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Abstract We prove that if M is a three-manifold with scalar curvature greater than
or equal to −2 and � ⊂ M is a two-sided compact embedded Riemann surface of
genus greater than 1 which is locally area-minimizing, then the area of � is greater
than or equal to 4π(g(�) − 1), where g(�) denotes the genus of �. In the equality
case, we prove that the induced metric on � has constant Gauss curvature equal
to −1 and locally M splits along �. We also obtain a rigidity result for cylinders
(I × �,dt2 + g�), where I = [a, b] ⊂ R and g� is a Riemannian metric on � with
constant Gauss curvature equal to −1.

Keywords Minimal surfaces · Constant mean curvature surfaces · Scalar curvature ·
Rigidity
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1 Introduction

It is an interesting fact in differential geometry that if M is a three-manifold with
lower bounded scalar curvature, then the existence of an area-minimizing surface can
influence the geometry of M .

For instance, it was shown by R. Schoen and S.T. Yau [24] that if M is a compact
orientable three-manifold with nonnegative scalar curvature and � ⊂ M is an incom-
pressible two-torus (i.e., the fundamental group of � injects into that of M), then M

is flat. To prove that result, they first show that any such manifold contains a stable

Communicated by Marco Abate.

I. Nunes (�)
Instituto Nacional de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, 22460-320,
Rio de Janeiro-RJ, Brazil
e-mail: ivaldo82@impa.br

mailto:ivaldo82@impa.br


Rigidity of Area-Minimizing Hyperbolic Surfaces in Three-Manifolds 1291

minimal two-torus. Next, they observe, using the second variation formula of area,
that if M has positive scalar curvature, then every compact stable minimal surface in
M is a two-sphere. The result follows because if M admits a non-flat metric of non-
negative scalar curvature, then M also admits a metric of positive scalar curvature
(see [16]).

In [11], D. Fischer-Colbrie and R. Schoen conjectured that in Schoen and Yau’s
result above it is sufficient that M contains an area-minimizing two-torus (not neces-
sarily incompressible). This conjecture was proved in [7], by M. Cai and G. Galloway.
They proved that if M has nonnegative scalar curvature and � ⊂ M is a two-sided
embedded two-torus which is area-minimizing in its isotopy class, then M is flat.
This result is obtained as a corollary of the following local statement.

Theorem 1 (M. Cai, G. Galloway) Let (M3, g) be a Riemannian three-manifold with
nonnegative scalar curvature. If � is a two-sided embedded two-torus in M which is
locally area-minimizing, then M is flat in a neighborhood of �.

It follows that the induced metric on � is flat and that locally M splits along �.
The proof of Theorem 1 uses an argument based on a local deformation around � to
obtain a metric with positive scalar curvature.

Recently, H. Bray, S. Brendle, and A. Neves studied in [3] the case where M has
scalar curvature greater than or equal to 2 and � ⊂ M is a locally area-minimizing
embedded two-sphere. In their case, the model is the Riemannian manifold (R ×
S2, dt2 + g), where g is the standard metric on S2 with constant Gauss curvature
equal to 1. They proved the following result.

Theorem 2 (H. Bray, S. Brendle, A. Neves) Let (M3, g) be a Riemannian three-
manifold with scalar curvature Rg ≥ 2. If � is an embedded two-sphere which is lo-
cally area-minimizing, then � has area less than or equal to 4π . Moreover, if equality
holds, then � with the induced metric has constant Gauss curvature equal to 1 and
locally M splits along �.

The proof in [3] is based on a construction of a one-parameter family of con-
stant mean curvature two-spheres. A global result was also obtained using the local
one above. More precisely, it was proved that if � is area-minimizing in its homo-
topy class and has area equal to 4π , then the universal cover of M is isometric to
(R×S2, dt2 +g). A similar rigidity result for area-minimizing projective planes was
obtained in [2].

Remark 1 There is a relation between the rigidity in Theorem 2 and the Hawking
mass. If � ⊂ (M3, g) is a surface and Rg ≥ �,� ∈ R, then the Hawking mass of �,
denoted by mH (�), is defined to be

mH (�) = |�|1/2
(

8πχ(�) −
∫

�

(
H 2 + 2

3
�

)
dσ

)
,

where H is the mean curvature of �.
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Now, if � is a locally area-minimizing two-sphere with area equal to 4π and
� = 2, then � attains the maximum possible value of the Hawking mass. Suppose
we have a family of two-spheres �t ⊂ M,�0 = �, that solves the inverse mean
curvature flow. Thus, it is well known that mH (�t) is non-decreasing. Since mH (�)

is the maximum of the Hawking mass, we have that mH (�t) = mH (�) for all t and
consequently, all the two-spheres �t are minimal and have area equal to 4π .

A natural question is to know what happens when the model is the Riemannian
product manifold (R ×�,dt2 + g�), where � is a Riemann surface of genus greater
than 1 and g� is a Riemannian metric on � with constant Gauss curvature equal
to −1.

In the present paper, we prove that the analogous result is true in this case. The
first theorem of this paper is stated below.

Theorem 3 Let (M3, g) be a Riemannian three-manifold with Rg ≥ −2, where Rg

denotes the scalar curvature of M . If � ⊂ M is a two-sided compact embedded Rie-
mann surface of genus g(�) ≥ 2 which is locally area-minimizing, then

|�|g ≥ 4π(g(�) − 1), (1)

where |�|g is the area of � with respect to the induced metric. Moreover, if equality
holds, then � has a neighborhood which is isometric to ((−ε, ε) × �,dt2 + g�),
where ε > 0 and g� is the induced metric on � which has constant Gauss curvature
equal to −1. More precisely, the isometry is given by f (t, x) = expx(tν(x)), (t, x) ∈
(−ε, ε) × �, where ν is the unit normal vector field to �.

Remark 2 Note that if |�| = 4π(g(�) − 1) in Theorem 3, then mH (�) is the min-
imum (not the maximum) possible value of the Hawking mass for minimal surfaces
of genus equal to g(�). It is interesting that rigidity still holds despite the failure of
the heuristic argument of Remark 1.

We note that a related rigidity result for constant mean curvature surfaces of genus
1 was obtained in [1]. We also refer the reader to the excellent surveys [12] and [4]
on rigidity problems associated with scalar curvature.

Let us give an idea of the proof of Theorem 3. The inequality (1) follows from
the second variation of area using the Gauss equation, the lower bound of the scalar
curvature, and the Gauss–Bonnet theorem. In the equality case, we construct, using
the implicit function theorem, a one-parameter family of constant mean curvature
surfaces, denoted by �t , with �0 = � and all having the same genus. The next ar-
gument in the proof is the fundamental one. Arguing by contradiction and using the
solution of the Yamabe problem for compact manifolds with boundary and Hopf’s
maximum principle, we are able to conclude that each �t has the same area. Finally,
we obtain from this that � has a neighborhood isometric to ((−ε, ε)×�,dt2 + g�).

If we suppose that � minimizes area in its homotopy class, then we obtain global
rigidity using a standard continuation argument contained in [3, 7].
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Corollary 1 Let (M3, g) be a complete Riemannian three-manifold with Rg ≥ −2.
Moreover, suppose that � ⊂ M is a two-sided compact embedded Riemann surface
of genus g(�) ≥ 2 which minimizes area in its homotopy class. Then |�|g satisfies
inequality (1), and if equality holds, then (R ×�,dt2 + g�) is an isometric covering
of (M3, g), where g� is the induced metric on � which has constant Gauss curvature
equal to −1. The covering is given by f (t, x) = expx(tν(x)), (t, x) ∈ R × �, where
ν is the unit normal vector to �.

In recent years, several results were obtained concerning the problem of recogniz-
ing the geometry of a compact manifold with boundary, provided the geometry of the
boundary is known and some curvature conditions are satisfied. For example, in [17],
P. Miao observed that the positive mass theorem (see [23, 28]) implies the following
rigidity result for the unit ball Bn ⊂ R

n.

Theorem 4 (P. Miao) Let g be a smooth Riemannian metric on Bn with nonnegative
scalar curvature such that ∂Bn = Sn−1 with the induced metric has mean curvature
greater than or equal to n−1 and is isometric to Sn−1 with the standard metric. Then
g is isometric to the standard metric of Bn.

The theorem above was generalized by Y. Shi and L. Tam in [25]. In [19],
M. Min-Oo proved a scalar rigidity result for the hyperbolic space. Moreover, ana-
logues of the positive mass theorem for asymptotically hyperbolic manifolds were
obtained in [8] and [27]. We note that these results imply the analogue of the Miao’s
theorem for geodesic balls in the hyperbolic space.

Inspired by the above results, M. Min-Oo [20] conjectured the following scalar
curvature rigidity for the hemisphere Sn+:

Min-Oo’ s Conjecture Let g be a smooth metric on the hemisphere Sn+ with scalar
curvature Rg ≥ n(n − 1) such that the induced metric on ∂Sn+ agrees with the stan-
dard metric on ∂Sn+ and is totally geodesic. Then g is isometric to the standard metric
on Sn+.

This conjecture is true for n = 2, in which case it follows by a theorem of Topono-
gov [26] (see also [13]). Recently, counterexamples were constructed by S. Brendle,
F.C. Marques and A. Neves in [6] for n ≥ 3.

We refer the reader to [9, 13, 15] for partial results concerning Min-Oo’s conjec-
ture. In [5], a rigidity result for small geodesic balls of Sn was proved.

The next theorem is a rigidity result for cylinders ([a, b] × �,dt2 + g�), where
� is a Riemann surface of genus greater than 1 and constant Gauss curvature equal
to −1. This is similar to Miao’s result and Min-Oo’s conjecture, the difference being
that in our setting we are dealing with cylinders instead of geodesic balls.

Recall that a three-manifold is irreducible if every embedded 2-sphere in M

bounds a 3-ball embedded in M .

Theorem 5 Let � be a compact Riemann surface of genus g(�) ≥ 2 and g� a metric
on � with K� ≡ −1. Let (
3, g) be a compact orientable irreducible connected
Riemannian three-manifold with boundary satisfying the following properties:



1294 I. Nunes

• Rg ≥ −2.
• Hg ≥ 0. (Hg is the mean curvature of ∂
, and the convention for the mean curva-

ture is �Hg = −Hgη, where �H is the mean curvature vector and η is the outward
normal vector.)

• Some connected component of ∂
 is incompressible in 
 and with the induced
metric is isometric to (�,g�).

Moreover, suppose that 
 does not contain any one-sided compact embedded surface.
Then (
,g) is isometric to ([a, b] × �,dt2 + g�).

We note that the similar result for cylinders [a, b] × S2, where S2 is the round
unit sphere, does not hold. In fact, consider a rotationally symmetric metric g =
u(t)4(dt2 + gS2) on R × S2 with constant scalar curvature equal to 2 such that
u(0) > 1 and u′(0) = 0 (see [22]). Choosing a > 0 such that u(a) = u(0), we have
that the rescaled metric g = u(0)−4 g on [0, a] × S2 gives a counterexample.

The following example justifies the requirement that 
 does not contain any one-
sided compact embedded surface. Let (�̂, g

�̂
) be a compact non-orientable surface

with constant Gauss curvature equal to −1. Denote by � the orientable double cov-
ering of �̂ and by π the covering map. Now, let g� = π∗g

�̂
and consider (M =

[−k, k] × �,g = dt2 + g�). Take the subgroup � = {id, f } ⊂ Iso(M,g), where f

is defined by f (t, x) = (−t, φ(x)) and φ ∈ Iso(�,g�) is the non-trivial deck trans-
formation of π : � −→ �̂. Now, consider the Riemannian manifold (
,g
), where

 = M/� and g
 is the quotient metric. Note that 
 is orientable and irreducible,
Rg
 = −2, Hg
 = 0, ∂
 is incompressible in 
 and with the induced metric is iso-
metric to (�,g�). Finally, observe that ∂
 has only one component and that the
image of {0} × � is a one-sided compact embedded surface in 
.

We note that recently M. Micallef and V. Moraru provided an alternative argument
to prove Theorem 3 (see [18]).

2 Proof of Inequality (1)

Let ν be the unit normal vector field to �. For each function φ ∈ C∞(�), we have,
by the second variation formula of area and the fact that � is locally area minimizing,
that ∫

�

(Ric(ν, ν) + |A|2)φ2 dσ ≤
∫

�

|∇φ|2 dσ,

where A and dσ denote the second fundamental form and the area element of �,
respectively. Choosing φ = 1, we obtain∫

�

(Ric(ν, ν) + |A|2) dσ ≤ 0. (2)

Now, the Gauss equation implies

Ric(ν, ν) = 1

2
Rg − K� − 1

2
|A|2, (3)

where K� denotes the Gauss curvature of �.
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Substituting (3) in (2), we get

1

2

∫
�

(Rg + |A|2) dσ ≤
∫

�

K� dσ. (4)

By the Gauss–Bonnet theorem and the fact that Rg ≥ −2 and |A|2 ≥ 0, we have

−|�|g ≤ 4π(1 − g(�)).

Therefore, |�|g ≥ 4π(g(�) − 1).

3 Equality Case

Proposition 1 If � attains the equality in (1), then � is totally geodesic. Moreover,
Ric(ν, ν) = 0 and Rg = −2 on �, and � has constant Gauss curvature equal to −1
with the induced metric.

Proof If |�|g = 4π(g(�) − 1), then it follows from the proof of (1) that inequal-
ities (2) and (4) are in fact equalities. The equality in (2) together with the stabil-
ity of � implies that the constant functions are in the kernel of the Jacobi operator
L = �� + Ric(ν, ν) + |A|2 of �. Therefore, Ric(ν, ν) + |A|2 = 0 on �.

Now, equality in (4) implies that Rg = −2 and A = 0 on �. Finally, by (3), we
conclude that � has constant Gauss curvature equal to −1 with the induced metric. �

The construction in the next proposition is fundamental to conclude the rigidity in
Theorem 3. The same construction was used in [1] and [3] to prove similar rigidity
results. We prove it here for completeness.

Proposition 2 If � attains the equality in (1), then there exist ε > 0 and a smooth
family �t ⊂ M , t ∈ (−ε, ε) of compact embedded surfaces satisfying:

• �t = {expx(w(t, x)ν(x)) : x ∈ M}, where w : (−ε, ε)×� −→ R is a smooth func-
tion such that

w(0, x) = 0,
∂w

∂t
(0, x) = 1 and

∫
�

(w(t, ·) − t) dσ = 0.

• �t has constant mean curvature for all t ∈ (−ε, ε).

Proof By the previous proposition, we have L = �� . Fix α ∈ (0,1) and consider the
Banach spaces X ={u∈C2,α(�) : ∫

�
udσ =0} and Y ={u∈C0,α(�) : ∫

�
udσ =0}.

For each real function u defined on �, let �u = {expx(u(x)ν(x)) : x ∈ �}, where ν

is the unit normal vector field to �.
Choose ε > 0 and δ > 0 such that �u+t is a compact surface of class C2,α for all

(t, u) ∈ (−ε, ε) × B(0, δ), where B(0, δ) = {u ∈ X : ‖u‖C2,α < δ}. Denote by H�u+t

the mean curvature of �u+t .
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Now, consider the map � : (−ε, ε) × B(0, δ) −→ Y defined by

�(t,u) = H�u+t − 1

|�|
∫

�

H�u+t dσ.

Notice that �(0,0) = 0 because �0 = �.
The next step is to compute D�(0,0) · v, for v ∈ X. We have

D�(0,0) · v = d�

ds
(0, sv)|s=0

= d

ds

(
H�sv − 1

|�|
∫

�

H�sv dσ

)∣∣∣∣
s=0

= −Lv + 1

|�|
∫

�

Lv dσ

= −��v,

where the last equality follows from the fact that L = �� .
Since �� : X −→ Y is a linear isomorphism, we have, by the implicit function

theorem, that there exist 0 < ε1 < ε and u(t) = u(t, ·) ∈ B(0, δ) for t ∈ (−ε1, ε1)

such that

u(0) = 0 and �(t,u(t)) = 0, ∀t ∈ (−ε1, ε1).

Thus, defining w(t, x) = u(t, x) + t , for (t, x) ∈ (−ε1, ε1) × �, we have that all
the surfaces �t = {expx(w(t, x)ν(x)) : x ∈ �} have constant mean curvature. It is
easy to see that w(t, x) satisfies all the conditions stated in the proposition. �

Let ν(t) denote the unit normal vector field to �t such that ν(0) = ν. In our con-
vention, the mean curvature H(t) of �t satisfies �H(t) = −H(t)ν(t), where �H(t) is
the mean curvature vector of �t . In this case, we have

d

dt
|�t |g = H(t)

∫
�t

〈
ν(t),

∂f

∂t
(t, ·)

〉
dσt , (5)

where f (t, x) = expx(w(t, x) ν(x)), x ∈ �. Notice that ∂f
∂t

(0, x) = ν(x), so we can

suppose, decreasing ε if necessary, that
∫
�t

〈ν(t),
∂f
∂t

(t, ·)〉 dσt is positive for all t ∈
(−ε, ε). Moreover, we can assume that |�|g ≤ |�t |g for all t ∈ (−ε, ε), because � is
locally area-minimizing.

Before we prove the next proposition, we will recall some facts about the Yamabe
problem on manifolds with boundary which was first studied by J.F. Escobar [10]. Let
(Mn,g) be a compact Riemannian manifold with boundary ∂M �= ∅. It is a basic fact
that the existence of a metric g in the conformal class of g having scalar curvature
equal to C ∈ R and the boundary being a minimal hypersurface is equivalent to the
existence of a positive smooth function u ∈ C∞(M) satisfying

{
�gu − n−2

4(n−1)
Rgu + n−2

4(n−1)
Cu(n+2)/(n−2) = 0 on M,

∂u
∂η

+ n−2
2(n−1)

Hgu = 0 on ∂M
(6)
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where η is the outward normal vector with respect to the metric g.
If u is a solution of the equation above, then u is a critical point of the following

functional:

Qg(φ) =
∫
M

(|∇gφ|2g + n−2
4(n−1)

Rg φ2) dv + n−2
2(n−1)

∫
∂M

Hgφ
2 dσ

(
∫
M

|φ|2n/(n−2) dv)(n−2)/n
.

The Sobolev quotient Q(M) is then defined by

Q(M) = inf{Qg(φ) : φ ∈ C1(M),φ �= 0}.
It is a well-known fact that Q(M) ≤ Q(Sn+), where Sn+ is the upper standard hemi-

sphere, and that if Q(M) < Q(Sn+), then there exists a smooth minimizer for the func-
tional above. This function turns out to be a positive solution of (6), with a constant C

that has the same sign as Q(M).

Proposition 3 There exists 0 < ε1 < ε such that H(t) ≤ 0 ∀t ∈ [0, ε1).

Proof Suppose, by contradiction, that there exists a sequence εk → 0, εk > 0, such
that H(εk) > 0 for all k. Consider (Vk, gk), where Vk = [0, εk] × � and gk is the
pullback of the metric g by f |Vk

: Vk −→ M . Therefore, Vk is a compact three-
manifold with boundary satisfying

• Rgk
≥ −2.

• The mean curvature of ∂Vk with respect to the outward normal vector, denoted by
Hgk

, is nonnegative. More precisely, ∂Vk = � ∪�εk
, where � is a minimal surface

and �εk
has positive constant mean curvature.

• |�|gk
= 4π(g(�) − 1).

Claim 1 For k sufficiently large, we have Q(Vk) < 0. In particular, this implies
Q(Vk) < Q(S3+).

Proof By Proposition 1, we have Rg = −2 on �. Therefore, by continuity, we have
−2 ≤ Rgk

≤ −1 on Vk for k sufficiently large. Choosing φ = 1, we obtain

Qgk
(φ) =

1
8

∫
Vk

Rgk
dvk + 1

4

∫
∂Vk

Hgk
dσk

Vol(Vk)1/3

≤ − 1
8 Vol(Vk) + 1

4H(εk)|�εk
|gk

Vol(Vk)1/3
.

Since ∂f
∂t

(0, x) = ν(x) and the stability operator of � is equal to �� , we obtain
that d

dt
H(t)|t=0 = 0. Therefore, we conclude that H(εk) = O(ε2

k ) because H(0) =
H� = 0. Moreover, if V (t) = [0, t] × � and gt = (f |V (t))

∗g, we have that

Vol(V (t)) = Vol(V (t), gt )

=
∫

[0,t]×�

(f |V (t))
∗dv
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=
∫

[0,t]×�

h(s, x) ds ∧ dσ

=
∫ t

0

∫
�

h(s, x) dσ ds,

where h is defined by h(s, x) = dv(
∂f
∂s

(s, x),Df (s, x) e1,Df (s, x) e2) and {e1, e2} ⊂
T � is a positive orthonormal basis with respect to the induced metric on �. From
this, we get

d

dt
Vol(V (t))|t=0 =

∫
�

h(0, x) dσ.

Since ∂f
∂s

(0, x) = ν(x), we have h(0, x) = 1. Hence, d
dt

Vol(V (t))|t=0 = |�|g .
From this, we obtain that Vol(Vk) = εk|�|gk

+ O(ε2
k ). Finally, it is easy to see that

for k sufficiently large we have Q(Vk) ≤ Qgk
(φ) < 0. This concludes the proof of the

claim. �

Choose k sufficiently large such that Q(Vk) < 0. Thus, we have that there exists a
positive function u ∈ C∞(Vk) such that the metric g = u4gk satisfies

Rg = C < 0, C ∈ R, on Vk and Hg = 0 on ∂Vk.

After scaling the metric g if necessary, we can suppose that C = −2.
In analytic terms, this means that u solves

{
�gk

u − 1
8Rgk

u − 1
4u5 = 0 on Vk,

∂u
∂η

+ 1
4Hgk

u = 0 on ∂Vk.
(7)

By (7) and the fact that Rgk
≥ −2, we have

�gk
u + 1

4
u − 1

4
u5 ≥ 0 on Vk.

Consider x0 ∈ Vk such that u(x0) = maxx∈Vk
u(x). If x0 ∈ Vk \ ∂Vk , then we get

1

4
u(x0) ≥ 1

4
u(x0)

5.

Thus, u(x0) ≤ 1. It follows, by the maximum principle, that either u ≡ 1 or u < 1.
The first possibility does not occur because the mean curvature of �gk

with respect
to gk is positive, and with respect to g is equal to zero. It follows that u < 1.

Now, suppose x0 ∈ ∂Vk . If u(x0) ≥ 1, we obtain, by Hopf’s boundary point lemma,
that either u is constant or ∂u

∂η
(x0) > 0. The first possibility does not occur by the

same argument used in the interior maximum case. But, since Hgk
≥ 0, (7) implies

that ∂u
∂η

(x0) ≤ 0. Thus, the second possibility is also not possible. Hence, u(x0) < 1.
Therefore, we conclude that u(x) < 1 for all x ∈ Vk . From this, we obtain that

|�|g < |�|gk
= 4π(g(�) − 1).
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Finally, denote by I(�) the isotopy class of � in Vk . Observe that � is incom-
pressible in Vk . Moreover, we have that Vk is orientable and irreducible and does
not contain any one-sided compact embedded surface. Since Hg = 0, we can directly
apply the version for three-manifolds with boundary of the Theorem 5.1 in [14] (see
also [21]) to obtain a compact embedded surface � ∈ I(�) such that

|�|g = inf
�̂∈I(�)

|�̂|g.

Therefore, |�|g ≤ |�|g < 4π(g(�)−1). But this is a contradiction with (1), since
we have proven, by using the lower bound Rg ≥ −2 and the second variation of area,
that we must have |�|g ≥ 4π(g(�) − 1). This concludes the proof of the proposi-
tion. �

Next, we will conclude the rigidity in Theorem 3. Observe that Proposition 3 im-
plies d

dt
|�t |g ≤ 0 for all t ∈ [0, ε1). Thus, |�t |g ≤ |�|g for all t ∈ [0, ε1) and this

implies |�t |g = |�|g for all t ∈ [0, ε1) because � is locally area-minimizing. There-
fore, by Proposition 1, we have that �t is totally geodesic and Ric(ν(t), ν(t)) = 0 on
�t for all t ∈ [0, ε1). In particular, we have that all the surfaces �t are minimal and
the stability operator of �t , denoted by L�t , is equal to ��t .

Define ρ(t)(x) = ρ(t, x) = 〈ν(t, x),
∂f
∂t

(t, x)〉. We have

L�t ρ(t) = −H ′(t),

so ��t ρ(t) = 0. Thus, ρ(t) does not depend on x.
Since �t is totally geodesic, we have that ∇ ∂f

∂xi

ν(t) = 0 for all i = 1,2, where

(x1, x2) are local coordinates on �. Moreover, by the fact that 〈ν(t), ν(t)〉 = 1, we
have that ∇ ∂f

∂t
ν(t) is tangent to �t . Hence, it follows that

〈
∇ ∂f

∂t
ν(t),

∂f

∂xi

〉
= ∂

∂t

〈
ν(t),

∂f

∂xi

〉
− 〈

ν(t),∇ ∂f
∂t

(∂f/∂xi)
〉

= −〈
ν(t),∇ ∂f

∂xi

(∂f/∂t)
〉

= − ∂

∂xi

ρ(t)

= 0,

for all i = 1,2. Hence, ∇ ∂f
∂t

ν(t) = 0. This means that, for all x ∈ �, ν(t, x) is a

parallel vector field along the curve αx : [0, ε1) −→ M given by αx(t) = f (t, x) =
expx(w(t, x)ν(x)).

Observe that D(expx)w(t,x)ν(x)(ν(x)) is also a parallel vector field along the
curve αx . Thus, ν(t, x) = D(expx)w(t,x)ν(x)(ν(x)) because w(0, x) = 0 by Propo-
sition 1. From this, we conclude that ρ(t) = ∂w

∂t
(t, x).

By Proposition 1, we have
∫

�

(w(t, x) − t) dσ = 0,
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so ∫
�

∂w

∂t
(t, x) dσ = |�|g.

Therefore, since ∂w
∂t

(t, x) does not depend on x, we get ∂w
∂t

(t, x) = 1. This implies
that w(t, x) = t for all (t, x) ∈ [0, ε1) × � because w(0, x) = 0. Thus, we conclude
that f (t, x) = expx(tν(x)) and, since �t are totally geodesic, the pullback of g by
f |[0,ε1)×� is the product metric dt2 + g� , where g� is the induced metric on �.

Arguing similarly for t ≤ 0, we obtain the following proposition which is the rigid-
ity in Theorem 3.

Proposition 4 If � attains the equality in (1), then � has a neighborhood which is
isometric to ((−ε, ε) × �,dt2 + g�), where ε > 0 and g� is the induced metric on
� which has constant Gauss curvature equal to −1.

Now, we will prove Corollary 1. Suppose � minimizes area in its homotopy class
and � attains the equality in (3). Define f : R×� −→ M by f (t, x) = expx(tν(x)),
where ν is the unit normal vector field to �.

Proposition 5 f : (R × �,dt2 + g�) −→ (M,g) is a local isometry.

Proof Consider A = {t > 0 : f |[0,t]×� is a local isometry}. By Proposition 4, this set
is nonempty. Moreover, A is closed. Let us prove that A is open. Given t ∈ A, con-
sider the immersed surface �t = {expx(tν(x)) : x ∈ �} with the metric induced by f .
We have that �t is homotopic to � and |�t | = |�|. Hence, �t minimizes area in its
homotopy class and attains the equality in (1). Therefore, by Proposition 4, we con-
clude that there exists ε > 0 such that f |[0,t+ε]×� is a local isometry. It follows that A

is open and consequently f |[0,∞)×� is a local isometry. Arguing similarly for t < 0,
we conclude the proposition. �

To conclude Corollary 1, observe that the proposition above implies that f : (R ×
�,dt2 + g�) −→ (M,g) is a covering map.

4 Proof of Theorem 5

Let ∂
(1) be a connected component of ∂
 which is isometric to (�,g�). Consider
α = inf{|�̂|g : �̂ ∈ I(∂
(1))}, where I(∂
(1)) is the isotopy class of I(∂
(1)). By
hypothesis, ∂
(1) is incompressible in 
, Hg ≥ 0, and 
 is orientable and irreducible
and does not contain one-sided compact embedded surfaces. Therefore, we can ap-
ply the version for three-manifolds with boundary of the Theorem 5.1 in [14] (see
also [21]) to obtain a compact embedded surface � ∈ I(∂
(1)) such that |�| = α.
Note that � ∈ I(∂
(1)) implies � has genus equal to g(�).

Since all connected components of ∂
 have nonnegative mean curvature, it fol-
lows from the maximum principle that either � is a boundary component of 
 or
� is in the interior of 
. If � is in the interior of 
, then we obtain, by Theo-
rem 3, that |�| ≥ 4π(g(�) − 1) since Rg ≥ −2 and � has genus equal to g(�).
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On the other hand, we have |∂
(1)| = 4π(g(�) − 1) because ∂
(1) is isometric to
(�,g�). From this, we get |�| = 4π(g(�)− 1). Now, if � is a boundary component
of 
, then we have that � is a minimal surface because � is area-minimizing and,
by hypothesis, has nonnegative mean curvature. This implies, using Theorem 3, that
|�| ≥ 4π(g(�) − 1). Again we conclude that |�| = 4π(g(�) − 1). It follows from
the previous arguments that we can suppose � = ∂
(1).

By the proof of the rigidity in Theorem 3, we have that there exists ε > 0 such that
the normal exponential map f : [0, ε) × � −→ 
 defined by f (t, x) = expx(tν(x)),
where ν is the inward normal vector, is an injective local isometry.

Define l = sup{t > 0 : f (t, x) = expx(tν(x)) is defined on [0, t) × � and is an
injective local isometry}. Since 
 is complete, we have that the normal geodesics
to � extend to t = l. Thus, f is defined on [0, l] × �. By continuity and the defi-
nition of l, we obtain that f : [0, l] × � −→ 
 is a local isometry. In particular, by
continuity, the immersion f : �l −→ 
 is totally geodesic, where �l = {l} × �.

Again using the maximum principle, we obtain that either f (�l) is a boundary
component of 
, different from � because of the injectivity of f on [0, l) × �, or
f (�l) is in the interior of 
.

Suppose f (�l) is a boundary component of 
. Since f is a local isometry on
[0, l] × �, we have ∂f

∂t
(l, x) is a unit normal vector to �l . It follows from this that

f : �l −→ 
 is injective because �l is a boundary component of 
. Thus, f : [0, l]×
� −→ 
 is an injective local isometry. Since 
 is connected, we obtain f ([0, l] ×
�) = 
. Therefore, we have that 
 is isometric to [0, l] × �.

Let us analyze the case where f (�l) is in the interior of 
. First, we have that
f : �l −→ 
 cannot be injective. In fact, suppose f : �l −→ 
 is injective. Thus,
by the rigidity in Theorem 3, there exists ε > 0 such that f : [0, l + ε) −→ 


is an injective local isometry, which is a contradiction because of the maximal-
ity of l. Therefore, there exist x, y ∈ �,x �= y, such that f (l, x) = f (l, y). We
have Df (l, x)(T �l) = Df (l, y)(T �l), since otherwise f would not be injective

on [0, l) × �. This implies ∂f
∂t

(l, x) = − ∂f
∂t

(l, y). Thus, since f : �l −→ 
 is to-
tally geodesic, there exist neighborhoods of x and y in �l , respectively, such that
the images by f of these neighborhoods coincide. We conclude that �̂l = f (�l) is
a one-sided embedded compact surface in 
. But, this is a contradiction because,
by hypothesis, 
 does not contain any one-sided embedded compact surface. This
concludes the proof of Theorem 5.
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