−k−3/2. Here N is independent of k and the balls
B(Xi,λ8−k−3) have finite overlap (also independent of k).

ˆ

I k
α

|∇F ||∇u1|dZ

≤
N∑

i=1

ˆ

B(Xi,λ8−k−3)

|∇F ||∇u1|dZ

≤
N∑

i=1

(ˆ

B(Xi,λ8−k−3)

|∇F |2dZ

)1/2(ˆ

B(Xi,λ8−k−3)

|∇u1|2dZ

)1/2

≤
N∑

i=1

(ˆ

B(Xi,λ8−k−3)

|∇u1|2
(ˆ

B(Z,λ8−k−2)

|∇F |2dY

)
dZ

)1/2

�
(
diamQk

α

) n−2
2

N∑

i=1

(ˆ

B(Xi,λ8−k−3)

|∇u1|2
( 

B(Z,
δ(Z)

8 )

(
δ(Y )|∇F |)2

dY

)
dZ

)1/2

�
((

diamQk
α

)n−2
ˆ

I k
α

|∇u1|2
( 

B(Z,
δ(Z)

8 )

(
δ(Y )|∇F |)2

dY

)
dZ

)1/2

. (7.109)

Combining (7.108) and (7.109) we have

ˆ

Ω\Ωs\(∂Ω,ε)

|∇F |G0
∣∣ε(Z)

∣∣|∇u1|dZ

�
∑

Qk
α⊂∂Ω

k≤kε

sup
I k
α

∣∣ε(Z)
∣∣ω0

(
Qk

α

)

×
(ˆ

I k
α

|∇u1|2δ(Z)2−n

( 

B(Z,
δ(Z)

8 )

(
δ(Y )|∇F |)2

dY

)
dZ

)1/2

�
∑

Qk
α⊂∂Ω

k≤kε

(ˆ

I k
α

a2(Y )G0(Y )

δ(Y )2
dY

)1/2

ω0
(
Qk

α

)1/2

×
(ˆ

I k
α

|∇u1|2δ(Z)2−n

( 

B(Z,
δ(Z)

8 )

(
δ(Y )|∇F |)2

dY

)
dZ

)1/2

. (7.110)



Harmonic Analysis on Chord Arc Domains 2149

Applying a stopping time argument similar to the one used in the proof of
Lemma 7.7 to estimate Fε

0 , to the function

T̃ε(Q) =
(ˆ

ΓM(Q)\B2ε(Q)

|∇u1|2δ(Z)2−n

( 

B(Z,δ(Z)/8)

δ2|∇F |2
)

dZ

)1/2

and letting ε tend to 0 we obtain
ˆ

Ω\Ωs

|∇F |G0|ε||∇u1|

� ε0

ˆ

∂Ω

(ˆ

ΓM(Q)

|∇u1|2δ(Z)2−n

 

B(Z,δ(Z)/8)

δ2|∇F |2dZ

)1/2

dω0(Q)

� ε0

ˆ

∂Ω

ÑM
(
δ|∇F |)(Q)SM(u1)(Q)dω0(Q). (7.111)

Now we turn our attention to the second term in (7.107). Applying Cacciopoli’s
inequality (see (7.62)) we have

ˆ

Ω\Ωs

|∇G0||F ||ε||∇u1|dZ

≤
∑

Qk
α⊂∂Ω

sup
I k
α

|ε|
(ˆ

I k
α

|∇G0|2dZ

)1/2(ˆ

I k
α

∣∣∇u1(Z)
∣∣2

F 2(Z)dZ

)1/2

�
∑

Qk
α⊂∂Ω

sup
I k
α

|ε|
(ˆ

Î k
α

G0(Y )2

δ(Y )2
dY

)1/2(ˆ

I k
α

∣∣∇u1(Z)
∣∣2

F 2(Z)dZ

)1/2

. (7.112)

Once again a similar argument to the one that appears in the proof of Lemma 7.7 with
a stopping time argument applied to a truncation of

(ˆ

ΓM(Q)

|∇u1|2δ(Y )2−nF (Y )dY

)1/2

yields the following estimate

ˆ

Ω\Ωs

|∇G0||F ||ε||∇u1|dZ � ε0

ˆ

∂Ω

(ˆ

ΓM(Q)

|∇u1|2δ(Z)2−nF (Y )dY

)1/2

dω0(Q)

� ε0

ˆ

∂Ω

SM(u1)(Q)NMF(Q)dω0(Q). (7.113)

Putting together (7.107), (7.111), and (7.113) we obtain
∣∣∣∣

ˆ

Ω\Ωs

L0F · FG0dZ

∣∣∣∣ � ε0

ˆ

∂Ω

ÑM

(
δ|∇F |)(Q)SM(u1)(Q)dω0

+ ε0

ˆ

∂Ω

NMF(Q)SM(u1)(Q)dω0. (7.114)
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To estimate the first term in (7.106) observe that

1

2

ˆ

Ω\Ωs

G0L0
(
F 2)dZ

= 1

2

ˆ

Ω\Ωs

div
(
G0A0∇F 2)dZ − 1

2

ˆ

Ω\Ωs

A0∇G0∇F 2(Z)dZ

=
ˆ

∂Ωs

G0A0F∇F · �νdσ − 1

2

ˆ

Ω\Ωs

div
(
F 2A0∇G0

)
dZ

=
ˆ

∂Ωs

G0A0F∇F · �νdσ − 1

2

ˆ

∂Ωs

F 2A0∇G0 · �νdσ. (7.115)

Integrating over s ∈ [1,2] we obtain

1

2

ˆ 2

1

∣∣∣∣

ˆ

Ω\B(0,sR̃0)

G0L0F
2dZ

∣∣∣∣ds

=
ˆ 2

1

ˆ

∂B(0,sR̃0)

|G0||A0||F ||∇F |dσds

+ 1

2

ˆ 2

1

ˆ

∂B(0,sR̃0)

F 2|A0||∇G0|dσds

=
ˆ

B(0,2R̃0)\B(0,R̃0)

G0|A0||F ||∇F |dZ

− 1

2

ˆ

B(0,2R̃0)\B(0,R̃0)

F 2|A0||∇G0|dZ. (7.116)

Looking at each term in (7.116) separately we have that

ˆ

B(0,2R̃0)\B(0,R̃0)

G0|A0||F ||∇F |dZ

�
∑

Qk
α⊂∂Ω

Ik
α∩Ω2\Ω1 �=∅

ˆ

I k
α∩(Ω2\Ω1)

G0|F ||∇F |dZ. (7.117)

Note that if I k
α ∩ Ω2\Ω1 �= ∅ there is Y ∈ Ω so that λ/8 < 8kδ(Y ) < 8λ and |δ(Y ) −

δ(0)| � 2R̃0 = δ(0)2−29. Thus (1 + 2−29)−1λ/8 < 8kδ(0) < (1 − 2−29)−18λ. Since
diamQk

α ∼ 8−k
∼ δ(0) then ω(Qk

α) ≥ C1 an absolute constant only depending on the

NTA constants of Ω . Thus for Y ∈ I k
α ∩ (Ω2\Ω1) G0(Y ) � 1

δ(0)n−2 � ω0(Q
k
α)

(diamQk
α)n−2 .

These combined with a computation like the one that appears in (7.108), (7.109), and



Harmonic Analysis on Chord Arc Domains 2151

(7.110) yields

ˆ

Ω2\Ω1

G0|A0||F ||∇F |dZ

�
∑

Qk
α⊂∂Ω

Ik
α∩Ω2\Ω1 �=∅

(ˆ

I k
α

|F ||∇F |dZ

)
ω0(Q

k
α)

(diamQk
α)n−2

�
∑

Qk
α⊂∂Ω

Ik
α∩Ω2\Ω1 �=∅

ω0
(
Qk

α

)1/2
(

ω0
(
Qk

α

)ˆ

I k
α

δ2−n|F |2dZ

 

B(Z,
δ(Z)

8 )

δ2|∇F |2dZ

)1/2

�
ˆ

∂Ω

(ˆ

ΓM(Q)∩Ω2\Ω1

δ2−n(Z)|F |2
( 

B(Z,
δ(Z)

8 )

δ2|∇F |2dY

)
dZ

)1/2

dω0

� δ(0)(2−n)/2
ˆ

∂Ω

NMF(Q)ÑM
(
δ|∇F |)(Q)δ(0)n/2dω0

� δ(0)

ˆ

∂Ω

NMF(Q)ÑM
(
δ|∇F |)(Q)dω0(Q). (7.118)

We control the second term in (7.116) by recalling that if Y ∈ I k
α ∩ Ω2\Ω1 then

δ(0) ∼ diamQk
α and |∇G0(Y )| � G0(Y )

δ(Y )
� ω0(Q

k
α)

δ(0)n−1 . Thus as in (7.118) and using the
doubling properties of ω0 we have

ˆ

Ω2\Ω1

F 2|A0||∇G0|dZ

�
∑

Qk
α⊂∂Ω

Ik
α∩Ω2\Ω1 �=∅

ˆ

I k
α∩Ω2\Ω1

F 2|∇G0|dZ

�
∑

Qk
α⊂∂Ω

Ik
α∩Ω2\Ω1 �=∅

ω0
(
Qk

α

)1/2
(

ω0
(
Qk

α

)ˆ

I k
α

δ2−n|F |2
 

B(Z,
δ(Z)

8 )

|F |2
)1/2

� δ(0)

ˆ

∂Ω

NMF(Q)ÑMF(Q)dω0(Q). (7.119)

Combining (7.116), (7.118), and (7.119) we obtain

ˆ 2

1

∣∣∣∣

ˆ

Ω\B(0,sR̃0)

G0(Z)L0F
2(Z)dZ

∣∣∣∣ds

� δ(0)

ˆ

∂Ω

NMF(Q)ÑM
(
δ|∇F |)(Q)dω0(Q)

+ δ(0)

ˆ

∂Ω

NMF(Q)ÑMF(Q)dω0(Q). (7.120)
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Combining (7.104), (7.105), (7.106), (7.113), and (7.120) plus recalling the fact that
SM(u1) ≤ SM(F) + SM(u0) and ‖SMF‖L2(ω0)

∼ ‖SF‖L2(ω0)
and Remark 7.2 we

obtain
ˆ

∂Ω

S2F(Q)dω0(Q)

=
ˆ 2

1

ˆ

∂Ω

S2F(Q)dω0(Q)ds

=
ˆ 2

1

ˆ

∂Ω

ˆ

Γ (Q)∩Ωs

δ−n(Z)
(
δ(Z)|∇F |)2

dZdω0ds

+
ˆ 2

1

ˆ

Ω\Ωs

|∇F |2δ2−n(Z)ω0
(
�

(
QZ,3δ(Z)

))
dZds

�
ˆ

∂Ω

ˆ

Γ (Q)∩Ωs

δ−n(Z)
(
δ(Z)|∇F |)2

dZdω0 +
ˆ 2

1

∣∣∣∣

ˆ

Ω\Ωs

L0F
2G0

∣∣∣∣ds

+
ˆ 2

1

∣∣∣∣

ˆ

Ω\Ωs

(L0F)FG0

∣∣∣∣ds

�
ˆ

∂Ω

Ñ
(
δ|∇F |)2

(Q)dω0(Q) + ε0

ˆ

∂Ω

ÑM
(
δ|∇F |)(Q)SM(u1)(Q)dω0(Q)

+ ε0

ˆ

∂Ω

SM(u1)(Q)NMF(Q)dω0 +
ˆ

∂Ω

NMF(Q)ÑM
(
δ|∇F |)dω0

+
ˆ

∂Ω

NMF(Q)ÑM(F )(Q)dω0

�
∥∥Ñ

(
δ|∇F |)∥∥2

L2(ω0)
+ ‖Su0‖2

L2(ω0)
+ ‖NF‖2

L2(ω0)

+ ∥∥Ñ(F )
∥∥2

L2(ω0)
+ ε0‖SF‖2

L2(ω0)
. (7.121)

Since by Lemma 2.13 ‖Su0‖2
L2(ω0)

� ‖Nu0‖2
L2(ω0)

� ‖f ‖2
L2(ω0)

we obtain from
(7.121)

‖SF‖2
L2(ω0)

�
∥∥Ñ

(
δ|∇F |)∥∥2

L2(ω0)
+ ‖NF‖2

L2(ω0)

+ ∥∥Ñ(F )
∥∥2

L2(ω0)
+ ‖f ‖2

L2(ω0)
(7.122)

which yields Lemma 7.8. �

Proof of Theorem 2.9 Since S(u1) ≤ S(F )+S(u0), (7.38), (7.103), and the argument
above, (7.122) yields

ˆ

∂Ω

ÑF (Q)2dω0 +
ˆ

∂Ω

Ñ
(
δ|∇F |)2

(Q)dω0

≤ Cε2
0

ˆ

∂Ω

S2u1dω0
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≤ Cε2
0

ˆ

∂Ω

(SF)2(Q)dω0 + Cε2
0

ˆ

∂Ω

(Su0)
2dω0

≤ Cε2
0

(ˆ

∂Ω

ÑF (Q)2dω0 +
ˆ

∂Ω

Ñ
(
δ|∇F |)2

(Q)dω0

)

+ Cε2
0

ˆ

∂Ω

NF(Q)2dω0 + Cε2
0

ˆ

∂Ω

f 2dω0. (7.123)

Thus
ˆ

∂Ω

ÑF (Q)2dω0 +
ˆ

∂Ω

Ñ
(
δ|∇F |)2

(Q)dω0

≤ Cε2
0

ˆ

∂Ω

NF(Q)2dω0 + Cε2
0

ˆ

∂Ω

f 2dω0. (7.124)

Note that since ‖Ñui‖L2(ω0)
∼ ‖Nui‖2

L2(ω0)
, i = 0,1 then by (7.124)

ˆ

∂Ω

NF(Q)2dω0 ≤
ˆ

∂Ω

Nu2
1(Q)dω0 +

ˆ

∂Ω

Nu2
0(Q)dω0

≤ C

ˆ

∂Ω

Ñu2
1(Q)dω0 + C

ˆ

∂Ω

f 2dω0

≤ C

ˆ

∂Ω

ÑF (Q)2dω0 + C

ˆ

∂Ω

f 2dω0

≤ Cε2
0

ˆ

∂Ω

NF(Q)2dω0 + C

ˆ

∂Ω

f 2dω0 (7.125)

which ensures that
ˆ

∂Ω

NF(Q)2dω0 ≤ C

ˆ

∂Ω

f 2dω0 (7.126)

which yields
ˆ

∂Ω

Nu2
1(Q)dω0 ≤ C

ˆ

∂Ω

NF(Q)2dω0 + C

ˆ

∂Ω

Nu2
0(Q)dω0

≤ C

ˆ

∂Ω

f 2dω0. (7.127)

This concludes the proof of Theorem 2.9. �

8 Regularity for the Elliptic Kernel on CADs

Theorem 8.1 Let Ω be a CAD—assume there exists a constant C > 0 such that

sup
�⊂∂Ω

(
1

σ(�)

ˆ

T (�)

a2(X)

δ(X)
dX

) 1
2

< C. (8.1)

Then ω1 ∈ A∞(σ ) if ω0 ∈ A∞(σ ).
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The argument used to prove the result above is similar to the one used in [10] to
prove Theorem 2.3. In our case it relies on a generalization of Fefferman’s result to
the CAD setting, as follows.

Theorem 8.2 Let Ω be a CAD and let

A(a)(Q) =
(ˆ

Γ (Q)

a2(X)

δ(X)n
dX

) 1
2

. (8.2)

If ‖A(a)‖L∞(σ ) ≤ C0 < ∞ and ω0 ∈ A∞(σ ) then ω1 ∈ A∞(σ ).

Proof of Theorem 8.2 This is a corollary of Theorem 2.9. In fact note that for � =
B(Q0, r) ∩ ∂Ω with Q0 ∈ ∂Ω the fact that ω0(�(QX,δ(X)))

δ(X)n−1 ∼ G0(X)
δ(X)

combined with
Fubini’s theorem and the doubling properties of ω0 yields

1

ω0(�)

ˆ

T (�)

a2(X)G0(X)

δ(X)2
dX <∼

1

ω0(�)

ˆ

T (�)

a2(X)

δ(X)

ω0(�(QXδ(X))

δ(X)n−1
dX

= 1

ω0(�)

ˆ

T (�)

ˆ

∂Ω

a2(X)

δ(X)n
χ�(QX,δ(X))(Q)dωdX

≤ 1

ω0(�)

ˆ

3�

(ˆ

T (�)

a2(X)

δ(X)n
χΓ (Q)(X)dX

)
dω0

≤ 1

ω0(�)

ˆ

3�

A2(a)(Q)dω0(Q)

≤ 1

ω0(�)

ˆ

3�

A2(a)(Q)dω0(Q). (8.3)

Hence there exists δ > 0 depending on n and the NTA constants of Ω such that if
‖A(a)‖L∞(σ ) ≤ δ, and ω0 ∈ A∞(σ ) then ω1 ∈ B2(ω0). In fact since ω0 ∈ A∞(σ ) the
fact that ‖A(a)‖L∞(σ ) ≤ δ implies that ‖A(a)‖L∞(ω0) ≤ δ. Estimate (8.3) guarantees
that there exists C > 0 depending on n and the NTA constants of Ω such that

sup
�⊂∂Ω

(
1

ω0(�)

ˆ

T (�)

a2(X)
G0(X)

δ2(X)
dX

) 1
2 ≤ Cδ

1
2 . (8.4)

Choosing δ > 0 small enough so that Cδ
1
2 < ε0 in Theorem 2.9 we conclude that

ω1 ∈ B2(ω0). To finish the proof of Theorem 8.2 consider the family of operators
Lt = (1 − t)A0 + tA1 for 0 ≤ t ≤ 0. Consider a partition of [0,1] {ti}mi=0 such
that 0 < ti+1 − ti < δ

C0
where C0 is as in the statement of Theorem 8.2. Let ai be

the deviation function corresponding to Lti+1 = Li+1 and Lti = Li , here εi(X) =
Ati+1(X) = (ti+1 − ti )ε(X), and ai(X) = (ti+1 − ti )a(X). Hence ‖A(ai)‖L∞(σ ) =
(ti+1 − ti )‖A(a)‖L∞(σ ) < δ. An iteration of the argument above ensures that for
i ∈ {0, . . . ,m} ωi ∈ A∞(σ ) and ωi+1 ∈ B2(ωi). Hence ω1 ∈ A∞(σ ). �
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Proof of Theorem 8.1 We are assuming the Carleson condition (8.1) on a2(X)
δ(X)

dX

and that ω0 ∈ A∞(σ ). We will show that ω1 ∈ A∞(σ ) by showing that there exist
0 < α < 1 and 0 < β < 1 such that if � = B(Q0, r) ∩ ∂Ω and E ⊂ � then σ(E)

σ(�)
> α

implies that ω1(E)
ω1(�)

> β .

For r > 0 and γ > 0 we denote by Γγ,r (Q) the truncated cone of radius r and
aperture γ , i.e., Γγ,r (Q) = {X ∈ Ω : |X − Q| < (1 + γ )δ(X),0 < δ(X) < r}. We
define the truncated square function with aperture determined by γ for the deviation
function a(X) by

Aγ,r (Q) =
(ˆ

Γγ,r (Q)

a2(X)

δ(X)n
dX

)1/2

.

The appropriate constant γ will be chosen later.

Applying Lemma 3.13 to A(X) = a2(X)
δ(X)

χB(Q0;(2+γ )r)(X) we conclude that

1

σ(�)

ˆ

�

A2
γ,r (Q)dσ(Q) ≤ 1

σ(�)

ˆ

T ((2+γ )�)

a2(X)

δ(X)
dX ≤ Cγ

because σ is doubling and hypothesis (8.1). Thus there is a closed set S ⊂ � so that
σ(S)
σ (�)

≥ 1
2 and Aγ,r (Q) ≤ C′

γ for Q ∈ S.

Recall that there exist constants 0 < β < γ and C1 < C2 < 0 and a sawtooth
domain ΩS such that

(i)
⋃

Q∈S Γβ,C1r (Q) ⊂ ΩS ⊂ ⋃
Q∈S Γγ,C2r (Q)

(ii) ∂ΩS ∩ ∂Ω = S

(iii) The NTA character of ΩS is independent of S

(see [12]).
Without loss of generality we may assume that 3

2β + 1
2 < γ . Let

Ω ′ =
⋃

Q∈S

Γβ,C1r (Q) and Ω̃ =
⋃

Q∈S

Γγ,C2r (Q).

For X ∈ Ω with δ(X) < C1r if B(X,
δ(X)

2 ) ∩ Ω ′ �= ∅ then there exists Q̃ ∈ S so

that B(X,
δ(X)

2 ) ⊂ Γγ,C2r (Q̃). In fact if Y ∈ B(X,
δ(X)

2 ) ∩ Ω ′ there is Q̃ ∈ S so that

|Q̃ − Y | < (1 + β)δ(Y ) and |Q̃ − X| ≤ |Q̃ − Y | + |Y − X| < (1 + β)δ(Y ) + δ(X)
2 ≤

(1 + β)
3δ(X)

2 + δ(X)
2 = δ(X)(1 + ( 3

2β + 1
2 )). Thus X ∈ Γγ,r (Q̃). Define the operator

L̃1 = div Ã1∇ by setting

Ã1(X) =
{

A1(X) if X ∈ Ω ′

A0(X) if X ∈ Ω\Ω ′
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Let ã(X) = sup
Y∈B(X,

δ(X)
2 )

|Ã1(Y )−A0(Y )| be the deviation function for L̃1 and L0.

Observe that ã(X) ≤ a(X). For γ and β as above consider

Ãβ(Q) =
(ˆ

Γβ(Q)

ã(X)2

δ(X)n
dX

) 1
2

.

Note that by the definition of Ã1 and ã,

Ãβ(Q) =
(ˆ

Γβ,C1r (Q)

ã(X)2

δ(X)n
dX

) 1
2

.

If B(X,
δ(X)

2 ) ∩ Ω ′ = ∅ then ã(X) = 0. On the other hand, if X ∈ Γβ,C1r (Q) and

B(X,
δ(X)

2 ) ∩ Ω ′ �= ∅ then there exists Q̃ ∈ S so that B(X,
δ(X)

2 ) ⊂ Γγ,C2r (Q̃).
Thus Ãβ(Q) ≤ Aγ,r (Q̃) ≤ Cγ ′ . By Theorem 8.2 ω̃1 = ω

L̃1
∈ A∞(σ ). Choose

0 < α < 1 close to 1 so that σ(E∩S)
σ (�)

≥ 1
4 whenever σ(E)

σ(�)
> α. Let F = S ∩ E since

ω̃1 ∈ A∞(σ ) there exist constants C > 0 and η > 0 so that

ω̃1(F )

ω̃1(�)
> C

(
σ(F )

σ (�)

)η

≥ C′. (8.5)

By [5] and [11] there exist constants C > 0 and Q > 0 depending on the ellipticity
constants, the NTA constants of Ω , and n so that for F ⊂ S

1

C

(
ω̃

ΩS

1 (F )
) 1

θ ≤ ω̃1(F )

ω̃1(�)
≤ C

(
ω̃

ΩS

1 (F )
)θ (8.6)

and

1

C

(
ω

ΩS

1 (F )
) 1

θ ≤ ω1(F )

ω1(�)
≤ C

(
ω

ΩS

1 (F )
)θ (8.7)

(see Lemma 1.4.14 in [12]). Since ΩS ⊂ Ω ′, L̃1 = L1 on ΩS and ω̃
ΩS

1 = ω
Ωs

1 . Com-
bining (8.5), (8.6), and (8.7) we obtain since F ⊂ E

ω1(E)

ω1(�)
≥ ω1(F )

ω1(�)
≥ 1

C

(
ω

ΩS

1 (F )
) 1

θ = 1

C

(
ω̃

ΩS

1 (F )
) 1

θ

≥ C′
(

ω̃1(F )

ω̃1(�)

) 1
θ2 ≥ C′. (8.8)

�

Remark 8.3 Recall that by the work of David & Jerison [6] and Semmes [15], we
have that if Ω is a CAD and ω denotes the harmonic measure then ω ∈ A∞(σ ).
Theorem 8.1 shows that the elliptic measure of operators which are perturbations of
the Laplacian in the sense of (1) is also in A∞(σ ).
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