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Abstract The relative isoperimetric inequality inside an open, convex cone C states
that, at fixed volume, Br ∩ C minimizes the perimeter inside C. Starting from the
observation that this result can be recovered as a corollary of the anisotropic isoperi-
metric inequality, we exploit a variant of Gromov’s proof of the classical isoperimet-
ric inequality to prove a sharp stability result for the relative isoperimetric inequal-
ity inside C. Our proof follows the line of reasoning in Figalli et al.: Invent. Math.
182:167–211 (2010), though several new ideas are needed in order to deal with the
lack of translation invariance in our problem.

Keywords Relative isoperimetric inequality · Optimal transport · Sets of finite
perimeter

1 Introduction

1.1 Overview

Recently, there has been a lot of interest in quantitative estimates for isoperimetric
[14, 16, 18, 23, 24], Sobolev [3, 10, 11, 19], Gagliardo–Nirenberg [9], and Brunn–
Minkowski [17, 35] type inequalities. The aim of all of these results is to show that if
a set/function almost attains the equality in one of these inequalities, then it is close
(in a quantitative way) to a minimizer. These results have natural applications in the
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study of the asymptotic behavior of solutions to evolution equations [9], and to show
stability for minimizers of perturbed variational problems; see, for instance, [15, 32].
Our goal is to investigate stability for the relative isoperimetric inequality inside con-
vex cones. This inequality has been used, for instance, to characterize isoperimetric
regions inside convex polytopes for small volumes [22, Corollary 3]. Hence, as in
[15], one may use our stability result to prove quantitative closeness to such isoperi-
metric regions in perturbed situations.

Let n ≥ 2, and C ⊂ R
n be an open, convex cone. We denote the unit ball in R

n cen-
tered at the origin by B1 (similar notation is used for a generic ball) and the De Giorgi
perimeter of E relative to C by

P(E|C) := sup

{∫
E

divψdx : ψ ∈ C∞
0

(
C;R

n
)
, |ψ | ≤ 1

}
. (1.1)

The relative isoperimetric inequality for convex cones states that if E ⊂ C is a Borel
set with finite Lebesgue measure |E|, then

n|B1 ∩ C| 1
n |E| n−1

n ≤ P(E|C). (1.2)

If E has a smooth boundary, the perimeter of E is simply the (n − 1)-Hausdorff
measure of the boundary of E inside the cone (i.e., P(E|C) = Hn−1(∂E ∩ C)). We
also note that if one replaces C by R

n, then the above inequality reduces to the clas-
sical isoperimetric inequality for which there are many different proofs and formu-
lations (see, e.g., [4, 7, 8, 23, 33, 36]). However, (1.2) is ultimately due to Lions and
Pacella [27] (see also [34] for a different proof using second-order variations). Their
proof is based on the Brunn–Minkowski inequality, which states that if A,B ⊂ R

n

are measurable, then

|A + B| 1
n ≥ |A| 1

n + |B| 1
n . (1.3)

As we will show below, (1.2) can be seen as an immediate corollary of the
anisotropic isoperimetric inequality (1.7). This fact suggested to us that there should
also be a direct proof of (1.2) using optimal transport theory (see Theorem 2.2), as is
the case for the anisotropic isoperimetric inequality [11, 16].1 The aim of this paper
(in the spirit of [16]) is to exploit such a proof in order to establish a quantitative
version of (1.2). To make this precise, we need some more notation.

We define the relative isoperimetric deficit of a Borel set E by

μ(E) := P(E|C)

n|B1 ∩ C| 1
n |E| n−1

n

− 1. (1.4)

Note that (1.2) implies μ(E) ≥ 0. The equality cases were considered in [27] for the
special case when C \ {0} is smooth (see also [34]). We will work out the general case

1After completion of this work, we discovered that Frank Morgan had already observed that Gromov’s
argument may be used to prove the relative isoperimetric inequality inside convex cones [21, Remark af-
ter Theorem 10.6], though he was thinking about using the Knothe map instead of the Brenier map. How-
ever, as observed in [16, Sect. 1.5], the Brenier map is much more powerful than the Knothe map when
dealing with stability estimates.
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in Theorem 2.2 with a self-contained proof. However, the (nontrivial) equality case
is not needed in proving the following theorem (which is in any case a much stronger
statement):

Theorem 1.1 Let C ⊂ R
n be an open, convex cone containing no lines, K = B1 ∩ C ,

and E ⊂ C a set of finite perimeter with 0 < |E| < ∞. Suppose s > 0 satisfies |E| =
|sK|. Then there exists a constant C(n,K) > 0 such that

|E�(sK)|
|E| ≤ C(n,K)

√
μ(E).

The assumption that C contains no lines is crucial. To see this, consider the extreme
case when C = R

n. Let ν ∈ S
n−1 be any unit vector and set E = 2ν + B1 so that

|E�B1| = 2|B1| > 0. However, μ(E) = 0 so that in this case Theorem 1.1 can only
be true up to a translation, and this is precisely the main result in [16] and [24]. Similar
reasoning can be applied to the case when C is a proper convex cone containing a line
(e.g., a half space). Indeed, if C contains a line, then by convexity one can show that
(up to a change of coordinates) it is of the form R × C̃ , with C̃ ⊂ R

n−1 an open,
convex cone. Therefore, by taking E to be a translated version of K along the first
coordinate, the symmetric difference will be positive, whereas the relative deficit will
remain 0.

In general (up to a change of coordinates), every convex cone is of the form C =
R

k × C̃ , where C̃ ⊂ R
n−k is a convex cone containing no lines. Indeed, Theorem 1.1

follows from our main result:

Theorem 1.2 Let C = R
k × C̃ , where k ∈ {0, . . . , n} and C̃ ⊂ R

n−k is an open, convex
cone containing no lines. Set K = B1 ∩ C , and let E ⊂ C be a set of finite perimeter
with 0 < |E| < ∞. Suppose s > 0 satisfies |E| = |sK|. Then there exists a constant
C(n,K) > 0 such that

inf

{ |E�(sK + x)|
|E| : x = (x1, . . . , xk,0, . . . ,0)

}
≤ C(n,K)

√
μ(E).

Let us remark that if k = n, then C = R
n and the theorem reduces to the main

result of [16], the only difference being that here we do not attempt to find any ex-
plicit upper bound on the constant C(n,K). However, since all of our arguments are
“constructive,” it is possible to find explicit upper bounds on C(n,K) in terms of n

and the geometry of C (see also Section 1.4).

1.2 The Anisotropic Isoperimetric Inequality

As we will show below, our result is strictly related to the quantitative version of
the anisotropic isoperimetric inequality proved in [16]. To show this link, we first
introduce some more notation. Suppose K is an open, bounded, convex set, and let2

‖ν‖K∗ := sup{ν · z : z ∈ K}. (1.5)

2Usually in the definition of ‖ · ‖K∗ , K is assumed to contain the origin. However, this is not needed (see
Lemma 2.1).
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The anisotropic perimeter of a set E of finite perimeter (i.e., P(E|Rn) < ∞) is de-
fined as

PK(E) :=
∫

F E

‖νE(x)‖K∗dHn−1(x), (1.6)

where F E is the reduced boundary of E, and νE : F E → S
n−1 is the measure theo-

retic outer unit normal (see Sect. 2). Note that for λ > 0, PK(λE) = λn−1PK(E) and
PK(E) = PK(E + x0) for all x0 ∈ R

n. If E has a smooth boundary, F E = ∂E so
that for K = B1 we have PK(E) = Hn−1(∂E). In general, one can think of ‖ · ‖K∗
as a weight function on unit vectors. Indeed, PK has been used to model surface
tensions in the study of equilibrium configurations of solid crystals with sufficiently
small grains (see, e.g., [26, 37, 39]) and also in modeling surface energies in phase
transitions (see [25]).

The anisotropic isoperimetric inequality states

n|K| 1
n |E| n−1

n ≤ PK(E). (1.7)

This estimate (including equality cases) is well known in the literature (see, e.g.,
[6, 12, 13, 20, 31, 37, 38]). In particular, Gromov [31] uses certain properties of the
Knothe map from E to K in order to establish (1.7). However, as pointed out in [11]
and [16], the argument may be repeated verbatim if one uses the Brenier map instead.
This approach leads to certain estimates which are helpful in proving a sharp stability
theorem for (1.7) (see [16, Theorem 1.1]). Using the anisotropic perimeter, we now
introduce the isoperimetric deficit of E

δK(E) := PK(E)

n|K| 1
n |E| n−1

n

− 1. (1.8)

Note that δK(λE) = δK(E) and δK(E + x0) = δK(E) for all λ > 0 and x0 ∈ R
n.

Thanks to (1.7) and the associated equality cases, we have δK(E) ≥ 0 with equality if
and only if E is equal to K (up to a scaling and translation). Note also the similarity
between μ and δK . Indeed, they are both scaling invariant; however, μ may not be
translation invariant (depending on C ). We denote the asymmetry index of E by

A(E) := inf

{
E�(x0 + rK)

|E| : x0 ∈ R
n, |rK| = |E|

}
. (1.9)

The general stability problem consists of proving an estimate of the form

A(E) ≤ CδK(E)
1
β , (1.10)

where C = C(n,K) and β = β(n,K). In the Euclidean case (i.e., K = B1), Hall
conjectured that (1.10) should hold with β = 2, and this was confirmed by Fusco,
Maggi, Pratelli [24]. Indeed, the 1

2 exponent is sharp (see, e.g., [28, Figure 4]). Their
proof depends heavily on the full symmetry of the Euclidean ball. For the general
case when K is a generic convex set, non-sharp results were obtained by Esposito,
Fusco, Trombetti [14], while the sharp estimate was recently obtained by Figalli,
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Maggi, Pratelli [16]. Their proof uses a technique based on optimal transport the-
ory. For more information about the history of (1.10), we refer the reader to [16]
and [28].

1.3 Sketch of the Proof of Theorem 1.2

We now provide a short sketch of the proof of Theorem 1.2 for the case when
|E| = |K| and E has a smooth boundary. The first key observation is that the rel-
ative isoperimetric inequality inside a convex cone is a direct consequence of the
anisotropic isoperimetric inequality with K = B1 ∩ C . Indeed, as follows from the
argument in Sect. 2.2, PK(E) ≤ Hn−1(∂E ∩ C), so (1.2) follows immediately from
(1.7). This observation suggests that one may exploit Gromov’s argument in a simi-
lar way as in the proof of [16, Theorem 1.1] to obtain additional information on E.
Indeed, we can show that there exists a vector α = α(E) ∈ R

n such that3

∫
∂E∩C

|1 − |x − α‖dHn−1 ≤ C(n,K)
√

δK(E), (1.11)

|E�(α + K)| ≤ C(n,K)
√

δK(E). (1.12)

Let us write α = (α1, α2), with α1 ∈ R
k and α2 ∈ R

n−k . Moreover, let Ẽ := E −
(α1,0). Then using that C = R

k × C̃ , we obtain ∂E ∩ C − (α1,0) = ∂Ẽ ∩ C ; therefore,
∫

∂Ẽ∩C
|1 − |x − (0, α2)‖dHn−1 ≤ C(n,K)

√
δK(E), (1.13)

∣∣Ẽ�
(
(0, α2) + K

)∣∣ ≤ C(n,K)
√

δK(E). (1.14)

Since δK(E) ≤ μ(E) (see Corollary 2.3), (1.13) and ( 1.14) hold with μ(E) in place
of δK(E) (see Lemmas 3.6 & 3.7). Thanks to (1.14), we see that our result would
readily follow if we can show

|α2| ≤ C(n,K)
√

μ(E). (1.15)

Indeed, since |(0, α2) + K)�K| ∼ |α2| (see Lemmas 3.1 & 3.2),

|Ẽ�K|
|E| ≤ 1

|K|
(∣∣Ẽ�

(
(0, α2) + K

)∣∣ + ∣∣((0, α2) + K
)
�K

∣∣)

≤ C̃(n,K)
√

μ(E),

which, of course, implies Theorem 1.2. Therefore, we are left with proving (1.15).
First, assume that μ(E) and |α2| are sufficiently small (i.e., smaller than a constant
depending only on n and K). By (1.13) and the fact that (see Sect. 2)

Hn−1(∂Ẽ ∩ (
B 3

4

(
(0, α2)

) ∩ C
)) = P

(
Ẽ|B 3

4

(
(0, α2)

) ∩ C
)
,

3The existence of a vector α such that (1.12) holds is exactly the main result in [16]. However, here we
need to show that we can find a vector such that both (1.11) and (1.12) hold simultaneously.
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we have

C(n,K)
√

μ(E) ≥
∫

∂Ẽ∩C
|1 − |x − (0, α2)‖dHn−1(x)

≥
∫

∂Ẽ∩C∩{|1−|x−(0,α2)‖≥ 1
4 }

|1 − |x − (0, α2)‖dHn−1(x)

≥ 1

4
Hn−1

(
∂Ẽ ∩ C ∩

{
|1 − |x − (0, α2)‖ ≥ 1

4

})

≥ 1

4
Hn−1(∂Ẽ ∩ (

B 3
4

(
(0, α2)

) ∩ C
))

= 1

4
P

(
Ẽ|B 3

4

(
(0, α2)

) ∩ C
)
.

But since |α2| is small, B 1
2
(0) ∩ C ⊂ B 3

4
((0, α2)) ∩ C ; hence,

P
(
Ẽ|B 3

4

(
(0, α2)

) ∩ C
) ≥ P

(
Ẽ|B 1

2
(0) ∩ C

)
.

Moreover, thanks to the relative isoperimetric inequality inside B 1
2
(0) ∩ C (see, e.g.,

[2, Inequality (3.43)]), we have that for μ(E) small enough,

C(n,K)
√

μ(E)

≥ 1

4
c(n,K)min

{∣∣Ẽ ∩ (
B 1

2
(0) ∩ C

)∣∣ n−1
n ,

∣∣(B 1
2
(0) ∩ C

) \ Ẽ
∣∣ n−1

n
}

≥ 1

4
c(n,K)min

{∣∣Ẽ ∩ (
B 1

2
(0) ∩ C

)∣∣, ∣∣(B 1
2
(0) ∩ C

) \ Ẽ
∣∣}

= 1

4
c(n,K)

∣∣(B 1
2
(0) ∩ C

) \ Ẽ
∣∣, (1.16)

where in the last step we used that Ẽ is close to (0, α2) + K (see (1.14)) and |α2| is
small. Therefore, using (1.14) and (1.16),

∣∣(B 1
2
(0) ∩ C

) \ (
(0, α2) + K

)∣∣ ≤ ∣∣(B 1
2
(0) ∩ C

) \ Ẽ
∣∣ + ∣∣Ẽ \ (

(0, α2) + K
)∣∣

≤ 4C(n,K)

c(n,K)

√
μ(E) + C(n,K)

√
μ(E)

≤ C̃(n,K)
√

μ(E). (1.17)

Since C̃ contains no lines, by some simple geometric considerations one may reduce
the problem to the case when α2 ∈ {(xk+1, . . . , xn) ∈ R

n−k : xn ≥ 0} (see Lemma 3.8),
and then it is not difficult to prove

c(n,K)|α2| ≤
∣∣(B 1

2
(0) ∩ C

) \ (
(0, α2) + K

)∣∣,
which combined with (1.17) establishes (1.15), and hence, the theorem.
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Next, we briefly discuss the assumptions for the sketch of the proof above. Indeed,
one may remove the size assumption on |α2| by showing that if μ(E) is small enough,
then |α2| will be automatically small (see Proposition 3.12).4 Furthermore, we may
freely assume that μ(E) is small since if μ(E) ≥ c(n,K) > 0, then the theorem is
trivial:

|E�(sK)|
|E| ≤ 2 ≤ 2√

c(n,K)

√
μ(E).

The regularity of E was used in order to apply the Sobolev–Poincaré type estimate
[16, Lemma 3.1] which yields (1.13) (see Lemma 3.6). If E is a general set of finite
perimeter in C with finite mass and small relative deficit, then Lemma 3.5 tells us
that E has a sufficiently regular subset G so that |E \ G| and μ(G) are controlled by
μ(E). Combining this fact with the argument above yields the theorem for general
sets of finite perimeter (see Proposition 3.9). Last, the assumption on the mass of E

(i.e., |E| = |K|) can be removed by a simple scaling argument.

1.4 Sharpness of the Result

We now discuss the sharpness of the estimate in Theorem 1.2. Indeed, it is well
known that there exists a sequence of ellipsoids {Eh}h∈N, symmetric with respect
to the origin and converging to the ball B1, such that

lim
h→∞ sup

√
δB1(Eh)

|Eh�(shB1)| < ∞, lim
h→∞ δK0(Eh) = 0,

where sh = (|Eh|/|B1|) 1
n (see, e.g., [28, p. 382]). Consider the cone C = {x ∈ R

n :
x1, . . . , xn > 0} and set Ẽh := Eh ∩ C . By symmetry, it follows that δB1(Ẽh) =
1
2n δB1(Eh) and |Ẽh�(shK)| = 1

2n |Eh�(shB1)|. We also note that

P(Ẽh|C) = Hn−1(∂Ẽh ∩ C) = 1

2n
Hn−1(∂Eh) = 1

2n
PB1(Eh),

|Ẽh| = 1

2n
|Eh|, |B1 ∩ C| = 1

2n
|B1|.

Therefore,

μ(Ẽh) = P(Ẽh|C)

n|B1 ∩ C| 1
n |Ẽh| n−1

n

− 1 =
1
2n Hn−1(∂Eh)

n( 1
2n |B1|) 1

n ( 1
2n |E|) n−1

n

− 1

= PB1(Eh)

n|B1 ∩ C| 1
n |Eh| n−1

n

− 1 = δB1(Eh),

4Let us point out that this is a nontrivial fact. Indeed, in our case we want to prove in an explicit, quanti-
tative way that μ(E) controls α2(E); hence, we want to avoid any compactness argument. However, even
using compactness, we do not know any simple argument which shows that α2(E) → 0 as μ(E) → 0.
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Fig. 1 An example which
shows that the constant in
Theorem 1.2 cannot be replaced
by a constant depending only on
the dimension

and we have

lim
h→∞ sup

√
μ(Ẽh)

|Ẽh�(shK)| < ∞.

This example shows that the 1
2 exponent in the theorem cannot, in general, be replaced

by something larger.
One may wonder whether it is possible for Theorem 1.2 to hold with a constant de-

pending only on the dimension and not on the cone. Indeed, in [16, Theorem 1.1], the
constant does not depend on the convex set associated with the anisotropic perimeter.
However, this is not so in our case. To see this, consider a sequence of open, sym-
metric cones in R

2 indexed by their opening θ . Let Eθ be a unit half-ball along the

boundary of the cone Cθ disjoint from sθKθ (see Figure 1), where sθ = (
|Eθ |

|B1∩Cθ | )
1
2 .

Note that

μ(Eθ) = π

2( θ
2 )

1
2 (π

2 )
1
2

− 1.

Therefore,

lim
θ→π−

|Eθ�(sθKθ )|
|Eθ |√μ(Eθ)

= lim
θ→π−

2√
π√
θπ

− 1
= ∞.

2 Preliminaries

2.1 Initial Setup

Endow the space R
n×n of n × n tensors with the metric |A| = √

trace(AT A), where
AT denotes the transpose of A. Let T ∈ L1

loc(R
n;R

n) and denote the distributional
derivative of T by DT , i.e., DT is an n×n matrix of measures DjT

i in R
n satisfying

∫
Rn

T i ∂φ

∂xj

dx = −
∫

Rn

φ dDjT
i ∀φ ∈ C1

c

(
R

n
)
, i, j = 1, . . . , n.

If C ⊂ R
n is a Borel set, then DT (C) is the n × n tensor whose entries are given by

(DjT
i(C))i,j=1,...,n, and |DT |(C) is the total variation of DT on C with respect to
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the metric defined above, i.e.,

|DT |(C) = sup

{∑
h∈N

∑
ij

|DiT
j (Ch)| : Ch ∩ Ck = ∅,

⋃
h∈N

Ch ⊂ C

}
.

Let BV (Rn;R
n) be the set of all T ∈ L1(Rn;R

n) with |DT |(Rn) < ∞. For such
a T , decompose DT = ∇T dx + DsT , where ∇T is the density with respect to the
Lebesgue measure and DsT is the corresponding singular part. Denote the distribu-
tional divergence of T by DivT := trace(DT ), and let div(T ) := trace(∇T (x)). Then
we have DivT = divT dx + trace(DsT ). If DT is symmetric and positive definite,
note that

trace(DsT ) ≥ 0. (2.1)

If E is a set of finite perimeter in R
n, then the reduced boundary F E of E consists

of all points x ∈ R
n such that 0 < |D1E |(Br(x)) < ∞ for all r > 0 and the following

limit exists and belongs to S
n−1:

lim
r→0+

D1E(Br(x))

|D1E |(Br(x))
=: −νE(x).

We call νE the measure theoretic outer unit normal to E. By the well-known rep-
resentation of the perimeter in terms of the Hausdorff measure, one has P(E|C) =
Hn−1(F E ∩ C) (see, e.g., [2, Theorem 3.61] and [2, equation (3.62)]). This fact,
along with one of the equality cases in (1.2): n|B1 ∩ C| = Hn−1(∂B1 ∩ C), yields
the following useful representation of the relative deficit (recall that s > 0 satisfies
|E| = |sK|):

μ(E) = Hn−1(F E ∩ C) − Hn−1(∂Bs ∩ C)

Hn−1(∂Bs ∩ C)
. (2.2)

Next, if T ∈ BV (Rn;R
n), then for Hn−1-a.e. x ∈ F E there exists an inner trace

vector trE(T )(x) ∈ R
n (see [2, Theorem 3.77]) which satisfies

lim
r→0+

1

rn

∫
Br(x)∩{y:(y−x)·νE(x)<0}

|T (y) − trE(T )(x)|dy = 0.

Furthermore, E(1) denotes the set of points in R
n having density 1 with respect to E;

i.e., x ∈ E(1) means

lim
r→0+

|E ∩ Br(x)|
|Br(x)| = 1.

Having developed the necessary notation, we are ready to state the following gen-
eral version of the divergence theorem (see, e.g., [2, Theorem 3.84]) which will help
us prove the isoperimetric inequality for convex cones (i.e., Theorem 2.2):

DivT
(
E(1)

) =
∫

F E

trE(T )(x) · νE(x)dHn−1(x). (2.3)
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Now we develop a few more tools that will be used throughout the paper. Fix
K := B1 ∩ C , and let

D := {
E ⊂ C : P(E|C) < ∞, |E| < ∞}

.

To apply the techniques in [16], we need a convex set that contains the origin. There-

fore, let us translate K by the vector x0 ∈ −K which minimizes the ratio
MK0
mK0

, where

K0 = K + x0,

mK0 := inf
{‖ν‖K0∗ : ν ∈ S

n−1} > 0, MK0 := sup
{‖ν‖K0∗ : ν ∈ S

n−1} > 0,

(2.4)
and ‖ν‖K0∗ is defined as in (1.5). Next, we introduce the Minkowski gauge associated
with the convex set K0:

‖z‖K0 := inf

{
λ > 0 : z

λ
∈ K0

}
. (2.5)

Note that the convexity of K0 implies the triangle inequality for ‖ · ‖K0 so that it
behaves sort of like a norm; however, if K0 is not symmetric with respect to the origin,
‖x‖K0 �= ‖−x‖K0 . Hence, this “norm” is in general not a true norm. Nevertheless, the
following estimates relate this quantity with the standard Euclidean norm | · | (see [16,
equations (3.2) and (3.9)]):

|x|
MK0

≤ ‖x‖K0 ≤ |x|
mK0

, (2.6)

‖y‖K0∗ ≤ MK0

mK0

‖−y‖K0∗. (2.7)

Recall that the isoperimetric deficit δK(·) is scaling and translation invariant in its
argument. The next lemma states that it is also translation invariant in K (observe
that if z0 +K does not contain the origin, then ‖ · ‖z0+K can also be negative in some
direction).

Lemma 2.1 Let E ∈ D. Then δz0+K(E) = δK(E) for all z0 ∈ R
n.

Proof It suffices to prove Pz0+K(E) = PK(E).

Pz0+K(E) =
∫

F E

sup
{
νE(x) · z : z ∈ z0 + K

}
dHn−1(x)

=
∫

F E

sup
{
νE(x) · (z0 + z) : z ∈ K

}
dHn−1(x)

=
∫

F E

(
νE(x) · z0 + sup

{
νE(x) · z : z ∈ K

})
dHn−1(x)

=
∫

F E

νE(x) · z0dHn−1(x) + PK(E).
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By using the divergence theorem for sets of finite perimeter [2, equation (3.47)], we
obtain ∫

F E

νE(x) · z0dHn−1(x) =
∫

E

div(z0)dx = 0,

which proves the result. �

2.2 Isoperimetric Inequality Inside a Convex Cone

Here we show how to use Gromov’s argument to prove the relative isoperimetric
inequality for convex cones. As discussed in the introduction, the first general proof
of the inequality was due to Lions and Pacella [27] and is based on the Brunn–
Minkowski inequality. The equality cases were considered in [27] for the special
case when C \ {0} is smooth. Our proof of the inequality closely follows the proof of
[16, Theorem 2.3] with some minor modifications.

Theorem 2.2 Let C be an open, convex cone and |E| < ∞. Then

n|E| n−1
n |K| 1

n ≤ Hn−1(F E ∩ C). (2.8)

Moreover, if C contains no lines, then equality holds if and only if E = sK .

Proof of (2.8) By rescaling, if necessary, we may assume that |K| = |E| (i.e.,
s = 1). Define the probability densities dμ+(x) = 1

|E|1E(x)dx and dμ−(y) =
1

|K|1K(y)dy. By classical results in optimal transport theory, it is well known that
there exists an a.e. unique map T : E → K (which we call the Brenier map)
such that T = ∇φ where φ is convex, T ∈ BV

(
R

n;K)
, and det(∇T (x)) = 1 for

a.e. x ∈ E (see, e.g., [1, 5, 29, 30]). Moreover, since T is the gradient of a con-
vex function with positive Jacobian, ∇T (x) is symmetric and nonnegative defi-
nite; hence, its eigenvalues λk(x) are nonnegative for a.e. x ∈ R

n. As a result,
we may apply the arithmetic-geometric mean inequality to conclude that for a.e.
x ∈ E,

n = n
(
det∇T (x)

) 1
n = n

(
n∏

k=1

λk(x)

) 1
n

≤
n∑

k=1

λk(x) = divT (x). (2.9)

Therefore,

n|E| n−1
n |K| 1

n = n|E| = n

∫
E

det
(∇T (x)

) 1
n dx

≤
∫

E

divT (x)dx =
∫

E(1)

divT (x)dx, (2.10)
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where we recall that E(1) denotes the set of points with density 1 (see Sect. 2.1).
Next, we use (2.1) and (2.3):∫

E(1)

divT (x)dx ≤
∫

E(1)

divT (x)dx + (DivT )s
(
E(1)

)

= DivT
(
E(1)

) =
∫

F E

trE(T )(x) · νE(x)dHn−1(x). (2.11)

By the convexity of K and the fact that T (x) ∈ K for a.e. x ∈ E, it follows that
trE(T )(x) ∈ K̄ , so by the definition of ‖ · ‖K∗ ,

trE(T )(x) · νE(x) ≤ ‖νE(x)‖K∗.

Hence,∫
F E

trE(T )(x) · νE(x)dHn−1(x) ≤
∫

F E

‖νE(x)‖K∗dHn−1(x) = PK(E). (2.12)

Furthermore, note that if z ∈ K , then |z| ≤ 1; therefore,

‖νE(x)‖K∗ = sup
{
νE(x) · z : z ∈ K

} ≤ 1.

Moreover, observe that by the definition of ‖ · ‖K∗, it follows easily that
‖νC (x)‖K∗ = 0 for Hn−1-a.e. x ∈ ∂C \ {0}; therefore, ‖νE(x)‖K∗ = 0 for Hn−1-a.e.
x ∈ F E ∩ ∂C . Thus,∫

F E

‖νE(x)‖K∗dHn−1(x) =
∫

F E∩C
‖νE(x)‖K∗dHn−1(x) ≤ Hn−1(F E ∩ C),

and this proves the inequality.

Equality Case If E = K , then T (x) = x and it is easy to check that equality holds
in each of the inequalities above. Conversely, suppose there is equality. In particular,
n|K| = PK(E). By [20] (see also [16, Theorem A.1]), we obtain that E = K + a

with a ∈ C̄ . Next, we will use the following identity which is valid for any v ∈ C̄ :

P(v + K|C) = P(K|C) + Hn−1(Sv),

where

Sv : = {
x ∈ F C ∩ B1 : 〈νC (x), v

〉 �= 0
}

= {
x ∈ F C ∩ B1 : 〈νC (x), v

〉
< 0

}
.

By the previous equality case, we know n|K| = P(K|C), therefore,

P(K|C) = P(E|C) = P(a + K|C) = P(K|C) + Hn−1(Sa),

and we obtain Hn−1(Sa) = 0. This implies 〈νC (x), a〉 = 0 for Hn−1-almost every
x ∈ F C . Hence, D 1C = 0 in the direction defined by a, which gives 1C (x) = 1C (x +
ta) for all t ∈ R. However, by assumption, C contains no lines; thus, a = 0 and we
conclude the proof. �
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Corollary 2.3 If E ∈ D, then δK(E) ≤ μ(E).

Proof Since the inequality is scaling invariant, we may assume that |E| = |K|. From
(2.12) and the fact that n|K| = Hn−1(∂B1 ∩ C) we obtain

PK(E) − n|K| ≤ Hn−1(F E ∩ C) − n|K| = Hn−1(F E ∩ C) − Hn−1(∂B1 ∩ C).

Dividing by n|K| and using the representation of μ(E) given by (2.2) yields the
result. �

Corollary 2.4 Let E ∈ D with |E| = |K|, and let T0 : E → K0 be the Brenier map
from E to K0. Then∫

F E∩C

(
1 − | trE(T0 − x0)(x)|)dHn−1(x) ≤ n|K|μ(E).

Proof Let T : E → K be the Brenier map from E to K so that T is the a.e. unique
gradient of a convex function φ. Then T0(x) = T (x) + x0 (this follows easily from
the fact that T (x) + x0 = ∇φ(x) + x0 = ∇(φ(x) + x0 · x) and φ(x) + x0 · x is still
convex). Therefore, by (2.10) and (2.11),

n|E| ≤
∫

F E

trE(T0 − x0)(x) · νE(x)dHn−1(x). (2.13)

Next, we recall from the proof of Theorem 2.2 that trE(T0 − x0)(x) ∈ K̄ . Hence,
trE(T0 − x0)(x) · νE(x) ≤ 0 for Hn−1-a.e. x ∈ F E ∩ ∂C and | trE(T0 − x0)(x)| ≤ 1
for Hn−1-a.e. x ∈ F E ∩ C . Therefore, using (2.13),

n|E| ≤
∫

F E∩C
trE(T0 − x0)(x) · νE(x)dHn−1(x)

≤
∫

F E∩C
| trE(T0 − x0)(x)|dHn−1(x) ≤ Hn−1(F E ∩ C).

The fact that n|E| = n|K| = Hn−1(∂B1 ∩ C) finishes the proof. �

3 Proof of Theorem 1.2

We split the proof into several steps. In Sect. 3.1, we collect some useful technical
tools. Then in Sect. 3.2, we prove Theorem 1.2 under the additional assumption that
E is close to K (up to a translation in the first k coordinates). Finally, we remove this
assumption in Sect. 3.3 to conclude the proof of the theorem.

Let {ek}nk=1 be the standard orthonormal basis for R
n. Recall that C = R

k × C̃ ,
where C̃ ⊂ R

n−k is an open, convex cone containing no lines. Hence, up to a change
of coordinates, we may assume without loss generality that ∂C̃ ∩{xn = 0} = {0}. With
this in mind and a simple compactness argument, we note that

b = b(n,K) := inf
{
t > 0 : ∂B̃ 1

2
(0) ∩ C̃ ∩ {xn < t} �= ∅}

> 0, (3.1)

where B̃ 1
2
(0) is the ball in R

n−k .
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Next, we introduce the trace constant of a set of finite perimeter. Recall the defini-
tion of K0 given in Sect. 2.1, so that (2.6) and (2.7) hold. Given a set E ∈ D, let τ(E)

denote the trace constant of E, where

τ(E) := inf

{
PK0(F )∫

F F∩F E
‖νE‖K0∗dHn−1

: F ⊂ E, |F | ≤ |E|
2

}
. (3.2)

Note that τ is scaling invariant, and in general τ(E) ≥ 1. The trace constant con-
tains valuable information about the geometry of E. For example, if E has multiple
connected components or outward cusps, then τ(E) = 1. In general, sets for which
τ(E) > 1 enjoy a nontrivial Sobolev–Poincaré type inequality (see [16, Lemma 3.1]).

3.1 Main Tools

In what follows, we list all the technical tools needed in order to prove Theorem 1.2.
We decided to move some of the proofs to the Appendix in order to make this section
more accessible. The following two lemmas are general facts about sets of finite
perimeter.

Lemma 3.1 Let A ⊂ R
n be a bounded set of finite perimeter. Then there exists

C3.1(n,A) > 0 such that for any y ∈ R
n, |(y + A)�A| ≤ C3.1(n,A)|y|.

Lemma 3.2 Let A ⊂ R
n be a bounded set of finite perimeter. Then there exist two

constants C3.2(n,A), c3.2(n,A) > 0 such that if y ∈ R
n, then

min
{
c3.2(n,A),C3.2(n,A)|y|} ≤ |(y + A)�A|.

Remark 3.3 Lemma 3.1 is well known, and follows by applying [2, Remark 3.25]
to u = 1A. Also Lemma 3.2 should be known, but we have been unable to find a
reference. Therefore, we provide a proof in the Appendix.

Lemma 3.4 There exists a bounded, convex set K̃ ⊂ B 1
2
(0) ∩ C so that for all y =

(0, . . . ,0, yk+1, . . . , yn) with yn ≥ 0, we have

K̃ \ (y + K̃) = K̃ \ (y + C). (3.3)

Furthermore, if yn ≤ 0, then

(y + K̃) \ K̃ = (y + K̃) \ C. (3.4)

Proof We will show that one may pick b̃ = b̃(n,K) > 0 small enough so that

K̃ := B 1
2
(0) ∩ C ∩

( k⋂
i=1

{|xi | < b̃}
)

∩ {xn < b̃}

has the desired properties. We will establish (3.3) first. Since y + K̃ ⊂ y + C , it
suffices to prove K̃ \ (y + K̃) ⊂ K̃ \ (y + C). If (for contradiction) there exists x ∈
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Fig. 2 d

b̃
= 1/2

b

K̃ ∩ (y + K̃)c ∩ (y + C), then x ∈ K̃ and x − y ∈ C \ K̃ . Since x ∈ K̃ and yn ≥ 0, it
follows that xn − yn < b̃. Also, |xi − yi | = |xi | < b̃ for i ∈ {1, . . . , k}. Now, x − y ∈
C = R

k × C̃ , hence, (xk+1 − yk+1, . . . , xn − yn) ∈ C̃ . Let b = b(n,K) be the constant
from (3.1), and assume without loss of generality that b̃ < b. If z ∈ {xn = b̃} ∩ C̃ is
such that |z| = d , where d = sup{|v| : v ∈ C̃, vn = b̃}, then |z|

b̃
= 1/2

b
(see Figure 2).

Let γ := 1
2b

, t := b̃
xn−yn

> 1, and recall that (xk+1 − yk+1, . . . , xn − yn) ∈ C̃ . Since

C̃ is a cone, we have w := t (xk+1 − yk+1, . . . , xn − yn) ∈ C̃ with wn = b̃. Hence,
|w| ≤ |z| = γ b̃, but since t > 1 we obtain (xk+1 − yk+1, . . . , xn − yn) ∈ B̃

γ b̃
(0),

where B̃
γ b̃

(0) denotes the ball in dimension n − k. Therefore,

|x − y|2 ≤ kb̃2 + (γ b̃)2.

Next, pick M = M(n,K) ∈ N so that (k + γ 2) ( b
M

)2 < 1
4 . Thus, by letting b̃ := b

M
,

we obtain x −y ∈ B 1
2
(0). Therefore, we conclude x −y ∈ K̃ , a contradiction. Hence,

(3.3) is established. Since (y + K̃) \ K̃ = y + (K̃ \ (−y + K̃)) and (y + K̃) \ C =
y + (K̃ \ (−y + C)), (3.4) follows from (3.3). �

The next lemma (whose proof is postponed to the Appendix) tells us that a set
with finite mass, perimeter, and small relative deficit has a subset with almost the
same mass, good trace constant, and small relative deficit (compare with [16, Theo-
rem 3.4]).

Lemma 3.5 Let E ∈ D with |E| = |K|. Then there exists a set of finite perimeter
G ⊂ E and constants k(n), c3.5(n),C3.5(n,K) > 0 such that if μ(E) ≤ c3.5(n), then

|E \ G| ≤ μ(E)

k(n)
|E|, (3.5)

τ(G) ≥ 1 + mK0

MK0

k(n), (3.6)

μ(G) ≤ C3.5(n,K)μ(E). (3.7)

The big advantage of using G in place of E is that (3.6) implies a nontrivial trace
inequality for G which allows us to exploit Gromov’s proof in order to prove (1.11)
with G in place of E. Indeed, if E is smooth with a uniform Lipschitz bound on ∂E,
one may take G = E.
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Lemma 3.6 Let E ∈ D, |E| = |K|, and assume μ(E) ≤ c3.5(n), with G ⊂ E and
c3.5(n) as in Lemma 3.5. Moreover, let r > 0 satisfy |rG| = |K|. Then there exists α̂ =
α̂(E) ∈ R

n and a constant C3.6(n,K) > 0 such that
∫

F (rG)∩C |1 − |x − α̂‖dHn−1 ≤
C3.6(n,K)

√
μ(E).

Proof Let T̃0 : rG → K0 be the Brenier map from rG to K0, and denote by Si the ith
component of S(x) = T̃0(x) − x. For all i, we apply [16, Lemma 3.1] to the function
Si and the set rG to obtain a vector a = a(E) = (a1, . . . , an) ∈ R

n such that
∫

F (rG)∩C
tr(rG)

(|Si(x) + ai |
)‖ν(rG)‖K0∗dHn−1(x)

≤ MK0

mK0(τ (rG) − 1)
‖−DSi‖K0∗

(
(rG)(1)

)

≤ M2
K0

mK0(τ (rG) − 1)
|−DSi |

(
(rG)(1)

)

≤ M2
K0

mK0(τ (rG) − 1)
|DS|((rG)(1)

)
,

where we have used (2.6) in the second inequality. Next, recall that τ is scaling in-
variant. Hence, using (3.6) we have

∫
F (rG)∩C

tr(rG)

(|Si(x) + ai |
)‖ν(rG)‖K0∗dHn−1(x)

≤ M3
K0

m2
K0

k(n)
|DS|((rG)(1)

)
. (3.8)

But by [16, Corollary 2.4] and Corollary 2.3,

|DS|((rG)(1)
) ≤ 9n2|K|√δK0(rG) ≤ 9n2|K|√μ(rG) = 9n2|K|√μ(G).

Therefore, by summing over i = 1,2, . . . , n we obtain

∫
F (rG)∩C

tr(rG)

(|S(x) + a|)‖ν(rG)‖K0∗dHn−1(x) ≤ 9n3|K|M3
K0

m2
K0

k(n)

√
μ(G). (3.9)

Let α̂ = α̂(E) := a + x0, with x0 as in the definition of K0 (see (2.4)). The triangle
inequality implies

|1 − |x − α̂‖ = |1 − |x − (a + x0)‖
≤ ∣∣1 − tr(rG)

(|T̃0(x) − x0|
)∣∣

+ ∣∣ tr(rG)

(
T̃0(x) − x0

) − (
x − (a + x0)

)∣∣
= ∣∣1 − ∣∣ tr(rG)

(
T̃0(x) − x0

)∥∥ + tr(rG)

(|T̃0(x) − x + a|).
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Hence, by Corollary 2.4, (3.9), and (3.7) we have

∫
F (rG)∩C

mK0 |1 − |x − α̂‖dHn−1(x)

≤
∫

F (rG)∩C
|1 − |x − α̂‖‖ν(rG)‖K0∗dHn−1(x)

≤
∫

F (rG)∩C

∣∣1 − ∣∣ tr(rG)

(
T̃0(x) − x0

)∥∥‖ν(rG)‖K0∗dHn−1(x)

+
∫

F (rG)∩C
tr(rG)

(|S(x) + a|)‖ν(rG)‖K0∗dHn−1(x)

≤ MK0n|K|μ(G) + 9n3|K| M3
K0

m2
K0

k(n)

√
μ(G)

≤ MK0n|K|C3.5(n,K)μ(E) + 9n3|K|M3
K0

m2
K0

k(n)

√
C3.5(n,K)

√
μ(E).

As μ(E) ≤ 1, the result follows. �

The translation α̂ from Lemma 3.6 can be scaled so that it enjoys some nice properties
which we list in the next lemma. The proof is essentially the same as that of [16,
Theorem 1.1], adapted slightly in order to accommodate our setup. However, for the
sake of completeness, we include it in the Appendix.

Lemma 3.7 Suppose E ∈ D with |E| = |K|. Let α̂ = α̂(E), G, and r be as in
Lemma 3.6. Define α = α(E) := α̂

r
. Then there exists a positive constant C3.7(n,K)

such that for μ(E) ≤ c3.5(n), with c3.5(n) as in Lemma 3.5, we have

|E�(α + K)| ≤ C3.7(n,K)
√

μ(E), (3.10)

|(rG)�(α̂ + K)| ≤ C3.7(n,K)
√

μ(E), (3.11)

and

r ≤ 1 + 2μ(E)

k(n)
. (3.12)

Next, define R
n+ := {(x1, x2, . . . , xn) ∈ R

n : xn ≥ 0} (Rn− is defined in a similar
manner). In the case α ∈ R

n−, the following lemma tells us that the last (n − k) com-
ponents of α are controlled by the relative deficit.

Lemma 3.8 Let E ∈ D with |E| = |K|, and let α = α(E) = (α1, α2) ∈ R
k × R

n−k

be as in Lemma 3.7. There exist positive constants c3.8(n,K), C3.8(n,K) such that if
α ∈ R

n− and μ(E) ≤ c3.8(n,K), then |α2| ≤ C3.8(n,K)
√

μ(E).
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Proof Let K̃ ⊂ C be the bounded, convex set given by Lemma 3.4. An application of
Lemma 3.2 and (3.4) yields

1

2
min

{
c3.2(n, K̃),C3.2(n, K̃)|α2|

} ≤ 1

2

∣∣((0, α2) + K̃
)
�K̃

∣∣
= ∣∣((0, α2) + K̃

) \ K̃
∣∣ = ∣∣((0, α2) + K̃

) \ C
∣∣

Now, note that E − (α1,0) ⊂ C = R
k × C̃ ; hence, by using this fact and (3.10) we

obtain
∣∣((0, α2) + K̃

) \ C
∣∣ ≤ ∣∣((0, α2) + K̃

) \ (
E − (α1,0)

)∣∣ ≤ |(α + K) \ E|
≤ C3.7(n,K)

√
μ(E).

Therefore, there exists c3.8(n,K) > 0 such that for μ(E) ≤ c3.8(n,K),

1

2
C3.2(n, K̃)|α2| ≤ C3.7(n,K)

√
μ(E).

Thus, the result follows with C3.8(n,K) = 2C3.7(n,K)

C3.2(n,K̃)
(note that K completely deter-

mines K̃). �

3.2 Proof of the Result when |α2(E)| Is Small

Proposition 3.9 Let E ∈ D with |E| = |K|, and let α = α(E) = (α1, α2) ∈ R
k ×

R
n−k be as in Lemma 3.7. Then there exist positive constants c3.9(n,K), c̃3.9(n,K),

and C3.9(n,K) such that if μ(E) ≤ c3.9(n,K) and |α2| ≤ c̃3.9(n,K), then |α2| ≤
C3.9(n,K)

√
μ(E).

Proof Thanks to Lemma 3.8, we may assume without loss of generality that α ∈ R
n+.

Let G̃ := rG − (α̂1,0), with G as in Lemma 3.5 and r > 0 such that |rG| = |K|. By
Lemma 3.6 and the fact that C = R

k × C̃ ,

C3.6(n,K)
√

μ(E) ≥
∫

F (rG)∩C
|1 − |x − α̂‖dHn−1(x)

=
∫

F G̃∩C
|1 − |x − (0, α̂2)‖dHn−1(x)

≥
∫

F G̃∩C∩{|1−|x−(0,α̂2)‖≥ 1
4 }

|1 − |x − (0, α̂2)‖dHn−1(x)

≥ 1

4
Hn−1

(
F G̃ ∩ C ∩

{
|1 − |x − (0, α̂2)‖ ≥ 1

4

})

≥ 1

4
Hn−1(F G̃ ∩ (

B 3
4

(
(0, α̂2)

) ∩ C
))

= 1

4
P

(
G̃|B 3

4

(
(0, α̂2)

) ∩ C
)
.
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However, thanks to (3.12), |α̂2|
1+ 2

k(n)
μ(E)

≤ |α2|, so for |α2| and μ(E) sufficiently small

we have B 1
2
(0) ∩ C ⊂ B 3

4
((0, α̂2)) ∩ C , and this implies

P
(
G̃|B 3

4

(
(0, α̂2)

) ∩ C
) ≥ P

(
G̃|B 1

2
(0) ∩ C

)
.

Next, by using the relative isoperimetric inequality (apply [2, Inequality (3.41)] to
1(rG) and the set B 1

2
(0) ∩ C ), we have that for μ(E) small enough,

C3.6(n,K)
√

μ(E)

≥ 1

4
c(n,K)min

{∣∣G̃ ∩ (
B 1

2
(0) ∩ C

)∣∣ n−1
n ,

∣∣(B 1
2
(0) ∩ C

) \ G̃
∣∣ n−1

n
}

≥ 1

4
c(n,K)min

{∣∣G̃ ∩ (
B 1

2
(0) ∩ C

)∣∣, ∣∣(B 1
2
(0) ∩ C

) \ G̃
∣∣}. (3.13)

Furthermore,

(
B 1

2
(0) ∩ C

) \ G̃ ⊂ K \ G̃ ⊂ G̃�K

⊂ ((
rG − (α̂1,0)

)
�

(
K + (0, α̂2)

)) ∪ ((
K + (0, α̂2)

)
�K

)
,

and by using (3.11), Lemma 3.1, and (3.12),

∣∣(B 1
2
(0) ∩ C

) \ G̃
∣∣ ≤ C3.7(n,K)

√
μ(E) + C3.1(n,K)|α̂2|

≤ C3.7(n,K)
√

μ(E) + C3.1(n,K)

(
1 + 2

k(n)
μ(E)

)
|α2|.

Therefore, we can select c̃3.9(n,K), c3.9(n,K) > 0 such that if μ(E) ≤ c3.9(n,K) and
|α2| ≤ c̃3.9(n,K), then

min
{∣∣G̃ ∩ (

B 1
2
(0) ∩ C

)∣∣, ∣∣(B 1
2
(0) ∩ C

) \ G̃
∣∣} = ∣∣(B 1

2
(0) ∩ C

) \ G̃
∣∣.

Thus, using (3.13) we obtain

1

4
c(n,K)

∣∣(B 1
2
(0) ∩ C

) \ G̃
∣∣ ≤ C3.6(n,K)

√
μ(E). (3.14)

Hence, by (3.14), (3.11), and Lemma 3.1 it follows that

∣∣(B 1
2
(0) ∩ C

) \ (
(0, α2) + K

)∣∣
≤ ∣∣(B 1

2
(0) ∩ C

) \ G̃
∣∣ + ∣∣G̃ \ (

(0, α2) + K
)∣∣

≤ ∣∣(B 1
2
(0) ∩ C

) \ G̃
∣∣ + ∣∣G̃�

(
(0, α̂2) + K

)∣∣ + ∣∣((0, α̂2) + K
)
�

(
(0, α2) + K

)∣∣
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≤ 4C3.6(n,K)

c(n,K)

√
μ(E) + |(rG)�(α̂ + K)| + C3.1(n,K)|α2 − α̂2|

≤ 4C3.6(n,K)

c(n,K)

√
μ(E) + C3.7(n,K)

√
μ(E) + C3.1(n,K)|α2 − α̂2|. (3.15)

But |α2 − α̂2| = |α2|(r − 1), and from (3.12) it readily follows that |α2 − α̂2| ≤
|α2| 2

k(n)
μ(E) ≤ c̃3.9(n,K) 2

k(n)
μ(E). Combining this fact with (3.15) yields a posi-

tive constant C̃(n,K) such that

∣∣(B 1
2
(0) ∩ C

) \ (
(0, α2) + K

)∣∣ ≤ C̃(n,K)
√

μ(E). (3.16)

Next, let K̃ ⊂ B 1
2
(0) ∩ C be the bounded, convex set given by Lemma 3.4. We note

that since α ∈ R
n+, (3.3) implies

K̃ \ (
(0, α2) + K̃

) = K̃ \ (
(0, α2) + K

)
.

Therefore, using Lemma 3.2 and (3.16) we have

min
{
c3.2(n, K̃),C3.2(n, K̃)|α2|

}
≤ ∣∣((0, α2) + K̃

)
�K̃

∣∣ = 2
∣∣K̃ \ (

(0, α2) + K̃
)∣∣

= 2
∣∣K̃ \ (

(0, α2) + K
)∣∣ ≤ 2

∣∣(B 1
2
(0) ∩ C

) \ (
(0, α2) + K

)∣∣
≤ 2C̃(n,K)

√
μ(E).

Thus, for c3.9(n,K) sufficiently small we can take C3.9(n,K) = 2C̃(n,K)

C3.2(n,K̃)
to conclude

the proof. �

Corollary 3.10 Let E ∈ D with |E| = |K|, c3.9(n,K) and c̃3.9(n,K) be as in Propo-
sition 3.9, and α = α(E) = (α1, α2) ∈ R

k × R
n−k be as in Lemma 3.7. Then there

exists a positive constant C3.10(n,K) such that if μ(E) ≤ c3.9(n,K) and |α2| ≤
c̃3.9(n,K), then |(E − (α1,0))�K| ≤ C3.10(n,K)

√
μ(E).

Proof Note that by Proposition 3.9 we obtain |α2| ≤ C3.9(n,K)
√

μ(E). Next, by
applying Lemma 3.1 and (3.10) we have

∣∣(E − (α1,0)
)
�K

∣∣ ≤ ∣∣E�(α + K)
∣∣ + ∣∣((0, α2) + K

)
�K

∣∣
≤ C3.7(n,K)

√
μ(E) + C3.1(n,K)|α2|

≤ (
C3.7(n,K) + C3.1(n,K)C3.9(n,K)

)√
μ(E).

Therefore, we may take C3.10(n,K) = C3.7(n,K)+C3.1(n,K)C3.9(n,K) to conclude
the proof. �
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3.3 Reduction Step

In Proposition 3.12 below, we refine Corollary 3.10. Namely, we show that if μ(E) is
small enough, then the assumption on the size of α2 is superfluous. However, to prove

Proposition 3.12 we need to reduce the problem to the case where α2 ∈ C̃ ⊂ R
n−k

(recall C = R
k × C̃ ). This is the content of Lemma 3.11. For arbitrary y ∈ R

n−k+ \ C̃ ,
decompose y as

y = yc + yp, (3.17)

where yc ∈ ∂C̃ is the closest point on the boundary of the cone C̃ to y and yp := y−yc

(see Figure 3). Note that yp is perpendicular to yc.

Lemma 3.11 Let E ∈ D with |E| = |K|, and let α = α(E) = (α1, α2) ∈ R
k × R

n−k

be as in Lemma 3.7. There exist constants c3.11(n,K), C3.11(n,K) > 0 such that if

μ(E) ≤ c3.11(n,K) and α2 ∈ R
n−k+ \ C̃ , then |αp

2 | ≤ C3.11(n,K)μ(E)
1

2n .

Proof First, observe that∣∣((0, αc
2

) + K
) \ (

C − (
0, α

p

2

))∣∣ = ∣∣((0, α2) + K
) \ C

∣∣
≤ ∣∣(α + K) \ (

C + (α1,0)
)∣∣ = ∣∣(α + K) \ C

∣∣
≤ ∣∣(α + K) \ E

∣∣ ≤ C3.7(n,K)
√

μ(E).

Since (0, αc
2) ∈ ∂C , it follows that ∂((0, αc

2) + K) has a nontrivial intersection with
∂C . Let

z := 1

2

((
0, αc

2

) + (
0, αc

2 sup
{
t > 0 : (0, tαc

2

) ∈ ∂
((

0, αc
2

) + K
)}))

,

and note that, by convexity, z ∈ ∂((0, αc
2) + K) ∩ ∂C . Next, pick r = |αp

2 |. Ob-
serve that r is the smallest radius for which Br(z) ∩ ∂(C − (0, α

p

2 )) �= ∅ so that
it contains some w ∈ R

n (see Figure 3). Since C is convex, there exists a constant
c0(n,K) > 0 such that |Br(z) ∩ ((0, αc

2) + K)| ≥ c0(n,K)rn. But Br(z) ∩ ((0, αc
2) +

K) ⊂ ((0, αc
2) + K) \ (C − (0, α

p

2 )). Therefore, rn ≤ C3.7(n,K)

c0(n,K)

√
μ(E), and since

r = |αp

2 | we have that |αp

2 | ≤ (
C3.7(n)

c0(n,K)
)

1
n μ(E)

1
2n . �

Fig. 3 Control of α
p
2
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Fig. 4 If E has small relative deficit but is far away from the origin, we can translate it a little bit and
show that the resulting set—thanks to Proposition 3.9—should in fact be a lot closer to the origin

Proposition 3.12 Let E ∈ D with |E| = |K|, and let α = α(E) = (α1, α2) ∈ R
k ×

R
n−k be as in Lemma 3.7. Then there exists c3.12(n,K) > 0 such that if μ(E) ≤

c3.12(n,K), then |α2| ≤ c̃3.9(n,K) with c̃3.9(n,K) as in Proposition 3.9.

Proof If α ∈ R
n−, then the result follows from Lemma 3.8. If α ∈ R

n+, then write

α2 = α
p

2 + αc
2 as in (3.17) with the understanding that α2 ∈ C̃ if and only if α

p

2 = 0.
In the case where |αp

2 | > 0 (i.e., α2 ∈ R
n−k+ \ C̃ ), thanks to Lemma 3.11, we have

|αp

2 | ≤ C3.11(n,K)μ(E)
1

2n . Therefore, it suffices to prove that for μ(E) sufficiently
small, |αc

2| ≤ 1
2 c̃3.9(n,K). We split the proof into three steps. The idea is as follows:

first, we assume for contradiction that |αc
2| > 1

2 c̃3.9(n,K). This allows us to translate
E by a suitable vector β so that (E − β) ∩ C is a distance 1

4 c̃3.9(n,K) from the
origin (see Figure 4). The second step consists of showing that up to a small mass

adjustment, the relative deficit of this new set is controlled by μ(E)
1

2n . Last, we show
that the new set satisfies the hypotheses of Proposition 3.9; therefore, we conclude
that it should be a lot closer to the origin than it actually is.

Step 1. Assume for contradiction that |αc
2| > 1

2 c̃3.9(n,K). Select γ ∈ (0,1) such that
for β := (0, γ αc

2) ∈ C̄ we have

∣∣(0, αc
2

) − β
∣∣ = (1 − γ )|αc

2| =
1

4
c̃3.9(n,K).

By (3.10), Lemma 3.1, and Lemma 3.11,∣∣E�
((

α1, α
c
2

) + K
)∣∣ ≤ |E�(α + K)| + ∣∣(α + K)�

((
α1, α

c
2

) + K
)∣∣

≤ C3.7(n,K)
√

μ(E) + C3.1(n,K)|αp

2 |
≤ C3.7(n,K)

√
μ(E) + C3.1(n,K)C3.11(n,K)μ(E)

1
2n .

Next, we set Ẽ := E − (α1,0) and C̃(n,K) := C3.7(n,K) + C3.1(n,K)C3.11(n,K)

so that ∣∣Ẽ�
((

0, αc
2

) + K
)∣∣ ≤ C̃(n,K)μ(E)

1
2n . (3.18)
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Let F = t ((Ẽ − β) ∩ C) where t ≥ 1 is chosen to satisfy |F | = |Ẽ|. Therefore,

|F | = |Ẽ| = |Ẽ − β| = |(Ẽ − β) ∩ C| + |(Ẽ − β) \ C|. (3.19)

Now let us focus on the second term on the right side of (3.19): using (3.18),

|(Ẽ − β) \ C| = |Ẽ \ (C + β)|
≤ ∣∣Ẽ \ ((

0, αc
2

) + K
)∣∣ + ∣∣((0, αc

2

) + K
) \ (C + β)

∣∣
≤ C̃(n,K)μ(E)

1
2n + ∣∣(((0, αc

2

) − β
) + K

) \ C
∣∣. (3.20)

But, (0, αc
2) − β = (0, (1 − γ )αc

2) ∈ C̄ , therefore, ((0, αc
2) − β) + K ⊂ C , and hence,

|(((0, αc
2) − β) + K) \ C| = 0. Thus, combining the previous fact with (3.19) and

(3.20),

|F | − |(Ẽ − β) ∩ C| ≤ C̃(n,K)μ(E)
1

2n . (3.21)

Step 2. From the definition of F and (3.21), we deduce

(
tn − 1

)|(Ẽ − β) ∩ C| ≤ C̃(n,K)μ(E)
1

2n ,

so that for μ(E)
1

2n ≤ |K|
2C̃(n,K)

, by (3.21) again and the fact that |F | = |K|,

t ≤
(

1 + 2C̃(n,K)

|K| μ(E)
1

2n

) 1
n

. (3.22)

Since C is a convex cone, it follows that 1
t

C = C and β + C ⊂ C . Thus,

P(F |C) = tn−1P(Ẽ|β + C) ≤ tn−1P(Ẽ|C) = tn−1P
(
E|C + (α1,0)

)

≤
(

1 + 2C̃(n,K)

|K| μ(E)
1

2n

) n−1
n

P (E|C)

≤
(

1 + 2C̃(n,K)

|K| μ(E)
1

2n

)
P(E|C). (3.23)

Recall that P(F |C) = Hn−1(F F ∩ C) and P(E|C) = Hn−1(F E ∩ C) (see Sect. 2).
Upon subtracting P(B|C) from both sides of (3.23), dividing by n|K| (recall n|K| =
Hn−1(∂B1 ∩ C)), and using that P(E|C) = n|K|μ(E) + n|K| we have

μ(F) ≤ μ(E) + 2C̃(n,K)

n|K|2 μ(E)
1

2n P (E|C)

= μ(E) + 2C̃(n,K)

|K| μ(E)
2n+1

2n + 2C̃(n,K)

|K| μ(E)
1

2n .
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Let w(n,K) := 1 + 4C̃(n,K)
|K| . Then, assuming without loss of generality that

μ(E) ≤ 1,

μ(F) ≤ w(n,K)μ(E)
1

2n . (3.24)

Step 3. Using Lemma 3.1 and (3.22), for μ(E) small enough we have
∣∣F�

(((
0, αc

2

) − β
) + K

)∣∣
≤ ∣∣F�t

(((
0, αc

2

) − β
) + K

)∣∣ + ∣∣t(((0, αc
2

) − β
) + K

)
�

(((
0, αc

2

) − β
) + K

)∣∣
≤ tn

∣∣(Ẽ − β) ∩ C�
(((

0, αc
2

) − β
) + K

)∣∣
+ ∣∣t(((0, αc

2

) − β
) + K

)
�

(
t
((

0, αc
2

) − β
) + K

)∣∣
+ ∣∣(t((0, αc

2

) − β
) + K

)
�

(((
0, αc

2

) − β
) + K

)∣∣
≤ 2

∣∣(Ẽ − β) ∩ C�
(((

0, αc
2

) − β
) + K

)∣∣ + ∣∣(tK)�K
∣∣

+ C3.1(n,K)
∣∣(0, αc

2

) − β
∣∣(t − 1)

≤ 2
∣∣(Ẽ − β) ∩ C�

(((
0, αc

2

) − β
) + K

)∣∣ + C̄(n,K)μ(E)
1

2n . (3.25)

Next, we claim

∣∣((Ẽ − β) ∩ C
)
�

(((
0, αc

2

) − β
) + K

)∣∣ ≤ 2C̃(n,K)μ(E)
1

2n . (3.26)

Indeed, from (3.18) we deduce that
∣∣((Ẽ − β) ∩ C

)
�

(((
0, αc

2

) − β
) + K

)∣∣
= ∣∣(((Ẽ − β) ∩ C

) + β
)
�

((
0, αc

2

) + K
)∣∣

≤ ∣∣(((Ẽ − β) ∩ C
) + β

)
�Ẽ

∣∣ + ∣∣Ẽ�
((

0, αc
2

) + K
)∣∣

≤ ∣∣(((Ẽ − β) ∩ C
) + β

)
�Ẽ

∣∣ + C̃(n,K)μ(E)
1

2n . (3.27)

But since ((Ẽ − β) ∩ C) + β ⊂ Ẽ,
∣∣(((Ẽ − β) ∩ C

) + β
)
�Ẽ

∣∣
= ∣∣Ẽ \ ((

(Ẽ − β) ∩ C
) + β

)∣∣
= ∣∣(Ẽ − β) \ (Ẽ − β) ∩ C

∣∣
= ∣∣(Ẽ − β) \ C

∣∣ = ∣∣Ẽ \ (β + C)
∣∣

≤ ∣∣Ẽ \ ((
0, αc

2

) + K
)∣∣ + ∣∣((0, αc

2

) + K
) \ (β + C)

∣∣
≤ C̃(n,K)μ(E)

1
2n + ∣∣(((0, αc

2

) − β
) + K

) \ C
∣∣. (3.28)

As before, |(((0, αc
2) − β) + K) \ C| = 0 (since ((0, αc

2) − β) + K ⊂ C ). Therefore,
(3.27) and (3.28) imply the claim (i.e., (3.26)). Furthermore, by using (3.25) and
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(3.26), it follows that for some constant w̃(n,K),

∣∣F�
(((

0, αc
2

) − β
) + K

)∣∣ ≤ w̃(n,K)μ(E)
1

2n . (3.29)

Next, let α(F ) be the translation as in Lemma 3.7 for the set F ⊂ C , so that
|F�(α(F ) + K)| ≤ C3.7(n,K)

√
μ(F). By Lemma 3.2 and (3.29),

min
{
c3.2(n,K),C3.2(n,K)

∣∣((0, αc
2

) − β
) − α(F )

∣∣}
≤ ∣∣(((0, αc

2

) − β
) + K

)
�

(
α(F ) + K

)∣∣
≤ ∣∣(((0, αc

2

) − β
) + K

)
�F

∣∣ + ∣∣F�
(
α(F ) + K

)∣∣
≤ w̃(n,K)μ(E)

1
2n + C3.7(n,K)

√
μ(F). (3.30)

Moreover, (3.24) and (3.30) imply that if μ(E) is sufficiently small, then there exists
a constant w2(n,K) so that

|α2(F )| ≤ |α(F )| ≤ ∣∣(0, αc
2

) − β
∣∣ + w2(n,K)μ(E)

1
4n

= 1

4
c̃3.9(n,K) + w2(n,K)μ(E)

1
4n , (3.31)

and

|α1(F )| ≤ w2(n,K)μ(E)
1

4n (3.32)

(since |α1(F )| ≤ |((0, αc
2) − β) − α(F )|). Furthermore, using (3.31) and (3.24), we

deduce that for μ(E) small enough

|α2(F )| ≤ c̃3.9(n,K), μ(F ) ≤ c3.9(n,K),

where c3.9 is as in Proposition 3.9. Thus, by applying Proposition 3.9 to F and using
(3.24) again, it follows that

|α2(F )| ≤ C3.9(n,K)
√

μ(F) ≤ C3.9(n,K)
√

w(n,K)μ(E)
1

4n . (3.33)

Combining (3.30), (3.32), and (3.33) we obtain

1

4
c̃3.9(n,K) = ∣∣(0, αc

2

) − β
∣∣ ≤ |α(F )| + w2(n,K)μ(E)

1
4n

≤ |α2(F )| + 2w2(n,K)μ(E)
1

4n

≤ (
C3.9(n,K)

√
w(n,K) + 2w2(n,K)

)
μ(E)

1
4n ,

which is impossible if μ(E) is sufficiently small. This concludes the proof. �

We are now in a position to prove Theorem 1.2. First, we assume that |E| = |K|.
Indeed, let c3.9 and c3.12 be the constants given in Proposition 3.9 and 3.12, respec-
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tively, and set c(n,K) := min{c3.9(n,K), c3.12(n,K)}. If μ(E) ≤ c(n,K), then it fol-
lows from Proposition 3.12 and Corollary 3.10 that

|(E − (α1,0))�K|
|K| ≤ C3.10(n,K)

|K|
√

μ(E).

Let C̄(n,K) := C3.10(n,K)

|K| and suppose now that |E| �= |K|. Pick t > 0 such that
|tE| = |K| and apply the previous estimate to the set tE to obtain

|(tE − (α1(tE),0))�K)|
|tE| ≤ C̄(n,K)

√
μ(tE) = C̄(n,K)

√
μ(E),

and this implies

|(E − (
α1(tE)

t
,0))�( 1

t
K)|

|E| ≤ C̄(n,K)
√

μ(E).

Since s = 1
t
, this yields the theorem for the case when μ(E) ≤ c(n,K). If μ(E) >

c(n,K), then

|E�(sK)|
|E| ≤ 2 ≤ 2√

c(n,K)

√
μ(E).

Therefore, we obtain the theorem with C(n,K) = min{C̄(n,K), 2√
c(n,K)

}.
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Appendix: Proofs of the Technical Lemmas

Proof of Lemma 3.2 For y ∈ R
n let

f (y) := |(A + y)�A|.
Note that f (y) = ∫

Rn |1(A+y)(x) − 1A(x)|dx.
Our strategy is as follows: first, we show that the incremental ratios of f at y = 0

have a positive lower bound. Then we prove that f (y) is uniformly bounded away
from zero when y is away from zero. These two facts readily yield the result.

Step 1. We claim there exists s = s(n,A) > 0 such that

C3.2(n,A) := inf
0≤|y|≤s

f (y)

|y| > 0. (A.1)
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Indeed, let yk ∈ R
n be any sequence converging to 0. By Lemma 3.1 we know that

the family of measure μk defined by

μk := 1A+yk
− 1A

|yk|
satisfy |μk|(Rn) ≤ C3.1. Moreover, up to choosing a subsequence (which we do not
relabel) so that yk/|yk| → w for some w ∈ S

n−1, it is immediate to check that μk

converge weakly to D1A ·w. Hence, by the lower semicontinuity of the total variation
(see, for instance, [2, Corollary 1.60]),

lim inf
k→∞

|(A + yk)�A|
|yk| = lim inf

k→∞ |μk|
(
R

n
) ≥ |D1A · w|(Rn

)
.

We now observe that, again by the lower semicontinuity of the total variation, the
right-hand side attains a minimum for some w̄ ∈ S

n−1. Hence, by the arbitrariness of
yk ,

lim inf|y|→0

f (y)

|y| = lim inf|y|→0

|(A + y)�A|
|y| ≥ |D1A · w̄|(Rn

)
.

To conclude, it suffices to observe that |D1A · w̄|(Rn) > 0, as otherwise A = A + tw̄

for any t ∈ R (up to sets of measure zero), which contradicts the boundedness of A.

Step 2. We claim that there exists c3.2(n,A) > 0 such that

f (y) ≥ c3.2(n,A) ∀|y| ≥ s(n,A), (A.2)

with s(n,A) as in Step 1. The proof is by compactness: if |y| ≥ diam(A), then
f (y) = 2|A| > 0. On the other hand, by continuity f attains a minimum over the
compact set {y : s(n,A) ≤ |y| ≤ diam(A)}. Let ȳ be a vector where such a minimum
is attained. Then this minimum cannot be zero as otherwise A = A+ ȳ (up to a set of
measure zero). By iterating the estimate, this implies that A = A + kȳ for any k ∈ Z,
contradicting again the boundedness of A. �

Proof of Lemma 3.5 Let k(n) = 2−2
n−1
n

3 . If μ(E) ≤ k(n)2

8 := c3.5(n), then by [16,
Theorem 3.4] there exists a set of finite perimeter G ⊂ E satisfying

|E \ G| ≤ δK0(E)

k(n)
|E|, (A.3)

τ(G) ≥ 1 + mK0

MK0

k(n). (A.4)

We claim that G is the desired set. Indeed, since δK0(E) ≤ μ(E) (see Corollary 2.3),
(A.3) and (A.4) yield (3.5) and (3.6); therefore, it remains to prove (3.7). From the
construction of G in [16, Theorem 3.4], we have G = E \ F∞, where F∞ ⊂ E is the
maximal element given by [16, Lemma 3.2] that satisfies

PK0(F∞) ≤
(

1 + mK0

MK0

k(n)

)∫
F F∞∩F E

‖νE(x)‖K0∗dHn−1(x). (A.5)
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To prove (3.7), we first claim that for some positive constant C(n,K),

Hn−1(F G ∩ C) ≤ Hn−1(F E ∩ C) + C(n,K)μ(E). (A.6)

Note from the definitions that

PK0(E) = n|K|δK0(E) + n|K| 1
n |E| n−1

n . (A.7)

Moreover, by [16, Equation (2.10)] and [16, Equation (2.11)] we may write

PK0(G) =
∫

F G∩F E

‖νE(x)‖K0∗dHn−1(x) +
∫

F G∩E(1)

‖νG(x)‖K0∗dHn−1(x).

Therefore,

PK0(E) =
∫

F G∩F E

‖νE(x)‖K0∗dHn−1(x) +
∫

F F∞∩F E

‖νE(x)‖K0∗dHn−1(x)

= PK0(G) −
∫

F G∩E(1)

‖νG(x)‖K0∗dHn−1(x)

+
∫

F F∞∩F E

‖νE(x)‖K0∗dHn−1(x). (A.8)

Next, we note that F F∞ ∩ E(1) = F G ∩ E(1), and by [16, Lemma 2.2], νG = −νF∞
at Hn−1-a.e. point of F F∞ ∩ E(1). Furthermore, taking into account (2.7) and (A.5),
we have ∫

F G∩E(1)

‖νG(x)‖K0∗dHn−1(x)

=
∫

F F∞∩E(1)

‖−νF∞(x)‖K0∗dHn−1(x)

≤ MK0

mK0

∫
F F∞∩E(1)

‖νF∞(x)‖K0∗dHn−1(x)

≤ MK0

mK0

mK0

MK0

k(n)

∫
F F∞∩F E

‖νF∞(x)‖K0∗dHn−1(x)

= k(n)

∫
F F∞∩F E

‖νF∞(x)‖K0∗dHn−1(x). (A.9)

Hence, (A.8) and (A.9) yield (observe that νE = νF∞ on F F∞ ∩ F E)

PK0(E) ≥ PK0(G) + (
1 − k(n)

) ∫
F F∞∩F E

‖νE(x)‖K0∗dHn−1(x). (A.10)

By the anisotropic isoperimetric inequality (see [16, Theorem 2.3] or (2.12)),

PK0(G) ≥ n|K| 1
n |G| n−1

n .
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Moreover, by (A.3),

|E| − |G| ≤ μ(E)

k(n)
|E|. (A.11)

Thus,

PK0(G) ≥ n|K| 1
n |G| n−1

n ≥ n|K| 1
n

(
|E| − μ(E)

k(n)
|E|

) n−1
n

≥ n|K| 1
n |E| n−1

n

(
1 − μ(E)

k(n)

)
. (A.12)

Combining (A.7), (A.10), and (A.12) it follows that

n|K|δK0(E) + n|K| 1
n |E| n−1

n ≥ n|K| 1
n |E| n−1

n

(
1 − μ(E)

k(n)

)

+ (
1 − k(n)

) ∫
F F∞∩F E

‖νE(x)‖K0∗dHn−1(x).

Therefore (recall δK0(E) ≤ μ(E) and |E| = |K|),
∫

F F∞∩F E

‖νE(x)‖K0∗dHn−1(x) ≤ n|K|(1 + k(n))

k(n)(1 − k(n))
μ(E). (A.13)

Using the definition of mK0 , (A.9), and (A.13) we obtain

Hn−1(F G ∩ C) = Hn−1(F G ∩ F E ∩ C) + Hn−1(F G ∩ E(1)
)

≤ Hn−1(F E ∩ C) + Hn−1(F G ∩ E(1)
)

≤ Hn−1(F E ∩ C) + 1

mK0

∫
F G∩E(1)

‖νG(x)‖K0∗dHn−1(x)

≤ Hn−1(F E ∩ C) + 1

mK0

k(n)

∫
F F∞∩F E

‖νF∞(x)‖K0∗dHn−1(x)

≤ Hn−1(F E ∩ C) + 1

mK0

n|K|(1 + k(n))

(1 − k(n))
μ(E),

and this proves our claim (i.e., (A.6)). Our next task is to use (A.6) in order to prove
(3.7), thereby finishing the proof of the lemma. Let r > 0 be such that |rG| = |E|.
Note that by (A.6),

μ(G) = μ(rG) = Hn−1(F (rG) ∩ C) − Hn−1(∂B1 ∩ C)

Hn−1(∂B1 ∩ C)

= rn−1Hn−1(F G ∩ C) − Hn−1(∂B1 ∩ C)

Hn−1(∂B1 ∩ C)

≤ rn−1(Hn−1(F E ∩ C) + C(n,K)μ(E)) − Hn−1(∂B1 ∩ C)

Hn−1(∂B1 ∩ C)
. (A.14)
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But since μ(E) ≤ k(n)2

8 and k(n) ≤ 1
2 , we have μ(E)

k(n)
≤ k(n)

8 ≤ 1
16 so that two applica-

tions of (A.11) yield

|K|
|G| ≤ 1 + 16

15

μ(E)

k(n)
≤ 1 + μ(E)

2

k(n)
, (A.15)

and by using (A.15) we have

rn−1 =
( |K|

|G|
) n−1

n ≤
(

1 + μ(E)
2

k(n)

) n−1
n ≤ 1 + μ(E)

2(n − 1)

nk(n)
. (A.16)

Upon combining (A.14) and (A.16), (3.7) follows easily. �

Proof of Lemma 3.7 Recall that by definition c3.5(n) = k2(n)
8 , where k(n) = 2−2

n−1
n

3 .
Since δK0(E) ≤ μ(E), by taking μ(E) ≤ c3.5(n), δK0(E) will be sufficiently small
in order for us to assume the setup of [16, Inequality (3.30)], with the understanding
that the set K in the equation corresponds to our K0, and whenever K appears in our
estimates, it is the same set that we defined in the introduction (i.e., K = B1 ∩ C ).
Note that in [16, Proof of Theorem 1.1] the authors dilate the sets G and E by the
same factor r > 0 so that |rG| = |K0| = |K|; however, they still denote the result-
ing dilated sets by G and E. We will keep the scaling factor so that our rG and rE

correspond, respectively, to their G and E. With this in mind, note that [16, Inequal-
ity (3.30)] is valid up to a translation. Indeed, this translation is obtained by applying
[16, Lemma 3.1] to the functions Si and the set rG, where S(x) = T̃0(x) − x, and T̃0
is the Brenier map between rG and K0. Since a = α̂ −x0 in Lemma 3.6 was obtained
by the exact same process, a satisfies [16, Inequality (3.30)]. Thus, by the estimates
under [16, Inequality (3.30)] it follows that

C(n,K)
√

δK0(rG) ≥
∫

F (rG)

|1 − ‖x − a‖K0 |‖νrG(x)‖K0∗dHn−1(x)

=
∫

F (rG−a)

|1 − ‖x‖K0 |‖ν(rG−a)(x)‖K0∗dHn−1(x)

≥ mK0

MK0

|(rG − a) \ K0|.

Therefore, we have

|(rG)�(α̂ + K)| = |(rG)�(a + K0)| = 2|(rG − a) \ K0|
≤ 2C̃(n,K)

√
δK0(G) ≤ 2C̃(n,K)

√
μ(G), (A.17)

and this implies

|(rE)�(α̂ + K)| ≤ |(rE)�(rG)| + |(rG)�(α̂ + K)|
≤ 2rn|E \ G| + 2C̃(n,K)

√
μ(G). (A.18)

Recalling that |E \ G| = |E| − |G| ≤ |E|
k(n)

μ(E) (see (3.5)), |E| = |K|, and μ(E) is
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small, it readily follows that (see (A.15))

r ≤ 1 + 2μ(E)

k(n)
, (A.19)

and we obtain (3.12). Also, (A.17), (A.18), (A.19), and μ(G) ≤ C3.5(n,K)μ(E) (see
(3.7)) imply the existence of a positive constant C(n,K) so that

|(rE)�(α̂ + K)| ≤ C(n,K)
√

μ(E), (A.20)

|(rG)�(α̂ + K)| ≤ C(n,K)
√

μ(E). (A.21)

Moreover, (A.19) and (A.20) imply

|E�(α + K)| ≤
∣∣∣∣E�

(
α + 1

r
K

)∣∣∣∣ +
∣∣∣∣
(

α + 1

r
K

)
�(α + K)

∣∣∣∣
≤ 1

rn
|(rE)�(α̂ + K)| +

∣∣∣∣K \ 1

r
K

∣∣∣∣
≤ C(n,K)

√
μ(E) + |K|

(
r − 1

r

)

≤ C(n,K)
√

μ(E) + |K| 2

k(n)
μ(E).

By combining this together with (A.21), we readily obtain (3.10) and (3.11). �
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