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Abstract In the present paper we study the solvability of the Dirichlet problem for
second order divergence form elliptic operators with bounded measurable coefficients
which are small perturbations of given operators in rough domains beyond the Lips-
chitz category. In our approach, the development of the theory of tent spaces on these
domains is essential.
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1 Introduction

In this paper, we establish fine properties of the elliptic measure associated with the
solvability of the Dirichlet problem for certain small perturbations of elliptic oper-
ators in chord arc domains. The elliptic measure is that which arises naturally as
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the representing measure associated with the solution of the Dirichlet problem for a
second order elliptic operator with continuous boundary data. The “fine properties”
of such measures are sharply described by the conditions defining the Muckenhoupt
weight classes, in which these measures are compared to other natural measures, such
as surface measure, which live on the boundary of the domain.

We will consider second order elliptic operators in divergence form, L =divAV,
which are perturbations, in a sense to be made precise, of some given elliptic opera-
tors. The perturbation theory developed here for chord arc domains is the extension
of that same theory for Lipschitz domains; see [3, 8, 9], and [10] for some prior
literature.

A chord arc domain in R” is a non-tangentially accessible (NTA) domain whose
boundary is rectifiable and whose surface measure is Ahlfors regular (i.e., the sur-
face measure on boundary balls of radius  grows like 7*~1). We refer the reader to
the available literature, and specifically to [11] for the precise definition of NTA do-
mains. NTA domains possess all of the following properties: (i) a quantified standard
relationship between elliptic measure on the boundary of a domain and the Green’s
function for that domain, (ii) the doubling property of elliptic measure, and (iii) com-
parison principles for non-negative solutions to elliptic divergence form equations.
These properties are consequences of the geometric definition of NTA domains and
are stated precisely in the next section.

We briefly recall the Muckenhoupt weight classes (see [16] for a detailed dis-
cussion of these weight classes). If u and v are mutually absolutely continuous
positive measures defined on the boundary of a domain, 052, then there exists a
weight function g such that du = gdv. The measure du belongs to the weight
class B, (dv) if there exists a constant C > 0 such that for all balls B C 952,
w(B)~! [, g9dv)1/4 < Cv(B)~! [ gdv. The union of the B, classes is the A
class. By real variable methods, it is known that if elliptic measure and surface mea-
sure on a domain are related via a weight in the Ao, class, then the Dirichlet problem
with data in L? (do) is solvable for some p < co. There is a well-known relationship
between the Muckenhoupt B, weight classes, the existence of estimates for maxi-
mal functions and non-tangential maximal functions, and the solvability of Dirichlet
problems for second order elliptic divergence form operators. We assume that the
reader is familiar with these results in harmonic analysis/elliptic theory.

One specific and nontrivial result in this theory is Dahlberg’s result of 1977:
The harmonic measure @ on a Lipschitz domain is mutually absolutely continu-
ous with respect to surface measure, o, and the weight k relating the two measures
(dw = kdo) belongs to the B>(do) class. There is a further relationship between
Muckenhoupt weights and the function space BMO of functions of bounded mean
oscillation which then implies that logk € BMO(do). On C! domains, Jerison and
Kenig proved that logk € VMO(do). VMO is the Sarason space of vanishing mean
oscillation, a proper subspace of BMO, and arises as the predual of the Hardy space
H'.In[13], Kenig and Toro showed that log k belongs to VMO(do) when the domain
is merely chord arc (with a vanishing condition).

The theory of perturbation of elliptic operators on Lipschitz domains begins with
a result of Dahlberg, [4], which measures the difference between coefficients of the
matrices of two divergence form elliptic operators in a Carleson norm. Here is the
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setup for the general perturbation theory: If Ly = div AoV is elliptic in a domain £2,
then an elliptic operator L1 = div A1V is a perturbation of Ly when the difference
€(X)=1]A1(X) — Ag(X)| is equal to zero when X € 9§2. How closely should these
operators, Lo and L1, agree in the interior of the domain so that good properties of
the elliptic measure associated with L( are preserved? The correct answer to this
question is stated in terms of Carleson measures. The Carleson condition on €(X)
is a delicate measure of the rate at which €(X) tends to zero as X approaches the
boundary of £2. In terms of such Carleson conditions, sharp results on perturbations
were obtained in [10]. And in [8], Escauriaza showed that a (vanishing) Carleson
condition on a perturbation of the Laplacian in C! domains preserved the Jerison—
Kenig result, namely that logk € VMO. We will provide precise statements of some
of these results in the next section.

Our aim is to extend the perturbation results of [10] to the setting of chord arc
domains (CADs). Much of the technology of function spaces on the boundary which
is available when the domain has Lipschitz boundary is not available in this setting.
Therefore, a good portion of this paper is devoted to developing the theory of these
function spaces for chord arc domains, especially the theory of tent spaces due to
Coifman, Meyer, and Stein. These function spaces and their duals figure prominently
in the theory of Hardy spaces and BMO spaces—the connection between them is
established via Carleson measures. The development of the theory of tent spaces on
chord arc domains is a purely geometric and independent aspect of this paper.

In [14], it was shown that a (vanishing) Carleson measure condition on perturba-
tions of the Laplacian on CADs with vanishing constant preserves A. In the last
section of the paper we show that this result holds for perturbations from arbitrary
elliptic divergence form operators on general CADs.

2 Preliminaries

In this section, we recall some definitions and give the necessary background on
properties of solutions to elliptic equations in divergence form. We will also introduce
some notation which will be used throughout the paper.

Definition 2.1 Let 2 C R”. We say that §2 is a chord arc domain (CAD) if £2 is
an NTA set of locally finite perimeter whose boundary is Ahlfors regular, i.e., the
surface measure to the boundary satisfies the following condition: There exists C > 1
so that for » € (0, diam £2) and Q € 982

c ' <o(B(Q, ) <Crh 2.1)

Here B(Q,r) denotes the n-dimensional ball of radius r and center Q, ¢ =
H"~ 1382, and H"~! denotes the (n — 1)-dimensional Hausdorff measure. The best
constant C above is referred to as the Ahlfors regularity constant.

Definition 2.2 Let 2 Cc R", § > 0, and R > 0. If D denotes Hausdorff measure and
L(Q) denotes an (n — 1)-plane containing a point Q € £2, set

O(r)= sup inf r*lD[anB(Q,r),cmB(Q,r)] (2.2)
0eca2 £(Q)
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We say that £2 is a (6, R)-chord arc domain (CAD) if £2 is a set of locally finite
perimeter such that

sup O(r)<é (2.3)
0<r<R
and
o(B(Q, 1) < (1+8)w,—1r""' Y0 €32 and Vr € (0, R]. (2.4)

Here w,_1 is the volume of the (n — 1)-dimensional unit ball in R"~!.

Definition 2.3 Let 2 C R"”. We say that £2 is a chord arc domain with vanishing
constant if itis a (6§, R)-CAD for some § > 0 and R > 0,

limsupf(r) =0, 2.5)
r—0
and
lim sup M =1. (2.6)

r=00cye  @ar"!

For the purpose of this paper, we assume that £2 C R” is a bounded domain. We
consider elliptic operators L of the form

Lu =div(A(X)Vu) (2.7)

defined in the domain £2 with symmetric coefficient matrix A(X) = (a;;(X)) and
such that there are A, A > 0 satisfying

MEP < Y aij(X)EE; < AlE (2.8)

i,j=1

forall X € 2 and & € R".
We say that a function # in §2 is a solution to Lu = 0 in £2 provided that u €
W,.2(£2) and for all ¢ € C(£2)

/ (A(x)Vu, Vo)dx =0.
2

A domain §2 is called regular for the operator L, if for every g € C(3£2), the
generalized solution of the classical Dirichlet problem with boundary data g is a
function u € C(£2). Let £ be a regular domain for L as above and g € C(352). The
Riesz Representation Theorem ensures that there exists a family of regular Borel
probability measures {wf }xeg such that

u(X) =/ g(Q)dw} (Q).
082
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For X € £2, a)f is called the L-elliptic measure of 2 with pole X. When no confusion
arises, we will omit the reference to L and simply call it the elliptic measure.

To state our results, we introduce the notion of perturbation of an operator. Con-
sider two elliptic operators L; = div(A; V) for i =0, 1 defined on a chord arc domain
£2 C R™. We say that L is a perturbation of L if the deviation function

a(X) =sup{|A1(Y) — Ag(Y)|: Y € B(X,8(X)/2)} (2.9)

where §(X) is the distance of X to 942, satisfies the following Carleson measure
property: There exists a constant C > 0 such that

1 a%(X) 172
sup sup { ———— ——dX <C. (2.10)
0<r<diam 2 0ea2 | 0 (B(Q, 7)) Jpo.nne §(X)

Note that in this case L1 = Lo on 3§2. For i =0, 1 we denote by G;(X,Y) the
Green’s function of L; in £2 with pole at X and by a)lx the corresponding elliptic
measure.

We now recall some of the results concerning the regularity of the elliptic measure
of perturbation operators in Lipschitz domains. The results in the literature are more
general than those quoted below.

Theorem 2.4 [4] Let 2 = B(0,1). If Lo = A, a(X) is as in (2.9),

1 2(x 172
a”( )dX} ’

Q. ry =4 ——
(@.n {G(B(Q,r)) sionng 3X)

@2.11)

and

lim sup hA(Q,r) =0,
r—>0|Q‘:1

then the elliptic kernel of L1, k =dwy, /do € By(do) forall g > 1.

In [9], R. Fefferman investigated an alternative to the smallness condition on
h(Q, r) above, and considered a pointwise requirement on the quantity A(a)(Q).

Theorem 2.5 [9] Let 2 = B(0,1) and Ly = A. Let I'(Q) denote a non-tangential
cone with vertex Q € 052 and

a%(X) 172
A = ax)
(@)(Q) (/F(Q) 5 (X) )

where a(X) is as in (2.9). If ||A(a)||L~ < C then w € Axo(do).

The main results in [4] and in [9] are proved using Dahlberg’s idea of introducing
a differential inequality for a family of elliptic measures. In [10], Fefferman, Kenig,
and Pipher presented a new direct proof of these results, and we will show here that
this proof extends beyond the class of Lipschitz domains. This requires a careful
reworking of many of the technical steps in the [10] proof, and the development of
the required new analytic tools for CADs.
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Theorem 2.6 [10] Let §2 be a Lipschitz domain. Let L1 be such that (2.10) holds.
Then w1 € Axo(do) whenever wy € Axo(do).

Theorem 2.7 [10] Let §2 be a Lipschitz domain. Let wgy, w1 denote the Lo-elliptic
measure and the L1-elliptic measure, respectively, in §2 with pole 0 € §2. There exists
an g9 > 0, depending on the ellipticity constants and the dimension, such that if

2, . Go(X)
X
Asguz}).(z{wo(A) T(A)a ( )SZ(X)

172
dX} < ¢o,

then w € By(wg). Here T(A) = B(Q,r) N 2 is the Carleson region associated
with the surface ball A(Q,r) = B(Q,r) N 382, and Go(X) = Go(0, X) denotes the
Green’s function for Lg in 2 with pole at 0 € $2.

In the recent paper [14], Theorem 2.6 was generalized to chord arc domains with
small constant in the case Lo = A. More precisely,

Theorem 2.8 [14] Let 2 be a chord arc domain. Let Ly = A and L\ be such that
(2.10) holds. There exists §(n) > 0 such that if 2 C R" isa (§, R)-CAD with 0 < § <
&(n), then w1 € Ax(do).

The purpose of the present paper is to extend the result above to perturbation
operators on “rough domains”. In particular, we will show the following result.

Theorem 2.9 Let §2 be a chord arc domain. There exists an &g > 0, depending also
on the ellipticity constants and the dimension, such that if

2 o GoX) V2
Ascufg)ﬂ{wo(A) T(A)a(X)Sz(X)dX} = €0 @12

then w1 € By(wop).

The various constants that will appear in the sequel may vary from formula to for-
mula, although for simplicity we use the same letter(s). If we do not give any explicit
dependence for a constant, we mean that it depends only on the usual parameters
such as ellipticity constants, NTA constants, the Ahlfors regularity constant, the di-
mension, and the NTA character of the domain. Moreover, throughout the paper we
shall use the notation a < b to mean that there is a constant ¢ > 0 such that a < cb.
Similarly, @ >~ b means that « < b and b < a.

Next we recall the main theorems we will use about the boundary behavior of
L-elliptic functions in non-tangentially accessible (NTA) domains for uniformly el-
liptic divergence form operators L with bounded measurable coefficients. We refer
the reader to [12] for the definitions and more details regarding elliptic operators of
divergence form defined in NTA domains.
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Lemma 2.10 Let $2 be an NTA domain, Q € 82,0 <2r < R,and X € 2\B(Q, 2r).
Then
1 w*(B(Q,r))
< <
r"=2G(A(Q,r), X)

where G(A(Q, r), X) is the L-Green function of §2 with pole X, and wX is the cor-
responding elliptic measure.

’

Lemma 2.11 Let 2 be an NTA domain with constants M > 1 and R > 0, Q € 952,
0<2r<R,and X € 2\B(Q,2Mr). Then for s € [0, r],

w*(B(Q,25)) < Co™(B(Q,5)),

where C only depends on the NTA constants of §2.

Lemma 2.12 Let §2 be an NTA domain, and 0 < Mr < R. Suppose that u, v vanish
continuously on 952 N B(Q, Mr) for some Q € 082, u,v >0, and Lu = Lv =0
in 2. Then there exists a constant C > 1 (depending only on the NTA constants) such
that forall X € B(Q,r) N £2,

c-14(AQ. ) SM(X) SCM(A(Q’r)).
v(A(Q,r)) ~ v(X) v(A(Q, 1))

Lemma 2.13 Let 4 € Aso(dw), 0 € $2, and set

1/2
Sa(u)(Q)z(/ |Vu(X)|28(X)2"dX) and
ru(Q)

No(u)(Q) =sup{|u(X)|: X € [, (Q)}
where for Q € 052
Q) ={Xe:1X -0l <(+a)sX)}. (2.13)

Thenif Lu=0and 0 < p < o0,

1/p 1/p
( / (Sa(u))”du> sca,p< / (Na(m)”du) :
982 a2

If in addition u(0) =0, then

1/p 1/p
</ (Na(u))pdﬂ) = Cot,p (/ (Sa(u))pdﬂ> .
082 082

3 Non-Tangential Behavior in CADs

In this section, we study the space of functions defined on chord arc domains whose
non-tangential maximal function is well behaved. Our goal is to extend the theory of
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tent spaces developed by Coifman, Meyer, and Stein [2] in the upper half-space to
chord arc domains. It will play a crucial role in the proof of Theorem 2.9.

We first study the notion of global y-density with respect to a set F C 952 for
a doubling measure p supported on 9S2. In this paper, u will either be the elliptic
measure of a divergence form operator defined on £2 or the surface measure to 9£2.
Please note that in contrast with the classical case we do not restrict the definition to
the case where F is closed.

Definition 3.1 Let 7 C 962, and let y € (0, 1). A point Q € 952 has global y-density
with respect to F for a doubling measure u if for p € (0, diam £2)

w(B(Q,p)NF) -
w7,
w(B(Q, p)

Let 77 be the set of points of global y-density of 7.

3.1

Lemma 3.2 Let §2 be a CAD with surface measure o and let A(P,s) = B(P,s)N
082 be the surface ball centered at P. Given o > 0, there exist y € (0, 1) close to 1
and Ao > 0 such that if F C 02 and P € .7:;, then for P € A(P, 2+ a)r)

o (A(Q. Br)NF) = ro(Br)" ", (32)
where f = min{1, a}.
Proof Assume o(A(Q,Br) N F) < ko(ﬂr)”_l. Since A(Q, pr) C A(P,(2 +
o+ B)r) C A(P,(3+2a)r) and P € F*, then
yU(A(P, B+ 2a)r))
< G(A(P, B+ 2a)r) ﬂ]—“)
<o (A(P, 3+ 20)r)\A(Q, Br)) + o (A(Q, Br))

=a(A(P (3+2a)’)[1—i-<L>n_l+czzxo(i>n_l} (3.3)
= ’ C2 \3+2v 3+ 20 s

where C denotes the Ahlfors regularity constant. For A9 = 1/2C*, (3.3) implies that

y<Il-— # . (3f2a )"_1 < 1, which is a contradiction if y is close enoughto 1. [

Please note that so far we have not assumed that the set F is closed. The following
proposition requires the set F to be closed. It holds for a general doubling measure
supported on 952, but will only be applied to either surface measure or elliptic mea-
sure.

Proposition 3.3 Let 2 be a CAD, and let u be a doubling measure on 052. Let
F C 082 be a closed set. Then F; C F and

1((F5)°) < Cu(F). 3.4

Here the constant C depends on y and on the doubling constant of |1.
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Proof Since F is closed, it is clear that .7-'; CF.Let O=F¢ and O* = (.7-';)6. If
Q € O*, by definition there exists a radius ¢ > 0 such that

n(A(Q,00)NF)
n(A(Q,09))

By Besicovitch (see [7]),

Nn
o clJUa(ej.¢))

i=1 j

where A(Q;, Q;) N A(Qf, Qf) = @ for j #1. Therefore,

ZZ“ Q/’Q/

i=1 j

and

DD m(a()e)) =33 n(A(0).0) N F) +u(A(Q).05)NO)

=22 vu(A(Q):09)) + n(A(Q). €5) NO).

Hence,

(0% =C Y > u(a(Qh0h) N0) < Cu(0). (3.5)

i=1 j

O

Definition 3.4 Let £2 be a CAD. We denote by A a linear space of Borel measurable
functions F such that

N ={F: 2 — Rsuch that N(F) € L' (do)}
where N(F)(Q) =sup{|F(X)|: X e I'(Q)}and I'(Q) = I'1(Q) as defined in (2.13).

Remark 3.5 The set N with the norm given by || F||or = | N (F) 21952y 1s @ Banach
space.

The following proposition shows that the definition of the space A/ above does not
depend on the aperture of the cone used.
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Proposition 3.6 Let $2 be a CAD. Let | be a doubling measure supported on 052.
For Q € 082 let

NoF(Q)= sup |F(X)],
Xely(Q)

where Iy (Q) is as defined in (2.13). Then given o, B > 0 there exists a constant C
depending on o, B and the doubling constant of |t such that for all A > 0

n({X €02 :NyF(X)>21}) =Cu({X €92 : NgF(X) > 1}). (3.6)

Hence for 1 < p < o0,
/|NaF|pd,u§C/|NﬁF|pdu. 3.7

Proof If o < B, the inequality (3.6) is automatic. Thus, we may assume that o > .
To prove (3.6), we would like to apply Proposition 3.3. We claim that for y € (0, 1)
close enough to 1, the set {X € 062 : N, F(X) > A} is contained in the complement
of the set of points of global y-density with respect to {X € 082 : NgF(X) > A}°. It
is straightforward to show that the set {X € 952 : NgF'(X) > A} is open, which en-
sures that Proposition 3.3 applied to ' = {X € 9£2 : NgF'(X) > A} combined with
the previous claim yields (3.6). To prove the claim, assume that Ny F(Q) > A for
Q € 082 there exists Y € I4(Q) such that F(Y) > A and |Q — Y| < (1 +a)s(Y).
Now let Qy € 982 such that |Y — Qy| =8(Y); then A(Qy,B5(Y)) C{P €052 :
NgF(P) > A} N A(Q, (a + B + 2)5(Y)). In fact, if P € A(Qy, BS(Y)), then
|P—-Y|<|P—-Qy|l+ |0y —Y|<({+ B)§(Y) and F(Y) > A. Therefore, since
1 is doubling,

w({P:NgF(P)> A NAQ, (a+ B +2)8(Y)))
n(ACQ, (e + B +2)5(Y)))

n(A(Qy, B3(Y)))
T (ACQ, (@ + B +2)5(Y)))

o WAy, Ct+a+ X))
 n(A(Q. (@ + B +2)i(Y)))

n(A(Q, B3(Y)))
T (A, (@ + B +2)5(Y)))

= Co, (3-8)

where Cp depends on «, 8 and the doubling constant of w. Note that (3.8) shows
that for Q € 952 such that Ny F(Q) > A, Q is not a global y-density point with
respect to {P € 952 : NgFF(P) > A} whenever y € (1 — Cy/2, 1), which proves our
claim. (|

One of the goals of this section is to study the dual of the space A. To achieve
this, we still need to understand better the geometry of 2 and the structure of its
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boundary. To this effect, we first prove a Whitney decomposition type lemma for an
open subset of d§2. Then we define the “tent” over an open subset of 9£2. Finally, we
define Carleson measures on §2.

Lemma 3.7 Let F C 052 be a closed nonempty set on 052. There exist a family of
balls {By} with By = B(Xy, 1), Xk € 082 and constants 1 < ¢* < ¢™* such that if
B,,zk = c*Br = B(Xy, c*ry), B;:* = c** By, then

o ByNB; =0, for k#j

e UiBi=F'Na2=0

e BI*NF#.

In addition, if we define
c c
omn(Yo) (o)
j<k j>k
then By C Qx C B, the Qy’s are disjoint, and Ui, Qk=0
Proof Consider 0 < ¢ < 1/6 and let d(X) = sup{d : B(X,d) N d§2 C O} for X €

d£2. Let us choose a maximal disjoint subcollection of {B(X, ed(X))}xeo. For this
countable subcollection {Bk},fil, where By := B(Xy, ed(Xy)) and X € 052, we con-

sider Bf = B(Xx, “%¥) and B}* = B(X, 2d(Xy)). Clearly (i) and (iii) hold; more-
over, By C O. To show that
ocl s,

k>1

we take Y € O. By the selection of { By}, there exists k such that
B(Y,ed(Y)) N B(Xy, ed(Xy)) # 0. (3.9

Therefore, |Y — Xy | < ed(Y) 4+ ed(Xy). Moreover, d(Y) < | Xy — Y|+ d(X}), which
implies d(Y) < H"ga’(Xk) and as a consequence |Y — Xy| < 3ed(Xy) < d(X")
e<1/6.

By construction, B; C Q1 C B;‘. Assume that for k > 2 and j <k -1, B; C
Q;C B;.‘ and note that By C (|J j=k Bj)“UB[. By definition and using the hypothesis
of induction, we have for j <k

05 =(B})U (U Q,-) U (U Bi) S <U B,-) > By

i<j i>] i#j

, since

and ﬂj<k Q;ﬁ D U=k Bi D B, which ensures that By C Ok C By.

It is clear that | ;2 ; O C= ;2 Bf = O.For X € O consider two cases. Either
there exists j such that X € B(X;, ed(X;)) =: B; C B;‘, X¢Q;fori<j,X¢B;
for i # j and therefore X € Q;. Or for all j, X ¢ B;. In this case, there exists a kg
such that X € B,Z‘O but X ¢ B, for k < ko. Hence X ¢ Qj with k < ko, which implies
XeQ,thndOCUka. d
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To define the notion of “tent” over an open subset of 92, we first look at “fans”
of cones over subsets on 2. Let 7 C 952. For o > 0, define

Ro(F) = | J ru(@), (3.10)
QeF

where Iy, (Q) is as defined in (2.13). We denote R;(F) by R(F). Given an open set
O C 052, the tent over O is defined as

T(0)= R\ R(F). (3.11)
Lemma 3.8 Let O be the open set defined by
0={0€d2:NF)(Q) >al.

Then

7(0) < | T(A(P. dist(P. 09))).

Proof Recall that T(A(Q,r)) = B(Q,r) N 2. Let Y € T(O). Then Y ¢ R(F),
hence NF(Qy) > «, where by Qy € d§2 we denote the boundary point satisfying
Y — Qy|=68().Now if P € A(Qy,5(Y)),then |P —Y| <26(Y),Y € I'(P), and
since Y ¢ R(F), then P ¢ F, thus P € O, i.e.,, A(Qy,58(Y)) C O, which implies
8(Y) < dist(Qy, 0. Il

Definition 3.9 Let £2 be a CAD. For a Borel measure . on £2, we define for Q € 952,

C =
(W (Q) Si‘iam) -

and denote by
C= {u is Borel in 2 : iellc = sup C(u)(Q) < oo}.
Qedf2

C is the collection of Carleson measures on §2.

Lemma 3.10 Assume that u is a positive measure on 2 such that ||pi|c <1, i.e.,
w(T (B)) <o (B) for all balls B. Then, for every open set O C 052

w(T(0)) < Ca(0).

Proof As in the classical setting, we appeal to the Whitney decomposition, Lem-
ma 3.7. If the By’s are as in Lemma 3.7, then we claim that

7(0) | JT1(B;). (3.12)
k
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Thus

w(T(0)) <Y (T (B*) <CY o(Bi) <C) 0By
k k k
<Y 0 (00 $o(0)
k

where we have used the fact that o is Ahlfors regular (in fact, the doubling
properties of o are enough). To prove (3.12), consider a point Z € T(0O) C
UPGO T(A(P,dist(P, 0°))), that is, Z € T(A(P, dist(P, O¢))) for some P € O,
and there exists a k such that P € B} and |P — X;| < dj". Now if Y € O€ is such
that dy = |Y — Xi| |Y — P| < |Y — X¢| + | Xk — P| < %, dist(P, O¢) < %
and |Z — Xi| < |Z — P| + |P — Xi| < dist(P, O°) + ‘17" < 2dy, that is, Z €
T (A(Xy,2dy)) = T(B[™). g

We are now ready to study the relationship between the spaces N and C. First we
prove the analogue of Proposition 3 in [2].

Proposition 3.11 Let 2 be a CAD. If F € N and u € C, then

'/ F(X)dM(X)‘ S/ NF(Q)C(u)(Q)do. (3.13)

Q 882
Proof Assume that F > 0 and consider the open set O ={P € 952 : NF(P) > «a}.
Using the notation in Lemma 3.7 and the fact that o is Ahlfors regular, we have for
X € Ok
u(T (Bf*)) = C(u)(X)o (BF) < C(u)(X)o (By) < /Q C(w)(X)do.
k

By Lemma 3.10 and the fact that the Qy’s are disjoint, we have that

u((lFo0|>a)) = ) =c Y [ cuncods

=< C/ C(n)(X)do.
(NF(X)>a)
Integrating over « and using Fubini yields (3.13). g

Corollary 3.12 Let € C. Let F be a function defined on §2 suchthat NF € L? (do),
for some p € (0, 00) fixed. Then,

/QIF(X)Ipd/LSCAQ|NF(Q)|pC(M)(Q)dU. (3.14)

Proof Inequality (3.14) follows from Proposition 3.11 if we replace |F(X)| by
|F(X)|P. O
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We now present a couple of integration lemmas. They provide control of boundary
integrals in terms of solid integrals on CAD, via Fubini. In what follows, the function
A(X) is a non-negative measurable function in £2. In Sect. 4, we will take A(X) to
be the square function.

Lemma 3.13 Let 2 be a CAD. Given o > 0, if F C 082 and A is a non-negative
measurable function in S2, then

/ (/ A(X)dX)do(Q) < Ca/ AX)8(X)"lax, (3.15)
F NI T (Q) Ry (F)

where Ry (F) is given by (3.10).

Proof By Fubini’s theorem,

/ ( / A(X)dx)da(@: | A0 (0axds @)
F Iy(0) FJR
= | [ AcOxn0do@ax. G
JF

If xr,0)(X) =1, then [X — Q] < (1 + @)d(X), and if Qx € 02 is such that
|X — Ox|=38(X),then |Ox — Q| < |X — Ox|+ X — Q| < (2+ «)d(X), and

/f X0 (X)do (Q) <o (A(Qx. @ +@)8(X))) < Cod(X)" 1. (3.17)
Combining (3.17) and (3.16), we obtain
//A(X)XMQ)(X)EIU(Q)dX
RJF

E/ﬂ/]__A(X)XFQ(Q)(X)XA(QX,(Z—i-a)B(X))(Q)dU(Q)dX

< / A<X)< / XA(QX,(2+a)6(X))(Q)dU(Q)>dX
Ry (F) F

< Ca/ AX)SX)"dX. .
Ro(F)

Lemma 3.14 Let 2 be a CAD. Given o > 0, there exists y € (0, 1) close to 1 such
that if F C 052 and A is a non-negative measurable function in §2, then

/ A(X)S(X)”_ldX§Co,/ (/ A(X)dX)da(Q), (3.18)
Ru(F}) F\Jry

where 8 = min{1, a}.



Harmonic Analysis on Chord Arc Domains 2105

Proof It xry)(X) =0, then |X — Q] > (1 + B)8(X), and |Q — Qx| = BS(X).
Hence XF,g(Q) (X) > XA(QX,/S(S(X))(Q)~ Fubini’s theorem yields

// AX)dXdo (Q)
F 50

- / / A xry(0)(X)do (Q)dX
02 J F

Z/ A(X)/ XA(0x.p8(X)(Q)do (Q)dX
2 F

> / AX) / X80y 5300 (Q)do (Q)dX. (3.19)
Ra(F2) F

Note that if X € Ra(}";f), there is P € _7-'; such that X € I',(P) and Qx € A(P,
(2 4+ «)é(X)), then applying (3.2) in (3.3) we obtain

/ / A(X)dXdo(Q) > C, / AX)S(X)"ldx. (3.20)
F JTIp(Q) o (F5

Ru(F})

O

Corollary 3.15 Let §2 be a CAD. Given o > 0 there exists y € (0, 1) close to 1 such
that if F C 982 and f is a measurable function in §2, then

f2x) / £2(X)
dXd Cy dX
/]-‘; /1"Q(Q) s(x)" o= Ro(Fp 8(X)

2
sca// S0 ixdo(0).  G21)
FJr

(@) §(X)"
Proof Combining Lemma 3.14 applied to F and Lemma 3.13 applied to ]-";‘ with
AX) = gjg;, we obtain (3.21). O

4 Square Functions in CADs

Next we focus our attention on the tent spaces T defined for chord arc domains,
following the theory developed by Coifman, Meyer, and Stein in [2]. Suppose that f
is a measurable function defined on £2. For « > 0 and Q € 052, we define

4.1

X \12
5(X)"> .

A (f)(Q) = ( / F(X)?
Iy (Q)

The square function of f is defined as A(f) = AV (f). By analogy with the space A/
defined in Sect. 3, we denote by T'? for 1 < p < oo the space of all Borel measurable
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functions given by
T”:{feL2(.Q):A(f)eL”(a)}. 4.2)

Remark 4.1 The space T? as defined above with the norm || f||7» = [|A(f)||Lr (o) 1S
a Banach space.

We define operator C(f) : 3§2 — R by

12
C(F)(Q) = sup f(X)zd—X) @3)

QeA( (A) Jra) 3(X)
where A is a surface ball and T (A) is the tent over it. We also introduce the space

°°={feL2(.Q):C(f)eL°°(a)}, 4.4)
with the norm || fll7oc = [|C(f) L.

Theorem 4.2
(a) Whenever g € T' and C(f) € L*®(0), then

/ |f<x>g<x>|m <cle] gl

(b) More precisely,
/|f(X)g(X)| C/ CNHDAR(Q)da(Q).
5(X) 7 Jie

Proof Without loss of generality we may assume that both f and g are non-negative.
For any t > 0, we define the truncated cone

r(Q)={Xe2:|1X—- 0 <28(X),8(X) <7} 4.5)

and let

, dX 172
A; = .
(/)(Q) </FT(Q)f( ) S(X)n)

Note that A, (f) increases with 7, is constant for T > diam £2, and Aso(f) = A(f).
Given f, define the “stopping time” 7(Q), which is given for Q € 052 by

7(Q) =sup{r > 0: A (/)(Q) < AC(/)(Q)}

where A is a large constant to be determined later. A is only allowed to depend on 7,
the NTA constants, and the Ahlfors regularity constant.

Claim: There exists a constant co > 0 such that for every Qo € 082 and 0 <r <
diam 2

o({Q € A(Qo. 1) :1(Q) = r}) = coo (A(Qo. 1)).
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We assume that the previous claim holds and we prove that part (b) is satisfied by
showing that for H > 0

/H(X)S(X)"_ldecl/ {/ H(X)dX}do(Q) (4.6)
2 32 L/ @)

where C; depends on cp and the Ahlfors constant. Applying Fubini’s theorem we
obtain

// H(X)dXdG(Q)=// H(X)x w0 g)(X)do (Q)dX.
32 J (@) 2Jae

Note that if Q € A(Qx,8(X)) and 8(X) < 1(Q) then |Q — X| <0 — Ox| +
|Qx — X| < 28(X), which implies that X € I'"@(Q) and

Xre@(0)(X) = XA(x.s(x)N{r(Q)=8(x)}(Q)-

Therefore, using the claim and the fact that o is Ahlfors regular, we obtain
/ / H(X) x @) g)(X)do (Q)dX
o Jag
> /Q /a HOOZA 0 s00nix(@=000) Q) (Q)dX
= [ Ho({Q € 8(0x.000) () =500 )ax
z/ H(X)coo (B(Qx,8(X)))dX
7]
>Cp! / H(X)8(X)""'dx.
Q
To prove part (b), we take H(X) = f(X)g(X)3(X)™" in the inequality (4.6),

/f( )g(X) / </ f(X)g(X)5(X)"dX>dG(Q)
5(X) a2 \Jr

and then we use the Cauchy—Schwarz inequality in order to obtain

/ FX)gX)s(X)™"dX
r<@Q)

2 1/2 2 172
< </ f (X)dX) </ 8 (X)dX) .
r«@) 8(X)" re@g) 8(X)"

Therefore,

/f( )g(X)(S(X) Cl/ Az (0)(/)(Q)Ar(0)(8)(Q)do (Q). 4.7)
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By the definition of 7(Q),

Az 0)(N(Q) = AC()(Q) and  Ar()(8)(Q) = A()(Q).

Hence,
/J‘(X)g(x)m<C/M2 C(HID)A()(Q)do(Q)

as required in part (b). In order to complete the proof, we need to prove the claim
stated above.

Proof of Claim For Qg € 352, consider A = A(Qo, r) and A = A(Qo, 3r). Note that
UQGA I'"(Q) C T(A). Indeed, if X € I'"(Q) for Q € A, then | X — Q] < 28(X) and
8(X) <r,thatis, | X — Qo|l <|Qo— Q|+ 10 — X| <r+28(X) < 3r, which implies
X € B(Qo,3r) N2 =T(A). Thus, for Q € A,

/Az(f)(Q)dG(Q)=// fz(X)dXdcr(Q)
A ' r(0) S(X)n

2
= | [ S i@ (ode @i

2(X
</ g(X)j XB(00,3r)(X)o (A(Qx,38(X)))dX

2
S (X)dX
A 6(X)
Since U(A) <co(A) forany Q € A
1 1)
o(A) Jra)y 8(X)

Ifo({QeA:t(Q)>r}) <coo(B),thenc({Q € A:1t(Q) <r}) > (1 —co)o(A)
and

L / A2(f)(Q)do ()< dX <CP(F)(Q)<C' inf C(f)(0Q)
o(A)Ja " ~ ~ T Qea ’

/A A2(F)(Q)do(Q) = / A2.(f)(Q)do (Q)

AN{t(Q)<r}
> A? / C2(f)(Q)do (Q)
AN{t(Q)<r}
> Ainf C*(f)(Qo (AN {r(Q) <r})
> A%(1 —cp) irAlfczu)(Q)a(A)
which would imply

A2(1—60)irA1fC2(f)(Q)<C’ing2(f)(Q) or A*(1—cp)<C',

which is a contradiction if we take A large and co = 3/4 fixed. This concludes the
proof of the claim, thus that of Theorem 4.2. O
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Remark 4.3 As in [2], Theorem 4.2 can be used to identify the dual of 7! with those
F for which C(F) € L*(0).

Remark 4.4 Note that if 1 < p, g < 00, are such that % + é =1, feT?, geTi,
then using (4.7) and Holder’s inequality we have that

f(X)g(X)
oo XS P q.
o 8(X) SUflreliglr
Similarly, (b) in Theorem 4.2 ensures that
f(X)g(X)
/ 8(X) — o dX S [CO] L lglre (4.8)

It will be proved in Theorem 6.1 that for 2 < p < oo, A(f) € L? (o) if and only if
C(f)eL?(o).

As in [2], we prove that the definition of tent spaces is independent of the aperture
of the cone used. The following proposition is also crucial for the forthcoming results
in Sect. 7 (see, in particular, Remarks 7.3 and 7.2).

Proposition 4.5 Using the notation in (4.1), we have that for 0 < p < 0o
1A O ooy = NAD - (4.9)

To prove Proposition 4.5, we assume that o > 1. We note that in this case
A@(f) > A(f). We show that there exists a constant C(«, p) such that
A (e < Cla, p)IIACS)|ILr. This proves (4.9) for a > 1. The case o < 1 is
proved the same way by reversing the roles of @ and 1. The following lemma, which
is straightforward on Lipschitz domains, requires proof on a CAD.

Lemma 4.6 For f € T! and ) > 0, the set F = {Q € 32 : A@(f)(Q) < A} is
closed.

Proof To prove that F¢ = {Q € 32 : A (f£)(Q) > A} is open, we show that given
Q € 92 such that A (f)(Q) > A, there exist > 0 and € > 0 such that if P € 382
with |P — Q| < €n, then

2

X

/ J n)dX > A2
r(P\B(P,p 8(X)

Since A(“)(f)(Q) > A, there exists n > 0 so that

/ S0 (A("‘(f)(Q) —|—A>2
> - A~ .
r(\B(Q.n) 8(X)" 2

Observe that

2 2 2
/ f (X)dX—/ f (X)dX’E f (X)dX
r(P\B(P,p) 8(X)" r(\B(Q,n 8(X)" p 8(X)"
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where D = (I, (Q) \ B(Q, m)AUw(P)\ B(P,m). If | X — Q| < (1 +a)8(X) and
|X — Q| = n, then §(X) > 1+La If P e B(Q,en) and X ¢ I',(P) \ B(P,n), then
X — 0] >+ a)(1 —€)§(X). Thus we need to study sets of the form

Vp={Xe:|X—-P|zn;
SX)(1+a)(l—€)<|X—P| <(l+oz)8(X)} (4.10)
for P € B(Q, en) and prove that they have small H"-measure. Note that for € < 1/2
VpCV/={XeQ:1X-0l=n/2%
SX)(1+a)(1—e)?<|X - Q| <(l+a)28(X)}. (4.11)

Note that D C VpU Vg C V’. We show that given & > 0 and § > 0, there exists 8 > 0
such that

H'({Xe2:1X - Ql=n/2;
SX)(I+a—B) <X -0l <(+a+p)sX)}) <8, (412)

which ensures that given « > 0 and § > 0, there exists € > 0 such that H" (V) < 3.
Fix a > 0 and take § > 0 small, such that « — 8 > «/2. Consider the set

5(X)
l+a+B " |X—P| " 14+a-8

V:Qﬂ{|X—P|Zn/2, }cQ\B(Q,n/Z)-

F(X) = IJIS((—XéI — 1 is a non-positive Lipschitz function on £2\B(Q, n/2). By the

co-area formula, we have

0 1
H”(V):/ (/ — dH”_l)dt
—1 F‘l(t) JFXV
Fa=p 1
- —XVdH"l)dt. (4.13)
/; 1 </F‘(t) JF

T+a+B
Since
0 1
/ ( / —xmB(Q,,,/Z)dH"‘)dt <H"(£2) < C(2) < o0,
—1 F*l(t) JF

given « > 0, there exists 8 > 0 small, such that

/_1+olz—_ﬂ—1 / 1 -1 \ds < 5 i)
L \Jpi JF2\BQ.n/2) <4. )

T+a+p

Note that (4.11), (4.13), and (4.14) yield (4.12).
Since f € L3(£2), given € > 0 there exists § > 0 so that if (4.12) holds then

2(X)
p 8(X)"

dXx 52"77_"/ FAX)dX <n7"e.
D
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Thus

2(x 2(x
/ fo( )dX>/ fo( )dX
rL(P\B(P,y 8(X)" rw(@\B(Q,n 8(X)"

. ,(A‘“(f)(Q)Jr)\)z s
—n € — 5 —n €.

Since A (£)(Q) > A, we can choose €’ > 0 so that

dXx > 2%

2
A )2 / f7(X)
(AAP) 2 [ (P\B(P,p) 8(X)"

Proof of Proposition 4.5 We fix A > 0 and let

F={0e€d2:A(f) Q) =<1r}, 0=F ={0e€i:A(f)(Q)> A}

Since F is a closed set, }';,‘ C F (see Proposition 3.3). Let O* = (.7-';,‘)(:. Since o is

Ahlfors regular, it is doubling, and (3.4) ensures that

c({Qed2: AY(f)(Q) > 1r})
<o((F)N+o({QeF;: A“)Q) > 1))

IA

% Ca, 2
70+ 55 [ (A(F1©@)do©

C
<Co({Qed2: AUNQ) > 1)) + 35 /{Am A}(A(f)(Q))zdo(Q)

Multiplying both sides by pA?~! and integrating, we obtain

p/ooo({Q €32: A (f)>ar})ar~lan
0
< Cp/ooo({Q €32 : A(f) > A})APdx
0

+Cp/oo )J’—3/ (A(f)(Q))*dod).
0 (A=A

If p < 1, Fubini’s theorem applied to the second term yields

/OO ,\P—3/ (A(F)(Q)) dodh
0 (A=)

=/ / Xiar=n (AUN@) 2P 3dodb
0 082

(4.15)
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= / (AF(0)? / T dido
092 AF(Q)
=Cp /39(Af(Q))z(Af(Q))”_zda(Q). (4.16)

Thus for p <2, [A@ f|17, < CIIAfIIY,.
For the case p > 2, if % + % =1, observe that

||A(°”f||f,=sup{/ (A £ ydo: y el (o), ||¢||Lr51}. 4.17)
v 082
Note that

/BQ(A(a)f)deU < </m (A(a)f)p)ﬂp </m 1V)l/r.

Also, if X € I,(Q), then |[X — Q] < (1 +@)§(X) and |Q — Ox| < 2 + @)é(X).
Therefore,

/8 N (A@(£)(Q))’¥(Q)do (Q)

—/ / F2(X) ax Y (Q)do (Q)
e Jruo s(X)"

_ fAHX)
= X (0) (X) XAy, 2+a)s(x) (DY (Q)d Xdo
e §(X)

_ fHX)
= XAQx,C+a)s(x) (DY (D) xr, (o) (X)do (Q) —dX
2 \Jae §(X)
fAHX)
d dX
“Je 3(X)" Jaoy, (2+a>a<x>>w(Q) o
<c, /Mz v (00X ax (4.18)
Q2+a)s(X) 5(X) .
where
My (P) = ”,1/ Y (Q)do (Q).
s A(P,s)
Let
1
I/ (P)—Sup— Y (Q)do(Q).
s>0 S A(P,s)
Then

1 1
M) (P) = 5 [

(Bsyn—1 X)do (X)d .
A(P,s) (,BS)"—l /A(Q,ﬂs)w( ) U( ) O'(Q)
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If >1and Q € A(P,s), observe that A(P, (8 — 1)s) C A(Q, Bs) and

1 1
Ms(Mpsyr)(P) = sn——l/

(Bs)'—1 X)do (X)d
acps) By /A(P’(ﬂ V0 (X0 (©)

1
C——— X)do (X
(B! /A(P,(ﬂl)s)W( o (X)

> CsMp—1)s V.
That is, for g > 1,
M@p—1)s¥ < CgMy(Mgsyr) < CgMsyr™ (4.19)

since Mgy < Cyr*. Plugging (4.19) into (4.18) with s =8(X), B — 1 =2+, we
obtain

/3 _(A9©@) (a0
fz(X)
500

fZ(X)
B(X)

S Co /M(2+a)a(X)10(QX) dX

<Cqy /Ma(X)I/f (Ox)

2
)2 800" Jaoxsx0

Y (Q)do (Q)dX

2(x
< Ca/ S m XA(QX s (D xro)(X)Y*(Q)do (Q)dX
an 0(X)

<Ca/ (/ fz(X)dX)w*(Q)do(Q)
- a2 \Jr §(X)"

<c, /d _AFPQY (o (@)

< CollAfII,

w*

where we have used the fact that if Q € A(Qx,5(X)) then | X — Q| <|0 — Ox|+
| X — Ox| < 28(X) and the fact that the maximal function of i is bounded in
L’ (o). Taking the supremum over all ¥ yields that |A® f||z» < Cy||Af]lLr for
2<p<oo. g

v S CallAfIZ IVl < CallAfITs

Definition 4.7 A T' atom is a function a(X) which is supported in T(A), A =
B(Qp,r)Nas2 for Qg € 952 and

/ az(X)d—X <L (4.20)
T(A) §(X) " o(A) ’
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Observe that if a is supported in B(Qg, r) N §2, then A(a) given by

2 1/2
Aa) = (/ a (X)dX)
rg 8(X)"

is supported in A(Qq,3r). Indeed, if X € I'(Q) and |Q — Qo| > 3r, then
|X — Qo| = r, which gives a(X) = 0 and thus A(a)(Q) = 0. Using (4.20) we es-
timate,

/ Az(a)(Q)dG(Q)—/ / CX) v do ()
a2 ~ Jag Jr) QX"

=/ /XF(Q)(X)
el

a*(X)
5// Xax,35x) (@) xr)(X) - -do(Q)dX
2 Joa 8(X)

2 2
§C/a(X)dX=C/ X x< !
2 6(X) 7(a) 8(X) o(A)

a*(X)
s(X)"

dXdo(Q)

which yields

1/2
/m A@)(Q)do (Q) < (/m Az(a)(Q)do(Q)> (o) <c,

where C, depends on the Ahlfors regularity constant. Thus, if a is a 7' atom, then
aeT'and |a|;1 = ||A@)| 1 < Ch.

We are now ready to prove the duality relation between 7' and T (see (4.2) and
(4.4)).

Theorem 4.8 If G € (T")*, then there exists a g € T™ such that for every f € T

aX

|G(f)|~ ‘/Q f(x)g(x)a(X) :

Proof We first notice that Theorem 4.2 shows that every g € T°° induces an ele-
ment in (T1)*. Let G € (T'!)* and note that if K is a compact set in §2 and f is
supported in K with f € L>(K) then f € T''. First we consider K = B(Xo, r) with
dist(K, 082) > €o. If X € I'(Q) N B(Xy, r) then

1Q — Qx| = 1Q — X| 4+ |X — Xo[ +[Xo — Ox,| <28(X) +r +5(Xo)
< 2[X — Oxl +7+8(Xo) <2[X — Xo| 4 2[X0 — Qx,| +7 +(X0)

< 3r +35(Xp) <4r +46(Xp).
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Thus

£2x)  \V?
/A(f)(Q)do(Q)=/ (/ ndX) do(Q)
EYe) 32 \Jr@nBX,.,n 4(X)

2(x 1/2
Lo U 8 s
AQxyarasixg) W I(@NB(Xo.r) §(X)

1/2
<SP (r+8(X0)" ! ( / fz(X)) :

B(Xo.r)

If K< UL, BX,,rj) with B(X;,r;) CC £, dist(B(X;,ri),082) > r; >
%dist(K, 082) = ek and r; < diam K, then §(X;) < diam K + dist(K, 0§2) and

/ A(f)(Q)do(Q)
002

S £ )”2
dx | d
- /39 ;:(/r@ma(x,-,n) (X" 7@
< ZCKSKnﬂ(/
i=1

B(Xi,ri)

1/2
fz(X)dX> (ri +8(Xi))n_1 = Ckllfliz2ky-

Therefore, for f compactly supported,
GO =Cllf Nl = Cxll 2k

Thus G induces a bounded linear functional on L?(K) which can be represented by
a gk € L>(K). Taking an increasing family of such K which exhaust £2 gives us a
function g € LIZOC(SZ) and

dX

50 421

G(f)Z/(Zf(X)g(X)

whenever f € T'! with compact support in £2.
Leta € T be an atom supported on 7' (A). Then

|G@| <Gllalz < CalGll.

For the atom

2 —1/2
g (X)dX>

Qm = EXT(A)N{S(X)> o(A)
" (ANEE0 r/m}< T(A)NBEX)>r/m) 6(X)

where A = B(Q,r) N3£2, we have

G| =

1 g2(X)
o (A) Jraynpx)ysr/my 6(X)

1/2
dX) = GGl
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and if m — oo

< 1 2%
o (A) Jray 8(X)
which shows that C(g) € L. This representation of G (as in (4.21)) can be ex-

tended to all of T'! since the subspace of the functions with compact support is dense
inT!. 0

1/2
dX) < GG,

5 Duality of TP Spaces

The main purpose of the present section is to study the dual spaces to T spaces for
1 < p < 0o. The main result is contained in the following theorem.

Theorem 5.1 Let 1 < p < 00. The dual of T? is the space T? with % + ql = 1. More
precisely, if G € (TP)*, then there exists g € T4 such that for every f € TP

G(f)= /f(X)g(X)m and |Gl = |gllra-

Proof Asin [2], we first study the case p = 2. Note that from Lemmas 3.13 and 3.14
there exists a constant C,, such that

1 2.3y 2% 2 20x) 22
/Qf(X)(S(X)_IIfII 2<C/f(X)8(X) (.1

Given g € T2, the proof of Theorem 4.2 (see (4.7)) yields that the operator G defined
by

G(H)= / f(X)g(X)W

satisfies
|G(f)| < C/m ANHID)A(Q)do(Q) <Cll flr2llgll72. (5.2)

Thus G € (T?)*.
Consider T2 with the norm induced by the inner product
F(X)g(X)

(f.g)= QWdX;

then (72, (,)) is a Hilbert space. Given G € (T%)*, by the Riesz Representation The-
orem there exists g € (72, (, )) such that

G(f)= / f(X)g(X)(S(X)
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By (5.1) and (5.2), we have that
ClIglr2 < IGI < Callglize.

Consider the case 1 < p <2. Let G € (T?)*. For f € L*>(£2) with compact sup-
port K CC £2,let S={0Q €082 :I'(Q) N K # (} and ex = dist(K, 3§2). Then
IGOI =G fllrr and

21X )1’/2
L dX\) d
17 Wrr = /s(/F(Q)mK X" 7

Xy N2 £2x)  \V?
5( 300 dX) a(S)ch< e dX> ) (5.3)

Thus |G(f)| < Ckll f/S|l72. By the Riesz Representation Theorem there exists g
which is locally in L?(£2) such that

fX)gX)

G =
(f) 8

whenever f € L?(£2) and has compact support in §2. Note that for every K CC £2,

f € L?(£2), by Theorem 4.2(b)

Fxe) XU x)EX) |y
3(X)

/ FA(X)dX < Ck
K 2
< Cx /a AU LQC(f 1x)(Q)do (0) (5.4)
1/p
< Cx (/m A”(fXK)(Q)dO(Q))

1/q
X (/m Cq(fXK)(Q)dU(Q)> ; (5.5)

where 1/p+1/q = 1. By the definition of C(f xx) and if §x (Q) denotes the distance
of Q to the set K,

C(fxx)(Q) = sup

2 12
( (fxx) (X)dX> <
0ea\o(A) Jriay  8(X)

1/2 .
N( fz(X)dX) g’
T(A)

and

q/2
/m(C(fXK)(Q))qu(Q)SCK</Kf2(X)dX) . (5.6)

Combining (5.4) and (5.6), we have for p > 1

1/2
( /K f2<X>dX> <CK,pllfxllrr-
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Observe that the set {f € T? : f is compactly supported in £2} is dense in T7.
Indeed, let us choose an increasing family of compact sets {K,} which exhaust £2.
For f € T?, consider f,, = fxk,, € T?. Then

1w = Fllze = [ACGn = D 1o

(fn— DX 1P \Y?
||A(fm_f)||Ll’(a): (A.Q{/F(Q) S(X)n dX] da)

) 12
(/ (En(1)(Q))" do(Q)) ,
082

and

where

32X
E,, = dX
() /F onis 5007

Note that 0 < Epy (£)(Q) < En—1(f)(Q) <+ < E(f)(Q) = [0, % a(x)n L52dX . Since
feTP, E,(f)— 0ae. Q €92, and by the Dominated Convergence Theorem

tim [ En(£)(Q)o(@)=0 and  lim A~ )], =0,
We claim that for g as above there exists C’ > 0 such that

|AGgK)] o =C'IIGI, (5.7)

where gx = gxk, and K is any compact subset of £2. The key point is that C’ is a
constant independent of the choice of the set K. Note that this ensures that

lgllre < C'IIG. (5.8)

Let r denote the exponent dual to ¢ /2, % + % = 1. Then, as in the proof of Propo-
sition 4.5 (see (4.17)),

|,
= Slvlfp{/m (A(gK)(Q))ZI//(Q)dU(Q) Y >0, €L (382), [¥llr < 1}- (5.9
As in the proof of Proposition 4.5 to obtain (see (4.18))

sup / (A(gx)(Q)) ¥ (Q)do (Q)
v Jag

gx(X)
<Csup | ———M3s)¥(Qx)dX =C Sup G(hy), (5.10)
v Jo 8(X)
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where hy (X) = g (X)M3sx)¥ (Qx). Note that

Masco¥ (930 = 5ot /A oy, VD)
< CMeyx)¥/(Q) < CMY(Q) .01
2 OOME  W(0x) 12
A(hw)(Q)=</F(Q) i dx> < MY (Q)AgK)(Q)

where My denotes the maximal function of .
Integrating (5.11), noting that % + g = 1, and applying Holder’s inequality, we
conclude that

1/p
My lirer = </m (A(hw)(Q))de(Q)>

1/r 1/q
5(/ (MI/f(Q))rdG(Q)) (/ (A(gK)(Q))qu(Q)>
982 982

SIMy e |AGK) | Lo S 1l | A ] Lo (5.12)
Since Ay is compactly supported, iy € TP
|Ghy)| <Gy lire SUGH- 1Vl gk I 7a (5.13)

Combining (5.10), (5.13), and (5.12)

| A |70 = gk I3 < CIGI - gk li7a,

where C is independent of K. This proves (5.7) and (5.8). The density of com-

pactly supported functions f in 77 ensures that G(f) = |, o (X()f)(x)dX Apply-

ing Holder’s inequality to (5.2), we conclude that |G || < ||g||7¢. This combined with
(5.8) guarantees that || G|| = ||g|| 74, which completes the proof in the case 1 < p < 2.

To prove Theorem 5.1 for any p € (2, 00), it is enough to show that for 1 < p <2,
T? is reflexive. By the Eberlein—-Smulyan Theorem (see [17]) it is enough to show
that whenever f,, € T?, || fullrr < 1, there exists a subsequence which converges
weakly in TP. If { f,,} € T? with || f,,||7»r <1, we have

1/2
( / fi(X)dX) < Ckll fullrr < Ck.
K

Therefore, taking a compact exhaustion of §2, we show that there exists a subse-

quence {f,,_j} such that fn_/ — fin L*(K), forall K cC 2. Let G € (T?)*. By the
proof above, there exists g € T9, where %+$ =lsuchthat G(f) = [, f()g)f)(x)dX
Given ¢ > 0, there exists a compact set K such that

lAGg = gk) | o =g — 8k lI7a <,
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where gx = g xx . Note that

ni — Jn; (X
G(fu) — G (fn) = / %g(xw

/ (= F)X)
5(X)

/(fn, Ju)(X)
5(X)

gk (X)dX

(g —gx)(X)dX.
Since f,,, — fin L*(K) and gx (X)/8(X) € L*(K),

gk (X)dX — 0 asi,j— oo.

/ (fn; = Jni)(X)
Q 3(X)

Also, by (4.7)

/(fn, Fu) O
5(X)

(& — gK)(X)dX’ S /m A(fn; — fa)(Q)A(g — gk)(Q)do (Q)
< Wfn; — fuillrrllg — gk llTe < 2e.

Thus {G(f,,;)} converges, which ensures that { f,; } converges weakly in 7'7. O

6 Relation Between Integrals on Cones A and Carleson’s Function C

In this section, we study, as in [2], the relation between the functionals A and C. We
show thatif 2 < p < oo, then |[A(f)lLr = 1C()liLr.

Theorem 6.1

(@) If0 < p < o0, then

lAON L = CplCD] Lo
) If2 < p < oo, then

Ol =Colan] L
The proof of Theorem 6.1 uses the following “good-A” inequality.

Lemma 6.2 There exist a fixed aperture o > 1 and a constant C > 0 so that for
O<y<landO<Ai<o0

o({Qed:A(f)(Q)>2x C(f)Q) <yr})
<Cy?o (|0 €d2: A (F)(Q)>1}). 6.1)
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Proof Let|J Qx be a Whitney decomposition of {A®)( f)(Q) > A} as in Lemma 3.7.
For each k, there exists Y € {A@ (f£)(Q) < A} such that dist(Yx, Q) < codiam Q.
Since o > 1, A (f) > A(f) and the set {A(f)(Q) > 24} is contained in the set

{A@(£)(Q) > A}
To prove (6.1), it is enough to show that

o({X € Ok : A(H)(X) > 225 C(FH(X) <y2}) < cy’o(Qp).

The construction in Lemma 3.7 for {A("‘)(f)(Q) < A} yields a family of balls { By}
such that By = B(Xy, 5d(Xx)), B} = B(X, 3d(Xx)), B{* = B(Xx,2d (X)), and
By C Qk C By for X € {A(f) > A} and d(X k) = dist(Xg, {A®@ (f) < A}). Note
that {5d(Xy) <diam Qg <d(Xy) =:2rx and that there exists ¥; € {A@ (f)(Q) <1}
such that dist(Yy, Q) < 4ry. If P € Qg, then |P —Yi| < 5d(X). Define f = f1+ f>,
where

f1(X) = FXD X002
X)) = fF(X) xisx)<re)-

Note that A(f) < A(f1) + A(f2). For P € Qy, |P — Y| < 5r, where Yj €
{A@(f)(Q) <A} and

2 2
A(f1>(P>2=/ f (X)dX§/ LC.OF
rPNBEx)=ny 0(X)" Ls(Yon(sX)=ry) 8(X)"

Thus for @ > 6 and P € Qy, we obtain
A(f)(P)? < AP () (T)* < 2%

Thus for P € Qk,if A(f)(P) =21, A(f1)(P) <X,and 21 < A(f)(P) < A(f1)(P)+
A(f2)(P), which ensures that A(f2)(P) > XA, ie., {P € Qr: A(f)(P)>2\}C{P €
Ok : A(f2)(P) = A}. By the definition,

2(x
A (P = / X .

r(PYNSX) <) 8(X)"

Lemma 3.13 combined the Ahlfors regularity of o yields

1 2 71X C X
_— A P))do (P dX dX
o (B /B;( (P do () = T [ 500 X = 5B Sy 3000

< C inf (C(f)(P))*. (6.2)
PeB;

On the other hand, if the set {X € Oy : A(f)(X) > 2A; C(f)(X) < yA}isnonempty,
there exists Py € Qy C B,f such that A(f)(Py) > 2x and C(f)(Py) < yA. Thus, (6.2)
yields

1 2 242
— A P))"do(P) <Cy~)\~.
S Jy, Ao <y
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In this case, using the Ahlfors regularity of o,
o({P e Qr:A(S)(P)> 1)) <o({PeBf: A(f2)(P) > A})Cy2o (By)
< Cy?o(Qp.
Hence
o({PeQi:Af(P)>24; C(f)(P) <yA}) <CyPo(Qp),
and since {Qy} is a disjoint cover of {A® (f) > A}
o({Qed2: A(f) > 20 C(f) <yA})
<Y o({XeQr:A(f) > 21 C(f) <y2))
k
S;CVZU(Q/{)SCVQG({Q€3S21A(“)(f)>X}). -

Proof of Theorem 6.1 Note that Theorem 5.1 combined with (4.8) yield part (a) for
1 < p < 0o. Note that Lemma 6.2 ensures that for « big enough

o({A) >21}) =o({A) > 2% C(f) <vr}) +o({C(f) > yir})
< Cy?o({AY(f) > 1)) +o({C(f) > ya}).

Multiplying both sides by pA?~!, integrating with respect to A, and using Proposi-
tion 4.5, we obtain

2P |AD|, =AY WDNL, +CrPCn ], Cle | AD|],
+Cy ey,

Choosing ¥ > 0 small enough so that Cy2C(a, p)2P < %, we obtain

A =Cled]

provided that |[A(f)||Lr < oco. If |JA(f)|lLr = 00, the result is obtained by applying
the previous argument to f xx, where K is selected from an increasing family of
compact subsets which exhausts £2.

To prove part (b) of Theorem 4.2, let A = A(Qop,r) and tA = A(Qy, tr) for
t > 3. Note that X € T(A); then A(Qx, (X)) CtA,asin Lemma3.14 xrg)(X) >

XAQx,8(0))(Q) thus

1) )
dX |d
/tA (/]"(Q) (X" (@

=/ /fZ(X)XF (X)x:a(Q)dXdo (Q)
o §(X)" © '
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f2X)
> XA 0x.8X) (D) xT(2)(X)dXdo (Q)
o §(X)"

_ [ P
~Ja s(X)"
[ X
“Jray (X))

o (A(Qx.8(X)))xr(a)(X)dXdo (Q)

dXx. (6.3)

Equation (6.3) and the Ahlfors regularity of o ensure that

1 fz(X) C / X
dX A d
o Jris) 500 X =5 ), ADQ) do (@)
¢ 2
= o (tA) /IA(A(f)(Q)) do(Q).

Therefore, (C(f)(Q))2 < CM(A(f)(Q))z, which for p > 1 ensures that

1/p

1/p
< /8 ) (C(f)(Q))zpda(Q)> < c( /a . (M(A(f)z(Q)))”(Q)dG(Q)>

) 1/2p
< C</39(A(f)(Q)) ”do(Q)) .4

7 Solvability of the Dirichlet Problem in L? for Perturbation Operators
on CADs

In this section, we study the following question: Given a second order divergence
form elliptic symmetric operator L; which is a perturbation of an operator L for
which the Dirichlet problem can be solved in L?, what can be said about the solvabil-
ity of the Dirichlet problem in LY for L;? As it was pointed out in the Introduction,
this problem is well understood on Lipschitz domains. The goal of this section is to
develop a similar theory for CADs. Given that we lack some of the tools available
in the Lipschitz case, rather than following Dahlberg’s steps we turn our attention
to [10]. Proposition 7.1 below justifies this approach.

Assume that Lo and L are second order divergence form elliptic symmetric oper-
ators as in Sect. 2. Assume also that 0 € §2, and denote by G (Y) the Green’s function
of Lo in £2 with pole 0, and by w( the corresponding elliptic measure. Let a be the
deviation function defined in (2.9).

Proposition 7.1 Let 2 be a CAD and assume that wy € B, (o) for some p > 1.
Given € > 0, there exists § > 0 such that if

sup {
acaelo(D) Jray §(X)

2 12
! a (X)dX} <, 7.1y
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then

a*(X) (7.2)

Go(X 12
sup { 2 20( ) X} <e.
acae l@o(A) J1(a) 3=(X)

Proof Let Ag = A(Qo, o) and tAg = A(Qy, trp). Using Lemmas 3.14, 2.10, Fu-
bini, and the notation for truncated cones introduced in (4.5), we have

a?(X)Go(X)
X / / Sl X)dXxd
/T<Ao> ( )S(X)2 ro) SX)PFT XT(ap)(X)dXdo (Q)

</ / > (X) wo(A(Qx.8(X)))
Ao J o) 8(X)" s(x)n-1

dXdo(Q)

2(X
(X)
< —=dXd P
N/mo /F"’(P) s(Xx)n @0(P)

2
< / (AD(P)) dwo(P). (7.3)
TAo
Since wg € Bp(do) for some p > 1, if % + ql =land k = %, then

o 2
/ (A (a)(P))k(P)do (P)

tAg

1/q 1/p
5(/ (A9 @)(P)) qdo(P)) (/ kpdo)
tAg Ao

1/q
§<][ (Aﬁg%a)(P))z‘fda(P)) wo(t Ao) (7.4)
tAg
because
1/p
(/ deo) 5Co(m0)1/1’7[ kdo < Cwp(tA)o (tAg)~ 4.
Ao JtA

Combining (7.3), (7.4), and Lemma 2.11, we obtain

1 az(X) GO( )
@0(A0) J7(Ag) 8(X)?

/g
dx<c<][ (Ag)(a)(P))zqdo(P)) . (15)
TAo

We estimate (fMO(A(S)(a)(P))zqda(P))l/q by duality. Let g € LP (o) with + +

5 = 1 and g supported on 7A¢. Without loss of generality we may assume that g Z 0.

/3 Q(A§§><a>(P))2g<P>da(P)

a*(X)
Z// X5 <o} (X) X720 (0)g(Q)d Xdo (Q)
02 Jrs() 8(X)"
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0.
S/ / 2 3X{S(X)<ro}(X)XT(13AO)(X)XA(QX,M(X))(Q)g(Q)dXdU(Q)
02 Jo 8(X)

a*(X)
< / X{S(X)<r0}(X)—< / g(Q)do(Q))dX
T(13A¢) s(x)" A(Qx,75(X))

2(x
< C/ X{s<x><ro}(X)€;((—X)<][ g(Q)dG(Q)>dX- (7.6)
T(13A0) ) \Jax,750x)

Letting F(X) = x{s5(x)<r}(X) fA(Qx,78(X)) g(0Q)do(Q) and applying Proposi-
tion 3.11 to the last term in (7.6), we obtain

/3 . (A9 (@)(P))*g(P)do (P)

2
§C/3JQ NF(Q)C<%XT(13A0)>(Q)dU(Q), (7.7)
where
NF(Q)= sup ’F(X)|= sup }F(X)IECMWOg(Q). (7.8)
Xel'(Q) Xel"(Q)

Here Moy, g denotes the truncated maximal function of g, i.e., Mo, g(Q) =
SUP( - <or, fA(Q - |gldo. Note that if [Q — Qol = 10ro and X € I'"°(Q), then

|Q — Qx| > 7rg and NF(Q) = 0. Moreover, (7.1) yields C(%XT(BAO))(Q) <

C(”S—z)(Q) < 4. This combined with (7.7), (7.8), Holder’s inequality, the fact that
o is Ahlfors regular, and the maximal function theorem ensures that

/ (A9 (@)(P))*g(P)do (P) < C$ / NF(Q)do(Q)
EX?) 10A¢
< cs / Mor,g(Q)do (Q)
10A¢
1/p
5C8</ (Mgrog(Q))pdG(Q)) o (10A¢)"/4
10Aq
1/p
§C6</ g(Q)”dG(Q)) a(1A)4,  (71.9)
082
which implies

1/q
(][ (A§§>(a)(P))2”da(P)) <Cs. (7.10)
TAg

Note that (7.10) combined with (7.5) yields (7.2), provided C§ < €. Il
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In this section, we need to consider variants of the non-tangential maximal func-
tion of u. Define for o € (0, 1) and > 0

_ 1/2
NIF(Q)= sup <][ FZ(Z)dz) ) (7.11)
Xel,(0) \J B(X,a8(X)/8)

For simplicity, N} F = Ny F, N/ F = N"F,and N F = NF. Recall that N, F(Q) =
SUPxer,(Q) |F(X)].

Remark 7.2 Let i be a doubling measure on 92. Then for p > 1, «, g € (0, 1), and
n>0

INa FllLr o) ~ INgFllLoey ~ INIF Lo ()

Proof Note that Proposition 3.6 ensures that for 1 < p < oo, ||]\7(§,7 Fllorgy ~
|No F |l Lr (1) Moreover, for & > B, NgF(Q) < (/B)" Ny F(Q). Thus it is enough
to show || No Fllzr(u) < CIINgF || Lr (). We claim that for y = 24+ £)(1— £)~1 — 1

NaF(Q) < CpapNj F(Q), (7.12)
which yields the desired inequality. Note that

C
7[ FX(Z2)dzZ = “/ FX(2)dz
B(X,%8(X)) 8(X)" JB(x,25(x)

Co

S B(X,%8(X)\B(X,25(x))

C
e FX(2)dZ.
8(X)" Jp(x,£s(x))

F*(2)dZ

Covering the region B(X, £5(X))\B(X, ﬁé(X)) by balls B; = B(Y;, r) with radius

r=(1-2)8(x)5 and ¥; € B(X, £8(X))\B(X, £56(X)), and noting that the number
of such balls only depends on «, 8, n, we have

][ F2(2)dZ
B(X,%5(X))

1
/ 2 2
5Ca,ﬁ,n<—5(x)n E,- /Bi F (Z)a’Z+]i(X’§8(X))F (Z)dZ). (7.13)

If XelI'(Q)and Y € B(X, £6(X)), then (1 — %)S(X) <)<+ %)S(X) and
Y € I, (Q). Hence

][FZ(Z)dZ§C sup ][ F*(2)dZ
B; Yel,(Q)J B(Y,r)

<C sup ][ FX(2)dZ=NJF(Q).  (1.14)
Yer,(Q)J B(Y,85(v))

which combined with (7.13) yields (7.12). Il
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Remark 7.3 Assume that L;ju =0 fori =0ori = 1. Then ||]\7u||Lp(U) ~|INullLr (o)
forl < p <oo.

Proof Since ]Vu(Q) < CNo/7u(Q), Proposition 3.6 ensures that ||]\7u lLro) <
C||Nul|Lr (). Since u is a solution for L;, u? is a subsolution for L;, and Lemma 1.1.8
of [12] guarantees that

u>(X)< sup uz(Y)SC][ u*(Z)dZ.
B(x,%%)) B(X,%¢Y)

Hence Nu(Q) < CNu(Q), and | Nul|1r () < Cl|NullLr(s) follows. O

We still need a few preliminaries before we can get to the proof of Theo-
rem 2.9. Recall that by assumption 0 € £2. Let Ry = 2% min{§(0), 1}. The follow-
ing calculation shows that we may assume that a(X) = 0 for all X € §2 such that
8(X) > 4Ry. Cover the boundary 952 by balls {B(Q;, R()/Z)}f‘il such that Q; € 052
and |Q; — Q| > % for i # j. Note that M depends only on n, Ro, and diam £2. Let
{goi}f‘i | be a partition of unity associated with this covering satisfying 0 < ¢; <1,
spte; C B(Qi,2Rp), i =10on B(Q;, Ry), and |Vg;| <4/Rg. Define

M X (X)) i XM (%) #0
vi(X) = .

0 otherwise.
Note that for X € (952, %Ro) ={Y e R":3Qy € 02 with |[Qy — Y| =6() <
Ry/2} there exists Qx € 952 with |Qx — X| < Ro/2 and i € {1, ..., M} such that
|Ox — Qil < Ro/2.Thus X € B(Q;, Ro) and ¢; (X) = 1; therefore Zﬁ/lzl ¥i(X)=1.
If X e R"\ (352, 2Rg) then ¢; (X) =0 and Z;W=1 ¥ (X) = 0. Consider the matrix

M M
A'(X) = (Z w,-oo)A](X) + (1 - Zx/f,-oo) Ao(X) (7.15)

J=1 j=1

and the corresponding operator L’ = div A’V. Note that A’ is symmetric and L’ is
an elliptic second order divergence form operator with bounded coefficients in £2.
Denote by a’ the deviation function

dX)= sup |A/(Y)—Au())|
B(X.5(X)/2)

Lemma 7.4 Let A’ be as in (7.15). Then a’(X) =0 for X € §2, with §(X) > 4Ry.

Proof For X € 2 with 8(X) > 4Ry, if Y € B(X,8(X)/2), then 8(¥) > *& > 2Ry,
A'(Y) = A, and a’(X) = 0. O

Lemma 7.5 If o denotes the elliptic measure associated with L' with pole at 0, then
w1 € Bp(wo) if and only if o' € Bp(wo).
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Proof Let G’ be the Green’s function for L’ in £2. Note that for X € (352, Koy,
A'(X) = A1(X). For r < Ry/4 and Q € 952, the comparison principle for NTA do-
mains yields that for i =0, 1

Gi(0,A(Q.r) wi(AQ.1)) and G'(0,A(Q,r) &' (A(Q,r))

r rn—l r rn—l

(7.16)

Moreover,
G10.4Q.1) |
G'(0,AQ, 1)
Combining (7.16) and (7.17), we have
G1(0, A(Q,r) wi(A(Q.7))
Go(0,A(Q, 1)  wo(A(Q, 1))
Gi0.A(Q.1) _@i(AQ.r)
G'(0,A(Q.r) ' (A(Q,1))
which yields for every Q € 952 and for every r < Ry/2
@'(AQ, 1) wi(A(Q.r))
wo(A(Q, 1)) wo(A(Q, 7))

with constants that only depend on the NTA constants of §2. Letting r tend to 0, we
obtain that for every Q € 02

(7.17)

(7.18)

k]

(7.19)

do’ dwq
(Q) ~—(0). (7.20)

dwy dwy
O

Lemma 7.6 Assume that
1 Go(Y 12
sup { az(Y)Lz)dY} <& (7.21)
acie l@o(A) J7a) s(Y)

witha(Y)=0for Y € 2 and §(Y) > 4Ry, where Ry = 2% min{8(0), 1}. Then there
exists C > 0 such that for X € 2 with §(X) > 5Rg

sup { az(Y)L(X’ Y)
acae lof (D) J1a) 8(Y)?

Here C depends on NTA constants of 2, the NTA character of $2 its diameter and Ry.

172
dY} < Ce,. (7.22)

Proof If A = A(Q,r) with r <9/2Rg and §(X) > 5Ry, then for Y € T(A) by the
comparison principle and (7.16) we have

Go(X,Y) Go(X,A(Q,r) _wy(A(Q.r)

Go(Y) Go(A(Q.1) wo(A(Q, 1))

(7.23)
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hence
1 Go(X,Y 1 Go(Y
. a2(Y) o . ) ay ~ a2(Y) o Z)dY (7.24)
wy (A) J1(a) 3(Y) wo(A) JT(a) 8(Y)
If r > 9/2Ryp, then
1 Go(X,Y 1 Go(X,Y
. 22D gy 2 G
wy (A) J1(a) 5(Y) wy (A) JTa)n@2.4R) 8(Y)

Covering 052 by balls {B(Q, R0/2)}l 1»if A; = B(Q;,9/2Ro) N 352 we have, using
(7.24), that

! 2, Go(X, ¥)
X a (Y)—z
@y (A) JT(A)N©E2,4R0) 8(Y)

R 5, o Go(X,Y)
Y)———=dY
wa‘m);/m,.)“( "Tsae

< O(Y)dY> 0 (&) _ 1 <e 7.25
Z(/m) S ) aan afmy 0 U

because wo, w are doubling, 0¥ (A) ~ CwX (A;), and by (7.23). O

dy

The last preliminary concerns the existence of a family of dyadic cubes in 952
whose “projections” in £2 provide a good covering of £2 N (352, 4Ry), with Ry as
above. Since 2 isa CAD in R”,both o = H"~!1_9£2 and w are doubling measures,
and therefore (052, | |,0) and (952, | |, wp) are spaces of homogeneous type. Here | |
denotes the Euclidean distance in R”. M. Christ’s construction (see [1]) ensures that
there exists a family of dyadic cubes {Qf; C 082 :keZ,a € I}, Iy C N such that for
every k € Z

a<asz\UQ’;> =0, wo(ag\UQ{;) =0. (7.26)

Furthermore, the following properties are satisfied:

1. If [ > k, then either Q% - Qf; or Q% N Q’; =

2. For each (k, o) and each ! < k, there is a unique § so that Q’; C Q%.
3. There exists a constant Cy > 0 such that diam Q{; < Co87.

4. Each QF contains a ball B(ZX,87%~1).

The fact that B(ZX,87%=1) ¢ QX implies that diam QX > 87%~!. The Ahlfors
regularity property of o, combined with properties 3 and 4, ensure that there exists
Cj1 > 1 such that

C'87* D <5 (QF) < €y 87F0 D, (7.27)
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In addition, the doubling property of wq yields
wo(B(ZE,87F1)) ~ wo(QF). (7.28)
For k € Z and « € I, we define
IF={ye2:287 " <s(¥) <a87FH,
3P € QF so that A87* 7! < |P —¥| <2871}, (7.29)
where A > 0 is chosen so that for each k, the {Ili‘ }aer,’s have finite overlaps and
2n@R.4r)C (] 1L (7.30)
(x,kfk()
. —k—1. ; _ rlogh—log32Ry
Here k¢ is chosen so that 4Ry < A8 ;le., ko = [T] + 1. To see that
such a A > 0 can be found, note that if I(fj N Ig #+ () there exist Y € I(ff N Ig, P, € Q’g[,
and Pg € QX so that
A8 < 8(Y), |Py—Y|, |Pp—Y|<A8KHL

Thus |Py — Pg| <228 ¥*! and for P € Q’/;,

|Py — P| < |Py — Pg|+ |Pg — P| <28(Y) + diam Q’;
<228 K L 87K <8 K16 + Cp). (7.31)

Thus (7.31) yields that given I, if Qj; is such that IX N 1;; # ) then Q’; C
B(P,, 8 %(16)1 + Cy)) for some P, € Q’(;. Since {Q’;}}ge]k is a disjoint collec-
tion, (7.27) yields that the number N of cubes Qllg so that Itf NI g #+ () satisfies
NC~187*0= < c8=*=D(16) 4 Cp)*~!, i.e., N < C2(161 + Cp)"~!. To show
that the I§’s cover (052,4Rp),letY € (082,4Rp), 6(Y) <4Rp < 2% min{3(0), 1} by
choosing A > %max{S(O), 1} + 1 4+ 64Co we have that §(Y) < % Thus there exists
k> 2 sothat A8 %1 < §(Y) < A8 %! and Qy € 952 so that |Qy — Y| =8(Y). Let
po =3 min{8(¥) — A8 K1 A87KF1 —5(¥)} > 0. Since (32 \ Uy, OF) =0and
o (A(Qy, p0)) = C~'pii~! > 0 there exists « € I so that A(Qy, po) N QF # @. Let
P, € A(Qy, po) N Q% then

3Y)—po=<|Qy —Y|—|Py— Qy|=|Py — Y| < |Py— Qy|+ 10y — Y]
<po+46(Y). (7.32)
Hence by the selection of pyg,

S(Y) + A8 k-1 8(Y) + A8 k+!
()+ <|Py—Y|< ()+

Thus Y € I¥, provided that X is chosen as above.
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Next we proceed with the proof of Theorem 2.9, following the approach pre-
sented in [10]. Note that (2.12) implies that ¢(X) = A;(X) — Ag(X) =0 on 952,
i.e., Lo = L1 on d52. Thus L is regarded as a perturbation of L. Hence as in [10]
the strategy consists of regarding the solution to L; with given boundary data as
a perturbation of the solution to Ly with the same boundary data. We consider the
Dirichlet problem

Liuy=0 in$
) (7.33)
urlye = f € L*(wo).
We need to show the following a priori estimate
||N(u])”L2(w0) = ”f”Lz(a)O)’ (7.34)

which is equivalent to the statement that w; € By (wq). Assume that f € C(952) and
u1 is a solution of (7.33). Let ug satisfy

Loug=0 1in 2
{ 00 (7.35)

up=f on af2.
Then

|| N(MO) ”Lz((uo) S ||f||L2(w0)
since Nug(Q) < CM,,(f)(Q) and u; is related to ug by the formula

()=o) + [ GolX. V) Low ()Y = o) + F (0.
Integration by parts shows that
F(X)= /52 Go(X,Y)(Lo— L)u1(Y)dY = /Q VyGo(X,Y)e(Y)Vu1(Y)dY
where e(Y) = A1(Y) — Ao(Y).
As in [10], the proof of Theorem 2.9 follows from the two lemmas below (Lem-

mas 7.7 and 7.8). We start with the analogue of Lemma 2.9 of [10].

Lemma 7.7 Let 2 be a CAD and assume that (2.12) holds. Then there exist C > 1
and M > 1 such that for Q¢ € 952

NF(Q0) < CeoMuy (Sm 1)) (Qo) (7.36)

and

N12(8IVF])(Q0) < Ceo[ Muy (Sm@1))(Qo) + N(SIVFI)(Q0)].  (7.37)
Therefore,

/3 . [NF(0)* + N(8IVF|)(Q)*]dwo(Q) < Ce} /a . S2(u1)(Q)dwo(Q). (7.38)
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Here M,,, denotes the Hardy-Littlewood maximal function with respect to wy,
and Sy (1) denotes the square function of u given by

S2(u)(Q) = / )\W(X)}Z(S(X)Z—"dx. (7.39)

o

Proof The proof follows the same guidelines of Lemma 2.9 in [10]. We estimate each
term separately. First we show that there exists M > 1 so that for Qp € 92

NF(Qo) < CeoMuy (Sm(u1))(Q0). (7.40)

Let X € I'(Qp) and set B(X) = B(X, §(X)/4). We split the potential F into two
pieces

F(Z)=F1(2)+ F2(2) (7.41)
where
FI(Z)= /B . VyGo(Z, Y)e(Y)Vui(Y)dY (7.42)
and
Fy(Z) = / VyGo(Z,Y)e(Y)Vu (Y)dY. (7.43)
2\B(X)

To estimate NF(QO), let X € I'(Qgp) and note that

2., 42 2 2
F2(Z) < FX(Z)dZ + F}(Z)dZ.
B(x,2X0) s(X)" B(x,%X) B(x,2X)

We look at each term on the right-hand side separately. For ¥ € B(X), % <
8(Y) < 2% and either §(X) < 8Ro or §(X) > 8Ro. If §(X) > 8Ry then §(Y) > 6Ry
thus e(Y) =0.If §(X) < 8Rg then §(Y) < 10Rg and |Y| > 8Ry. In this case the Har-
nack principle ensures that Go(X) ~ Go(Y). Furthermore, since wq is doubling, for
Y € I'5;4(Qo) the relationship between the Green’s function and the elliptic measure
on NTA domains yields

Go(X) — @o(A(Qo,8(X)) —wo(A(Qo,5(Y))  Go(¥)
5(X) s(X)n—1 s(y)n—1 8(Y)

(7.44)

Therefore for Yy € B(X) either £(Yp) = 0 or for §(X) < 8Ry. In this case (7.44) and
the doubling properties of wg imply

1/2
2
le(¥o)| < <][B(x,%“ (Y)dY)

1/2
< (f az(Y)dY)
B(X)
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A

2(Y) sy dy \'?
o) )
Bx) 0(Y) Go(Y) 8"~ H(X)

A

() s(x)"! )‘/2
Go(Y) dy
s(xy1 B(X) 3127 wo(A(Qo, 3(X)))

(I
(o
(o
<

N

wo(A(Qo, 3(X))) JBx.8(x)/4) 5(Y)2
a*(Y)

CUO(A(Q07 (XN J1(ac0.35x)) 8(¥)?
a*(y)

wo(A(Qo, 38(X)) J1(a0035(x))) S(¥)?

A

1/2
0(Y)dY>

A

1/2
GO(Y)dY) <egp. (7.45)

Let Go(Z, Y) be the Green’s function for Lo in 2B(X) = B(X, 8(X)/2). Let

K(Z,Y)=Go(Z,Y)— Go(Z,Y),

5 5 (7.46)
Fi1(Z) =/ VyGo(Z,Y)e(Y)Vu (Y)dY
B(X)
and
F1(2) = F\(Z) - F1(2), (7.47)
LoF =div[eVuixpx)] in2B(X)
B (7.48)
F=0 on 3(2B(X)).
Using (7.45), as in [10], we have that
/ IVFi|?dZ < C/ AOVF1VF1d2=C/VF18Vu1XBdZ
2B(X) 2B(X)
1 ~
< —/ IVFi1?dZ + ng/ |Vu,>dZ. (7.49)
2 JBx) B(X)

Combining Sobolev inequality and (7.49) we obtain
/ |F112dZ < ca(X)Z/ |\VFi1?dZ < Csf,a(X)z/ |Vui|*dZ. (71.50)
2B(X) 2B(X) B(X)

Thus since for Z € B(X), §(Z) ~ §(X) (7.50) yields

) 172 3 1/2
<][ IF1I2dZ> < c(f |F1|2dZ>
B(x, %) B(x,28)

1/2
fCSo(/ |Vu1|25(2)2—"dz> . (1.5
B(X)
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If X e I'(Qg) and Z € B(X) then Z € I5(Qo) and from (7.51) we conclude

- 1/2 . 1/2
(][ Ay |2d2) < c(][ Ay |2d2) < Ce0S201)(Qo). (7.52)
B(x,%) B(X,%%0)

We now estimate £ by writing
Fi=F —F =/ VyK(Z,Y)eVu(Y)dY. (7.53)
B(X)
That is,
|Fi1(2)| < 80/ |VyK(Z,Y)||Vui(Y)|dY.
B(X)

For fixed Z € B(X) we have that LoK(Z,Y) =0 in 2B(X). Applying Cauchy—
Schwarz and Cacciopoli’s inequality (to K), we obtain

. Cso 5 1/2 5 1/2
|Fi1(2)] < —</ |K(Z.7)| dY) (/ |Vur ()| dY) . (1.54)
8(X) \J3B(x) B(X)

Since K (Z, —) > 0 Harnack’s inequality yields,

1/2
<][ K(Z, Y)ZdY) < C<][ K(Z, Y)dY)
3B(X) 3B(X)

< c][ |Z —Y|>"dY (7.55)
3B(X)

since Go(Z,Y) < W
and (7.55) we have

12 2 12
() =L () )
2B(X) 8(X) \Jax) \J3Bx) |[Z =Y |""
12
x(/ yw](y)yzdy)
B(X)

1/2
< Ceo8(X)' ™2 (/ !Vu1<Y>|2dY)
B(X)

Thus since for Y € B(X), §(X) ~ §(Y) combining (7.54)

172
< Ce (/B(X)|Vu1(Y)|28(Y)2‘"dY)

< CepSa(u1)(Qo)- (7.56)
Combining (7.47), (7.52) and (7.56) we obtain

1/2
(][ 5(X) |F1(Z)|2dZ> < CepS$2(u1)(Qo). (7.57)
B(X,%%0)
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Next we give a pointwise estimate for F,(Z) when Z € B(X, §(X)/8). Note that in
this case Z is away from the pole of the Green’s function that appears as an integrand
in the definition of F,. To estimate F>(Z) for Z € B(X, §(X)/8) we consider two
cases: 6(X) <4Rp and §(X) > 4Ry. In the second case we use Lemma 7.6.

Assume that §(X) < 4Rg and let Qx € 952 be such that |[X — Qx| = §(X). Let
20 =R22UB(Qx, @) and Ag =02 NB(Qx,5(X)/2).For j > 1define 2; = 2N
B(Qx,2/718(X)) with j =1,..., N and 2"¥Ry < 2V=18(X) < 215Ry. Let R; =
2\ 2252, Aj = 32N B(Qx,2/718(X)) and A; = A(Qx,2/718(X)) € 2. We
now follow the argument that appears in [10] using the dyadic surface cubes con-
structed by M. Christ and described above (see (7.26)) and their interior projections
(see (7.29)). Note that £2¢9 C UQ{;cSAo I(i‘. Infactif Y € 2pthen§(Y) <|Y — Qx| <

@ < 2Ryp. As in the proof of (7.30) there exists k > 2 so that % < 8k8(Y) < 8
and Qy € 982 with |¥ — Qy| = 8(¥). For py = min{2=A8"" A8 =80 here
exists Q% so that P, € QX N A(Qy, po) and Y € I¥. For any P € QF,

|P— Qx| <|P—Py|l+|Pu — Qy|+1Qy = Y[ +|Y — Qx|

<d1amQa+p0+8(Y)+%

< Cp8™~ +,Oo+8(Y)+%

8Co 3(X)
—8(Y)+8(Y)+T+ 0

aory 20 90

28(Y)+Q 8(X)+¥ 38;)() (7.58)

which implies that Q’g‘ C 3Ap. We now estimate F»(Z) for Z € B(X,45(X)/8) as
follows.

|F(2)| <

VyGo(Z,Y)e(Y)Vu, (Y)dY‘
20

N
> / VyGo(Z, Y)e(Y)Vul(Y)dY‘
T Rin@\soo)

+

+ / |VyGo(Z, V)e(Y)Vu(Y)|dY. (7.59)
(2\B(X))N(0£2,4R0)\B(Qx.2'5 Ro)
We estimate each term separately. To estimate the first term we note that
|F)(2)| = ‘/ VyGo(Z, Y)e(Y)Vul(Y)dY‘
£20
5/ |VyGo(Z, V)||e(¥)||Vui(Y)|dY
20

< lim |VyGo(Z,YV)||e@)||Vur(Y)|dY.  (7.60)
e=>0% J 20\ (82,9
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The goal is to estimate
Ff(Z):/ |VyGo(Z,V)||e@)||Vui(Y)|dY
20\ (052,¢)

independently of & > 0. In particular

172
RN sukp|8(Y)|</Ik|VyG0(Z, Y)|2dY)

Qﬁ C3Ag Ia o
<Akl

1/2
x (/k}Vul(Y)|2dY> : (7.61)
1(1

By Cacciopoli’s inequality

172 C 1/2
(/1k|vyco(z, Y)|2dY> < Jam oF (/ﬂ\co(z, Y)|2dY> (7.62)

where I:fj ={YeR:3Z ¢ I(i‘, |Z -Y| < ‘Sé—f)}. By the comparison principle for
NTA domains, the Harnack principle, and the doubling properties of w? and wy we
have for Y € I(i‘

Go(Z,Y) Go(Z,Ag) w?(Ao)
Go(Y) Go(Ao) wo(Ag)

(7.63)

Thus for Y € I:i‘ with Qf; C3Ap

Go(Z,Y) - C
Go(Y) ~ wo(Ag)

(7.64)

Combining (7.61), (7.62), (7.63), and (7.64) we have that

. 1 G (V)a*(v)  \'?
B@IS 2 wo(Ao)</ik S0 dY)

okc3ag

k<ke

1/2
x (/ |Vu1(Y)|2dY> . (7.65)
%

Note that for ¥ € [¥, there exist Z € IX and P, € QX so that & < |Z — P,| < A8,
A8 K1 A8 K3 < |V — Py| < A8FH £ A87%3 and §(Z2)(1 — 8% < 8(Y) <
8(Z)(1 +8%). Thatis, |Py — Oy| < |Py — Z| + |Z — Y| < A8 K1 £ §(Z)8 % <
8(Z)(64 + 8% < 655(Y). Now using the doubling property of wy we have

wo(A(Qy,8(Y)))  wo(A(Py,8(Y)))
S(Y)n—z B(Y)”_Z

Go(Y) ~

(7.66)
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Recall that there exists ZX € 852 such that A(ZX,87%~1) ¢ 0k < A(Zk,2C087F)
(see the construction of the Qf;) and | Py, — Z§| < diam Q'g[ < Co8 K ~8(Y). Again
by the doubling property of wy we have that (7.66) yields for ¥ e I(i‘

wo(A(Zg, 85D wo(Qy)

Go(Y) ~ 82 (diam Q% )72 (7.67)
and combining (7.65) with (7.67) we have
|F£(Z)| < Z 1 </ GO(Y)a2(Y)dY)1/2
2 o, @0\ 82
o 0
k+1<loglgloga
172

X((dlgolfl(gk))” 2/ [V () dY) ' 79

To finish the estimate of Fzg (Z) for Z € B(X,48(X)/8) we use a “stopping time”
argument. For j € Z let M > 64(1 4+ Cp) and

12 )
0j={Qe3AO:T8u1(Q)=(/ |Vu1(Y)|25(Y)2_”dY) >2/}.
(T (Q\B2e (2)N(382,4Ro)

We say that a surface cube Q{; in the dyadic grid belongs to J; if
wo(Qy N 0)) = %wo(Qﬁ) and  w(Qg N 0j41) < %wo(Q',i) (7.69)
and it belongs to J if
wo(Qh N {Tou1(Q) =0}) = %wo(Q’&). (7.70)

Note that there exists 0 < ¢o < 1 depending on the doubling constant of wp so that
for 0 ={Mw,(x0;) > cok; if Qa € J; then Q C 0 and

o0(050 0,1 0541) = 0(05). (.71)
In fact, for Q¥ there exists ZX € QX so that
A(zE, 87 c 0k c A(Zh.2¢087H). (7.72)
Moreover, if Q’g[ eJjforPe Q(’;, |Z{§ — P| < diam Q{; < Co8 7 thus
A(ZE,20087%) c A(P,3Co87F) c A(ZE, 4Co87F) (1.73)
and by (7.72) and the doubling property of wo we have

wo(A(P,3Co87 %) N 0))
M, )(P) >
wo(X0,)(P) = oo (A(P.3C8 D)

. wo(A(ZK,2C08 %) N 0))
wo(A(ZK,4Co87F))
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©0(Q4 N 0;)
™ wo(A(ZE.871)
S @0(@eN0)
Yoo T

(7.74)

We conclude that if QX € J; then Q% c O;. Since 0;11 C 0; C O;
@0(Q4 N 0\ Ojs1) = w0(Qg N 0j11)

1
= w0(Qq) —@0(Q¢ N 0j11) > Zan(Qg).  (775)
which ensures that Q§ c{Qedf: Mwo(X(’)j\0/+])(Q) > co} = Uj. A weak type
inequality for M,,, applied to x 6,\0j 11 and xo, yields

wo(Uj) < Cap(0; \ 0j11) < Cap(0)). (7.76)

Note that for each ¢ > 0 T,u(Q) is bounded. Thus for Qf; C 3Ag either Teu; =0or
there exists jo so that

2io=1 5][ Tou1 (Q)dwo(Q) < 2.
Qk

o

In the first case Q’; € Jxo, in the second a)o(Q’gl N oj) < %wo(Qg) for j > jo.
Furthermore either there exists j < jo so that (7.69) is satisfied or for all [ € Z,
w0(Q% N 0)) < Jwo(QX) which implies that wo(Q N {Tou1(Q) = 0}) = Jw(Q).
In this case Q% € Joo and

0F 0 €32 Muy(X(1.u,=0)(Q) > c0} = Usc.

As above a weak type inequality on the maximal function yields that wy(Us) <
Cwo(Ono) Where Oop = {Q € 382 : Tou1 (Q) = 0}. Note that if QX € Joo, wo(QX N
Oc0) = 500(Q%).

We now go back to our estimate of F for Z € B(X, §(X/8)). Combining (7.68),

log.—loge
8

the Cauchy—Schwarz inequality, and letting k. = — 1 we have

. Go(N)a2(¥) |\
|F{(2)| < o(Ao)ZZ > (/,k S(Tdy>

Jj k<ke Qkes

% (Qk 1/2
) <(d1ar?1Qk)n 2/ [Vui(Y)] dY)

2 1/2
D3 ( / Goha> (1) dY)
wo(Ao) o 8(Y)

k<ke Qk e,
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(0% 172
X((d:Iika 2/ [V () dY)

2 1/2
<Z Z / GO(Y)az(Y)dY>
wo(Ao) 7 3(Y)

k<ks QkeJ

A

wo(QX) 172
X <Z Z (dlaka)” 2/ iV (Y)‘ dY)

k<ke QkeJ

) 12
(Z Z / GO(Y)a2(Y)dY>
wo(Ao) koo 8(Y)

k<ke Qk

wo(QF) 1/2
gV P> (diam QK )"~ 2/W nfar) . am

k<ke Qk €Joo

Note that if Q% Q’ﬁ e Jj,and QXN Q’ﬂ # ¢ then either QX ng or Qlﬂ C Q. Since
Q(’; - A(Z(’fl, Co875) by construction, then for ¥ € 1/13 there exists P € Q% so that
1/8 <8K|P — Y| <8rand |Y — ZK| < Co8* 4+ A8+ thus ¥ € T(A(ZE, (Cy +
81)8%)). Furthermore since A(Z(’fl, 8~ k1) ¢ Q’é, wo is doubling, the I(f’s have fi-
nite overlap, and (7.75) we conclude that

2
Z Z / GO(Y)az(Y)dYg Z / GO(Y)az(Y)dY
ko 8(Y) T(AZk, (Co+sns+)y  O(Y)

k<kg Qked

Ot
ok dls](nnt

Sep Y w(Qh) Sepeo(0)). (7.78)
Qhel;
0k disjoint

Similarly we obtain

Go(Y)a*(Y)
2 2 /k OS(Y)Z ay Sep Y o00(Q4) Sep00(0x). (1.79)

k<ke Ok e 0k eln
QF disjoint

To estimate the other term note that I§ C I'y(P)forall P e Q’g[ and M > 64 + 8Cy.
In fact if ¥ € I¥, §(Y) > A8 %=1 and there is P’ € QF so that |[Y — P'| < A87F1,
thus for P € QF |Y — P| < 287**! 4 diam QX < A87*F1 4 Co87* < 5(Y)(1 + M)
and Y € I'yy(P). So if Qﬁ C Qk Ik C Iy (P) for every P € Qis and since the

I(ff’s have finite overlap then denoting by S;,’Il = m(Q)\ B:(Q)) N (082,4Rp) N
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{4 <8!8(Y) < 8} we have using (7.75)

wo(0X)
Z Z (dlaka)” 2/ |V (Y)‘ ay

k<ke Qk

S0 wo(0F) / Vuy (V)|*8(v)>"dy

k<ke QkeJ;

SO D w(0h) /|w1(Y)| s(Y)>"dy
Qielj Qpc0l
Qf; disjoint Qlﬁejj
k<ke

S 2 D> @(0;\ 041N Q) /|w1<Y>| ()’ "dY

Qielj Qpc0l
Q’; disjoint Q%ejj
k<ke
S ) / , / Vi1 (V)[8()2 " dY dwo(Q)
le] Qﬂ Qk ]\Oj+1mQ
Q’(; disjoint Q%ejj
k<ke
S Z Z/ / Vi1 (V)[8()2 " dY dwo(Q)
0kes 0;\0;+1NQy
ok dls]omt
k<ke

s ) / Tou1(Q)*dwo(Q)
P 0j\0;+1NQ%

QF disjoint
k<ke

< / Teu1 (Q)*dwo(Q). (7.80)
Oj\Oj+1

Note that if Qf; € Joo for k <k, since Ié‘ C I'y(P) \ Bs(P) then

/ [V P8(Y)*"dY < Teui (Q)* =0
10(
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Combining this remark with (7.76), (7.77), (7.78), and (7.80) we conclude that for
Z € B(X,38(X)/8)

&

I ¢ )| < 0 E O; 12 </0 o € 2d )
| 2( )| ~ ( ) - (1)0( J) ”j\ » I(Q) (,()()(Q)

€0 i 1/2 5 172
E 2/wp(0)) “wo(0;\ Ojy1)
(AO) J J J Jjt+

Nwo

<2
wo(Ag)

> 27 wp(0)) Pan(Up'?
J

€0 j 4
S antag) 22 (0D

J

/ Tou1 (Q)dawo(Q). (7.81)
Ag

<20
wo(Ag)

The last inequality comes from the fact that Y 2/wo(0;) = Y2/ wp(0;\0+1) +
> 2/ w0(0;) which ensures that 3 2/wy(0;) = 3 32/ wy(0;\0j11). It is impor-
tant to note that at each step the constants involved are independent of ¢ > 0. Com-
bining (7.60), (7.81), as well as the doubling property of wy we have that

|F9(2)| < C lim —2
e=0 wo(Ao) Ja,

Teur(Q)dwo(Q)

€0
S d
< 20 (80) g mu1)(Q)dwo(Q)
< CeoMuy (Sm (41))(Q). (7.82)

To estimate the second part of (7.59) recall that for j > 1, R =820\ $22j 2,
Aj=A(Qx,2718(X)), 2; = B(Qx,2/718(X)) N £2 and

Aj=A(Qx,2/718(X)) € 2;.

Denote R; = R; \ B(X). To estimate

FZj(Z) = / VyGo(Z,Y)e(Y)Vui(Y)dY (7.83)

Rj

for Z € B(X, 6(X)/8) divide R; as follows
Rj=R;N(052,2%7%(X)) UR; \ (382,22 7%5(X)). (7.84)

Let V; = R; N (3£2,2%/755(X)) and W; = R; \ (382,22 7%5(X)). Note that V; C
Uogtcsasntas, o la- In factif Y € V; then 22/735(X) < |Y — Qx| < 22/716(X),

8(Y) < 4Ry and there exists k such that 8 %=1 < §(¥) <8 **!x and ¥ € I for
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some «. For pg = %min{(S(Y) — A8kl jgkHl §(Y)} there exists P € Q’(; N
A(Qy, po) such that
|P—Ox|=|0x — Qy|—IP—Qyl=|Y — Ox|—|Y = Qy|—|P — Oyl
) ) 3 . )
> 2735(X) — po = 8(¥) 2 29 78(X) = Z8(V) = (227 = 227)8(X)

2j-3
>

5(X).

Following the same pattern of the proof above we have for Z € B(X, §(X)/8)
/|VyGO(Z,Y)||8(Y)||Vu1(Y)|dY
Vi

< lim |VyGo(Z, V)||e(@)||Vui(Y)|dY (7.85)
e=>0/v;\(082,¢)

and

/ |VyGo(Z,Y)||e(¥)||Vur|dY
Vi\(02,¢)

Go(Z,V)2a2(v) \'/? N
: 2 (/ILI;WCZY) (/I%IVulldY) . (7.86)

Q§C3A2j\%A2j—2
k<k

For Y € I(i‘ NV;and Z € B(X, §(X)/8), (7.64) and the vanishing properties of the
Green’s function at the boundary of an NTA domain yield

8(Z)
§(X)22i-1

B
Go(z,Y)s( ) Go(A2j,Y) S272PIGo(Y) (7.87)

wo(Azj)

k
Moreover for Y € Igf, Go(Y) ~ % as in (7.67). Thus combining (7.86),

(7.87), and the remark above we have

/ |VyGo(Z, V)||e(Y)||Vu1r|dY
Vi\(3£2,¢)

a1 Go(Y)a*(Y) , \'/*
< 22bi ( / 0 dY)
~ 2 wo(Aa)) \ S 8(1)?

Q§C3A2j\%A2j72
k<ke

@0(Q4) 20\
X <W \/Ié{ |VM]| dY) . (788)
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A “stopping time” argument yields, as in (7.82), that
/ (VyGo(Z, V)| |eM)|[Vur(Y)|dY < Ceo2 I My (Sp (1)) (Q).  (7.89)
Vj

To estimate the corresponding integral over W;, cover W; with balls B(X,
2%/-85(X)) such that X;; € W; and the B(Xj;,2%7198(X))’s are disjoint. Since
X e W; 227768(X) < 8(X ;1) < 2%718(X), the Bj; = B(X 1,25 785(X))’s are
non-tangential balls and

/W|VyG0(Z,Y)||e(Y)||Vu1|dY

G()(Z, Y)2 >1/2(/
Y ——dY
=2yl I, %5 p

J

az(Y)G()(Z, Y)2 1/2
SZI:</B 5(r)? dY) (/B

Jjl

1/2
|w1|2dy>

jil
1/2
|Vu, |2dY) (7.90)
jl
For Y € Bj;,22/778(X) < 8(Y) <2%8(X) and Z € B(X, 8(X)/8)

B GO(Y)
wo(Azj)

and for Y € Bj;, Go(Y) < Go(Az;). Thus combining this with (7.90) and (7.91) we
obtain

Go(Z,Y) < C27%PGy(Ayj,Y) < C27% (7.91)

/W|VyG0(Z,Y)||s(Y)HVu1|dY

<

2726 a2(Y)Go(Y) )”2( Go(Az)) )1/2
C — 2 dY —_—
= womj);</3_,, 5(Y)? (2278(X))2"

(4,

2—2Bj

<C
wo(Aj)
172
X (Z/ |Vu1|28(Y)2"dY)
1 /B

2 12
scz—zﬂf( ! : (Y)GO(Y)dY)
wo(A2jt1) Sy, 8(Y)?

1/2
|Vu 1|28(Y)2”dY>

) 1/2
. 212 a“(Y)Go(Y)
(Go(A2))(2%8(X))" ) (ZI: /Bﬂ Wdy)

1/2
x ( / |w1|25(y)2"d1/> (7.92)
(£22j41\822;_2)\(052,227748(X))
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For Y € ($22j41\ 22j-2)\ (082, 2% 745(X)) we have |Y — Qo| <|Y — Qx| +|0x —
Qol <2%8(X) + |0x — X[+ |X — Qol <2%8(X) 4+ 8(X) +28(X) <2%(Y) +
272/H45(Y) +272H38(Y) thus |Y — Qo| < 648(Y) and Y € I's4(Qy), therefore for
M > 64, (7.92) yields

/ |VyGo(Z, V)| |e()||Vur|dY < C27 T egSp (u1)(Qo). (7.93)
W,
Combining (7.82), (7.89), and (7.93) we have for §(X) <4Rp and Z € B(X, §(X/8))

‘/ VyGo(Z,Y)e(Y)Vuy (Y)dY‘
(S2\B(X)NB(Qx,2"5 Ro)

N
5/9 |VyGo(Z, Y)||5(Y)||Vu1|dY+Z/ |VyGo(Z,Y)||e(¥)||Vui|dY
0 j=1 R;

N
< CeoMay (Sn(un))(Qo) + Ceo Y 272 Mey, (Sar (1)) (Qo)
j=1

< CeoM, (Sm (1)) (Qo) (7.94)

To complete the estimate for F>(Z) with Z € B(X, §(X)/8) it only remains to con-
sider the integral

/ VyGo(Z,Y)e(Y)Vu(Y)dY. (7.95)
(S2\B(X)N(352,4R0)\B(Qx.2'5 Ro)

Note that

($2\ B(X)) N (352,4Ro) \ B(Qx,2"Ro) C U 1k,
0k Ca2\A(Qx.2"R)

IfY € (2\ B(X)) N (382,4Rp) \ B(Qx,2Ry) then |Y — Qx| > 2Ry and there
are I(i‘ and Polf € Qf sothat Y € I(i‘, 8/% < |P* — Y|8% < 8x. Given Y’ € I¥ note
that | P¥ — Y’| < diam QX + A8 %+ < Co8 % + A8 %1 < 8Co8(Y) /A + 645(Y) <
658(Y) < 2'9Ry. Thus I¥ ¢ B(P¥,2'°Rp) N 2, and for Y’ € B(PX,2'9Ry) N 2 we
have |[Y' — Qx| > |Y — Qx| = [Y' = Y| = |Y — Qx| — |Y — P = |Y' — P¥| >
2Ry — 28K+ _210Ry > 215 Ry —210R) —208(Y) > 214 Ry. Moreover for P € QF,
|P— Qx| >|Pf— Qx| —|P—P¥| = |Y — Qx| — |Y — PX|—|P — P}| = 2"5R; —
A8 K+ —diam QF > 214 Ry.1f Z € B(X,8(X)/8) and Y € (£2\ B(X))N (352, 4Ro)\
B(Qx, 2 Ry) then since §(X) < 4Ry we have |Z —Y|>|Y — Qx| — |0x — X| —
|X — Z| > 2Ry — 8(X) — 8(X)/8 > 2! Ry. Similarly if ¥ € B(P¥,2'°Rp) N 22 we
have |Z—Y|>|Y —Qx|—|0x —X|—|X — Z| > 213 Ry. We mimic the stopping time
argument used when the integration over the region £2( was considered. The key point
is that for Z € B(X, §(X)/8) the pole of the Green’s function is far away from the I§ ’S
considered in the integration. Since 352 \ A(Qx,2"“Rp) C 2 \ A(Qo, 23 Rp) and
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wo(082) < Crywo(A(P, 29Rp)) for any P € 02 by the doubling properties of wy,
estimate (7.64) becomes Go(Z,Y) < Cg,Go(Y) and (7.82) becomes

/ |VyGo(Z, V) ||e(@)||Vui (V)|
(2\B(X))N(352,4Rp)\B(Qx,2'5 Ro)

< Ceo / Sy (un)(Q)da
2\A(Q0,213Rp)

< CeoMoySm (u1)(Qo)- (7.96)

Combining (7.94) and (7.96) and noting that when §(X) > 8Ry the integration over
£2 N (382,4Ry) is treated as that over £2p or 2\B(X) N (952, 4R0)\B(Qx, 2 Rp)

as the pole Z € B(X, @) is very far from the Ilfj’s we obtain that

§(X
|Fa(Z)| < CeoMuy Sy (u1)(Qo),  VZ € B(x %) (7.97)

Hence (7.41), (7.57), and (7.97) ) yield for M large and fixed

NF(Qp) = sup ][ » F*(2)dZ
Xel(Qo) J B(x,%X))

S sup ][ FX(Z)dZ + sup / FX(Z)dZ
Xer(Qo) JB(X.22) Xel'(Qo) J B(x,%X)
< CeoMuy (S (1)) (Qo). (7.98)

We now estimate the second term in Lemma 7.7. Fix Qg € 082, X € I'(Qo), let
B(X) = B(X, %), Note that B(X, 2&))  I(Qo), then

][ (8|VF|) (Z2)dZ < C8*(X) / IVF|>(2)dZ
B(X)

8(X)"

5(X)
<C VF13(Z)dZdp. (7.99
< Cim 1/% /B(X’p)| 2(z)dzdp. (7.99)

The same argument as in [10] which only uses interior estimates yields
N2 (8IVFI)(Qo) < CNF(Qo)N (8IVFI)(Qo) +eoN 81V F1)S2(u1)(Qo)
+ 80N (F)(Q0)S2(u1)(Qo). (7.100)

Combining (7.100) with (7.36) and using the fact ab < % + % we obtain (7.37).
Integrating (7.37) and applying Remark 7.2 we obtain

/N(5|VF|)2dw0 < C/N1/2(8|VF|)2da)o

< Cso/(MwOSM(ul))zdwo—i—Cso/]\7(5|VF|)2dwo
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< Csp / (Sa () deo

+C80/N(5|VF|)2dwo, (7.101)

which yields

/N(awm)zdwo < CsO/S%W(u])(Q)dwo. (7.102)

Combining (7.102), the integration of (7.36) and the maximal function theorem we
obtain (7.38) which concludes the proof of Lemma 7.7. O

Lemma 7.8 Let 2 be a CAD and assume that (2.12) holds. Then there exists C > 1
so that

ISFIZ 20 < CUNBIVE 3200y + INFI22000 + INFIZ 2 + 1 1220,0)-

L2(w) L2(wp) L2(wp)
(7.103)

(o)

Proof For s €[1,2], let 2, = B(0, sRy) where Ry = 22, then

230 »

/SZF(Q)da)O:// 8(2)2’”|VF(Z)}2dZdwo
92 02 JI'(Q)NKy
+/ / 8(2)* "|\VF(2)|*dZdwy
12 Jrone,
:/ / 8(2) " (8(2)|VF(2)|)’dZdwy
a2 Jrone;
+/ / 5(2)2_"|VF(Z)|2X{ZeF(Q)}(Q)dwodZ
o2, Jos
<[ [ s@e@vE@) dzdeno)
a0 Jrone;

+/ |VF(Z)|26(Z)2_”a)0(A(QZ,38(Z)))dZ. (7.104)
'Q\QY

Note that if 0 € I'3(Q) then B(0, s Ry) C I3(Q) and if 0 ¢ I5(Q) then B(0, sRo)N
I'(Q)=40. Thus

/ / 5(2)™"(8(2)|VF|) dZdwy
082 JI'(Q)NK2

< / / 5(2)" (5(2)IV FI) xtoersco (Z)d Zday
082 JI'(Q)NS2
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2
S/ ][ _ (BD[F@)|)" x0ers0n(Z)d Zdwo
22 J BO.sRo)

S/zm N(3|VF(2)])*(Q)dwn(Q). (7.105)

We now estimate the second term in (7.104). Since wo(A(Qz,38(Z))8(Z)*™" ~
Go(Z) using the ellipticity of Lo we have

/ 5(2)2*”|VF(Z)|2dZdwO(Q)
2\ 82
g/ IVF(2)|*Go(2)dZ
£2\82
g/ (AOVF(Z),VF(2))Go(Z)dZ
£2\82

< / div(AgVF)F)GodZ — / div((AgVF)FGodZ
2\82 Q

1
<z / Lo(F?)GodZ — / (LoF)FGodZ. (7.106)
2 Jo\e, 2\,

Integration by parts on the second term in (7.106) yields

/ (LoF)(Z)F(Z2)Go(2)dZ
2\82s
=—/ div(eVu1)(FGo)(Z2)dZ
2\82
=/ V(FGo)eVu1dZ
2\,

=/ GOVFSVule—i-/ VGoFeVuidZ. (7.107)
2\ 2\

since Go =0 on 052 and € = 0 on 952 (recall ¢(Y) =0 when §(Y) > 4R;). We

use the dyadic decomposition of 952 to estimate each term. Recall that for ¥ € I(f,
k

Go(Y) ~ % then given & > 0

/ IVF|Gole(Z)||VuildZ
2\2,\(0£2,¢)

< > sup|e(Z)|/ Go|VF||Vu,|dZ
k
okcon I3 La
k<ke
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k
s Y sup|8(Z)|M</lk|VF||Vu1|dZ>. (7.108)

oican . (iamQgy?
o

k<ke

To estimate [, [VF||Vu;|dZ cover I% by balls {B(X;, A8 *73)};<;<y with X; € I

such that |X; — X;| > AS_k_3/2. Here N is independent of k and the balls
B(X;, A8 %73) have finite overlap (also independent of k).

/ |VF||Vu,|dZ
k

o

IA

/ |VF||Vui|dZ
B(X;,187k=3)
1/2 1/2
(/ |VF|2dZ> (/ |w1|2dz)
B(X;,287k=3) B(X;,287k=3)
1/2
(/ |V |2(/ |VF|2dY)dZ>
: B(X;,A87k=3) B(Z,).87%72)
n—=2 N
< (diam Q¥) 7 </ |w]|2<][
( a) Z B(X;,28-%-3) B(Z,524)

i=1 > 8

1/2
< (diamQ")”‘2 [Vup|? (8(Y)|VF|)2dY az ) . (7.109)
¢ 1 B(Z.%2)

Combining (7.108) and (7.109) we have

IA

™M= iM=

i=1

=

™M=

1/2
(8(Y)|VF|)2dY>dZ>

/ IVF|Gole(2)||VuildZ
2\2,\(982.¢)

S Y suple(2)|wo(QF)

k
Qkcan Iy

k<ke

1/2
x </ |Vui?8(Z)>" (f (6(Y)|VF|)2dY>dZ)
1k B(z,%2)

a2(V)Go(Y) , \'? 12
X ([, S ar) vt

okco ™
k=<ke

1/2
x</ |w1|25(2)2—"(][ (8(Y)|VF|)2dY>dZ) . (7.110)
1 B(Z,%2)
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Applying a stopping time argument similar to the one used in the proof of
Lemma 7.7 to estimate Fg, to the function

- 1/2
T:(Q) = (/ |Vup|28(Z)>™" (7[ 62|VF|2>dZ>
Iy (Q)\B2:(Q) B(Z,56(2)/8)

and letting ¢ tend to O we obtain

/ IVF|Gole||Vui]
2\825

1/2
< eo / (/ |w1|26(2>2*"][ 82|VF|2dZ) dwy(Q)
982 I'y(Q) B(Z,6(2)/8)

580/39 NY(SIVFI)(Q)Su (1) (Q)dewp(Q). (7.111)

Now we turn our attention to the second term in (7.107). Applying Cacciopoli’s
inequality (see (7.62)) we have

/ IVGol|Fllel|VuildZ
2\ 82

N

172 1/2
<3 sup|5|</ |VG0|2dZ) (/ |VM1(Z)|2F2(Z)dZ>
1% 1%

okcon 1
Go(Y)2 1/2 1/2
< Y suplel o) 1y \Vui(2)PF2(zydz) . (1.112)
NQ"CB.Q 14 i 82 1

Once again a similar argument to the one that appears in the proof of Lemma 7.7 with
a stopping time argument applied to a truncation of

1/2
(/ |Vu1|28(Y)2_”F(Y)dY)
ru(Q)

yields the following estimate

1/2
/ |VGo||F||s||Vu1|dzseo/ (/ |w1|28(2>2—"F(Y)dY) deo(Q)
I'v(Q)

2\82 a0

580/89 Su(u)(Q)Ny F(Q)dwo(Q). (7.113)

Putting together (7.107), (7.111), and (7.113) we obtain

/ L0F~FGodZ‘§8o/ N (819 F1)(@)Su () (Q)deg
2\ 2 82

+€0/arz Ny F(Q)Suu)(Q)dwy.  (7.114)
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To estimate the first term in (7.106) observe that

l/ GoLo(F?)dZ
2 Ja\a,

1 1
=—/ div(GoAgVF?)dZ — —/ AoVGoVF*(2)dZ
2 Jo\e, 2 Ja\e,

1
:/ GOAOFVF-T)da——/ div(F*AoVGo)dZ
90, 2\2

. 1 -
=/ GoAoFVF - bdo — —/ F2AoV Gy - ¥do. (7.115)
392, 2 Jag,

Integrating over s € [1, 2] we obtain

1 2
= / / GoLoF*dZ
2 J1 |J2\B,sRy)
2
=// _ |GollAol| FIIVF|dods
1 JaB(0,sRy)

1 2
+—/ / _ F?|A¢||VGoldods
2.1 JaBw.sky

ds

GolAol|FIIVF|dZ

/B(o,zléo)\B(o,ﬁo)
1

/ ) _ F?|AolIVGoldZ. (7.116)
2 JB©,2Ro)\B(0,Ro)

Looking at each term in (7.116) separately we have that

/ i _ GolAol|FIIVF|dZ
B(0,2R0)\ B(0,Rp)

< E / Go|F||VF|dZ. (7.117)
k
ok con 15N ($22\821)
1KN2,\ 2,70

Note that if 7¥ N £2,\§2] # @ there is ¥ € £2 so that 1/8 < 8¥8(Y) < 8% and [8(Y) —
8(0)| = 2R = 8(0)272°. Thus (1 +272)"11/8 < 88(0) < (1 —272%)~18). Since
diam Q"; ~ 8% ~ §(0) then a)(Q’gl) > (| an absolute constant only depending on the

1 Q%)
NTA constants of §2. Thus for ¥ € IX N (£22\21) Go(Y) < 5072 S (di:)n(i o

These combined with a computation like the one that appears in (7.108), (7.109), and
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(7.110) yields

/ GolAol|FIIVF|dZ
22\82

k
< (/ |F||VF|dZ>.“’°(7Q“)
(diam Q% )n—2

Q" con
15N2,\ 2,40

1/2
1/2 _
S X w0 (wleh) [ #irrazf “ aﬂvm%zz)
okcan Iy B(Z,
15n2,\ 210

1/2
5/ (/ 52"(Z)|F|2<][ 82|VF|2dY)dZ> dwy
82 \J iy (@)n2:\ 2y B(Z.%{)
< 5(0)2 M2 / NuF(Q)NM 81V FI)(©)3 (0" *da
982

55(0)/aQ NuF(Q)NY (3|VF|)(Q)dwo(Q). (7.118)

We control the second term in (7.116) by recalling that if ¥ € I(i‘ N £25\$2; then

8(0) ~ diam Q¥ and [VGo(Y)| S % < g”("()()%l) Thus as in (7.118) and using the

doubling properties of wp we have
/ F2|Aol|VGoldZ
2\$2

s ) / F2VGoldZ

Q" cof2 IgN2\2,
15N\ 2170

12
DY wo(Qi)”z(wo(Qz)/Ik62—"|F|2]i(z W))|F|2)
o P8

okcae
15N\ 2170

<8(0) /a . NuF(QNMF(Q)dwy(Q). (7.119)

Combining (7.116), (7.118), and (7.119) we obtain

r

<8(0) /m NuF(Q)NY(8|VF[)(Q)dwo(Q)

/  Go(Z)LoF*(2)dZ|ds
£2\B(0,sRo)

+5(0) /m NuF(Q)ONMF(Q)dwy(Q). (7.120)
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Combining (7.104), (7.105), (7.106), (7.113), and (7.120) plus recalling the fact that
Sm(ur) < Su(F) 4+ Su(uo) and ||Sy Fll 2 ~ ISFl12(y, and Remark 7.2 we
obtain

(o)

/ S2F(Q)dwy(Q)
082
2
= / / S2F(Q)dwy(Q)ds
1 082

2
z/// 57" (2)(8(2)|VF|)’dZdwods
1 082 J I'(Q)NK2

2
+// IVF?8* " (2)wo(A(Q2,38(2)))d Zds
1 J2\82

2
5/ / 8’”(2)(8(Z)|VF|)2dZdwo+// LoF2Gy
32 Jro)ng, 11/ 2\

2
+ / / (LoF)FGo
1/ a\e,

< /m N(8IVF])*(Q)dwn(Q) + &0 /m NM(8IVF[)(Q)Syu u1)(Q)dwo(Q)

ds

ds

+ &0 /M2 Sy (1) (Q)Ny F(Q)dwy + /m NuF(Q)NY(8|VF|)dwo
+ /3 . NuF(Q)NM(F)(Q)dwy

SINGIVE 20 + 15100220 + INFI22(,

(o)
~ 2 2
+ ||N(F)||L2(w0) +80||SF||Lz(w0)- (7.121)
: 2 2 2 .

Since by Lemma 2.13 ||Su0||L2(w0) < ||Nu0||L2(wO) < ||f||L2(w0) we obtain from

(7.121)

ISFI2 200y S INGIVFN) [J20) + INFI2
L2(wp) ~ L2(wp) L2(wo)
~ 2 2

N2 T 11720 (7.122)
which yields Lemma 7.8. g

Proof of Theorem 2.9 Since S(u1) < S(F)+ S(up), (7.38), (7.103), and the argument
above, (7.122) yields

/NF(Q)zda)o—i—/ N(8IVF])*(Q)dwo
952 982

SCE(Z)/ Szulda)o
FYe;
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<Ce} / (SF)*(Q)dwo + Ce}) / (Suo)>dwo
982 982
< Cé2 NF(0)d V 2
< Cgj wo + N(3IVF|)"(Q)dwy
982 052
+ Cél / NF(Q)*dwo + Cel / F2dwp. (7.123)
082 082
Thus
/ NF(Q)Zdw0+/ 1\7(5|VF|)2(Q)dwo
a2 052
<Ce} / NF(Q)*dwy + Ce} / Frdawy. (7.124)
082 052
Note that since || Nu; 72

~ ||Nu,-||%2( i =0, 1 then by (7.124)

(wo) wo) ’

/ NF(Q)*dwy < / Nu?(Q)dwy + / Nud(Q)dawy
082 082 482
<C / Nu(Q)dwy + C / fdawy
082 082
< C/ 1\7F(Q)2dwo+c/ Frdwy
082 052
< Cel / NF(0)*dwy+C / Fldwy  (7.125)
082 082
which ensures that
/ NF(Q)*dwy<C / Frdawy (7.126)
a2 92

which yields
| wi@uam=c [ NF©QPdmrC [ Nid@don
082 082 082

<C / fFrdawy. (7.127)
982

This concludes the proof of Theorem 2.9. g

8 Regularity for the Elliptic Kernel on CADs

Theorem 8.1 Let 2 be a CAD—assume there exists a constant C > 0 such that

( 1 a(X) )%
sup dx) <=c. 8.1
aca\o(A) Jra) 8(X)

Then w1 € Axo(0) if wp € Ao (0).
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The argument used to prove the result above is similar to the one used in [10] to
prove Theorem 2.3. In our case it relies on a generalization of Fefferman’s result to
the CAD setting, as follows.

Theorem 8.2 Let 2 be a CAD and let

a2(X) >
A = dX ) . 8.2
@)(0) (/F(Q) 500 (8.2)

IfllA(a)|l L) < Co < 00 and wy € Axo(0) then w1 € Axo(0).

Proof of Theorem 8.2 This is a corollary of Theorem 2.9. In fact note that for A =

B(Qo,r) N 382 with Qg € 382 the fact that “’°<A8<(}Q(;;’ffx>” ~ G90 combined with

Fubini’s theorem and the doubling properties of wy yields

1 az(X)Go(X)dX 1 a*(X) o (A(Qx3(X))
< dX
wo(A) Jray  8(X)? ~ wo(A) Jray (X)) §(X)"!

o (/ a’(X) (X)dX)da)
= w0(A) J3a \Ura sCn *1@ 0
1
A2 d
S /3A (@)(Q)dwo(Q)
1
A? d ) 8.3
s /3A (@)(Q)dwn(0Q) (83)

Hence there exists § > 0 depending on n and the NTA constants of §2 such that if
lA(a)llLo) <8, and wp € Axc(0) then w1 € Ba(wp). In fact since wp € Axo(0) the
fact that || A(a)|| L) < & implies that ||A(a)|| L (w,) < J. Estimate (8.3) guarantees
that there exists C > 0 depending on n and the NTA constants of £2 such that

1 L o Go(X) >% \
X dX <(C§z2. 8.4
AsélfQ(wo(A) v 90 = 64

Choosing § > 0 small enough so that C 57 < €o in Theorem 2.9 we conclude that
w1 € Bz(wp). To finish the proof of Theorem 8.2 consider the family of operators
Ly = (1 —1)Ag + tAy for 0 < < 0. Consider a partition of [0, 1] {#;}/_, such
that 0 < tj41 — 1 < Cio where Cy is as in the statement of Theorem 8.2. Let a; be
the deviation function corresponding to Ly, = L;y1 and Ly, = L;, here €;(X) =
An (X)) = (tiv1 — t)e(X), and a;(X) = (tj11 — t))a(X). Hence ||A(ai)||lLo@) =
(tiv1 — ti)llA(a)llL~@) < 8. An iteration of the argument above ensures that for
i€{0,...,m}w; € Aso(0) and w; 11 € By(w;). Hence w) € Ax (o). O



Harmonic Analysis on Chord Arc Domains 2155

Proof of Theorem 8.1 We are assuming the Carleson condition (8.1) on 5((X)dX
and that wp € Ax(0). We will show that w; € Ax (o) by showing that there exist

0<a<1and0< B < 1 such thatif A= B(Qq,r)N 352 and E C A then "gig Sy
implies that g:gg > B.

For r > 0 and y > 0 we denote by I', ,(Q) the truncated cone of radius r and
aperture y, i.e., [}, (Q) ={X € 2:|X - 0l < (1 +y)i(X),0 <8(X) <r}. We
define the truncated square function with aperture determined by y for the deviation

function a(X) by
a2(X) )]/2
A, , = dX .
rr(Q) </ry,,(Q> 5(X)"

The appropriate constant y will be chosen later.

Applying Lemma 3.13 to A(X) = %XB(QO;(HVV)(X) we conclude that

A2 (0)do (Q) < @X) v <
o(A) Ja V" (D) Jraipa SX) T 7

because a is doubling and hypothesis (8.1). Thus there is a closed set S C A so that

285> gand Ay, (Q) < C) for Q€S.

Recall that there exist constants 0 < 8 < y and C; < C < 0 and a sawtooth
domain £2g such that

() Uges Ip.c,r(Q) C 25 CUges Iyv.c,r (Q)
(i) 902sNo2 =S
(iii)) The NTA character of £2g is independent of S

(see [12]).
Without loss of generality we may assume that %,3 + % < y.Let

2= Iper(@ and 2= (0.

Qes QeS

For X € £2 with §(X) < Cir if B(X,2$2) N 2’ # ¢ then there exists 0 € S so
that B(X, 22) c Iy, (Q). In fact if ¥ € B(X, °) N 2’ there is 0 € § so that
0—Y|<(1+p)8(¥)and |0 - X| <0 —Y|+|Y — X| < (1+B)s(¥) + 2 <
1+ )2X 1 30 — 5(X)(1 + (36 + 1)). Thus X € I3, (). Define the operator
Li=divA,V by setting

Aj(X) =

- Ax ifxes
) Ao(X) if X € 2\
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Leta(X) = SUPy ¢ p(x, 200 |Al (Y) — Ag(Y)] be the deviation function for Zl and L.
v 2
Observe that a(X) < a(X). For y and B as above consider

3 B a(x)2 3
As(0) = (/Fﬁ(g) 5(X)ndX) .

Note that by the definition of A 1 and a,

- &(X)2 )%
A = dX | .
p(Q (/Fﬁ,cl,«Q) §(X)"

If B(X, %) N 2’ =@ then a(X) = 0. On the other hand, if X € I's.c,,(Q) and
B(X, 2%y N 2’ # ¥ then there exists Q € § so that B(X, °$2) € I, ¢, (0).

Thus Ag(Q) < A, ,(Q) < C,/. By Theorem 8.2 &; = ®j € Aco(0). Choose
o(E)

0 <a < 1 close to 1 so that "((52)5) > % whenever n > Let F =S N E since
@1 € Axo(0) there exist constants C > 0 and n > 0 so that
o1 (F F)\"
w>c<”( )> >C (8.5)
w1 (A) o(A)

By [5] and [11] there exist constants C > 0 and Q > 0 depending on the ellipticity
constants, the NTA constants of §2, and »n so that for F C S

1 L ol(F)

c@l @) =z <c@r i) (8.6)
and

1 1 wi(F)

clo ) < wi(A) <C(of* ()’ 8.7)

(see Lemma 1.4.14 in [12]). Since 25 C 22/, L1 = L1 on 25 and &{% = »f*. Com-
bining (8.5), (8.6), and (8.7) we obtain since F C E

wi(E) _wi(F) 1 o s 1 g 3
o) Zana) ¢ D) =gl@r @)
- 1
> C’(?I(F)y >, (8.8)
w1(A)

d

Remark 8.3 Recall that by the work of David & Jerison [6] and Semmes [15], we
have that if £2 is a CAD and w denotes the harmonic measure then w € Ay (0).
Theorem 8.1 shows that the elliptic measure of operators which are perturbations of
the Laplacian in the sense of (1) is also in Axo (o).



Harmonic Analysis on Chord Arc Domains 2157

Acknowledgements T. Toro was partially supported by NSF DMS grants 0600915 and 0856687. E. Mi-
lakis was supported by Marie Curie International Reintegration Grant No. 256481 within the 7th European
Community Framework Programme and NSF DMS grant 0856687. J. Pipher was partially supported by
NSF DMS grant 0901139.

References

&~ W

10.

11.

12.

13.
14.

15.

16.

17.

. Christ, M.: A T'(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math.

60/61(2), 601-628 (1990)

. Coifman, R., Meyer, Y., Stein, E.: Some new function spaces and their applications to harmonic

analysis. J. Funct. Anal. 62(2), 304-335 (1985)

. Dahlberg, B.: Estimates of harmonic measure. Arch. Ration. Mech. Anal. 65(3), 275-288 (1977)
. Dahlberg, B.: On the absolute continuity of elliptic measure. Am. J. Math. 108, 1119-1138 (1986)
. Dahlberg, B., Jerison, D., Kenig, C.: Area integral estimates for elliptic differential operators with

non-smooth coefficients. Ark. Math. 22, 97-107 (1984)

. David, G., Jerison, D.: Lipschitz approximation to hypersurfaces, harmonic measure, and singular

integrals. Indiana Univ. Math. J. 39, 831-845 (1990)

. Evans, L., Gariepy, R.: Measure theory and fine properties of functions. Studies in Advanced Mathe-

matics (1992). viii+268 pp.

. Escauriaza, L.: The L? Dirichlet problem for small perturbations of the Laplacian. Isr. J. Math. 94,

353-366 (1996)

. Fefferman, R.: A criterion for the absolute continuity of the harmonic measure associated with an

elliptic operator. J. Am. Math. Soc. 2(1), 127-135 (1989)

Fefferman, R., Kenig, C., Pipher, J.: The theory of weights and the Dirichlet problem for elliptic
equations. Ann. Math. 134(1), 65-124 (1991)

Jerison, D., Kenig, C.: Boundary behavior of harmonic functions in non-tangentially accessible do-
mains. Adv. Math. 46, 80-147 (1982)

Kenig, C.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems.
CBMS Regional Conference Series in Mathematics, vol. 83. AMS, Providence (1994). xii+146 pp.
Kenig, C., Toro, T.: Harmonic measure on locally flat domains. Duke Math. J. 87(3), 509-551 (1997)
Milakis, E., Toro, T.: Divergence form operators in Reifenberg flat domains. Math. Z. 264(1), 1541
(2010)

Semmes, S.: Analysis vs. Geometry on a class of rectifiable hypersurfaces. Indiana Univ. Math. J. 39,
1005-1035 (1990)

Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.
Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). Monographs
in Harmonic Analysis, III. xiv+695 pp.

Yosida, K.: Functional Analysis. Classics in Mathematics. Springer, Berlin (1980). Reprint of the
sixth edn. (1980). xii+501 pp.



	Harmonic Analysis on Chord Arc Domains
	Abstract
	Introduction
	Preliminaries
	Non-Tangential Behavior in CADs
	Square Functions in CADs
	Duality of Tp Spaces
	Relation Between Integrals on Cones A and Carleson's Function C
	Solvability of the Dirichlet Problem in Lp for Perturbation Operators on CADs
	Regularity for the Elliptic Kernel on CADs
	Acknowledgements
	References


