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Abstract We prove mixed Ap-Ar inequalities for several basic singular integrals,
Littlewood–Paley operators, and the vector-valued maximal function. Our key point
is that r can be taken arbitrarily big. Hence, such inequalities are close in spirit to
those obtained recently in the works by T. Hytönen and C. Pérez, and M. Lacey. On
one hand, the “Ap-A∞” constant in these works involves two independent suprema.
On the other hand, the “Ap-Ar” constant in our estimates involves a joint supremum,
but of a bigger expression. We show in simple examples that both such constants are
incomparable. This leads to a natural conjecture that the estimates of both types can
be further improved.
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1 Introduction

Given a weight (that is, a non-negative locally integrable function) w and a cube
Q ⊂ R

n, let

Ap(w;Q) =
( 1

|Q|
∫

Q

w
)( 1

|Q|
∫

Q

w
− 1

p−1

)p−1
(1 < p < ∞)

and

‖w‖Ap = sup
Q⊂Rn

Ap(w;Q).
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Sharp weighted norm inequalities in terms of ‖w‖Ap have been obtained recently
for the Calderón–Zygmund operators and for a large class of the Littlewood–Paley
operators. To be more precise, if T is a Calderón–Zygmund operator, then

‖T ‖Lp(w) ≤ c(T ,p,n)‖w‖max(1, 1
p−1 )

Ap
(1 < p < ∞). (1)

This result in its full generality is due to T. Hytönen [5]; we also refer to this work
for a very detailed history of closely related results and particular cases. Soon after
[5] appeared, a somewhat simplified approach to (1) was found in [9].

If S is a Littlewood–Paley operator (in particular, any typical square function),
then (see [12] and the references therein)

‖S‖Lp(w) ≤ c(S,p,n)‖w‖max( 1
2 , 1

p−1 )

Ap
(1 < p < ∞). (2)

Observe that the exponents in (1) and (2) are sharp for any 1 < p < ∞. However,
it turns out that this is not the end of the story. Very recently, T. Hytönen and C. Pérez
[8] have studied mixed Ap-A∞ estimates that improve many of the known sharp Ap

estimates. Denote

‖w‖A∞ = sup
Q⊂Rn

A∞(w;Q) = sup
Q⊂Rn

( 1

|Q|
∫

Q

w
)

exp
( 1

|Q|
∫

Q

logw−1
)
.

Set also

‖w‖′
A∞ = sup

Q⊂Rn

1

w(Q)

∫

Q

M(wχQ),

where M is the Hardy–Littlewood maximal operator. Observe that

cn‖w‖′
A∞ ≤ ‖w‖A∞ ≤ ‖w‖Ap (1 < p < ∞),

and the first inequality here cannot be reversed (see [8] for the details).
One of the main results in [8] is the following improvement of (1) in the case

p = 2:

‖T ‖L2(w) ≤ c(T ,n)‖w‖1/2
A2

max(‖w‖′
A∞,‖w−1‖′

A∞)1/2. (3)

It is well known that the case p = 2 is crucial for inequality (1). Indeed, (1) for
any p �= 2 follows from the linear L2(w) bound and the sharp version of the Ru-
bio de Francia extrapolation theorem. Adapting such an approach, the authors in [8]
extended (3) for any p �= 2. For example, it was shown that for p > 2,

‖T ‖Lp(w) ≤ c‖w‖
2
p

− 1
2(p−1)

Ap

(‖w‖
1

2(p−1)

A∞ + ‖σ‖
1
2
A∞

)
(‖w‖′

A∞)
1− 2

p , (4)

where σ = w
− 1

p−1 .
It turns out that while the extrapolation method is powerful for (1), it is not so

effective for mixed Ap-A∞ inequalities. Indeed, T. Hytönen et al. [7] improved (4)
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(at least for p > 4) without the use of extrapolation, namely, it is proved in [7] that

‖T ∗‖Lp(w) ≤ c(T ,p,n)
(
‖w‖1/p

Ap
(‖w‖′

A∞)1/p′ + ‖w‖
1

p−1
Ap

)
(p > 1), (5)

where T ∗ is the maximal Calderón–Zygmund operator.
Soon after that, M. Lacey [10] improved (5) and (4) for several classical singular

integrals:

‖T ∗‖Lp(w) ≤ c(T ,p,n)‖w‖1/p
Ap

max
(
(‖w‖′

A∞)1/p′
, (‖σ‖′

A∞)1/p
)
, (6)

and it was conjectured in [10] that (6) holds for any Calderón–Zygmund operator.
More precisely, (6) was proved for the Hilbert, Riesz, and Beurling operators and

for any one-dimensional convolution Calderón–Zygmund operator with odd C2 ker-
nel. All these operators are unified by the fact that they can be represented as a suit-
able average of the so-called Haar shift operators S with bounded complexity. In order
to handle such operators, a “local mean oscillation” decomposition was used in [10].
The latter decomposition was obtained by the author in [11]. Then, its various appli-
cations (in particular, to the Haar shift operators) have been found by D. Cruz-Uribe,
J. Martell and C. Pérez in [2].

After an application of the decomposition to S, the proof of (6) is reduced to
showing that this estimate is true for

Aγ f (x) =
∑
j,k

( 1

|γQk
j |

∫

γQk
j

|f |
)
χQk

j
(x),

where Qk
j are the dyadic cubes with good overlapping properties. This is done in

[10] by means of a number of interesting tricks. It is mentioned in [10] that a more
elementary approach to Aγ (used in [2] in order to prove (1) for classical singular
operators mentioned above) does not allow us to get (6).

In this paper we show, however, that a variation of the approach to Aγ from [2]
allows us to get mixed estimates of a different type, namely, we obtain Lp(w) bounds
in terms of

‖w‖(Ap)α(Ar )β
= sup

Q⊂Rn

Ap(w;Q)αAr(w;Q)β

for suitable α and β . The key point in our results below is that r can be taken arbi-
trarily big (but with the implicit constant growing exponentially in r). Therefore, our
estimates can be also considered as a kind of Ap-A∞ estimates. An important feature
of the expression defining ‖w‖(Ap)α(Ar )β

is that only one supremum is involved. We
will show in simple examples that ‖w‖(Ap)α(Ar )β

is incomparable with the right-hand
side of (6), that is, each of such expressions can be arbitrarily larger than the other.
This fact indicates that the estimates of both types can be further improved.

In the next theorem we suppose that T ∗ is the same operator as in (6), namely,

T ∗f (x) = sup
ε<δ

∣∣∣
∫

ε<|x−y|<δ

f (y)K(x − y)dy

∣∣∣,
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where K is one of the following kernels: (i) K(x) = 1
x
, n = 1; (ii) k(x) = xj

|x|n+1 ,

n ≥ 2; (iii) K(z) = 1
z2 , z ∈ C; (iv) K(x) is any odd, one-dimensional C2 kernel satis-

fying |K(i)(x)| ≤ c|x|−1−i (i = 0,1,2).

Theorem 1.1 For any 2 ≤ p ≤ r < ∞,

‖T ∗‖Lp(w) ≤ c(T ,p, r, n)‖w‖
(Ap)

1
p−1 (Ar )

1− 1
p−1

.

A similar result holds for the Littlewood–Paley operators satisfying (1). In the next
theorem, S is either the dyadic square function or the intrinsic square function (and
hence the theorem is also true for the Lusin area integral S(f ), the Littlewood–Paley
function g(f ), the continuous square functions Sψ(f ) and gψ(f )).

Theorem 1.2 For any 3 ≤ p ≤ r < ∞,

‖S‖Lp(w) ≤ c(S,p, r, n)‖w‖
(Ap)

1
p−1 (Ar )

1
2 − 1

p−1
.

Also, the same type of result holds for the vector-valued maximal function (see
Remark 3.2 below).

Observe that Theorem 1.1 for T (instead of T ∗) can be extended by the standard
duality argument to the case 1 < p < 2 as follows:

‖T ‖Lp(w) ≤ c‖σ‖
(Ap′ )

1
p′−1 (Ar )

1− 1
p′−1

= c sup
Q

Ap(w;Q)Ar(σ ;Q)2−p.

For r > p′ this improves (1) since

Ap(w;Q)Ar(σ ;Q)2−p ≤ Ap(w;Q)Ap′(σ ;Q)2−p = Ap(Q)
1

p−1 .

In Sect. 4, we show the sharpness of the exponent 1
p−1 in Theorems 1.1 and 1.2.

Also we show that the right-hand side in Theorem 1.1 is incomparable with the one
in (6).

A natural question appearing here is whether the right-hand side in Theorem 1.1
can be replaced by

‖w‖
(Ap)

1
p−1 (A∞)

1− 1
p−1

= sup
Q

Ap(w;Q)
1

p−1 A∞(w;Q)
1− 1

p−1

or by

‖w‖
(Ap)

1
p−1 (A′∞)

1− 1
p−1

= sup
Q

Ap(w;Q)
1

p−1 A′∞(w;Q)
1− 1

p−1 ,

where A′∞(w;Q) = 1
w(Q)

∫
Q

M(wχQ).
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2 Preliminaries

2.1 Haar Shift Operators

Given a general dyadic grid D and m,k ∈ N, we say that S is a (generalized) Haar
shift operator with parameters m,k if

Sf (x) = S
m,k
D f (x) =

∑
Q∈D

∑
Q′,Q′′∈D,Q′,Q′′⊂Q


(Q′)=2−m
(Q),
(Q′′)=2−k
(Q)

〈f,h
Q′′
Q′ 〉

|Q| h
Q′
Q′′(x),

where 
(Q) is the side length of Q, h
Q′′
Q′ is a (generalized) Haar function on Q′, and

h
Q′
Q′′ is one on Q′′ such that

‖hQ′′
Q′ ‖L∞‖hQ′

Q′′ ‖L∞ ≤ 1.

The number max(m, k) is called the complexity of S.
We refer to [5] for a more detailed explanation of this definition. Also, it is shown

in [5] that any Calderón–Zygmund operator can be represented as a suitable average
of S

m,k
D with respect to all dyadic grids D and all m,k ∈ N. In the case of the classical

convolution operators mentioned in Theorem 1.1, such an average can be taken only
of S

m,k
D with bounded complexity. This fact was proved in the works [3] (the Beurling

operator), [13] (the Hilbert transform), [14] (the Riesz transforms), [15] (any one-
dimensional singular integral with odd C2 kernel).

Similarly to the maximal singular integral T ∗, one can define the maximal Haar
shift operator S

∗, and to get a control of T ∗ by S
∗ (see [7, Prop. 2.8]). In particular,

it suffices to prove Theorem 1.1 for a single S
∗ instead of T ∗.

2.2 Littlewood–Paley Operators

The dyadic square function is defined by

Sdf (x) =
⎛
⎝ ∑

Q∈D
(fQ − fQ̂)2χQ(x)

⎞
⎠

1/2

,

where the sum is taken over all dyadic cubes on R
n.

Let R
n+1+ = R

n × R+ and �(x) = {(y, t) ∈ R
n+1+ : |y − x| < t}. For 0 < α ≤ 1, let

Cα be the family of functions supported in {x : |x| ≤ 1}, satisfying
∫

ψ = 0, and such
that for all x and x′, |ϕ(x) − ϕ(x′)| ≤ |x − x′|α . If f ∈ L1

loc(R
n) and (y, t) ∈ R

n+1+ ,
we define

Aα(f )(y, t) = sup
ϕ∈Cα

|f ∗ ϕt (y)|.
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The intrinsic square function Gα(f ) is defined by

Gα(f )(x) =
(∫

�(x)

(
Aα(f )(y, t)

)2 dydt

tn+1

)1/2

.

This operator was introduced by M. Wilson [16]. On one hand Gα pointwise dom-
inates the classical and continuous S and g functions. On the other hand, it is not
essentially larger than any one of them.

Denote

T (Q) = {(y, t) ∈ R
n+1+ : y ∈ Q,
(Q)/2 ≤ t < 
(Q)}

and γQ(f )2 = ∫
T (Q)

(Aα(f )(y, t))2 dydt

tn+1 , and let

G̃α(f )(x) =
( ∑

Q∈D
γQ(f )2χ3Q(x)

)1/2
.

Then we have that (see [12])

Gα(f )(x) ≤ G̃α(f )(x) ≤ c(α,n)Gα(f )(x).

2.3 A “Local Mean Oscillation” Decomposition

Given a measurable function f on R
n and a cube Q, define the local mean oscillation

of f on Q by

ωλ(f ;Q) = inf
c∈R

(
(f − c)χQ

)∗(
λ|Q|) (0 < λ < 1),

where f ∗ denotes the non-increasing rearrangement of f .
By a median value of f over Q we mean a possibly nonunique, real number

mf (Q) such that

max
(|{x ∈ Q : f (x) > mf (Q)}|, |{x ∈ Q : f (x) < mf (Q)}|) ≤ |Q|/2.

Given a cube Q0, denote by D(Q0) the set of all dyadic cubes with respect to Q0.
If Q ∈ D(Q0) and Q �= Q0, we denote by Q̂ its dyadic parent, that is, the unique
cube from D(Q0) containing Q and such that |Q̂| = 2n|Q|.

The dyadic local sharp maximal function M
#,d
λ;Q0

f is defined by

M
#,d
λ;Q0

f (x) = sup
x∈Q′∈D(Q0)

ωλ(f ;Q′).

The following theorem was proved in [11].

Theorem 2.1 Let f be a measurable function on R
n and let Q0 be a fixed cube. Then

there exists a (possibly empty) collection of cubes Qk
j ∈ D(Q0) such that
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(i) for a.e. x ∈ Q0,

|f (x) − mf (Q0)| ≤ 4M
#,d
1/4;Q0

f (x) + 4
∞∑

k=1

∑
j

ω 1
2n+2

(f ; Q̂k
j )χQk

j
(x);

(ii) for each fixed k the cubes Qk
j are pairwise disjoint;

(iii) if �k = ∪jQ
k
j , then �k+1 ⊂ �k ;

(iv) |�k+1 ∩ Qk
j | ≤ 1

2 |Qk
j |.

We shall use below the standard fact following from the above properties (ii)–(iv),
namely, that the sets Ek

j = Qk
j \ �k+1 are pairwise disjoint and |Ek

j | ≥ 1
2 |Qk

j |.

3 Proof of Theorems 1.1 and 1.2

The key result implying both Theorems 1.1 and 1.2 can be described as follows.

Theorem 3.1 Let T be a sublinear operator satisfying

ωλ(|Tf |ν;Q) ≤ c
( 1

|γQ|
∫

γQ

|f |dx
)ν

(7)

for any dyadic cube Q ⊂ R
n, where ν, γ ≥ 1, and the constant c does not depend on

Q. Then for any ν + 1 ≤ p ≤ r < ∞ and for all f with (Tf )∗(+∞) = 0,

‖Tf ‖Lp(w) ≤ c‖w‖
(Ap)

1
p−1 (Ar )

1
ν − 1

p−1
‖f ‖Lp(w), (8)

where c = c(T ,p, r, ν, γ,n).

If it is known additionally that T is, for example, of weak type (1,1) (which is
the case for any operator from Theorems 1.1 and 1.2), then (Tf )∗(+∞) = 0 for
any f ∈ L1. Hence, we get first (8) for f ∈ L1 ∩ Lp(w), and then by the standard
argument it is extended to any f ∈ Lp(w).

Condition (7) for the maximal Haar shift operator S
∗f was proved in [2] (see also

[10]) with ν = 1 and γ depending on the complexity. Hence, by the above discussion
in Sect. 2.1, Theorem 3.1 implies Theorem 1.1.

Further, in the case ν = 2, condition (7) holds for the dyadic square function Sd

with γ = 1 (this fact was proved in [2]), and for the intrinsic square function G̃α

with γ = 15 (this was proved in [12]). From this and from Theorem 3.1 we get The-
orem 1.2.

Proof of Theorem 3.1 Combining (7) with Theorem 2.1, we get that for a.e. x ∈ Q0,

||Tf (x)|ν − m|Tf |ν (Q0)|1/ν ≤ c
(
Mf (x) + A3γ,νf (x)

)
,
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where

Aγ,νf (x) =
⎛
⎝∑

j,k

( 1

|γQk
j |

∫

γQk
j

|f |dx
)ν

χQk
j
(x)

⎞
⎠

1/ν

.

Therefore, the proof will follow from the corresponding bounds for M and Aγ,ν .
After that, letting Q0 to any one of 2n quadrants, we get that m|Tf |ν (Q0) → 0 (since
(Tf )∗(+∞) = 0), and Fatou’s theorem would complete the proof.

By Buckley’s theorem [1], ‖M‖Lp(w) ≤ c(p,n)‖w‖
1

p−1
Ap

, which implies trivially
the desired bound for M . Therefore, the proof is reduced to showing that for any
ν + 1 ≤ p ≤ r < ∞,

‖Aγ,νf ‖Lp(w) ≤ c‖w‖
(Ap)

1
p−1 (Ar )

1
ν − 1

p−1
‖f ‖Lp(w), (9)

where c = c(p, r, ν, γ,n).
In order to handle Aγ,νf , following [2], we use the duality. There exists a function

h ≥ 0 with ‖h‖
L(p/ν)′ (w)

= 1 such that

‖Aγ,νf ‖Lp(w) = ‖Aγ,νf ‖Lν(hw).

Further,
∫

Rn

(Aγ,νf )νhw =
∑
j,k

( 1

|γQk
j |

∫

γQk
j

|f |dx
)ν

∫

Qk
j

hw

=
∑
j,k

(σ(3γQk
j )

|γQk
j |

)ν(w(Qk
j )

|Qk
j |

) ν
p−1

( 1

σ(3γQk
j )

∫

γQk
j

|f |dx
)ν

×
( 1

w(Qk
j )

∫

Qk
j

hw
)
|Qk

j |
ν

p−1 w(Qk
j )

1− ν
p−1 . (10)

It is well known that, by Hölder’s inequality, 1 ≤ Ar(w;E) for any measurable set
E with |E| > 0. From this, for any E ⊂ Q with |E| ≥ ξ |Q|,

w(Q) ≤ w(Q)
1

|E|r
(∫

E

w− 1
r−1

)r−1
w(E)

≤ (|Q|/|E|)rAr(w;Q)w(E) ≤ (1/ξ)rAr(w;Q)w(E).

Therefore, w(Qk
j ) ≤ 2rAr(w;Qk

j )w(Ek
j ) (the sets Ek

j are defined after Theorem 2.1).
Combining this with (10), we get

∫

Rn

(Aγ,νf )νhw

≤ 2r(1− ν
p−1 )

∑
j,k

(σ(3γQk
j )

|γQk
j |

)ν(w(Qk
j )

|Qk
j |

) ν
p−1

Ar(w;Qk
j )

1− ν
p−1
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×
( 1

σ(3γQk
j )

∫

γQk
j

|f |dx
)ν( 1

w(Qk
j )

∫

Qk
j

hw
)
|Qk

j |
ν

p−1 w(Ek
j )

1− ν
p−1 .

Since

(σ(3γQk
j )

|γQk
j |

)ν(w(Qk
j )

|Qk
j |

) ν
p−1

Ar(w;Qk
j )

1− ν
p−1

≤ cAp(w;3γQk
j )

ν
p−1 Ar(w;3γQk

j )
1− ν

p−1 ≤ c‖w‖
(Ap)

ν
p−1 (Ar )

1− ν
p−1

,

we obtain
∫

Rn

(Aγ,νf )νhw

≤ c‖w‖
(Ap)

ν
p−1 (Ar )

1− ν
p−1

×
∑
j,k

( 1

σ(3γQk
j )

∫

γQk
j

|f |dx
)ν( 1

w(Qk
j )

∫

Qk
j

hw
)
|Qk

j |
ν

p−1 w(Ek
j )

1− ν
p−1 .

By Hölder’s inequality,

∑
j,k

( 1

σ(3γQk
j )

∫

γQk
j

|f |dx
)ν( 1

w(Qk
j )

∫

Qk
j

hw
)
|Qk

j |
ν

p−1 w(Ek
j )

1− ν
p−1

≤
⎛
⎝∑

j,k

( 1

σ(3γQk
j )

∫

γQk
j

|f |dx
)p|Qk

j |
p

p−1 w(Ek
j )

− 1
p−1

⎞
⎠

ν/p

×
⎛
⎝∑

j,k

( 1

w(Qk
j )

∫

Qk
j

hw
)(p/ν)′

w(Ek
j )

⎞
⎠

1−ν/p

.

Let Mc
w and Md

w be the weighted centered and dyadic maximal operator, respec-
tively. We will use below the well-known fact that these operators are bounded on
Lp(w),p > 1, with the corresponding bounds independent of w.

Since 1 ≤ Ap(w;Ek
j ), we get from this that

|Qk
j |

p
p−1 w(Ek

j )
− 1

p−1 ≤ 2
p

p−1 |Ek
j | p

p−1 w(Ek
j )

− 1
p−1 ≤ 2

p
p−1 σ(Ek

j ),

and therefore,

∑
j,k

( 1

σ(3γQk
j )

∫

γQk
j

|f |dx
)p|Qk

j |
p

p−1 w(Ek
j )

− 1
p−1

≤ c
∑
j,k

∫

Ek
j

Mc
σ (f/σ)pσdx ≤ c

∫

Rn

Mc
σ (f/σ)pσdx ≤ c

∫

Rn

|f |pwdx.
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Similarly,

∑
j,k

( 1

w(Qk
j )

∫

Qk
j

hw
)(p/ν)′

w(Ek
j ) ≤

∑
j,k

∫

Ek
j

(Md
wh)(p/ν)′wdx

≤
∫

Rn

(Md
wh)(p/ν)′wdx ≤ c

∫

Rn

h(p/ν)′wdx = c.

Combining the previous estimates yields
∫

Rn

(Aγ,νf )νhw ≤ c‖w‖
(Ap)

ν
p−1 (Ar )

1− ν
p−1

(∫

Rn

|f |pwdx
)ν/p

,

which implies (9), and therefore, the proof is complete. �

Remark 3.2 Theorem 3.1 can be also used to get a new bound for the vector-valued
maximal operator Mq defined for f = {fi}, and q,1 < q < 1, by

Mqf (x) =
( ∞∑

i=1

Mfi(x)q

)1/q

.

It was proved in [2] that for any 1 < p,q < ∞,

‖Mqf ‖Lp(w) ≤ c‖w‖max( 1
q
, 1
p−1 )

Ap

(∫

Rn

‖f (x)‖p


q wdx
)1/p

. (11)

The proof of this inequality is based on the following variant of (7) for the vector-

valued dyadic maximal operator M
d

q and any dyadic Q:

ωλ((M
d

qf )q;Q) ≤ c
( 1

|Q|
∫

Q

‖f (x)‖
q dx
)q

.

Therefore, using the same argument as above, we obtain an improvement of (11) for
q + 1 < p ≤ r < ∞:

‖Mqf ‖Lp(w) ≤ c‖w‖
(Ap)

1
p−1 (Ar )

1
q − 1

p−1

(∫

Rn

‖f (x)‖p

q wdx

)1/p

.

4 Examples

4.1 The Sharpness of the Exponent 1
p−1

First we note that the exponent 1
p−1 in Theorem 1.1 is sharp in the sense that

‖w‖
(Ap)

1
p−1 (Ar )

1− 1
p−1

cannot be replaced by ‖w‖(Ap)α(Ar )1−α for α < 1
p−1 . Indeed,

it suffices to consider the same example as in [1]. Let T = H be the Hilbert trans-
form. Let w(x) = |x|(p−1)(1−δ) and f = |x|−1+δχ[0,1]. Then on one hand we have
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that ‖H‖Lp(w) ≥ cδ−1, and on the other hand, if r > p, then ‖w‖(Ap)α(Ar )1−α ≤
cδ−α(p−1). Therefore, α ≥ 1

p−1 .
The same observation applies to Theorem 1.2. For instance, in the case of the

dyadic square function, exactly the same example as above (see [4]) shows that
‖w‖

(Ap)
1

p−1 (Ar )
1
2 − 1

p−1
cannot be replaced by ‖w‖

(Ap)α(Ar )
1
2 −α

for α < 1
p−1 .

4.2 A Comparison with M. Lacey’s Bound

Let p > 2. We show that the right-hand sides in (6) and in Theorem 1.1 are incompa-
rable.

Let w = tχ[0,1] + χR\[0,1]. It is easy to see that

‖w‖Ap ∼ ‖w‖
(Ap)

1
p−1 (Ar )

1− 1
p−1

∼ t.

Further, it was shown in [8] that for any measurable set E,

‖tχE + χR\E‖′
A∞ ≤ 4 log t (t ≥ 3). (12)

Hence, ‖w‖′
A∞ ≤ 4 log t and

‖σ‖′
A∞ = ‖t 1

p−1 σ‖′
A∞ ≤ 4

p − 1
log t (t ≥ 3p−1).

Therefore,

‖w‖1/p
Ap

max
(
(‖w‖′

A∞)1/p′
, (‖σ‖′

A∞)1/p
)

≤ ct1/p(log t)1/p′
,

which shows that the right-hand side in (6) can be arbitrarily smaller than the one in
Theorem 1.1.

On the other hand, for N big enough let

w(x) =
⎧⎨
⎩

|x|(p−1)(1−δ), x ∈ [−1,1],
|x − N |δ−1, x ∈ [N − 1,N + 1],
1, otherwise.

Then we have ‖w‖Ap ≥ cδ−(p−1) (take I = [0,1]). Also, ‖w‖′
A∞ ≥ cδ−1 (take I =

[N,N + 1]). Therefore,

‖w‖1/p
Ap

max
(
(‖w‖′

A∞)1/p′
, (‖σ‖′

A∞)1/p
)

≥ cδ−2/p′
.

But for N big enough the supremum defining ‖w‖
(Ap)

1
p−1 (Ar )

1− 1
p−1

can attain on

small intervals containing either 0 or N . If r > p, then for any such interval

Ap(w; I )
1

p−1 Ar(w; I )
1− 1

p−1 ≤ c/δ,

and hence ‖w‖
(Ap)

1
p−1 (Ar )

1− 1
p−1

≤ c/δ. This shows that the right-hand side in Theo-

rem 1.1 can be arbitrarily smaller than the one in (6).
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Added in proof. The conjecture mentioned in the Introduction that (6) holds for any
Calderón–Zygmund operator has been recently solved in [6].

Acknowledgements I am grateful to the referee for useful comments and remarks, and for pointing out
that Theorem 1.1 can be extended to the case 1 < p < 2 for non-maximal singular integrals.
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