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Abstract Hankel operators with anti-holomorphic symbols are studied for a large
class of weighted Fock spaces on C

n. The weights defining these Hilbert spaces are
radial and subject to a mild smoothness condition. In addition, it is assumed that the
weights decay at least as fast as the classical Gaussian weight. The main result of
the paper says that a Hankel operator on such a Fock space is bounded if and only
if the symbol belongs to a certain BMOA space, defined via the Berezin transform.
The latter space coincides with a corresponding Bloch space which is defined by
means of the Bergman metric. This characterization of boundedness relies on certain
precise estimates for the Bergman kernel and the Bergman metric. Characterizations
of compact Hankel operators and Schatten class Hankel operators are also given.
In the latter case, results on Carleson measures and Toeplitz operators along with
Hörmander’s L2 estimates for the ∂̄ operator are key ingredients in the proof.
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1 Introduction

This paper presents the basics of Hankel operators with anti-holomorphic symbols for
a large class of weighted Fock spaces. Thus certain natural analogues of BMOA, the
Bloch space, the little Bloch space, and the Besov spaces are identified and shown to
play similar roles as their classical counterparts do. We will see that these spaces con-
tain all holomorphic polynomials and are infinite-dimensional whenever the weight
decays so fast that there exist functions of infinite order belonging to the Fock space.

The setting is the following. Consider a C3-function � : [0,+∞[→ [0,+∞[ such
that

� ′(x) > 0, � ′′(x) ≥ 0, and � ′′′(x) ≥ 0. (1.1)

We will refer to such a function as a logarithmic growth function. Note that (1.1)
effectively says that � should grow at least as a linear function. Set

dμ�(z) := e−�(|z|2)dV (z),

where dV denotes Lebesgue measure on C
n, and let A2(�) be the Fock space defined

as the closure of the set of holomorphic polynomials in L2(μ�). We observe that
A2(�) coincides with the classical Fock space when � is a suitably normalized linear
function.

It is immediate that

sd :=
∫ +∞

0
xde−�(x)dx < +∞

for all nonnegative integers d . Moreover, as shown in [9], the series

Fs(ζ ) :=
+∞∑
d=0

ζ d

sd
, ζ ∈ C

has an infinite radius of convergence and A2(�) is a reproducing kernel Hilbert space
with reproducing kernel

K�(z,w) = 1

(n − 1)!F
(n−1)
s (〈z,w〉), z,w ∈ C

n.

This implies that the orthogonal projection P� from L2(μ�) onto A2(�) can be
expressed as

(P�g)(z) =
∫

Cn

K�(z,w)g(w)dμ�(w), z ∈ C
n,

for every function g in L2(μ�). The domain of this integral operator can be extended
to include functions g that satisfy K�(z, ·)g ∈ L1(μ�) for every z in C

n. This exten-
sion allows us to define (big) Hankel operators. To do so, denote by T (�) the class
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of all f in L2(μ�) such that f ϕK�(z, ·) ∈ L1(μ�) for all holomorphic polynomials
ϕ and z in C

n and the function

Hf (ϕ)(z) :=
∫

Cn

K�(z,w)ϕ(w)
[
f (z) − f (w)

]
dμ�(w), z ∈ C

n

is in L2(μ�). This is a densely defined operator from A2(�) into L2(μ�) which will
be called the Hankel operator Hf with symbol f . It can be written in the form

Hf (ϕ) = (I − P�)(f ϕ)

for all holomorphic polynomials ϕ. It is clear that the class T (�) contains all holo-
morphic polynomials.

Our main theorem involves the analogues in our setting of the space BMOA and
the Bloch space. The analogue of BMOA is most conveniently defined via the Berezin
transform, which for a linear operator T on A2(�) is the function T̃ defined on C

n

by

T̃ (z) := 〈T K�(·, z),K�(·, z)〉
K�(z, z)

.

If T = Mf is the operator of multiplication by the function f , then we just set M̃f =
f̃ . We set

‖f ‖BMO := sup
z∈Cn

(MOf )(z),

where

(MOf )(z) :=
√

|̃f |2(z) − |f̃ (z)|2,
and define BMO(�) as the set of functions f on C

n for which |̃f |2(z) is finite for
every z and ‖f ‖BMO < ∞. It is plain that BMO(�) is a subset of T (�). The space
BMOA(�) is the subspace of BMO(�) consisting of analytic elements; this space is
in turn a subset of T (�) ∩ A2(�).

We next introduce the Bergman metric associated with �. To this end, set
��(z) = logK�(z, z) and

β2(z, ξ) :=
n∑

j,k=1

∂2��(z)

∂zj ∂z̄k

ξj ξ̄k

for arbitrary vectors z = (z1, . . . , zn) and ξ = (ξ1, . . . , ξn) in Cn. The corresponding
distance 	 is given by

	(z,w) := inf
γ

∫ 1

0
β(γ (t), γ ′(t))dt, (1.2)

where the infimum is taken over all piecewise C1-smooth curves γ : [0,1] → C
n

such that γ (0) = z and γ (1) = w. We define the Bloch space B(�) to be the space



Hankel Operators on Fock Spaces and Related Bergman Kernel Estimates 173

of all entire functions f such that

‖f ‖B(�) := sup
z∈Cn

[
sup

ξ∈Cn\{0}
|〈(∇f )(z), ξ̄ 〉|

β(z, ξ)

]
< +∞. (1.3)

In what follows, the function

�(x) := x� ′(x)

will play a central role. By (1.1), we have that both �′(x) > 0 and �′′(x) > 0, and
it may be checked that �′(|z|2) coincides with the Laplacian of �(|z|2) when n = 1
and in general is bounded below and above by positive constants times this Laplacian
for arbitrary n > 1.

We are now prepared to state our main result.

Theorem A Let � be a logarithmic growth function, and suppose that there exists a
real number η < 1/2 such that

�′′(t) = O(t−
1
2 [�′(t)]1+η) when t → ∞. (1.4)

If f is an entire function on C
n, then the following statements are equivalent:

(i) The function f belongs to T (�) and the Hankel operator Hf̄ on A2(�) is
bounded;

(ii) The function f belongs to BMOA(�);
(iii) The function f belongs to B(�).

Note that the additional assumption (1.4) is just a mild smoothness condition,
which holds whenever � is a nontrivial polynomial or a reasonably well-behaved
function of super-polynomial growth.

As part of the proof of Theorem A, we will perform a precise computation of
the asymptotic behavior of β(z, ξ) when |z| → ∞. We state this result as a separate
theorem.

Theorem B Let � be a logarithmic growth function, and suppose that there exists a
real number η < 1/2 such that (1.4) holds. Then we have, uniformly in ξ , that

β2(z, ξ) = (1 + o(1))
(
|ξ |2� ′(|z|2) + |〈z, ξ 〉|2� ′′(|z|2)

)
when |z| → ∞.

We observe that for the classical Fock space (� a linear function) we have
� ′′(x) ≡ 0, and so the “directional” term in β(z, ξ) is not present. Note also that
B(�) contains all polynomials and is infinite-dimensional whenever the growth
of � ′(x) is super-polynomial. In the language of entire functions, this means that
A2(�) contains functions of infinite order. When n = 1, β2(z, ξ) can be replaced by
�′(|z|2)|ξ |2. The same is also true when � is a polynomial, because then � ′ and
�′ have the same asymptotic behavior. In the latter case, our two theorems give the
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following precise result: If � is a polynomial of degree d , then B(�) consists of all
holomorphic polynomials of degree at most d ; cf. Theorem A in [9].

The implication (i) ⇒ (ii) in Theorem A is standard; it follows from general ar-
guments for reproducing kernels. Likewise, the implication (ii) ⇒ (iii) can be es-
tablished by a well-known argument concerning the Bergman metric. Our proof of
Theorem A (presented in Sects. 2–5 below) therefore deals mainly with the implica-
tion (iii) ⇒ (i). The crucial technical ingredients in the proof of this result are certain
estimates for the Bergman kernel K�(z,w). Such estimates have previously been
obtained by F. Holland and R. Rochberg in [11]. The results of [11] are not directly
applicable because we need more precise off-diagonal estimates for the kernel than
those given in that paper. Our method of proof is similar to that of [11], but our ap-
proach highlights more explicitly the interplay between the smoothness of � and the
off-diagonal decay of the Bergman kernel. This is where the additional smoothness
condition (1.4) comes into play; many of our estimates can be performed with suf-
ficient precision without the assumption that (1.4) holds, but some condition of this
kind seems to be needed for our off-diagonal estimates.

The fact that the Bergman metric is the notion used to define the Bloch space B(�)

suggests that Theorem A should be extendable beyond the case of radial weights.
To obtain such an extension, one would need a replacement of our Fourier-analytic
approach, which relies crucially on the representation of the Bergman kernel as a
power series.

The machinery developed to prove Theorem A leads with little extra effort to a
characterization of compact Hankel operators in terms of the obvious counterparts to
VMOA and the little Bloch space; see Sect. 6 for details. In our study of Schatten class
Hankel operators, however, some additional techniques will be used. We will need
more precise local information about the Bergman metric, namely that balls of fixed
radius in the Bergman metric are effectively certain ellipsoids in the Euclidean metric
of C

n (see Sect. 7). These results appear to be of independent interest; in particular,
they lead to a characterization of Carleson measures and in turn to a characterization
of the spectral properties of Toeplitz operators (see Sect. 8). Building on these results
and using L2 estimates for the ∂̄ operator, we obtain in Sect. 9 a characterization of
Schatten class Hankel operators.

To place the present investigation in context, we close this introduction with a few
words on the literature. Boundedness and compactness of Hankel operators with ar-
bitrary symbols have previously been considered only for the classical Fock space
(� a linear function); see, for example, [1, 2, 5, 6, 16, 17]. The methods of these
papers, relying on the transitive self-action of the group C

n, cannot be extended be-
yond this special case. Hankel operators with anti-holomorphic symbols defined on
more general weighted Fock spaces were studied recently in [9] and [8], where it
was shown that anti-holomorphic polynomials do not automatically induce bounded
Hankel operators. For Bergman kernel estimates in similar settings, we refer to [14]
and [15]. We finally mention [13] and [3]; the first of these papers focuses on small
Hankel operators and the Heisenberg group action, while the second deals with Han-
kel operators for the Bergman projection on smoothly bounded pseudoconvex do-
mains in C

n.
A word on notation: Throughout this paper, the notation U(z) � V (z) (or equiva-

lently V (z) � U(z)) means that there is a constant C such that U(z) ≤ CV (z) holds
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for all z in the set in question, which may be a space of functions or a set of numbers.
If both U(z) � V (z) and V (z) � U(z), then we write U(z) � V (z).

2 General Arguments: (i) ⇒ (ii) and (ii) ⇒ (iii) in Theorem A

The following standard argument shows that (i) implies (ii) in Theorem A. To begin
with, we note that if f is in A2(ψ), then f̃ = f. Moreover, by the definition of the
reproducing kernel, a computation shows that

|̃f |2(z) − |f (z)|2 =
∫

Cn

|f (ξ) − f (z)|2 |K�(ξ, z)|2
K�(z, z)

dμ�(ξ) = ‖Hf̄ K�(·, z)‖2

K�(z, z)
.

(2.1)
Hence, if Hf̄ is bounded, then ‖f ‖BMO < +∞.

The implication (ii) ⇒ (iii) is a consequence of the following lemma, the proof of
which is exactly as the proof of Corollary 1 in [4] (see pp. 319–321 in that paper).

Lemma 2.1 Suppose that f is in BMOA(�). Then for every piecewise C1-smooth
curve γ : [0,1] → C

n we have
∣∣∣∣ d

dt
(f ◦ γ )(t)

∣∣∣∣≤ 2
√

2β(γ (t), γ ′(t))(MOf )(γ (t)).

If we choose γ (t) = z + tξ , then we obtain

|〈(∇f )(z), ξ̄ 〉|
β(z, ξ)

≤ 2
√

2(MOf )(z) (2.2)

for all z in C
n and ξ in C

n \ {0}.

3 Estimates for the Bergman Kernel and Some Related Functions

This section is a somewhat elaborate preparation for the proof of Theorem B and also
the proof of the implication (iii) ⇒ (i) in Theorem A.

Set

θ0(r) := [r�′(r)]−1/2.

The key estimates for the Bergman kernel are the following.

Lemma 3.1 Suppose that (1.4) holds. Let z and w be arbitrary points in C
n such that

〈z,w〉 �= 0, and write 〈z,w〉 = reiθ , where r > 0 and −π < θ ≤ π . Then we have

1

[� ′(r)]n−1

|K�(z,w)|
e�(r)

�
{

�′(r), |θ | ≤ θ0(r),

r−3/2[�′(r)]−1/2|θ |−3, |θ | > θ0(r).

Moreover, there exists a positive constant c such that if θ < cθ0(r), then

|K�(z,w)| � �′(r)[� ′(r)]n−1e�(r).
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We collect a few preliminary results.

Lemma 3.2 Let η be as in Theorem A. Then, for any fixed α > η, we have

sup
|τ |≤t1/2[�′(t)]−α

�′(t + τ) = (1 + o(1))�′(t)

when t → ∞.

Proof The proof is similar to the proof of Lemma 6 in [11]. By (1.4), [�′(x)]−1−η ×
�′′(x) = O(x−1/2) when x → ∞, which implies that

|[�′(t + τ)]−η − [�′(t)]−η| = |τ |O(t−1/2τ)

when t → ∞. The result follows from this relation. �

In order to estimate |K�(z,w)|, we need precise information about the mo-
ments sd . To this end, note that the integrand of

∫ ∞

0
xte−�(x)dx

attains its maximum at x = �−1(t). Set

ht (x) = −t logx + �(x) − (−t log�−1(t) + �(�−1(t)))

and

I (t) =
∫ ∞

0
e−ht (x)dx;

we may then write

sd = ed log�−1(d)−�(�−1(d))I (d).

We have the following precise estimate for I (t).

Lemma 3.3 For the function I (t), we have

I (t) = (
√

2π + o(1))

[
�−1(t)

�′(�−1(t))

]1/2

when t → ∞.

Proof Set τ(x) = √
x[�′(x)]−α , where η < α < 1/2. Since

h′′
t (x) = �′(x)

x
+ t

x2
− �(x)

x2
= �′(x)

x
+ 1

x2

[
�(�−1(t)) − �(x)

]
,

we have, by Lemma 3.2,

h′′
t (x) = h′′

t (�
−1(t))(1 + o(1))
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when |x − �−1(t)| ≤ τ(�−1(t)). On the other hand, by the convexity of ht , we then
have

|ht (x)| ≥ 1

2
(h′′

t (�
−1(t)) + o(1))τ (�−1(t))|x − �−1(t)|

for |x − �−1(t)| ≥ τ(�−1(t)). Setting for simplicity

c = h′′
t (�

−1(t)) = �′(�−1(t))

�−1(t)
,

we then get

I (t) =
∫

|x|≤τ(�−1(t))

e− 1
2 (c+o(1))x2

dx + E(t), (3.1)

where

|E(t)| ≤ 2
∫

x≥τ(�−1(t))

e− 1
2 (c+o(1))τ (�−1(t))xdx.

Thus the result follows, since the integral in (3.1) can be estimated by the correspond-
ing Gaussian integral from −∞ to ∞. �

In what follows, we will estimate a number of integrals in a similar fashion, using
Lemma 3.2 to split the domain of integration. The integrands will be of the type
e−gt (x)St (x) and satisfy the following:

(I) gt attains its minimum at a point x0 = x0(t) → ∞ with g′′
t (x) = (1 + o(1))c for

|x − x0| ≤ τ and 1/τ = o(c) when t → ∞.
(II) For |x − x0| ≤ τ , St (x) can be estimated by a constant C times |x − x0|m for

some positive integer m.
(III) When |x − x0| ≥ τ and |x − x0| grows, the function e−gt (x)St (x) decays so fast

that
∫ ∞

0
e−gt (x)|St (x)|dx = (1 + o(1))

∫
|x−x0|≤τ

e−gt (x)|St (x)|dx.

Taking into account the formula
∫ ∞

0
xme− 1

2 cx2
dx = (c/2)−(m+1)/2

∫ ∞

0
xme−x2

dx, (3.2)

we then arrive at the estimate
∫ ∞

0
e−ht (x)St (x)dx = O(Cc−(m+1)/2) (3.3)

when t → ∞.
We will at one point encounter a slightly different variant of this scheme, obtained

by replacing (II) by the following:

(II′) For |x − x0| ≤ τ , we have S(x) = (1 + o(1))(x − x0) when t → ∞.
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In this case, because of the symmetry around the point x0, we get the slightly better
estimate ∫ ∞

0
e−ht (x)S(x)dx = o(c−1) (3.4)

when t → ∞.
To avoid tedious repetitions, in the following we will omit most of the details of

such calculus arguments. We will briefly state that conditions (I), (II), (III) (or, respec-
tively, (I), (II′), (III)) are satisfied and conclude that this leads to the estimate (3.3)
(or, respectively, (3.4)).

In the proof of the next lemma, we will use this scheme three times.

Lemma 3.4 We have

I ′(t) = O
([�−1(t)�′(�−1(t))]−1/2I (t)

);
I ′′(t) = O

([�−1(t)�′(�−1(t))]−1I (t)
);

I ′′′(t) = O
([

�−1(t)�′(�−1(t))
]−3/2

I (t)
)

when t → ∞.

Proof We begin by noting that I ′ can be computed in the following painless way:

I ′(t) =
∫ ∞

0
log

x

�−1(t)
e−ht (x)dx; (3.5)

this holds because h′
t (�

−1(t)) = 0. For the same reason, we get

I ′′(t) =
∫ ∞

0

[
− (�(−1))′(t)

�−1(t)
+
(

log
x

�−1(t)

)2]
e−ht (x)dx (3.6)

and

I ′′′(t) =
∫ ∞

0

[
−
[
(�(−1))′(t)

�−1(t)

]′
− 3

(�(−1))′(t)
�−1(t)

log
x

�−1(t)

+
(

log
x

�−1(t)

)3]
e−ht (x)dx. (3.7)

We use that [�−1]′(t) = 1/�′(�−1(t)), and then in (3.7) we also use the fact that
[

1

�′(�(−1)(t))�−1(t)

]′
= − �′′(�−1(t))

[�′(�−1(t))]3�−1(t)
− 1

[�′(�−1(t))�−1(t)]2
;

(3.8)
we apply condition (1.4) to the first term on the right-hand side. When we estimate
the integrals in (3.5), (3.6), and (3.7), we use that

∣∣∣∣log
x

�−1(t)

∣∣∣∣≤ e
|x − �−1(t)|

�−1(t)
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for x ≥ e−1�−1(t) and that, say,

∣∣∣∣log
x

�−1(t)

∣∣∣∣≤ log
1

�−1(t)

when 1 ≤ x < e−1�−1(t). In each case, the integrand satisfies conditions (I), (II),
(III) with gt = ht , so that we may use (3.3). The desired results for I ′, I ′′, I ′′′ now
follow from (3.3). �

We will need similar estimates for the function

Lr(t) = exp
(
t log r − t log�−1(t) + �

(
�−1(t)

))
,

where r is a positive parameter.

Lemma 3.5 We have

L′
r (t) =

(
− log

�−1(t)

r

)
Lr(t);

L′′
r (t) =

[(
log

�−1(t)

r

)2

− 1

�′(�−1(t))�−1(t)

]
Lr(t);

L′′′
r (t) =

[(
− log

�−1(t)

r

)3

+ 3 log �−1(t)
r

�′(�−1(t))�−1(t)

+ O
([

�′(�−1(t))�−1(t)
]−3/2)]

Lr(t)

when t → ∞.

Proof The first and the second of these formulas are obtained by direct computa-
tion. We arrive at the estimate for the third derivative by again using (3.8) and then
applying condition (1.4). �

Proof of Lemma 3.1 We begin by recalling that

K�(z,w) = k(〈z,w〉),
where

k(ζ ) := 1

(n − 1)!
∞∑

d=n−1

d(d − 1) · · · (d − n + 2)

sd
ζ d−n+1.

We set 〈z,w〉 = reiθ and assume that r > 0 and |θ | ≤ π . We may then write

〈z,w〉d
sd

= Lr(d)

I (d)
exp(idθ)
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and hence

〈z,w〉n−1K�(z,w) = rn−1 exp(i(n − 1)θ)k
(
reiθ

)

= 1

(n − 1)!
∞∑

d=n−1

d(d − 1) · · · (d − n + 2)
Lr(d)

I (d)
exp(idθ).

Let �(t) be a function in C3(R) so that

�(t) = 1

(n − 1)!
t (t − 1) · · · (t − n + 2)Lr(t)

I (t)

for t ≥ n − 1 and �(t) = 0 for t ≤ n − 2. Then the Poisson summation formula gives

rn−1 exp(i(n − 1)θ)k
(
reiθ

)=
∞∑

j=−∞
�̃(j),

where

�̃(j) =
∫ ∞

−∞
�(t)ei(2πj+θ)t dt.

Integrating by parts, we obtain

rn−1|k(reiθ )| ≤ |�̃(0)| + ‖�′′′‖1

∞∑
j=1

2

(2π)3(j − 1/2)3
.

Since

|�̃(0)| ≤ min
(‖�‖1, |θ |−3‖�′′′‖1

)
,

the proof of the first part of the lemma is complete if we can prove that

‖�‖1 � (�(r))n−1�′(r)e�(r) (3.9)

and

‖�′′′‖1 � (�(r))n−1 e�(r)

r3/2
√

�′(r)
. (3.10)

We first estimate ‖�‖1. We write Lr(t) = exp(−gr(t)) and claim that condi-
tions (I), (II), (III) above hold. To see this, we observe that, by the first formula of
Lemma 3.5, Lr attains its maximum at t = �(r). Moreover, gr is a convex function
and

g′′
r (t) = 1

�′(�−1(t))�−1(t)
.

Lemma 3.2 implies that

g′′
r (t) = (1 + o(1))g′′

r (�(r))
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when |t − �(r)| ≤ √
r[�′(r)]1−2α . The remaining details are carried out as in the

proof of Lemma 3.3. Using (3.3) with m = 0 and Lemma 3.3, we therefore get

‖�‖1 = |�(r)(�(r) − 1) · · · (�(r) − n + 2)| Lr(�(r))

I (�(r))
(
√

2π + o(1))[�′(r)r]1/2

= (1 + o(1))(�(r))n−1�′(r)e�(r),

which shows that (3.9) holds.
To arrive at (3.10), we need a pointwise estimate for �′′′. To simplify the writing,

we set

a =
∣∣∣∣log

�−1(t)

r

∣∣∣∣ and b = [�′(�−1(t))�−1(t)
]−1/2

.

Then using the Leibniz rule along with Lemmas 3.4 and 3.5, we get

|�′′′(t)| � (a3 + a2b + ab2 + b3)�(t).

By a straightforward calculus argument, we verify that each of the terms in this ex-
pression satisfies (I), (II), and (III) above, again with x0 = �(r) τ = √

r[�′(r)]1−2α .
We now use (3.3) to achieve the desired estimate for each of the terms amb3−m�(t).

The previous proof also gives the second estimate when θ = 0, because then
�̃(0) = ‖�‖1. To prove it in general, we need to check that k(r) � |k(reiθ )| when
|θ | ≤ c[r�′(r)]−1/2. To this end, note that

�̃(0) = eiθ�(r)

∫ ∞

−∞
�(t)eiθ(t−�(r))dt,

which implies that

|�̃(0)| ≥ ‖�‖1 −
∫ ∞

−∞
�(t)|θ ||t − �(r)|dt.

The integral on the right is computed using (3.3) with m = 1, and so we get

|�̃(0)| ≥ ‖�‖1
(
1 − C|θ |[r�′(r)]1/2).

Thus the second estimate in Lemma 3.1 holds for c sufficiently small. �

We close this section by proving some estimates for another function that will be
important later. Set

Qx(r) = 1

2
(�(r2) + �(x2)) − �(xr). (3.11)

Lemma 3.6 Let α be a positive number such that η < α < 1/2, let x1 and x2 be the
two points such that x1 < x < x2 and

|x − x1| = |x − x2| = [�′(x)]−α,
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and set c = � ′(0). When r → ∞, we have

Q′′
x(r) = (1 + o(1))�′(x2), x1 ≤ r ≤ x2; (3.12)

Qx(r) ≥ c

4
(x − r)2 +

(
1

4
+ o(1)

)
[�′(x2)]1−2α, r < x1; (3.13)

Qx(r) ≥ c

4
(x − r)2 +

(
1

4
+ o(1)

)
[�′(r2)]1−2α, r > x2. (3.14)

Proof We begin by noting that

Q′
x(r) = r� ′(r2) − x� ′(xr)

and

Q′′
x(r) = � ′(r2) + 2r2� ′′(r2) − x2� ′′(xr).

We observe that for x1 ≤ r ≤ x2 Lemma 3.2 applies:

Q′′
x(r) = �′(r2) + r2� ′′(r2) − x2� ′′(xr) = (1 + o(1))�′(x2),

and so we have established (3.12). For r < x1, we use the following estimate:

Qx(r) ≥ 1

2

∫ x

r

� ′(s2)(s − x)ds + 1

2

∫ x

x−[�′(x2)]−α

∫ t

x−[�′(x2)]−α

Q′′
x(u)dudt

≥ c

4
(x − r)2 +

(
1

4
+ o(1)

)
[�′(x2)]1−2α,

where we used again Lemma 3.2 in the last step. Now observe that since � ′′(y) is a
nondecreasing function, we have

Q′′
x(r) ≥ �′(r2)

for r ≥ x. We therefore obtain for x > x2:

Qx(r) ≥ 1

2

∫ r

x

� ′(s2)(s − x)ds + 1

2

∫ r

r−[�′(r2)]−α

∫ t

r−[�′(r2)]−α

Q′′
x(u)dudt

≥ c

4
(x − r)2 +

(
1

4
+ o(1)

)
[�′(r2)]1−2α,

where Lemma 3.2 is applied once more. Hence (3.14) also holds. �

4 Proof of Theorem B: Computation of the Bergman Metric

We begin by recalling that

K�(z, z) = k(r2),
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where

k(r) =
∞∑

n=0

cdrd,

and

cd := (d + 1) · · · (d + n − 1)

(n − 1)! sd+n−1
.

A computation shows that

β2(z, ξ) := |ξ |2 k′(|z|2)
k(|z|2) + |〈z, ξ 〉|2

[
k′′((|z|2))
k((|z|2)) −

(
k′(|z|2)
k(|z|2)

)2]
.

Thus Theorem B is a consequence of the following lemma.

Lemma 4.1 Suppose that (1.4) holds. Then we have

k′(r)
k(r)

= (1 + o(1))� ′(r),

(
k′(r)
k(r)

)′
= (1 + o(1))� ′′(r) + o(1)

� ′(r)
r

when r → ∞.

The proof of this lemma relies on the following estimates.

Lemma 4.2 Suppose that (1.4) holds and let the coefficients cd be as defined above.
Then we have

∞∑
d=1

cd(d − �(r))rd = o([r�′(r)]1/2k(r)), (4.1)

∞∑
d=1

cd(d − �(r))2rd = (1 + o(1))r�′(r)k(r) (4.2)

when r → ∞.

Proof The proof is essentially the same as the proof for the diagonal estimates
in Lemma 3.1. The only difference is that we replace the function �(t) by (t −
�(r))�(t) and (t − �(r))2�(t), respectively. In the first case, we have a function
that satisfies condition (II′) in Sect. 3. This means that we may use (3.4) to arrive at
(4.1). To establish (4.2), we may apply (3.2) with m = 2 and take into account that
we have the explicit factor (t − �(r))2 in front of �(t). �
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Proof of Lemma 4.1 We write

k′(r) = �(r)

r
(k(r) + O(1)) + 1

r

∞∑
d=1

cd(d − �(r))rd ;

using Lemma 4.2, we obtain

k′(r)
k(r)

= (1 + o(1))� ′(r) + o

([
�′(r)

r

]1/2
)

.

The desired estimate for k′/k follows because, in view of Lemma 3.2, we have

�(r) ≥
∫ r

r−r1/2[�′(r)]−α

�′(t)dt = (1 + o(1))r1/2[�′(r)]1−α

for some α < 1/2.
To arrive at the second estimate, we first observe that

k′′(r) = �(r) − 1

r
(k′(r) + O(1)) + 1

r

∞∑
d=2

cdd(d − �(r))rd−1

= �(r) − 1

r
(k′(r) + O(1)) + �(r)

r2

∞∑
d=2

cd(d − �(r))rd

+ 1

r2

∞∑
d=2

cd(d − �(r))2rd .

Combining our expressions for k′ and k′′, we find that

k′′(r)k(r) − (k′(r))2 =k(r)

r2

∞∑
d=2

cd(d − �(r))2rd − 1

r2

[ ∞∑
d=2

cd(d − �(r))rd

]2

− k(r)k′(r)
r

+ � ′(r)O(k(r) + k′(r)).

Using again Lemma 4.2 and the estimate already obtained for k′/k, we get

(
k′(r)
k(r)

)′
= (1 + o(1))

�′(r)
r

− (1 + o(1))
�(r)

r2

from which the second estimate in Lemma 4.1 follows. �

5 Hankel Operators from Bloch Functions

We finally turn to the proof that (iii) implies (i) in Theorem A. A different proof,
using L2 estimates for the ∂̄ operator, will be given in Sect. 9 below, subject to an
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additional mild smoothness condition on � . The proof in Sect. 9 gives a more infor-
mative norm estimate, which will be crucial in our study of Schatten class Hankel
operators. The proof to be given below has the advantage that it does not require f to
be holomorphic.

Using the reproducing formula, we find that

Hf̄ g(z) =
∫

Cn

(
f (z) − f (w)

)
K�(z,w)g(w)dμ�(w).

Therefore, by the definition of B(�), we have

|Hf̄ g(z)| ≤ ‖f ‖B(�)

∫
Cn

	(z,w)K�(z,w)g(w)dμ�(w).

Thus it suffices to prove that the operator A defined as

Ag(z) =
∫

Cn

	(z,w)K�(z,w)g(w)dμ�(w)

is bounded on L2(μ�).
We shall use a standard technique known as Schur’s test [18, p. 42]. Set

H(z,w) = 	(z,w)|K�(z,w)|e− 1
2 (�(|z|2)+�(|w|2)).

By the Cauchy–Schwarz inequality, we obtain

|(Ag)(z)|2e−�(|z|2) �
∫

Cn

H(z, ζ )dV (ζ )

∫
Cn

H(z,w)|g(w)|2e−�(|w|2)dV (w).

This means that the operator A is bounded on L2(μ�) if

sup
z

∫
Cn

H(z, ζ )dV (ζ ) < ∞. (5.1)

Our task is therefore to establish (5.1).
Without loss of generality, we may assume that z = (x,0, . . . ,0) with x > 0. We

begin by estimating 	(z,w). To this end, write w = (w1, ξ) with ξ a vector in C
n−1

and w1 = reiθ when n > 1. Set e1 = (1,0, . . . ,0) and consider the three curves

γ1(t) = xeit e1, 0 ≤ t ≤ θ,

γ2(t) = (x + t (r − x))eiθ e1, 0 ≤ t ≤ 1,

γ3(t) = (reiθ , tξ), 0 ≤ t ≤ 1,

which together constitute a piecewise smooth curve from z to w. (When n = 1, γ3
does not appear and can be neglected.) Note that

|〈γ1(t), γ
′
1(t)〉| = |γ1(t)||γ ′

1(t)| = x2,

|〈γ2(t), γ
′
2(t)〉| = |γ2(t)||γ ′

2(t)| = (x + t (r − x))|x − r|,
|〈γ3(t), γ

′
3(t)〉| = t |ξ |2.
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By these observations and Theorem B, we get the following estimate:

	(z,w) � x|θ |[�′(x2)]1/2 + [�′(max(x2, r2))]1/2|x − r|
+ |ξ |[� ′(r2 + |ξ |2)]1/2 + |ξ |2[� ′′(r2 + |ξ |2)]1/2.

When estimating the last term on the right-hand side of this inequality, we will use
that

[� ′(y)]2 � � ′′(y), (5.2)

which is a consequence of our assumptions (1.1) and (1.4). Indeed, assuming � ′′ >

0, we have y� ′′(y) � �′(y) since � ′′ is a nondecreasing function. Thus (5.2) is
equivalent to the following:

�(t) � t1/2[�′(t)]1/2.

We arrive at this estimate because

�(t) = �(0) +
∫ t

0
�′(τ )dτ ≥ �(0) + (1 + o(1))t1/2[�′(t)]1/2,

where in the second step we used Lemma 3.2 with α = 1/2.
For ζ = |ζ |eiθ , we set

h(ζ ) =
{

�′(|ζ |), |θ | ≤ θ0(|ζ |),
|ζ |−3/2[�′(|ζ |)]−1/2|θ |−3, |θ | > θ0(|ζ |).

Using this notation and Lemma 3.1, we then obtain

H(z,w) � 	(x,w)h(xreiθ )[� ′(xr)]n−1e− 1
2 (�(x2)+�(r2+|ξ |2))−�(xr).

By Fubini’s theorem, we may compute the integral in (5.1) by first integrating with
respect to the vector ξ over C

n−1 and then taking an area integral with respect to the
complex variable w1 over C. Since y �→ �(r2 + y2) attains its maximum at y = 0
and has a second derivative larger than 2� ′(r2), we have that �(r2 + y2) − �(r2) ≥
� ′(r2)y2. Using spherical coordinates along with this fact, we find that

∫
Cn−1

e−�(r2+|ξ |2)dVn−1(ξ) � e−�(r2)[� ′(r2)]−n+1.

Similarly, again using spherical coordinates, we get

∫
Cn−1

�(r, |ξ |)e−�(r2+|ξ |2)dVn−1(ξ) = C

∫ ∞

0
�(r, y)y2n−2e−�(r2+y2)dy,

where C is the surface area of the unit sphere in C
n−1 and � is any suitable function

of two variables. From the estimate for 	(z,w) and (5.2) we see that we are interested
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in the following two choices: (1) �(r, y) = y[� ′(r2 + y2)]1/2 and (2) �(r, y) =
y2�(r2 + y2). In case (1), we use the Cauchy–Schwarz inequality, so that we get

∫
Cn−1

|ξ |[� ′(r2 + |ξ |2)]1/2e−�(r2+|ξ |2)dVn−1(ξ)

� e−�(r2)

[∫ ∞

0
y4n−3e−(�(r2+y2)−�(r2))dy

]1/2

.

Estimating �(r2 + y2) − �(r2) as above, we therefore get
∫

Cn−1
|ξ |[� ′(r2 + |ξ |2)]1/2e−�(r2+|ξ |2)dVn−1(ξ) � e−�(r2)[� ′(r2)]−n+1.

In case (2), we integrate by parts and get
∫

Cn−1
|ξ |2� ′(r2 + |ξ |2)e−�(r2+|ξ |2)dVn−1(ξ) �

∫ ∞

0
y2n−1e−�(r2+y2)dy.

We proceed as above and obtain
∫

Cn−1
|ξ |2� ′(r2 + |ξ |2)e−�(r2+|ξ |2)dVn−1(ξ) � e−�(r2)[� ′(r2)]−n+1.

With σ denoting Lebesgue measure on C, we therefore get

∫
Cn

H(z,w)dV (w) �
∫

C

G(x, r, θ)

[
� ′(rx)

� ′(r2)

]n−1

h(xreiθ )e−Qx(r)dσ (reiθ ),

where

G(x, r, θ) = x|θ |[�′(x2)]1/2 + [�′(max(x2, r2))]1/2|x − r| + 1

and Qx is as defined by (3.11).
We now resort to polar coordinates; simple calculations show that

∫ π

−π

h(xreiθ )dθ �
[
�′(xr)

xr

]1/2

and
∫ π

−π

|θ |h(xreiθ )dθ � 1

xr

so that ∫
Cn

H(z,w)dV (w) �
∫ ∞

0
(Sx(r) + Tx(r))e

−Qx(r)rdr,

where

Sx(r) =
(

[�′(x2)]1/2

r
+
[
�′(xr)

xr

]1/2
)[

� ′(rx)

� ′(r2)

]n−1

and

Tx(r) = ϕ(max(x2, r2))|x − r|
[

�′(xr)

xr

]1/2 [
� ′(rx)

� ′(r2)

]n−1

.
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By Lemma 3.6 and a straightforward argument, we find that both Sxe
−Qx and Txe

−Qx

satisfy conditions (I), (II), (III) of Sect. 3 (with x = t , Qx = gt , x0 = x, and τ =
[�′(x)]−α). Hence (3.3) applies with m = 0 and m = 1 for the respective integrands,
so that we get

sup
x>0

∫ ∞

0
Sx(r)e

−Qx(r)rdr < ∞ and sup
x>0

∫ ∞

0
Tx(r)e

−Qx(r)rdr < ∞.

We may therefore conclude that (5.1) holds.

6 Compactness of Hankel Operators

We now turn to a study of the relation between the spectral properties of Hankel
operators and the asymptotic behavior of their symbols. We begin with the case of
compact Hankel operators.

An entire function is said to be of vanishing mean oscillation with respect to �

if (MOf )(z) = o(1) as |z| → +∞. Entire functions of vanishing mean oscillation
form a closed subspace of BMOA(�) which we will denote by VMOA(�). In ac-
cordance with our preceding discussion, we define the little Bloch space B0(�) as
the collection of functions f in B(�) for which

sup
ξ∈Cn\{0}

|〈∇f (z), ξ̄ 〉|
β(z, ξ)

= o(1) when |z| → +∞.

The main result of this section reads as follows.

Theorem C Let � be a logarithmic growth function, and suppose that there exists a
real number η < 1/2 such that (1.4) holds. If f is an entire function on C

n, then the
following statements are equivalent:

(i) The function f belongs to T (�) and the Hankel operator Hf̄ on A2(�) is
compact;

(ii) The function f belongs to VMOA(�);
(iii) The function f belongs to B0(�).

Our proof of Theorem C requires the following two lemmas.

Lemma 6.1 The normalized Bergman kernels K�(·, z)/√K�(z, z) converge weakly
to 0 in A2(�) when |z| → +∞.

Proof Since the holomorphic polynomials are dense in A2(�), it suffices to show
that for any non-negative integer m, we have

|z|m√
K�(z, z)

→ 0

as |z| → +∞. But this holds trivially because K�(z, z) is an infinite power series in
|z|2 with positive coefficients. �
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Lemma 6.2 Let f : C
n → C be a function for which there exist positive numbers R

and ε such that

|f (z) − f (w)| ≤ ε	(z,w)

whenever |z| ≥ R. Then there exists a function f0 : C
n → C such that f (z) = f0(z)

for |z| ≥ R and

|f0(z) − f0(w)| ≤ ε	(z,w)

for all points z and w in C
n.

Proof We argue as in the proof of Lemma 5.1 in [1]. We assume without loss of
generality that f is real-valued and set

f0(z) := inf
w∈Cn

{f (w) + ε	(z,w)}.

Then a straightforward argument using the triangle inequality for the Bergman metric
shows that f0 has the desired properties. �

Proof of Theorem C We first prove the implication (i) ⇒ (ii). Assuming that Hf̄ is
compact, we obtain, using Lemma 6.1, that

[(MOf )(z)]2 = ‖Hf̄ K�(·, z)‖2

K�(z, z)
→ 0

when |z| → +∞. This gives the desired conclusion.
We next note that the implication (ii) ⇒ (iii) is immediate from (2.2).
Finally, to prove that (iii) implies (i), in view of Theorem A, we only need to

prove that the bounded Hankel operator Hf̄ is compact whenever (iii) is satisfied. To
see that this holds, we choose an arbitrary positive ε. Assuming (iii), we may find a
positive R0 such that

|〈(∇f )(z), ξ̄ 〉| ≤ ε

2
β(z, ξ)

whenever |z| ≥ R0 and ξ is in C
n \ {0}. Then for some R > R0 we have

|f (z) − f (w)| ≤ ε	(z,w)

as long as |z| ≥ R. Indeed, this follows because β(z, ξ)/|ξ | → ∞ when |z| → ∞
so that, whenever |z| is sufficiently large, 	(z,w) is “essentially” determined by the
contribution to the integral in (1.2) from the points that lie outside the ball of radius
R0 centered at 0. Now let f0 be the function obtained from Lemma 6.2. We write

Hf̄ = Hf̄ −f̄0
+ Hf̄0
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and observe that f̄ − f̄0 is a compactly supported continuous function on C
n. Hence

Hf̄ −f̄0
is compact. On the other hand, if g is a holomorphic polynomial, then

∣∣Hf̄0
g(z)

∣∣�
∫

Cn

∣∣f̄0(w) − f̄0(z)
∣∣ |K�(z,w)g(w)|dμ�(w)

≤ ε

∫
Cn

β(z, ξ) |K�(z,w)g(w)|dμ�(w)

so that, by the proof of Theorem A, we see that ‖Hf̄0
‖ � ε. The implication (iii) ⇒ (i)

follows because ε can be chosen arbitrarily small. �

7 The Geometry of Bergman Balls of Fixed Radius

In what follows, we will need the analogue of Lemma 3.2 for the function � when
n > 1. We will therefore assume that

� ′′(t) = O(t−
1
2 [� ′(t)]1+η) when t → ∞ (7.1)

for some η < 1/2 whenever n > 1. This is again a mild smoothness condition on � .

Lemma 7.1 Assume that (7.1) holds for some η < 1/2. Then, for any fixed α > η, we
have

sup
|τ |≤t1/2[� ′(t)]−α

� ′(t + τ) = (1 + o(1))� ′(t)

when t → ∞.

We are interested in describing geometrically the Bergman ball

B(z, a) = {w :	(z,w) < a}.
Let Pz denote the orthogonal projection in C

n onto the complex line {ζz : ζ ∈ C},
where z is an arbitrary point in Cn \ {0}. It will be convenient to let P0 denote the
identity map. We use the notation

D(z, a) =
{
w : |z − Pzw| ≤ a[�′(|z|2)]−1/2, |w − Pzw| ≤ a[� ′(|z|2)]−1/2

}
.

Then we have the following result.

Lemma 7.2 Suppose that there exists a real number η < 1/2 such that (1.4) holds
and that (7.1) holds if n > 1. Then, for every positive number a, there exist two posi-
tive numbers m and M such that

D(z,m) ⊂ B(z, a) ⊂ D(z,M)

for every z in C
n.
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Proof It suffices to prove that

	(z,w) � |z − Pzw|[�′(|z|2)]1/2 + |w − Pzw|[� ′(|z|2)]1/2 (7.2)

for w in D(z,M) for any fixed positive number M . (The latter term vanishes and can
be disregarded when n = 1.) To begin with, we note that Theorem B gives that

	(z,w) � inf
γ

∫ 1

0

(|γ ′(t)|[� ′(|γ (t)|2)]1/2

+ |〈γ (t), γ ′(t)〉|[� ′′(|γ (t)|2)]1/2)dt, (7.3)

where the infimum is taken over all piecewise smooth curves γ : [0,1] → C
n such

that γ (0) = z and γ (1) = w. If we choose γ to be the line segment from z to Pzw

followed by the line segment from Pzw to w and use that � ′′(x) = o([� ′(x)]1/2) on
the latter part of γ , we get from (7.3) that

	(z,w) � |z−Pzw|[�′(|z|2)]1/2 +|Pzw−w|[� ′(|z|2)]1/2 +|Pzw−w|2o(� ′(|z|2)).
This gives the desired bound from above because, by assumption, |Pzw − w| ≤
M[� ′(|z|2)]−1/2.

To prove the bound from below, we argue in the following way. Let �(γ ) denote
the Euclidean length of γ . Set

	∗
γ (z,w) =

∫ 1

0

(
|γ ′(t)|[� ′(|γ (t)|2)]1/2 + |〈γ (t), γ ′(t)〉|[� ′′(|γ (t)|2)]1/2

)
dt

and 	∗(z,w) = infγ 	∗
γ (z,w). We observe that (7.3) implies that

	(z,w) � inf
t

[� ′(|γ (t)|2)]1/2�(γ ) (7.4)

whenever, say, 	∗
γ (z,w) ≤ 2	∗(z,w). Since we know by the first part of the proof

that 	(z,w) � 1, this implies that

�(γ ) � inf
t

[� ′(|γ (t)|2)]−1/2.

By Lemma 7.1, we therefore have

�(γ ) � [� ′(|z|2)]−1/2,

which, in view of (7.4), in turn gives

�(γ ) � [� ′(|z|2)]−1/2	(z,w). (7.5)

Now let γ be any curve such that 	∗
γ (z,w) ≤ 2	∗(z,w). We then get from (7.3)

that

	(z,w) � |z − w|[� ′(|z|2)]1/2 +
∫ 1

0
|〈γ (t), γ ′(t)〉|[� ′′(|γ (t)|2)]1/2dt. (7.6)
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Set γ0(t) = Pz(γ (t)) and γ1(t) = γ (t) − γ0(t). Note that γ1(0) = 0 and that �(γ1) ≤
�(γ ). By orthogonality and the triangle inequality, we get

∫ 1

0
|〈γ (t), γ ′(t)〉|[� ′′(|γ (t)|2)]1/2dt ≥

∫ 1

0
|γ0(t)||γ ′

0(t)|[� ′′(|γ0(t)|2)]1/2dt

−
∫ 1

0
|〈γ1(t), γ

′
1(t)〉|[� ′′(|γ (t)|2)]1/2dt.

Let t1 be the smallest t such that |z − γ0(t)| = |z − Pzw|. Using that � ′′(x) =
o([� ′(x)]2) and (7.5), we then get

∫ 1

0
|〈γ (t), γ ′(t)〉|[� ′′(|γ (t)|2)]1/2dt

≥ (1 + o(1))

∫ t1

0
|z||γ ′

0(t)|[� ′′(|z|2)]1/2dt − [�(γ )]2o(� ′(|z|2))

� |z − Pzw||z|[� ′′(|z|2)]1/2 − o(1)	(z,w)

when |z| → ∞. Plugging this estimate into (7.6), we obtain the desired bound from
below. �

It follows from the previous lemma that the Euclidean volume of B(z, r) can be
estimated as

|B(z, r)| � [�′(|z|2)]−1/2[� ′(|z|2)](n−1)/2 (7.7)

when r is a fixed positive number. We will now use this fact to establish two covering
lemmas.

Lemma 7.3 Suppose that there exists a real number η < 1/2 such that (1.4) holds
and that (7.1) holds if n > 1. Let R be a positive number and m a positive integer.
Then there exists a positive integer N such that every Bergman ball B(a, r) with
r ≤ R can be covered by N Bergman balls B(ak,

r
m

).

Proof Fix a ball B(a, r). Choose a0 := a and let a1 be a point in C
n such that

	(a, a1) = r/m. Now iterate so that in the k-th step ak is chosen as a point in the com-
plement of

⋃k−1
j=1 B(aj , r/m) minimizing the distance from a, and let J be the small-

est k such that 	(a, ak) ≥ r . Then the balls B(a0, r/m), . . . ,B(aJ−1, r/m) constitute
a covering of B(a, r). By the triangle inequality, we see that the sets B(aj , r/(2m))

are mutually disjoint, and they are all contained in B(a, r + r/(2m)) when j < J .
Hence

J−1∑
j=0

∣∣B(aj , r/(2m))
∣∣≤ |B(a, r + r/(2m))| .
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On the other hand, by (7.7), it follows that there is a positive number C depending on
R and m but not on a such that

1

C
|B(a, r + r/(2m))| ≤ ∣∣B(aj , r/(2m))

∣∣

for every j . We observe that it suffices to take N to be the smallest positive integer
larger than or equal to C. �

Inspired by the construction in the previous lemma, we introduce the following no-
tion. We say that a sequence of distinct points (ak) in C

n is a �-lattice if there exists
a positive number r such that the balls B(ak, r) constitute a covering of C

n and the
balls B(ak, r/2) are mutually disjoint. Replacing a by, say, 0, and r/m by r in the
previous proof, we have a straightforward way of constructing a �-lattice. Note that
since the balls B(ak, r/2) are mutually disjoint, we must have 	(ak, aj ) ≥ r when
k �= j . The number r , which may fail to be unique, is called a covering radius for the
�-lattice (ak). The supremum of all the covering radii is again a covering radius; it
will be called the maximal covering radius for (ak).

Lemma 7.4 Suppose that there exists a real number η < 1/2 such that (1.4) holds
and that (7.1) holds if n > 1, and let R be a positive number. Then there exists a
positive integer N such that if (ak) is a �-lattice with maximal covering radius r ≤
R/2, then every point z in C

n belongs to at most N of the sets B(ak,2r).

Proof Let N be the integer obtained from Lemma 7.3 for the given R when
m = 4 and assume that z ∈ ⋂N+1

j=1 B(akj
,2r). Then akj

is in B(z,2r) for every
j = 1, . . . ,N + 1. If the sets B(z1, r/2), . . . , B(zN , r/2) constitute a covering of
B(z,2r), the existence of which is guaranteed by Lemma 7.3, then at least one of the
sets B(zk, r/2) must contain two of the points akj

, j = 1, . . . ,N + 1. On the other
hand, by the triangle inequality, we have reached a contradiction because the minimal
distance between any two points in the sequence (ak) cannot be smaller than r . �

8 Carleson Measures and Toeplitz Operators

For a nonnegative Borel measure ν on C
n, we set

dν�(z) = e−�(|z|2)dν(z).

Such a measure ν is called a Carleson measure for A2(�) if there is a positive con-
stant C such that

∫
Cn

|f (z)|2dν�(z) ≤ C

∫
Cn

|f (z)|2dμ�(z)

for every function f in A2(�). Thus ν is a Carleson measure for A2(�) if and only
if the embedding Eν of A2(�) into the space L2(ν�) is bounded.
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Theorem D Let � be a logarithmic growth function, and suppose that there exists
a real number η < 1/2 such that (1.4) holds and that (7.1) holds if n > 1. If ν is a
nonnegative Borel measure on C

n, then the following statements are equivalent:

(i) ν is a Carleson measure for A2(�);
(ii) There is a constant C > 0 such that

∫
Cn

|K�(w,z)|2
K(z, z)

dν�(w) ≤ C

for every z in Cn;
(iii) For every positive number r , there is a positive number C such that

ν(B(z, r)) ≤ C|B(z, r)|
for every z in C

n;
(iv) There exist a �-lattice (ak) and a positive number C such that

ν(B(ak, r)) ≤ C|B(ak, r)|
for every point k, where r is the maximal covering radius for (ak).

We prepare for the proof of Theorem D by establishing the following two lemmas.

Lemma 8.1 Suppose that there exists a real number η < 1/2 such that (1.4) holds
and that (7.1) holds if n > 1. Then there exists a positive number r0 such that

|K�(z,w)|2 � K(z, z)K(w,w)

holds for z and w whenever 	(z,w) ≤ r0.

Proof The lemma follows from Lemma 3.1 along with Lemma 7.2. �

Lemma 8.2 Suppose that there exists a real number η < 1/2 such that (1.4) holds
and that (7.1) holds if n > 1, and let r0 be the constant from Lemma 8.1. Then there
is a constant C such that

|f (z)|2e−�(|z|2) ≤ C

|B(z, r)|
∫

B(z,r)

|f (w)|2dμ�(w)

for every entire function f on C
n and every z in C

n.

Proof By Lemma 8.1, the holomorphic function w �→ K(z,w) does not vanish at
any point in B(z, r). Thus the function w �→ |f (w)|2|K�(z,w)|−2 is subharmonic in
B(z, r). Choosing m as in Lemma 7.2, we therefore get

|f (z)|2|K(z, z)|−2 � 1

|D(z,m)|
∫

D(z,m)

|f (w)|2|K�(z,w)|−2dV (w)

� 1

|B(z, r)|
∫

B(z,r)

|f (w)|2|K�(z,w)|−2dV (w).
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Applying Lemma 8.1 to the integrand to the left and then Lemma 3.1 to each side,
we arrive at the desired estimate. �

Note that, by (7.7), the lemma is valid for all positive r , with the additional proviso
that C depends on r .

Proof of Theorem D We begin by noting that the implication (i) ⇒ (ii) is trivial be-
cause it is just the statement that the Carleson measure condition holds for the func-
tions K(·, z). To prove that (ii) implies (iii), we assume that (ii) holds and consider
a ball B(z, r) where r is a fixed positive number. Then, by Lemma 8.1 and (7.7), we
have

1

|B(z, r)| � |K�(z,w)|2
K�(z, z)

e−�(|w|2)

when 	(z,w) ≤ r0, and therefore we obtain

ν(B(z, r))

|B(z, r)| �
∫

Cn

|K�(z,w)|2
K�(z, z)

e−�(|w|2)dν(w) ≤ C.

The implication (iii) ⇒ (iv) is trivial (modulo the existence of �-lattices), and we
are therefore done if we can prove that (iv) implies (i). To this end, assume that (iv)
holds, and let (ak) be a �-lattice with maximal covering radius r . By Lemma 8.2, we
see that

sup
z∈B(ak,r)

|f (z)|2e−�(|z|2) � 1

|B(ak,2r)|
∫

B(ak,2r)

|f (w)|2dμ�(z)

for every k. We therefore get
∫

Cn

|f (z)|2dν�(z) �
∑

k

∫
B(ak,2r)

|f (w)|2dμ�(w) �
∫

Cn

|f (w)|2dμ�(w),

where the latter inequality holds by Lemma 7.4. �

For ν a nonnegative Borel measure on C
n, we define the Toeplitz operator Tν on

A2(�) in the following way:

(Tνf )(z) :=
∫

Cn

f (w)K�(z,w)e−�(|w|2)dν(w).

A computation shows that E∗
νEν = Tν . Thus Theorem D characterizes bounded

Toeplitz operators. Compact Toeplitz operators can likewise be characterized via so-
called vanishing Carleson measures; an obvious and straightforward modification of
Theorem D gives a description of such measures. Toeplitz operators belonging to the
Schatten classes Sp are characterized by the following theorem.

Theorem E Let � be a logarithmic growth function, and suppose that there exists
a real number η < 1/2 such that (1.4) holds and that (7.1) holds if n > 1. If ν is
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a nonnegative Borel measure on C
n and p ≥ 1, then the following statements are

equivalent:

(i) The Toeplitz operator Tν on A2(�) belongs to the Schatten class Sp;
(ii) There exists a �-lattice (ak) such that

∞∑
k=1

(
ν(B(ak, r))

|B(ak, r)|
)p

< +∞,

where r is the maximal covering radius for (ak).

For the proof of this theorem, we require the following two lemmas.

Lemma 8.3 Suppose that (ej ) is an orthonormal basis for A2(�) and that (aj ) is a
�-lattice. Then the operator J on A2(�) defined by

Jej (z) := K�(z, aj )√
K�(aj , aj )

is bounded.

Proof For two arbitrary functions f =∑j cj ej and g in A2(�), the reproducing
formula and the Cauchy–Schwarz inequality give

|〈Jf,g〉|2 =
∣∣∣∣∣∣
∑
j

cj

g(aj )√
K�(aj , aj )

∣∣∣∣∣∣
2

≤
⎛
⎝∑

j

|cj |2
⎞
⎠
(∑

k

|g(ak)|2
K�(ak, ak)

)
.

If we set

ν :=
∑

k

e�(|aj |2)

K�(aj , aj )
δaj

,

then we may write this estimate as

|〈Jf,g〉|2 ≤ ‖f ‖2
A2(�)

∫
Cn

|g(z)|2dν�(z).

By Theorem D, we see that ν is a Carleson measure, which implies that J is a
bounded operator on A2(�). �

Lemma 8.4 Suppose that T is a positive operator on A2(�). Then the trace of T

can be computed as

Tr(T ) =
∫

Cn

T̃ (z)K�(z, z)dμ�(z).
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Proof We write K�(z,w) =∑∞
k=0 ek(z)ek(w), where (ek) is an orthonormal basis

for A2(�). The lemma is then proved by means of the following computation:

Tr(T ) =
∞∑

k=0

〈Tfk, fk〉A2(�) =
∫

Cn

〈T K�(·, z),K�(·, z)〉A2(�)dμ�(z).
�

Proof of Theorem E We begin by assuming that Tν is in Sp . Pick a �-lattice (aj )

and let r be its maximal covering radius. By (7.7) and Lemma 8.1, we have

∑
k

(
ν(B(ak, r))

|B(ak, r)|
)p

�
∑

k

(∫
B(ak,r)

K�(w,w)dν�(w)

)p

�
∑

k

(∫
B(ak,r)

|K�(ak,w)|2
K�(ak, ak)

dν�(w)

)p

.

By Lemma 7.4 and our assumption on ν, this gives

∑
k

(
ν(B(ak, r))

|B(ak, r)|
)p

�
∑

k

(∫
Cn

|K�(ak,w)|2
K�(ak, ak)

dμ�(w)

)p

.

If we construct J as in Lemma 8.3, then the right-hand side equals
∑

k |〈J ∗TνJ ek,

ek〉|p . Since J is a bounded operator, J ∗TνJ also belongs to Sp , and so the latter sum
converges. We conclude that (i) implies (ii).

We will use an interpolation argument to prove that (ii) implies (i). We already
know from Theorem D that Tν is in the Schatten class S∞ whenever ν(B(ak, r)) ≤
C|B(ak, r)| for some positive constant C. Suppose now that

∑
k

ν(B(ak, r))

|B(ak, r)| < +∞,

and let (ej ) be an orthonormal basis for A2(�). By the reproducing formula, we have

〈Tνej , ej 〉 =
∫

Cn

|ej (w)|2dν�(w),

which implies that

∑
j

|〈Tνej , ej 〉| =
∫

Cn

K�(w,w)dν�(w) ≤
∑

k

∫
B(ak,r)

K�(w,w)dν�(w).

Again using Lemma 3.1, we then get

∑
j

|〈Tνej , ej 〉| �
∑

k

ν(B(ak, r))

|B(ak, r)| < +∞,

which means that Tν belongs to S1. By interpolation, we conclude that (ii) im-
plies (i). �
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We remark that the theorems proved in this section generalize results for the classi-
cal Fock space when n = 1 obtained recently in [12]. It may be noted that Theorem D
above could be elaborated to include two additional conditions for membership in Sp ,
in accordance with Theorem 4.4 in [12]. The proof would be essentially the same as
the proof of the latter theorem. Note that [12] also treats Schatten class membership
of Toeplitz operators for p < 1.

9 Schatten Class Membership of Hankel Operators

Our work so far suggests two possible definitions of Besov spaces, in accordance
with our respective definitions of BMOA(�) and B(�). We let Bp

m(�) denote the
set of entire functions f such that

∫
Cn

[MOf (z)]pK�(z, z)dμ�(z) < ∞;

for a function h : C
n → C

n, we set

|h(z)|β = sup
ξ∈Cn\{0}

|〈h(z), ξ̄ 〉|
β(z, ξ)

,

and we let Bp
d (�) be the set of entire functions f for which

∫
Cn

|∇f (z)|pβK�(z, z)dμ�(z) < ∞.

These definitions are in line with those of K. Zhu for Hankel operators on the
Bergman space of the unit ball in C

n [19].
It is immediate from (2.2) that Bp

m(�) ⊂ Bp
d (�). The basic question is whether

these spaces coincide and in fact characterize Schatten class Hankel operators with
anti-holomorphic symbols. The following theorem gives an affirmative answer to this
question.

Theorem F Let � be a logarithmic growth function, and suppose that there exists a
real number η < 1/2 such that (1.4) holds and that (7.1) holds if n > 1. If f is an
entire function on C

n and p ≥ 2, then the following statements are equivalent:

(i) The function f belongs to T (�) and the Hankel operator Hf̄ on A2(�) is in
the Schatten class Sp;

(ii) The function f belongs to Bp
m(�);

(iii) The function f belongs to Bp
d (�).

Proof We have already observed that the implication (ii) ⇒ (iii) is an immediate con-
sequence of (2.2). The implication (i) ⇒ (ii) relies on the following general Hilbert
space argument. If (i) holds, then the operator [H ∗̄

f
Hf̄ ] p

2 is in the trace class S1. Ap-

plying Lemma 8.4 and using the spectral theorem along with Hölder’s inequality, we
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obtain

Tr
(
[H ∗̄

f
Hf̄ ] p

2

)
=
∫

Cn

〈[H ∗̄
f
Hf̄ ] p

2 K�(·, z),K�(·, z)〉dμ�(z)

�
∫

Cn

[‖Hf̄ K�(·, z)‖2

K�(z, z)

] p
2

K�(z, z)dμ�(z).

Recalling the computation made in (2.1), we arrive at (ii).
Our proof of the implication (iii) ⇒ (i) will use a version of L. Hörmander’s L2

estimates for the ∂̄ operator. To this end, write ��(z) = �(|z|2) and observe that

α2(z, ξ) :=
n∑

j,k=1

∂2��(z)

∂zj ∂z̄k

ξj ξ̄k = |ξ |2� ′(|z|2) + |〈z, ξ 〉|2� ′′(|z|2)

for arbitrary vectors z = (z1, . . . , zn) and ξ = (ξ1, . . . , ξn) in C
n. By Theorem B,

we therefore have α(z, ξ) � β(z, ξ). Now let L2
β(μ�) be the space of vector-valued

functions h = (h1, . . . , hn), identified with the corresponding (0,1)-forms h1dz̄1 +
· · · + hndz̄n such that

‖h‖2
L2

β(μ�)
:=
∫

Cn

|h(z)|2βdμ�(z) < ∞.

It follows from Theorem 2.2 in [7] (a special case of a theorem proved by J.-P. De-
mailly in [10]) that the operator S giving the canonical solution to the ∂̄-problem is
bounded from L2

β(μ�) into L2(μ�).
Since f is holomorphic, we have

∂̄(Hf̄ g) = ∇f g

when g is in A2(�), whence Hf̄ g = S(∇f g). Thus it follows that

‖Hf̄ g‖L2(μ�) �
∫

Cn

|∇f (z)|2β |g(z)|2dμ�(z). (9.1)

If we set dν(z) = |∇f (z)|2βdV (z), this may be written as

H ∗̄
f
Hf̄ � M∗|∇f |β M|∇f |β = Tν,

where as before Mh denotes the operator of multiplication by h from A2(�) into
L2(μ�). By Theorem E, it remains to verify that (iii) implies that for some �-lattice
(ak) we have

∞∑
k=1

(
ν(B(ak, r))

|B(ak, r)|
)p/2

< +∞, (9.2)
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where r is the maximal covering radius for (ak). To this end, we first observe that
Hölder’s inequality gives that

(
ν(B(z, r))

|B(z, r)|
)p/2

� 1

|B(z, r)|
∫

B(z,r)

|∇f (z)|pβdV (w).

Hence, using (7.7) and Lemma 3.1, we obtain

(
ν(B(z, r))

|B(z, r)|
)p/2

�
∫

B(z,r)

|∇f (z)|pβK(z, z)dV (w).

Now choosing any �-lattice (ak) and using Lemma 7.4, we arrive at (9.2). �

Several remarks are in order. First, note that (9.1) gives another proof of the im-
plication (iii) ⇒ (i) in Theorem A, subject to the additional smoothness condition
(7.1). Second, as shown in [9], there are nontrivial Hankel operators in Sp only when
p > 2n. This fact is easy to see from Theorem F when n = 1, because then

|∇f (z)|β � |f ′(z)|[�′(|z|2)]−1/2,

whence f is in Bp
d (�) if and only if

∫
C

|f ′(z)|p[�′(|z|2)]1−p/2dV (z) < ∞. (9.3)

When n > 1, the computation of |∇f (z)|β is less straightforward, but we always have

|∇f (z)|[�′(|z|2)]−1/2 � |∇f (z)|β � |∇f (z)|[� ′(|z|2)]−1/2.

The estimate from above shows that the condition∫
Cn

|∇f (z)|p�′(|z|2)[� ′(|z|2)]n−1−p/2dV (z) < ∞ (9.4)

is sufficient for f to belong to Bp
d (�), and the estimate from below shows that this is

also necessary when �′/� ′ is a bounded function. We conclude from (9.3) and (9.4)
that if the growth of � ′ is super-polynomial, then Bp

d (�) is infinite-dimensional and
contains all polynomials if and only if p > 2n. This is immediate when n = 1, and it
follows also when n > 1 because∫ ∞

0

� ′′(t)
[� ′(t)]1+δ

dt ≤ 1

δ[� ′(0)]δ < ∞

for every δ > 0. If, on the other hand, � is a polynomial, then �′/� ′ is a bounded
function, and one may use (9.4) and Theorem F to deduce Theorem B in [8].

It is not hard to check that if f is a monomial and n > 1, then

|∇f (z)|β � |∇f (z)||[� ′(|z|2)]−1/2

for z belonging to a set of infinite volume measure. By Lemma 2.12 in [8] and The-
orem F above, one may therefore conclude as in [8] that Bp

d (�) is nontrivial only if
p > 2n.
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