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Abstract For a given convex cone we consider hypersurfaces with boundary which
are star-shaped with respect to the center of the cone and which meet the cone per-
pendicular. The evolution of those hypersurfaces inside the cone yields a nonlinear
parabolic Neumann problem. We show that one can use the convexity of the cone
to prove long time existence of this flow. Finally, we show that the hypersurfaces
converge smoothly to a piece of the round sphere.

Keywords Inverse mean curvature flow · Nonlinear boundary value problem ·
Gradient estimate · Long time existence

1 Introduction

The evolution of surfaces depending on their curvature has a long history, probably
starting with the early work of Brakke [1]. A classical result for inverse mean cur-
vature flow (IMCF) is due to Gerhardt [3]. He showed that starting from a closed,
smooth, star-shaped hypersurface with strictly positive mean curvature, the surface
evolves for all time and approaches a round sphere as time tends to infinity (see also
Urbas [13]).

For non-star-shaped initial surfaces, singularities may occur in finite time. In order
to make sense of the flow in that situation, Huisken and Ilmanen [4, 5] defined a no-
tion of weak solutions to IMCF. This enabled them to prove the Riemannian Penrose
inequality (see also Bray [2]).

In this work we want to consider classical solutions to IMCF in the case where the
initial hypersurface is a star-shaped C2,α-surface with strictly positive mean curva-
ture. In contrast to the work of Gerhardt, we will look at hypersurfaces which possess
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a boundary which meets the cone perpendicular. The cone can be seen as a supporting
hypersurface for the evolving surface, and is not moving itself.

We prove that this flow will exist for all time, and the surfaces will converge to a
piece of the round sphere. From the geometric point of view, a key step is an estimate
for the slope of the height function, using the convexity of the cone. From an analytic
point of view, a major step is to prove the full Schauder estimates without having
direct access to a second derivative bound.

Let Sn ⊂ R
n+1 be the sphere of radius one. Let Mn ⊂ Sn be some piece of Sn

such that �n := {rx ∈ R
n+1 | r > 0, x ∈ ∂Mn} is the boundary of a smooth, convex1

cone. We will prove the following theorem:2

Theorem 1 Let n ≥ 2. Let �n ⊂ R
n+1 be the boundary of a smooth, convex cone

that is centered at the origin and has outward unit normal μ. Let F0 : Mn → R
n+1

such that Mn
0 := F0(M

n) is a compact C2,α-hypersurface which is star-shaped with
respect to the center of the cone and has strictly positive mean curvature. Assume
furthermore that Mn

0 meets �n orthogonally. That is,

F0(∂Mn) ⊂ �n,
〈
μ ◦ F0, ν0 ◦ F0

〉∣∣
∂Mn = 0

where ν0 is the unit normal to Mn
0 . Then there exists a unique embedding

F ∈ C2+α,1+α/2(Mn × [0,∞),R
n+1)

∩ C∞(Mn × (0,∞),R
n+1)

with F(∂Mn, t) ⊂ �n for t ≥ 0, satisfying:

(IMCF)

⎧
⎪⎨

⎪⎩

∂F
∂t

= ν
H

◦ F in Mn × (0,∞)
〈
μ ◦ F,ν ◦ F

〉 = 0 on ∂Mn × (0,∞)

F ( . ,0) = F0 on Mn

where ν is the unit normal to Mn
t := F(Mn, t) pointing away from the center of the

cone and H is the scalar mean curvature of Mn
t . The rescaled solution F(., t)e−t/n

converges smoothly to an embedding F∞, mapping Mn into a piece of a round sphere
of radius r∞ = (|Mn

0 |/|Mn|)1/n.

In the first part of the paper, we will prove short time existence and reduce (IMCF)

to a scalar parabolic Neumann problem. The second part is concerned with a priori
estimates for solutions to this problem, including the crucial bound of the slope of the
height function. We show that the convexity of the cone can be used to control this
quantity. The last part deals with the Hölder estimates which finally yield long time
existence and convergence to a piece of the round sphere.

1That means the second fundamental form of ∂Mn is positive definite with respect to the outward unit
normal n ∈ TxMn ∩ Nx∂Mn .
2In the whole article C2k+α,k+α/2 denote the parabolic Hölder spaces as they are defined in [8], but we use
the letter C instead of H . Furthermore, we use the Einstein summation convention to sum over repeated
indices.
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2 The Associated Neumann Problem

We want to describe the surface at time t as a graph over Mn. Therefore, we make
the ansatz

F̃ : Mn × [0, T ) → R
n+1 : (x, t) 	→ u(x, t)x

for some function u : Mn × [0, T ) → R. Since the initial surface Mn
0 is a star-shaped

C2,α-hypersurface, there exists a scalar function u0 ∈ C2,α(Mn) such that F0 can be
expressed as F0 : Mn → R

n+1 : x 	→ u0(x)x. In order to work with graphs over Mn,
the following formulas are useful.

Lemma 1 Let t ≥ 0 be fixed. Let M̃n
t := F̃ (Mn, t) and {σij }i,j=1,...,n denote the

metric on Mn. We define p := F̃ (x, t) and assume that a point on Mn is described
by local coordinates, that is, x = x(ξ i). The following formulas hold:

(i) Let v := √
1 + u−2|∇u|2 and 1 ≤ i ≤ n. Then the tangent vectors τi ∈ TpM̃n

t

and the unit normal ν ∈ NpM̃n
t are given by

τi = x ∇iu + u∇ix, ν = 1

v

(
x − u−1∇ iu∇ix

)

where we used the same symbol for the position vector and the point x.
(ii) The metric {gij }i,j=1,...,n and inverse metric {gij }i,j=1,...,n on TpM̃n

t are given
by

gij = u2σij + ∇iu∇j u, gij = 1

u2

(
σ ij − ∇ iu∇j u

u2 + |∇u|2
)

.

(iii) The second fundamental form {hij }i,j=1,...,n of TpM̃n
t is given by

hij = u

v

(
σij + 2u−2∇iu∇iu − u−1∇2

ij u
)
.

(iv) Let p ∈ �n and μ̂(p) be the normal to �n in p. Let μ = μk(x)ek(x) be the
normal to �n in x and ek the basis vectors of TxS

n. Then
〈
μ̂(p), ν(p)

〉 = 0 ⇔ μk(x)∇ku(x, t) = 0.

The scalar mean curvature of M̃n
t is given by H = gijhij . All derivatives are covari-

ant derivatives with respect to the metric {σij }i,j=1,...,n on Mn.

Proof The formulas in (i) can be verified by direct calculation, and those in (ii) and
(iii) are the same as in [3]. The equivalence in (iv) follows from the formula for ν and
the fact that �n is a cone in R

n+1 and therefore μ(rx) = μ(x). �

So far, F̃ only allows the evolution of points in radial direction. Since we want the
surface to move in normal direction we modify the ansatz by defining

F : Mn × [0, T ) → R
n+1 : (x, t) 	→ F̃ (ϕ(x, t), t)
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for some map ϕ : Mn × [0, T ) → Mn which has to be bijective for fixed t and has to
satisfy ϕ(∂Mn, t) = ∂Mn. The problem of solving (IMCF) then reduces to solving

(∗)

⎧
⎪⎨

⎪⎩

∂u
∂t

= v
H

in Mn × (0, T )

∇μu = 0 on ∂Mn × (0, T )

u( . ,0) = u0 on Mn

as is stated in the next lemma.

Lemma 2 Let F0 be as in Theorem 1. Then there exists some T > 0, a unique solution
u ∈ C2+α,1+α/2(Mn × [0, T ],R) ∩ C∞(Mn × (0, T ],R) of (∗), and a unique map
ϕ : Mn × [0, T ] → Mn such that the above-defined map F has the same regularity
as stated in Theorem 1 and is the unique solution to (IMCF).

Proof The conditions on F0 imply that u0 is a C2,α function which satisfies the com-
patibility condition ∇μu0 = 0 on ∂Mn. The inverse function theorem, together with
the theory of linear parabolic Neumann problems, yields a unique solution to (∗).
The higher regularity of u for t > 0 can be proved by considering limits of difference
quotients. Next, we choose ϕ to be the unique solution of the ordinary differential
equation

dϕ

dt
= −1

u2vH
∇u on Mn × (0, T ), ϕ( . ,0) = id in Mn.

The theory of ODE’s implies that ϕ is a diffeomorphism for fixed t and C1+α in t

up to t = 0. Note that the Neumann condition for u implies that ϕ(∂Mn, t) = ∂Mn.
Using Lemma 1, the equation for ϕ, and (∗), a direct calculation shows that F satisfies
(IMCF). The uniqueness follows from the uniqueness of u and ϕ. �

Remark 1 The short time existence result also holds for immersed hypersurfaces
in a Riemannian manifold and for arbitrary smooth supporting hypersurfaces �n

(see [9]). The corresponding short time existence result for mean curvature flow was
proved by Stahl [11].

Let T ∗ be the maximal time such that there exists some u ∈ C2,1(Mn ×[0, T ∗))∩
C∞(Mn × (0, T ∗)) which solves (∗). In the following, we will prove a priori esti-
mates for those admissible solutions on [0, T ] where T < T ∗.

3 Maximum Principle Estimates

Let u be an admissible solution of (∗). We define w := lnu and observe that

H = gijhij = 1

uv

[
n −

(
σ ij − ∇ iw∇jw

1 + |∇w|2
)

∇2
ijw

]
.
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Therefore, w solves

(∗∗)

⎧
⎪⎨

⎪⎩

∂w
∂t

= Q(∇w,∇2w) in Mn × (0, T )

∇μw = 0 on ∂Mn × (0, T )

w( . ,0) = lnu0 on Mn

with

Q : R
n × R

n×n : (p,A) 	→ Q(p,A) := 1 + |p|2
n − (

σ ij − pipj

1+|p|2
)
Aij

.

In contrast to the differential operator occurring in (∗), Q does not explicitly depend
on the solution itself, but only on its first and second derivatives. In the following, we
will use (∗∗) to derive estimates for |u|, |∂u/∂t |, |∇u|, and |H |. We define

Qij (q,B) := ∂Q(p,A)

∂Aij

∣∣∣∣
(p,A)=(q,B)

,

Qk(q,B) := ∂Q(p,A)

∂pk

∣∣∣∣
(p,A)=(q,B)

.

Lemma 3 Let u be an admissible solution of (∗). Let �n be a smooth cone. Then u

satisfies

R1 := min
Mn

u0 ≤ ue−t/n ≤ max
Mn

u0 =: R2 in Mn × [0, T ].

Proof Let w(x, t) := lnu(x, t) and w+(x, t) := ln(maxMn u0) + t/n. Using

Rij :=
∫ 1

0
Qij (∇wθ,∇2wθ)d θ, Sk :=

∫ 1

0
Qk(∇wθ,∇2wθ)d θ

with wθ := θw+ + (1 − θ)w, we see that ψ := w+ − w satisfies

⎧
⎪⎨

⎪⎩

∂ψ
∂t

= Rij∇ijψ + Sk∇kψ in Mn × (0, T )

∇μψ = 0 on ∂Mn × (0, T )

ψ( . ,0) ≥ 0 on Mn.

The maximum principle implies ψ ≥ 0 in Mn ×[0, T ] and thus the upper bound. The
lower bound is obtained using w−(x, t) := ln(minMn u0) + t/n. �

Remark 2 From a geometric point of view, this estimate says that the rescaled sur-
faces F(Mn, t)e−t/n always stay between the two spherical caps which enclose the
initial surface.

Next, we want to estimate |∂u/∂t |.
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Lemma 4 Let u be an admissible solution of (∗). Let �n be a smooth cone. Then
u̇ := ∂u/∂t satisfies

(
R1

R2

)
min
Mn

v0

H0
≤ u̇e−t/n ≤

(
R2

R1

)
max
Mn

v0

H0
in Mn × [0, T ].

Here H0 = H( . ,0), v = v( . ,0), and R1,R2 are the constants from Lemma 3.

Proof Let ẇ := ∂w/∂t . Differentiating (∗∗) in the time direction leads to

⎧
⎪⎨

⎪⎩

∂ẇ
∂t

= Qij∇ij ẇ + Qk∇kẇ in Mn × (0, T )

∇μẇ = 0 on ∂Mn × (0, T )

ẇ( . ,0) = Q(∇w0,∇2w0) on Mn.

The result follows from the maximum principle and the fact that Q = v
uH

. �

For the estimate of |∇u|, we have to make use of the convexity of �n.

Lemma 5 Let u be an admissible solution of (∗). Let �n be a smooth, convex cone.
Then ∇u satisfies

|∇u|e−t/n ≤
(

R2

R1

)
max
Mn

|∇u0| in Mn × [0, T ].

Proof As in [3] we differentiate (∗∗) with respect to ∇k , multiply by ∇kw, and sum
(with respect to σ ) over k. We define ψ := |∇w|2/2. Taking into account the rule for
interchanging derivatives on Sn yields

∂ψ

∂t
= Qij∇ijψ +

(
Qk + ∇kψ

u2v2H 2

)
∇kψ − 2(n − 1)

u2H 2
ψ

− |∇2w|2
u2H 2

. (1)

In order to calculate ∇μψ , we choose an orthonormal frame at x ∈ ∂Mn where
e1, . . . , en−1 ∈ Tx∂Mn and en := μ. We obtain

∇μψ =
n∑

i=1

∇ei ,enw∇ei
w =

n−1∑

i=1

(∇ei
∇enw − (∇ei

en)(w)
)∇ei

w

= −
n−1∑

i,j=1

〈∇ei
en, ej

〉∇ei
w∇ej

w = −
n−1∑

i,j=1

∂Mn

hij∇ei
w∇ej

w
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where ∂Mn
hij is the second fundamental form of ∂Mn. Since �n is convex, we see

that ψ satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂ψ
∂t

≤ Qij∇ijψ +
(
Qk + ∇kψ

u2v2H 2

)
∇kψ in Mn × (0, T )

∇μψ ≤ 0 on ∂Mn × (0, T )

ψ( . ,0) = |∇w0|2/2 on Mn.

Thus the maximum principle implies ψ ≤ maxMn |∇w0|2/2. Using the estimate for
u from Lemma 3 we obtain the desired result. �

Remark 3 A more geometric way to derive the gradient estimate would have been to
get an estimate for f := 〈F,ν〉. One can prove that f satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂f
∂t

= 1
H 2 �gf + |A|2

H 2 f in Mn × (0, T )

g∇μf = �n
hννf on ∂Mn × (0, T )

f ( . ,0) = 〈F0, ν0〉 on Mn

where all derivatives and summations are carried out with respect to the induced
metric g. The evolution equation was derived in [5]. To calculate the normal deriva-
tive, we choose an orthonormal frame at a boundary point p such that ei, . . . , en−1 ∈
Tp∂Mn

t , en = μ and en+1 = ν. Stahl [12] showed that Mn
t hiμ = −�n

hiν . Furthermore,
since �n is a cone, we obtain

0 = d

d t
〈F,μ〉 = 1

H
〈F,dμ(ν)〉 = 1

H

∑

k �=n

〈F,ek〉�n

hνk.

These formulas enable us to calculate

∇μ〈F,ν〉 = 〈μ,ν〉 +
∑

k �=n+1

〈F,ek〉 Mn
t hμk

= 〈F,ν〉 �n

hνν −
∑

k �=n

〈F,ek〉 �n

hνk + 〈F,μ〉 Mn
t hμμ = 〈F,ν〉 �n

hνν

which proves the Neumann boundary condition. Together with the fact that |A|2/H 2 ≥
1/n, the maximum principle implies the lower bound R1 ≤ f e−t/n, which is equiv-
alent to the upper bound for |Du|. The same argument as in [5] shows that also an
upper bound of the form f e−t/n ≤ R2 holds.

Remark 4 If we use the equality ∂w/∂t = 1/f H together with the estimate for
∂w/∂t and f , we obtain the estimate

(
R1

R2

)
min
Mn

H0 ≤ Het/n ≤
(

R2

R1

)
max
Mn

H0 in Mn × [0, T ].
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4 Hölder Estimates and Convergence

In this section, we will look at the rescaled surfaces F(Mn, t)e−t/n, which corre-
sponds to looking at û := ue−t/n. Lemma 1 implies the following scaling:

∇û = ∇ue−t/n,
∂û

∂t
= ∂u

∂t
e−t/n − û

n
, Ĥ = Het/n.

Therefore, the last section implies that the rescaled quantities û, ∇û, ∂û/∂t , and Ĥ

are bounded by constants independent of T . Furthermore, we can bound the following
Hölder coefficients.

Lemma 6 Let u be an admissible solution to (∗). Let �n be a smooth, convex cone.
Then there exists some β > 0 and some C > 0 such that

[∇û]β + [∂û/∂t]β + [Ĥ ]β ≤ C
(‖u0‖C2+α(Mn), n,β,Mn

)

where [f ]β := [f ]x,β +[f ]t,β/2 is the sum of the Hölder coefficients of f with respect
to x and t in the domain Mn × [0, T ].

Proof First note that the a priori estimates for |∇u| and |∂û/∂t | imply a bound for
[û]x,β and [û]t,β/2. The bound for [∇û]t,β/2 follows from a bound for [û]t,β/2 and
[8], Chap. 2, Lemma 3.1, once we have a bound for [∇û]x,β . As ∇û = û∇w, it is
enough to bound [∇w]x,β . To get this bound, we fix t and rewrite (∗∗) as an elliptic
Neumann problem with the equation

divσ

(
∇w

√
1 + |∇w|2

)

=
√

1 + |∇w|2
ẇ

− n
√

1 + |∇w|2 . (2)

Since the right-hand side is a bounded, measurable function in x, one can prove a
Morrey estimate by calculations similar to those in [7], Chap. 4, §6 (interior estimate)
and Chap. 10, §2 (boundary estimate). This yields the estimate for [∇w]x,β .

In order to get a bound for [∂û/∂t]β , we first note that ∂û
∂t

= û( ∂w
∂t

− 1
n
). Therefore,

it suffices to bound [∂w/∂t]β . Since ẇ := ∂w/∂t = 1/f H , we know from [5] that the
evolution equation for ẇ has a nice structure with respect to the induced (rescaled)
metric:

∂ẇ

∂t
= divĝ

(∇ẇ

Ĥ 2

)
−

2|∇ẇ|2
ĝ

ẇĤ 2
.

Using the fact that ẇ is strictly positive, we define the test function η := ξ2ẇ, where
ξ is a smooth function with values between zero and one and is supported in a small
parabolic neighborhood. Since ∇μẇ = 0, the interior and boundary estimate are ba-
sically the same. Only the support of ξ has to be chosen away from the boundary for
the interior estimate. Integration by parts and Young’s inequality finally yield
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1

2
‖ẇξ‖2

2,Mn
t

∣∣∣
t1

t0
+ 1

2 max Ĥ 2

∫ t1

t0

∫

Mn
t

ξ2|∇ẇ|2dμtd t

≤
(

1 + 2 max Ĥ 2

min Ĥ 4

)∫ t1

t0

∫

Mn
t

ẇ2
[
ξ

∣∣∣∣
∂ξ

∂t

∣∣∣∣ + |∇ξ |2
]

dμtd t,

similar to [8], Chap. 5, §1 (interior estimate) and §7 (boundary estimate). This implies
the bound for [ẇ]β . All local interior and boundary estimates are independent of T ,
and also the resulting global estimates do not depend on T . Note that the integration
is carried out on Mn

t , but since the metric (i.e., the gradient) is already controlled, this
doesn’t cause any problems.

The estimate for Ĥ follows from the estimates for û,∇w, ẇ, and the identity
ẇûĤ = √

1 + |∇w|2. �

Finally, we obtain the following higher-order estimates.

Lemma 7 Let u be an admissible solution to (∗). Let �n be a smooth, convex cone.
Then for every t0 ∈ (0, T ) there exists some β > 0 such that

‖û‖C2+β,1+β/2(Mn×[0,T ]) ≤ C
(‖u0‖C2+α(Mn), n,β,Mn

)

and

‖û‖C2k+β,k+β/2(Mn×[t0,T ]) ≤ C
(‖u( . , t0)‖C2k+β (Mn), n,β,Mn

)
.

Proof Since û = exp(w − t/n), it suffices to prove the estimates for w. To get the
second-order estimate, we can rewrite the evolution equation for w using leading
terms from the linearized operator of (∗∗) plus some remainder

∂w

∂t
= 1

Ĥ 2
�ĝw +

(
2
√

1 + |∇w|2
ûĤ

− n

û2Ĥ 2

)

.

Due to Lemma 6, this is a uniformly parabolic equation with Hölder continuous co-
efficients. Therefore, the linear theory (e.g., [6], Chap. 4) yields the second-order
bound.

Using this estimate, we can consider the equations for ẇ and ∇iw as linear uni-
formly parabolic equations on the time interval [t0, T ]. At the initial time t0, all com-
patibility conditions are satisfied and the initial function u( . , t0) is smooth. This im-
plies (in two steps) a C3+β,(3+β)/2 estimate for ∇iw and (in one step) a C2+β,1+β/2

estimate for ẇ. Together, this yields the result for k = 2. From [6], Chap. 4, Theo-
rem 4.3, Exercise 4.5 and the preceding arguments, one can see that the constants are
independent of T . Higher regularity is proved by induction over k. �

In view of Lemma 2, all that remains to prove Theorem 1 is the following lemma.

Lemma 8 Let n ≥ 2 and �n a smooth, convex cone. Let T ∗ be the maximal existence
time and u an admissible solution of (∗). Then T ∗ = ∞, and as t tends to infinity the
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embedding F( . , t)e−t/n converges smoothly to an embedding F∞ mapping Mn into
a piece of a round sphere with radius r∞ := (|Mn

0 |/|Mn|)1/n.

Proof From Lemma 7, we see that the Hölder norms of u = ûet/n cannot blow up as
T tends to T ∗ < ∞. Therefore, u can be extended to be a solution to (∗) in [0, T ∗].
The short time existence result of Lemma 2 together with Lemma 7 imply the exis-
tence of a solution beyond T ∗ which is smooth away from t = 0. This is a contradic-
tion to the choice of T ∗. Thus T ∗ = ∞. The a priori estimates allow us to read (1) of
Lemma 5 as

∂ψ

∂t
≤ Qij∇ijψ + Bk∇kψ − γψ

with some γ > 0 which implies an exponential decay of ψ . This shows that

|∇û| ≤
(

R2

R1

)
max
Mn

|∇u0|e−γ t .

Therefore, the gradient of û is decaying to zero. Using the formula for the first varia-
tion of area (see, e.g., [10]) and the fact that divMn

t
ν = H , we get

d

d t
|Mn

t | =
∫

Mn
t

divMn
t

(
1

H
ν

)
dμt

=
∫

Mn
t

n∑

i=1

〈
∇ei

(
1

H
ν

)
, ei

〉
dμt = |Mn

t |

where {ei}1≤i≤n is some orthonormal basis of T Mn
t . Thus, the surface area grows

exponentially, and the rescaled surfaces have constant surface area. Using the Arzelà–
Ascoli theorem and the decay of the gradient, we see that every subsequence must
converge to a constant function. The constant surface area implies |Mn

0 | = |M̂n∞| =
r∞|Mn| and shows that û( . , t) is converging in C1(Mn) to the constant function
û∞ = r∞.

Now assume that û( . , t) converges in Ck(Mn) to r∞. Since û( . , t) is uniformly
bounded in Ck+1+β(Mn), by Arzelà–Ascoli there is a subsequence which converges
to r∞ in Ck+1(Mn). Finally, every subsequence must converge, and the limit has to
be r∞. Thus, û( . , t) converges in Ck+1(Mn). This finishes the induction and shows
that the convergence is smooth. �
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